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Abstract

One of the distinctive traits of our society in the last decade is the avail-
ability and consequent fruition of multimedia content in digital format. The
Internet, the growing density of storage systems and the increasing quality of
compressed file formats, played the main roles in this revolution. Nowadays,
audio and video contents are easily created, stored and shared by million of
people.

This huge amount of data has to be efficiently organized and archived, to
ease the fruition of large databases as online shops (as Amazon, iTunes) and
content sharing website (Youtube, Soundcloud). The task of extraction of
meaningful descriptors from digital audio and classification of musical con-
tent are addressed by a new research field named Music Information Retrieval
(MIR). Among the descriptors that MIR aims at extracting from audio are
rhythm, harmony, melody. These descriptors are meaningful for a musician
and can find many applications as computer aided music learning, and auto-
mated transcription. The high demand for reliable automated transcriptions
comes from the hobby musicians too. Official transcriptions are not always
published and often the information about chords is enough to reproduce
the song.

This thesis propose a system that performs the two tasks of beat tracking
and chord recognition. The beat-tracking subsystem exploits a novel tech-
nique in finding the beat instants, based on the simultaneous tracking of
many possible paths. This algorithm provide a useful self-evaluation prop-
erty that can be exploited to achieve better accuracy. The downbeat is
extracted by the same algorithm, proving the validity of the same approach
at higher metrical level. The chord-recognition system proposed contem-
plates all the four most used key modes in western pop music (previously
only major and minor modes are considered). Two novel parametric proba-
bilistic models of keys and chords are proposed, where each parameter has
a musical meaning. The performances of the two parts of the system exceed
those taken as state-of-art reference. Finally the information gathered by our



system is exploited to compute a set of three novel harmony-based features.









Sommario

Uno dei tratti distintivi della nostra societa nell’ultimo decennio é la disponi-
bilita, e conseguente fruizione, di contenuti multimediali in formato digitale.
Internet, la crescente densité dei sistemi di storage e I’aumento della qualita
dei formati di file compressi, sono i protagonisti di questa rivoluzione. Al
giorno d’oggi, contenuti audio e video sono facilmente creati, immagazzinati
e condivisi da milioni di persone.

E necessario che questa enorme quantita di dati sia efficientemente or-
ganizzata e archiviata, per facilitare la fruizione di grandi basi di dati come
negozi online (Amazone, iTunes) e siti di condivisione di contenuti (Youtube,
Soundcloud). Il compito di estrazione di descrittori significativi da file au-
dio e la classificazione del contenuto musicale sono affrontati da una nuova
area di ricerca chiamata Music Information Retrieval (MIR). Tra i descrittori
che MIR mira ad estrarre dall’audio ci sono il ritmo, I’armonia, la melodia.
Questi descrittori sono significativi per un musicista e possono trovare molte
applicazioni, ad esempio nello studio della musica con il computer, o per
la trascrizione automatica di brani musicali. La grande richiesta per sistemi
affidabili di trascrizione automatica viene anche dai musicisti non profession-
isti, in quanto non sempre vengono pubblicate trascrizioni ufficiali dei brani
e la progressione di accordi é abbastanza per suonare il brano desiderato.

Questa tesi propone un sistema che esegue i due compiti di tracciamento
del beat e riconoscimento degli accordi. Il sotto-sistema di tracciamento del
beat sfrutta una nuova tecnica per trovare gli istanti di beat, basata sul trac-
ciamento simultaneo di pid sentieri. Questo algoritmo fornisce un’utile pro-
prieté di auto-valutazione che pu6 essere sfruttata per migliorarne I'accuratezza.
I primi beat delle misure sono estratti mediante lo stesso algoritmo, provando
cosi la validita dello stesso approccio al livello gerarchico superiore. Il sotto-
sistema di riconoscimento degli accordi proposto considera tutti e quattro i
modi pit usati nel pop occidentale (precedentemente solo i modi maggiore
e minore erano stati considerati). Due nuovi modelli probabilistici para-
metrici per gli accordi e le tonalitd sono proposti, dove ogni parametro ha

v



un preciso significato musicale. Le prestazioni delle due parti del sistema
superano quelle considerate come riferimento dello stato dell’arte. Infine,
le informagzioni raccolte dal nostro sistema sono sfruttate per calcolare tre

nuove descrittori emotivi basati sull’armonia.
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Chapter 1

Introduction

The advent and the diffusion of the Internet and its increasing bandwidth
availability, the growing density of newer storage systems, led to a new era
for digital multimedia content availability and consumption. Music is rep-
resentative of this revolution thanks to audio digital format such as mp3,
aac, flac and new affordable music production tools. Online music stores as
iTunes and Amazon, social platforms as last.fm and soundcloud are facing a
crucial need to efficiently store and organize music content in huge databases.
This involves the creation of meaningful descriptors to perform media search,
classification and suggestion. This task has initially been accomplished by
manually tagging songs with high-level symbolic descriptors (context-based
approach). This approach is not suited for dealing with massive and ever
increasing collections and, by definition, lacks of objectivity. The need of ob-
jective and automated paradigms to extract information directly from music
signals (content-based approach) contributed to the birth of a new research
area, named Music Information Retrieval (MIR), a branch of Multimedia
Information Retrieval. MIR is a broad field of research that takes advantage
of signal processing techniques, machine learning, probabilistic modelling,
musicological and psychoacoustic theories. The fundamental layer for MIR
applications is the extraction of features able to describe several characteris-
tics of musical content. These are generally categorized in three levels [15].
Low-level features (LLF) are directly extracted from the audio signal using
signal processing techniques. Mid-Level features (MLF) make use of LLF
and musicological knowledge to infer descriptors such as Melody, Harmony
and Rhythm '. High-level features have a higher degree of abstraction and
are easily understandable by humans, like affective descriptors - emotional

!These tasks and others are the object of Music Information Retrieval Evaluation
eXchange (MIREX) annual evaluation campaign.
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tags or continuous spaces as arousal, valence, dominance - and non-affective
descriptors as genre, dynamicity, roughness, etc.

In this thesis we will focus on the Mid level. Particularly we will address
the problem of automatic beat tracking and chord recognition. Further-
more we propose three novel features computed from the extracted chord-
progression by exploiting musicological background. We will then correlate
these features to the emotion variation perceived in a song.

1.1 Beat Tracking and applications

Beat tracking is one of the most challenging task in the context of MIR field.
Beat is a steady succession of pulses of that humans tend to follow when
listening to a song.

Rhythm, as almost all aspects of music, is a hierarchical structure. It’s
common to consider three metrical levels. Tatum is the lowest level of this
hierarchy. The next level is the beat level or tactus, the period at which most
humans would tap their foot or snap their fingers. The last and highest level
is the measure level. Measure is a segment of time defined by a given number
of beats. Downbeats are the first beats of each measure.

Extracting beat from audio is very useful for many applications. Beat
information, for example, can be exploited in subsequent beat-synchronous
analysis (sampling informations using the time-grid given by beats), in score
alignment and chromagram synchronization for chord recognition, as we will
see later on. Beat-synchronous processing can have applications in time-
stretching. Professional DJ softwares make use of beats position and tempo
information to help the user making rhythmically smooth cross-fades be-
tween songs. In the music production field, music engineers can take great
benefit from automatic slicing a track based on auto-detected beat instants,
and then quantizing them to obtain a version with a steadier rhythm. A
sequencer can vice versa adjust the tempo grid according to a track. Tempo,
the period of the beats, can also be useful for automatic song library tagging.
One of the id3 tags is in fact named beat per minute (bpm), and it indicates
the average tempo of a song.

The downbeat extraction task has also many applications. Rhythmic pat-
tern analysis can greatly benefit having a predefined grid over which to apply
pattern recognition techniques. Downbeat positions can be also exploited as
most likely temporal boundaries for structural audio segmentation.

Main techniques for beat-tracking work on an Onset Detection Function
(ODF), extracted from the audio signal. This function is tailored as to
highlight the transients and the start of new notes. Periodicities of this
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function represent the tempo. The ODF is then scanned to find a regular
pattern of peaks spaced by the tempo. The search of downbeat is carried
out by finding regular patterns among the beats, with periodicities of three
or four beats.

In this thesis we propose a new beat sequence technique based on a
new multipath tracking algorithm based on dynamic programming, aware
of tempo changes. This novel technique increases accuracy in beat track-
ing by exploiting an iterative self evaluation. The same algorithm has been
applied to downbeat detection with dynamic time signature tracking.

1.2 Chord Recognition

Automatic chord recognition task aims at generating chord transcriptions
as similar as possible to those of highly trained musicians. Unlike beat-
tracking, this isn’t an easy task for hobby musicians too. However, chords
are important for modern pop music, given they provide alone enough infor-
mation to allow musicians of any level to perform a recognizable version of
a song. This is confirmed by a great demand for chord transcriptions on the
Internet, where some web sites provide archives of home-made transcriptions
submitted by users.

Aside from automatic transcription, the chord-recognition task encompass
similarity-based applications like score synchronization and cover identifica-
tion, and is used for genre classification as well. The harmony of a song is also
connected to mood. Many psychoacoustic researches demonstrate how sensi-
tive humans are with respect to harmonic structure. Chord progressions can
influence mood in many ways, mainly by exploiting specific patterns linked to
known emotional responses in the listeners. Sloboda [40| showed the bounds
between harmonic patterns such as cycle of fifths, unprepared harmony or
cadences, with responses as tears, shivers and racing heart. This is exactly
what the composer does while writing a song, he searches the right balance
to achieve a precise emotional meaning, often in tune with other layers as
lyrics, arrangement or melody.

Harmony is not an exception in being a hierarchical structure, as rhythm
is. Above the chords level is the key level. In tonal music, as is the vast
majority of the music, one note, called tonic or key root, has greater im-
portance than others. Other notes and chords have meaning in relation to
the tonic, that is consequently said to provide a context. The relationships
between notes and the key root, as we will see in chapter 3, form the key
mode, one of the main aspects that induce mood in the listener.



Main techniques are based on the comparison between the chromagram
and a series of chord templates. Temporal correlation of chord sequence is
addressed by creating probabilistic models or by filtering the chromagram in
the time direction.

The goal of this thesis is to exploit diatonic modal harmony theory in order
to improve chord transcription. We provide a novel parametric probabilistic
modelling of chords and keys. Our model include all the four main key modes
and not only the major and minor modes. Finally we exploit key mode and
chord structure to extract harmony-related feature.

1.3 Thesis Outline

In chapter 2 we present some related works, representative of the state of the
art in beat tracking and chord recognition techniques. Chapter 3 provides
the theoretical background of algorithms and probabilistic models we use
throughout our system. In chapter 4 attention is drawn to our system and
we fully review each stage of beat and chord detection. Experimental results
and comparison to existing systems is presented in chapter 5.



Chapter 2

State Of Art

In this chapter we will give an overview of the main existing approaches
of beat tracking and chord recognition. The analysis will be subdivided in
successive steps representing the common procedures in performing these

tasks.

2.1 State Of Art in Beat Tracking

In this section we review the main existing approaches on the beat-tracking
task. We split the analysis following the order of the building blocks of a
standard beat-tracking system. Generally beat tracking task is divided in
these successive steps:

e An Onset Detection Function (ODF) is generated from the input signal
e Periodicities in the ODF are highlighted in the Rhythmogram

e Beat positions are detected starting from the ODF and the Rhythmo-

gram

e Downbeats are found between beats

2.1.1 Onset detection function

Most of the beat tracking algorithms are based on a mono-dimensional fea-
ture called Onset Detection Function (ODF) [4]. ODF quantifies the time-
varying transientness of the signal where transients are defined as short in-
tervals during which the signal evolves quickly in a relatively unpredictable
way. More exaustive explanation of ODF will be given in Chapter 4.
Human ears cannot distinguish between two transients less than 10 ms
apart, so that interval is used as the sampling period for ODFs. The process
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of transforming the audio signal (44100 samples/s) to ODF (100 samples/s) is
called reduction. Many approaches have been proposed for reduction. Some
make use of temporal features as envelope [38] or energy. Others take into
account the spectral structure, exploiting weighted frequency magnitude.
In|28], for example, a linear weighting W}, = |k| is applied to emphasize high
frequencies. Different strategies have advantages with different types of mu-
sical signals. We choose the spectral difference detection function proposed
by [2] as the state of art for pop songs.

2.1.2 Tempo estimation

Periodicities in the ODF represent beat period or tempo of the song and are
searched using methods as auto-correlation, comb-filter resonator or short-
time Fourier Transform (STFT). A spectrogram-like representation of such
periodicities is called Rhythmogram (Fig. 4.7). This task, concerning the
beat rate instead of beat positions, takes the name of tempo estimation.
In [12] was proposed a very effective way to find periodicities using a shift-
invariant comb filter-bank. Tempo generally varies along the piece of music.
The analysis is, therefore, applied at windowed frames of 512 ODF samples,
with 75% overlap. One of the main problem, at this level is the trade off
between responsiveness and continuity. In [12]| this problem was assessed
using a two state model, in which the "General State" takes care of respon-
siveness and the other, called "Context-Dependent State", try to maintain

continuity.

2.1.3 Beat detection

The beat detection phase addresses the problem of finding the positions of
beat events in the ODF. A simple peak picking algorithm would not be
sufficient as there are many energy peaks that are not directly related to
beats. Human perception as a matter of fact tends to smooth out inter-
beat-intervals to achieve a steady tempo. This can be modelled, as proposed
in [13], by an objective function that combines both goals: correspondence to
ODF and interval regularity. Inter-beat-interval is the tempo, so it is derived
from an earlier tempo detection stage. An effective search of an optimal beat
sequence {t;} can be done in a simple neat way by assuming tempo as given
and using a dynamic programming algorithm technique [1].

Irregularities in the detected tempo path are one of the main sources of
error. We propose a novel beat-tracking technique that track simultaneously
more likely beat sequences. In doing so it manages to identify and correct
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some of the errors carried on from earlier stages, mainly the tempo estimation
stage.

2.1.4 Time signature and downbeat detection

Downbeat detection stage focuses on the highest level of rhythmic hierarchy.
Outputs of this stage are the set of the first beats of each measure. As
inter-beat-intervals sequence constitute the tempo, inter-downbeat-intervals,
expressed in beats per measure, represents the time signature. Common time
signatures are 4/4 and 3/4 meaning respectively four beats per measure
and three beats per measure. In [17] a chord-change probability function is
exploited in making decisions on higher level beat structure. In [16], bass
drum and snare drum onsets are detected by a frequency analysis stage.
Patterns formed by these onsets and their repetitions are used as cues for
detecting downbeats. The algorithm used as the state of art is described
in [11]. The input audio is down-sampled and a spectrum is calculated for
every beat interval. A spectral difference function D is then obtained by
Kullback-Leibler divergence between successive spectra. This function gives
the probability that a beat is also a downbeat. Downbeat phase is then
found by maximizing the correlation of D with a shifting train of impulses.

