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Abstract

The advent of digital era has dramatically increased the amount of music
that people can accede to. Millions of songs are just "a click away" from
the user. This comes with several side-effects: the absence of mediators
for music suggesting, the issues on browsing such a huge amount of music
and retrieving of songs. Such large collection of songs makes them difficult
to be navigated through classical meta-information such as title, artist or
musical genre. Listening to songs without knowing any information about
them raises the issue of retrieving meta-information of a track by describing
its content.

Music Information Retrieval is the multidisciplinary research field that
deals with extraction and processing of information from music. Informa-
tion can be related to emotional or non emotional aspects of music, can
provide an objective or subjective description, can be automatically com-
puted or manually annotated by human listeners. In the latest years, Music
Information Retrieval research community has proposed solutions for the
issues mentioned above.

In this work we propose a music search engine that deals with queries
by natural language semantic description and text-based semantic example.
The former involves a description of songs by means of words. The latter
concerns the retrieval of songs with a semantic description similar to some
proposed examples. Both emotional and non emotional-related semantic de-
scription are allowed. We exploit the Valence-Arousal mapping to model
affective words and songs. We introduce a set of semantic non-emotional
high-level descriptors and we model them in a space we defined semantic

equalizer. Songs are mapped in the semantic equalizer as well. Song simi-
larity based on high-level similarity (emotional and non emotional) has been
implemented. A natural language processing module is present in order to
capture the distinctions of meaning that human language currently adopts.

This system can solve the problem of retrieving music among large music
libraries. It is also suitable for music recommendation and music browsing
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purposes. Indeed, we implement a prototype able to list results for a semantic
query or to organize them in a playlist fashion.

The system has been tested with a proven data set composed by 240 ex-
cerpts of 15 seconds each. A questionnaire about the system’s performances
and utility has been proposed to 30 subjects. We obtained good rates on
system’s performances and the subjects positively evaluate the usefulness of
this kind of system. These are promising results for future progresses.







Sommario

L’avvento dell’era digitale ha aumentato drasticamente la quantitá di mu-
sica accessibile online. Milioni di canzoni sono a portata di click. Ció ha
portato dei risvolti negativi: stanno scomparendo i mediatori che consiglino
nuova musica agli utenti ed é sempre piú difficile gestire le proprie collezioni
musicali.

Il Music Information Retrieval (MIR) é un campo di ricerca multidis-
ciplinare che studia l’estrazione e l’utilizzo di informazioni musicali. Tali
informazioni possono essere di natura emozionale o non emozionale, pos-
sono descrivere la musica ad alto o basso livello, possono essere calcolate
automaticamente o annotate manualmente. Una grande quantitá di musica
ne rende difficile la navigazione, in quanto le classiche meta-informazioni
come titolo del brano, artista o album sono insufficienti per descriverne il
contenuto musicale e le sue caratteristiche. L’ascolto casuale di canzoni
senza conoscerne alcuna informazione (sempre piú frequente, nei nuovi sce-
nari aperti dall’aumento di musica disponibile), hanno introdotto il prob-
lema di ritrovare meta-informazioni di un brano cercando di descriverne il
contenuto. Negli ultimi anni la ricerca scientifica MIR ha proposto diverse
soluzioni per i problemi sopraccitati.

In questa tesi proponiamo un motore di ricerca musicale che gestisce query
semantiche in linguaggio naturale ed esempi musicali basati su testo. La
descrizione semantica puó essere sia emozionale che non emozionale. Ab-
biamo utilizzato un mapping nel piano di Valence-Arousal per modellare
parole affettive e canzoni. Abbiamo poi introdotto un insieme di descrit-
tori non emozionali di alto livello e li abbiamo modellati in uno spazio che
abbiamo chiamato equalizzatore semantico. Le canzoni sono state analoga-
mente modellate su questo spazio. É stato implementato anche un sistema
di similaritá di alto livello tra canzoni (sia emozionale che non emozionale).
Abbiamo inoltre inserito un modulo di processamento del linguaggio naturale
per catturare le sfumature di significato tipicamente adottate nel linguaggio
umano.

V



Questo sistema puó risolvere il problema di ritrovare musica in librerie
musicali molto grandi. Il sistema é anche adatto a suggerire nuova musica
e navigare tra le canzoni. Abbiamo infatti implementato un prototipo che,
data una query semantica, restituisce i risultati sotto forma di lista di canzoni
o di playlist musicale.

Il sistema é stato testato con un data set composto da 240 segmenti di
15 secondi ciascuno e proposto a 30 soggetti per una valutazione soggettiva.
Abbiamo ottenuto buoni risultati sul funzionamento del sistema e risposte
incoraggianti sull’utilitá percepita di un sistema come il nostro che apre
scenari ottimisti per sviluppi futuri.







Acknowledgements

I would like to thank:
Professor Augusto Sarti for making possible for me to realize such an excit-
ing work and to study such interesting subjects on my master degree.
Dott. Massimiliano Zanoni, for the topic of the thesis, for suggestions, for
ideas, for the pacience (expecially for the pacience) and the long-term sup-
port.
The ISPG laboratory, an amazing ambient where develop anything. Paolo,
Dejan, Antonio, Eliana, Ambra, Simone, Bruno and Stefano have been the
best colleagues I could hope to have.
All my colleagues from the Sound and Music Engineering Master Degree, in
particular my mates Matteo, Mario, Michele, Giorgio, Giuseppe, Saranya,
Giammarco, Giorgia the outsider and many more. You help me, support me
and make me discover the beer.
All of my friends who support and stand me during this work, fill my tests
and read my thesis for suggestions: Valentina for providing the porceddu,
Marianna for taking vacation to partecipate at the big day and Francesca
for her wonderfulness.
My family who always supported me in what I was doing even if they did
not realize what is it about.
All the people who help me filling my surveys and my test.

IX





Contents

Abstract I

Sommario V

Acknowledgements IX

1 Introduction 5

2 State of the art 11

2.1 High-level Features . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Music recommendation systems . . . . . . . . . . . . . . . . . 13

2.3 Music browsing . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Music search and retrieve . . . . . . . . . . . . . . . . . . . . 16

3 Theoretical Background 19

3.1 Music Information Retrieval . . . . . . . . . . . . . . . . . . . 19

3.1.1 Audio Features . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Regressor and machine learning algorithms . . . . . . 24

3.1.3 Music Emotion Recognition . . . . . . . . . . . . . . . 25

3.2 Bayesian Decision Theory . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Prior probability . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Modeling the Likelihood function . . . . . . . . . . . . 27

3.3 Natural Language Processing . . . . . . . . . . . . . . . . . . 28

3.3.1 Part-of-Speech tagging . . . . . . . . . . . . . . . . . . 28

3.3.2 Context-Free Grammar . . . . . . . . . . . . . . . . . 29

3.3.3 Probabilistic Context-Free Grammar . . . . . . . . . . 30

4 Implementation of the system 33

4.1 Music content semantic modeling . . . . . . . . . . . . . . . . 34

4.1.1 Emotional Descriptors . . . . . . . . . . . . . . . . . . 35

4.1.2 Non-Emotional Descriptors . . . . . . . . . . . . . . . 36

XI



4.2 Concept modeling . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 The emotional-related semantic model . . . . . . . . . 40
4.2.2 The non emotional-related semantic model . . . . . . . 41

4.3 The computational core . . . . . . . . . . . . . . . . . . . . . 43
4.4 The query model . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Query by semantic example . . . . . . . . . . . . . . . 45
4.4.2 The natural language semantic parser . . . . . . . . . 46
4.4.3 Query by semantic non emotional-related description . 46
4.4.4 Query by semantic emotional description . . . . . . . . 46
4.4.5 The role of qualifiers . . . . . . . . . . . . . . . . . . . 48
4.4.6 From sets to query modeling . . . . . . . . . . . . . . 50

4.5 The retrieval model . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 The Visualization module . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Ranking List Visualization . . . . . . . . . . . . . . . . 56
4.6.2 Playlist Visualization . . . . . . . . . . . . . . . . . . . 58

5 Experimental results 59

5.1 The data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Predefined queries evaluation . . . . . . . . . . . . . . . . . . 63
5.4 General evaluation . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Notes and discussion on results . . . . . . . . . . . . . . . . . 71

6 Conclusions and future developments 73

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Perspectives and future developments . . . . . . . . . . . . . . 74

6.2.1 Refining the semantic equalizer . . . . . . . . . . . . . 74
6.2.2 User profiling . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.3 Expansion of data set . . . . . . . . . . . . . . . . . . 75
6.2.4 Query by speech . . . . . . . . . . . . . . . . . . . . . 75
6.2.5 Music browsing and thumbnailing . . . . . . . . . . . . 75

A List of songs 77

B Perceptive test 83

Bibliography 87



List of Figures

2.1 Visualization of high-level features obtained through the anal-
ysis of the heterogeneous music stream . . . . . . . . . . . . . 12

2.2 The interface of Moodagent for Android devices. . . . . . . . 15

2.3 The interface of Mufin Player. . . . . . . . . . . . . . . . . . . 16

3.1 Spectral Centroid for two songs. . . . . . . . . . . . . . . . . . 21

3.2 Spectral Flux for two songs . . . . . . . . . . . . . . . . . . . 21

3.3 Spectral Rolloff for two songs with value R = 85% . . . . . . 22

3.4 Spectral Flatness for two songs . . . . . . . . . . . . . . . . . 23

3.5 Chromagram for two songs . . . . . . . . . . . . . . . . . . . 23

3.6 Block diagram of training and test phases for a supervised
regression problem . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 The 2D valence-arousal emotion plane, with some moods ap-
proximately mapped [1] . . . . . . . . . . . . . . . . . . . . . 26

3.8 An example of parse tree representation of a Context-Free
grammar derivation. . . . . . . . . . . . . . . . . . . . . . . . 29

3.9 Two parse trees for the sentence astronomers saw stars with

ears. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Block diagram for the general system descripted. . . . . . . . 33

4.2 Block diagram for a regressor problem. . . . . . . . . . . . . . 34

4.3 The block diagram with detail view of Song Semantic Model. 35

4.4 Valence-Arousal representation for two songs in the MsLite
data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Semantic Equalizer representation for two songs in the MsLite
data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 System block diagram with detail view for Concept Modeling. 39

4.7 Concept modeling for words "hard" and "soft" on the hard-
dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 Concept modeling for tempo markings words as listed in table
4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



4.9 System block diagram with detail view of computational core. 44
4.10 System block diagram with detail view of Query Modeling

module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11 Flux diagram for songs retrieval in semantic example descrip-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.12 System block diagram with detail view for Scores Computing

module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.13 The homepage for research. . . . . . . . . . . . . . . . . . . . 56
4.14 Block diagram with detailed view of the visualization module. 56
4.15 An example of ranking list visualization. . . . . . . . . . . . . 57
4.16 An example of playlist visualization. . . . . . . . . . . . . . . 58

5.1 Skills owned by our survey population . . . . . . . . . . . . . 61
5.2 Music listening profiles in test population. . . . . . . . . . . . 63
5.3 Histogram of evaluation rates for the query "I want a song

very groovy and happy". . . . . . . . . . . . . . . . . . . . . . 64
5.4 Histogram of evaluation rates for the query "I want a song

not happy at all, dull and flowing". . . . . . . . . . . . . . . . 65
5.5 Histogram of evaluation rates for the query "I want a playlist

that sounds angry, fast and rough". . . . . . . . . . . . . . . . 66
5.6 Histogram of evaluation rates for the query "I would like to

listen to calm songs, like "Orinoco Flow", flowing and slow". . 67
5.7 Histogram of evaluation rates for the query "I want a playlist

not angry, and not stuttering and with a slow tempo". . . . . 67
5.8 Histogram of evaluation rates for results of free-text queries. . 69
5.9 Histogram of evaluation rates for usefulness of the system. . . 69
5.10 Histogram of evaluation rates for the question about personal

potential use of the system. . . . . . . . . . . . . . . . . . . . 70
5.11 Histogram of evaluation rates about the general concept of

the syste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of Tables

3.1 Low and mid-level features used in this work . . . . . . . . . 20

4.1 List of high-level semantic descriptors chosen from the anno-
tation experiment in [2] . . . . . . . . . . . . . . . . . . . . . 37

4.2 List of NEDs in this work . . . . . . . . . . . . . . . . . . . . 38
4.3 Notation used for song semantic models . . . . . . . . . . . . 40
4.4 Tempo markings and correspondent ranges of BPM . . . . . . 42
4.5 Notation used for concept models . . . . . . . . . . . . . . . . 44
4.6 Verbal labels and correspondent mean values from [3] . . . . . 48
4.7 Notation used for query models . . . . . . . . . . . . . . . . . 52
4.8 Notation used for scores . . . . . . . . . . . . . . . . . . . . . 55

5.1 Rate neighborhood for false-positive outliers recover . . . . . 62
5.2 Linear Regressor and Robust Linear Regressor Root Mean-

Square Errors for each non-emotional high-level descriptor. . . 62
5.3 Evaluation for the predefined queries . . . . . . . . . . . . . . 64
5.4 Evaluation for the system’s general aspects. . . . . . . . . . . 68

3



4



Chapter 1

Introduction

Music has always had an important role in the human life. The advent of the
digital era has considerably increased the amount of music content that users
can accede to. Most part of the music published in the last century is on sale
online. Thousands or even millions of songs can be stored in media storage.
The amount of music currently available is more than a person can listen to
in an entire life. This information overload leads to an evolution in music
listening experience. Until today mediators, such as music dealers and music
magazines, have played an important role in collecting, organizing, retrieving
and suggesting music for people. Users can now directly access to music via
Internet and mediators risk to disappear. The music organization reflects
the taxonomy used by mediators to classify music and is based on meta
information such as title, album name, artist, year and so on. Nevertheless,
people have recently been using to reach and listen to music without knowing
any information about it. Users habits are changing: on one side people keep
listening to music by a certain artist or belonging to a certain genre; on the
onther side, they listen to music that inspire a certain mood or that has a
certain sound.

New applications and paradigms are needed to collect, suggest, organize
and retrieve music for people. Scientific community and industries are work-
ing to build automatic mediators that can address these issues. In order to
realize this, it is crucial to investigate about music content, how to model it
and which aspects are significant for representing it. On the other side, it is
important to investigate how users understand music content, which descrip-
tion they use for it and how they would like to access it. For example, one
of the main prerogative of music is to inspire feelings to listeners. People use
to choose their music according to the mood they are feeling or in order to
be brought to a certain emotion. Nevertheless, other non-emotional factors
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6 Chapter 1. Introduction

are taken into account when listening to music, such as musical genre (rock,
pop), rhythmic aspects (slow, fast, dynamic) or other generic descriptors
used in common language (dull, easy, catchy, noisy).

