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Abstract
Ground vibration from trains is an increasingly important environmental
problem. This study investigates an efficient methodology to predict the
levels of vibration induced by a train pass-by. The vibration induced by
trains can be divided in two groups: perceptible vibration, that is con-
fined in the range 2-80 Hz, and the ground-borne noise, which is due to
vibration in the range 20-200 Hz and can induce noise radiation from the
walls and floors of buildings close to the railway. Two existing softwares
have been used during this work of thesis to study this phenomenon: one
simulates the passage of the train and operates in the time domain devel-
oped at Politecnico di Milano; the other solves the propagation of waves in
the ground, developed at University of Southampton, and works in the fre-
quency/wavenumber domain. A post-processing method of the results from
the two softwares, called the hybrid method, has been implemented, using
some existing theory, in order to obtain the levels of vibration of the ground
at a certain receiver, due to the passage of the train. Since this method-
ology can be applied for any configuration of train and ground, results of
the hybrid model, for different configurations, are reported. The two main
examples are a case of track lying on a multi-layer ground and a case of an
underground tunnel.

Key words: ground vibration, hybrid model, time domain, frequency
wavenumber domain, wave propagation in ground, finite element boundary
element method



Sommario
Le vibrazioni indotte dal passaggio di treni stanno diventando un problema
rilevante per il confort delle aree ad alta densità di popolazione e nelle aree
industriali. In questa tesi è proposto un nuovo metodo per calcolare i livelli
di vibrazione del terreno in una qualsiasi posizione, indotti dal passaggio
di un treno. Le vibrazioni indotte dai treni possono essere divise in due
gruppi: vibrazioni che possono essere percepite, che esistono in un range di
frequenze comprese tra 2-80 Hz, e ground-borne noise, che sono vibrazioni
in un range 20-200 Hz e possono generare emissione acustica dalle pareti
e dal pavimento all’interno delle strutture vicino alle linee ferroviarie. Per
questo lavoro di tesi sono stati utilizzati due software già esistenti per stu-
diare questo fenomeno: uno che simula il passaggio del treno e opera nel
dominio del tempo, sviluppato presso il Politecnico di Milano; l’altro risolve
il problema di propagazione delle onde nel terreno e lavora nel dominio delle
frequenze numeri d’onda, sviluppato presso la University of Southampton.
È stato quindi implementato un metodo di post elaborazione dei risultati dei
due software, chiamato modello ibrido, basato su della teoria già esistente,
in grado di predire i livelli di vibrazione in una certa posizione dovuti al
passaggio del treno. Dato che questa metodologia è molto generale sono
proposti risultati per diverse configurazioni di terreno alla fine di questo
lavoro.

Parole chiave: vibrazioni nel terreno, modello ibrido, dominio del tempo,
dominio delle frequenze, propagazione delle onde nel terreno, elementi finiti
boundary element



Estratto in lingua italiana

Negli ultimi anni la preoccupazione della società riguardo i sistemi di trasporto

ferroviari stanno crescendo in particolare a causa della tendenza all’aumento

della velocità. Insieme con questo c’è l’introduzione di leggi sempre più

stringenti riguardo agli standard ambientali. Le vibrazioni e il rumore sono

dunque un tema molto importate per le compagnie ferroviarie.

La competitività del trasporto su strada ferrata rispetto a tutti gli altri

tipi di trasporto è accentuata dalla sua abilità di operare dal cuore degli

stabilimenti urbani e commerciali. Per poter raggiungere questi risultati

però spesso è necessaria la costruzione di tunnel sotterranei, sopratutto nelle

grandi città. Questo ha portato a comprendere che le vibrazioni dovute al

passaggio dei treni nei tunnel possono essere un problema molto rilevante,

sopratutto sulle linee ad alta percorrenza. Queste vibrazioni coprono un

intervallo di frequenze che vai dai 2 ai 200 Hz, [1] e le frequenze che si

trovano nel range tra i 20 e i 200 Hz possono produrre un rumore udibile

all’interno delle costruzioni circostanti durante il passaggio del treno, questo

viene chiamato ground-borne noise. Inoltre possono essere presenti anche

vibrazioni a più bassa frequnza, nel range 2-80 Hz, che sono percepibili dal

corpo umano.

Questa tesi è incentrata sul ground-borne noise prodotto dal passaggio

del treno, quindi nel range di frequenze 20-200 Hz. Questo fenomeno è

principalmente eccitato dalle irregolaità presenti sulla ruota e sulla rotaia

che genera delle forze che vengono trasmesse al terreno e possono generare

delle onde che propagano in esso.

Storicamente ci sono stati due tipi di approcci a questo problema: l’approccio

nel dominio del tempo che studia dettagliatamente la dinamica del veicolo e

il meccanismo di interazione ruota-rotaia quindi la generazione delle forze di

contatto; e l’approccio nel dominio delle frequenze-numeri d’onda che studia
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in maniera efficiente la propagazione delle onde nel terreno.

Il principale obiettivo di questa tesi è quello di presentare una metodolo-

gia in grado di accoppiare i risultati di questi due mondi. Utilizzare un

modello nel dominio del tempo in grado di simulare la dinamica del veicolo

e ricavare le forze derivanti dal passaggio del treno. Utilizzare un mod-

ello nel dominio delle frequenze-numeri d’onda per ottenere le funzioni di

trasferimento del terreno tra il punto di forzamento e un punto di interesse.

Attraverso una post elaborazione dei dati ottenuti dai due modelli è possibile

ottenere i livelli di vibrazione del punto di interesse scelto.

Nel Capitolo 1 è stata fatta una revisione della letteratura a riguardo

del problema del ground-born noise. Nella prima parte è stato trattato

l’approccio nel dominio del tempo che è incentrato sulla dinamica del ve-

icolo e sulle forze di contatto. Viene presentata una carrellata dei diversi

modelli per il contatto e per lo studio della dinamica del veicolo sviluppati

negli anni arrivando poi a descrivere il modello sviluppato presso il Politec-

nico di Milano e utilizzato in questo lavoro di tesi per simulare il passaggio

del treno sui binari. La seconda parte, invece, descrive i diversi approcci

utilizzati per la modellazione della propagazione delle onde nel terreno. Qui

sono prensetati una serie di modelli analitici, numerici e empirici che sono

stati studiati negli ultimi decenni. Questi modelli possono essere in 2D,

3D o il cos̀ı detto 2.5D che schematizza una sezione bidimensionale del ter-

reno e ricostruisce la risposta nella terza dimensione nel dominio dei numeri

d’onda assumendo omogenea la struttura nella terza dimensione. Questa

metodologia è più efficiente dal punto di vista computazionale di una strut-

tura tridimensionale dato che il numero di nodi necessari per schematizzare

la sezione è contenuto, ma a differenza dei modelli bidimensionali è in grado

di studiare la propagazione delle onde in tutte le direzioni. Un modello di

questo genere, sviluppato dalla University of Southampton, verrà utilizzato

in questa tesi per lo studio delle risposte in frequenza del terreno. L’ultima

parte presenta una metodologia ancora in fase di sviluppo in grado di accop-

piare le forze risultanti dal modello nel dominio del tempo con le funzioni

di trasferimento del terreno derivanti dal modello che simula il terreno nel

dominio delle frequenze-numeri d’onda e restituisce lo spettro della risposta

del terreno in un punto stabilito, vedi fig. 1.2.

Il Capitolo 2 descrive in dettaglio i modelli utilizzati per questo lavoro

di tesi. Il modello sviluppato dal Politecnico di Milano per la simulazione

2



Estratto in lingua italiana

del passaggio del treno è stato sviluppato nel dominio del tempo per poter

tenere conto anche delle non linarità dovute al contatto ruota rotaia. Il

modello è basato su una rappresentazione a elementi finiti della struttura

e della rotaia mentre utilizza un modello multi-body misto rigido flessibile

per descrivere la dinamica del treno. Le equazioni di moto di questi due

sistemi sono scritte separatamente con le forze di contatto che accoppiano i

due sistemi. Il modello di contatto è basato su un multi contatto Hertziano

non lineare, questo significa che il coefficiente della formula del contatto

di Hertz è legato alle forze normali da una potenza di 3/2 alla compene-

trazione elastica di ruota e rotaia. Questo modello restituisce come outputs

lo spostamento, velocità e accelerazione di tutti i nodi della struttura FEM,

spostamento, velocità e accelerazione di tutti i punti del modello multi body

del veicolo e le forze dovute al contatto ruota rotaia e ai componenti elas-

tici della struttura a elementi finiti. Il modello sviluppato dall’Institute of

Sound and Vibration della University of Southampton, detto WANDS, è

un modello 2.5D che schematizza la sezione del terreno attraverso elementi

finiti e boundary element (BE), mentre la terza direzione è descritta nel

dominio delle delle frequenze numeri d’onda, questo implica che la struttura

nella terza dimensione sia considerata omogenea. I BE sono degli elementi

che descrivono solo il contorno dell’oggetto desiderato, questo genera un

enorme risparmio in numero di nodi presenti nel modello e quindi di tempo

computazionale. Questi diventano molto utili per descrivere il terreno che

viene considerato infinito e quindi descritto da un numero molto contenuto

di nodi, al contrario nei modelli 3D la descrizione dettagliata del terreno

diventa molto onerosa dal punto di vista computazionale. Inoltre sono stati

sviluppati, per questo modello, degli elementi detti di bordo che sono in

grado di assorbire completamente le onde incidenti senza rifletterle, questo

rende possibile descrivere un terreno infinito anche con un numero limitato

di nodi al bordo. La risposta forzata del terreno viene calcolata per tutte le

frequenze e per tutti i numeri d’onda, che vengono dati in ingresso al pro-

gramma, e ricostruita nello spazio attravento l’antitrasformata di Fourier.

Infine viene spiegato in dettaglio il modello, cos̀ı detto ibrido, che accoppia

i risultati del modello nel dominio del tempo con i risultati del modello nel

dominio delle frequenze e numeri d’onda per dare la risposta del terreno in

un determinato punto causata dal passaggio del treno. Data la funzione di

trasferimento tra il punto di applicazione della forza e un punto qualsiasi

3



della struttura è possibile ottenere la risposta nel punto di interesse molti-

plicando la funzione di trasferimento per lo spettro della forza. Dato che nel

nostro cosa la funzione di trasferimento è la mobilità del terreno la risposta

che si ottiene è la velocità del punto di interesse.

v2(ω) = Y12(ω)F (ω)

Dove Y12(ω) è la mobilità tra il punto 1, di applicazione della forza, e il punto

2, di interesse sulla struttura. Se il sistema è lineare allora è anche possi-

bile applicare la sovrapposizione degli effetti sommando le risposte dovute

al forzamento in diversi punti della struttura per ricostruire la risposta com-

pleta nel punto 2. Spesso è più significativo guardare al contenuto energetico

del segnale trasformando la risposta v2 in una PSD. Questo è il concetto che

sta alla base del modello ibrido proposto in questa tesi. È possibile ricostru-

ire il contenuto energetico di un qualsiasi punto nel terreno conoscendo le

forze trasmesse a terra che derivano dalla posizione delle traversine e le fun-

zioni di trasferimento tra la traversina e il punto di interesse nel terreno.

Utilizzando gli auto e cross spettri delle forze derivanti dalle traversine non

si perde la dipendenza del moto del treno nel dominio del tempo dato che

lo sfasamento delle forze è contenuto dei cross spettri.

Sww = Y HSFFY

Dove Sww è la PSD della risposta nel punto di interesse, e SFF è la matrice

contenente gli auto e cross spettri delle forze derivanti dalle traversine. Dato

che le forze dal modello di interazione treno armamento vengono ottenute

nel dominio del tempo queste vanno convertite nel dominio delle frequenze

attraverso la trasformata di Fourier.

Il Capitolo 3 presenta in dettaglio il modello che lavora nel dominio del

tempo. La prima parte presenta presenta i vari modelli a elementi finiti che

sono stati sviluppati durante questo lavoro di tesi per poter condurre le anal-

isi nel dominio del tempo. Tre diversi tipi di modelli per questo motivo sono

stati implementati. Il primo e più semplice rappresenta un binario, descritto

da degli elementi finiti di tipo trave di Eulero-Bernulli, semplicemente vin-

colato, tramite delle molle, a un terreno rigido. Questa struttura ha dato

la possibilità di confrontare le risposte in frequenza ottenute attraverso il

modello a elementi finiti con le risposte in frequeza ottenute con dei mod-

4
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elli analitici più sofisticati, che ad esempio considerano la rotaia come una

trave di Timoshenko, che hanno confermato che, nel campo delle vibrazioni

strutturali come il ground-borne noise, anche dei modelli semplificati per la

rotaia posso dare dei risultati molto validi dato che il range di frequenze

è limitato. Successivamente vengono proposti due casi più complessi che

si presentano come delle applicazioni particolari: uno dove accoppiata con

il binario si trova la struttura a elementi finiti di un tunnel sotterraneo,

questo verrà utilizzato per investigare i livelli di vibrazione dovuti al pas-

saggio di un treno metropolitano; mentre il secondo caso presenta sempre

la stessa struttura a elementi finiti del tunnel ma sul binario si trova una

irregolarità dovuta a una giunzione. La seconda parte del capitolo descrive

i risultati dell’integrazione nel dominio del tempo. Anche in questo caso

per meglio comprendere i risutati delle simulzioni nel dominio del tempo è

stato preparato anche un modello analitico semplificato che genera una pre-

visione delle forze di contato scambiate tra la ruota e la rotaia. È stato cos̀ı

possibile anche un confronto tra i risultati dell’integrazione nel dominio del

tempo con i risultati ottenuti dal modello analitico semplificato delle forze

di contatto. I risultati prosposti sono le storie temporali e gli spettri delle

forze di contatto e delle forze trasmesse al terreno per i vari modelli studiati.

Il Capitolo 4 presenta in dettaglio il modello che lavora nel dominio delle

frquenze e numeri d’onda. Anche per quanto riguarda questo modello sono

state preparate tre strutture differenti. Come per il caso precende il primo,

e il più semplice, rappresenta un semispazio infinito che schematizza il ter-

reno. Attraverso questo modello è stato possibile indagare l’influenza dei vari

parametri per poter comprendere al meglio il funzionamento del software e

la dipendenza delle risposte dai parametri dati in ingresso. È anche stato

possibile confrontare le risposte ottenute da questo modello con un modello

analitico semplificato di propagazione delle onde nel terreno. Gli altri due

modelli sono stati implementati per riprodurre delle condizioni sperimen-

tali: il primo schematizza un terreno con 2 strati uno superiore più morbido

e con delle velocità di propagazione delle onde più basse e un semispazio

infinito più rigido con delle velocità di propagazione più elevate; il secondo

rappresenta un tunnel circondato dal terreno rispetto al caso precedente di

tunnel ad qui è possibile indagare la propagazione delle onde nel terreno

circostate. Anche in questo Capitolo la seconta parte riguarda i risultati

dell’integrazione nel domino delle frequenze e numeri d’onda. Inizialmente
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sono mostrati i risultati ottenuti al variare dei parametri per il semplice caso

di semispazio infinito. Come risultati sono presentate le risposte delle strut-

ture nel dominio delle frequenze e numeri d’onda, che approsimano bene le

curve di dispersione della struttura. Queste mettono in relazione le frequenze

con i numeri d’onda e mostrano sotto quali condizioni le onde cominciano a

propagare nel terreno. Inoltre vengono mostrate anche le funzioni di trasfer-

imento del terreno a diverse distanze dal punto di applicazione della forza. I

parametri che sono stati cambiati per investigarne l’influenza sono: il range

e la risoluzione dei numeri d’onda, la dimensione dei BE, il cos̀ı detto trac-

tion vector (che rappresenta la pressione applicata all’elemento), e alla fine

cambiamo i parametri del terreno per vedere se le simulazioni sono robuste.