Our model exploits the same multipath algorithm to track the sequence of
downbeats among beats. It exploits, as the downbeat’s ODF, a combination
of an energy based feature and a chroma variation function.

2.2 State Of Art in Chord Recognition

In this section we review the existing approaches in Chords and Keys ex-
traction. Again, we split the analysis following the major steps undertaken
by a standard algorithm starting from the audio signal.

2.2.1 Chromagram extraction from audio domain

Most of the chord-recognition algorithms are based on a vectorial feature
called Chromagram, which will be described in detail in chapter 3. Chroma-
gram is a pitch class versus time representation of the audio signal [43]. It is
computed starting from Spectrogram by applying a mapping from linear to
log-frequency. This procedure is most often accomplished by the constant-Q
transform [5].

For the task of chord-recognition, Chromagram is needed to show the
relative importance of pitch classes of notes played by instruments. The
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Spectrogram, however, contains noise coming from percussive transients and
contains harmonics (tones at integer multiples of the fundamental frequency
of a note). Furthermore the overall tuning reference frequency may not be
the same for all songs. It’s therefore necessary to develop strategies and

work-arounds to cope with these problems.

2.2.2 Chromagram enhancement

The basic approach in reducing percussive and transient noise is to apply a
FIR low pass or a median filter to the Chromagram in the time axis. The
same result is achieved as a side-effect of beat-synchronization, that consists
in averaging Chroma vectors inside every beat interval. Beat-synchronization
is usually performed in chord-recognition as proposed in [3]. Other methods
include spectral peak picking (|18]) and time-frequency reassignment (|24]).

The Harmonics contribute to characterize the timbre of instruments but
are not perceived as notes and have no role in chord perception. For the
chord-recognition task therefore, their contribute is undesirable. To address
this issue, in [18], spectral peaks found in the spectrogram contribute also
to sub-harmonic frequencies, with exponentially decreasing weight. In [29]
each spectrogram frame is compared to a collection of tone profiles containing
harmonics.

For historical reasons the frequencies of the notes in our tuning system,
the twelve-tone equal temperament, are tuned starting from the standard
reference frequency of a specific note: A4 = 440H z. This frequency in some
songs vary in the interval between 415 Hz and 445 Hz, then it is necessary
to determine it to obtain a reliable chromagram. The approach generally
used is to generate a log-frequency representation of the Spectrogram with
frequency resolution higher than the pitch resolution. In [21] 36 bins per
octave are extracted. The same resolution is achieved with pitch-profiles
collection matrices in [30]. Since our temperament has 12 pitch classes per
octave, we obtain 3 bins per pitch. Circular statistics or parabolic interpo-
lation allow us to find the shift of the peak from the centre bin, hence the
shift of the reference frequency.

2.2.3 Chord Profiles

Chord recognition is achieved by minimizing a distance or maximizing a
similarity measure between the time slices of the Chromagram and a set of
12-dimensional pitch class templates of chords. Chord theory and derivation
of pitch class templates is treated in full detail in the next chapter. Inner
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product is used as a similarity measure in [21]. In [34] the use of Kullback-
Leibler divergence as a distance measure is proposed. In [3], chords template
vectors are centre-points of 12-dimensional Gaussian distribution with hand
tuned covariance matrices.

2.2.4 Chord sequences

Finding a chord for each slice of the Chromagram would result in a messy
and chaotic transcription, useless from any musical point of view. This is
caused by 2 main factors: the percussive transients that results in a wide
non-harmonic spectrum, and the melody notes and other non-chord passing
notes that can make the automatic choice of the right chord an hard task.
To obtain a reliable and musically meaningful chord transcription we must
account for the connections and hierarchies of different musical aspects.

Chords are stable in a time-interval of several seconds. It is then necessary
to find a strategy to exploit this evidence and find smooth chords progres-
sions over time. A segmentation algorithm proposed in [14] uses a "chord
change sensing" procedure that computes chord changes instants by apply-
ing a distance measure between successive chroma vectors. In [21] a low pass
filtering of chroma frames and then a median filtering of frame-wise chord
labels is performed. In [34| the smoothing is applied not to the labels but
on the frame-wise score of each chord. The majority of chord transcription
algorithm use probabilistic models as Hidden Markov Models (HMMs), ex-
plained in chapter 3, which are particularly suited for this task as they model
sequences of events in a discrete temporal grid. In HMMs for chord recog-
nition task, chords are the states and chroma vectors are the observations.
The model parameters as the chord transitions and the chroma distribution
for each chord express musically relevant patterns.

Chroma distributions are mainly based on chord profiles. One of the most
important parameters is the self-transition, which models the probability
that a chord remains stable. Between approaches exploiting HMMs, [3] is
notable as the chord transition matrix is updated for each song, starting
from a common base, that model the a-priori common intuition of a human
listener. Another probabilistic model recently used [27] in the MIR field is
the Dynamic Bayesian Network (DBN) [32], reviewed in chapter 3. DBN
can be seen as a generalization of HMM that allows to model, besides chord
transition patterns, any other type of musical context in a network of hidden
and observed variables.
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2.2.5 Musical contexts

Other musical context used along with chord transition patterns are Key,
Metric position, and Bass note contexts.

The fundamental importance of Key in human perception of harmonic
relationships is highlighted in chapter 3. This has been exploited success-
fully in many chord recognition systems. Some of them [39] use the Key
information to correct the extracted chord sequence, others [6] try to extract
the Key simultaneously to the chord sequence. The Key changes, or mod-
ulations, in a song are addressed only by some of the existing approaches,
while the majority of them assumes the Key to remain constant throughout
the song. The key modes addressed by these systems are major and minor
modes.

Bass note (the lowest note of a chord) can be estimated by creating a sep-
arated Bass-range Chromagram that include only the low frequency pitches.
The pitch class of the Bass note is likely to be a note of the chord. This as-
sumption is exploited in [31] by creating a CPD of chords given a bass-range
chroma vector.

Metric position can also be used as a context, exploiting the fact that
chord changes are likely to be found at downbeat positions, as done in [35].

We propose a novel probabilistic model of keys that include, besides major
and minor modes, the Mixolydian and the Dorian mode. The parameters
of this model express meaningful events as different types of modulations.
Furthermore, we propose a new conditional probability model of chords,
given the key context. This model assigns three different parameters to
different group of chords, based on the key mode and the relationship with
the tonic.

2.2.6 Key Extraction

Key extraction is usually done by comparing Chroma vectors with a set of
key templates. Correlation is used as similarity measure as in [18]. HMMs
are used to track the evolution of key in a song. The best known key tem-
plates (the concept of key and tonality is reviewed in the chapter 3) are
the Krumhansl’s key profiles ([26]). They contains 12 values that show how
pitch classes fit a particular key. This profiles were obtained by musicological
tests and, as expected, agree with music theory. Krumhansl’s key profiles
are available for major and minor keys. Other key profiles are automatically
extracted in [7] from a manually annotated dataset of folk songs.

To compute the keys we propose a hybrid system. It first weights our
a-priori probability model by a vector of key root saliences, obtained by



correlating the chromagram with a set of key root profiles. Then the keys
sequence is extracted together with chord sequence by viterbi inference for
the Dynamic Bayesian Network.
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Chapter 3

Theoretical Background

In this chapter we will review the theoretical background and tools used
in our technique. We will begin with the basic musical background needed
to understand chords, keys and key modes. Then, we will introduce two
low level signal processing tools, the Short Time Fourier Transform (STFT)
and the Chromagram. Successively, we will explain the main concepts of
the probabilistic models we used in the beat tracking system: the Hidden
Markov Models (HMM). Finally we will review a generalization of HMM,
the Dynamic Bayesian Network (DBN): the probabilistic model that will
be used in the chord recognition system to model a number of hidden state
variables and their dependencies.

3.1 Musical background

In this section we review some basic concepts of music theory. In particular
we cover what is pitch and pitch classes, how chords are formed and their
relation to key and modes. For a comprehensive reference we remind the
reader to [44].

3.1.1 Pitch and pitch classes

Pitch is a perceptual attribute which allows the ordering of sounds on a
frequency-related scale extending from low to high (|25]). Pitch is propor-
tional to log-frequency. In the Equal temperament it divides each octave (a
doubling of frequency) in 12 parts:

Jp :2%fp—1- (3.1)

where f, is the frequency of a note . In this study pitch and note terms are
used as synonyms from now on. The distance between two notes is called

15
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interval, and is defined by a frequency ratio. The smallest interval, called

semitone, is defined by the ratio

Fo o
i 213, (3.2)

An interval of n semitones is therefore defined by 212. The interval of 2

semitones is called tone.

Human are able to perceive as equivalent pitches that are in octave re-
lation. This phenomenon is called octave equivalence. Pitch classes are
equivalence classes that include all the notes in octave relation. Note names
indicates, in fact, pitch classes (Table 3.1).

note name | pitch class #
C 1
Ct/Db 2
D 3
Dt /Eb 4
E 5
F 6
Ft/Gb 7
G 8
Gf/Ab 9
A 10
Ag/Bb 11
B 12

Table 3.1: Pitch classes and their names. § and b symbols respectively rise and lower
the pitch class by a semitone.

Octave is indicated by a number after the pitch class. In Table 3.2 pitches
are related to their frequency in the the Equal temperament, tuned relative
to the standard reference: A4 = 440H z.
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Octave
Note 2 | 3 | 4 | 5 6
C 66 Hz | 131 Hz | 262 Hz | 523 Hz | 1046 Hz
Ct/Db | 70 Hz | 139 Hz | 277 Hz | 554 Hz | 1109 Hz
D 74 Hz | 147 Hz | 294 Hz | 587 Hz | 1175 Hz
D#/Eb | 78 Hz | 156 Hz | 311 Hz | 622 Hz | 1245 Hz
E 83 Hz | 165 Hz | 330 Hz | 659 Hz | 1319 Hz
F 88 Hz | 175 Hz | 349 Hz | 698 Hz | 1397 Hz
F#/Gb | 93 Hz | 185 Hz | 370 Hz | 740 Hz | 1480 Hz
G 98 Hz | 196 Hz | 392 Hz | 784 Hz | 1568 Hz
Gf#/Ab | 104 Hz | 208 Hz | 415 Hz | 831 Hz | 1661 Hz
A 110 Hz | 220 Hz | 440 Hz | 880 Hz | 1760 Hz
Af/Bb | 117 Hz | 233 Hz | 466 Hz | 932 Hz | 1865 Hz
B 124 Hz | 247 Hz | 494 Hz | 988 Hz | 1976 Hz

Table 3.2: Pitches are related to their frequency using the standard reference frequency

A4 = 440H z.

Scales are sequences of notes that cover the range of an octave. Scales

are classified based on the intervals between successive notes. The particular

sequence of semitone and tone intervals depicted in the Table 3.3 compose

the magor scale (Fig. 3.1).

Table 3.3: Sequence of tones and semitones in the major scale
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3.1.2 Chords
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Figure 3.1: C major scale

Chords are the combination of two or more intervals of simultaneous sound-

ing notes. Chords are classified by their number of notes and the intervals

between them.
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The most used chord type in western pop music is the ¢riad. Triads are
three note chords, and divide in 4 types depending on the intervals between

their notes (Table 3.4).

type major | minor | augmented | diminished

label maj min aug dim
interval 2 3 4 4 3
interval 1 4 3 4 3

Table 3.4: The four triad types. Intervals are specified in number of semitones.

We can build a triad on each note of the major scale, using only scale
notes. This process is called harmonization of the major scale. We obtain
the series of triads showed in Fig. 3.2.

N

»
[9%%
[

C:maj D:min E:maj F:maj G:maj A:min

Figure 3.2: Harmonization of C major scale. Using only notes from the scale, we obtain
a sequence of triads of different types.

3.1.3 Tonal music and keys

Music is tonal when a pitch class more important than others can be outlined.
This pitch acts as centre of gravity and is called tonic or key root. The tonic is
the most stable pitch class where to end a melody, to obtain a final resolution
(think of any western national anthem). The triad built on the tonic is the
most likely chord where to end a song. Most of the western music is tonal.

The concept of key mode relates to the particular choice of other notes in
relation with the key root. A mode correspond to a scale in the sense that
notes are taken from a particular scale of the key root. For example, given
the intervals pattern of the major scale (Table 3.3), the pattern of intervals
of scale notes with the key root is

T

S

T

S

2

4

5

7

9

11

12

Table 3.5: Relationships of major scale notes with the tonic
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Most used modes are taken from a set of scales called the diatonic scales

that include the circular shifts of the major scale. They are therefore called

diatonic modes.

L TTSTTTS

TTSTTTS

TTSTTTS..

Table 3.6: Diatonic modes can be viewed as built sliding towards right a window over

the major scale pattern.

Ionian (Major) | TTST T TS
Dorian TSTTTST
Frigian STTTSTT
Lydian TTTSTTS

Mixolidian TTSTTST

Eolian (Minor) | TSTTSTT

Locrian STTSTTT

Table 3.7: Diatonic modes

Most used modes in western music (Table 3.8) are Major, Mixolydian,

Dorian and Minor. Their scale and set of triads, in the key root of C, are

showed in Fig. 3.3.

Major

‘ Mixolydian

|

Imagine (John Lennon)
Blue Moon (Rodgers, Hart)
We are golden (Mika)
Something Stupid (Robbie Williams)

Sweet Child Of Mine (Guns 'n’ Roses)
Don’t Tell Me (Madonna)
Teardrop (Massive Attack)

Millennium (Robbie Williams)

Dorian

Minor

I Wish (Steve Wonder)

Oye Como Va (Santana)
Great Gig In The Sky (Pink Floyd)

Mad World (Gary Jules)

Losing My Religion (REM)
Rolling In The Deep (Adele)
Have a Nice Day (Bon Jovi)

I Belong To You (Lenny Kravitz)

Table 3.8: Examples of representative songs for the four main diatonic modes

In western music, modes have been shown to be linked with emotions,

as for instance minor modes are related to sadness and major to happiness

([22]). If we evidence the intervals with key root for each diatonic mode, we

can order them by the number of risen and lowered notes (Table 3.9).
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(a) C Major scale and its harmonization

T T S T T S T
0 I |
= ; 1 1 =
U T I =i r A T T i §
J & [4 hd | T
C D E F G A Bb C

N>

|
i
b o i i i |

| \ \ '
C:maj D:min Eb:dim F:maj G:min Ab:min Bb:maj C:maj

(b) C Mixolydian scale and its harmonization
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(d) C Minor scale and its harmonization

Figure 3.3: Most used diatonic modes and their harmonization.
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Lydian 246791112 1 risen note brightest
Ionian (major) | 24579 11 12 -
Mixolidian 245791012 | 1 lowered note
Dorian 235791012 | 2 lowered notes
Eolian (minor) | 2357 8 10 12 | 3 lowered notes
Frigian 135781012 | 4 lowered notes
Locrian 135681012 | 5 lowered notes | darkest

Table 3.9: Diatonic modes

This ordering, not the circular shift one, is relevant from an emotional
point of view. We believe it is consistent with a direction in the emotional
meaning of the modes. We can notice how the four most used modes are
in central positions. A collection of keywords used to describe emotions in
these four modes is provided in Table 3.10 [23].