The gap between users and music content must be filled in order to build
novel mediators. Music Information Retrieval (MIR) community studies and
investigates elements involved in users description and music content. MIR is
a multidisciplinary research field that deals with the retrieval and processing
of information from music. MIR disciplines include: musicology, psychology,
psychoacoustic, academic music study, signal processing, computer science
and machine learning. Music information can be formalized and described
hierarchically from lower level, which is related to sound content, to higher
level, which is related to perception of sound. These information are re-
ferred to as descriptors or features. Low-level features (LLF) are directly
extracted and computed from the audio signal and describe information re-
lated with Spectral or Energy components. They are extremely objective,
but they poorly describe music to users. High-level features (HLF) carry
a great significance for human listeners, hence they are the most feasible
for wide-diffusion application. They are very subjective, since they give the
higher level of abstraction from the audio signal they refer to. They can
represent emotional-related descriptors of music (ED) or to non emotional-
related (NED). Mid-level features (MLF) represent the middle layer between
low- and high-level features. MLFs introduce a first level of semantics and
combine LLFs with musical and musicological knowledge. In MIR literature,
the gap between users description and music content is referrered to as gap

between low-level and high-level features.

New paradigms need an accurate high-level music description. HLFs can
be manually annotated by human listeners (context-based), but this ap-
proach is impractical, due to the large amount of music availability and the
high subjectivity of the annotation. HLFs can also be based on a set of
LLFs (content-based), but this is a hard task that involves machine learning
prediction techniques. In the current situation, context-based approaches
are mainly used in applications that interact with users, hence via HLFs,
whereas content-based approaches have usually been limited to applications
dealing with the audio content, hence via LLFs. In chapter 2 we will give an
overview of these applications. An application that interacts with users and
addresses the issue of wide music availability should be content-based and
describe music by means of HLFs.

The representation of HLFs has two approaches: cathegorical and dimen-

sional. The cathegorical approach tends to assign binary value descriptors
to music. That is, a song can be either descripted or not descripted by a
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feature, such as rock or not rock. In the dimensional approach, it is possible
to quantifies how much a feature describes a song, e.g., in a 9-point scale

from 1 to 9, this song has a value of roughness equal to 7.

With particular respect to emotional-related descriptors, Music Emotion

Recognition (MER) is a research field that aims at investigating how to
conceptualize and model emotions perceived from music. Dimensional ap-
proach to MER aims at representing emotions in a continuous (dimensional)
space. The most referred space in the literature is the Valence and Arousal 2-
dimensional space (AV). The Valence concerns how much a mood is positive
or negative, whereas the Arousal is related to the energy of the emotion (ex-
citing or calming). Sometimes an additional dimension, called Dominance, is
considered. It represents the sense of control or freedom to act of an emotion
[1] (AVD space). For the purposes of Music Emotion Recognition, songs are
mapped as points in the AV or AVD space. The points represent the feelings
inspired by the songs.

Technology is experiencing another kind of evolution, related with user
interaction. Inputs to the computer changed from command-line terminal
to windows environment and are moving to touch-screen interaction and
gesture commands. Nowadays an user-friendly interface is a basic design
requirement for any application. New systems seem to be oriented to the
comprehension of users’ requests by allowing people to communicate as most
intuitively as possible. Natural Language Processing (NLP) is a discipline
that concerns making machines able to understand human natural language.
Through NLP, users might communicate their requests to a machine as they
were talking to a human. One of the most relevant NLP application1 is Siri2,
the Apple’s voice assistant. It is able to receive commands in natural spoken
language and translate them into directives for the device operative system.

Music search is one of the challenge that MIR community is facing. A first
approach for music search involves with taking meta information (such as
title or artist) from the user and returning the correspondent music content.
This kind of music indexing does not consider any information about actual
music content, neither at high level nor at low level. In the new music
scenario, users may want to retrieve music without having any information
about it, but only an idea on what to retrieve. In order to invert the process,
some kind of description for music must be provided. Here are some examples
of type of query for MIR applications:

1How innovative is Apple’s new voice assistant Siri,

http://www.newscientist.com/article/mg21228365.300-how-innovative-is-apples-new-

voice-assistant-siri.html
2Apple Inc., http://www.apple.com/uk/ios/siri/
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• by humming: the user sings or hums the song;

• by tapping: the user taps the rhythm pattern of the song;

• by beatboxing: the user emulates the rhythm pattern of the song by
beatboxing it;

• by example: songs are retrieved by similarity to one provided;

• by semantic description: the user describes the song by text.

In this thesis we address the problem of song retrieval in a content-based
manner by text-based natural language query. The purpose of this work is to
create a music search system using query by semantic description. We aim
at processing natural language query in order to exploit the richness of lan-
guage and to capture the significant concepts of the query and qualifiers that
specify the intensity desired. In this thesis we will use words and concepts as
synonyms. We analyze emotional and non emotional-related description by
means of semantic high and mid-level features. We use dimensional approach
both for EDs (by the Valence-Arousal space) and NEDs. Song similarity can
also be specified in the semantic description. The similarity among songs is
intended as similarity among songs’ semantic descriptions. The system com-
bine content-based approach for the annotation and high-level features for
the descriptions, hence we propose a intuitive system for users and scalable
for large amount of music. We named the system Janas, from an ancient
Sardinian word that means fairies. With this word, we refer to the ancient
era when music and magic were considered deeply bound.

We implemented a prototype of the system as a web search engine that
outputs a ranked list of songs or a playlist. However, there are several possi-
ble applications. Web digital-media store may use it in order to suggest songs
from free text-based queries or by content similarity with previous orders.
This system may be used as an automatic playlist generator for music player
softwares or in portable music devices. Users may also be interested in the
possibility of searching among their personal music collection via semantic
queries.

This thesis is organized as follows. Chapter 2 presents an overview of
the state of the art for: main music search engines systems, music recom-
mendation systems, high-level descriptors used in commercial application or
proposed by the MIR community, latest paradigms for music browsing. In
Chapter 3 we list and explain tools and theoretical background we needed to
develop our project. We cover: Bayesian decision theory, natural language
sentence parsing, audio features, emotional-related HLFs, machine learning
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regressors for generating content-based HLFs. In chapter 4 we discuss details
of the implementation of system under discussion. In chapter 5 we describe
experimental results and the data set we used to collect them. Chapter
6 analyzes conclusions and possible future applications for the system we
present.
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Chapter 2

State of the art

In this chapter we will provide an overview of the state of the art for Music
Information Retrieval researches and applications. We will start with an
overview of the high level features currently used to describe music. We will
then describe the most relevant music recommendation systems currently
available, from commercial and research fields. The third section concerns
music representation and navigation, i.e. the solutions introduced to over-
come the standard classification of songs (name, artist, genre). In the last
section we will discuss the current efforts in Music Information Retrieval for
the searching and retrieve of music.

2.1 High-level Features

High-level features describe music with a high level of abstraction. High-level
features are usually divided in emotion-related and non emotion-related. The
latter include descriptors for a wide variety of music characteristics.

In [4] the author introduces a set of bipolar-continuous NEDs for high-level
perceptual qualities of textural sound modeling. The descriptors considered
are: high - low, ordered - chaotic, smooth - coarse, tonal - noisy and homo-

geneous - heterogeneous. Such descriptors are suitable to describe textural
sound, i.e., abstract and environmental sounds, but they are not for more
complex sounds like songs.

In [5] the authors train a SVM learning machine to classify music genres.
They find three high-level features able to represent and visualize genres.
Such features are: darkness, dinamicity and classicity. They use these fea-
tures to map songs’ time-varying evolution among the genre space. Although
these features seem to have a high descriptive potential, they do not have
an intuitive definition for the generic user. A visualization of music genre is

11
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shown in figure 2.1.

(a) Resulting triangular plot for mixed genre

stream test.

(b) Resulting average genre colors for mixed

genre stream test.

Figure 2.1: Visualization of high-level features obtained through the analysis of the

heterogeneous music stream

In [6] the authors describe a system for semantic annotation and retrieval
of audio content. The annotation and retrieval is based on a vocabulary,
descripted in [7] of 159 cathegorical semantic descriptors1, divided in:

• emotion: concerns feelings inspired by the songs;

• genre: the musical genre of the songs;

• instrument : the instruments played during the song, included male

and female lead vocals

• song: some general aspects such as changing energy level or catchy/memorable;

• usage: typical situation for listening that particular song e.g., at a

party, going to sleep and so on);

• vocals: the style or features of the singer, such as duet or breathy.

In [8] the authors present a system that hierarchically classify recordings
by genre. They extract 109 musical features divided in seven main cathe-
gories:

• Instrumentation (e.g. whether modern instruments are present);

1CAL-500 semantic vocabulary for music analysis,

http://cosmal.ucsd.edu/cal/projects/AnnRet/vocab.txt
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• Musical Texture (e.g. standard deviation of the average melodic leap
of different lines);

• Rhythm (e.g. average time between attacks);

• Dynamics (e.g. average note to note change in loudness);

• Pitch Statistics (e.g. fraction of notes in the bass register);

• Melody (e.g. fraction of melodic intervals comprising a tritone);

• Chords (e.g. prevalence of most common vertical interval).

These HLFs exhibit good performances in genre classification. Nevertheless
they have been extracted from MIDI symbolic recordings, hence they have
not been proofed in a real-world situation with actual audio signal.

2.2 Music recommendation systems

Music recommendation systems help users to navigate among the large amount
of available music by suggesting songs that match their musical tastes. Context-
based approach for music recommendation is limited to the comparison of
users’ music libraries for songs suggestion. Content-based approach can also
focus on song actual content for the retrieval of songs similarity.

Genius is an automatic playlist generator inside the software iTunes2.
Once it has created a playlist, it also suggests songs from the Apple Store
that matches similarity with the songs in the user’s library. Although no
formal description of the algorithm has been provided, it is probably based
on context similarity among users’ libraries3.

Last.fm4 is a website founded in 2002, that builds a profile of user’s musical
tastes from Internet radio stations or computer’s music player. Starting from
this profiling, Last.fm provides a service of recommendations for new music,
based on context-based similarity with other profiles.

In [9] the author provides a description of a music recommendation system
based on context, content and user profiling. The context based information
are gathered from music related RSS feeds. The content-based information is
extracted from the audio. Finally, profiling information about user’s listening
habits and user’s friends of friends’ interests are considered during the music
recommendation process.

2Apple Inc., http://www.apple.com/itunes/
3"How iTunes Genius Really Works", http://www.technologyreview.com/view/419198/how-

itunes-genius-really-works/
4Last.fm Ltd., http://www.last.fm
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All the content-based recommendation systems discussed above do not
allow to drive the recommendation and they are mainly based on personal
musical tastes. The system we propose in this work allows people to choose
personal criteria for music recommendation.

2.3 Music browsing

Music has been traditionally listened to and browsed following classical tax-
onomy. People used to listen to music by an artist, or from an album, or
matching some favorite genre. This was not sufficient and people started to
create playlist of different artists, albums or genres with the intent to col-
lect and browse music that matched other aspects of music, such as relaxing
songs while studying or positive and fast songs while jogging. Music browsing
differs from music recommendation because the former aims at suggesting
music similar to users’ tastes, whereas the latter provides ways to organize
music. In this section we will present some applications that browse music
and the features they use to organize it.

Pandora5 is a website that provides a customized web radio station similar
to users’ tastes. It is based on the Music Genome Project6, that aims to
capture the essence of music at the fundamental level using a set of almost
400 attributes. Since the features are context-based and manually annotated,
songs are limited to the ones just included in the Pandora database and not
easily scalable.

Stereomood7 is a website for music streaming depending on the mood
or emotions felt. Once the user has chosen that particular feeling, Stereo-
mood generates a playlist of tracks that match that mood. The database is
composed by context-based annotations and it contains also annotations not
directly related to objective but inspires mood, such as sunday morning or
it’s raining.

Mufin8 is a service that includes music player and cloud storage functional-
ities. Users’ songs are uploaded and analyzed by Mufin, that maps them in a
sort of Valence-Arousal space extended with a synthetic-acoustic dimension.
Users can have a 3D view of their music into this space and create playlists
by mood neighboring. The mapping follows a content-based approach, hence
no manual annotation by the user is needed. A screenshot of its 3D view of
songs is shown in figure 2.3.

5Pandora, http://www.pandora.com
6The Music Genome Project, http://www.pandora.com/about/mgp
7Stereomood srl., http://www.stereomood.com
8mufin GmbH, http://www.mufin.com/us/software/mufinplayer
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Figure 2.2: The interface of

Moodagent for Android devices.

Mood Agent9 is a music player that uses
four high-level emotional-related descriptors
(sensual, tender, happy and angry) and one
mid-level feature (the tempo) to create a
playlist based on music similarity. The
analysis on music is content-based and the
playlists are built tuning descriptors as they
were sliders on an equalizer. Its interface is
shown in 2.2.

Musicovery10 is a website and mobile ap-
plication that maps songs in a quantized
Valence-Arousal plane. Selecting an area
in the VA plane, the user can play a song
according to a certain mood. It also pro-
vides a tool to play songs starting from an
artist and finding similar songs. Its algo-
rithm is based on a set of 40 acoustic fea-

tures context-based (annotated by an expert at Musicovery11) that are pro-
cessesed to find the mood of the song.

In [10] the authors describe an approach to multimedia playlist genera-
tor based on prior information about musical preferences of the user. The
playlist generator can be driven by environmental or unintentional signals
and by intentional control signals. The features selected as control signals
are mood, brightness and RMS to specify loudness. It is also possible to
tap the desired tempo. Features are content-based and refer to excerpts of
song, in order to dynamically build the playlist (on fly). Since the system
takes into account also the history of the system in order to capture the
preferencies of the user, it can be seen as in-between music browsing and
recommendation.

Most of these systems use only an emotional description to navigate among
songs; those which do not, are based on just one typology of description.
In this work, we combine together semantic emotional and non emotional-
related description in order to provide a higher degree of freedom for user.

9Syntonetic, www.moodagent.com
10Musicovery, www.musicovery.com
11About us, Musicovery, http://musicovery.com/aboutus/aboutus.html
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Figure 2.3: The interface of Mufin Player.

2.4 Music search and retrieve

Music search engines offer the possibility to retrieve songs by describing its
content. They do not aim at organizing music or recommending it. In the
latest decades some applications were created to retrieve songs by an analysis
of their actual content.

Soundhound12 is a mobile phone application that allows to search and re-
trieve music via query by humming. Soundhound is the rename of Midomi13,
a website for music search via query by humming. In Midomi, researches are
made among both original songs and recordings sent by users, using features
as pitch, tempo variation, speech content and location of pauses14.

Shazam15 is a popular mobile application that accepts music excerpts
recorded by the microphone of the mobile device and retrieve the song
recorded. The algorithm faces several problems, such as low quality record-

12Soundhound Inc. http://www.soundhound.com
13Midomi, http://www.midomi.com
14"This Website can name that tune", http://news.cnet.com/This-Web-site-can-name-

that-tune/2100-1027_3-6153657.html
15Shazam Entertainment Ltd, http://www.shazam.com
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ings or ambient noise. In [11] the author gives a description of the algorithm
that extract a robust fingerprint by building a so-called costellation map
from the spectogram of the recorded audio.

In [12] the author builds a semantic space for queries and an acoustic space
for audio signals. The semantic space uses a hierarchical set of multinomial
models to represent and cluster a collection of semantic documents. The
acoustic space uses a signal processing chain composed by Mel-frequency
Cepstral Coefficient (MFCC) extraction, stacked together through frames,
analyzed by linear discriminant analysis (LDA) and finally feed to a Gaussian
mixture model recognizer. The two spaces are linked together by another
gaussian mixture model. This approach has good performance for the ex-
periment proposed by the author, that relies on short audio fragments and
simple semantic queries. It is tailored on analyzing the objective content
of an audio signal (what is recorded) rather than qualities of a song (how it

sounds).
In [6] the authors create a system of music information retrieval based on

semantic description queries. To overcome the lack of data set semantically
labeled, they collect a dataset of 500 songs from humans’ listenings and an-
notations. The data set, named Computer Auditory Lab 500 (CAL500) is
currently available online16. The songs have been modeled as GMM distri-
butions by an Expectation-Maximization algorithm (EM). Using the models
found, they also realize an automatic semantic annotator for songs.