Il Capitolo 5 riporta i risultati del modello ibrido per i vari casi presentati

nei Capitoli precedenti. I risultati sono stati calcolati per diverse distanze

dall’asse a cui e’ stata applicata la forza per investigare come la risposta del

terreno vari al variare della distanza. Qui si e’ trovato, come prevedibile,

che si ha una attenuazione delle vibrazioni del terreno all’aumentare della

distanza. Si e’ anche visto che le curve rispettano molto quello che succede

nelle funzioni di trasferimento e lo spettro delle forze.

Alla fine sono riportate le conclusioni riguardo a questo lavoro di tesi e

le appendici.
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Introduction

Public concern regarding the impact on society of rail transport systems

is growing, in particular with the trend towards higher speeds. Coupled

with this is the introduction of increasingly stringent environmental stan-

dards and legislation. Noise and vibration are therefore important issues for

railway companies and may increasingly affect their future operations and

development.

The competitiveness of rail over other forms of transport is enhanced by

its ability to operate from the centers of population and commerce. How-

ever, in order to achieve this, tunnels are often required in residential or

commercial areas of large cities. This has led to the acceptance that vi-

bration created by trains on the surface or in tunnels can be a potentially

serious issue for mainline railways. The frequencies of vibration cover a

range of about 2-200 Hz, [1]. Vibration in the frequency range 20-200 Hz

[2] can cause an audible rumble (ground-borne noise) inside buildings as

trains pass beneath. Additionally, lower-frequency perceptible vibration in

the range 2-80 Hz can also be present [3], although it is generally less serious

than ground-borne noise.

Railway administrations have also been concerned for some years about

the levels of low-frequency perceptible vibration from trains operated on

surface railways. This has been particularly highlighted by the use high

axle load freight wagons. This vibration can cause not only disturbance,

but also anxiety over structural damage to property. In some cases, where

noise barriers have been erected, problems have occurred due to levels of

ground-borne noise inside buildings exceeding the direct (airborne) noise

from the trains.

This thesis focuses on the ground-borne noise induced by the passage of

the train, so in the 20-200 Hz frequency range. This low frequency ground-
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borne vibration is mainly caused by the unevenness of the rail and wheel

surfaces.

Historically there have always been two separate fields of study: the time

domain field, that studies the vehicle dynamics and the wheel-rail interac-

tion to investigate the forces exchanged between them; and the frequency-

wavenumber domain, that is used to investigate the propagation of the waves

in the ground.

The main aim of this thesis is to present a methodology that permits to

couple these two methods: the use of the time domain model to simulate the

passage of the train over a track to obtain the forces exchanged and the use

of a frequency-wavenumber domain model to obtain the transfer functions

of the ground. By combining the results obtained with these models it is

possible to estimate the level of vibration, at a certain position, induced by

the passage of a train.

In Chapter 1 a literature review is presented about the train-induced

ground vibration, addressing the two main ways of studying the problem.

In the first part the models are presented that operate in the time domain.

These is focused on the vehicle dynamics and on the non linear behavior

of the contact force. In the second part are presented the models that

describe the ground and the wave propagation, these usually operate in the

frequency/wavenumber domain because this way is easier to describe the

wave propagation. The last part presents a novel approach called hybrid

modelling that uses as inputs the results from the two previous approaches

and is able to predict the level of vibration at a receiver.

Chapter 2 presents in detail the two models used in this thesis. The

first model was developed from the Mechanical Engineering Department at

the Politecnico di Milano, that simulates the pass-by of a train, modelled

as a multi-body system, on a finite element structure in the time domain.

This way it is able to consider the non linearities present in the model (i.e.

the wheel/rail contact model). The second model was developed from the

Institute of Sound and Vibration (ISVR) at the University of Southampton

and simulates the ground forced response. It is a linear model that operates

in the frequency wavenumber domain and it is able to describe the wave

propagation in the ground. In the last part the hybrid methodology will be

presented that is used in this thesis to couple the results from Politecnico’s

time domain model and from ISVR’s frequency wavenumber domain model

8
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in order to obtain the response of the ground due to the pass-by of the train.

Chapter 3 describes in detail the inputs and the results of the time

domain model. In the first part a detailed description is presented of the

finite element models of the track, the tunnel and the joint irregularity.

For the case of the rail also some analytical models have been used to better

understand the physical problem. It has been found that for structural noise,

like ground-borne noise, also a simplified model for the rail, like an Euler-

Bernoulli beam, is sufficient to investigate this phenomenon. The tunnel

and the joint irregularity are two examples used to test the hybrid method.

In the second part of the Chapter the results of the time domain calculation

are shown. Also here for the simple case of the rail an analytical model has

been used to increase the knowledge of the problem. Also the results from

the tunnel and the joint are presented and a comparison between the results

of the rail with and without the tunnel has been made to investigate the

influence of the tunnel on the forces exchanged between the train and the

rail.

Chapter 4 describes in detail the inputs and the results of the wavenum-

ber/frequency domain model. In the first part are presented the finite ele-

ment, boundary element models used as input for the wavenumber/frequency

domain model. Three different input models of the ground have been pre-

pared: a simple halfspace, with different ground characteristics; a two layer

ground and a tunnel structure deep bored in a homogeneous soil. In the sec-

ond part the results of the numerical calculation in the frequency wavenum-

ber domain are presented. The results of the simple halfspace have been

used to investigate the sensitivity of the ground responses to the parameters

chosen as input for the calculation procedure. Also a comparison with an

analytical model is presented to understand if the numerical model returns

reasonable results. In the end also the results for the tunnel are presented.

Chapter 5 presents the results for the hybrid method using the different

models for the ground and for the rail presented in the previous Chapters.

9
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Chapter 1

State of the art

This Chapter presents a literature review of the different ways to approach

the problem of the ground-borne vibration due to a train pass-by. Because

this problem is very complex many different ways to address the problem

have been studied.

Since the pass-by of the train generates forces, due to the wheel/rail con-

tact and to the vehicle and structure dynamics, that become the excitation

mechanism for the ground-borne vibration. Section 1.1 presents a series of

different methods to model the train/track interaction mechanism. These

methods are usually conducted in the time domain because it is easier to

model a train that moves in time and space.

The ground is a very complex system because it can have different lay-

ers and can be non-homogeneous and orthotropic. Section 1.2 illustrates

different methods to model the ground that take into account different as-

sumptions to simplify the problem. These methods are usually conducted in

the frequency-wavenumber domain because it is easier to describe the wave

propagation.

Because the two previous methods can be very heavy in terms of com-

putational resources and time, Section 1.3 reports an innovative method,

called the hybrid model. This couples the results from a time domain vehi-

cle dynamics program with the frequency-wavenumber transfer functions of

the ground in order to obtain the response at a certain receiver.

11
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1.1 Vehicle dynamics and contact models

Usually railway vehicles used in passenger transportation have the same

design principle, as shown in fig. 1.1. The car body rests on two bogies

each containing two wheelsets. The springs and dampers connecting the

wheelset bearings and the bogie frame are called the primary suspension.

The secondary suspension connects the bogie frame and the car body.

Figure 1.1: Car body and bogie components, reproduced from
http://www.railforums.co.uk/

The wheelsets are quite heavy and the the longitudinal and lateral stiff-

ness of the primary suspension are always high. This is necessary for a

stable running of the wheelsets. In comparison, the secondary suspension

is much softer. Since additionally the mass of the car body is high (about

30 tons), car body and bogies are decoupled by a frequency ratio of about

1:10 [4]. This decoupling gives the possibility to see the car body as mass

on top of the secondary suspensions. Since ground-borne noise is generated

at frequencies higher than the vehicle dynamics this will not be taken in

consideration in this work.

An example of vehicle/track interaction simulation is described in [5],

12
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it considers the vehicle dynamics using a multi-body model of the trainset.

The entire trainset is subdivided into elementary units. The carbody is mod-

eled as a single rigid body, the bogie assembly is modelled as a rigid bogie

frame connected by primary suspensions to two (or possibly three) flexible

wheelsets. The elementary units are connected to each other by springs

and dampers (linear and non-linear) reproducing the secondary suspensions

and other elastic connections such as links between carbodies, elastic motor

suspension etc. This software was adopted along the research carried out

within this thesis.

Finite element model technique is used for the track. Euler–Bernoulli

beam elements are used to model the different rails, while the rest can be

modelled by lumped parameters mass-spring-dumper.

Various model of wheel/rail contact can be found in the literature.

Kassa in [6] uses Hertz contact theory [7] to resolve the normal wheel–rail

contact problem. The magnitude and orientation of the normal contact force

depends on the curvature difference of the two contacting surfaces and the

contact angle at the contact point. To find the deformation at the contact

point, the contact geometry and the local penetration of the wheel and the

rail surfaces are used. Then, the normal force can be calculated on the basis

of a linear or a non-linear Hertzian contact stiffness.

Shabana in [8] presents a formulation for the wheel/rail contact problem

based on the elastic force approach. The method presented allows for mul-

tiple points of contact between the wheel and the rail by using an optimized

search for all possible contact points. The normal contact forces are calcu-

lated and used with non-linear expressions for the creepages to determine

the creep forces.

The Politecnico di Milano software is based on a non-linear multi-Hertzian

approach [9]. This procedure includes the effect of the spatial variation of

rail profiles occurring during turnout negotiation, to account for the ‘sink

and lift’ effect produced on the wheel during the passage over, for example,

a crossing nose, and to consider the case of multiple contact between one

wheel and two (or more) separate rails, in this thesis this option won’t be

adopted being the simulation performed along a straight track.

13
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1.2 Waves propagation in ground models

Many models for the waves propagation in ground have been developed over

the past years. These can be divided into analytical methods, numerical

methods such as finite element or boundary element method and empirical

methods which are based on measurements. Analytical models are usu-

ally more efficient than numerical models and less expensive than empirical

models but usually they are limited to simple geometry and homogeneous

material.

Analytical models

Several analytical models have been developed using either two-dimensional

or three-dimensional analysis. The advantage of a two-dimensional model is

the shorter computational time. However, it is not able to treat the effect

of waves propagating in the third direction. Therefore a three-dimensional

model is required for the wave propagation. Three-dimensional models,

however, require a larger computing resources [10].

An analytical three-dimensional model was developed by Forrest and

Hunt [11] for an underground railway tunnel of circular cross-section. The

tunnel was represented as an infinitely long, thin cylindrical shell surrounded

by soil of infinite radial extent. A track model was then added to the model

in [12] to assess the effectiveness of floating-slab track.

In [13] the use of several discrete wavenumber methods to model ground

vibration from underground trains has been investigated. These methods

were divided into three categories: the discrete wavenumber fictitious forces

method, the discrete wavenumber finite element method and the discrete

wavenumber boundary element method. These methods are based on the

moving Green’s functions for a layered half-space.

Numerical models

An analytical model such as those mentioned above is limited in scope to

simple geometries and homogeneous materials. For analysis of more com-

plex geometries or of heterogeneous grounds numerical models using finite

elements (FE) or boundary elements (BE) are required, [14]. The boundary

element method is a numerical method to solve partial differential equa-

tion. The BEM distinguish itself from the FEM because is a boundary

14
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method, meaning that the numerical discretization is conducted at reduced

spatial dimension. For example, for problems in three spatial dimensions,

the discretization is performed on the bounding surface only; and in two

spatial dimensions, the discretization is on the boundary contour only. This

reduced dimension leads to smaller linear systems, less computer memory

requirements, and more efficient computation.

A two-dimensional model has been developed by Chua in [15] where is in-

vestigated the ground-bornee vibration in buildings induced by underground

railway traffic. This model, however, cannot account for wave propagation

in the direction of the track.

A three-dimensional dynamic tunnel–soil interaction problem is pre-

sented in [16]. The problem is solved using a finite element formulation

for the tunnel and a boundary element method for the soil. The periodicity

of the tunnel and the soil in the longitudinal direction is exploited using the

Floquet transform [17], limiting the discretization effort to a single bounded

reference cell. The proposed model is based on the following hypotheses:

the tunnel is assumed to be periodic in the direction of its longitudinal axis

with a period L, the tunnel is embedded in a horizontally layered soil, and

all displacements and strains remain sufficiently small so that linear models

can be used.

In many situations, the ground and built structures can be assumed to

be homogeneous in the track direction. For such engineering configurations,

an approach has been suggested [18] in which the problem is transformed

into a sequence of 2D models depending on the wavenumber in the track di-

rection. For each wavenumber, the finite cross-section of the built structure

is modeled using the finite element method, and the wave propagation in

the surrounding soil is modeled using the boundary element method. The

FE and BE domains are coupled and the global FE/BE equations are then

solved, giving the component to the response at this wavenumber. The ac-

tual response is then constructed from these components using an inverse

Fourier transform. This methods are known as two-and-half dimensional

(2.5D) methods.

An example of this method has been presented in [19], for predicting

ground vibration from trains running either on the ground surface or in

tunnels. This model requires the ground and built structures to be homoge-

neous in the track direction but allows an arbitrarily shaped cross-section.
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With this method the computing resources required are reasonable for prac-

tical analyses and predictions of real cases, but still it is a critical resource

that has to be taken into account.

The program used in this thesis, WANDS (Wave Number Domain Soft-

ware), to predict the wave propagation in the ground is a 2.5D model. The

theory behind this model is presented in [20] and summarized in Appendix B

to explain a simple example.

Empirical models

Nelson and Saurenman [21] presented an empirical procedure to predict

ground-borne noise and vibration caused by rail transportation systems on

experimental results at residential and commercial building near at-grade

and subway tracks. Two particular features of the method are the use of

impact-testing procedure to characterize vibration propagation and the use

of 1/3 octave band force to represent specific vehicle and track systems.

The main steps of the prediction procedure are: selection of a trackbed

force density to represent the trains, determination of a line source response

from measured mobilities, calculation of building response and calculation

of noise.

There are many other example of empirical approaches like Greer’s method

for the calculation of re-radiated noise [22]. Hood in [23] used Greer’s

method to develop procedures for assessment criteria and calculation for

ground-borne noise and vibration from trains in tunnels.

1.3 Hybrid models

Since the whole 3D models for the vehicle dynamics and waves propagation

in the ground has a computational cost too high to be used for complex

problems and the frequency-wavenumber models are not able to take into

account the vehicle dynamics, a novel methodology was recently developed

which is normally addressed as hybrid model.

To the author’s knowledge the only publication that deals this topic is

[24]. In this thesis the author uses a model that operates in the time and

spatial domain and was originally developed to study wheel/rail interaction

that consists of a series of wheels running along a track supported by discrete

sleepers on ballast and ground springs. The model is used to determine the
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force time histories of interest. An axisymmetric layered ground analytical

model is then applied to represent an elastic layered ground. This is used

to obtain the transfer mobilities from each sleeper position to a receiver

position. These are combined with force spectra obtained from the whee/rail

interaction model to give the response at the receiver location.

The main idea of this thesis is to use the results from a frequency-

wavenumber model in order to obtain the ground transfer functions and

wave propagation properties. Separately, using a program that simulate the

vehicle dynamics to obtain the forces due to the pass-by of the train to give

as an input in the hybrid model, for example the wheel/rail contact forces

or the forces transfered to the ground. A third program is to be used to

post process and couple the results from the frequency-wavenumber domain

with the results form the time domain.