Major Mixolydian | Dorian Minor
happiness bluesy soulful | sadness
brightness smooth hopeful | darkness
confidence funky holy defeat

victory folky moon | tragedy

Table 3.10: Diatonic modes

3.2 Audio features analysis

In this section we will give a review of basic signal processing tools we will
need in the next chapter. These tools are needed to extract low level fea-
tures directly from the audio samples domain. Short-Time Fourier Trans-
form (STFT) is a Fourier-related transform that computes a frequency-time
representation of the signal, needed to calculate the Onset Detection Func-
tion in the beat-tracking system. Chromagram is a pitch-class versus time
representation of the signal. It is a prerequisite for chord recognition and is
obtained from the STFT.

3.2.1 Short-Time Fourier Transform

Short-Time Fourier Transform (STFT) is a Fourier-related transform used
to determine the sinusoidal frequency and phase content of local sections of a
signal s(n) as it changes over time (n is the sample index). It is computed by
dividing the signal into frames by multiplication by a sliding window w(n)
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(w(n) # 0 for 0 < n < L,, — 1) and Fourier-transforming each frame. Three
parameters are specified: transform-size Npp, window length L,, < Npp
and hop-size H. The equation is

Npr—1
Se(wr) = Y (s(n—rH)w(n))e ™" k=0,.., Npr, (3.3)

n=0

where wy, = 27k/Npr is the frequency specified in [rad/s|, r is frame index,
k is the frequency bin. Usually L,, = Nppr = 2", because the Fourier trans-
form is computed by the fast implementation called Fast Fourier Transform
(FFT), that has maximized performances for power of 2 transform sizes. For
real valued signals the Fourier transform is symmetric, then we consider only
the first half of the spectrum (k =0, ..., Npr/2 — 1). Sampling in the time
axis is controlled by the hop-size parameter H. The parameter Ngr is linked
to frequency resolution Af = f;/Npp where fg is the sampling frequency of
the s(n). Frequency resolution however must account also for the effect of
convolution with the Transform of the window function W (wy) due to mul-
tiplication in the time-domain. We will need to account this concept when
choosing Npr large enough to obtain the resolution needed to distinguish
two tones at certain frequency. Sometimes only the magnitude information
is needed so a matrix representation called Spectrogram, P(r, k) = |S,(wy.)|?,
is used instead.

3.2.2 Chromagram

Chromagram describes how much the pitch-classes are present in a frame
of the audio, then is a pitch-class versus time representation. In our chord-
tracking system it will be compared with chord templates to find which chord
is playing at a given time.

To compute the Chromagram we follow a series of steps (Fig. 3.4). First
we extract the STE'T from audio, then we compare the magnitude spectrum
with a series of pitch profiles. We obtain the pitch salience representation
that indicates how much the pitches are present in the audio frame. We
then perform noise reduction to retain only significant peaks and discard the
noise due, for example, to percussive transients. Successively we perform
tuning to compensate the potential offset from the standard A4 = 440H z
reference. Finally bass and treble Chromagram are separated to later exploit
the importance of the bass note in the chord-recognition system.
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Pitch Noise - Bass & Treble
saliences reduction Tuning Mappings

Figure 3.4: Steps of the Chromagram calculation

Frequency-Domain Transform

First of all we must compute the STF'T of the signal. Fundamentals of notes
from CO to C7 lie in the range of ~ [30,2000]Hz then we can down-sample
the audio signal to fs = 11025 Hz without loss of information. Furthermore
we must ensure that we achieve the desired frequency resolution. The lower
limit of Npgp is given by

A&q~>>1(444é14—, (3.4)

|f2 — fil

where K is a parameter that depends on the window function used, for
Hamming window K = 4. We want the frequencies of A3 and Gf3 to be
discernible, so Npr has to satisfy

11025
Npp > 4———" = 3675. 3.5
FT = %1220 — 208 (3:5)

The minimum (to save computation time) power of 2 that satisfy this require-
ment is 22 = 4096. So we compute the STFT of the signal with Npp = 4096
and normalize each time slice with respect to Ly norm (Fig.):

|Si-(wi)|
(32 18 (wg)|)1/2

A(r, k) = (3.6)

Pitch salience

To construct the time-pitch representation and simultaneously account for
harmonics in timbre of instruments we adopt the approach proposed in [18§]
and modified in [29]. We construct a pitch profile matrix M¢ (Fig. 3.6), simi-
lar to a constant-Q transform kernel, where each row is the Fourier transform
of a Hamming windowed [41| complex tone, containing four harmonics in ge-

ometric amplitude sequence.

4
M¢(m, k) = FFTy,.(w(n) > _ o’ cos(2 * whfo(m)n)) (3.7)
h=1
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Figure 3.5: Normalized spectrum A(r, k). v is the time index and k is the frequency
bin. In figure, for clarity, are showed only the first 256 k of 4096. Only the first half
(2048) of frequency bins are meaningful, as the transform of a real signal is symmetric.

where a = 0.9, w(n) is the Hamming window and the fundamentals starts
from the fundamental frequency of A0 (27.5 Hz) and are

folm) =275x 2%  m=1,...,6 x 36, (3.8)

where m is the pitch index. This means that our pitches span 6 octaves,
from A0 to Gf#6, with the resolution of 1/3 semitone. This fine resolution
will allow us to perform tuning at a later stage.

We obtain a pitch salience matrix S¢ by multiplying A by M€ This
however leads to a problem because also sub-harmonics (pitches at f =
fo/n) have high values. This is addressed by constructing another pitch
profile matrix M?® similar to M€ but considering only a simple tone with no
harmonics. Pitch salience matrices are obtained by

S¢(m,r) = M(m, k)A(k,r) S¥(m,r) = M*(m,k)A(k,r), (3.9)

and passed to the next stage where they will be filtered and combined.

Broadband noise reduction

To lower broadband noise we have to retain only peaks in both salience
matrices. We threshold each time-slice and retain only values higher than
the local mean plus the local standard deviation. This two statistics are
computed considering an interval of half an octave. Thresholded 5S¢ and S¢

are then combined by element-wise product.
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Figure 3.6: Simple and complex pitch profiles matrices. k is the frequency bin index
and m is the pitch index.
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Tuning

Having recovered the pitch salience matrix with three times the resolution
needed, we can compensate for tuning shifts from the standard reference of
440 Hz, by performing circular statistics. To achieve a more robust tuning
we exploit the fact that the tuning do not change within a song, so we can
average all the temporal slices

_ 1
S=r > sk (3.11)
To find the tuning offset find the phase of the complex number obtained by
c= Zg(m)ej%ﬁ(m_l), (3.12)
m

and divide it by 27 to obtain the tuning shift in semitones:

_ phase(c)

t ;
2

(3.13)
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With this information we can interpolate SP"¢ so that the middle bin of each
semitone corresponds to the pitch estimated. Now the extra resolution of
1/36 semitone is not needed any more, so we sum the three bins for each

semitone:
3n
Sne= Y. ShS. (3.14)
m=3n—2

Bass and treble Chroma

As said, we need two chromagram representation for the different ranges.
Given the importance of the bass note in the harmony, we will exploit the
bass chromagram to increase the accuracy of chord detection.

The bass and treble chromagrams (Fig. 3.8) are obtained by multiplying
St by two windows functions w¢(n) and wy(n) (Fig. 3.7), that satisfy 2
constraints:

e they sum to 1 in the interval from Al to G#3

wi(n) +wy(n) =1 13 <n < 48. (3.15)

e they give the a constant total weight to all the pitch classes

> h—o(we(12k + pe)) = py

(3.16)
> heo(ws(12k + pe)) = pp,
The two chromagrams are obtained by:
CPT,t = 22:0 wi(12k 4 p) S12k4p,t
(3.17)

Cor = S p—ows(12k + p) S1ok4p.¢

A third version of the chromagram that we will use for creating the chord
salience matrix, called wide chromagram C" | is obtained by summing the
two.

3.3 Dynamic programming

Dynamic programming (DP) is a technique for the design of efficient al-
gorithms. It can be applied to optimization problems that generate sub-
problems of the same form. DP solves problems by combining the solutions
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Figure 3.8: Treble and bass chromagrams
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to sub-problems. It can be applied when the sub-problems are not indepen-
dent, i.e. when sub-problems share sub-sub-problems. The key technique is
to store the solution to each sub-problem in a table in case it should reap-
pear. The development of a dynamic-programming algorithm can be splitted
into a sequence of four steps.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct an optimal solution from computed information.

A simple example is the assembly-line scheduling problem proposed in [8],
which shares many similarities with beat-tracking algorithm in [13]. Let’s
focus on beat tracking and see how DP can be applied to our problem.

Given a sequence of candidate beat instants ¢(i) with i = 1,..., N, two
specific functions can be formulated: O(i) and T'(). O(4) is an onset detec-
tion function and says how much a beat candidate is a good choice based
on local acoustic properties. T'(i) is the tempo estimation that describe the
ideal time interval between successive beat instants. We search a optimal
beat sequence t(p(m)) with m = 1,..., M, such that onset strengths and
correspondence to the tempo estimation is maximized.

As the first step let’s characterize the structure of the optimal beat se-
quence that ends with the beat candidate t(i¢,q). To obtain it, we must eval-

uate all the J sequences that end with ¢ that we represent as t(p;(m))

lend?
with p;(M) = icpg, and choose the best one t(ppest(m)). t(Poest(m)) will
surely contain the best sequence up to t(p;(M — 1)). The key is to realize
that the optimal solution to a problem contains optimal solutions to sub-
problems of the same kind.

In the second step we have to recursively define the value of an optimal
solution. The optimal beat sequence solution t(ppest(m)) will have to both
maximize Y O(ppest(m)) and the probabilities of all the transitions. Let’s
define a single objective function C' that combines both of these goals. C

evaluates a sequence p(m) and returns a score:

C(p) =Y Op(m)) + Y F(t(p(m)) — t(p(m — 1)), T(p(m))) ~ (3.19)

where F' is a score function that assign a score to the time interval At
between two beats, given an estimation 71" of the beat period. F' is given by
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this equation:

F(At,T) = —(zog%)? (3.20)

The key property of this objective function is that the score of the best
beat sequence up to the beat ¢ can be assembled recursively. This recursive
formulation C* is given by:
C*(i) = 0(i) + max 1(F(t(z) — t(prev),T(i)) + C*(prev))  (3.21)
prev=1,...;i—
The third step is another key point in dynamic algorithms. If we base
a recursive algorithm on equation 3.21 its running time will be exponential
in N, the number of beats in the sequence. By computing and storing
C*(p(m)) in order of increasing beat times, we’re able to compute the value
of the optimal solution in Q(V) time.
Fourth and last step regards the actual solution. For this purpose, while
calculating C*, we also record the ideal preceding beat P*(i):
P*(i) = arg max 1(F(t(z) — t(prev), T(i)) + C*(prev)) (3.22)
prev=1,...;i—
Once the procedure is complete, P* allows us to retrieve the ideal preceding
beat P*(i) for each beat i. We can now backtrace from the final beat time
to the beginning of the signal to find the optimal beat sequence.

3.4 Hidden Markov Models

In the MIR field is typical to characterize signals as statistical models. They
are particularly useful for the recognition of sequence of patterns. One ex-
ample are the hidden Markov Models(HMMs) [37]. Within beat tracking
task, HMM can be used, for example, to find the tempo-path, given the
Rhythmogram.

Markov models describe a system that may be in one of N distinct states,
S1,59, ..., Sn. After a regular specific quantum of time it changes the state,
according to a set of probabilities associated with the current state. Let’s
denote the actual state at time ¢ as g;. The probability of being in the state
gt = S; given the previous state g;—1 = S; is given by

p(gt = Sjlge—1 = Si). (3.23)

In eq. 3.23, p is independent by the time, then we can gather those proba-
bilities in a state-transition matrix with elements:

Qij = p(qt = SJ|Qt—1 = SZ)7 1< Z?] < N7 (324)
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where

N
Qjj > 0, Zaij = 1,Vi. (3.25)
7=0

Markov models where each state S; corresponds to an observable event v; are
called observable Markov models or simply Markov Models. The three states
model of the weather proposed in [37] is an example. The only parameters
required to specify the model are the state-transition matrix A = {a;;} and
the initial state probabilities m; = p(q1 = S;).

In contrast to Markov models, in hidden Markov Models, observations
symbols v do not correspond to a state, but depend to the state, following
a series of conditional probability distributions CPDs by;:

bkap(Ot:UkMt:Sj)a 1<j<N,1<k<M, (3'26>

where Oy is the symbol observed at time f. An easy example is the tossing
of N coins, differently biased, where each coin is a state S; with j =1,..., N
and outcomes are the observations v with £k = 0,1. HMM are fully specified
by the state-transition matrix A, the initial state probabilities 7 and the
observation symbol CPDs B = {b;;}. The complete parameter set is then
indicated by A = (A, B, 7).

There are two main graphic representations of HMM. The first, called
state-transition diagram, is a graph where node represent states and arrows
are allowable transitions between them (Fig. 3.9). The second is a directed
graphical model that shows variables in a sequence of temporal slices, high-
lighting time dependencies (Fig. 3.10).

Figure 3.9: State transition graph representation of hidden Markov Models. Nodes are
states and allowed transitions are represented as arrows.
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Figure 3.10: Hidden Markov Models are often represented by a sequence of temporal
slices to highlight how q;, the state variable at time t, depends only on the previous one
g:—1 and the observation symbol at time t depends only on the current state q;. The
standard convention uses white nodes for hidden variables or states and shaded nodes
for observed variables. Arrows between nodes means dependence.