Queries by humming or by example are useful to retrieve a certain song,
but they cannot (and are not intended to) be used for music recommendation.
The semantic information retrieval systems discussed are more similar to
our work. In addition, we exploit the richness of language using a natural
language processing module in order to accept complex queries. Moreover,
our mood vocabulary considers about 2000 emotions.

16CAL500, http://cosmal.ucsd.edu/cal
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Chapter 3

Theoretical Background

In this chapter we will present the theoretical background needed for our
work. In the first section we will introduce some Music Information Retrieval
methods. We will first analyze the audio features and the regressors we used
in building a content-based data set. We will also give an overview the
Music Emotion Recognition field. In the second section we will provide the
fundamentals of Bayes decision theory we based our work on. In the last
section we will present Natural Language Processing definitions and we will
focus on the problem of sentence parsing and the solution we chose.

3.1 Music Information Retrieval

Music Information Retrieval is a multidisciplinary research field that deals
with music information. Music information is expressed by features or de-

scriptors. Music features are classified according to their level of abstraction:
low-level features are the most objective, whereas high-level features carry
the greatest semantic significance.

3.1.1 Audio Features

Low-level features, also referred to as audio features, can be classified on
the acoustic cues they are capturing. LLFs can measure: the energy in
the audio signal, its distribution and its related features (such as loudness
and volume); the temporal aspects related with tempo and rhythm; some
attributes related with the spectrum. In the following, we will illustrate the
features we employed in this work, as descripted in [13]. The list of the
features is shown in table 3.1.

19
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Low-level

Spectral MFCC, Spectral Centroid, Spectral Flux,
Spectral Rolloff, Spectral Flatness, Spectral
Contrast

Mid-level

Rhythmic Tempo

Table 3.1: Low and mid-level features used in this work

Mel-Frequency Cepstrum Coefficients

Mel-Frequency Cepstrum Coefficients (MFCCs) are spectral LLFs that are
based on Mel-Frequency scale. Mel-Frequency scale models the human au-
ditory system’s perception of frequencies. MFCCs are obtained from the co-
effiecients of the discrete cosine transform (DCT) applied on a reduced Power
Spectrum. The reduced Power Spectrum is computed from the log-energy
of the spectrum pass-band filtered by a mel-filter bank. The mathematical
formulation is:

ci =
∑Kc

k=1
{log(Ek)cos[i(k − 1

2
) π
Kc

]} with 1 ≤ i ≤ Nc, (3.1)

where ci is the i− th MFCC component, Ek is the spectral energy measured
in the critical band of the i − th mel-filter, Nc is the number of mel-filters
and Kc is the amount of cepstral coefficients ci extracted from each frame.

Spectral Centroid

Spectral Centroid is the center of gravity of the magnitude spectrum. Given
a frame decomposition of the audio signal, Spectral Centroid is computed
as:

FSC =

∑K
k=1

f(k)Sl(k)
∑K

k=1
Sl(k)

, (3.2)

where Sl(k) is the Magnitude Spectrum at the l − th frame and the k − th

frequency bin, f(k) is the frequency corresponding to k − th bin and K is
the total number of frequency bins. Spectral Centroid can be used to check
whether the magnitude spectrum is dominated by low or high frequency
components. It is often associated with the brightness of the sound. Spectral
Centroids for two songs are shown in figure 3.1.
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Figure 3.1: Spectral Centroid for two songs.

Spectral Flux

Spectral Flux captures the spectrum variations, computing the distance be-
tween the amplitudes of the magnitude spectrum of two successive frames.
We consider the Euclidean distance:

FSF =
1

K

K
∑

k=1

[log(|Sl(k)|+ δ) − log(|Sl+1 + δ|)]2, (3.3)

where Sl(k) is the Magnitude Spectrum at the l− th frame and at the k− th
frequency bin and δ is a small parameter to avoid log(0). A representation
of Spectral Flux for two songs is shown in figure 3.2.
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Figure 3.2: Spectral Flux for two songs

Spectral Rolloff

Spectral Rolloff represents the lowest frequency FSR at which the value of the
sum of the power spectrum of lower frequencies till FSR reaches a certain
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amount of the total sum of the magnitude spectrum. Spectral Rolloff is
formalized as:

FSR = min{fKroll
|

Kroll
∑

k=1

(Sl(k)) ≥ R
K
∑

k=1

(Sl(k))}, (3.4)

where Sl(k) is the Magnitude Spectrum at the l − th frame and the k − th

frequency bin, K is the total number of frequency bins, Kroll is the frequency
bin index corresponding to the estimated rolloff frequency fKroll

and R is
the frequency ratio. In [14] authors consider R at 85% whereas in [15] R is
fixed at 95%. Spectral Rolloff is shown in figure 3.3.
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Figure 3.3: Spectral Rolloff for two songs with value R = 85%

Spectral Flatness

Spectral Flatness gives a measure of how much an audio signal is noisy,
estimating the similarity between the magnitude spectrum of the signal frame
and the flat shape inside a predefined frequency band. It is computed as:

FSF =

K

√

∏K−1

k=0
Sl(k)

∑K
k=1

Sl(k)
, (3.5)

where Sl(k) is the Magnitude Spectrum at the l − th frame and the k − th

frequency bin, K is the total number of frequency bins. A representation for
two songs is shown in figure 3.4.

Spectral Contrast

Spectral Contrast captures the relative distributions of the harmonic and
non-harmonic components in the spectrum. They have been introduced in
order to compensate the disadvantage of spectral information reducing. It is
defined as spectral peak, spectral valley, and their dynamics separated into
different frequency sub-bands.



3.1. Music Information Retrieval 23

60 65 70 75 80 85 90
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Spectral flatness, 190.mp3

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

(a) Disturbed - "Down with the Sickness"

60 65 70 75 80 85 90
0

0.05

0.1

0.15

0.2

0.25
Spectral flatness, 019.mp3

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

(b) Henya - "Orinoco Flow"

Figure 3.4: Spectral Flatness for two songs

Chroma features

Chroma features attempt to capture information about the musical notes
present in the audio from its spectrum. The log-magnitude spectrum is
mapped into a log-frequency scale, that corresponds to a linear scale for the
music temperate scale. Given the frequencies of each note in a twelve-tone
scale, regardless of the original octaves, a histogram of the notes is built.
The result of such processing is called chromagram. Each bin represents one
semitone in the chroma musical octave. A representation is shown in figure
3.5.
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Figure 3.5: Chromagram for two songs

Tempo

The tempo is a mid-level features that represents the speed of a given piece.
Tempo is specified in beats per minute (BPM), i.e., how many beats must be
played in a minute. Beat is defined as the temporal unit of a composition, as

indicated by the (real or imaginary) up and down movements of a conductor’s

hand [16].



24 Chapter 3. Theoretical Background

3.1.2 Regressor and machine learning algorithms

A learning machine is a system that deals with learning from data and pre-
dicting new data. Given (xi, yi), i ∈ {1, ..., N} a set of N pairs, where xi is
a 1×M feature vector and yi is the real value to predict, a regressor r(·) is
defined as the function that minimize the mean squared error (MSE) :

ǫ =
1

N

N
∑

i=1

(r(xi)− yi)
2. (3.6)

Features used for learning are called predictors. The set of pairs referred
to as training set [17]. Given a training set, a regressor is estimated by two
steps: the training phase and the test phase. In the training phase, the
training set is used to estimate a regression function. In the test phase, a
set of predictors with outcome available, called test set is used to estimate
the performances of the regressor by comparison of the correct outcome and
the output of the regressor. The block diagram of training and test phases
is shown in figure 3.6.

Figure 3.6: Block diagram of training and test phases for a supervised regression prob-

lem

In the following we will denote vectors with bold lowercase letters and
matrices with bold uppercase letters.

Multiple Linear Regression

Linear regression starts from the assumption that there exists a linear rela-
tionship between features and variables that must be predicted. Although
this is a rare assumption, this kind of regression exhibits good performances.
Multiple Linear Regression (MLR) is formalized as:

r(X) = Xβ + ξ, (3.7)
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where X = [x1, ...,xN ]T is the N ×M matrix of features, β is the M × 1

vector of coefficients and ξ is the N × 1 vector of error terms. In order to
minimize the MSE function between r(X) and y, where y is the expected
output value, the least square estimator has the form:

β = (XTX)−1XTy. (3.8)

The estimate value for a new 1×M feature vector x̂ is estimated as:

r(x̂) = x̂β. (3.9)

MLR is strictly dependent on the assumption that errors in the observed
responses are normally distributed. A robust version has been developed to
make MLR reliable in case errors are prone to outliers. The robust MLR
method we used in our work is based on an iterative computation of weights
of the regression function. Weights are assigned to each observation depend-
ing on their distance from the prediction. Assigning low weights to high
distances leads to a lower regard to outliers.

3.1.3 Music Emotion Recognition

Music has always been connected to emotions. In fact, composers used to
annotate mood markings on music sheets in addition to tempo indications
(e.g., in a loving manner1). This is a great help to provide the music play-
ers additional information on the execution. The emotional description is
one of the most intuitive for music. Indeed, as discussed in chapter 2, it is
one of the most used in applications. Music Emotion Recognition (MER)
is the field in MIR that studies the relationship between music and emo-
tions. As mentioned before, two approaches are available for HLFs: the
categorical and the dimensional. The former describes music with features
that have a binary value, depending on whether a certain feature describes
a song. The latter identifies how much a feature describes a song. In this
study we focus only on dimensional approach. A dimensional approach for
emotional-related descriptors involves the mapping of feelings and songs in
a 2-dimensional plane, called Valence-Arousal (VA) plane. The Valence in-
dicates how much the feeling is positive or negative, whereas the Arousal
quantifies the energy of an emotion[1]. Mapping songs in the VA plane gives
an immediate feedback about their emotional content. An approximated
mapping of a few moods is shown in figure 3.7.

1amorevole. Music Dictionary, Virginia Tech,

http://www.music.vt.edu/musicdictionary/texta/amorevole.html
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Figure 3.7: The 2D valence-arousal emotion plane, with some moods approximately

mapped [1]

In [18] the authors mapped 2476 affective words in the Valence - Arousal
- Dominance space. Most part of the semantic emotional-related description
is based on their work.

3.2 Bayesian Decision Theory

A classifier is a learning machine that attempts to estimate from predictors
a value in a discrete range of possible values [17]. Bayesian decision theory
is a statistical approach for the problem of classification. It starts from the
assumptions that the decision problem is posed in probabilistic terms and the
probability values needed for classification are known. The Bayesian decision
theory[19] explains how to use such probabilities to build a classifier.

3.2.1 Prior probability

Given an object s to be classified in one category si with i ∈ [1, N ], the a

priori probability P (sj) is the probability that the object is sj. If no further
information was available, a logical decision rule for classification is:

classify s as sk if P (sk) = maxi(P (si)). (3.10)
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Given a further information q depending on the state of s, the class con-

ditional probability density function p(q|si) is the probability2 that q has a
certain value given an object known as si.

Given q and s, the posterior probability P (si|q) is the probability that s
is classified as si given the value q.

The joint probability density p(q, sj) is the probability that an object is sj
and has a certain value q, and it can be written as p(q, sj) = p(q|sj)P (sj) =

p(sj|q)P (q). Rearranging these leads to the Bayes formula:

P (sj |q) =
p(q|sj)P (sj)

P (q)
(3.11)

where P (q) can be found as:

P (q) =
N
∑

k=1

p(sk)P (q|sk) (3.12)

Bayes formula states that posterior probability is computable as the prior
probability times the class-conditional density function. The class-conditional
density function p(q|sj) is the likelihood of sj with respect to q. The factor in
the denominator is a scale factor that ensures that all posterior probabilities
sum to one. The Bayes decision rule for classification states:

classify s as sj if P (sj |q) = max(P (si|q)) with i ∈ [1, ..., N ]

(3.13)

3.2.2 Modeling the Likelihood function

Given a set of information q = [q1, q2, ...qm]T , we introduce a set of dis-
criminant functions gi(q) with i ∈ [1, N ] such that the classification rule
becomes:

classify s as sj if gj(q) = max(gi(q)). (3.14)

The discriminant function can be the posterior probability or some other
measure dependent on the posterior probability such as:

gi(q) = p(q|si)P (si), (3.15)

gi(q) = ln(p(q|si)) + ln(P (si)). (3.16)

2We will use an uppercase P (·) to denote a probability mass function and a lowercase

p(·) to denote a probability density function.
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The conditional densities and prior probabilities are usually modeled as
Gaussian densities or multivariate normal densities. A general multivariate
normal density in d dimensions is written as:

p(x) =
1

(2π)d/2|Σ|1/2
exp[−

1

2
(x− µ)TΣ−1(x− µ)], (3.17)

where x is a d-component column vector, µ is the d-component mean vector,
Σ is the d-by-d covariance matrix and |Σ| and Σ−1 its determinant and its
inverse. We can model the conditional densities and prior probabilities as
multivariate normal densities:

p(q) =
1

(2π)d/2|Σ|1/2
exp[−

1

2
(x− µq)

TΣ−1(x− µq)], (3.18)

P (si) =
1

(2π)d/2|Σi|1/2
exp[−

1

2
(x− µi)

TΣi
−1(q− µ)]. (3.19)

With such modeling, the 3.16 becomes:

gi(q) = −
1

2
(x− µi)

TΣi
−1(q− µ)−

d

2
ln(2π)−

1

2
ln|Σi|+ lnP (si). (3.20)

3.3 Natural Language Processing

The discipline of Natural Language Processing (NLP) deals with the design

and implementation of computational machinery that communicates with hu-

mans using natural language [20, Preface]. NLP includes a wide variety of
researched tasks, such as automatic summarization, discourse analysis, nat-
ural language generation, question answering. In this section we will fo-
cus on parsing, i.e., determining the grammar analysis of a given sentence.
We will first introduce the Part-of-Speech tagging and the Context Free
Grammars[21]. We will then review the Probabilistic Context-Free Gram-
mars and probabilistic sentence parsing [22].

3.3.1 Part-of-Speech tagging

Part-of-speech (POS) is a linguistic category of words, that is generally de-
fined by its grammar role in a sentence. POS’s major categories are verbs
and nouns. POS can be divided into two supercategories: closed class types
and open class types. The former include those categories whose members’
amount can unlikely increase, like prepositions. The latter include categories
like nouns or verbs, where new words often occur. Part-of-speech tagging is
the process of assigning part-of-speech categories to word in a corpus. POS
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tagging faces several issues, like disambiguation (is book a noun or a verb?)
and open class terms that may be unknown by the tagger. POS tagging
can employ two main approaches: rule-based and stochastic. Rule-based ap-
proach involve using disambiguation rules to infer the POS tag for a term.
Stochastic approach computes probabilities:

P (word|tag)× P (tag|previous n tags) (3.21)

to classify a term with a certain tag. POS’s rules and probabilities are com-
puted or inferred from previously annotated sentence corpus. POS tagging
is useful in order to analyze the grammar of a sentence and its meaning. In
order to represent a sentence, some kind of organization of POS is needed.