Fig. 1.2 shows a simplified block diagram to explain the main idea of the

hybrid model.

Figure 1.2: Block diagram for the hybrid model

For this work two existing softwares have been used: one, developed at

Politecnico di Milano, that simulates the vehicle dynamics; and one, devel-

oped at University of Southampton, that simulates the propagation of the

waves in the ground. The software for the coupling has been implemented

based on the theory found in [24].
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Hybrid modelling of train

induced ground vibration

This Chapter describes a methodology for coupling the pass by of a train

obtained with a time domain track/vehicle dynamics model with the transfer

mobilities of the ground obtained with a frequency-wavenumber domain

ground model. This methodology has been described in, [24].

For this work of thesis different softwares, from the ones found in [24], has

been used but the main idea of the coupling methodology remains the same:

with the time domain track/train model the forces underneath the sleepers

are obtained, with the frequency-wavenumber ground model the transfer

mobilities from the sleepers to a receiver are obtained and the coupling is

done with the auto and cross spectra of the forces in order to reproduce the

time dependance due to the movement of the train.

The following Sections describe the different softwares and the methodol-

ogy used to get the ground response. Section 2.1 describes the track/vehicle

dynamics model developed from the Mechanical Engineering department at

Politecnico di Milano University which has been use to obtain the forces

due to the pass-by of the train. Section 2.2 presents the semi-analytical

frequency-wavenumber domain ground model developed at the Institute of

Sound and Vibration at University of Southampton that has been used to

extract the ground transfer function between the sleepers and the receiver.

Section 2.3 describes the coupling methodology that makes possible the in-

teraction between a time domain simulation and a frequency-wavenumber

one.
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2.1 Polimi train/track interaction model

The model of train–track interaction is defined in the time domain and

this allows to take into account the non-linear effects associated with the

wheel–rail contact, [9]. The model is based on a three-dimensional finite

element representation of the track and everything else that needs to be

modelled with the FE method, as presented also in Section 3.1, and on a

mixed rigid/flexible multi-body description of the trainset. The equations

of motion for these two subsystems are written separately, with wheel–rail

contact forces acting as the coupling terms between the two sets of equations

and are integrated using a time-stepping algorithm based on the Newmark

method.

2.1.1 Finite element model of the track and tunnel

As shown in Sections 3.1.1, 3.1.3 and 3.1.4 three different finite element

models have been prepared: one that represents the track alone attached

through spring elements, that represent the stiffness of the sleepers, to a

rigid ground; one that represents the track coupled with the tunnel and the

tunnel is attached to a rigid ground through spring elements that represent

the stiffness of the equivalent surrounding ground; the last one is a particular

case of the tunnel model where the rail presents a joint irregularity that

gives higher levels of the forces. They are all over 40 meters long in order

to minimize the effects of wave reflection at the boundaries.

Using a matrix-based notation, the equations of motion for the track, or

track and tunnel, finite element model becomes

Mtẍt + Ctẋt + Ktxt = Fct(xt, ẋt, xv, ẋv, V, t) (2.1)

where Mt, Ct and Kt are the mass, damping and stiffness matrices of the

finite element model respectively, xt is the vector of the nodal coordinates

(displacements and rotations), xv is the vector of trainset coordinates and

Fct is a vector of generalized nodal forces representing the effect of wheel–rail

contact forces, as shown in [25]. It is observed in equation (2.1) that vector

Fct is a function of both the track state xt, ẋt and the trainset state xv, ẋv,

and hence acts as a coupling term between the set of equations governing

the vibration of the track and those describing the dynamics of the trainset
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Figure 2.1: Multy-body simplification of the train from [25]

traveling along the track, see below. Additionally, vector Fct depends on the

trainset forward velocity V and explicitly on time t.

2.1.2 Multy-body model of the trainset

A multi-body model was developed by the Politecnico di Milano to describe

the motion of rail vehicles travelling along a track.

The entire trainset is subdivided into elementary units of the following

types:

• carbody, modelled as a single rigid body;

• bogie assembly, modelled as a rigid bogie frame connected by primary

suspensions to two flexible wheelsets (or possibly three);

• other bodies attached either to a carbody or to a bogie frame (e.g.

motors, converters, etc.), modelled as rigid.

The elementary units are connected to each other by linear and nonlin-

ear springs and dampers reproducing the secondary suspensions and other

elastic connections such as links between carbodies, elastic motor suspen-

sion etc, as shown in fig. 2.1. By combining the above listed elementary

units, any specific trainset architecture may be derived, e.g. rail vehicles
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formed by two bogies and one carbody, or more complicated configurations

like articulated trainsets.

Each rigid body is assigned with five degrees of freedom, the forward

speed of body center of mass being set to a constant value V , whereas for

each flexible wheelset, the movement with respect to the moving reference is

defined as the linear combination of the unconstrained wheelset eigenmodes.

In addition to the five rigid motion modes, bending and torsion modes and

some modes corresponding to local deformation of the wheels are typically

included in the analysis to reproduce wheelset vibration in the 0–500 Hz

frequency range.

In order to deal with the possible negotiation of small radius curves

along the branch line (which may be the case for urban turnouts, especially

in tramway lines), the motion of each elementary unit is described with

respect to a moving reference travelling with constant speed along the track

centre-line and keeping the Z axis tangent to the track centreline and the

X axis orthogonal to the rail level. By assuming for each module in the

trainset small displacements relative to the corresponding moving reference,

the trainset equations of motion are linearised with respect to kinematic

nonlinear effects only, and they become

Mvẍv + Cvẋv + Kvxv = Fe(V, t) + Fi(V, t)+

+ Fnl(xv, ẋv) + Fcv(xt, ẋt, xv, ẋv, V, t)
(2.2)

where Mv, Cv and Kv are respectively the mass, damping and stiffness ma-

trices of the trainset, xv the vector collecting the trainset coordinates, Fe the

vector of generalised forces produced in the secondary suspensions and car-

body links by the different motion of the moving references associated with

the modules connected by the suspension, Fi the vector of inertial forces due

to the non-inertial motion of the moving references, Fnl the vector of non-

linear forces due to nonlinear elements in the suspensions, e.g. bumpstops,

and finally Fcv is the vector of generalised forces due to wheel/rail contact,

which are nonlinear functions of the track and trainset coordinates and of

their time derivatives, as shown in [5].

Because the Politecnico di Milano vehicle dynamics software is very ver-

satile any kind of train can be reproduced. The train used to conduct the

time domain simulations is the one used in [26] and
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The model used to simulate this train is a three cars, in order to reduce

the computational time, consisting of two motor cars and one trailer car

with the same specification as the one used for the CONVURT project [26]

and also reported in Appendix A.

2.1.3 Wheel/rail contact model

The contact model is based on a nonlinear multi-Hertzian approach studied

at Politecnico di Milano and presented in [27]. This means that the coeffi-

cient CH , which is the coefficient of the Hertzian formulae, relates the normal

contact force to the power 3/2 of the elastic compenetration of the wheel

and rail. This coefficient is computed as a function of the local curvatures

of wheel and rail profiles in the contact point.

The computation of wheel–rail contact forces is performed first by a

geometric analysis of the contacting bodies and the results are stored in the

form of contact tables that are then used to compute the wheel–rail contact

forces during the simulation of the vehicle motion. This procedure allows a

CPU-time efficient computation of wheel–rail forces and has proven to be

reliable and accurate when applied to the simulation of ‘standard’ wheel–rail

contact conditions like the ones of interest for this thesis, [9].

During the numerical integration of equations (2.1) and (2.2), wheel–rail

contact forces are computed. Three main steps are at the basis of this

integration: the displacements and velocities of the rails and of the wheel are

computed in all the potential contact points; the kinematic parameters are

then used to detect the active contact points (e.g. those points where contact

actually takes place), for these points, contact parameters are obtained by

contact table lookup and normal and tangential contact forces are derived;

at last, wheel–rail contact forces are transformed into the nodal forces Fct

acting on the track and the generalised forces Fcv acting along the trainset

coordinates.

In order to compute wheel/rail contact forces, the displacements and

velocities of the potential contact points on the wheel and rail surfaces need

to be computed.

Lets start considering the rail displacements and velocities. The local

position ξj of the wheel along the beam element is computed and, using the

beam element shape functions fj,k(ξj), the displacements and rotations of

the rail section in contact with the wheel are derived. The contact point
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displacements are computed by multiplying the vector representing rail sec-

tion displacements and rotations by a matrix relating the contact point

displacement with the rigid motion of the rail section. The effect of rail

irregularities is accounted for by adding an additional displacement vector

xrirr(sj), a function of the longitudinal position of the wheel sj . The irreg-

ularity vector is defined only in the Xt, and Yt directions and is obtained

from a precomputed space distribution of irregularity. The rail irregularity

used for the time domain simulation is discussed in detail in Section 3.2.1.

The same thing can be done to calculate the wheel displacements and veloc-

ities. As well as for the rail also for the wheel can be considered a superficial

irregularity xwirr(θj) accounting the wheel roughness also shown in detail in

Section 3.2.1.

Based on the calculation of the relative wheel/rail displacements and

velocities in all potential contact points, whee/rail contact parameters are

computed by interpolation of the multisection contact table, using as inputs

the lateral relative wheel/rail displacement and the longitudinal position of

the jth wheelset. The normal component of the contact force in the kth po-

tential contact is then computed as a function of the elastic wheel/rail pene-

tration and of the penetration speed, both function of the relative wheel/rail

displacement, considering a nonlinear Hertzian contact element with an ad-

ditional penetration dependent damping term, introduced to improve the

stability of the numerical procedure. The longitudinal and transverse com-

ponents of the contact force, are computed as a function of the normal force

components of the longitudinal and transversal creepages and of the spin

creepage taking place in the contact patch. Since for this model only a

strait rail is considered the effects of the transverse contact force should be

negligible.

By the use of the principle of virtual work the vectors Fcv, containing

the generalised forces along the trainset coordinates, and the vector Fct,

containing the generalised nodal forces of the track finite element represen-

tation, can be obtained as shown in [5]. The results for the contact forces

obtained by the time domain simulation are shown in Section 3.2.

2.1.4 Output

From the Polimi train/track model a whole sort of different output can be

obtained. Firstly the time history of the contact forces between the wheel
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and the rail can be extracted, than also the forces exchanged from any spring

element, for example the ones underneath the sleepers in the finite element

model of the track used in this thesis. Other types of output are related to

the nodes of the FE structure and to the crucial points of the vehicle.

From the FE model all the time histories of displacement, velocity and

acceleration for every node of the structure can be extracted, usually to

reduce the size of the output and so also the computational time the nodes

of interest can be specified before running the analysis.

From the vehicle the time histories of the position, velocity and accel-

eration of the journal box can be extracted. Those can be used to verify if

the time domain simulation has successfully run.

2.2 ISVR ground model

Vibration can propagate in infinite solid elastic materials by two fundamen-

tal mechanisms: shear and dilatation. Because of these two mechanisms also

two fundamental wave speeds are related to the material properties of the

soil. The ground can be represented as an elastodynamic material, described

by Navier’s equations, [28]

(λ+ µ)
∂∆

∂x
+ µ∇2u = ρ

∂2u

∂t2

(λ+ µ)
∂∆

∂y
+ µ∇2v = ρ

∂2v

∂t2

(λ+ µ)
∂∆

∂z
+ µ∇2w = ρ

∂2w

∂t2

(2.3)

where u, v, w are the x, y, z components of displacement u, ∆ = ∂u
∂x+ ∂v

∂y+ ∂w
∂z

is the dilatation and λ and µ are Lamé’s constants for the material, λ is the

first Lamé constant,

λ =
νE

(1 + ν)(1− 2ν)
(2.4)

and µ is the second Lamé constant, or shear modulus

µ =
E

2(1 + ν)
(2.5)

where E is Young’s modulus, and ν is Poisson’s ratio.

The first fundamental wave speed is the longitudinal wave speed (the P-
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wave speed) and the second, the transverse wave speed (the S-wave speed).

In a longitudinal wave the particle displacement is parallel to the direction

of wave propagation. Simple examples of this kind of waves are the waves

propagating along the axis of a beam or the sound waves propagating in air,

[29]. In a transverse wave the particle displacement is perpendicular to the

direction of wave propagation. Simple examples of this kind of waves are

the transversal waves of a string, [29]. The ground longitudinal wave speed

is given by

c1 =

√
λ+ 2µ

ρ
(2.6)

while the transverse wave speed (the S-wave speed), is given by

c2 =

√
µ

ρ
(2.7)

The longitudinal wave speed is always greater than the transverse wave

speed. There is a fundamental relation between the wave speed (or speed of

sound) c, and the angular frequency ω

c =
ω

k
(2.8)

where k is the wavenumber and is expressed in [rad/m].

In order to model wave propagation in the ground different approaches

can be used. The model developed at the University of Southampton, called

WANDS (WAve Number Domain Software), is a 2.5D model. The idea

of the 2.5D model is to describe a two dimensional section using finite-

element (FE) and boundary-element (BE) methods to model the geometry

and properties of the ground, while in the third direction the models are

formulated in terms of wavenumber so the structure is considered infinitely

long and homogeneous.

• Model of the section of the ground using FE and BE methods

• Forced response in the frequency wavenumber domain computed per

every frequency and every wavenumber

• Reconstruction of the third dimension from the wavenumber domain

• Forced response in the space frequency domain
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Compared with a conventional, three-dimensional finite or boundary-element

model, this is computationally faster and requires far less memory, even

though calculations must be performed for a series of discrete wavenumbers.

WANDS extracts also the total system matrices from where, as shown

in Appendix B, if the geometry is not complex, the dispersion curves can be

obtained. These represent the relation between the angular frequency ω and

the wavenumbers k. The frequencies obtained with k = 0 are called cut-

on frequencies and they represent the frequency at which that specific wave

starts to propagate. Before the cut-on frequency the wave is a decaying wave,

this means that it is present only in the nearfield but it does not propagate.

For more complex geometries a numerical integration is needed. WANDS

solves the numerical problem for every frequency and every wavenumber

in a specific range given as input. From the numerical integration in the

frequency-wavenumber domain the dispersion curves of the structure can be

obtained. From this results, by applying the inverse Fourier transform the

frequency response of the structure can be obtained.

Each type of FE or BE domain is termed a “sub-model”. In addition

the coupling conditions implemented to join the different FE or BE models

are also referred to as sub-models or coupling sub-models. There is a large

number of sub-models implemented in WANDS: Plate FE models, Solid

FE models, Fluid FE models, Fluid BE models, Solid BE models and the

coupling between them. Also Beam elements can be coupled with Plate or

Solid FE models. Since the coupling between some sub-models are not yet

working properly, in the study carried on in this thesis only the Solid FE

models, also coupled with Beam elements, and the Solid BE models have

been used.

As shown also in Appendix D the relation that stays as starting point

for all models is the Hamilton’s principle, [20]

δ(U − T )− δW = 0 (2.9)

where δ should be interpreted as “the first variation of”, U is the potential

energy in the system, which for the systems here is the same as the strain

energy, T is the kinetic energy and W is the virtual work on the system

which includes both external forces as well as internal forces that give rise

to losses in the system. In addition to equation (2.9) also Dirichlet boundary
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conditions must be fulfilled. For structures these boundary conditions im-

pose constraints on the displacements. A second set of boundary conditions,

Neuman boundary conditions, are implicitly included in equation (2.9). For

structures such boundary conditions prescribes the relationship between dis-

placements and forces of the boundary.

By using expressions for U , T and W and substituting them into equa-

tion (2.9), the weak form of the equation of motion can be obtained.