3.5 Viterbi decoding algorithm

The Viterbi algorithm is a formal technique, based on the dynamic program-
ming method that finds the single best state sequence @ = {q1,q2,...,qr}
that maximize p(Q|O,\), where O is the sequence of observations O =
{O1,09,...,0r}. First we define in a recursive fashion the value or score
of a solution: we define the best score that ends to the state S; at time ¢ as

0(i) = max  p(q1,q2, ..., @ = Si|O1,02, ..., O, \) (3.27)

q91,92,---,q9t—1

And find the recursive relationship
Ot+1(7) = max(9(2)az]b;(Orr1) (3.28)

Then we compute this value from the start of the sequence, keeping track
along the way of both sub-solution score §;(i) and best previous state 1(7)
(needed for backtracking). These are computed for every time slice and for
every state. The full procedure follows these four steps. Initialization

51(2) = Wlbl(Ol) 1 S /) S N (3.29)
Y1(i) =0 (3.30)
Recursion

0¢(j) = max[d—1(i)ay]bj(Or)  1<j<N,2<t<T (3.31)
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U (j) = arg mzax[ét_l(i)aij] 1<j<N,2<t<T (3.32)
Termination
score = m?X[éT(i)] (3.33)
g = arg max[6r ()] (3.34)
Backtracking
@ = Yrr(q) t=T-1T-2,..1 (3.35)

3.6 Dynamic Bayesian networks

Dynamic Bayesian Networks (DBN) are a generalization of HMMs that al-
lows the state space to be represented in factored form, instead of a single
discrete random variable.

A Directed Acyclic Graph (DAG Fig. 3.11) is a set of nodes and edges
G = (Nodes, Edges), where Nodes are vertices and Edges are connections
between them. Edges are directed if they imply a non-symmetric relation-
ship, in this case the parent—son relationship. A graph is directed if all its
edges are directed. Acyclic means that it is impossible to follow a path from
Node; that arrives back at Node;, as to say that Node; is an ancestor of
itself.

Node

Figure 3.11: A directed acyclic graph

A Bayesian network (BN) is a directed acyclic graph whose nodes represent
a set of random variables { X.x }, where N is the number of nodes, and whose
edge structure encodes a set of conditional independence assumptions about
the distribution P(X1.x):

(X; L NonDescend(X;) | Parents(Xj;)). (3.36)



Under these assumptions, and if the set {X;.x} is topologically ordered
with parents preceding their children, P(X;.5) can be factored as the prod-
uct of local probabilistic models P(X;|Parents(X;)):

N
P(Xy,...,Xy) = | [ P(Xi|Parents(X;)). (3.37)
i=1
For example, the DAG in Fig. 3.11 is already ordered, then its joint proba-
bility is:

P(Xy,....Xn) = P(X1)P(X2|X1)P(X3|X1)P(X4| X3, Xo)P(X5| X3, X4).
(3.38)

This ability to divide a complex system into smaller ones is what renders
it a great modelling tool. For each variable in a system we simply add a node
and connect with other nodes, where there are direct dependencies. Let’s
now introduce the time axis and temporal sequences.

First order Markov Models perform a prediction of type P(N;|N;_1) that
can be seen as a special case of a general inference query P(Attribute;|Context;).
In the chord-recognition task, attribute and context variables can range from
chord, key, meter, and any other variables of interest. DBNs extend the
capability of first-order Markov Models increasing the number of musical re-
lationships and hierarchies that can be tracked. This renders it particularly
suited to model musical systems that include lots of interconnected variables.

A DBN is defined to be a pair, (B1, B—,), where B; is a BN which defines
the prior P(Z;), and B_, is a two-slice temporal Bayes net (2TBN) which
defines P(Z;|Z;—1) by means of a DAG that factors as follows:

K
P(Zi|Z;1) = | | P(Z!|Parents(Z})). (3.39)
=1

where Zij indicates the Z7 variable at time index i. The resulting joint
distribution is given by:
K J

P(zi.k) = [[ [ P(2!|Parents(Z7)). (3.40)
i=1j=1

Building a DBN that include unobserved hidden states is straightforward.
We only need to add the nodes and create the dependencies. Model specifi-
cation is accomplished by specifying probability distributions in By and B_,,
as in HMMs.

There are many standard inference types [32]. The one we will use is called
offline smoothing because our system will have access to all the observations.
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Figure 3.12: Construction of a simple Dynamic Bayesian network, starting from the
prior slice and tiling the 2TBN over time.

It is based on a 2 pass forward filtering-backward smoothing strategy, which
is not discussed here because it is beyond the scope of this thesis.



Chapter 4

System Overview

In this chapter we will review the main components of our system. The first
section is devoted to the beat-tracker subsystem. In the second section we
will give an overview of the chord-recognition subsystem. Finally we will
explain the three novel harmony-based features and the ideas behind them.

4.1 Beat tracking system

In this section we review in full detail every building block of the beat track-
ing system (Fig. 4.2).

Starting from the audio signal s(n), we first compute the STFT and ex-
tract the onset detection function 7(m). Periodicities in 7(m) are estimated
and stored in 7(m) by the tempo estimation block. Starting from n(m) and
7(m) the beat tracking stage extract the beat times b(7). These are exploited
by the downbeat extraction stages, which extract downbeats db(k) among
beats.

4.1.1 Omnset strength envelope

The first step in computing the onset strength envelope is taking the short-
Time Fourier Transform (STFT) of the signal. Starting from a stereo signal
we first average the two channels to achieve a mono signal s(n), then the
STFT is computed with window length of N = 1024 samples and overlap of
50% (h = 512) obtaining a time-resolution of 11.6 ms:

Si(m) = i s(n)w(mh — n)e 72 k/N (4.1)

n=—oo

35
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digital audio

beat-tracking
system

mownbeats

» user (musician)

A\

chord-recognition

system

chords, keys .
» user (musician)

emotional features —————» yser (generic)
emotional

descriptors

Figure 4.1: The blocks that constitutes our system. Three types of information are
extracted starting from digital audio. Rhythmic information is extracted by our beat
tracker. Harmony-related information is extracted by our chord-recognition subsystem.
These information are middle level features and are addressed to musically trained users.
Harmony-related features are then extracted starting from key and chord information,
and is addressed to a generic user (no training needed).
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A basic energy-based onset detection function can be constructed by differ-
entiating consecutive magnitude frames:

6Sk(m Z |Sk(m)| = |Sk(m —1)] (4.2)

This exploits the fact that energy bursts are often related to transients. Ne-
glecting the phase information, however, results in great performance losses
when dealing with non-percussive signals, where soft "tonal" onsets are re-
lated to abrupt phase shifts in a frequency component. To track phase related
onsets, we consider the phase shift difference between successive frames. This
consists in taking the second derivative of unwrapped phase ¥ (m) and then
wrapping again into the [—m, 7] interval:

dy (m) = wrap[(Ye(m) — Yp(m — 1)) = (Yr(m — 1) = ¢p(m —2))]. (4.3)

As said, the onset detection computed through a combination of energy-
based and phase-based approaches performs better than using only one of
them. Simultaneous analysis of both energy and phase-based approach is
obtained through a computation in the complex domain. The combined
equation is:

Ti(m) = {|Sk(m — 1)* + [Sp(m)[*~
— 2|8k (m — 1)[|Sk(m — 1)| cos dy x (m)}/2 (4.4)

And the detection function n(m) (Fig. 4.3) is obtained by summing over the
frequency bins.

K
n(m) =Y Tx(m) (4.5)

k=1

n(m) is equal to the energy based onset function when dy 1 (m) = 0.

Z{\sk — D)+ [Sp(m)[? — 2/Sk(m — ][ Sk(m — D[}/? =

Mw

m)| = |Sk(m — 1) (4.6)
k=1

Before proceeding to next stage we remove leading and trailing zeros from
n(m).
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Figure 4.3: Signal s(n) and detection function n(m). The two functions have different
temporal resolutions but corresponding indices n and m are aligned in the figure for
better understanding.

4.1.2 Tempo estimation

The tempo estimation stage takes the onset detection function as input 7(m)
and is divided into two successive stages: computation of the Rhythmogram
y;(7), extraction of the tempo path 7(i) and linear interpolation to obtain
the same time resolution of n(m) (Fig. 4.4).

Tempo estimation

Rhythmogram »~| Tempo path

\

\/

Figure 4.4: Tempo estimation stage
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Rhythmogram

For beat period detection we first divide n(m) into analysis frames 7;(m) of
By = 512 samples with B}, = 128 samples hop-size, corresponding to one 6
s frame every 1.5 s:

mk) =n(k—(—1)By) 1<k<B (4.7)

Each frame is pre-processed, to discard the least significant peaks. Pre-
processing consists in moving average threshold and successive half-wave
rectify:

7i(m) = mean(n;(¢))m — Q <=qg<=m+Q
7i(m) = HWR (n;(m) — 7:(m)),

where we choose the half length of the moving average filter Q = 7. Then

(4.8)

we compute the autocorrelation, with lag bias compensation.

By - .
. (m —1
Al(l) —_ Emzl nz(m)nz(m ) ] = 17 an (49)
|l — Byl
To compute the rhythmogram we multiply A;(1) with a shift invariant comb
filter-bank, represented as the matrix F'(I,7)

By

yi(T) = w(r) Y AF(,7), (4.10)

=1

where every column of the matrix F' (Fig. 4.5) is a comb filter where impulses
are spaced of period 7 =1, ..., 128.

p—1

4
-y ¥ S(—7p+v) 1=1,..,B; (4.11)

oo 2p—1

w(7) is an a-priori probability distribution on the periods, to attenuate
the probabilities of slowest and fastest tempi. The curve that best fit the
sample is the Rayleigh distribution function (Fig. 4.6).

w(T) = =528 T=1,..,128 (4.12)

where we assign § = 43, which is the parameter that indicates the peak of
the distribution.

The outputs y;(7) (Fig. 4.7) are the probabilities that beats in the i — th
analysis frame have period equal to 7.
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Figure 4.5: Comb filter matrix F
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Figure 4.6: Rayleigh distribution function with § = 43 compared to the sample distri-

bution of periods in our dataset
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Figure 4.7: Rhythmogram matrix y;(7). 7 is the beat period expressed in number of
samples of the ODF.

Tempo path

To find the best path of periods throughout the song, we first discard periods
under 20 samples of (20 x 11.6 ms). This is reasonable as that period
correspond to an extremely fast tempo, about 258 bpm, that can be safely
used as a higher bound. Then we extract Npeqrs = 20 peaks (Fig. 4.10) {t;x}
from each i-th frame of y;(7) and we use the Viterbi algorithm to track the
best path among them. We assign an observation probability

vi(tik)

__Jik) 4.13)
N earks (
et it k)

p(Ti =tig) =

and a transition probability
p(7i|Ti—1) = d(log(tau;) — log(1i—1)) (4.14)

where d(z) is the period-transition distribution (Fig. 4.8), previously ex-
tracted from the dataset.

The Viterbi algorithm finds the best period sequence (Fig. 4.9) that max-
imizes the probability p({7;}yi(7), A) where A is our model.

In the successive stages we will need a beat-period value for every sample

of 7, so we linearly interpolate the sequence to obtain 7(m).

4.1.3 States reduction

The goal of the states reduction stage is to reduce the number of beat can-
didates, keeping only the most probable ones. This will reduce the memory
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Figure 4.8: Period transition distribution extracted from the dataset
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Figure 4.9: Rhythmogram. Chosen peaks and final path are showed respectively as
light and dark x.7 is the beat period expressed in number of samples of the ODF.
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5 10 15 20 25
Npeak:s

Figure 4.10: The performance of the beat tracking algorithm is influenced by Npears

requirement and the time of computation of the beat tracking stage.

In order to achieve this result, we pre-analyze the detection function 7
and pick N, = 20 beat candidates (Fig. 4.11) per beat-period. The number
N, = 20 is chosen experimentally, as it maximizes performances over the
dataset. We scan the full sequence n(m) iteratively, starting from m = j =1

c; = argmax(n(7)) m<1i<m+ 7'](Vn:) (4.15)
S T](\T) (4.16)
j=J7+1 (4.17)

4.1.4 Beat tracking

The beat tracking stage (Fig. 4.12) exploits the onset detection function
n(m) and the estimated periodicities 7(m) to extract the beat instants b(4).
This stage considers as potential beat instants only the candidates c;.

The basic sequence tracking algorithm is based on a forward looking
search, which returns a beat sequence. To better explore the solution space
we keep track concurrently of more possible sequences and, at the end, chose
the best according to a score function. A welcomed side-effect of this strategy
is that the number of paths passing by a beat candidate c; is proportional to
the reliability of ¢; being a beat. We exploit this fact proposing an iterative
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Figure 4.11: Beat candidates c; are the highest peaks within each region, marked with
a cross. 1(m) is the onset detection function and m is its time-intex

morphing of 7(m), in the less reliably tracked segments of the song, aimed
at correcting mistakes in the estimation of 7(m).

Beat tracking
n(m) “ Beat sequence b(i)
»| States reduction |—» l'q >
(M) (Multipath)

Figure 4.12: Beat tracking stage

Sequence tracking

Beat sequence tracking takes as input the onset detection function n(m) and
the beat-period sequence 7(m). If any mistake has been produced at earlier
stages, it will propagates to the final beat-sequence. For this reason, we
propose a path-finding algorithm aimed at correcting possible mistakes in
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the tempo-tracking stage. The algorithm starts from the assumption that
the best successor b; 1 of a beat b; is not too far away. We search it among
the beat-candidates {c;} within an interval I; g such that

Lig = [(bi +7(b:) — Q, (b +7(b) + Q) (4.18)
And we select the next beat as the one that maximizes the score function

biy1 = argmax(score;({c;} € I;g)) (4.19)

score;(b) = pr,(b) +T(b— b;, 7(b;)) (4.20)
n(b)
pr(b) = =— = (4.21)
2 e M(b)
_ (d—7)2
T(d,7)=e 22 (4.22)
where we chose the variance of the Gaussian distance ¢ = 7/8 because

it maximizes the final performance. The iteration of this method is not
suited to find the best total beat-sequence, because the search of the best
successor depends only on the current beat, and this leads to a sub-optimal
solution. However, this forward-looking strategy has the advantage that the
sequence doesn’t need to be backtracked and only requires a 1-dimensional
data structure B(i) to store the chosen beat-instants.