3.3.2 Context-Free Grammar

Figure 3.8: An example

of parse tree representation

of a Context-Free grammar

derivation.

A group of words may behave as a single unit or
phrase, called a constituent. For example, a noun

phrase is a group of words linked to a single noun.
A context-free grammar (CFG) consists of a set of
rules, each of which expresses the ways that sym-
bols of the language can be grouped and ordered
together, and a lexicon of words and symbols. For
example, a noun phrase (NP) can be defined as:

NP → Det Nominal. (3.22)

Nominal can be defined as:

Nominal → Noun|Noun Nominal, (3.23)

i.e., a nominal can be one or more nouns. Det and
Noun can be defined as well as:

Det→ a; (3.24)

Det→ the; (3.25)

Noun→ flight. (3.26)

The symbols that are used in a CFG are called terminal if they corresponds
to words (like the or flight) and non-terminal if they express clusters. We
say that a terminal or non-terminal symbol is derived by a non-terminal
symbol if it belongs to its group. A set of derivation in a CFG is commonly
represented by a parse tree, where the root is called start symbol (see figure
3.8). A CFG is defined by four parameters:
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1. a set of non-terminal symbols N

2. a set of terminal symbols Σ

3. a set of productions P of the form A→ α where A is nonterminal and
α ∈ N ∪ Σ

4. a start symbol S

The CFG is suitable to parse a sentence, i.e., to represent a sentence
as a parse tree that groups the constituents and explains the underlying
grammar and words’ POS tags. A parse tree can be generated by means of
a Probabilistic Context-Free Grammar.

3.3.3 Probabilistic Context-Free Grammar

A Probabilistic Context-Free Grammar (PCFG) is a probabilist model that
builds a tree from a sentence using probabilities to choose among possible
structures. It is formalized as a CFG where probabilities are considered in
productions:

1. a set of non-terminal symbols N

2. a set of terminal symbols Σ

3. a set of productions P of the form A→ β[p] where p is the probability
that A will be expanded to β

4. a start symbol S

Such grammar can be used to parse sentences of language. Probabilities
of expansions are inferred by means of machine learning techniques on previ-
ously annotated sentences. PCFGs have been proofed to be a robust model,
because implausible expansions have low probability. They also give a good
probabilistic language model for English. In the example in figure 3.9 we
show two probabilistic parse trees for the sentence astronomers saw stars

with ears. The values on the nodes refer to the probabilities for that node
to be derived from his father. We can see the starting point probability is
equal to 1. We can compute the parse tree probabilities as:

P (t1) = 1.0× 0.1× 0.7 × 1.0× 0.4× 0.18 × 1.0× 1.0 × 0.18

= 0.0009072

P (t2) = 1.0× 0.1× 0.3 × 0.7× 1.0× 0.18 × 1.0× 1.0 × 0.18

= 0.0006804

(3.27)

The most probable parsing, and the one correct, is t1.
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(a) The parse tree t1 and its probabilities.

(b) The parse tree t2 and its probabilities.

Figure 3.9: Two parse trees for the sentence astronomers saw stars with ears.
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Chapter 4

Implementation of the system

In this chapter we will describe the architecture of the system. The general
scheme of the system is shown in figure 4.1. The system is composed by
four main elements: i) a semantic model of songs; ii) a semantic model ofs
concepts; iii) the computational core; iv) the visualization module.

Figure 4.1: Block diagram for the general system descripted.

For each song, two semantic models are derived by its music content. The
first model refers to emotional-related description of the song, whereas the
second refers to non emotional-related description.

A similar formalization is also used for concepts. A word is modeled either
emotionally or non-emotionally, depending on its meaning.

Given the system is based on free-text query, the computational core
parses the query to capture the key-words that are relevant for the research.
The query can express: semantic emotional-related description; semantic
non emotional-related description or song similarity. Semantic descriptions
are mapped in the emotional- and non emotional-related concepts model.
The song similarity is computed as similarity among songs’ semantic mod-
els. This kind of research is defined query by semantic example (QBSE[23])

33
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since it considers similarity among semantic descriptions of the songs. The
computational core uses the mapping to compute similarity scores that rep-
resent how much a song match the query. In this chapter we will refer to the
computational core as Janas.

The visualization module shows the results of computational core.

4.1 Music content semantic modeling

The system we propose deals with semantic text-based query based on emotional-
and non emotional-related description. We used the data set proposed in [24],
called MsLite. This data set is only annotated for ED, for this reason we
ran a survey to annotate it for NEDs. From the survey we collected NED
annotations only for a part of the data set. Because of this, we implemented
an automatic annotation system in order to annotate the non-annotated
songs. The NED conceptualization modeling system is based on regression
functions explained in Chapter 3.

Figure 4.2: Block diagram for a regressor problem.

The general scheme for a regression procedure is shown in figure 4.2. For
the purpose of regressors’ training, we built a training set. The training set
was composed by LLFs extracted from the audio excerpts (as mentioned in
chapter 3) as predictors and subjective annotations as outcome variables.
We trained two regressors, a Linear Regressor and its Robust version. Since
it exhibited the best performances in the training set, we use the Linear
Regressor to predict non-emotional HLFs value for those excerpts that had
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not been annotated. We modeled the non-emotional music content as nor-
mal distributions, that are defined by the mean and the standard deviations.
For annotated excerpts we used the means and the standard deviations of
annotations, whereas for non annotated excerpts we used predicted values as
means and root mean square errors as standard deviations. The root mean
square errors for the two regressors are listed in table 5.2. The whole proce-
dure of annotation and machine learning prediction is presented in chapter
5. The block diagram for the music content semantic modeling is depicted
in figure 4.3. Each song is modeled, from its content, by a emotional-related
model, we named VA, and by a non emotional-related model, we named EQ.

Figure 4.3: The block diagram with detail view of Song Semantic Model.

4.1.1 Emotional Descriptors

Emotions can be mapped in the 2-dimensional Valence-Arousal plane, whose
axis are Valence (negative-positive) and Arousal (low-high energy). Songs
are annotated in a 9-point scale from 1 to 9. For Valence, 1 is related to
a very negative sensation and 9 to a very positive sensation, whereas for
Arousal 1 is related to a sensation with no energy and 9 to an extremely
energic sensation. The annotation provided in the MsLite depends on people
musical tastes and personal perception. Given a set of Ki annotations from
testers {(v1,i, a1,i), ..., (vKi,i, aKi,i)} for a song Si, where i = 1, ..., N is the
index of the song and N is the amount of songs in the data set, we obtained
the mean µiVA and standard deviations σiVA of annotation as:

µiVA =

[

µiV
µiA

]

=

[

1

Ki

∑Ki

k=1
vk,i

1

Ki

∑Ki

k=1
ak,i

]

,

σiVA =

[

σiV
σiA

]

=





2

√

1

Ki−1

∑Ki

k=1
(vk,i − µiV )

2

2

√

1

Ki−1

∑Ki

k=1
(ak,i − µiA)

2



 .

(4.1)
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We modeled the songs in the database as normal distributions in the Valence
Arousal plane:

Si
V A(nVA) ∼ N (µiVA,Σ

i
VA), (4.2)

where N (·) denotes a normal distribution,

Σi
VA = diag(σiV A) =

[

σiV 0

0 σiA

]

(4.3)

is the covariance matrix and nVA = [nV , nA]
T represents a point in the

Valence-Arousal plane. The emotional-related semantic distribution of the
song is normalized as:

∫

9

1

∫

9

1

Si
V A(nV , nA)dv da = 1, (4.4)

in order the songs have the same probability. In figure 4.4 we show a repre-
sentation of two songs modeled as the normal distribution. In the following
we will refer to the emotional-related semantic model of a song as the song’s
VA.

(a) Valence-Arousal representation for

"Down with the sickness" by Disturbed.

(b) Valence-Arousal representation for

"Orinoco Flow" by Henya.

Figure 4.4: Valence-Arousal representation for two songs in the MsLite data set

4.1.2 Non-Emotional Descriptors

Emotional features cannot describe music exhaustively. Indeed, non emotional-
related features define a wide range of music qualities and, together with ED,
may provide a more complete description. In [2] the authors proposed 27 se-
mantic descriptors divided in affective/emotive, structural, kinaesthetic and
judgement. For our study we have chosen to model a subset of their entire
set of concepts. Specifically, we chose to model all the structural and one
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judgement bipolar descriptors and one kinaesthetic descriptor, as shown in
table 4.1.

In [2] the authors define the gesture descriptor as:

some aspect that makes a person start to move spontaneously.

A similar definition is in [25], referred to the term grooviness:

a groove starts up and people stop whatever they are doing and

begin to pay attention to the music; they either put their bodies in

motion or adapt ongoing motion to follow the pull of the groove

In [25], the author discusses the concept of grooviness. He attempts to
find a clear definition for this descriptor, whereas in musicologist literature
as among musicians no formal definition is provided1. The capability of
making people move is an important factor while choosing music, hence we
considered grooviness descriptor in our NEDs’ set in substitution of gesture.

Semantic Descriptors

Structural Kinaesthetic
Soft/hard Gesture
Clear/dull
Rough/harmonious Judgement
Void/compact Easy/Difficult
Flowing/stuttering
Dynamic/static

Table 4.1: List of high-level semantic descriptors chosen from the annotation experiment

in [2]

The tempo indicates the speed of a song and it can affect general definition
of a music piece. We have chosen to insert the tempo descriptors in the NEDs’
set. We indicated the tempo in beats-per-minute (BPM). For the tempo
evaluation we used a VAMP plugin for the Sonic Annotator2 that is based
on [26]. In [26] the authors define a beat tracker using a two state model.
The first state performs tempo induction and tracks tempo changes, while
the second maintains contextual continuity within a single tempo hypothesis.
This is similar to the human tapping process. We manually corrected wrong-
estimated tempi. Since we model songs as normal distributions, we needed

1The usual definition seems to be You know it when you hear it
2Sonic Annotator, Queen Mary University, http://www.omras2.org/sonicannotator
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standard deviations. We computed standard deviation of a song’s tempo as
an amount of tempo:

σiEQBPM
= 0.125µiEQBPM

, (4.5)

where µiEQBPM
is the computed tempo for the song Si and σiEQBPM

is the
computed standard deviation. We have experimentally chosen 0.125 as the
amount of tempo. The complete list of descriptors and their range of values
can be found in table 4.2.

High-level descriptors

soft - hard (soft) 1 - 9 (hard)
dull - clear (clear) 1 - 9 (dull)

harmonic - rough (harmonic) 1 - 9 (rough)
void - compact (void) 1 - 9 (compact)
static - dynamic (static) 1 - 9 (dynamic)

flowing - stuttering (flowing) 1 - 9 (stuttering)
easy - difficult (easy) 1 - 9 (difficult)

grooviness (not groovy) 1 - 9 (completely groovy)

Mid-level descriptors

tempo (BPM) 30-250

Table 4.2: List of NEDs in this work

We computed means and standard deviations for the NEDs and we mod-
eled the songs in the data set as normal distributions in 1-dimensional spaces,
similarly to the adopted song model in the Valence-Arousal plane:

Si
EQd

(nd) ∼ N (µiEQd
, σiEQd

) (4.6)

Where nd is a point in the mono dimensional space, d ∈ D is the index of
the descriptor and D = {hard, clear, rough, comp, dyn, stutt, diff, groovy,

BPM} is the set of NEDs. We represented the NEDs as nine juxtaposed
bars, one for each descriptor. We called this representation semantic equal-

izer. Each descriptor represents a slider that semantically equalizes the song
(see figure 4.5). We define the whole non emotional-related semantic model
for the song Si as the set:

Si
EQ = {Si

EQd
(nd)} with d ∈ D. (4.7)

In figure 4.5 we show a representation of two songs modeled in the normal
distribution. In the following we will refer to the non emotional-related
model of a song as the song’s EQ.
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(a) Semantic Equalizer representation for

"Down with the sickness" by Disturbed.

(b) Semantic Equalizer representation for

"Orinoco Flow" by Henya.

Figure 4.5: Semantic Equalizer representation for two songs in the MsLite data set

In table 4.3 we review the notation for the music content semantic models.
Notice that given a song Si, Si

V A(nVA) is the model for the song’s VA,
whereas Si

EQ is a set of models for each dimension in song’s EQ.

4.2 Concept modeling

We modeled the songs in a semantic space. In order to retrieve them by
means of semantic emotional- and non emotional-related descriptors, con-
cepts need to be modeled in a similar semantic space. The block diagram for
concept model is shown in figure 4.6. As we can see, the scheme for concept
modeling is the dual of song modeling in 4.3.

Figure 4.6: System block diagram with detail view for Concept Modeling.
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Symbol Description

nVA [nV , nA]
T point in the Valence-Arousal plane

Si
V A(nVA) ∼ N (µiVA,Σ

i
VA) Model of Si in the VA plane

µiVA [µiV , µ
i
A]

T Mean of the distribution of Si in the
VA plane

Σi
VA diag(σiVA) Covariance matrix for distribution of

Si in the VA plane

σiVA [σiV , σ
i
A]

T Standard deviation of annotations for
Si in the VA plane

nd point in the semantic equalizer along
the d− th space

d index of descriptors with d ∈ D

D EQ dimensions set. D = {hard,

clear, rough, comp, dyn, stutt, diff,

groovy, BPM}

Si
EQ {Si

EQd
}∀d ∈ D Set of models of Si in EQ dimensions

Si
EQd

(nd) N (µiEQd
, σiEQd

) Model of Si in the EQ d−th dimension

µiEQd
Mean of the distribution of Si in the
EQ d− th dimension

σiEQd
Standard deviation of the model of Si

in the EQ d− th dimension

Table 4.3: Notation used for song semantic models

4.2.1 The emotional-related semantic model

Feelings and emotions can be mapped in the VA plane as well as songs. In
[18] the authors introduce a set of affective norms for English words and build
a data set called ANEW. The authors collect a set of emotional-related words
manually tagged by human annotators and computed means and standard
deviations for Valence, Arousal and Dominance. The amount of words in
ANEW is too sparse for the purposes of our work, since it includes general
words such as song. Wordnet3 is a lexical database of English language. En-
glish words are grouped into sets of nouns, verbs, adjectives and adverbs and
interlinked by means of conceptual-semantic and lexical relations. In [27] the
authors manually selected affective words from Wordnet, version 1.6, creat-
ing the Wordnet-affect database. We chose to model only the affective words
that are present in both ANEW and Wordnet databases. The emotional-

3Princeton University "About WordNet." WordNet. Princeton University. 2010.

http://wordnet.princeton.edu
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related semantic model is the dual of the emotional-related song model in
4.1.1. For a word Ww with w index of the word w = {happy, sad, angry, ...}:

Ww
V A(nVA) ∼ N (µwVA,Σ

w
VA) (4.8)

where µwVA = [µwV , µ
w
A]

T are the values of Valence and Arousal from the
ANEW dataset, Σw

VA = diag(σwVA) = diag([σwV , σ
w
A ]

T ) is the covariance
matrix. The distribution is normalized as:

∫

9

1

∫

9

1

Ww
V A(nV , nA)dvda = 1. (4.9)

in order the words to have the same probability.