2.2.1 Finite element model

Starting from the equations for the kinetic energy, the potential energy and

the virtual work the differential equation of motion of the finite element can

be derived (see also [30]):

[M ]q̈(x, t) + [K0]q(x, t) + [K1]
∂

∂x
q(x, t)− [K2]

∂2

∂x2
q(x, t) = F (x, t) (2.10)

where [M ], [K0] and [K2] are symmetric matrices, [M ] and [K2] are positive

definite and [K0] is non-negative. It can also be shown that [K1] is an anti-

symmetric matrix. From this equation applying the corresponding matrices

of the assembled FEM and thus the global differential equation of motion

can be assembled.

[
K0 + iβK1 + β2K2 − ω2M

]
ũ(β) = F̃ (β) (2.11)

The transformed displacement vector ũ(β) can be evaluated from equa-

tion (2.11) for each wavenumber β and then the actual displacements may

be obtained using an inverse Fourier transform. For simple cases, as shown

in Appendix B, from the system matrices, with a post processing, also the

dispersion curves of the model can be obtained.

In WANDS, for the solid finite element models, many topologies are

implemented: quadrilateral linear with 4 nodes per element, triangular linear

with 3 nodes per element, quadrilateral cubic with 12 nodes per element,

triangular cubic with 10 nodes per element, quadrilateral quadratic with 8

nodes per element and triangular quadratic with 6 nodes per element. In

order to define a finite element its type must be specified, the material which

the element is made and the coordinates of the corresponding nodes. The

material can be either isotropic or orthotropic.
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2.2.2 Boundary element model

The boundary element method is a numerical method to solve partial dif-

ferential equations. In some cases a structure can be described simply by

what happens at the boundary and that is the main idea of the boundary

element method. The boundary of the structure is discretized by a finite

number of elements with known shape functions, like for the FE method,

and the integration is reduced to just the boundary of the structure due to

Gauss’ integral theorem.∫
Ω
div v(x) dx =

∫
∂Ω
v · ndsx (2.12)

Where Ω is the total domain and ∂Ω is the boundary. This is much lighter

than describing with the FE method a whole structure so for big objects,

for example a halfspace, it is very convenient because the number of nodes

is much smaller. The problem occurs when it is of interest to know what

happens inside the structure because the boundary element method is only

capable to describe what happens on the boundaries.

The x cross-section of the infinitely long elastic body is denoted by A and

the boundary of A in its own plane is denoted by Γ. For this elastic body, two

elasto-dynamic states are defined. The firs one is described by displacements

uk(x, y, z, t), body forces ρbk(x, y, z, t) and boundary tractions pk(x, y, z, t),

where k = 1, 2, 3 corresponds to the x, y and z directions. The second state

is described by u∗k(x, y, z, t), ρb
∗
k(x, y, z, t) and p∗k(x, y, z, t). As shown in [30]

the reciprocal relation between the two states in the wavenumber domain

can be derived∫
Γ
p̃k(β, y, z)ũ

∗
k(−β, y, z) dΓ +

∫
A
ρb̃k(β, y, z)ũ

∗
k(−β, y, z) dA =

=

∫
Γ
p̃∗k(−β, y, z)ũk(β, y, z) dΓ +

∫
A
ρb̃∗k(−β, y, z)ũk(β, y, z) dA

(2.13)

When β is set to zero, this recovers the reciprocal theorem in elasto-dynamics

for the plane-strain problem. The assembled equation of the boundary ele-

ment sub-model becomes, [30]

Hũ(β) = Gp̃(β) + B̃(β) (2.14)

where H and G are squared matrices and B̃ are the forces that acts on the
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body.

In WANDS, for the solid boundary element models, there is only one type

of element and it is a quadratic element with 3 nodes per element. In order to

define the boundary element the material and the nodes coordinate must be

defined. There are some conventions to take into account while building the

input file. If the node numbering of the boundary elements is anti-clockwise

an internal problem is defined otherwise, for a clockwise numbering, an

external problem is specified. To define a semi-infinite problem some special

elements are defined, called edge elements, that neglect the reflection of the

waves from the borders of the model. In order to achieve this result the

perfectly matched layer (PML) have been used, [31]. This is an artificial

absorbing layer that neglect the reflection of the incident waves.

For those nodes that are not coupled with any other element boundary

conditions have to be defined in order to get a response, they are defined by

cau+ cbt = cc (2.15)

where u is the displacement in the x, y and z directions and t is the traction

vector, which is a force per unit area acting on the boundary, in the same

directions, while ca, cb and cc are complex scalars defining the boundary

condition. Hence, for example, if a rigid boundary is considered the condi-

tion u = 0 is needed, otherwise if a free surface is needed the condition t = 0

is required.

2.2.3 Coupling between sub-domains

It can happen, especially while considering complex cases, that different sub-

domains have to be modelled. A domain such as a layered ground, which

may include built structures like a tunnel and a track, as will be developed

in this thesis, has to be divided in different sub-domains. Each of the BE

sub-domains is homogeneous. For each sub-domain, a BE equation or a

FE equation can be constructed, and coupling of these equations gives the

global equation for the whole system.

A single BE equation can be written for all the BE sub-domains. Rear-

ranging equation (2.14) pre-multiplying by G−1 it becomes

Rbeũ(β) = p̃(β) + s̃be(β) (2.16)
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If, in addition to the BE sub-domains, a FE sub-domain is present, then

the FE equation must be coupled with equation (2.16) to give the global

equation for the whole model. The displacements, tractions and nodal forces

of the nodes at the FE–BE interface are denoted by ũI(β), p̃I(β) and F̃I(β).

Those to the remaining nodes are denoted by ũbeR(β) and p̃beR(β) for the

BE sub-domains, and ũfeR(β) and F̃feR(β) for the FE sub-domain. Thus

equation (2.16) can be split into[
RbeRR RbeRI

RbeIR RbeII

]{
ũbeR(β)

ũI(β)

}
=

{
p̃beR(β)

p̃I(β)

}
+

{
s̃beR(β)

s̃beI(β)

}
(2.17)

and the FE equation (2.11) can be split into[
KfeII KfeIR

KfeRI KfeRR

]{
ũI(β)

ũfeR(β)

}
=

{
F̃I(beta)

F̃feR(β)

}
(2.18)

A transformation matrix, T , may be constructed to convert the tractions

p̃I(β) of the boundary element formulation at the FE–BE interface into the

equivalent nodal forces to enable assembly with the FE matrices, that is,

F̃I(β) = −T p̃I(β) (2.19)

The dimension of the matrix T depends on the number of nodes at the

FE–BE domain interface. Substituting equation (2.19) into equation (2.17)

gives[
RbeRR RbeRI

TRbeRI TRbeII

]{
ũbeR(β)

ũI(β)

}
=

{
p̃beR(β)

−F̃I(β)

}
+

{
s̃beR(β)

T s̃beI(β)

}
(2.20)

The tractions on the FE–BE interface have thus been converted into equiv-

alent nodal forces. This means the possible discontinuity of tractions on the

FE–BE interface does not have to be considered. Assembling equation (2.18)

with equation (2.20) yield RbeRR RbeRI 0

TRbeIR TRbeII + KfeII KfeIR

0 KfeRI KfeRR



ũbeR(β)

ũI(β)

ũfeR(β)

 =


p̃beRR(β) + s̃beR(β)

T s̃beI(β)

F̃feR(β)


(2.21)

This is the global equation for the whole system.
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2.2.4 Output

WANDS gives as outputs the whole system matrices, that can be use in case

of error to verify if the model is correct, the single sub-model matrices that,

as shown in Appendix B, can be also used to generate the dispersion curves

of the model and a pair of files, representing modulus and phase of the

displacements, for each direction which contain the results of the numerical

integration of the ground.

Due to the construction of WANDS the results are obtained in the spatial

domain so that they represent the transfer functions of the ground. These

transfer functions represent the displacements to a certain node and the

forced node. Those transfer functions have been calculated also in the third

dimension. If a Fourier transform, with respect to the space, is applied to

these results then the dispersion curves of the node considered are found.

From these it can be calculated the speed of the waves propagating in the

material and the relation between the frequency and the wavenumber in the

propagation.

2.3 Time domain frequency-wavenumber domain

coupling

The hybrid model, as said before, combines the results from the time domain

track/vehicle interaction model with the transfer mobilities of the ground

obtained with WANDS. The forces can be obtained at different positions

depending on what the two different models can and can not reproduce.

The forces from the time domain model can be extracted at different levels:

• Contact force between the wheel and the rail

• Force transfered from the sleepers to the ground (or tunnel invert)

• In case of tunnel the forces transmitted from the tunnel walls to the

surrounding ground

The forces can be applied at different levels in the wave frequency domain

model:

• On the rail top, if the rail is modelled

• On the ground surface (or tunnel invert)
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• In case of the tunnel on the ground surrounding the tunnel

The choice depends on the possibility to model the different part of the

structure. During the work of this thesis it has been chosen to use the forces

transmitted to the ground from the rail.

In order to explain and easily compare the methodology of this approach

the case studied in [24] has been replicated. This considers a non ballasted

track laid on the surface of a two layered ground.

In [24] the ground model used is able to represent the track along its

length, while with WANDS this is not possible so in order to get the transfer

mobilities needed a post processing of its results must be performed.

For a system where the transfer function is known the response is simply

A(s) = H(s)B(s) (2.22)

where H(s) is the transfer function and B(s) are the inputs. In this case

of study the transfer function is the mobility of the ground Y (ω) and the

input is the force F (ω). The mobility between the two points, one where

the force is applied and one where the response is observed, can be written

as Y1,2(ω), so the velocity of the point 2 can be found as

v2(ω) = Y1,2(ω)F (ω) (2.23)

If the system is linear the superposition of the effects of different point

can be used to obtain the velocity of the point 2 due to different points of

excitation.

ṽ2(ω) =
N∑
m=1

Ym,2(ω)Fm(ω) (2.24)

where ṽ2(ω) is the velocity due to different point of excitation.

Sometimes, in order to get more significant results, it could be better to

use the power spectral density (PSD) of the variables of interest, this turns

equation (2.23) into

v∗2(ω)v2(ω) = Y ∗(ω)F ∗(ω)F (ω)Y (ω) (2.25)

where ∗ is the complex conjugate. This is the idea at the base of the linking

process.
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The link between the two models is made by multiplying the force spec-

tra obtained from the track/vehicle interaction model, including the cross

spectra, with the mobilities of the ground. The applied forces at the ground

surface are converted into power spectral densities and cross power spectral

densities and written into the matrix SFF . It is important to include all the

cross spectral densities as these include the information about the relative

phase of each force that takes into account the movement of the wheels along

the track. So the response at the receiver is given by

Sww = Y HSFFY (2.26)

where Y is the matrix of the transfer mobilities of the ground, H is the

Hermitian transpose (complex conjugate transpose) and Sww is the power

spectral density of the ground velocity at the receiver.

2.3.1 Forces post process

From the time domain integration the forces from underneath the sleepers

can be extracted. Since the sleepers have been modelled as lumped masses

and spring elements, from the track/vehicle model the forces from the sleep-

ers spring are extracted. Because the time domain integration needs a very

long computational time the length of the rail considered for the simulation

time considered might be too short in order to get a consistent result as

output. At this purpose, since the forces from the sleepers are not very

different, these can be copied in order to have with the same computational

time a much larger set of outputs. At this purpose a zero padding, [32],

has been used. Zero padding a time history means that the time history is

increased by adding a set of zeros. This does not add any new information

to the frequency response but it increases the frequency resolution.

Fig 2.2 shows an exhample of the force from underneath a sleeper ob-

tained from the time domain integration. The negative sign of the force is

due because of the conventions taken of the Z axis pointing upwards. The

lower spikes are due because of the passage of the wheelset on the node of

interest and, since the train used in this case is composed of one car and four

wheelsets, one sleepers sees 4 maxima. The positive maxima are due to the

deformation of the rail in the approach of the wheelset to the sleeper. This

or a series of this forces, depending on how many forces from the sleepers

34



Hybrid modelling of train induced ground vibration

0 0.5 1 1.5 2 2.5 3
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

4

time [s]

fo
rc

e 
[N

]

Figure 2.2: Force time history from underneath a sleeper

are extracted from the time domain simulation, can be replicated, with the

right delay, to obtain a longer time domain simulation but still keeping the

computational time reasonable. As shown in Section 3.2 the forces given as

imput to this method do not need to be all the same. This is due because

of the possibility of a model of the rail that considers also some kind of

irregularity that amplifies the response of the ground at the receiver.

Once the forces are obtained and copied, if needed, the Fourier transform

of the time history of these has to be performed, defined as

Fg(ω) =

∫ +∞

−∞
fg(t)e

−jωt dt (2.27)

where fg is the time history of the forces from underneath the sleepers, ω

is the circular frequency and Fg is the spectra of the force in the frequency

domain. Since the time history of the force is not infinitely long and it’s

not continuous but discrete equation (2.27) can not be used but the dis-

crete Fourier transform (DFT) is required. Here the fast Fourier transform

(FFT), [32], which is a faster algorithm to compute the DFT of a signal,

implemented in MatLab has been used.

Once the frequency spectra Fg(ω) of every force is obtained matrix SFF ,

of the PSD and cross PSD of the forces, can be obtained. The PSD or cross
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PSD of a signal is defined in, [32], as

SFiFj (ω) =
F ∗i (ω)Fj(ω)

T
(2.28)

where i = 1, 2, ..., N and j = 1, 2, ..., N where N is the number of sleepers

considered and F ∗i is the complex conjugate of the spectra of the force un-

derneath the i-th sleeper and T is the total time of the force time history.

As result this gives a N ×N matrix organized as

SFF (ω) =
1

T


F ∗1F1 F ∗1F2 · · · F ∗1FN

F ∗2F1 F ∗2F2
...

...
. . .

F ∗NF1 · · · F ∗NFN

 (2.29)

In the end a square matrix, per every frequency, is obtained.

2.3.2 Ground post process

From the frequency-wavenumber domain, as seen in Section 2.2.4, two ma-

trices, one with the displacements, |w(x)|, and one with the phases, ϕ(x),

are obtained. To get the transfer mobilities first the complex number of the

displacement have to be rebuild as

α(x) = |w(x)|ejϕ(x) (2.30)

Equation (2.30) represents the receptance of the ground for every node

in the x direction. From these the whole set of receptances the ones of the

node of interest have to be extracted. Since WANDS sorts the results in

such a way that the node is related to the number of wavenumbers gave as

input to WANDS, the node of interest is easily found.

Because WANDS does not give a reconstruction of the space in the x

direction this has to be obtained from the wavenumber range and discretiza-

tion used for the frequency-wavenumber integration through the relation

λ = 2π/k. The position of the sleepers is known, since the spacing of the

sleepers is known from the FE model of the track, so once the third dimen-

sion is reconstructed the transfer receptances of the ground can be extracted
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and turned into transfer mobilities by multipling the receptances by jω.

Yi(ω) = jωαi(ω) (2.31)

where Yi is the mobility of the ground for the i-th sleeper considered. Once

the mobilities of the sleepers are obtained the matrix Y of the transfer

mobilities of the ground can be assembled as

Y =


Y1

Y2

...

YN

 (2.32)

In [24] the receiver position was steady and the sleeper position was

changing, in this case, since with WANDS this can not be done, the idea is

to move the receiver instead in order to extract the right transfer mobilities

of the ground.

Figure 2.3: Idea of moving the receiver to obtain transfer mobilities

Fig. 2.3 shows the idea of moving the receiver in order to obtain the

transfer mobilities of the ground between the forced point and the ‘moving’

receiver.