Multipath sequence tracking

This light and fast technique allows to implement an iteration strategy that
keeps track of a number of paths IV, at the same time. This way we better
explore the solutions space (Fig. 4.14). The number of N, is chosen to
maximize the overall performance (Fig. 4.15). We need to store the beat-
instants {b;} in a Nj,-dimensional data structure By(i), with p = 1,..., N,,.
We also need to generate and update a score function score, for each path,
to choose the best at the end. As the iteration progresses, several joining
and splitting of paths are performed, following a predefined set of rules:

e Initialization rule: every path is initialized with near beat-candidates,
e.g. Bi(1) = ¢, Ba(1) = ¢2 and so on.

e Joining rule: whenever two paths fall on the same beat-candidate,
the one with lower score loses and becomes a copy of the winner: if
By (i) is equal to By(i) and score,, > score;, then we assign B; = By,
and score; = score,, (Fig. 4.13).

e Splitting rule: after a joining, to avoid that the two paths continue
following the same beat sequence, we perturb one. The loser path will
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continue not with the best, but with the second-best beat successor
(Fig. 4.13).

e Termination rule: the iteration is terminated when all the paths
reach the end of the beat-candidates sequence {c;}

The score function for each path is the cumulative and log version of the
4.20.

score, = scorep + log pr, (bi11) + log T'(biy1 — bi, 7(b;)) (4.23)
Join Split
B score B score B score B score
[89] 3.6 [89,125] -6.4 L [92,125] 5.1 2nd [92,125,159] | -8.04
[92] 2.6 [92,125] -5.1 w [92,125] -5.1 best [92,125,157] -8.01
os] | -1.4 [95,126] | -4.2 w [95,126] -4.2 best [95,126,159] -70
[97] -1.3 [97,126] 43 L [95,126] -42 2nd [95,126,157] 7.1
[99] -1.5 [99,129] -46 [99,129] -4.6 [99,129,159] -75
[102] | -1.6 [102,132] | -5.1 [102,132] | -5.1 [102,132,162] | -8.2

Figure 4.13: Join and split rules applied to 6 path at the first 3 iterations

Iterative tempo path morphing

When we study the behaviour of the paths, we notice that the number of
paths that converge on the same beat-candidate is correlated to the reliance
in the expectation of that beat. To confirm this we stored the number of
paths converged on, let’s say vote, each beat during the multipath-tracking
stage. Than we applied a threshold ¢, on the final path, keeping only the
beats with > ¢, votes (> t, converged on that beat). The relationship of
the precision and recall parameters with this threshold ¢, demonstrate our
suspect. Precision increases as only "higher quality" beats are selected, and
recall decreases as we create holes in the beat sequence (Fig. 4.16). This is
a very pleasant side-effect because it allows the algorithm to give a measure
of confidence for each beat of the final beat-sequence. We exploited this
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Figure 4.14: Increasing the number of paths (N, = 2,6,10 in the figures) influences
the coverage of the space

u
o
(0]
-
T
I

mea
o
©

0.76 ' ' ' '
0 5 10 15 20 25

Np

Figure 4.15: The performance of the beat tracking algorithm is influenced by N,
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Figure 4.16: Precision and recall parameters plotted against the threshold t,

effect by iteratively running the path finding algorithm. At each iteration
we threshold the beat sequence using votes and to morph the tempo path
in the segments with least voted beats (Fig. 4.17). As expected we note a
performance increase when increasing the number of iterations (Fig. 4.18).

4.1.5 Downbeat tracking

Downbeat tracking stage shares many similarities with beat tracking stage
(Fig. 4.2). We now analyze the song at measure level and try to find the
downbeats (the first beats of each measure) among the beats b(7). This is
accomplished reusing the same strategy that allowed us to find beat instants.
First we compute a detection function D(7), then we search for periodicities
in D(i), called time signatures 7°S(¢). Finally we track the downbeat se-
quence db(k), with the same multipath algorithm used before to find the
beat sequence.

Features

For downbeat tracking we use a combination of two features. The first one
is a spectral difference function SD(i) based on the spectrum, the second is
a chroma variation function C'V'(7) based on the chromagram. The two fea-
tures well cover the two assumptions that downbeats are stronger in energy
than most beats and are the most likely instants where harmonic changes
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Figure 4.17: m is the sample index of tempo tracking songs and 7(m) is the estimated
periodicity, expressed in number of ODF samples. At each iteration the algorithm
smooths the tempo path in segments with least voted beats (most voted one are marked
with an X). This way it can effectively correct the two tempo peaks, mistakenly detected
by the earlier tempo tracking stage.
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Figure 4.18: Performance of the algorithm slightly increase with the number of iterations
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can be found. We obtain a detection function D(7) as the sum of the two:

D(i) = SD(i) + CV (i) (4.24)

To compute the spectral difference feature SD (Fig. 4.19) we first sub-
sample the audio signal by a factor of 16. This retains the part of the
spectrum (< 2.8 kHz) that contains most of the energy of the signal. Then
we compute the STFT. Then, we beat-synchronize the STFT, averaging the
spectrum slices within every inter-beat interval, to obtain one spectrum slice
per beat S;(w). To emphasize the most prominent peaks we pre-process these
slices one by one, applying a moving average threshold and then half-wave
rectifying. The spectral difference is then achieved by using the Kullback-
Leibler (K-L) divergence between successive slices:

N/2 $i(w)
SD(i) = Z Si(w) In 3 . (4.25)
o1 i+1(w)
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Figure 4.19: The spectral difference function for downbeat detection has one value per
beat. n is the audio sample index and m is the beat index. The two functions have
different temporal resolutions but corresponding indices n and m are aligned in the
figure for better understanding.

To compute the chroma variation function (Fig. 4.20) we first extract
the chromagram C(p,t) from the audio signal. Then for every beat b; we
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compute a left-context and a right-context chroma vector.

7(bi)
2
Cy(p,i) = mean(C(p, 1)) bi <t <biya (4.27)

Cl(p, Z) = mean(C(p, t)) bi_o <t <b;—

(4.26)

where the 7(b;)/2 offset accounts for syncopated chord changes. For every
beat a chroma variation function C'V (i) is extracted using a distance measure
between the right and the left context for each beat. As distance measure
we compared the sum of squared differences,

12
CV(i) =Y (Cr(p,i) — Ci(p, i) (4.28)

p=1
, and the generalized Kullback-Leibler divergence,
12

CV(i) = >l log A2 4 Colp) = Cupi) (429)
=1 r\

. The latter outperformed the former (Table 4.1).

SSD KLD
0.6537 | 0.6602

Table 4.1: Performances of sum of squared differences (SSD) and KL Divergences
(KLD)

Time signature and downbeat

To find the time signatures and downbeat of the song, and consequently
label every beat with its number, we apply a simple rationale. The downbeat
stands to the beat as the time signature stands to the beat-period. Then, we
can feed the previous algorithm with D(i) as onset detection function and a
new probabilistic model to obtain the downbeat position.

We subdivide D(7) in frames of 48 samples with hop-size of 4 samples.
Pre-processing and autocorrelation is done for each frame similarly to what
has been done with n in tempo-tracking. This time we consider three pos-
sible periodicities that correspond to 2, 3 and 4-beat measures. The overall
distribution and transition probabilities are again extracted from the dataset
(Table 4.2).



4.2. Chord recognition 53

1 T T T T T T T
VN
< e WOUN NSV L WPRRIII YN SASWARIN o SR SOOI\ SNV SO
= 0 P s AR RRSL Sl (RIS SRS S R PEBUBNER, B
w
- 1 1 1 1 1 1 1 1
n
1 T T T T T T

CV(m)

0 Il

3 7 11 15 19 23
m
Figure 4.20: The chroma variation function
2/4 3/4 4/4
2/4 3/4 4/4 2/4 | 0.8879 | 0.0087 | 0.1033
0.0375 | 0.0500 | 0.9125 3/4 | 0.0099 | 0.9418 | 0.0483
4/4 | 0.0065 | 0.0043 | 0.9892

Table 4.2: Signature distribution and transition probabilities

The time-signature estimation stage returns a time-signature value 7°5(%)
for every beat.

Indices of downbeats db(k) are then tracked by the multipath algorithm
discussed above. This time we add a parameter « in the score function called
regularity. The eq. 4.20 becomes

scorey(db) = pr, (db) + aT'(db — dby, T'S(dby,)) (4.30)

. The value of the parameter o that maximizes the overall performance is
shown to be 0.5 (Fig. 4.21).

Downbeat are labelled "1" being the first beat of a measure. The other
labels are assigned incrementally.

4.2 Chord recognition

In this section we present our system for chord recognition (Fig. ??). Our
main goal is to provide musicians with a meaningful chord transcription. The
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Figure 4.21: Performances of downbeat tracking stage are maximized for a regularity
parameter a = 0.5

novel approach consists in accounting for all the four most used diatonic key
modes: Major, Mixolydian, Dorian and Minor (see Chap. 3.1.3). This way
we better fit the key context in songs written on Mixolydian and Dorian key
modes and, as a side-effect, we can extract emotional features based on key
mode at a later stage.

The model is based on a Dynamic Bayesian Network (described in Section
4.2.3) in which temporal slices correspond to beat instants. Nodes represent
musical aspects that are connected with chords. Inputs to the model are the
beat synchronized bass chroma vectors and chord salience vectors, the beat
labels and other parameters used in Conditional Probability Distributions
(CPDs) of the nodes. We first give an overview on the creation of the chord
salience matrix, and the beat-synchronization technique. CPDs of the nodes
are then addressed in the successive sections.
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Figure 4.22: Chord recognition scheme

4.2.1 Chord Salience matrix

The chord salience matrix tells how much a chord is likely to be the gener-
ator of each chromagram vector (of the wide chromagram, see 3.2.2). For
doing this we need a vocabulary of chords templates and a distance measure
between chords and chromagram vectors.

As the set of chords templates {c,}, where p is the pitch-class and k
is the chord, we used the binary 12-dimensional vectors in which every bin
represents the presence or absence of a pitch-class in the chord. For example,
in the D major chord, only the pitch classes of D, Fff and A are present, and
are given a value of 1 in the template for the chord (Fig. ). Other pitch-
classes are set to 0. Only major and minor triads are considered, so we
obtain a set of 24 12-dimensional chord templates.

To compare chords templates to the chroma vectors CI% the generalized
Kullback-Leibler distance has been proven to be most effective [34]. So we
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compute a matrix of distances D(k,t) as:

12
C’k
D(k,t) = cpilog (;Wt + O — o (4.31)
p=1 p,

We then invert it and normalize to the maximum norm, to obtain the chord
salience matrix S(k,t):

ming(D(k,t))

Sk, ) = D(k, )

(4.32)

Finally S(k,t) is filtered with a median filter of length 15.

4.2.2 Beat-synchronization

Chords are likely to change in beat instants. It is then sufficient to consider
only one chroma vector and one chord salience vector per beat interval. We
therefore take the median of bass chroma vectors (see Section 3.2.2) and
salience matrix vectors inside every inter-beat interval (Fig. 4.23). This
process, called beat-synchronization, achieves a chromagram representation
more suited to our task and reduces the sensibility to noise. Beat instants
b(i) are provided by our beat-tracking algorithm.

Ssync(p, 1) = median(Sy ;) t € {B;}

4.33
b o(p,i) = median(C’g,t) t € {B;}, (4.33)

sync

where {B;} is the set of all the time indices ¢ for which the chromagram
frame is inside the inter-beat interval [b;, bit+1]. Finally, each Chromagram
frame is normalized by the L., norm.
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Figure 4.23: Beat-synchronized bass and treble chromagrams.

4.2.3 DBN Model for chord recognition

To model the relationships between different aspects of music that relate
to chords, we make use of the Dynamic Bayesian Network model with the
topology depicted in Fig. 4.24. Musical aspects included in the model are:
chords, keys, bass note, beat label. The dependencies are represented by the
arrows and are explained in detail in the next sections. The only continuous
nodes are S and CP, the others are discrete.

To specify the evidences (the sequences of observations) and to perform
inference, we used the Bayes Net Toolbox [32] for MATLAB.

Our system takes the graph of the DBN from the model adopted in [29].
We then for three main aspects:

e the beat labels, output of our beat tracker, are given as observed evi-
dence

e the model of the key node, that includes all the four most used key
modes. The key transition model we adopt is based on a purely theo-
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retical approach, biased by a-priori analysis of the chromagram of the
whole song.

e the model of the chord node, which include a trained distribution of
chord changes given the beat labels, and a theoretical based parametric
distribution of chords given key.

e the model of the chord salience node

The probabilistic models of K,C and S are discussed in the next sections.

1 166.6]C

10,0

Figure 4.24: The two-slice temporal Bayes net of our chord tracking system. Where
shaded nodes are observed and white node are the hidden states nodes. L stands for
beat label, and it represents beat labels assigned during downbeat detection. K is the
Key node, C the Chords node, B the bass note node, C” is the Bass beat-synchronized
Chromagram and S the chord salience node.

4.2.4 Key and chord symbols

For the key node, we used a set of 48 symbols to model the 4 modes that we
are interested in (Major, Mixolydian, Dorian and Minor), in any of the 12
key roots. Lets use the following conventions:

e M(k) is the mode of a key k and can assume values from 1 to 4.
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e R(k) is the root of a key x and can assume values from 1 to 12 (12
pitch classes).

For the chord node we used 24 symbols to model major and minor triads.

o T'(§) is the type of a triad £ and can assume values from 1 to 2 indi-
cating major and minor.

o R(¢) is the pitch class of the root note of a chord & (12 pitch classes).

4.2.5 Key node

As said in Chapter 3, key encloses two concepts: the key root or tonic is the
most important and stable pitch class, and the key mode is the set of other
notes in relation to the key root. Key node is a discrete random variable
that describes the 48 keys. Key is modelled as generating chords, in fact, the
seven chords that are present in the harmonization of a key (see Fig. 3.3)
happen more likely than the others in that key context.

In our system the Key node K; depends only on the predecessor K; 1
so we only need to model key transitions. In doing that we first model
a parametric distribution based on musicological considerations. Then we
multiply it by a key salience vector to exploit information about the Key
root coming from a time-coarse analysis of the chromagram.

Key transitions using musicological cues

The values that indicate the probability of the transition are stored in a
matrix Kirqns that is built following some steps.

First we can see that a measure of similarity between keys given by the
number of common notes. If C(kj,k2) is the number of common notes
between two keys x1 and ko, we say that the probability of transition between
them is:

(k1 # R2)  Kprans (51, m2) = 709D,
(4.34)
else Kirans(k1,k2) =1
where the value of coefficient v, that performs best is v, = 0.3.

We then adjust the probability in two specific cases. Parallel keys are the
pair of keys for which R(k1) = R(k2) but M (k1) # M (k2). For example, C
Major and C Dorian are parallel keys. We raise the probability of modulation
between parallel keys by a factor ,:

if(R(k1) = R(k2) AND M (k1) # M(k2))
Ktr(zns(ﬁlv 52) = Ktrans("ila 52) X Yp, (435)
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where 7, = 4 This is to account for a technique much used in harmony,
called modal interchange, that consists in borrowing a chord from a parallel
key. So temporary transition between parallel keys are frequent.