4.2.2 The non emotional-related semantic model

For the semantic EDs’ modeling, we used large existent data set Wordnet
Affect and ANEW. The research studies about NEDs have not been so deeply
developed and we could not rely on previous researches or data set. Filling
the gap between emotional- and non emotional-related semantic descriptors
is beyond the purposes of this work. We modeled only the bipolar concepts
defined for each concept-dimension chosen. We modeled the bipolar non-
affective words in a linear manner, assigning the maximum (1) and minimum
(−1) probability values to the bounds of the dimension. For example, the
words soft and hard are modeled as:

W soft
EQhard

(nhard) =
5

4
−

2

8
nhard

W hard
EQhard

(nhard) =
2

8
nhard −

5

4

(4.10)

where W soft
EQhard

indicates the distribution of the word soft along the hard-
dimension indicated by the variable nhard. Values of the word soft range
from 1 (at 1: completely soft) to -1 (at 9: completely hard) and vice versa.
A representation of this modeling is shown in figure 4.7.

On the other side, tempo has been accurately descripted in the latest
centuries. Composers use to indicate tempo to executors by means of many
kind of markings. The tempo markings are not directly related to a certain
BPM. Moreover, tempo markings vary during the centuries. In [28] the
authors build a model for emotional responses to rhythm features. They
introduce a table (shown in table 4.4) with Italian tempo markings and the
correspondent ranges of BPM. We chose these correspondences for the tempo
semantic model.
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Figure 4.7: Concept modeling for words "hard" (in red) and "soft" (in green) on the

hard-dimension.

Tempo Markings BPM

Adagio 66-76
Andante 76-108
Moderato 108-120
Allegro 120-168
Presto 168-200

Table 4.4: Tempo markings and correspondent ranges of BPM

We modeled the tempo markings partially as normal distributions and
partially as uniform distributions. We selected the standard deviation as:

σwEQBPM
= 0.25 ∗ (BPMw,R −BPMw,L) (4.11)

Where BPMw,R and BPMw,L are the right and the left bounds for the BPM
range of the word Ww, with w = {adagio, andante, moderato, allegro,
presto}. The modeling is formalized as:

Ww
EQBPM

(nBPM )











∼ N (BPMw,L, σ
w
EQBPM

) if nBPM ≤ BPMw,L

= 1 if nBPM ∈ (BPMw,L, BPMw,R)

∼ N (BPMw,R, σ
w
EQBPM

) if nBPM ≥ BPMw,R

(4.12)
The normal distributions are normalized such that

Ww
EQBPM

(BPMw,L) =Ww
EQBPM

(BPMw,R) = 1 (4.13)

in order to keep the distribution continuous. A representation of this model-
ing is shown in figure 4.8. From this figure, we can see that the tempo mark-
ing models have a uniform distribution in the middle (between the bounds)
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and an exponential decrease outside the bounds, with standard deviation
related with the width of tempo marking’s range. We also add two bipo-
lar adjectives, fast and soft, and we modeled them as in 4.10, appropriately
rescaled for the BMP-dimension range of values.

Figure 4.8: Concept modeling for tempo markings words as listed in table 4.4. In the

x-axis there are BPM, in the y-axis the tempo markings modeled in the BPM mono

dimensional space.

The new notation we introduced is resumed in table 4.5.

4.3 The computational core

As mentioned above, the system we propose deals with natural language se-
mantic queries. The user can search songs by emotional-related description,
non emotional-related description and by semantic example, referring to one
or several songs. Once the query has been modeled, songs are ranked on its
similarity to the query request content. The computational core is composed
by two main modules: the first interpret the query and model it, the second
compute scores from similarity between query and songs models. The block
diagram of computational core is shown in figure 4.9.

4.4 The query model

At first, the query is parsed in order to retrieve titles and authors of songs,
if any. If all the songs have been correctly specified or if no songs has been
inserted, the query is processed by a semantic parser. If the songs are not well
specified, the system asks the user to refine the research among the songs. If
this is not the case, the query is parsed. The user is free to refine the research
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Symbol Description

Ww
V A(nVA) ∼ N (µwVA,Σ

w
VA) Model of Ww in the VA plane

µwVA [µwV , µ
w
A]

T Mean of the distribution of Ww in the
VA plane

Σw
VA diag(σwVA) Covariance matrix for distribution of

Ww in the VA plane

σwVA [σwV , σ
w
A]

T Standard deviation of annotations for
Ww in the VA plane

Ww
EQ {Ww

EQd
}∀d ∈ D Set of models of Ww in EQ dimensions

Ww
EQd

(nd) N (µwEQd
, σwEQd

) Model of Ww in the EQ d− th dimen-
sion, except for d = BPM

µwEQd
Mean of the distribution of Ww in the
EQ d− th dimension

σwEQd
Standard deviation of the model of
Ww in the EQ d − th dimension, ex-
cept for d = BPM

Table 4.5: Notation used for concept models

Figure 4.9: System block diagram with detail view of computational core.



4.4. The query model 45

specifying the songs or to start a new research. Since the query is not parsed
until all the songs are specified, not necessary computational-heavy parsing
is avoided. The specified songs’ VAs and EQs are built. The query is then
parsed through NLP, all the concepts are retrieved and words’ VAs and EQs
are built as well After the query modeling, three sets of concept words or
semantic song models are composed, one for song similarity ZS and two
for emotional- and non emotional-related description: ZV A,D and ZEQ,D,
and their respective models or set of models QS , QV A,D and QEQ,D. The
three sets ZS , ZV A,D and ZEQ,D collect the songs, the emotional- and the
non emotional-related descriptors that have been specified in the query. For
example, in the query I’d like a happy, joyful, dynamic and groovy song like

"Calling you" we will have:

ZS = {Si} with Si is "Calling you ;

ZV A,D = {W happy,W joyful};

ZEQ,D = {W groovy,W dynamic}.

(4.14)

QS , QV A,D and QEQ,D represent the results of mixing the models of the
elements in ZS, ZV A,D and ZEQ,D into query’s VAs and EQs. The block
diagram is shown in figure 4.10.

Figure 4.10: System block diagram with detail view of Query Modeling module.

4.4.1 Query by semantic example

In the current version of the system, the titles of songs and their authors
must be written in quotation marks, the authors must be introduced by
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the key word by and placed after the song they refer to. Quotation marks
are needed to identify the chunks of the query that may be misinterpreted
by the natural language processing module. Once titles and authors have
been identified, two sets of songs are composed, one with song that perfectly
match a song title in the database, identified by C and one, referred to as
M, with titles that do not perfectly match. Songs do not match song title
in database due to a spelling mistake or if that particular song not present
in the database at all. If only the author is specified, songs by the author
are inserted in M. If M 6= {0}, the user is asked to specify which songs
the retrieved songs must be similar to. The similarity metric we used is the
Jaccard similarity[29]:

J(ti, qk) =
ti ∧ qk

ti ∨ qk
(4.15)

where ti is the title of the song Si and qk is the title asked by the user.
Perfect matching is given by unique similarity value equal to 1, uncertainty
is given by similarity value higher than the thresholds 0.2 (for songs and
authors) and 0.8 (for authors only). Once all songs Si specified in the query
have been correctly defined, the are inserted in the set ZS. A flux diagram
of the procedure is shown in figure 4.11.

4.4.2 The natural language semantic parser

We used the Stanford parser[30] to parse the query in a semantic tree. The
Stanford parser is based on PCFG. The parsing has two main reasons: cap-
ture the words’ grammar roles in the sentence and the dependencies among
words. Through scanning the role of nodes, only adjectives, -ing verb and
foreign words are considered and inserted in a list of word candidates. The
dependencies motivation will be discussed in 4.4.5.

4.4.3 Query by semantic non emotional-related description

Word candidates are searched in the non emotional-related semantic database.
Words found in non emotional-related semantic database are deleted from
the word candidates and inserted in ZEQ,D for successive EQ modeling.

4.4.4 Query by semantic emotional description

Word candidates are searched in emotional-related semantic database. If a
word is found, it is inserted in ZV A,D. If the word is not in the database,
the system generates a list of synonyms of the word and attempts to use
them instead. If a synonym is present in the database, it is inserted in
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Figure 4.11: Flux diagram for songs retrieval in semantic example description.
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ZV A,D. The generation of synonyms is made by the Natural Language
Toolkit (NLTK)[31], a set of tools for natural language processing that relies
on the Wordnet dataset.

4.4.5 The role of qualifiers

In the natural language, people usually add qualifiers to the adjectives to
specify the intensity they mean. A song can be defined as completely happy,
partly happy, not happy at all, etc. Although all these definitions contain the
word happy, they represent different concepts. The system we propose deals
with qualifiers by means of the semantic natural language parsing. Once a
word Ww is found to be relevant, the semantic tree is scanned to retrieve its
siblings and their children, as written in the sentence. We observed that this
approach is suitable to capture qualifiers, if any. The result of the semantic
tree scansion for Ww is the qualifier ψw.

In [3] the authors discuss about verbal qualifiers for rating scales. They
provide a table of values for intensity qualifiers in a 11-point scale, from 0 to
10. We considered only the mean values. The table with verbal labels and
correspondent mean values is presented in table 4.6

Verbal label Mean Value Verbal label Mean Value

a little 2.5 moderately 5.0
average 4.8 not 0.4

completely 9.8 not at all 0.0
considerably 7.6 partly 3.5
extremely 9.6 quite 5.9

fairly 5.3 quite a bit 6.5
fully 9.4 rather 5.8

hardly 1.5 slightly 2.5
highly 8.6 somewhat 4.5

in-between 4.8 very 7.9
mainly 6.8 very much 8.7
medium 4.9

Table 4.6: Verbal labels and correspondent mean values from [3]

We splitted the 11-point scale in four zones, depending on the meaning of
the underlying qualifiers:

0-2.5 negative : the qualifier indicates an opposite meaning with respect
to the adjective’s one;
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2.5-5 far from positive : the qualifier indicates a meaning that is near to
the adjective’s one;

5-7.5 less than positive : the qualifier indicates a concept less intense
than the adjective’s one;

7.5.10 more than positive : the qualifier indicates a concept with more
intense than the adjective’s one.

Each of the four areas have a different modeling for each of the descriptions.
If no qualifier is retrieved, the concept model is not modified. In the following
we will use ψw both as the semantic qualifier for the word Ww and for
its value in the likert scale. The context in which we will use will avoid
ambiguities.

In addition we modeled the qualifiers more and less for the non emotional-
related description. In order to recognize the more qualifier, a scanning of
-er adjectives is performed.

Qualifier on non emotional-related description

EQ words are modeled as following, depending on the value of the qualifier:

0-2.5 : the word is flipped upside-down and behaves as its opposite with a
qualifier value of 10 − ψw where ψw is the actual qualifier value. For
example: not stuttering corresponds to extremely flowing ;

2.5-7.5 : the word is identified by a triangle centered in ψw, with side 4 and
maximum 1;

7.5-10 : the linear function of equation 4.10 is elevated to a power linearly
dependent on ψw in order to assign more importance to higher value.

In case of more or less qualifiers, the system checks if any query by se-
mantic example has been specified, i.e., if ZS 6= {0}. In this case, QEQ,D is
modeled as:

∀d ∈ D : ψw = "more" ∧Ww
EQ,d ∈ ZEQ,D,∀S

i ∈ ZS ⇒

QEQd,D(nd) =

{

QEQd,D(nd) if nd ≤ µiEQd

QEQd,D(nd) + 1 if nd > µiEQd

(4.16)

and

∀d ∈ D : ψw = "less" ∧Ww
EQ,d ∈ ZEQ,D,∀S

i ∈ QS ⇒

QEQd,D(nd) =

{

QEQd,D(nd) + 1 if nd < µiEQd

QEQd,D(nd) if nd ≥ µiEQd
.

(4.17)
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Qualifier on emotional-related description

The Valence-Arousal words mapping does not allow an approach like the
one discussed for non emotional-related description. There is no happy-
dimension to move along. Two approaches are possible:

1. for all the words, draw a line that starts from its opposite meaning
word and ends to a superlative of the word. E.g.: for happy, draw a
line that goes from sad (for not happy at all) to joyful (for completely

happy);

2. tune the standard deviation of the word’s distribution in order to assign
a higher or lower importance to the points around its mean.

The first approach needs a semantic study that is beyond the purpose of this
work. We use the second approach as follows:

0-2.5 : the VA map of the word is flipped upside-down and left-to-right
to obtain the opposite meaning of the word. The standard deviation
reduction is linearly proportional to the value of ψw;

2.5-5 : The word’s distribution is subtracted from a normal distribution
with the same mean but double standard deviation. This generates
a ring around the word’s original distribution, that is scaled linearly
proportionally to ψw;

5-7.5 : the standard deviation enlargement is linearly inverse-proportional
to the value of ψw;

7.5.10 : the standard deviation shrinking is linearly proportional to the
value of ψw.

4.4.6 From sets to query modeling

The final distributions for emotional-related sets are multiplied together:

QV A,D =
∏

Ww
VA

∈ZV A,D

W k
V A(nVA), (4.18)

QV A,S =
∏

Si∈ZS

Si
V A(nVA). (4.19)

The multiplication of normal distributions results in a normal distribution as
well, with mean and standard deviation dependent on means and standard
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deviations of starting distributions:

N (µi,Σi) · N (µj,Σj) ∝ N (µk,Σk)

withΣk = (Σi−1
+Σj−1

)−1

andµk = ΣkΣi−1
µi +ΣkΣj−1

µj.

(4.20)

We multiply words’ VAs in order to obtain a VA that is centered in-between
the components’ means of semantic emotional-related description and weighted
by the standard deviations, i.e., taking into account the effect of rescaling
by qualifiers.

The final distributions for non emotional-related sets are summed to-
gether:

QEQd,D = QEQd,D +
∑

Ww
EQd

∈ZEQd,D

W k
EQd

(nd), (4.21)

QEQd,S =
∑

Si∈Z,S

Si
EQd

(nd), (4.22)

∀d ∈ D. This is done because in non emotional-related description each
dimension d represents an independent concept and there is no need to obtain
in-between components.

The notation introduced in this chapter is reviewed in table 4.7.

4.5 The retrieval model

Once emotional, non-emotional related and song similarity queries have been
modeled, they are all combined together to generate the final query model.
Three similarities are computed: the songs’ similarity, the EQ similarity and
the VA similarity. A detailed view is shown in figure 4.12

We first introduce some notation. The EQ query models for non emotional-
related semantic description and song similarity are grouped in two sets:

QEQ,D = {QEQd,D} and (4.23)

QEQ,S = {QEQd,S}, (4.24)

∀d ∈ D. Queries sets and models for total song similarity and semantic
description are grouped together:

QD = {QEQ,D, QV A,D}; (4.25)

QS = {QEQ,S, QV A,S}; (4.26)

Q = {QS , QD}. (4.27)
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ZS Set of songs Si specified in query for song sim-
ilarity search

ZEQ,D Set of non emotional-related words Ww spec-
ified in query semantic description

ZV A,D Set of emotional-related words Ww specified
in query semantic description

ψw Semantic qualifier assigned to the word Ww

QEQd,D(nd) Query model for semantic non emotional-
related description

QEQd,S(nd) Query model for non emotional-related song
similarity

QV A,D(nVA) Query model for semantic emotional-related
description

QV A,S(nVA) Query model for emotional-related song simi-
larity

M List of songs candidates for query by semantic
example that do not perfectly match titles in
database

C List of songs candidates for query by seman-
tic example that perfectly match titles in
database

Table 4.7: Notation used for query models
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Figure 4.12: System block diagram with detail view for Scores Computing module.