Once the matrix of the forces, SFF , and the matrix of the ground mobil-

ities, Y , are obtained the ground response to the pass-by of the train, Sww,

can be obtained from equation (2.26), it has only to be careful about the

frequencies since the time domain and the frequency-wavenumber domain

models might have a different frequency discretization, so a linear interpo-
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lation might be needed in order to obtain the same frequency for either

case.

38



Chapter 3

Time domain model

This Chapter describes the input models for the Polimi time domain track

vehicle interaction program and its outputs.

Section 3.1 presents the finite elements model of the rail, of the tunnel

and a particular case of the rail with a joint. The specifications for these

models have been found in the CONVURT project [26] where an intense

experimental campaign has been carried on to investigate the problem of

ground-born noise and vibration, an extract of the data is also reported

in Appendix A. These models will be used as input to the time domain

numerical integration. In order to better understand the physics of the

problem also two analytical models for the track are presented and compared

with the results from the frequency response of the FE model of the track.

Three different configuration have been prepared to simulate the pass-by of

the train

• Finite element model of the rail

• Finite element model of the rail coupled with the tunnel

• Finite element model of the rail containing a singularity, a joint, cou-

pled with the tunnel

In Section 3.2 are presented the results from the time domain integra-

tion with the Politecnico di Milano model of the train/track interaction.

Firstly in Section 3.2.1 an analytical model is used to better understand

the physics of the contact force by inspecting in detail every component. It

starts by studying the rail and wheel mobilities which are the main causes
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of the contact force, than it studies the mobility of the contact stiffness that

couples the wheel with the rail. In the end it studies the roughness that is

the main cause of the magnitude and variability of the contact force. Sec-

tions 3.2.2 to 3.2.4 present the contact forces and the forces transfered to

the ground (or tunnel invert) using the different FE models presented. In

the end a comparison between the forces obtained with the different models

is presented.

3.1 Inputs for Polimi time domain model

This Section presents the FE models that have been used as input to the

time domain track/vehicle interaction program.

It starts with the FE model of the rail and the frequency responses are

presented. Than three different analytical models have been used to increase

the knowledge of the problem. It will be seen that for the case of structural

noise even a simplified model of the rail, like the Euler-Bernoulli beam used

for the FE model, is sufficient.

After all the models of the rail are presented a comparison between

them explaining the differences and trying to fit them in order to get a close

response with all the different models it is made.

At last the FE model of the rail coupled with a FE model of the tunnel

and a FE model of the rail containing a joint coupled with the FE model

of the tunnel are shown. The first model helps to inspect the differences

between the frequency response of the rail with and without the tunnel and

it helps to understand if the tunnel has an influence on the receptance of

the rail and also on the forces generated from the passage of the train. The

second is prepared in order to inspect the influence of an irregularity on the

forces generated by the passage of the train and the response of the ground

at such a force.

3.1.1 Finite Element Model of the rail

At first has been considered the track alone, withouth the coupleing with

the tunnel, in order to compare the results from the FE model with some

analytical models.

The FE model of the track has been assembled, as shown in fig. 3.1,

using for the rail Euler-Bernoulli beam elements 0.508 m long. The sleepers
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have been modelled as a lumped masses placed at 1.016 m apart so it means

that the sleepers are modelled every other node of the rail structure, witch

is a bit higher than the actual distance found in [26]. This approximation

makes it much easier to eventually couple the rail to a model of the tunnel,

which is a periodic structure 0.508 m long. As the track is directly attached

to the sleepers, the springs in the model are ment to represent just their

local compliance.

Figure 3.1: Scheme of the FE model of the track

Between the sleepers the FE model of the rail has only one node. This is a

limitation for the response at high frequency but since the range of interest

for ground vibration goes up to 200-250 Hz it does not affect the results

obtained with this approximation, [1]. Since the same model was used for

the pass-by of the train, computational time is high and so the number of

nodes must be kept low. Also the choice of the Euler-Bernoulli beam has

limitation at high frequency because it gives a lower output compared to the

Timoshenko beam but, for the same reason, it does not represent a problem,

[33]. To determine the following receptances a 48.768 m FE track model has

been built. In this model the two rails are totally independent because, since

the sleepers are seen has lumped masses, there is no connection between the

two sides.

Fig. 3.2 shows the receptance obtained with the FE model. It can be

noticed that the model is able to represent the ‘pinned-pinned’ resonance.

From the phase graph it can be seen that at low frequency the track model

can be approximated as a spring like structure being the phase near 0 degree

and the magnitude flat: the stiffness of the springs are the dominant effect.

At high frequency the receptance of the track is like the receptance of a

beam, being the phase is near -135 degree and the amplitude proportional

to frequency to the power 3/2.

As a consequence of this behavior the frequency responses at midspan

and over the sleeper are very close, the mass of the rail acts only as a shift
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Figure 3.2: FE model rail receptance

in fact the receptance over the sleeper is lower than the one at midspan.

In the range between 300-500 Hz there is a big difference between the

two responses because in that range it is present the ‘pinned-pinned’ res-

onance. Since the ‘pinned-pinned’ mode is connected to the length of the

span between the sleepers and it excite the modes of an equivalent simply

supported beam of the length of the span it gives a big displacement at

midspan and a small one at the sleepers positions.

Fig. 3.3 shows the receptance obtained from the FE model compared

with the experimental data. From fig. 3.3 it can be seen that at very low

frequency there is a difference between the frequency response of th FE

model and the experimental one, this, as said before, it is probably due to

some errors in the measurements since the frequency range is very wide.

Other than that though the model seems to reproduce well the frequency

response of the rail, the ‘pinned-pinned’ mode is in the right position and

the hight of it is respected. Still there is a bit of difference at high frequency

between the over the sleeper responses, this is probably due to the use of

the Euler-Bernoulli beam for the FE model but, as said before, since this

range is not of interest it does not represent a problem.
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Figure 3.3: FE model rail receptance vs experimental data

3.1.2 Analytical models

Two different analytical models have been use to better understand the

dynamics of the rail and to increase level of confidence. One is based on the

principle that the track is an infinite beam and lays on a continuous elastic

bed, so for this model all the parameters have been converted in per unit

length characteristics; the second one is an infinite beam laying on a discrete

number of supports. The main difference between the two model is that in

the continuous spring bed the ‘pinned-pinned’ frequency is not visible while

in the othe model it is.

Continuous elastic bed

This model has been widely used during the last decades to model track

vibration for rolling noise simulation and it is normally applied to rail-pad-

sleeper-ballast tracks, and its formulation is mainly reproduced in [10]. By

setting properly the parameters’ values it can be adopted to descibe the case

under study. The system rail-pad-sleeper-ballast or ground can be seen as

a continuous two layers support beneath an infinite rail, so that the pad

stiffness, the sleeper mass and the ballast stiffness have to be scaled per unit

length to fit in the model.

43



Chapter 3

Figure 3.4: Representation of the model on a continuous two layers bed

For this analytical model the rail has been modeled as an infinite Tim-

oshenko beam witch has a better response at high frequency but it is not

much different from the the response at low frequency of the Euler-Bernoulli

beam.

The two springs’ bed and the sleeper’s mass can be modelled as a single

equivalent frequency dependent stiffness

s(ω) =
sp
(
sb − ω2m′s

)
sp + sb − ω2m′s

(3.1)

Where sp, sb and m′s are the pad stiffness, the ballast stiffness and the

mass of the sleeper per unit length respectively. If we consider the lim-

its we can see that: at low frequency, ω 7→ 0, the equation (3.1) can be

approximated as

s(ω) 7→ s0 =
spsb
sp + sb

(3.2)

Where s0 is the equivalent stiffness of the two springs in series. In this

particular case sb � sp, since the fasten is considered to be rigid, we can

approximate s0 = sb. At high frequency, ω 7→ ∞, instead the equation (3.1)

can be approximated as

s(ω) 7→ sp (3.3)

It is found that, for this system, two natural frequencies can be found

ω1 =

√
sb
m′s

(3.4)

ω2 =

√
sp + sb
m′s

(3.5)
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It is clear that for ω = ω1 the equivalent stiffness s(ω1) = 0, this corre-

sponds to the resonance of the sleeper mass on the stiffness of the ballast,

while for ω = ω2 the equivalent stiffness becomes s(ω2) = ∞, this corre-

sponds to the resonance of the mass of the sleeper on the combined stiffness

of the ballast and of the pad.

sb 4.3 107 N/m2

ηb 1.2 ballast loss factor
sp 1016 N/m2

ηp 0.2 pad loss factor
κr 0.4 rail share coefficient
ηr 0.2 rail loss factor
m′s 68.898 kg/m

Table 3.1: Continuous elastic bed parameters

It can be seen from table 3.1 that for the pad has been chosen a very high

stiffness this because of the direct fasten of the rail on the sleepers. With

this specifications it is obtained that f1 = 121.6 Hz, while f2 = 1.8 MHz so

there is no movement between the rail and the sleeper.

After solving the partial differential equations’ system the receptance α

at a generic position x for a force applied at x′ can be expressed as

α(x, x′) = u1e
−j ke|x−x′| + u2e

−j kp|x−x′| (3.6)

Where u1 and u2 are

u1 = −
k2
e + C1

GAκr(1 + jηr)(4k3
e + 2C2ke)

(3.7)

u2 = −
k2
p + C1

GAκr(1 + jηr)(4k3
p + 2C2kp)

(3.8)

It is obvious that if the receptance of the rail considered in the same

point where the force has been applied it can be found that equation (3.6)

becomes

α = u1 + u2 (3.9)

Where A is the area of the section of the rail, κr the Timoshenko share

modulus, G is the tangential modulus of elasticity. It can be obtained that
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ke and kp are the wave number and can be determined as

ke =

√
−C2

2
+

√
C2

2 − 4C3

2
(3.10)

kp =

√
−C2

2
−

√
C2

2 − 4C3

2
(3.11)

The terms C1, C2 and C3 are given by the following equations

C1 =
ρrJ22ω

2 −GAκr(1 + jηr)

EJ22(1 + jηr)
(3.12a)

C2 =
m′rω

2 − s(ω)

GAκr
+

ρrJ22ω
2

EJ22(1 + jηr)
(3.12b)

C3 =
m′rω

2 − s(ω)

EJ22(1 + jηr)

(
ρrJ22ω

2

GAκr
− 1

)
(3.12c)
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Figure 3.5: Continuous two layers elastic bed rail receptance

Fig. 3.5 shows the receptance obtained with the model presented above

and with the characteristics considered. It can be noticed that in this case

the receptance seems much like the one obtained with a simple mass-spring

system, this is due to the high stiffness of the rail pad so the rail and the
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sleeper move together as a single mass. Another evident thing that can be

seen is that this model does not show any ‘pinned-pinned’ mode because

there is no discrete separation between the sleepers, this might be a big

approximation.
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Figure 3.6: Continuous two layers elastic bed rail receptancel vs experimental
data

In fig. 3.6 is shown a comparison between the results obtained with the

continuous model and the experimental data. At low frequency there is

always the problem with the experimental data but this result gives more

confidence with what stated before. At hight frequency, since the response

is controlled by the beam and the mass of the two rails should not be dif-

ferent from the experimental one, the response of the model is close to the

experimental one, it can be seen that comparing this results with the one

from fig. 3.3 there is a better fitting with the experimental data probably

due to the use of the Timoshenko beam. As said before between 300-500 Hz

the continuous model does not fit well the experimental data because it can

not reproduce the ‘pinned-pinned’ mode. Moreover in this case it is not

possible to divide the response obtained over the sleeper from the response

obtain at midspan.
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Discretely supported track

The analytical model for the discretely supported track, reported in [10], is

very similar to the one just presented. In fig. 3.7 is presented a drawing of

the model.

Figure 3.7: Discretely supported track model

The rail, again modelled as an infinite Timoshenko beam, instead of

laying on continuous two layers elastic bed is supported by a discrete number

of sleepers. The math behind this model is the same of the continuous two

layers bed with the only difference that instead of using s(ω) it has to be

used K(ω) that is the dynamic stiffness for each support separated by a

spacing dz.

K(ω) =
Kp

(
Kb − ω2ms

)
Kp +Kb − ω2ms

(3.13)

Where Kp, Kb and ms are the stiffness of the pad, the stiffness of the

ballast and the mass of the sleeper. So substituting s(ω) with K(ω) in

equation (3.12) it is possible to obtain u1, u2 and the rail receptance α

can be obtained from equation (3.9) for a discretely supported Timoshenko

beam rail.

Fig. 3.8 shows the rail receptance obtained with the discretely sup-

ported analytical model with the same rail and supports parameters use

in the FE model and in the continuous two layers bed. With this model

the ‘pinned-pinned’ modes and the receptance of the rail above the sleeper

and at midspan can be obtained. It can be seen that at low frequency the

receptance is flat because the model is spring like and the two responses are

close because in this range of frequencies is the ballast stiffness that controls

the response. At high frequency the response is the one of the beam but
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Figure 3.8: Discretely supported rail receptance

it can be seen that are present a lot of resonances that were not present in

fig. 3.2, those are higher ‘pinned-pinned’ modes that cannot be seen from

the FE model due to the lack of elements between the sleepers to obtain

shorter computational time.

It can be seen from fig. 3.9 that at low frequency there is the same prob-

lem with the experimental data, at high frequency there is a fine correspon-

dence with the experimental data and that the ‘pinned-pinned’ resonance

is not in the right position. Also the over sleeper response is well described

by this model. In order to complete the analysis the rail bending stiffness

has been decreased by a 8% to better fit the experimental data for the

‘pinned-pinned’ mode. Fig. 3.10 shows the analytical discrete model after

the changing of the bending stiffness.
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Figure 3.9: Discretely supported rail receptance vs experimental data
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Figure 3.10: Discretely supported rail receptance vs experimental data after pa-
rameter tuning
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3.1.3 Comparison between analytical and numerical models

Since both, the analytical and the numerical models, represent well the

experimental data found in the CONVURT project it could be useful to see

if there are differences between them. Usually the numerical model needs a

higher computational time than the analytical model, on the other hand the

analytical solution can be found only for simple geometries while for more

complex ones the numerical solution is the only way.
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Figure 3.11: FE model vs continuous two layers elastic bed rail receptance

Fig. 3.11 shows the receptance obtained with the FE model compared

with the one obtained with the analytical continuous two layers elastic bed.

It can be found that for frequencies up to 300 Hz the two models are quite

similar, while for higher frequencies they become a bit different mainly due

to the absence of the ‘pinned-pinned’ mode. At frequencies higher than

1 kHz the analytical model has a higher response due to the nature of the

Timoshenko beam element used in this case.

Fig. 3.12 presents the receptance obtained with the FE model compared

to the one obtained with the analytical discretely supported track. In this

case it can be seen that the rail receptance obtained with both models is

really close. At low frequency the two models give almost the same response,

the ‘pinned-pinned’ mode is described by both models even if with the same
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Figure 3.12: FE model vs discretely supported track rail receptance

parameters there are differences in the position of the peak, at higher fre-

quency the analytical model presents a lot of narrow picks that are not seen

from the numerical model, this are the higher ‘pinned-pinned’ modes that

cannot be reported from the FE model that has been implemented because,

in order to be able to show thees resonances more nodes between the sleep-

ers are needed. Also for this case in fig. 3.13 is reported the comparison

between the two model with a change in the bending stiffness of the rail for

the analytical discretely supported track model.