Diatonic keys are the pair of keys that have all the notes in common
C(k1,k2) = 7 and different root R(k1) # R(kz2). For example, C Major
and G Mixolydian are diatonic keys. These kind of transitions are often
mistakenly detected by the system so we lower their probability by a factor

Yd-

if(R(/ﬂ) 7'5 R(/ig) AND C(Iﬂ, HQ) = 7)
Ktrans(’ila ’i2) = Ktrans(/{flv ’{'2) X Yd, (436)

where we found experimentally 74 = 0.15 to be the best value for this pa-
rameter.

We then normalize each row of Kj,qns to obtain stochastic row vectors.

Ktrans (Z, j)
238:1 Ktrans (Z, Q)

Ktrans(iaj) = (437)

This is not yet the transition matrix we feed to the system. To account
for the information about key root provided by the chromagram, we perform
a pre-analysis to find a key root salience vector kq(p).

Key root salience vector

ks(p) says how likely the pitch class p is the key root in a song. To compute
ks(p), we find the correlation of the averaged Chromagram with the 12 cir-
cular shifts of a key profile £*(p). Let P, be the permutation matrix that
represent the circular shift operation,

(p) = X421 Cl(p, 1)
ks(n) = corr(P,k*(p), c(p)) (4.38)

The Key Profile is obtained from treble chromagrams of the Robbie Williams
Dataset, which we have manually annotated all the key roots and modes. Let
K, be the key annotation at time ¢, the key profiles of the four modes are

k*(p, M(K¢)) = k*(p, M(K4)) + Prx,)C' (p. 1) (4.39)

for every time instant ¢ of every song in the dataset. Then the profiles of the
four modes are normalized and then combined into one vector k*(p) (Fig.
4.25).
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Figure 4.25: The pitch profile k*(p) obtained from the dataset.

kE*(p) is then used to compute a new version of the key transition matrix:

Rtr(ms("ﬂa "432) = Rtrans(/fh HQ)k*(H2)7 (440)

which is then re-normalized

K (i, j)

Kirans(i, ) = ——ent?l
I e

(4.41)

4.2.6 Chord node

As can be seen in Fig. 4.24, the chord node depends on current beat label
(the position within the measure), on current key and on previous chord.

To understand the dependence on beat label, let’s notice that a chord
change is more likely to occur at the start of a new measure, when the
current beat is a downbeat (the beat label L; = 1) than within the measure.
We model the probability that, given the beat label, a chord change will
occur into the function f;(C; # C;—1,C;_1, L;). It varies a lot and it is very
different for different time signatures. We trained from the dataset the values
of fi(C; # Ci—1,Ci_1, L;) for time signatures of 4/4 and 3/4.

The dependence on the key is given by the assumption that chord of
the harmonization of a key are more likely than chord not present in that
harmonization. To model this concept we use a parametric chord profile
for every key mode. In this model we assign fx(C;, K;) = A1 to chord
present in the key, fr(Ci, K;) = A2 to chords not in the harmonization,
and fx(C;, K;) = A3 to one characteristic major chord and one characteristic



62 Chapter 4. System Overview

minor chord for key mode. We select this two chords as those that, alternated
to the tonic triad, give more the feeling of a key mode [36]. The values that
gave us the best result are Ay =1, Ao = 0.7, \3 = 1.2.

The CPD fi(C;, K;) is then normalized to obtain a matrix with stochastic
row vectors.

The two probabilities are then combined

p(Ci, Li, K, Ci—1) = fi(Ci, Li, Ci—1) fx(Ci, Ki), (4.42)

and finally the 4-dimensional p(Cj, L;, K;, C;—1) is normalized multiplying
by a normalization constant k., such that:

Nchords

Z knormp(ci‘Lia Kiy Ci—l) =1 (443)
C;=1

4.2.7 Chord Salience node

The chord salience node maps each slice of the chord salience matrix S(k,t)
to a chord k. The most likely chord for every instant will have a value of
1 and will be the maximum, due to our normalization of S(k,t). Given the
structure of S this is a continuous node, so we create a Normal distribution
with the following parameters:

po =1I

(4.44)
Ok =0.2 ><124, kzl,...,24

where p is the mean and o is the covariance.

4.3 Feature extraction

In this section we provide an overview of three novel harmony-based features
extracted from key mode and chord sequence. The three features are called
Modal Envelope, MajMin Ratio and Harmonic Rhythm. After seeing their
structure, we suggest a possible mood interpretation for each one.

Modal Envelope

Modal envelope is represented by the temporal evolution of the key mode.
The feature is then:
ME(t) = M(k(t)), (4.45)

where ¢ is the time index, x(t) is the key at time ¢ as resulted from our beat
tracking system, and M (k(t)) is the mode of that key (see Section 4.2.4).
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Figure 4.26: Norwegian Wood is a great example to show the power of the Modal
Envelope descriptor. Verses of the song are in Mixolydian mode and Choruses are in
Dorian mode. The descriptor perfectly and precisely follows the shift in mood of the
song. In this particular case it also achieve optimal structural segmentation

The rationale is that the four main key modes are emotionally ordered
from the brightest to the darkest. We can exploit this fact and create an
envelope that follows these kind of mood changes within a song. To do
so we map the four key modes to the numbers [—1,—0.33,0.33, 1] and plot
the envelope versus time. A great example of the descriptive power of this
feature is showed in Fig. 4.26.

Moreover, as said, modal interchange is a technique that allows the com-
poser to borrow chords from a parallel key mode. In doing so, a little drift in
mood envelope is obtained. This is very desirable from the composer stand-
point because it generates a point of interest in the chord sequence. To track
these faster shifts of mood we post-process the chord sequence to find all
the chords that belong to a parallel key. With this information we compute
a new key mode envelope, that results more fragmented, as expected (Fig.
4.27).

MajMin Ratio

MajMinRatio feature represents the ratio of major triads over minor triads
within a time window. The importance of this feature follows from the fact
that major and minor triads in western music are linked with opposite set
of emotions as those showed in Table 4.3 ([23]).

To model this quality of chords we retain only the information about the
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Figure 4.27: Finer modal envelope feature obtained by a post-processing of chords.
The song is "Angel" by Robbie Williams. Spikes from major mode to mixolydian mode

reveal where the composer made use of modal interchange.

The longer zones are

instead temporary modulations (key change) to the parallel mixolydian mode.

Major triad

Minor triad

Happy
Optimistic
Bright
Cheerful
Satisfying
Light

Introspective
Dramatic
Sad
Melancholy
Serious

Longing

Table 4.3: Moods consistently associated with major and minor triads.
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type of the chord: T'(¢(t)), where ¢(t) is the chord at time ¢t. T'(c(t)) is 1 if
the chord is major and 0 if the chord is minor.
For this feature we exploited a time window w(t),

0 t<=-—T
wt)=9 t—-7)% —-T<t<=0, (4.46)
0 t>0

that models the influence that music events have on the listener. The window
is half triangular, its area is 1 and the duration is 7 = 10 seconds (Fig. 4.28).
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Figure 4.28: This function is a time window used to compute the majMinFeature. The
rationale is simple: just listened events have a stronger influence than those happened
before.

The feature is obtained as:
t

Mm(t) = Y T(ct)w(t' —1). (4.47)

t'=t—1

A good example of the descriptive power of this feature is showed in Fig.
4.29.
Harmonic Rhythm

Harmonic rhythm feature represents the rate of harmonic changes detected in
a certain time frame of the audio. The instants of the changes are represented

)1 e(t) #e(th)
He(t) _{ 0 ot) ofth) (4.48)

by a function
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Figure 4.29: The figure shows an example of the majMinFeature on the song "Hard
Day’s Night" by The Beatles. The deepest valleys fall exactly at the choruses, where

most minor chords are found.

where ¢~ and ¢ indicate respectively the left and right neighbourhood of t.
For this feature also we use w(t) to smooth the temporal distribution in a

consistent way.
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Figure 4.30: The figure shows an example of the Harmonic Rhythm feature on the song
"Here Comes the Sun" by The Beatles. The longest peaks represents parts of the song
where chords changes are very frequent.
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Chapter 5

Experimental Results

In this chapter we will focus on experimental results of our beat-tracking and
chord-recognition system, and approach the problem of evaluating the three
proposed emotion-related features. Before presenting the numeric results an
overview of the used evaluation metrics will be provided.

5.1 Beat Tracking

In this section we review Fpeqsure and CM L (acronym of Correct Metrical
Level), the two evaluation metrics used for beat-tracking. Then we present
the annotated dataset used and numeric results, compared with other refer-
ence algorithms the state of art.

5.1.1 Evaluation

The most used metrics for the evaluation of a beat sequence {b;} against
ground truth annotations {a;} are the F-measure and the two correct met-
rical level (CML) measures, as described in [10]. The two sequences have
different indices because they might be asynchronous. For example if the
algorithm misses the second beat from annotation, we obtain that by is syn-
chronous with a1 and by synchronous with as.

F-measure is obtained from three basic parameters: the number of correct
detections or true positives ¢, the number of incorrect detections or false
positives fy and the number of missed detections or false negatives f_. A
beat b; is correct if falls within a tolerance window of an annotation a;,
where the used tolerance is +70ms. ¢, f1 and f_ are used to compute two

69
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intermediate parameters: precision and recall.

Cc

= 5.1
P= T (5.1)
c
r= 5.2
e (5.2)
They are combined with harmonic mean to provide the F-measure
2pr
= 5.3
=2 5.3

If the beat sequence {b;} falls on the offbeats F-measure is zero. If the
{b;} has double or half beat-period of the annotations, respectively f_ = ¢
or fy = ¢, then F-measure falls accordingly. CM L, and CML; are two
continuity-based evaluation methods, used in [19] and [25]. Beats {b;} are
compared against ground truth annotations {a;} with a set of three rules:

1. a; — GAaj < b < a; + 9Aaj
2. aj—1 — QAaj_l <b_1< aj—1+ HAaj_l
3. (1—0)Ag, < Ay < (14 0)A,,

where A are the inter-beat intervals, e.g. A,; = a;41—ay, and 6 is a tolerance
parameter, fixed to = 0.175 [10]. If these rules are satisfied, the beat b; is
correct and we can extract the number of continuously correct segment M,
and the number of beats in each of them T,,. The less restrictive measure
CM L; sums the contribution of all the M continuously correct segments.

omr, = Zm=1Tn (5.4)

where J is the total number of annotations. The more restrictive measure
CM L. uses only the contribution of the longest continuously correct segment

CML. =

(5.5)

0 100 200 300 400 500
1
Figure 5.1: Continuously correct segments are showed as grey rectangles, the longest
is darker. CML; = 0.951 and CM L, = 0.582
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For the evaluation of beat labels we used the percentage of correct labels
over the total number of beats in a song. Since labels’ correctness can be
evaluated only for correct beats, this measure and F-measure are correlated.
This however seems to be the best strategy since dividing only by the correct
beats would result in an unreliable measure.

5.1.2 Dataset

The dataset we used to test our system is composed by manual annotations
of the Beatles discography and of the first two albums of Robbie Williams.
Beatles annotations are provided by Davies in [10] and available onlinel.
Robbie Williams annotation work has been carried on by us to extend the
sample towards a more modern style, and will be available online in the near
future.

5.1.3 Results

We tested our system (named "MultipathBT") and other three reference
systems over the Beatles dataset and over the Robbie Williams dataset.
The other systems we tested are the beat-tracker plug-in [9] from Sonic
Visualizer?, the beat-tracker from Harmony Progression Analyzer Toolbox
[33] and a basic implementation of a dynamic programming beat-tracker with
varying tempo.

F-m | CML. | CML;
MultipathBT | 0.8386 | 0.6250 | 0.7086

Sonic Visualizer Plugln | 0.8042 | 0.6160 | 0.7084
HPA Beat-Tracker | 0.6538 | 0.2196 | 0.4003

DP Based Beat-Tracker | 0.6380 | 0.4303 | 0.5203

Table 5.1: Performances on the Beatles Dataset

F-m |CML. | CML;
MultipathBT | 0.8527 | 0.6078 | 0.7353

Sonic Visualizer Plugln | 0.7792 | 0.6857 | 0.7561
HPA Beat-Tracker | 0.7324 | 0.2295 | 0.4518

DP Based Beat-Tracker | 0.6630 | 0.4511 | 0.5599

Table 5.2: Performances on the Robbie Williams Dataset

"http://isophonics.net /content /reference-annotations
http:/ /www.sonicvisualiser.org
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Correct Labels
MultipathBT 0.6484
Sonic Visualizer Plugln 0.5791

Table 5.3: Performances of downbeat tracking on The Beatles Dataset

Correct Labels
MultipathBT 0.7605
Sonic Visualizer Plugln 0.6342

Table 5.4: Performances of downbeat tracking on the Robbie Williams Dataset

5.2 Chord Recognition

In this section we describe the two evaluation metrics adopted to score the
performance of our chord-recognition algorithm: Relative Correct Overlap
(RCO) and segmentation quality (SQ). Then, we address the problem of
evaluation of key sequences. Finally we present the annotated dataset used
for evaluation and the results of our algorithm according to the chosen met-
rics.

5.2.1 Evaluation

Relative Correct Overlap evaluates a chord transcription against a ground
truth annotation. Chords are a segmentation of the song. So we have ba-
sically to compare two different segmentations. RCO compute the total
duration of overlapping segments having the same label, and then divides it
by the duration of the song.

correct overlap time

RCO =

5.6
total duration (5.6)

This measure can be used to evaluate performance on each song in the
Dataset. If we want a single measure we have to weight the RCO by the song
duration. This measure is called weighted average overlap ratio (WAOR).
Overlap based measures however don’t address the fact that a very frag-
mented transcription can achieve a high value, while being totally useless
from a musical standpoint.

Segmentation quality measure is based on the Directional Hamming Di-
vergence, a metric used in the field of image segmentation. It measures the
diversity of a segmentation S = {S;} respect to another taken as reference
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S0 = {89}, where S; and S? are segments. The word directional indicate
that this measure is not symmetric.

Ng
h(S]15%) = (S| - mj&LXISE n.S;l) (5.7)

=1

, where |S;| is the duration of a segment. The ideal segmentation S = S°
results in h(S||SY) = T, where T is the duration of the song. As proposed
in [20], a measure of the similarity of the segmentation is given by:

h(S]|S%) =1 — %max{h(SHSo), h(S°||S)} € [0,1] (5.8)

To evaluate the key sequences we used two different overlap-based metrics
and one segmentation-based metric kSegm@. Of the two overlap based
metrics, kr RCO considers only key roots, and krmRCO accounts for both
key root and key mode.

5.2.2 Dataset

The dataset that we used for chord recognition task is the same used before,
including the Beatles discography® and of the first two albums of Robbie
Williams. The annotations of keys and chords are provided in [20]. The an-
notations for Robbie Williams’s song is provided by us. The Beatles annota-
tions however omit systematic transcription of Mixolidian and Dorian modes.
To fully evaluate our key mode transcription we used only our dataset.