The queries are combined so that each dimension appears just once in the
final query:

QV A,S ∈ QS ⇐⇒ QV A,D /∈ QD;

QEQd,S ∈ QEQ,S ⇐⇒ QEQd,D /∈ QEQ,D,∀d ∈ D.
(4.28)

The songs’ similarity is computed for those factors that have not been spec-
ified in the semantic description. For example, for the query I’d like a song

like "Orinoco Flow", but happy and groovy, the songs’ similarity is not com-
puted in the VA plane and it is computed for all the dimensions of EQ except
for the grooviness; the emotional-related semantic similarity is computed for
happy and the non- emotional-related semantic similarity for groovy.

All the query distributions are normalized such that their maximum value
(i.e., maximum probability) is equal to one. For each song Si and for each
dimension, the system assigns a score ξi that is a direct computation of the
posterior probability times a unanimity factor for the song.

For semantic example emotional-related description of we have:

ξiV A,D = QV A,D(µ
i
VA)P (Si

V A), (4.29)

where P (Si
V A) is the a-priori probability of Si and it is directly proportional

with Si
V A(µ

i
VA). This scaling factor takes into consideration the annota-

tion unanimity around its mean. We scaled the a-priori probability so that
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P (Si
V A) ∈ [0.8, 1] in order for the unanimity factor to be distinctive (to

distinguish among equal posterior probabilities) but not discriminant (the
a-priori probability sidely affects the score). In the same manner we obtain:

ξiV A,S = QV A,S(µ
i
V A)P (S

i
V A); (4.30)

ξiEQd,D
= QEQd,D(µ

i
EQd

)P (Si
EQd

); (4.31)

ξiEQd,S
= QEQd,S(µ

i
EQd

)P (Si
EQd

); (4.32)

∀d ∈ D \ {BPM}. For d = BPM we chose P (Si
EQBPM

) = 1.
We combine these scores in order to obtain the partial scores:

ξiEQ,D = (
∏

d∈QEQ,D

ξiEQd,D
)

1

|QEQ,D| , (4.33)

ξiEQ,S = (
∏

d∈QEQ,S

ξiEQd,S
)

1

|QEQ,S | , (4.34)

where |QEQ,D| is the amount of descriptors for the non emotional-related
semantic description and |QEQ,S| is the amount of descriptors for the non
emotional-related song similarity, and

ξiS = (
∏

space∈QS

ξispace,S)
1

|QS | , (4.35)

where |QS | is the amount of types of descriptions for the song similarity.
The total score is finally computed as:

ξi = (ξiSξ
i
EQ,Dξ

i
V A,D)

1

|Q| , (4.36)

where |Q| is the amount of types of descriptions present in the query.
We chose to multiply scores in order to obtain the effect of a logical AND.

This ensures higher scores for full matching songs and lower scores for partial
matching. Moreover, since each subscore is less or equal to one, we use n−th
roots to avoid low scores for detailed queries. For example, if we have:

ξAV A = 0.6; ξAEQ = 0.7;

ξBV A = 0.4; ξBEQ = 0.9.
(4.37)

the song A matches better both semantic descriptions and in fact we obtain:

ξA = 0.64; ξB = 0.60. (4.38)

The notation for scores is shown in table 4.8.
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Symbol Description

QEQ,D {QEQd,D} Sets of query models for non
emotional-related semantic de-
scription

QEQ,S {QEQd,S} Sets of query models for non
emotional-related song similarity

QD {QEQ,D, QV A,D} Sets of query models for semantic de-
scription

QS {QEQ,S, QV A,S} Sets of query models for song similar-
ity

Q {QS , QD} Sets of query models

ξi Total score for song Si

ξiS Song similarity score for song Si

ξiEQd,D
Non emotional-related semantic de-
scription score for song Si in the d−th
EQ dimension

ξiEQd,S
Non emotional-related song similarity
score for song Si in the d− th EQ di-
mension

ξiEQ,D Non emotional-related semantic de-
scription score for song Si

ξiEQ,S Non emotional-related song similarity
score for song Si

ξiV A,D Emotional-related semantic descrip-
tion score for song Si

ξiV A,S Emotional-related song similarity
score for song Si

Table 4.8: Notation used for scores
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4.6 The Visualization module

Once the total scores are computed, they are sorted in a reversed-order list
and presented to the user. The technology used for client-server commu-
nication in this prototype is CGI[32] based on Python code. The webpage
presentation is managed via HTML and CSS. We implement two visualiza-
tion: ranking list and playlist. In figure 4.13 the homepage of the system is
presented. The block diagram detail is shown in figure 4.14

Figure 4.13: The homepage for research.

Figure 4.14: Block diagram with detailed view of the visualization module.

4.6.1 Ranking List Visualization

The songs are presented as the results of a web search. A threshold is imposed
on scores to be presented: we chose 0.3 for queries without song similarity
description and 0 otherwise. Each record of the ranking list displays the
title, the artist, the album and the number of the track in the album. A bar
is also displayed, filled proportionally to the score of the song. In addition,
song’s VA and EQ are shown. Ranking List Visualization is shown in figure
4.15
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Figure 4.15: An example of ranking list visualization.
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4.6.2 Playlist Visualization

If the text-based query contains the word playlist, the system presents the
playlist visualization. Only information about title and artist are displayed.
The fifteen songs with the highest scores are loaded in the playlist, regardless
of the thresholds. The songs are played sequentially; the user can skip among
tracks. Playlist Visualization is shown in figure 4.16

Figure 4.16: An example of playlist visualization.



Chapter 5

Experimental results

In this chapter we will analyze the performance results of the system. We
collected results through a questionnaire on paper. The questionnaire aimed
at collecting the subjective opinion of testers about a prototype of the sys-
tem. We will discuss the procedure we follow for collecting and processing
evaluation rates for building the data set. We will shortly describe our tester
sample. We will then analyze the evaluation results of the different parts of
the test. We will finally review some impressions left by the subjects.

5.1 The data set

In the first studies on MIR, entire songs were annotated by testers or given
as input to learning machines. In [1, chapter 2.1.3] the authors discussed
the importance of taking into consideration the time-varying relationships
between music and emotion. In [33] the authors focused on relationship
between music and time-varying non emotional-related macro-descriptors.
Nowadays the use of excerpts, either selected automatically [34] or manually
[2], is widely diffused. There are several data set available for MIR purposes,
like [35][36]. We selected the data set proposed in [24]. In [24] the authors
created an online game called Mood Swing. In this game, people challenge
friends or random users to tag songs in the Valence-Arousal plane. The
tagging is made during the execution of the song and second-by-second, to
annotate the the mood evolution variations. With this game, the authors
obtained 50,000 Valence-Arousal dynamic annotation for songs. The music
was obtained from a database of 8000 popular music tracks. A subset of
this data set composed by Valence-Arousal annotations for each second of
15-seconds excerpts for 240 songs has been shared online. This subset is
called MsLite. We expanded it by adding annotations for eight high-level

59
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non-emotional descriptors and one mid-level descriptor. The complete list
of descriptors and their range of values can be found in table 4.2.

We designed and implemented an online survey called Music Features

Ranking Survey in order to collect annotations for the semantic NEDs. The
survey was both in Italian and English. We used the most faithful translation
of the descriptors for the Italian version. We also added a short explanation
of descriptors to fill the translation gap. The technologies used were HTML,
CSS and PHP. Five excerpts were randomly chosen among the 240 songs
in MsLite data set. For each song, the users were asked to rate each of
the eight descriptor in a 9-point likert scale. The middle value 5 outlined
no prevalence in the bipolar descriptors. We also collected personal data
such as age, geographic area (among Africa, Asia, Europe, Middle East,
North America, Oceania, South America), mother tongue (English, Italian
or Other), the frequency of listening to music and some skills related to
music, such as the capability of playing an instrument. It was possible not
to insert personal data.

We made the survey available online from July 23rd to August 8th 2012.
In this period of time, 166 people completed the test. Among the 166 people
who finished the test, the younger tester was 14 years old, the eldest 64
years old. Almost one fifth of the annotator was 23 years old; 100 people,
the 60% of the population, were between 21 and 25 years old. 154 people
were in Europe; only the 0.6% of our population was not european. The
89% of the users chose Italian as their mother tongue, 3% chose English and
the remaining 8% declared another mother tongue. About the frequency and
attention of listening to music, the 63% declared to listen to music very often,
paying attention to it, the 30% listens to music quite often and only the 6%
of people declared they do not listen to music very often. The statistics
about skills are shown in chart on figure 5.1.

We collected all the rates for each couple excerpt-descriptor. We defined
ri,k the vector containing the rating given for the excerpt i and for the de-
scriptor k and |ri| the number of annotation received for each excerpt1. Since
we used a nine-point scale, we had ri,k ∈ [1, 9] ⊂ N. We were interested in
extracting the means and the stardard deviations of our sample data ri,k.
We first tried to identify outliers. The outliers detention was a substantial
problem. Most of the outlier detention algorithms are based on the evalua-
tion of the deviation of samples from a certain value, that is usually the mean,
the median or the mode [37]. The evaluation of the deviation is thresholded
to classify the sample as outliers or not. We chose the Modified Z-score [38]

1The number of annotation does not depend on the descriptor.
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Figure 5.1: Skills owned by our survey population

algorithm (MZscore) for outliers detention, adding another modification in
order for to make it more tailored to the problem. The Modified Z-score
algorithm detects the outliers computing the evaluation of deviation as:

Mi =
0.6475(̇xi − x̃)

MAD
(5.1)

where x̃ is the sample median and MAD = median{|xi − x̃|} is the Median
of Absolute Deviations. In [38] the authors suggested a threshold of 3.5. We
observed that the performance of this algorithm was good, except for some
specific cases. In the presence of a strong sample mode, any other value was
classified as an outlier, independently on its value. If we had, for example, the
rates [4, 4, 3, 4, 4, 7] both the rate 3 and 7 were classified as outliers, whereas
the former is a good rate and a natural consequence of human variance in
tastes and judgment and the latter is completely different from the mode.
We defined a range value Ri,k = max(ri,k)−min(ri,k) and we decided not to
apply the MZscore algorithm for sample data such that Ri,k ≤ 2. After we
applied the MZ score algorithm, we recovered false positive samples with the
following procedure. We defined r̃i,k the sample data ri,k after the outliers
detention and removal. We focused on:

i, k : |r̃i,k| < |ri| ∧ σ2
r̃i,k

= 0 (5.2)

i.e., on the annotations where MZscore algorithm detected and removes out-
liers and after removal all the sample data were equal. We defined a neigh-
borhood for each value in the nine point scale and we chose to re-insert in
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the sample data those outliers that were inside the neighborhood. Neighbor-
hoods have been arbitrary chosen. The neighborhood are referred in table
5.1.

1 : [1, 3] 2 : [1, 4] 3 : [1, 5]

4 : [2, 5] 5 : [4, 6] 6 : [5, 8]

7 : [5, 9] 8 : [6, 9] 9 : [7, 9]

Table 5.1: Rate neighborhood for false-positive outliers recover

Since the value 5 is the middle value that is able to split the bipolar
descriptors from one meaning to the other one, no neighborhood crosses the
5 except for the neighborhood of 5 itself.

To eliminate poorly annotated data, we discarded all the excerpts

si : ∃k ∈ [1, ...,K] such that |r̃i,k| < 3, (5.3)

i.e., that had not been rated at least three times for each descriptor. We
discarded annotations for 110 excerpts. We finally computed the means
µiEQk

and the standard deviations σiEQk
of r̃i,k in a similar manner than 4.1.

We used the 130 annotated excerpts to train a linear regressor and a
robust linear regressor and annotate the discarded 110 excerpts. The linear
regressor exhibited the best performance, hence we used it for the annotation.
We consider the root mean-square errors as the standard deviation of the
annotation. Performances are shown in table 5.2. The list of the songs in
MsLite data set is indicated in appendix A.

High-level descriptors LR RMSE ROB RMSE

soft - hard 1.2 1.24
dull - clear 1.34 1.45

harmonic - rough 1.35 1.43
void - compact 0.883 0.93
static - dynamic 1.1 1.17

flowing - stuttering 1.1 1.16
easy - difficult 1.28 1.35

grooviness 1.54 1.54

Table 5.2: Linear Regressor and Robust Linear Regressor Root Mean-Square Errors for

each non-emotional high-level descriptor.

Songs in MsLite data set are listed in appendix A.
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5.2 Test procedure

The questionnaire introduced the instructions about how to build a semantic
query and how to specify songs for query by sample example. We collected
information about how frequently the testers listen to music. Five predefined
queries were proposed to the subject. The subject was asked to rate the
obtained results in a 9-point likert scale from 1 (very bad) to 9 (very good).
Hence, the testers were asked to use the system and evaluate the general
performances of the system in a similar 9-point scale. The complete text of
the questionnaire can be read in appendix B.

During the test, subjects were left alone and no further explanation about
test procedures and queries typologies was provided by us until they ended
the evaluation. Each subject made one only test.

We collected 30 questionnaires. 54% of the subjects declared to listen to
music less than three hours a day, 36% of subjects have been classified as
expert since they listen to music more and 10% indicated they listen to music
for reasons related to their job. The lates will be referred to as professionist.
A pie chart of music listening habits distribution is shown in figure 5.2.

Figure 5.2: Music listening profiles in test population.

5.3 Predefined queries evaluation

Five predefined queries have been proposed to subjects. Subjects have been
asked to evaluate each of them with a rate between 1 and 9. A summary of
evaluations is listed in table 5.3.
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Query Mode Mean Std

I want a song very groovy and happy 7 7.1 1.2415

I want a song not happy at all, dull and flow-
ing

7 6.9667 1.3257

I want a playlist that sounds angry, fast and
rough

8 7.7667 1.04

I would like to listen to calm songs, like
"Orinoco Flow", flowing and slow

8 7.7333 1.0148

I want a playlist not angry, and not stuttering
and with a slow tempo

8 7.4333 1.3817

Table 5.3: Evaluation for the predefined queries

I want a song very groovy and happy

The histogram of evaluations for the query I want a song very groovy and

happy is shown in figure 5.3. The mode of the rates is 7 and it corresponds
to 50% of the total rates. 10% of the subjects rated the results of this query
less than 5 and the 86.67% rated it with a grade higher or equal than 6. The
mean of evaluations is 7.1, with a standard deviation of evaluation equal to
1.24. The mean of the rates assigned by professionists is 7.33, that is slightly
better than the general mean, due to the first good impression on the system.
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Figure 5.3: Histogram of evaluation rates for the query "I want a song very groovy and

happy".
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I want a song not happy at all, dull and flowing

The mean of the evaluations for the query I want a song not happy at all, dull

and flowing is 6.9667, with a standard deviation of evaluation equal to 1.32.
33% of the testers agree with the mode of 7, the 13.3% considered query
results to be poor (below or equal 5) whereas the 70% considered them good
(not lower than 7). The mean of rates assigned by professionist is 7.33, that
again is slightly better than the general mean. The histogram of evaluations
is shown in figure 5.4.
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Figure 5.4: Histogram of evaluation rates for the query "I want a song not happy at

all, dull and flowing".