In order to give a complete overview of all the models and to summarize

the results from fig. 3.14 to fig. 3.17 are reported all the frequency responses

divided in main span and over the sleeper with and without the optimization

of the property of the rail for the analytical discrete model.
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Figure 3.13: FE model vs discretely supported track rail receptance with tuned
parameters
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Figure 3.14: FE model, discretely supported track, continuous two layers bed
without tuned parameters rail receptance main span vs experimental data
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Figure 3.15: FE model, discretely supported track, continuous two layers bed
without tuned parameters rail receptance over sleeper vs experimental data
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Figure 3.16: FE model, discretely supported track, continuous two layers bed
with tuned parameters rail receptance main span vs experimental data

54



Time domain model

10
0

10
1

10
2

10
3

10
4

−220

−200

−180

−160

−140

−120
R

ec
ep

ta
nc

e 
ra

il,
 d

B
 r

ef
 (

1 
m

/N
)

 

 
exper os
Timo disc os
rodel
FEM os

10
0

10
1

10
2

10
3

10
4

−200

−150

−100

−50

0

Hz

P
ha

se
, d

eg

Figure 3.17: FE model, discretely supported track, continuous two layers bed
with tuned parameters rail receptance over sleeper vs experimental data

3.1.4 Extension of the FE model

Since the FE model can have any shape two main variations to the previous

model of the rail alone have been produced. The first, where the FE model

of the tunnel is attached to the rail, in order to investigate the influence of

the tunnel on the frequency response of the rail and on the time domain

calculation. The second is a FE model of the rail and tunnel but this time

the rail has an irregularity.

Many types of irregularity can be found on the rails, [34]: corrugation,

which consists of a periodic wear of the rail of a certain length due to different

mechanisms; switches, these make possible to the train to change lane; and

joints, these are used to connect two different pieces of rail, a little gap is

left between the pieces to allow the rail to expand or shorten due to the

changes of temperature during the year. The irregularity studied is the

joint singularity. Even if nowadays the rails are mostly welded together

some joints are still present due to the fact that it is not possible to keep

hundreds of kilometer of rail together because, for example the change in

dimension due to the temperature would cause big differences in change of

length over the year. To avoid this issue the rails are still joined by these

systems.
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Tunnel

The structure of the tunnel has been modelled in order to see if there could

be a considerable difference between the responses of the rail without the

tunnel and the rail coupled with the tunnel.

In order to model the tunnel the circumference has been divided in 18

parts to obtain a symmetrical subdivision of the frame of the tunnel, while

the tunnel invert has been divided into 7 parts. The longitudinal stiffeners

and the circumferential stiffeners have been modeled as Euler-Bernoulli two

nodes beam elements while for the rest of the tunnel four nodes plate ele-

ments, where the nodes are numbered in a clockwise direction, have been

used. The plate elements are divided in two different types: one, used for

the shell of the tunnel, is made of cast iron, while the other, used for the

tunnel invert, is made of concrete. The rail used for this model is the same

presented in Section 3.1.1. In order to attach the rail to the tunnel invert

the spring elements have been coupled to the invert plate nodes, instead

that to a rigid ground.

Figure 3.18: FE model of the tunnel obtained from the specifications of the
CONVURT project
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Fig. 3.18 reports a section of the tunnel 1.016 m long, with the track

in it, modelled with the FE method. It can be seen that it represents well

the drawing of the tunnel in fig. A.2. To reduce the edges effects on the

response a bigger model has been assembled by summing 96 sections as the

one presented in fig. 3.18 in this case a 97.536 m long tunnel with track is

obtained. By exciting a node on the tunnel invert with a point force that

sweeps all the frequencies of interest, the frequency response of the tunnel

is obtained.
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Figure 3.19: Receptance obtained with the FE model of the tunnel

Fig. 3.19 shows the receptance of the tunnel for a point force in the

center of the invert. It can be seen from [35] that there is a good agreement

between the results obtained with the FE model and the experimental data.

By exciting a node on the rail around the middle of the tunnel structure,

as presented before, the frequency response of the rail coupled with the

tunnel is obtained, this time instead of laying on a rigid soil it lays on the

deformable tunnel invert.

Fig. 3.20 shows the receptance of the rail obtained using the FE model

of the rail and tunnel coupled. It can be seen that the receptance with this
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Figure 3.20: FE model with tunnel rail receptance

model is close to the experimental data.

Fig. 3.21 reports both the receptance of the rail with and without the

tunnel. From this figure can be noticed that there is almost no difference

between the two receptances. The biggest difference is at low frequency,

for frequency up to 100 Hz there is a difference of 0.5 dB, while for higher

frequencies the difference is very small.

Joint irregularity

In this case the model is really close to the one just presented but for the

exception of the FE model of the joint. In order to reproduce this a section

of the tunnel has been replaced with a section containing the joint.

The joint is made of two clamps hold together with bolts. Fig. 3.22

shows an example of a joint used in railways.

It has been assumed that the clamp is made of the same material of the

rail. In order to build the FE model this irregularity has been divided into

two halves, the left and right half. The rails on the right side of the left half

and the rail on the left side of the right half have been shorten in such a

way that after the two halves are connected a gap of 3 mm is left.

Since the clamp is symmetric its center of mass lays on its symmetry
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Figure 3.21: FE model with tunnel vs FE model without tunnel rail receptance

Figure 3.22: Section of the clamp and section of assembled joint with rail, [36]
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axis. This give the possibility to place the clamp half way between the

tunnel invert and the top of the rail. Table 3.2 shows the parameters used

A 3.848 10−3 m2

I2 2.252 10−6 m4

I3 1.755 10−6 m4

Jp 4.008 10−6 m4

JT 9.009 10−6 m4

Table 3.2: Clamp parameters for the joint

for the clamp of the joint calculated considering that the clamp is placed on

both sides of the rail. In a real case the clamp is secured to the rail with a

set of bolts. Since this is not possible in the FE model it has been decided

to connect the clamp to the rail through four springs placed in the position

of the bolts. By setting the right stiffness of the springs can be obtained the

final configuration of the joint.

Figure 3.23: Finite element model of the section of the tunnel with the joint

Fig. 3.23 shows the FE model of the section of tunnel with the joint.

From fig. 3.23 can be seen the position of the clamp, which is the beam

underneath the rail, but not the gap left between the two sides of the rail
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because the scale is too big to see it.

The frequency responses for this model are the same as the ones shown

in Section 3.1.4 so it is not interesting to report them. What changes in this

case are the forces from the time domain integration. The singularity due

to the gap gives a peak in the force as will be shown further on.

3.2 Results from the time domain integration

From the integration in the time domain of the FE model with the multi-

body model of the train, it is also possible to obtain the forces exchanged

between the wheel and the track.

Firstly an analytical model of the contact forces is presented. It has been

used to increase the understanding of the physical problem that generates

the forces at the wheel/rail interface. In the second section the results from

the numerical integration are presented. Here the finite element model of

the track, the tunnel and the joint, presented in Section 3.1, has been used

to obtain the contact forces.

3.2.1 Analytical simplified model for the contact forces

The wheel rail system can be seen as two dynamic systems connected at a

point and excited by a relative displacement, due to the roughness of the

wheel and rail. There is than a third system that represents the contact

spring which is connected in parallel with the others.

Fig. 3.24 shows an example of the wheel-rail interaction system. The

contact force is then a function of the wheel, rail and contact spring mobil-

ities and of the roughness, as derived in [10].

F =
jωr

Yr + Yw + Yc
(3.14)

where r is the roughness, Yr, Yw and Yc are the rail, wheel and contact spring

mobilities respectively. All of the terms of equation (3.14) will be described

in detail in the following Sections.
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Figure 3.24: Model of the wheel-rail interaction mechanism

Rail mobility

If the rail is excited by a vertical harmonic force F ejωt, where F is the

complex amplitude and ω is the circular frequency, its velocity amplitude is

vr = YrF (3.15)

Where Yr is the vertical rail mobility.

For the rail mobility are valid all the things explained in Section 3.1

except that the rail mobility is obtained from the rail receptance as

Yr = α̇ = jωα (3.16)

where α is the rail receptance.

Fig. 3.25 shows the mobility of the rail obtained using the FE model

receptance of the rail without modelling the tunnel underneath the track. If

the receptance of the track with the tunnel is considered the results shown

in fig. 3.26 are obtained.

Fig. 3.25 and 3.26 are quite similar but at low frequency the mobility of

the rail with tunnel is a bit lower than the one without, around 0.5 dB.
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Figure 3.25: FE model rail mobility without tunnel

10
−1

10
0

10
1

10
2

10
3

10
4

−160

−150

−140

−130

−120

−110

−100

−90

−80

Frequency Hz

M
ob

ili
ty

 d
B

 r
e 

1m
/s

N

 

 

mobility with tunnel ms
mobility with tunnel os

Figure 3.26: FE model rail mobility with the FE model of the tunnel
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Wheel mobility

Since the same force that acts on the rail acts also on the wheel, the wheel

velocity becomes

vw = −YwF (3.17)

Where Yw is the wheel mobility. The negative sign is needed because

of the sign conventions taken positive downwards and in this case the force

has an upward direction. The mobility of a complex structure can be obtain

with the modal summation as

Yjk =
∑ jωΦjnΦkn

mn (ω2
n − ω2 + 2jζnωnω)

(3.18)

Where Φjn is the modeshape amplitude of the mode n at location j and

mn and ζn are the modal mass and modal damping ratio respectively. This

technique can also be used to identify the wheel frequency response. The

modeshape amplitudes and the corresponding modal masses can be obtained

from a finite element calculation along with the natural frequencies. The

damping has to be measured or using estimates based on measurements on

other wheels.
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Figure 3.27: Wheelset mobility obtained with modal superposition

Fig. 3.27 shows the wheelset mobility obtain with the modal superposi-

tion of the first 4 flexural modes, including the rigid mode. It can be seen
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that at low frequency the mobility of the wheel is mass-like, this corresponds

to the unsprung mass of the wheelset, Mw. So its mobility becomes

Yw =
−j
ωMw

(3.19)
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Figure 3.28: Wheel mobility with unsprung mass model

This approximation is valid up to 200 Hz if only the wheel is considered

otherwise the wheelset flexural modes have to be taken into account. As a

first approximation the wheel alone can be considered. Fig. 3.28 shows the

mobility of the wheel for the unsprung mass model, if a grater frequency

range it’s needed, the anti-resonance at around 500 Hz has to be considered.

This can be obtained by adding a spring in series with the mass. So the

mobility of the wheel becomes

Yw =
j
(
Mwω

2 −Kw

)
KwMwω

(3.20)

Where the value of Kw is chosen to best fit the anti-resonance frequency.

Fig. 3.29 shows the wheel mobility obtained with equation (3.20) it can

be seen that up to 200 Hz the mobility of the wheel is mass-like and from

500 Hz up to 1.5 kHz is spring-like for higher frequencies this approximation
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Figure 3.29: Wheel mobility with mass-spring model

is not suitable anymore because of a series of strong resonance peaks which

are the radial modes of the wheel.

Contact spring mobility

As for the wheel the relative velocity across the contact spring can be found

as

vc = YcF (3.21)

Where Yc is the mobility of the contact spring. The vertical mobility of the

contact spring can be seen as

Yc =
jω

KH
(3.22)

Where KH is the linearized Hertzian contact stiffness, [10]. The contact

stiffness at the wheel rail contact is caused by the local elastic deformation

that generates a contact area, this area increases at the increase of the axial

load. If the wheel has a radii Rw in the rolling direction and Rwt in the

orthogonal direction, and the rail has a radii Rr in the rolling direction

and Rrt in the orthogonal direction the contact area will be an ellipse with

semi-axis a in the rolling direction and b in the transverse direction given
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by

a = σ1
3

√
3F0R0

2E′
(3.23a)

b = σ2
3

√
3F0R0

2E′
(3.23b)

Where F0 is the normal load, E′ = E/(1 − ν2) is the plane strain elastic

modulus and R0 is an effective radius given by

1

R0
=

1

2

(
1

Rw
+

1

Rwt
+

1

Rr
+

1

Rrt

)
(3.24)

While the constant σ1 and σ2 have to be integrated numerically and can be

found on tables as function of g = a/b. The approach of the two bodies due

to the load F0 is given by

u0 =
ξ

2R0

3

√
3F0R0

2E′
(3.25)

Where also ξ can be found on table as a function of g.

Although the relation between the approach distance and the load is non-

linear, this expression can be linearized for small displacement amplitudes.

Thus the incremental contact stiffness can be found as

1

KH
=
ξ

2
3

√
2

3E′2F0R0
(3.26)

For this case a factor g = 2 has been chosen and from the tables can be

found that σ1 = 1.4536, σ2 = 0.7285 and ξ/2 = 0.9436. With these values

the mobility of the contact spring shown in fig. 3.30 is found.

Rail roughness

At first the contact force per unit of roughness, so considering the roughness

r = 1 m in equation (3.14), can be inspected, see fig. 3.31.

In order to report this to a comparable level with the forces obtained

with the simulation in the time domain the roughness has to be taken into

account. For this case a standard rail roughness has been generated by a

software developed at the Politecnico di Milano that takes as input the range

of frequencies of interest and converts it into a roughness profile using the
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Figure 3.30: Contact spring mobility model
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Figure 3.31: Analytical contact force per unit of roughness
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ORE standards, [37].
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Figure 3.32: Rail roughness spectrum

Fig. 3.32 shows the spectrum of the rail roughness used. It can be

seen that the spectrum is truncated for wavelength shorter than 4 cm, this

because for a train that travels at 13.9 m/s with a wavelength of 4 cm a

frequency of about 350 Hz is obtained and it is already outside of the range

of frequencies that interest the ground-borne noise. It can also be seen that

for grater wavelengths a higher level of roughness is given rather than for

smaller wavelength, this according to the ORE standards. The spectrum of

the roughness can also be seen in third octave bands as shown in fig. 3.33.
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Figure 3.33: Rail roughness spectrum in third octave bands
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Wheel roughness

Since in real cases also the wheels are not perfect circles a roughness to

the wheel has been given. Also for this case a software developed a the

Politecnico di Milano has been used in order to generate a roughness with

the harmonic content desired.
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Figure 3.34: Wheel roughness spectrum and reconstruction with amplification
103

Fig. 3.34 shows the spectrum of the wheel roughness and its reconstruc-

tion with an amplification of 103 to make it visible. It can be seen that

the spectrum for this case is truncated for the same reason reported in Sec-

tion 3.2.1.
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Figure 3.35: Wheel roughness spectrum in third octave bands
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Fig. 3.35 shows the spectrum of the wheel in third octave bands.

In order to be used in equation (3.14) the roughness of the wheel and

the rail have to be added together this gives the total spectrum showed in

fig. 3.36

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

45

Frequency Hz

T
ot

al
 r

ou
gh

ne
ss

 [d
B

 r
if 

1e
−

6m
]

Figure 3.36: Total rail wheel roughness spectrum in third octave bands

Once obtained the spectrum of the total roughness it can be added to

the spectrum of the analytical contact force per unite of roughness. To do

so both force and roughness must be divided in third octave bands. This

will give the analytical contact force that is obtained with the rail mobility,

wheel mobility and roughness considered. Fig. 3.37 shows the contact force

after adding the wheel rail roughness.

It can be noticed, by looking at fig. 3.37, that with the analytical model

the contact forces for the case with and without the tunnel are very close.

This is due because the only parameter that changes between the two results

is the receptance of the rail with and without the tunnel. As seen previously

there is not a relevant difference between them so also the analytical contact

forces do not show a significant difference.