5.2.3 Results

We tested our system (named "CTM") against an implementation of the
algorithm ("MD") described in [29] (Table 77?).

RCO | segmQ | krRCO | krmRCO | kSegmQ
CTM | 0.720 | 0.757 0.754 0.68 0.864
MD | 0.696 | 0.757 0.743 0.66 0.901

Table 5.5: Performances on The Beatles dataset. krmRCO is computed mapping key
mode sequences of our system to only major and minor modes, as they only are present
in the ground truth annotations

3The Beatles corpus was used for the chord recognition task of MIREX 2008.
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RCO | segmQ | krRCO | kemRCO | kSegmQ
CTM | 0.707 | 0.797 0.769 0.49 0.485
MD | 0.697 | 0.785 0.697 - 0.330

Table 5.6: Performances on the Robbie Williams dataset. All four the key modes are
present in the annotations so we can meaningfully evaluate only our system

5.2.4 Harmony-related features

Harmony is strictly related to the emotions perceived in a song, for this
reason, in order to evaluate the effectiveness of the defined harmony-related
features, we correlate them to mood variation. The evaluation of the pro-
posed harmony-related features is not an easy task, due to the lack of a
proper corpus of reliable annotations. We used the msLite Turk dataset [42]
to execute some measures.

The dataset provides Arousal and Valence (AV) tags by 546 testers. The
AV space is the most used mathematical representation of emotions. It
defines emotions as points in a 2D space in terms of Valence (how positive
or negative) and Arousal (how exciting or calming) [45]. These two emotion
dimensions are found to be the most fundamental by psychologists.

A segment of 15 seconds for each song is annotated with time resolution
of a value per second. Since our feature are meaningful at larger scale, we
extracted only a value for each segment of annotations.

To achieve correspondence with the direction of moods in the valence axis,
we flipped our modal envelope feature. This way we obtain darker moods
on the bottom and brighter moods on the top of the scale.

We based our evaluations on the Pearson Bravais correlation coefficient
r(z,y) i

zy
r(z,y) = P (5.9)
where x is our feature, y are the tags, o, is their covariance and o, and oy
their standard deviation.

We subdivided the msLiteTurk dataset by the IDs of tagging users and

computed the correlations between their tags and our features. We computed

a new index:

n
np
where n¢ is the number of users for which our feature = and tags y have

p .
r(z,y) > p, and ny, is the number of users for which r(—x,y) > p. Results

we obtained for p = 0.6 are showed in Table 5.7.



ME | Mm | HR
valence tag | 3.05 | 6.56 | 7.35
arousal tag | 0.37 | 3.81 | 5.10

Table 5.7: Results of the p index shows that in 5 of the 6 cases, there is a direct pro-
portionality between our feature and the annotations. ME stands for Modal Envelope,
Mm for MajMinRatio, HR for Harmonic Rhythm

As expected we noticed that for the majority of the users there is a direct
proportionality between this pairs of variables:
e (valence, modal envelope)
[ J

valence, major minor ratio)

(

e (valence, harmonic ratio)
(arousal, major minor ratio)
(

arousal, harmonic ratio)

This good results should however be tempered by the fact that the annota-
tions of different users on the same songs tends to be very contrasting. Our
results may outline how the perception of harmony greatly influence the way

some individuals perceive music.
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Chapter 6

Conclusions and future work

In this work a system for the automatic retrieval of musically relevant fea-
tures from audio has been proposed. The system includes algorithms to
explore a song at the rhythmic level and at the harmony level.

As far as concerning the rhythm analysis, we introduced a novel approach
in finding beat instants. The sequence of beat instant is found starting from
two features, the onset detection function and the rhythmogram. Usually
the errors generated in the creation of these two features are propagated
to the beat sequence. We addressed the issue at the later stage of beat
sequence tracking. We first proposed a novel technique of path finding based
on keeping track of more paths at once and perturbing them as they converge.
We noticed how the different paths converged on the most reliable beat
instants, because considering only them resulted in increased precision. We
exploited this fact by iteratively morphing the beat-period path starting from
the most reliable beats. This results in a smoother, and often more accurate
beat path.

Given the hierarchical structure of beat, the same steps can be successfully
applied in finding the downbeats, the first beats of the measures. This allow
us to consider many different and changing time signatures. This is good
not only to track songs that really have changing time-signatures, but also
to adaptively follow the measure level in case of mistakenly missed, or added
beats. This is yet another case in which a later stage could correct errors from
earlier stages. The detection function that we used for downbeat tracking is
a combination of an energy based feature and a chromagram based feature.
This, in our view, well models the intuition that harmony and rhythm levels
are deeply interconnected.

As far as concerning the harmony analysis focus on the chord and key
structure. In particular, we focused on the importance of diatonic key modes

7
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in the probabilistic model of chord progressions in western music. The state-
of-art systems only handle two key modes, Major and Minor. We showed
how this two modes are the two extremes of a possible ordering of four most
used modes, that includes also the Mixolydian and Dorian modes. These two
central modes defines intermediate hues and are very used by pop composers
to convey specific emotions. For the purpose of chord recognition, we propose
new probability model for key based on transitions between parallel keys and
between diatonic keys. That model specification needs a new and musically
meaningful way to describe chords within keys. We propose a parametric
model where each parameter represent a musical characteristic. These new
specifications and the tuning of the parameters have been shown to improve
the accuracy of the chord recognition, from what we considered to be the
state-of-art system.

The availability of a complete range of key modes gave us the possibility
to exploit this information in other ways. In particular, the used ordering of
these key modes has a strong emotional interpretation. It can be linked to a
scale that goes from brighter moods (Major) to darker moods (Minor). We
therefore propose three features based on the sequence of chords and keys
extracted by our system. The first one, called Modal Envelope is based on
the sequence of key modes and exploit their link with emotion. The second,
called MajMin Ratio, computes the ratio of major and minor chords, weight-
ing their duration by a window that models the listener’s temporal memory
for music events. It is based on the fact that major and minor chords are
associated in western music culture with defined emotions. The contribute
of single chords can refine the general mood given by the key mode. The
third one, Harmonic Rhythm, simply computes the number of chord changes
in a time window. These features can be used for many purpose mainly au-
dio classification, mood-based segmentation and automatic tagging based on
mood.

6.1 Future works

The beat tracking system structure is significant because it suggests that
exploiting musical knowledge we can operate on higher level features to cor-
rect mistakes carried by the lower level ones. The main goal might be to
create an automated system that iteratively maximizes the "structure" (pur-
posely generic term to describe cross and self-similarities), by concurrently
extracting features from different but interconnected aspects of music. We
approached the surface of this issues by exploiting a chroma variation func-
tion in the downbeat detection algorithm, and the beat labels in the chord
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recognition system. A deeper research in this direction might be desirable.

The chord tracking system we presented is based on probabilistic mod-
elling based on musicological considerations. Its parameters therefore aim to
be universal, at least in the context of western music. We can asymptotically
approach this goal by training the parameters on a very large dataset. A
clever move in this direction might be to build a musician-friendly interface
to perform computer-aided transcriptions. It can take several listenings to a
trained musician to transcribe a song, but with the help of a transcription
system it can reduce to one. Musicians save time and we gather an huge
dataset. Besides, the current accuracy of chord recognition systems is not
yet sufficient to provide transcriptions that don’t need further modifications.
The interaction with the user is what we see as the more profitable direction
of research.

The contribution of the key modes to mood is well established in compo-
sition treatises. The currently most used two dimensional space to represent
mood-related reature, is the Valence-Arousal (AV) space. However a better
relation model can be explored as future work. A consistent evaluation of
the three mood features is difficult and would require a listening test with a
selected dataset that would enhance the differences between modes.
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Appendix A

Detailed results

In this appendix we report the detailed results of our measurements for

every song in the dataset. Songs are taken from the albums in Table A.1.

The measures that we used to evaluate the performances of our system are

reviewed in chapter 5. Here we give a brief overview:

Freasure: classic Information Retrieval measure. It is the harmonic
mean of precision and recall parameters.

CML,.: Correct Metrical Level, it is a continuity-based measure. It
indicates the duration, relative to the total song duration, of the longest
correctly tracked region.

CMLy;: same as C'M L. but sums the correctly tracked regions.

Lab: the number of correct beat labels divided by the total number of
correct beats.

RCO: relative correct overlap. The sum of duration of correct overlap
of chords, divided by the duration of the song.

segm@Q: addresses the quality of the segmentation. It is high if there
aren’t neither under nor over-segmentation issues.

krRCO: as RCO but addresses the key roots.

album | song | F,, | CML. | CML; | Lab | RCO | segmQ | krRCO
01 01 | 0987 | 0.686 | 0.980 | 0.991 | 0.851 0.900 0.970
01 02 | 0948 | 0.956 | 0.956 | 0.960 | 0.875 | 0.884 0.954
01 03 | 0.983 | 0.984 | 0.984 | 0.990 | 0.700 | 0.810 0.972

Continued on next page
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Table A.2 — continued from previous page
album | song | F,, | CML. | CML; | Lab | RCO | segmQ | krRCO
01 04 | 0.995 | 0.990 0.990 | 0.997 | 0.788 0.835 0.964
01 05 0.994 | 0.991 0.991 | 0.997 | 0.744 0.742 0.966
01 06 0.976 | 0.539 0.977 | 0.994 | 0.681 0.820 0.928
01 07 | 0.981 | 0.989 0.989 | 0.996 | 0.799 0.844 0.957
01 08 0.996 | 0.991 0.991 | 0.582 | 0.657 0.793 0.963
01 09 0.993 | 0.989 0.989 | 0.996 | 0.904 0.835 0.963
01 10 0.941 | 0.566 0.962 | 0.941 | 0.819 0.878 0.967
01 11 0.931 | 0.986 0.986 | 0.991 | 0.675 0.856 0.000
01 12 0.880 | 0.808 0.894 | 0.556 | 0.820 0.767 0.954
01 13 0.996 | 0.988 0.988 | 0.996 | 0.759 0.847 0.950
01 14 1 0.966 | 0.609 0.964 | 0.980 | 0.724 0.870 0.000
02 01 0.952 | 0.957 | 0.957 | 0.967 | 0.844 0.824 0.959
02 02 0.994 | 0.987 | 0.987 | 0.996 | 0.838 0.881 0.000
02 03 0.986 | 0.991 0.991 | 0.997 | 0.814 0.872 0.964
02 04 | 0.995 | 0.993 0.993 | 0.998 | 0.655 0.820 0.963
02 05 0.973 | 0.969 0.969 | 0.977 | 0.856 0.888 0.954
02 06 0.959 | 0.646 0.958 | 0.970 | 0.624 0.830 0.964
02 07 ] 0.990 | 0.990 0.990 | 0.997 | 0.851 0.848 0.964
02 08 0.977 | 0.967 | 0.979 | 0.988 | 0.708 0.796 0.969
02 09 0.982 | 0.982 0.982 | 0.991 | 0.842 0.856 0.970
02 10 0.952 | 0.853 0.964 | 0.520 | 0.820 0.890 0.968
02 11 0.274 | 0.000 0.000 | 0.092 | 0.756 0.776 0.954
02 12 0.988 | 0.989 0.989 | 0.996 | 0.875 0.844 0.967
02 13 0.994 | 0.988 0.988 | 0.996 | 0.713 0.854 0.513
02 14 | 0.986 | 0.989 0.989 | 0.951 | 0.476 0.782 0.987
03 01 0.987 | 0.982 0.982 | 0.976 | 0.758 0.879 0.887
03 02 0.996 | 0.991 0.991 | 0.997 | 0.810 0.753 0.871
03 03 0.986 | 0.988 0.988 | 0.996 | 0.853 0.892 0.959
03 04 | 0.988 | 0.984 0.984 | 0.996 | 0.643 0.716 0.411
03 05 0.987 | 0.989 0.989 | 0.996 | 0.869 0.910 0.000
03 06 0.988 | 0.991 0.991 | 0.997 | 0.686 0.787 0.911
03 07 | 0.657 | 0.000 0.000 | 0.125 | 0.680 0.650 0.954
03 08 0.988 | 0.990 0.990 | 0.993 | 0.774 0.907 0.967
03 09 0.000 | 0.000 0.000 | 0.000 | 0.743 0.799 0.944
03 10 0.994 | 0.991 0.991 | 0.997 | 0.745 0.504 0.962
03 11 0.986 | 0.989 0.989 | 0.996 | 0.628 0.642 0.639

Continued on next page
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album | song | F,, | CML. | CML; | Lab | RCO | segmQ | krRCO
03 12 0.986 | 0.978 0.978 | 0.982 | 0.835 0.899 0.964
03 13 0.995 | 0.990 0.990 | 0.811 | 0.805 0.843 0.985
04 01 0.973 | 0.679 0.975 | 0.971 | 0.912 0.912 0.957
04 02 0.656 | 0.000 0.000 | 0.251 | 0.713 0.822 0.781
04 03 0.358 | 0.000 0.000 | 0.244 | 0.754 0.528 0.954
04 04 |0.993 | 0.438 0.976 | 0.998 | 0.873 0.899 0.967
04 05 0.987 | 0.987 | 0.987 | 0.996 | 0.744 0.770 0.950
04 06 0.977 | 0.972 0.972 | 0.959 | 0.825 0.595 0.959
04 07 10.972 | 0.990 0.990 | 0.997 | 0.724 0.747 0.964
04 08 0.982 | 0.992 0.992 | 0.994 | 0.917 0.855 0.968
04 09 0.987 | 0.988 0.988 | 0.996 | 0.897 0.925 0.954
04 10 0.994 | 0.634 0.977 | 0.996 | 0.755 0.832 0.969
04 11 0.994 | 0.988 0.988 | 0.996 | 0.850 0.706 0.956
04 12 0.658 | 0.000 0.000 | 0.249 | 0.876 0.855 0.967
04 13 0.986 | 0.991 0.991 | 0.994 | 0.841 0.899 0.963
04 14 | 0.943 | 0.230 0.833 | 0.937 | 0.865 0.761 0.988
05 01 0.080 | 0.061 0.085 | 0.080 | 0.831 0.779 0.954
05 02 0.987 | 0.993 0.993 | 0.998 | 0.802 0.918 0.969
05 03 0.965 | 0.570 0.889 | 0.976 | 0.737 0.828 0.961
05 04 | 0.989 | 0.991 0.991 | 0.997 | 0.830 0.707 0.964
05 05 0.000 | 0.000 0.000 | 0.000 | 0.357 0.684 0.953
05 06 0.983 | 0.990 0.990 | 0.997 | 0.736 0.888 0.377
05 07 ] 0.982 | 0.982 0.982 | 0.984 | 0.794 0.883 0.967
05 08 0.000 | 0.000 0.000 | 0.000 | 0.797 0.777 0.958
05 09 0.962 | 0.531 0.971 | 0.971 | 0.783 0.860 0.137
05 10 0.962 | 0.494 0.937 | 0.970 | 0.856 0.884 0.594
05 11 0.989 | 0.991 0.991 | 0.704 | 0.708 0.699 0.963
05 12 0.115 | 0.063 0.108 | 0.108 | 0.723 0.760 0.955
05 13 0.821 | 0.424 0.869 | 0.827 | 0.635 0.741 0.952
05 14 | 0.983 | 0.992 0.992 | 0.997 | 0.914 0.934 0.987
06 01 0.986 | 0.990 0.990 | 0.997 | 0.689 0.871 0.961
06 02 0.978 | 0.682 0.938 | 0.977 | 0.901 0.808 0.971
06 03 0.991 | 0.992 0.992 | 0.995 | 0.759 0.672 0.971
06 04 | 0.988 | 0.991 0.991 | 0.631 | 0.692 0.847 0.975
06 05 0.993 | 0.986 0.986 | 0.997 | 0.547 0.907 0.975
06 06 0.969 | 0.606 0.954 | 0.837 | 0.522 0.709 0.976