I want a playlist that sounds angry, fast and rough

The mode of the rates for the query I want a playlist that sounds angry, fast

and rough is 8, according to 46% of the testers. Results for this query did not
receive any rate below the middle rate 5 and the 90% of subjects assigned
a rate higher or equal to 7. The mean of the evaluations is 7.7667, with a
standard deviation of evaluation equal to 1.04. The mean of rates assigned
by professionist is 7, that is worser than the general mean. They probably
expected something more characteristic. The histogram of evaluations is
shown in figure 5.5.
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Figure 5.5: Histogram of evaluation rates for the query "I want a playlist that sounds

angry, fast and rough".

I would like to listen to calm songs, like "Orinoco Flow", flow-

ing and slow

The histogram of evaluations for the query I would like to listen to calm

songs, like "Orinoco Flow", flowing and slow is shown in figure 5.6. The
mean of the evaluations is 7.73, with a standard deviation of evaluation equal
to 1.0148. 40% of testers created the mode 8. The mean of rates assigned
by professionist is 7.67, that is slightly worser than the general mean, but
their mode is still 8. Also this query did not receive any negative rate (lower
than 5).

I want a playlist not angry, and not stuttering and with a slow

tempo

The mode of the rates of results for the query I want a playlist not angry,

and not stuttering and with a slow tempo is again 8 (43% ), the mean of the
evaluations is 7.43, with a standard deviation of evaluation equal to 1.3817.
This query exhibits 6.67% of negative rates, also pretty bad, as 3. The mean
of rates assigned by professionist is 6.33, that is considerably worser than
the general mean. We consider that the negative qualifiers must to be better
modeled. The histogram of evaluations is shown in figure 5.7.
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Figure 5.6: Histogram of evaluation rates for the query "I would like to listen to calm

songs, like "Orinoco Flow", flowing and slow".
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Figure 5.7: Histogram of evaluation rates for the query "I want a playlist not angry,

and not stuttering and with a slow tempo".
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5.4 General evaluation

The general evaluation has been rated after a free use of the system. The
queries tried by testers had not been recorded. An overview of rates is shown
in table 5.4.

Question Mode Mean Std

Please indicate the general evaluation on the
results obtained when using free queries

7 6.2667 1.5742

Do you think this system is useful? 9 7.4667 1.4794

Would you ever use this kind of system? 9 7.1000 2.0401

How do you evaluate the system in general? 7 7.2667 1.0807

Table 5.4: Evaluation for the system’s general aspects.

Please indicate the general evaluation on the results obtained

when using free queries

The first question was related to the free-text search. The subject were
asked to evaluate the general quality of obtained results intended as the
correspondence between queries and results. The mode of the rating is 7,
agreed by 46.67% of testers. The means of rates is 6.2667 with a standard
deviation of 1.5742. The professional listeners, who better know the appli-
cations currently available, assign an average rate slightly higher: 6.33. The
20 of testers evaluate the free-text experiment as insufficient, both for their
high expectations and for the limitations of this prototype. Histogram of the
rates are shown in figure 5.8.

Do you think this system is useful?

The idea of a music search engine based on semantic text-based queries has
been widely appreciated. 33% of testers consider the system as completely
useful, rating it 9 in the 9-point scale. The average general rate is 7.4667 with
standard deviation of 1.4794. Professional listeners considered the system
on average less useful, rating it 7, but the single rates 5, 7 and 9 are too
different to suppose a general reason. A histogram of the evaluations is
shown in figure 5.9
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Figure 5.8: Histogram of evaluation rates for results of free-text queries.
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Figure 5.9: Histogram of evaluation rates for usefulness of the system.
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Would you ever use this kind of system?

We asked subjects if they would ever use this kind of system. Most of the
answers are positive: 76% of testers assigns a rate over 7 and in particular the
30% of them gives the maximum score. On the other side, 10% claim they
likely would not use it. The means of rate is 7.1 with standard deviation 2.04,
the highest of the questionnaire, because many people usually prefer to use
applications they know rather than learn new tools. Even if all professional
listeners would use this system, their average rate 7 is lower than the total
mean. The histogram is referred to in figure 5.10
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Figure 5.10: Histogram of evaluation rates for the question about personal potential

use of the system.

How do you evaluate the system in general?

Finally we asked to rate the general concept of the system, taking into ac-
count all the elements: the results, the idea, the implementation and func-
tionalities we propose, the usefulness and potentials. 10% of subjects seems
doubtful, and assigns a rate between 4 and 5; hence 90% evaluate positively
this work and its potentials. 7 is the mode for 46.67% of testers, the mean
is 7.2667 and the standard deviation is 1.0807. Testers classified as profes-
sionist give a even better evaluation of 8. Since this was the first system of
this kind that testers have ever tried, they probably appreciate this attempt.
The histogram is shown in figure 5.11
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Figure 5.11: Histogram of evaluation rates about the general concept of the syste.

5.5 Notes and discussion on results

The questionnaire allowed testers to add optional notes. Some testers re-
ferred problems with the emotional-related description. We suppose that
this is due to the gap between semantic mapping (from ANEW[18] data set)
and song mapping (from MsLite) in the Valence-Arousal plane. We also
received comments on issues on the role of qualifiers, both about their work-
ing principle and their actual effect. We assume that a set of perceptive
test in order to better tune the model would increase system’s performances.
Moreover, the goodness of specification by qualifiers is strictly dependent on
the sentence parsing precision. If the parser do not recognize qualifiers as
belonging to a certain adjective, the qualifier is not recognized by the system
and is not modeled. This is an important issue when using negative qualifiers
such as not or not at all. Finally, the data set is composed by 240 songs.
Some subjects found this amount too small.

Nevertheless, the questionnaire exhibits satisfying performances for our
systems. All the sections received mainly positives rates and the modes
of rate are everywhere higher or at least equal to 7. In particular, testers
appreciate the playlist visualization, that makes the system suitable for music
browsing. The current prototype have several limitations, as discussed above,
but it represents a promising starting point for future developments.
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Chapter 6

Conclusions and future

developments

In this chapter we will review the work presented in this thesis and introduce
future perspectives and applications for this study.

6.1 Conclusions

In this thesis we proposed a music search engine based on semantic text-
based queries. The semantic text-based queries deal with: emotional, non-
emotional and sample example description. The emotional-related descrip-
tion is based on affective words, the non emotional-related relies on a set
of high-level NEDs. A set of semantic descriptors for the mid-level feature
tempo is also included. The sample example allows to specify song similarity
by naming the title or the author of the piece.

Our work is defined in the Music Information Retrieval research field. It
is meant to address the problem of music search, retrieving the songs that
match a semantic description. In order to create a relationship between se-
mantic description and music results, we mapped music and semantic words
on a common representation. We chose the Valence-Arousal plane to map the
emotional description and a set of 1-dimensional spaces for non-emotional
description, that we defined semantic equalizer. We defined the similarity
among song as similarity in these two spaces, hence we built a model to
uniform the results. As for our knowledge in the MIR literature, this is the
first work in which natural language processing is applied to queries in order
to exploit the significance nuances of the grammar. We used the natural
language processing to tune the music search on the user’s request. Through
NLP, the system is able to accept complex queries that specify the desired
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intensity of features. We relied on probabilistic Bayesian decision theory in
order to generate a ranking list of songs that match the query’s request. We
offered two kinds of visualization of the results. The first is based on a list
of the retrieved songs, like a traditional search engine. The second presents
a playlist in order to sequentially listen to pieces.

We collected evaluations about this prototype and the general concept of
a semantic music search engine through a questionnaire. Subjects appeared
pleased by the results and attracted by potential usefulness of a system
of this kind. We consider this as a promising starting point for further
developments.

6.2 Perspectives and future developments

We will present some future applications that can derive from this work.

6.2.1 Refining the semantic equalizer

In this work we chose 17 semantic non-emotional descriptors, belonging to
9 semantic dimensions. We called this space semantic equalizer, shortened
to EQ. We considered EQ as a set of 1-D lines and we mapped only the
semantic bounds of these dimensions. We suppose that potentials of EQ
description may be further exploited in several manners.

As we stated before, we only mapped bipolar adjectives for each dimen-
sion in EQ (except for the tempo dimension). Nevertheless, several NEDs
may be mapped in each EQ dimension. For example, the following semantic
descriptors may be mapped in the harmonious/rough-dimension assigning
them a rate between 1 and 9 : smoothed, rocky, knobby, scraggy, crude,
melodious, tuneful, musical, sweet-sounding. This approach will increase the
amount of possible non-emotional descriptors and hence accept queries such
as I’d like to listen to snappy songs that sound melodious and scattering, with
snappy mapped in the groovy-dimension, melodious mapped in the harmo-

nious/rough-dimension and scattering in the flowing/stuttering-dimension.

In this work we define EQ with nine dimensions. This amount is not
sufficient to map all the possible words for non-emotional description. Nev-
ertheless, a short number of dimensions allows low computational burden
and more intuitive representation. A possible approach for future develop-
ments may be to map words in a multidimensional fashion. The music for
party, for example, can be defined as music with high arousal and positive
valence, positively groovy, easy to be listened and dynamic. Modeling the
word party may allow to search music or a party with no need to add other



6.2. Perspectives and future developments 75

dimensions.

6.2.2 User profiling

High-level features carry a great semantic significance, but they have the
side-effect to be highly subjective. In this work we took into account the
subjectiveness of the semantic and song description by modeling words and
songs with the standard deviation of annotations together with their mean.
Possible future developments include building semantic and songs’ models
tailored to users, in order to tune the results of a query to what he meant

rather than what he said.

6.2.3 Expansion of data set

The current data set include 240 excerpts of 15-seconds each. An expansion
of the amount of pieces may lead to better performances. Moreover, the
algorithms for dealing with whole songs instead of excerpts are yet to be
implemented. This aspect has several issues, like the correct segmentation
to obtain excerpts to be annotated (content-based) and the availability of
time-segment query, such as I’d like a song that contatins at least 30 seconds

of anger or Give me a playlist composed by songs that sounds harmonious

only half of time and rough elsewhere.

6.2.4 Query by speech

Future technologies are based on interaction between machine and human
as more natural and intuitive as possible. Applications like Siri by Apple or
the Google Glass project1 are two popular examples for this new paradigm.
Google has included text-by-speech functionalities in its mobile operative
system Android2. Future developments include easier interaction with the
system like via query by speech.

6.2.5 Music browsing and thumbnailing

The Valence-Arousal plane has just been used in several application for music
browsing. Other kind of descriptions has marginally been employed. We
consider that Valence-Arousal plane and semantic equalizer may be used in
the future to navigate into music libraries, like is currently made for other
descriptors such as genre or decades (e.g. 80s rock).

1Google Glass, http://www.google.com/glass/start/
2http://www.google.com/mobile/voice-search/
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Moreover, the VA plane gives an immediate mood representation of a song,
whereas typical music players only provide meta-information (such as title,
artist and genre). We expect new applications to show some content-based
representation for music in order to make users intuitively and immediately
understand how a song sounds.



Appendix A

List of songs

We list here the songs in MsLite data set. The songs that have been anno-
tated via content-based machine learning are indicated in bold.

ID Artist Album Title

1086 Chicago Chicago X Gently I ll Wake You

6 1 1 I Can t Believe

51 1 1 Sweet

57 3 Doors Down The Better Life Be Like That

55 3 Doors Down The Better Life Duck And Run

109 Abba Arrival Tiger

123 Abba Voulez-Vous The King Has Lost His

Crown

124 Abba Voulez-Vous Does Your Mother Know

140 AC/DC Back In Black What Do You Do For Money

Honey

138 AC/DC Back In Black Hells Bells

181 Ace of Base The Sign Happy Nation

207 Aerosmith Nine Lives Taste Of India

197 Aerosmith Live Bootleg Back In The Saddle

194 Aerosmith A Little South of Sanity

- Disk 1

Same Old Song And

Dance

214 Aerosmith Nine Lives Pink

3151 Alan Jackson Who I Am Let s Get Back To Me And

You

3148 Alan Jackson Who I Am All American Country

Boy

4323 Alanis Morissette MTV Unplugged Ironic

1650 Alice DeeJay Who Needs Guitars Anyway Celebrate Our Love

257 All Saints All Saints Never Ever

264 All Saints All Saints Lady Marmalade

302 Aqua Aquarium Calling You

312 Aqua Aquarius Cuba Libre

293 Aqua Aquarium My Oh My

331 Backstreet Boys Black Blue Everyone

352 Bad Brains I Against I House Of Suffering

398 BBMak Sooner Or Later Love On The Outside

455 Beatles A Hard Day s Night If I Fell

502 Beatles Magical Mystery Tour All You Need Is Love

491 Beatles Beatles For Sale Everybody s Trying To Be

My Baby

457 Beatles A Hard Day s Night And I Love Her

481 Beatles Beatles For Sale Rock And Roll Music

452 Beatles The Long And Winding

Road

558 Ben Folds Five Whatever And Ever

Amen

Brick

3304 Billy Joel Piano Man Captain Jack

3308 Billy Joel The Stranger Scenes From an Italian

Restaurant
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604 Blind Melon Blind Melon Holyman

639 Blink 182 Enema Of The State Dysentery Gary

678 Blood Sweat Tears Blood Sweat Tears Spinning Wheel

689 Bloodhound Gang One Fierce Beer Coaster Shut Up

2056 Bob Dylan Live at Budokan Disc 1 Ballad of a thin man

743 Bon Jovi New Jersey Living In Sin

754 Bon Jovi Slippery When Wet Livin On a Prayer

764 Boston Boston Foreplay Long Time

6090 Bruce Springsteen Live 1975-1985 disc 3 The Promised Land

815 Bryan Adams On A Day Like Today Inside Out

819 Bryan Adams On A Day Like Today Where Angels Fear To Tread

838 Bryan Adams So Far So Good Cuts Like A Knife

878 Busta Rhymes Extinction Level Event -

The Final World Front

Just Give It To Me Raw

868 Busta Rhymes Anarchy Here We Go Again

900 Cake Fashion Nugget She ll Come Back To Me

1011 Cheap Trick Silver Day Tripper

1026 Cheap Trick Silver - Disc 1 World s Greatest Lover

229 Christina Aguilera Christina Aguilera So Emotional

228 Christina Aguilera Christina Aguilera I Turn To You

1090 Chumbawamba Tubthumper Amnesia

1209 Collective Soul Hints Allegations and

Things Left Unsaid

Breathe

1194 Collective Soul Collective Soul Gel

1202 Collective Soul Hints Allegations and

Things Left Unsaid

Wasting Time

1370 Counting Crows This Desert Life Hanginaround

1351 Counting Crows Across A Wire - Live In

NYC From The Ten Spot

CD 2

Raining In Baltimore

1364 Counting Crows August and Everything

After

Perfect Blue Buildings

1352 Counting Crows Across A Wire - Live In

NYC From The Ten Spot

CD 2

Round Here

1643 Craig David Born To Do It Last Night

1419 Creedence Clearwater Re-

vival

Pendulum It s Just A Thought

1392 Creedence Clearwater

Revival

Cosmo s Factory Before You Accuse Me

1524 Cypress Hill IV Dead Men Tell No Tales

1540 Cypress Hill Live at the Fillmore Riot Starter

1580 D’Angelo Voodoo Chicken Grease

1611 Dave Matthews Band Live at Red Rocks 8 15 95

Disc 1

Best Of What s Around

1620 Dave Matthews Band R.E.M.ember Two

Things

The Song That Jane

Likes

1691 Def Leppard Adrenalize I Wanna Touch U

1724 Deftones White Pony Rx Queen

1797 Depeche Mode People Are People People Are People

1895 Disturbed The Sickness Down With The Sickness

1893 Disturbed The Sickness Voices

1909 Dixie Chicks Wide Open Spaces Never Say Die

1915 Dixie Chicks Wide Open Spaces Give It Up Or Let Me Go

1916 DMX Flesh Of My Flesh Blood

Of My Blood

Bring Your Whole Crew

4068 Don McLean Favorites And Rarities -

Disc 1

American Pie

2000 Dr. Dre 00 Forgot About Dre ft Em-

inem

2014 Duran Duran Arena Hungry Like The Wolf

5037 Elvis Presley Elvis Christmas Album I Believe

2138 Enya Watermark Orinoco Flow

2146 Erasure Chorus Joan

1121 Eric Clapton Crossroads 2 Disc 4 Kind hearted woman

1105 Eric Clapton Crossroads 2 Disc 2 Layla

1130 Eric Clapton Unplugged Tears in Heaven

1138 Eric Clapton Unplugged Old Love

2222 Everclear So Much For The Afterglow I Will Buy You A New Life

2239 Everclear Sparkle And Fade Pale Green Stars

2261 Everlast Whitey Ford Sings the Blues Hot To Death

2244 Everlast Eat At Whitey s I Can t Move
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2269 Everlast Whitey Ford Sings the