71



Chapter 3

10
0

10
1

10
2

10
3

15

20

25

30

35

40

45

50

55

60

Frequency Hz

C
on

ta
ce

 fo
rc

e 
dB

 r
e 

1N

 

 

without tunnel
with tunnel

Figure 3.37: Analytical contact force with roughness

3.2.2 Track

The first result shown from the time domain integration is the pass-by of

the train on the track alone. This gives a first result of the contact forces.

This case is also the one with the lowest computational time because of the

low number of nodes of the FE structure. For this case the model of the

train used is a three car train with two driving cars and one trailer car.
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Figure 3.38: Time histories of wheel/rail contact force for the FE model of track
only

Fig. 3.38 shows the time histories of the forces of the first wheelset of
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each car. The time histories are truncated because the length of the FE

model of the rail is shorter than the time simulated of the passage of the

train. The time histories of the forces when the wheelsets are outside the

rail do not have to be taken into account because it is like the wheel is

running on a rigid ground so the contact forces are not the real ones. At

first it can be seen that the three contact forces have different levels due to

the different axial load, because the trailer car is lighter. The vibration of

the force around its mean value is due to the irregularity of the wheel and

of the irregularity of the rail.

In order to inspect the spectrum of the force the Fourier transform of

the time histories has to be performed.
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Figure 3.39: Spectrum of the contact forces for the FE model of track only

Fig. 3.39 shows the frequency content of the contact forces. The maxi-

mum frequency depends on the time step integration which is kept as large

as possible in order to reduce the computational time. The maximum fre-

quency of 250 Hz is enough to describe the ground-borne vibration. It can be

seen that the spectrum of the force is almost a constant due to the random

nature of the irregularity of wheel and rail. It can also be seen that there are

peaks with a periodicity of about 5 Hz, this is due to the wheel roughness

which is dependent on the wheel circumference. Also the spectrum in third

octave bands can be obtained.
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Figure 3.40: Third octave band spectrum of the contact forces for the FE model
of track only

Fig. 3.40 shows the third octave band spectrum of the contact forces due

to the pass-by of the train. Firstly it can be noticed that the levels, in this

case, are not too different for the three different cars. It can be seen that

at very low frequencies, below 10 Hz, the response starts high and than it

lowers. This is probably due to the vehicle dynamics but this range is outside

the range of interest for the ground-borne noise. At higher frequencies it

rises again due to the wheel/rail interaction. These forces can be compared

to the one obtained with the analytical solution for the rail only.

Fig. 3.41 shows the comparison between the analytical and numerical

contact force. It can be noticed that at low frequencies there is a big dif-

ference between the two methods. This is most likely due to the vehicle

dynamics which is not taken into account in the analytical model of the con-

tact force. While at higher frequencies there is good agreement between the

response of the numerical model and the response of the analytical model.

Also the forces from underneath the sleeper can be considered, in this

case, these are the forces exchanged between the rail and the rigid ground.

Fig. 3.42 shows the time history of the force exchanged between the rail

and the rigid ground. A series of peaks can be observed. These occur when

the wheelsets travel over the position of the sleeper. The negative sign is

due to the sign convention taken for the Z axis. This time history can be
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Figure 3.41: Third octave band spectrum of the contact forces from the FE model
and the analytical model for track only
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Figure 3.42: Time history of the force underneath one sleeper for the FE model
of track only
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extracted form every sleeper and it is not necessarily always the same, first,

because of the random nature of the roughness and, second, because there

might be an irregularity as will be show further on. Also for this case the

spectrum of the force can be inspected.
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Figure 3.43: Third octave band spectrum of the force underneath the sleeper for
the FE model of track only

Fig. 3.43 shows the third octave band spectrum of the force transmitted

to the rigid ground. It can be noticed that at low frequencies the response is

high while at higher frequencies the response is attenuated compared to the

one seen before. This is due to the nature of system that can be simplified as

a low-pass filter. This means that at low frequencies the response is almost

unchanged than after the cutoff frequency the response is attenuated. For

this case as a first approximation the cutoff frequency is around 5.5 Hz.

3.2.3 Tunnel

Here will be shown the results from the time domain integration of the

pass-by of the train with the FE model of the track and tunnel. For this

simulation the model of the train is a three cars one, like the train used in

the previous Section. Also from this case the time histories of the contact

forces can be extracted.

Fig. 3.44 shows the time histories of the wheel/rail contact forces for

the three cars. Also in this case the time histories are truncated due to the

length of the rail considered. Like before also for this case can be analyzed
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Figure 3.44: Time histories of wheel/rail contact force for the FE model of track
and tunnel

the spectrum of the forces.

Fig. 3.45 shows the brad band spectrum of the contact forces due to

the wheel/rail interaction for the case of the track coupled with the tunnel.

Also for this case can be observed that the spectrum is almost flat random

nature of the roughness that is able to excite many different frequencies, and

several picks due to the wheel periodicity. Like before it is worth to look

at the spectrum in third octave bands to better understand the frequency

content of the forces for this case.

Fig. 3.46 shows the spectrum of the force in third octave bands. Like

before also for this case the third octave bands shows that at low frequencies

the spectrum starts high and lowers up to 10 Hz still due to the vehicle

dynamics. Than at higher frequencies it rises again due to the interaction

of the wheel with the track. It is worth to compare these results the the

results from the analytical model that considers also the tunnel.

Fig. 3.47 shows the comparison between the analytical and numerical

contact force obtain with the FE model of the track coupled with the tunnel.

It can be seen that at low frequency there is a difference due to the vehicle

dynamics while at higher frequencies, above 10 Hz, a good agreement is

found between the analytical and numerical results.
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Figure 3.45: Spectrum of the contact forces for the FE model of track and tunnel
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Figure 3.46: Third octave band spectrum of the contact forces for the FE model
of track and tunnel
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Figure 3.47: Third octave band spectrum of the contact forces from the FE model
and analytical for track and tunnel

Also for this case of study the forces transfered from the rail to the

ground, or in this case the deformable tunnel invert, can be extracted.

Fig. 3.48 shows the time history of the force transfered from the rail to

the tunnel invert. The shape and the levels are similar to the ones of the

previous case. The third octave band of the spectra of these forces can be

inspected too.

Fig. 3.49 show the third octave band spectra of the forces exchanged

between the rail and the tunnel invert. The same considerations made for

the previous case of study can be made also for this one.

3.2.4 Joint irregularity

Now will be presented the results of the integration in the time domain of the

FE model with the joint irregularity applied to the rail. For this simulation

the model of the tunnel is shorter to reduce the integrational time.

Fig. 3.50 shows the time history of the contact force for this case of

study. It can be seen that the time history is different from the ones shown

previously because of the peak that represents the passage of the wheelset

over the irregularity. The shape of this peak can be understood intuitively:
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Figure 3.48: Time history of the force underneath one sleeper for the FE model
of track and tunnel
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Figure 3.49: Third octave band spectra of the force underneath the sleeper for
the FE model of track and tunnel
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Figure 3.50: Time history of wheel/rail contact force for the FE model with track
tunnel and joint

first, while the wheel is approaching the joint, the left rail bends more than

the right one because of the disconnection; when the wheel reaches the joint

it falls into the gap and hits the step due to the difference in bending and

the force rises fast; in the end when the wheel leaves the left rail there is a

decrease of the force due probably to the elastic deformation.

Fig. 3.51 shows the third octave band spectra of the forces due to the

pass-by of the train over the joint. This can not be compared to an analytical

case due to the complexity of the problem, but it will be compared with the

model without the joint in order to see if there is a difference between the

two.

Again the forces from underneath the sleeper can be shown and analyzed.

Fig. 3.52 shows the time history of the force underneath a sleeper due

to the pass-by of the train. Since the joint has been placed at midspan of a

certain position each sleeper sees a difference force. Also the spectra of the

force can be observed

Fig. 3.53 shows the third octave band spectra of the force underneath

the sleeper. This time the shape is different from the previous cases because

of the presence of the irregularity. The same consideration made for the first

case of study can be made also for this one.
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Figure 3.51: Third octave band spectra of the contact force from the FE model
with track tunnel and joint
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Figure 3.52: Time history of the force from underneath the sleeper from the FE
model with the track tunnel and joint
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Figure 3.53: Third octave band spectra of the force underneath the sleeper from
the FE model with track tunnel and joint

3.2.5 Comparison of the results

It is possible to compare the forces obtained with the different models in

order to investigate the influence of the different configuration on the forces

exchanged between the wheel and the track and between the track and the

ground. This is possible olso because the train used has always the same

parameters.

At first the contact force obtained with the models of the rail with and

without the tunnel can be inspected.

Fig. 3.54 reports the two time histories of the contact force. It can be

noticed that the two time histories are very similar due to the similarities

of the receptances of the rail with and without the tunnel. From the time

history of the force it is hard to identify the difference in the forces so at

this purpose it is more useful to look at the third octave band spectra.

Fig. 3.55 shows the third octave band spectra of the contact forces ob-

tained with the two different models. Also from here it is possible to see that

the two spectra of the forces are very similar. This gives good agreement

with what found from the simplified analytical model. It is interesting to

notice that this way a simplified analytical model could give, as first approx-

imation, a good esteem of the contact force for a train running in a strait

line. This result could be used for example to conduct a parametric analysis

of the influence of the different parameter, for example the roughness levels,
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Figure 3.54: Time history of the contact forces for the track and tunnel models
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Figure 3.55: Third octave band spectra of the contact force of the track and
tunnel models
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on the contact force.

The analytical model can not although model the non linearities of the

springs or of the dampers so it is valid only for very simple configurations

like the train running on a straight line with all the elements considered

linear. However for those simple case it gives good results in a very short

time.

Also the forces exchanged between the track and the ground can be

inspected
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Figure 3.56: Third octave band spectra of the forces from underneath the sleepers
of the track and tunnel models

Fig. 3.56 show the third octave band spectra of the forces exchanged

from the sleepers to the rigid ground or to the tunnel invert. It is possible

to notice that the two forces are very similar for all the sleepers presented

this is due to the similarities of the contact force.

Furthermore it is possible to investigate the influence of the presence

of the joint on the forces exchanged between the train and the track and

between the sleepers and the tunnel invert.

Fig. 3.57 shows the third octave band spectra of the contact force of the

tunnel model compared with the contact force of the joint model for only the

first wheelset. It is possible to notice that the two spectra are very different.

Due to the presence of the joint its spectra is quite higher than the spectra
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Figure 3.57: Third octave band spectra of the contact force of the tunnel and
joint models

of the rail without the joint so it introduces more energy in the system. Also

the forces from underneath the sleepers can be compared to see if the joint

introduces more energy also in the ground.

Fig. 3.58 shows the third octave band spectra of the forces exchanged

with the tunnel invert in the of the two cases studied. It can be noticed that

further from the position of the joint the force exchanged is similar to the

other case but closer to the position of the joint the difference increases.
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Figure 3.58: Third octave band spectra of the forces from underneath the sleepers
of the tunnel and joint models
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Chapter 4

Wave frequency domain

model

This Chapter presents in detail the inputs for the frequency-wavenumber

domain model WANDS, and its outputs.

Section 4.1 describes the different FE-BE structures of the ground used

as inputs for WANDS studied in this thesis. Three different models have

been prepared to investigate the response of the ground under different pa-

rameters:

• A simple halfspace

• A two layered ground

• A deep bored underground tunnel

Section 4.2 presents the result from the frequency-wavenumber domain

integration of the ground model in terms of dispersion curves and of ground

transfer functions. Different simulation with different parameters as input

have been tested to investigate the sensitivity of the ground response:

• Wavenumber resolution and range

• The length of the boundary elements

• The traction vector, which is a pressure applied to the boundary ele-

ment

• Different types of ground
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4.1 Inputs for WANDS

This Section presents the models of the ground used as input for the fre-

quency wavenumber domain program WANDS.

Since the hybrid modelling can be used for any configuration of forces

and grounds at first Section 4.1.1 presents a simple case of just an halfspace

ground. This has been used to better understand the problem and the

outputs of WANDS. This case can be easily compare with the results from

an analytical model.

Section 4.1.2 presents the model of a two layered ground, like the one

found in [24] and of which the parameters are reported in table 4.1. This

will be used as input for WANDS in order to determine the ground transfer

functions to reproduce the case of study presented in [24].

Upper layer Halfspace

P-wave speed m/s 240 700
S-wave speed m/s 120 350
Density kg/m3 1800 2000
Young’s modulus MPa 69.12 653.3
Shear modulus MPa 25.92 245.0
Poisson’s ratio 0.333 0.333
Loss factor 0.1 0.1
Layer depth m 3.0 ∞

Table 4.1: Ground properties for the example considered

The last Section 4.1.3 shows the model of the underground tunnel pre-

sented in [26] embedded in the ground. This will be used in order to obtain

the transfer functions of the ground to reproduce the CONVURT environ-

ment.

4.1.1 Halfspace

This is the simplest case of study since with the use of the boundary elements

method the halfspace can be discretized just like a line.

Fig. 4.1 shows a simple drawing of a single layer halfspace which has

been model with the BE. In order to investigate the effects of the different

parameters different models have been prepared. The parameters that can

influence the response are:

• the the length of the boundary element
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Figure 4.1: Drawing of a single layer halfspace

• the wavenumber range and the wavenumber discretization

• the force given as input

Since on the boundary element is not permitted to apply a point force

the force must be applied as a boundary condition. The traction vector is

then the variable to look at. The determination of the input force plays an

important role in the identification of the transfer function because, since

the whole ground model is linear, it determines the magnitude of the transfer

functions. The traction vector is defined as pressure and it changes with the

size of the boundary element.

Three types of soil have been investigated: the first has the characteris-

tics of the upper layer presented in table 4.1; the second has the character-

istics of the halfspace presented in table 4.1; and the third is a completely

different ground with characteristics shown in table 4.2

P-wave speed m/s 1470
S-wave speed m/s 250
ρ kg/m3 1945
E Pa 361.1 106

ν 0.485
loss factor 0.1

Table 4.2: Parameters of the Horstwalde ground

In order to investigate the influence of the parameters, for the first

91



Chapter 4

ground type, have been prepared different cases. The length of he boundary

element has been changed from 2 m to 0.2 m, the wavenumber range has

been changed from ±6 rad/m to ±30 rad/m and the wavenumber discretiza-

tion from 128 points to 1024.

4.1.2 Two layers ground

The previous model can be extended in order to represent a two layered

ground. This model is made to represent the ground used in [24]. It has

a soft top layer and a stiffer halfspace with the characteristics presented in

table 4.1.

Figure 4.2: Drawing of a two layers ground

Fig. 4.2 shows a drawing of a two layers ground where the two interfaces

have been modelled with the BE method.

4.1.3 Underground tunnel

This model represents the underground tunnel presented in [26]. The tunnel

is 28 m below the surface and it has been model with the FE method while

the ground around it has been modelled with the BE method.

Fig. 4.3 shows the drawing of the FE model of the tunnel coupled with

the ground. The specification for the characteristics of the ground and of

the tunnel are the same as the one presented in Chapter 3. The element size
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Figure 4.3: Drwaing of the FE model of the tunnel and of the ground, the soil
surface has been lowered only to make the image easier to see
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has been chosen in order to be able to represent the slowest wave that could

be present in the ground. Since the slowest wave that could be present is

the shear wave in the softer upper space, which has not been modelled here

to keep the computational time lower. The maximum element size depends

on the relation

λmin =
cmin

3fmax
(4.1)

where λmin is the shortest wave that can be seen without errors, cmin is the

speed of the slowest wave, fmax the highest frequency of interest and the 3

is used to avoid the aliasing effect, [32].