Continued on next page
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Table A.2 — continued from previous page
album | song | F,, | CML. | CML; | Lab | RCO | segmQ | krRCO
06 07 | 0.997 | 0.990 0.990 | 0.994 | 0.599 0.866 0.000
06 08 0.000 | 0.000 0.000 | 0.000 | 0.866 0.804 0.962
06 09 0.983 | 0.987 | 0.987 | 0.991 | 0.768 0.763 0.523
06 10 0.000 | 0.000 0.000 | 0.000 | 0.413 0.468 0.959
06 11 0.951 | 0.560 0.963 | 0.959 | 0.754 0.864 0.962
06 12 0.943 | 0.476 0.940 | 0.963 | 0.592 0.538 0.955
06 13 0.935 | 0.941 0.941 | 0.945 | 0.785 0.727 0.963
06 14 | 0.664 | 0.000 0.000 | 0.249 | 0.830 0.821 0.982
07 01 0.977 | 0.976 0.976 | 0.979 | 0.663 0.555 0.967
07 02 0.995 | 0.989 0.989 | 0.996 | 0.783 0.583 0.962
07 03 0.979 | 0.990 0.990 | 0.980 | 0.759 0.890 0.967
07 04 | 0.808 | 0.499 0.814 | 0.333 | 0.494 0.373 0.967
07 05 0.628 | 0.000 0.000 | 0.239 | 0.675 0.873 0.966
07 06 0.988 | 0.989 0.989 | 0.996 | 0.674 0.731 0.000
07 07 ] 0.926 | 0.926 0.926 | 0.387 | 0.681 0.685 0.967
07 08 0.935 | 0.935 0.935 | 0.834 | 0.807 0.898 0.000
07 09 0.979 | 0.973 0.973 | 0.984 | 0.868 0.803 0.961
07 10 0.986 | 0.771 0.977 | 0.997 | 0.685 0.805 0.849
07 11 0.996 | 0.992 0.992 | 0.997 | 0.889 0.777 0.280
07 12 0.983 | 0.990 0.990 | 0.997 | 0.823 0.650 0.754
07 13 0.977 | 0.967 | 0.979 | 0.945 | 0.597 0.667 0.965
07 14 1 0.990 | 0.992 0.992 | 0.000 | 0.717 0.139 0.963
08 01 0.954 | 0.983 0.983 | 0.994 | 0.718 0.838 0.849
08 02 0.985 | 0.990 0.990 | 0.997 | 0.805 0.907 0.993
08 03 0.625 | 0.209 0.387 | 0.211 | 0.572 0.759 0.000
08 04 | 0.999 | 0.991 0.991 | 0.997 | 0.510 0.676 0.292
08 05 0.991 | 0.989 0.989 | 0.961 | 0.613 0.381 0.975
08 06 0.862 | 0.261 0.836 | 0.602 | 0.639 0.737 0.989
08 07 | 0.847 | 0.382 0.748 | 0.784 | 0.706 0.806 0.144
08 08 0.897 | 0.309 0.925 | 0.372 | 0.271 0.187 0.492
08 09 0.996 | 0.992 0.992 | 0.997 | 0.842 0.754 0.994
08 10 0.662 | 0.000 0.000 | 0.251 | 0.000 0.877 0.000
08 11 0.935 | 0.934 0.957 | 0.426 | 0.543 0.710 0.463
08 12 0.990 | 0.980 0.980 | 0.993 | 0.620 0.840 0.448
08 13 0.521 | 0.000 0.000 | 0.239 | 0.581 0.785 0.330
09 01 0.284 | 0.104 0.104 | 0.112 | 0.685 0.812 0.150

Continued on next page
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album | song | F,, | CML. | CML; | Lab | RCO | segmQ | krRCO

09 02 | 0.646 | 0.000 | 0.000 | 0.244 | 0.607 | 0.594 0.975
09 03 | 0788 | 0.979 | 0979 | 0.993 | 0.644 | 0.801 0.963
09 04 | 0.600 | 0.199 | 0.578 | 0.159 | 0.806 0.440 0.975
09 05 10989 | 0989 | 0.989 | 0.690 | 0.875 0.937 0.669
09 06 | 0.616 | 0.000 | 0.000 | 0.234 | 0.695 0.858 0.421
09 07 ] 0.803 | 0.801 0.801 | 0.368 | 0.822 0.746 0.873
09 08 | 0.576 | 0.000 | 0.000 | 0.210 | 0.636 0.767 0.851
09 09 | 0973 | 0.991 0.991 | 0.997 | 0.776 0.762 0.241
09 10 10991 | 0.989 | 0.989 | 0.996 | 0.646 0.677 0.967
09 11 0.985 | 0.992 0.992 | 0.139 | 0.667 | 0.747 0.984

10a 01 0954 | 0991 | 0991 | 0.638 | 0.785 | 0.869 0.895

10a 02 0.652 | 0.000 0.000 | 0.247 | 0.507 0.539 0.983

10a 03 | 0.875| 0.867 | 0.867 | 0.883 | 0.481 0.755 0.874

10a 04 | 0986 | 0.991 0.991 | 0.994 | 0.906 | 0.806 0.000

10a 05 | 1.000 | 0.962 | 0.962 | 0.253 | 0.001 0.652 0.000

10a 06 0.745 | 0.401 0.734 | 0.333 | 0.529 0.617 0.995

10a 07 10994 | 0994 | 0.994 | 0.998 | 0.644 | 0.893 0.320

10a 08 | 0.881 | 0.526 | 0.821 | 0.435 | 0.662 0.817 0.000

10a 09 0991 | 0986 | 0.986 | 0.406 | 0.811 0.807 0.000

10a 10 0.631 | 0.000 0.000 | 0.257 | 0.792 0.887 0.994

10a 11 0.926 | 0.413 0.903 | 0.325 | 0.426 0.349 0.990

10a 12 10937 | 0966 | 0.966 | 0.000 | 0.769 0.761 0.000

10a 13 ] 0.657 | 0.000 | 0.000 | 0.250 | 0.777 | 0.900 0.031

10a 14 | 0.649 | 0.000 0.000 | 0.258 | 0.852 0.845 0.997

10a 15 0.981 | 0.980 0.980 | 0.987 | 0.851 0.853 0.974

10a 16 10983 | 0983 | 0.983 | 0.994 | 0.463 0.666 0.970

10a 17 10.651 | 0.000 | 0.000 | 0.497 | 0.705 | 0.803 0.000

10b 01 0.973 | 0.992 0.992 | 0.000 | 0.611 0.667 0.680

10b 02 |0.733 | 0270 | 0.624 | 0.304 | 0.353 0.738 0.990

10b 03 | 0.650 | 0.000 | 0.000 | 0.496 | 0.640 0.629 0.988

10b 04 0975 | 0922 | 0961 | 0.254 | 0.534 | 0.665 0.673

10b 05 | 0.661 | 0.000 | 0.000 | 0.248 | 0.898 0.921 0.992

10b 06 | 0.601 | 0.000 | 0.000 | 0.238 | 0.546 0.489 0.883

10b 07 ] 0.889 | 0.702 0.977 | 0.981 | 0.800 0.832 0.987

10b 08 10996 | 0993 | 0.993 | 0.572 | 0.763 | 0.677 0.000

10b 09 |0.864 | 0.738 | 0.825 | 0.426 | 0.685 | 0.837 0.985

Continued on next page
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album | song | F,, | CML. | CML; | Lab | RCO | segmQ | krRCO
10b 10 0.973 | 0.397 | 0.960 | 0.003 | 0.530 0.682 0.000
10b 11 0.635 | 0.000 0.000 | 0.265 | 0.789 0.798 0.430
10b 13 0.289 | 0.000 0.000 | 0.107 | 0.517 0.738 0.986
11 01 0.659 | 0.000 0.000 | 0.249 | 0.727 0.739 0.926
11 02 0.649 | 0.000 0.000 | 0.247 | 0.699 0.749 0.825
11 03 0.982 | 0.962 0.982 | 0.984 | 0.752 0.649 0.000
11 04 | 0.974 | 0.641 0.976 | 0.141 | 0.726 0.744 0.809
11 05 0.661 | 0.000 0.000 | 0.500 | 0.768 0.868 0.978
11 06 0.901 | 0.442 0.844 | 0.286 | 0.625 0.784 0.325
11 07 | 0.867 | 0.332 0.682 | 0.576 | 0.864 0.817 0.988
11 08 0.642 | 0.000 0.000 | 0.247 | 0.663 0.848 0.758
11 09 0.656 | 0.000 0.000 | 0.242 | 0.701 0.863 0.628
11 10 0.663 | 0.000 0.000 | 0.251 | 0.688 0.798 0.575
11 11 0.973 | 0.964 0.964 | 0.918 | 0.870 0.893 0.000
11 12 1.000 | 0.590 0.975 | 0.255 | 0.257 0.708 0.990
11 13 0.661 | 0.000 0.000 | 0.250 | 0.643 0.775 0.988
11 14 | 0.647 | 0.000 0.000 | 0.252 | 0.770 0.840 0.465
11 15 0.667 | 0.000 0.000 | 0.250 | 0.851 0.763 0.000
11 16 0.892 | 0.815 0.815 | 0.830 | 0.338 0.712 0.765
11 17 | 0.279 | 0.000 0.000 | 0.000 | 0.342 0.550 0.920
12 01 0.971 | 0.992 0.992 | 0.442 | 0.716 0.656 0.976
12 02 0.918 | 0.332 0.944 | 0.857 | 0.756 0.867 0.973
12 03 0.977 | 0.232 0.938 | 0.662 | 0.730 0.617 0.000
12 04 |0.521 | 0.104 0.195 | 0.323 | 0.572 0.819 0.986
12 05 0.846 | 0.959 0.959 | 0.990 | 0.786 0.866 0.956
12 06 0.595 | 0.000 0.000 | 0.215 | 0.814 0.781 0.990
12 07 | 0.604 | 0.000 0.000 | 0.231 | 0.739 0.757 0.916
12 08 0.646 | 0.000 0.000 | 0.247 | 0.448 0.361 0.980
12 09 0.636 | 0.000 0.000 | 0.245 | 0.499 0.740 0.969
12 10 0.613 | 0.000 0.000 | 0.236 | 0.782 0.871 0.988
12 11 0.975 | 0.987 | 0.987 | 0.994 | 0.631 0.669 0.972
12 12 0.883 | 0.984 0.984 | 0.990 | 0.718 0.771 0.782
13 01 0.614 | 0.000 0.000 | 0.235 | 0.864 0.906 0.985
13 02 0.943 | 0.365 0.923 | 0.958 | 0.646 0.809 0.564
13 03 0.971 | 0.966 0.983 | 0.991 | 0.488 0.788 0.363
13 04 ]0.949 | 0.425 0.946 | 0.899 | 0.824 0.926 0.991

Continued on next page
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Table A.2 — continued from previous page

album | song | F,, | CML. | CML; | Lab | RCO | segmQ | krRCO
13 05 0.961 | 0.995 0.995 | 0.878 | 0.607 0.811 0.082
13 06 0.978 | 0.583 0.986 | 0.995 | 0.756 0.702 0.695
13 07 |0.975 | 0.503 0.962 | 0.924 | 0.774 0.832 0.994
13 08 0.995 | 0.994 0.994 | 0.998 | 0.706 0.629 0.961
13 09 0.636 | 0.000 0.000 | 0.244 | 0.556 0.633 0.989
13 10 0.900 | 0.473 0.865 | 0.682 | 0.542 0.754 0.810
14 11 0.958 | 0.989 0.989 | 0.989 | 0.758 0.813 0.963
14 01 0.995 | 0.992 0.992 | 0.997 | 0.874 0.938 0.932
14 02 0.920 | 0.783 0.928 | 0.922 | 0.916 0.945 0.796
14 03 0.985 | 0.992 0.992 | 0.647 | 0.571 0.785 0.967
14 04 | 0.972 | 0.986 0.986 | 0.991 | 0.626 0.639 0.996
14 05 0.976 | 0.985 0.987 | 0.896 | 0.885 0.937 0.977
14 06 0.984 | 0.372 0.975 | 0.986 | 0.495 0.812 0.249
14 07 ]0.982 | 0.994 0.994 | 0.998 | 0.854 0.854 0.988
14 08 0.397 | 0.000 0.000 | 0.165 | 0.796 0.833 0.820
14 09 0.935 | 0.900 0.985 | 0.991 | 0.479 0.628 0.770
14 10 0.647 | 0.000 0.000 | 0.249 | 0.761 0.817 0.993
14 11 0.967 | 0.989 0.989 | 0.996 | 0.488 0.637 0.863
14 12 0.385 | 0.000 0.000 | 0.161 | 0.790 0.805 0.897
14 12 0.758 | 0.910 0.910 | 0.920 | 0.588 0.722 0.728
14 12 0.534 | 0.000 0.000 | 0.234 | 0.627 0.844 0.053
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Appendix A. Detailed results

ID | Title

01 | TB-Please Please Me

02 | TB-With The Beatles

03 | TB-Hard Day’s night

04 | TB-Beatles For Sale

05 | TB-Help

06 | TB-Rubber Soul

07 | TB-Revolver

08 | TB-Sgt Pepper’s Lonely Hearts Club Band
09 | TB-Magical Mistery Tour
10a | TB-The White Album cd1
10b | TB-The White Album cd2
11 | TB-Abbey Road

12 | TB-Let It Be

13 | RW-Life Through A Lens

14 | RW-I've Been Expecting You

Table A.1: Album IDs
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