Blues

Years

2285 Everything but the Girl Amplified Heart Rollercoaster

2290 Everything but the Girl Amplified Heart Missing

2350 Fatboy Slim You ve Come a Long Way

Baby

Kalifornia

2377 Finger Eleven The Greyest Of Blue

Skies

Suffocate

2379 Finger Eleven The Greyest Of Blue

Skies

Famous

2416 Fleetwood Mac The Dance Dreams

2471 Foreigner Agent Provocateur I Want To Know What

Love Is

2569 Garbage Garbage Only Happy When It Rains

2637 Garth Brooks Ropin The Wind The

Limited Series

Which One Of Them

2650 Garth Brooks The Chase Learning To Live Again

7050 Gary Wright The Dream Weaver Made To Love You

2678 Genesis From Genesis To Revelation

Disky version

In The Wilderness

2709 Genesis Live - The Way We Walk

- Volume One - The

Shorts

Jesus He Knows Me

2811 Green Day Dookie Burnout

3626 Huey Lewis and the

News

Fore I Never Walk Alone

3122 Ja Rule Venni Vetti Vecci World s Most Dangerous

feat Nemesis

3183 Janet Jackson Rhythm Nation 1814 Someday Is Tonight

4805 Jennifer Paige Jennifer Paige Always You

4809 Jennifer Paige Jennifer Paige Between You and Me

287 Jessica Andrews Who Am I Who Am I

2896 Jimi Hendrix Experience Are You Experienced The Wind Cries Mary

1171 Joe Cocker Joe Cocker Live When The Night Comes

1734 John Denver An Evening With John Den-

ver - Disc 2

Take Me Home Country

Roads

6372 Keith Sweat Keith Sweat Chocolate Girl

3764 Kenny Loggins Outside from the Red-

woods

Now And Then

3533 La Bouche Sweet Dreams Fallin In Love

2309 Lara Fabian Lara Fabian I am Who I am

2950 Lauryn Hill The Miseducation of Lauryn

Hill

Final Hour

3557 Led Zeppelin In Through The Out

Door

Carouselambra

3562 Led Zeppelin Led Zeppelin I You Shook Me

3614 Les Rythmes Digitales Darkdancer Take a Little Time

3618 Les Rythmes Digitales Darkdancer Sometimes

3644 Lifehouse No Name Face Sick Cycle Carousel

3652 Lifehouse No Name Face Quasimodo

3692 Live The Distance To Here Run to the Water

3712 Live Throwing Copper Waitress

3752 LL Cool J mr smith I Shot Ya

3716 LL Cool J G O A T Imagine That

3717 LL Cool J G O A T Back Where I Belong

555 Lou Bega A Little Bit Of Mambo Mambo Mambo

553 Lou Bega A Little Bit Of Mambo The Trumpet Part II

3814 Lynyrd Skynyrd Lyve From Steel Town CD 1 Saturday Night Special

3823 Madison Avenue Polyester Embassy Who The Hell Are You Orig-

inal Mix

3922 Marilyn Manson Holy Wood Coma Black

3949 Marilyn Manson The Last Tour On Earth Astonishing Panorama

Of the Endtimes

2655 Marvin Gaye Let s Get It On Let s Get It On

4115 Me First and the Gimme

Gimmes

Are a Drag Stepping Out

3218 Michael Jackson Off The Wall Rock With You

3233 Michael Jackson Thriller Human Nature

3219 Michael Jackson Off The Wall Working Day And Night

3380 Montell Jordan Get It On Tonight let s cuddle up featuring

LOCKDOWN

3395 Montell Jordan This Is How We Do It Down On My Knees

4347 Mudvayne L d 50 Prod
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4343 Mudvayne L d 50 Internal Primates For-

ever

4369 MxPx On The Cover No Brain

4392 Mystikal Let s Get Ready Mystikal Fever

1835 Neil Diamond Hot August Night - Disc 1 Sweet Caroline

1846 Neil Diamond Hot August Night Disk 2 Canta Libre

1840 Neil Diamond Hot August Night - Disc 1 Shilo

7108 Neil Young Harvest Words Between The Lines

Of Age

4478 New Radicals Maybe You ve Been Brain-

washed Too

Technicolor Lover

4472 New Radicals Maybe You ve Been

Brainwashed Too

I Don t Wanna Die Any-

more

4484 Next Welcome II Nextasy Cybersex

4563 Nine Inch Nails The Fragile Right The Big Come Down

3355 Olivia Newton-John Olivia Summer Nights Grease

4779 Our Lady Peace Happiness Is Not A Fish

That You Can Catch

Blister

4825 Papa Roach Infest Broken Home

130 Paula Abdul Forever Your Girl Opposites Attract

4838 Pennywise Straight Ahead Might Be a Dream

4840 Pennywise Straight Ahead Straight Ahead

1220 Phil Collins But Seriously Heat On The Street

1218 Phil Collins But Seriously I Wish It Would Rain

Down

1243 Phil Collins Hello I Must Be Going Thru These Walls

4964 Placebo Black Market Music Passive Aggressive

5232 Queen The Game Save Me

5243 Queen The Works I Go Crazy

5191 Queen Live Magic Is This The World We

Created

5242 Queen The Works Is This The World We

Created

5436 R.E.M. Dead Letter Office Burning Hell

5444 R.E.M. Dead Letter Office Femme Fatale

5345 Radiohead OK Computer No Surprises

5370 Rage Against the Machine Renegades Microphone Fiend

5418 Rancid and out Come the

Wolves

As Wicked

3998 Richard Marx Repeat Offender Satisfied

6144 Rod Stewart Vagabond Heart Rebel Heart

6154 Rod Stewart Vagabond Heart If Only

6152 Rod Stewart Vagabond Heart Have I Told You Lately

5531 Rolling Stones Tattoo You Worried About You

5557 Roxette Look Sharp Dance Away

5545 Roxette Joyride soul deep

5611 Run-D.M.C. Raising Hell Hit It Run

5630 Sade Love Deluxe Like A Tattoo

5656 Sade Sade LOVERS ROCK LOVERS ROCK

5708 Savage Garden Affirmation The Animal Song

5738 Scorpions World Wide Live Make It Real

5797 Seven Mary Three American Standard Anything

6609 Shania Twain Come On Over Honey I m Home

6615 Shania Twain The Woman In Me Home Ain t Where His

Heart Is Anymore

1460 Sheryl Crow Live from Central Park There Goes The Neigh-

borhood

5857 Sisqo Unleash The Dragon Unleash The Dragon feat

Beanie Sigel

5949 Soul Asylum Grave Dancers Union Somebody To Shove

6043 Spineshank Strictly Diesel Slipper

6047 Spineshank Strictly Diesel While My Guitar Gently

Weeps

7014 Steve Winwood Back in the High Life Split Decision

7026 Stevie Wonder Songs in the Key of Life Disc

2

Isn t She Lovely

7031 Stevie Wonder Songs in the Key of Life

Disc 2

As

7020 Stevie Wonder Songs In The Key Of Life

Disc 1

Sir Duke

6205 Stone Temple Pilots Tiny Music Songs from the

Vatican Gift Shop

Adhesive

6217 Stroke 9 Nasty Little Thoughts One Time
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6245 Styx Return To Paradise Disc 2 Fooling Yourself The Angry

Young Man

6246 Styx Return To Paradise Disc 2 Show Me The Way

6258 Styx The Grand Illusion Come Sail Away

378 The Bangles Different Light Following

530 The Bee Gees Here At Last Bee Gees Live

Disc Two

Down The Road

904 The Cardigans Gran Turismo Starter

1031 The Chemical Brothers Surrender Out of Control

1284 The Corrs In Blue Somebody for someone

1386 The Cranberries No Need To Argue Ridiculous Thoughts

1388 The Cranberries No Need To Argue Yeat s Grave

2284 The Everly Brothers The Fabulous Style of All I Have To Do Is

Dream

3006 The Human League The Very Best of Heart Like A Wheel

4997 The Police Live Disc One - Orpheum

WBCN Boston Broadcast

Hole In My Life

5004 The Police Live Disc Two - Atlanta

Synchronicity Concert

Walking In Your Footsteps

5014 The Police Live Disc Two - Atlanta

Synchronicity Concert

So Lonely

5024 The Presidents of the

United States of America

unknown Body

6881 The Verve Urban Hymns Weeping Willow

4022 Tim McGraw A Place In The Sun Somebody Must Be Prayin

For Me

6500 Tina Turner Tina Live In Europe CD

1

What s Love Got To Do

With It

6564 TLC FanMail Don t Pull Out On Me Yet

3447 Toby Keith How Do You Like Me

Now

Do I Know You

778 Toni Braxton Secrets Come On Over Here

795 Toni Braxton Toni Braxton I Belong to You

6577 Tool Aenima Stinkfist

6582 Tool Aenima Hooker with a Penis

6661 U2 All That You Can t

Leave Behind

Elevation

6750 Ugly Kid Joe America s Least Wanted Cats In The Cradle

6785 Van Halen 98 House of Pain

2884 Wade Hayes Old Enough To Know Bet-

ter

Kentucky Bluebird

6917 Westlife Westlife I Need You

6973 White Zombie Supersexy Swingin

Sounds

Electric Head Pt Satan

in High Heels Mix

2996 Whitney Houston Whitney Houston Greatest Love Of All

7073 Wu-Tang Clan Wu-Tang Forever Disc 2 Dog Shit

7066 Wu-Tang Clan Enter The Wu-Tang 36

Chambers

WuTang th Chamber

Part II

7079 Wu-Tang Clan Wu-Tang Forever Disc

one

Reunited

7094 Xzibit Restless Rimz Tirez feat Defari

Goldie Loc Kokane

7091 Xzibit Restless D N A DRUGSNALKA-

HOL feat Snoop Dogg
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Appendix B

Perceptive test

In the following we append the content of the questionnaire we use for the
evaluation of the system.

Janas Music Finder - test

Janas Music Finder is a music search engine based on text-based semantic
queries.

Semantic Description → JANAS → songs

The kind of queries Janas can accept are:

• Emotional description: based on words that concern mood and feelings.
Example: I want a song happy and joyful

• Non-emotional description: base on 17 words: hard-soft, clear-dull,

rough-harmonic, dynamic-static, stuttering-flowing, difficult-easy, fast-

slow, groovy

Example: something hard and easy

• It is possible to specify qualifiers for both emotional and non emo-
tional descriptors. Qualifiers are: not at all, not, hardly, a little,

slightly, partly, somewhat, average, in-between, medium, moderately,

fairly, rather, quite, quite a bit, mainly, considerably, very, highly, very

much, fully, extremely, completely

Example: very hard and not happy at all

• Tempo marking through Italian words used in music sheets: adagio,

andante, moderato, allegro, presto Example: I want a song that

plays allegro
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• Similarity with other songs. Both songs’ titles and authors must be
written in quotation marks (""). Authors must be indicated immedi-
ately after the title of the song they refer to and mist be preceded by
the keyword by. A link to the list of songs in the database is in the
homepage or on Janas logo at the top bar. The research of a song can
be made by using just the titles, the titles and the artist, or just the
artist. Should the research be performed only by author, the system
will ask to specify which songs by the that particular artist are the
user wishes to use for its research. This kind of research is based only
on semantic-based song similarity and on query specification. It is not
based on other parameters such as timbre similarity, mood suggested
by lyrics, genre and so on.
Example: Something like "isn’t she lovely" by "stevie won-

der"

I want to listen to some music similar to songs by "the cran-

berries"

• Comparison with other songs via qualifiers more e less:
Example: Something like "isn’t she lovely" but faster

• Including the keyword playlistv in the query, the system will generate
a playlist based on the semantic description instead of a list of songs.
Example: I want a playlist that sounds angry, fast and rough

• A mixture from previous typologies:
Examples: I’d like something that plays like "isn’t she lovely",

but in an adagio tempo, more groovy and partly sad

It is necessary for queries to be English, in the form of a sentence with
actual significance in order for Janas to better recognize them.

The test is divided in two sections:

1. predefined queries: some predifined queries will be proposed

2. free-text queries: you will be free to try the music search engine

The test requires the use of the search engine for at least ten minutes.
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What kind of listener are you? Please choose only one answer

Beginner (I listen to music less than three hours a day)

Expert (I listen to music mor than three hours a day)

Professional (I listen to music also for reasons related to my job)

Predefined queries

You have to evaluate the quality of results with a mark in a 9 point-scale,
where 1 means very bad and 9 is the optimum. Quality is intended as the
correspondence of songs results with respect to the query content. 5 indi-
cates a neutral mark.

Query 1 2 3 4 5 6 7 8 9

I want a song very groovy and happy

I want a song not happy at all, dull
and flowing

I want a playlist that sounds angry,
fast and rough

I would like to listen to calm songs,
like "Orinoco Flow", flowing and slow

I want a playlist not angry, and not
stuttering and with a slow tempo
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Free-text queries

Feel free to try some queries and do evaluate the performances.

1 2 3 4 5 6 7 8 9

Please indicate the general evaluation
on the results obtained when using
free queries. The evaluation is in-
tended on the correspondence between
query and results.

Do you think this system is useful? (1:
not at all - 5 can’t really say - 9 : very
useful)

Would you ever use this kind of sys-
tem? (1: not at all. 5: I don’t know.
9: Yes, very often)

Taking into account the results, the
idea of semantic research and the im-
plementation, the functionalities, use-
fulness and potentials, how do you
evaluate the system in general? (1:
very bad. 5: neutral. 9: very good)

Please indicate optional notes

Please, fold this sheet before giving it back, in order for the

answers to be hidden.
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