4.2 Results from the frequency-wavenumber do-

main integration

This Section presents the results from the frequency-wavenumber domain

calculation of the models presented in Section 4.1.

Section 4.2.1 shows the results for the tests run on different halfspace

grounds used to investigate the influence of the parameters, chosen as input

for the simulation, on the outputs. The parameters investigated are the

wavenumber range and resolution, the boundary element size, the traction

vector, which represents the pressure given as input to the forced response

and the ground parameters. A comparison with an analytical multi layers

model will be made in order to understand if WANDS returns consistent

results.

Section 4.2.2 shows the results for the two layered ground. This case

is similar to the previous one, but this time, on the response there is the

contribution of both grounds due to the reflected waves. Also for this case

a comparison with the analytical model can be obtained to verify the con-

sistency of the results

Section 4.2.3 shows the results for the underground tunnel model. For

this case the main difference is that there is a FE structure coupled with

the BE structure of the ground and that the force is applied on the FE

structure instead that on the BE like in the previous cases. For this case a

comparison with an analytical model is not possible due to the complexity

of the problem.
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4.2.1 Halfspace

Here will be presented the results of the numerical calculation of the simple

halfspace model presented in Section 4.1.1. The results obtained by the nu-

merical calculation are the transfer function of the ground and the dispersion

curves.

As said before different models have been prepared to investigate the

influence of the parameters that can be chosen as input. These will be

considered one by one in order to understand better the variations due to

the changes in the parameters.

Wavenumber resolution

To study the influence of the wavenumber resolution four simulations have

been performed. The parameters of the model that remain constant are:

the length of the boundary element set to 0.6 m, the wavenumber range set

to ±10 rad/m and the traction vector set to 1 N/m. The wavenumber is

linearly divided inside its range and the division must be a power of two due

to the construction of the fast Fourier transform implemented in WANDS.

To this purpose four powers of two have been chosen: 27 = 128, 28 = 256,

29 = 512 and 210 = 1024.

At first the forced responses of the ground in the frequency wavenumber

domain, that approximate the dispersion curves of the ground, are presented.

From these it is possible to identify the cut on frequencies of the waves that

propagates in the ground, to identify the slowest wave and its speed this is

possible by finding the slope of the curve. This can be easily found from

c = λf (4.2)

where c is the wave speed, λ its wavelength and f the frequency. If the

expression for the wavenumber is substituted λ = 2π/k it can be found that

f = c
2πk so by finding two points of the curve the speed of the wave can be

determined.

Fig. 4.4 shows the four ground responses in the frequency wavenumber

domain that approximate the dispersion curves in the vertical, Z, direction

obtained with this case of study. A logarithmic discretization of the fre-

quencies has been used in order to reduce the computational time. From

fig. 4.4 can be evaluated the wave speed as shown, and it gives a result of
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Figure 4.4: Dispersion curves of the halfspace for different wavenumber discretiza-
tion

c = 120 m/s, and it can be seen that increasing the discretization number

gives a better resolution in the wavenumbers, giving more details, but the

dispersion curves do not change.

The increase of wavenumber resolution gives also, as a consequence, that

a larger portion of space can be reproduced. The space domain is rebuilt

applying the inverse Fourier transform at the wavenumber domain so the

maximum distance in space depends on the inverse of the wavenumber res-

olution, x = 2π/δk, .

Now the response of the ground can be inspected. In order to do so four

reference distances from the point at which the force is applied have been

taken: 0 m, 6 m, 12 m and 24 m.

Fig. 4.5 shows the ground transfer functions at different distances from

the point of application of the force and for different wavenumber resolu-

tions. As pointed out before a higher wavenumber resolution reconstructs a

wider portion of space, this is the reason why for the discretization with 128

points the line at 24 m is missing. The high frequency distortion depends

on the wavenumber range and will be discussed later on. Instead, the low

frequency noise depends on the wavenumber resolution. It can be noticed
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Figure 4.5: Ground transfer functions from 0 m (top line) to 24 m (bottom) for
different wavenumber resolution

that for a higher resolution the low frequency noise tends to reduce. This

can be understood by looking at the dispersion curves. At very low fre-

quency a low wavenumber resolution is not able to describe everything that

happens so by increasing the wavenumber resolution it increase the accuracy

of the calculation. The mid frequency range is well described by almost all

the wavenumber resolution. It can be noticed that nothing change at the

distance 0 because the application of the force drives the displacements.

Wavenumber range

Also to study the influence of the wavenumber range on the frequency re-

sponses of the ground four wavenumber range have been investigated: ±6,

±10, ±20 and ±30 rad/m. While the dimension of the boundary element

and the traction vector remain the same as the previous case. The wavenum-

ber resolution is hard to keep constant due to the fact that it can be changed

only as a power of 2 but it is already been shown that it has an influence

only at the low frequencies.

Fig. 4.6 shows the dispersion curves in the vertical direction for the four

cases. Widening the wavenumber range is possible to describe a bigger

portion of the dispersion curve. Even if it seems like the dispersion curves

are changing shape by widening the wavenumber range it is only an effect

due to the scaling of the graph; in fact if the wave speed of the slowest
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(a) ±6 rad/m (b) ±10 rad/m

(c) ±20 rad/m (d) ±30 rad/m

Figure 4.6: Dispersion curves of the halfspace for different wavenumber range

wave that propagates is derived from the dispersion curve always the same

value of c = 120 m/s is obtained. A wider wavenumber range gives a

higher spatial resolution due to the reconstruction of the spatial coordinates

δx = 2π
kmax−kmin

. So if the wavenumber discretization is kept with the same

number of points and the wavenumber range is increased the wavenumber

resolution decreases so the maximum distance reconstructed in the space

decreases but the spatial resolution increases.

As shown for the previous case also the receptances obtained can be

inspected.

Fig. 4.7 shows the ground transfer functions at different distances from

the point of application of the force and for different wavenumber ranges.

From fig. 4.7 can be seen that in the far field, the curves at 6, 12 and 24 m

have all the same levels and they are very much alike. The low frequency

noise is due to the wavenumber resolution as explained before. It can be

observed that at high frequency, by widening the wavenumber range, the

curves are less noisy this is because of the better description of the dispersion

curves. Lets make an example to clarify by considering the two extreme cases

of wavenumber range ±6 rad/m and ±30 rad/m and by considering the

frequency of 200 Hz. By looking at the dispersion curve of the wavenumber
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Figure 4.7: Ground transfer functions from 0 m (top line) to 24 m (bottom) for
different wavenumber range

range ±6 rad/m it is not able to describe the slowest wave present in the

ground, this makes it impossible to reconstruct correctly the response of

the ground at a certain point for that frequency. Instead by looking at the

dispersion curve of the wavenumber range ±30 it is able to describe well

the dynamic response of the ground at the frequency of 200 Hz and so it is

able to reconstruct the ground response at a given distance for the 200 Hz

frequency.

There is an issue with the responses at 0 m, they tend to increase by

widening the wavenumber range. This is due to the reconstruction of the

force in the spatial domain. The traction vector is given as a constant in the

frequency wavenumber domain so by doing the inverse Fourier transform

of the force it would become a Dirac function, but since the force in the

frequency wavenumber domain is sampled it gives a discrete Dirac function

in the space domain. Since the spatial resolution increases by widening the

wavenumber range the traction vector is distributed on a smaller area so the

force at the position 0 m is higher even if the integral of the force remains

the same. Because in the force in the far field is seen as a point force this

mechanism does not affect the responses in the far field while it affects the

near field ones. Since the purpose of this thesis is to investigate the far field

response of the ground the response at 0 m is not of interest and no farther

investigations were made.
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BE length and traction vector

Here it is studied the influence of the BE length and the influence of the

traction vector on the ground transfer functions. For this purpose four

different length have been tested: 0.2 m, 0.6 m, 1 m and 2 m. It is worth to

remind that the boundary elements used by WANDS are quadratic elements.

At first will be shown the case where the traction vector is constant for all

the BE length together with the wavenumber range and resolution. As a

second case will be shown the results for different traction vectors for each

BE length keeping unchanged the wavenumber range and resolution.

The length of the boundary element affects the maximum wavelength

that can be inspected without having the aliasing, [32], this depends on the

wave speed and on the maximum frequency of interest.
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Figure 4.8: Ground transfer functions from 0 m (top line) to 24 m (bottom) for
different BE length but same traction vector

Fig. 4.8 shows the ground transfer functions at different distances from

the point of application of the force and for different BE sizes. From fig. 4.8

can be seen that there is no agreement between the different simulations.

The shapes of the transfer functions at the same distances are similar but the

levels are different for all the BE sizes. This is due because of the definition

of the traction vector, which is considered a pressure, so it changes with

the BE size. This means that by giving the same traction vector as an

input to different BE sizes will return different magnitudes in the responses:
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the larger the element the grater the equivalent magnitude of the force.

Appendix E shows how the traction vector is calculated in order to get the

same transfer function of the ground for different boundary element sizes.

This problem is not present with the FE because the force applied to a node

of the FE model is a point force.
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Figure 4.9: Ground transfer functions from 0 m (top line) to 24 m (bottom) for
different BE length and same equivalent point force

Fig. 4.9 shows the same ground transfer functions as shown in fig. 4.8

but with the correction of the traction vector. It can be seen that now the

responses at the far field have all the same levels while there are still some

problems on the near field response. From fig. 4.9 can also be noticed that

at higher frequencies the response obtained with wider boundary elements

is less accurate, this is due to the aliasing problem addressed before. By

increasing the element size it happens that a lower range of frequencies can

be inspected with good approximation as seen in equation (4.2).

Comparison with analytical model

In order to investigate if the results obtained with WANDS are consistent the

comparison with an analytical model has been made. The analytical model

used is an axisymmetric layered ground model based on stiffness matrices,

[38]. This has been previously implemented in a MatLab program kandr and

it is able to give the ground transfer functions due to a point load at different

distances. This can be used for grounds with one or more layers. The force
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in the kandr model is applied to a rigid circular indenter of defined size.

Since in the far field the force is approximated as a point force the indenter

does not have an influence on these transfer functions but it influences the

transfer functions of the near field.
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Figure 4.10: Ground transfer functions from 0 m (top line) to 24 m (bottom) for
different BE length and same equivalent point force compared with results from
kandr

Fig. 4.10 shows the ground transfer functions for different element sizes

and adjusted with the right traction vector obtained with WANDS compared

with the analytical solutions obtained with kandr. From fig. 4.10 can be

noticed that in the far field there is good agreement between the analytical

and numerical results. Since the analytical results are not affected by the

wavenumber range and resolution, the analytical transfer functions do not

present the low and high frequency noise that is present in the numerical

solution.

In order to verify if WANDS gives good results under different condi-

tions also two other simulations have been run with two completely different

grounds as presented in Section 4.1.1.

Fig. 4.11 shows the dispersion curve in the vertical direction for this

stiffer ground. It can be noticed that the slope of the slowest wave present

in this ground is much lower than the previous case this ends up in a faster

ground.

Fig. 4.12 shows the results from the numerical and analytical models for
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Figure 4.11: Dispersion curve for stiffer ground with characteristics reported in
table 4.1
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Figure 4.12: Ground transfer functions from 0 m (top line) to 24 m (bottom) for
the stiffer ground compared with results from kandr
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the stiffer ground compared. From fig. 4.12 can be observed that also for this

case the numerical results match well the analytical ones. As said already

the low frequency noise is due to the resolution of the wavenumber range.

It can also be noticed that the high frequency noise is almost absent even

if the wavenumber range is the same as the previous case. This is due to

the fact that this type of ground is faster so the wavenumber range chosen

is able to describe well the dispersion curve and this describes well all the

components of the wave in the frequency rage inspected.

In the end the results for the last ground inspected are presented

Figure 4.13: Dispersion curves for the Horstwalde ground with characteristics
reported in table 4.2

Fig. 4.13 shows the dispersion curve in the vertical direction for the

Horstwalde ground. From the dispersion curve it can be noticed that this

ground is slower than the previous one but it is faster than the first one. This

is in agreement with the data of the grounds that reports the shear waves

speed for the three different grounds. For this case the dispersion curve

describes well all the waves information in the frequency rage inspected but

it might be too narrow at high frequency, this means that high frequency

noise can be expected.

Fig. 4.14 shows the ground transfer functions at different distances for

both the analytical and the numerical models. It can be seen that for this

case there is very good agreement between the analytical and numerical

results even if at low frequency there still is the issue of the wavenumber
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Figure 4.14: Ground transfer functions from 0 m (top line) to 24 m (bottom) for
the Horstwalde ground compared with results from kandr

resolution. As predicted a bit of high frequency noise can be found in the

numerical results.

4.2.2 Two layered ground

Here the results from the two layered ground presented in Section 4.1.2 are

shown. All the assumptions made in Section 4.2.1 are valid also for this

case. The main difference for this case is that the waves in the top layer

do not only propagate toward infinite but also get reflected from the lower

halfspace interface.

Fig. 4.15 shows the dispersion curve in the vertical direction for the two

layers ground. For this case the calculation time start to be important due

to the high number of nodes. For example for this case the structure has

483 nodes that assemble 240 boundary elements. The wavenumber range

chosen is of ±10 rad/m, and the discretization of 512 points. A logarithmic

sampling of the frequencies between 1 and 250 Hz has been used and this

gives 97 frequencies to be calculated. Using the High Performance Com-

puter (HPC) which has the possibility to run the simulation in parallel on

260 processors it took 13 hours against the average one hour needed for

the previous cases where only 161 nodes and 80 boundary element where

considered.
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Figure 4.15: Dispersion curve for the two layers ground with characteristics re-
ported in table 4.1
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Figure 4.16: Ground transfer functions from 0 m (top line) to 24 m (bottom) for
the 2 layers ground compared with the results from kandr
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Wave frequency domain model

Fig. 4.16 shows the ground transfer functions for the top layer of the

two layered ground. From fig. 4.16 can be noticed that the shaped of the

transfer functions are completely different from the shapes of the previous

ones, this is probably due to the presence of the reflected waves that in

the previous cases where absent and to the cut on frequency of the other

layer. It can also be noticed that there is good agreement between the

analytical and numerical model even if at low and at high frequencies there

is noise due to the resolution of the wavenumbers and to the wavenumber

range respectively. Also for this case the transfer function at 0 m gives some

problems due to the reconstruction of the force in the third dimension but as

already explained this is not important for the case discussed in this thesis.

4.2.3 Underground tunnel

Here the results from the underground tunnel presented in Section 4.1.3 are

shown. The main difference this time is that the force is not applied on the

boundary elements but on the FE structure of the tunnel. For the results

shown in this Section the force has been applied to the center of the tunnel

invert.

Since no experimental data has been found about the receptance of the

tunnel or of the transfer receptance from the tunnel to the ground surface

no actual comparisons can be made. For this case only the comparison with

the FE model of the tunnel presented in Section 3.1.4 can be made.

Fig. 4.17 shows the two receptances obtained with the Polimi FE model

and with WANDS FE model of the tunnel plus the BE model of the ground,

the spikes of WANDS’ frequency response are due to the low resolution of

the wavenumber range chosen this way to keep the computational time low.

It can be noticed that can not be found agreement between the two models,

this is because of the circumferential stiffeners present in the Polimi model.

These can not be reproduced in WANDS but, in order to find agreement with

the Polimi model, an equivalent hight of the tunnel walls can be obtained,

this reports the mass per unit length of the two models the same.

Fig. 4.18 shows the invert receptance of the WANDS model after the

adjustment of the hight and mass. The receptance got closer to the one

obtained with the Polimi FE model but not yet enough. This is because

the circumferential stiffeners act as rib of the tunnel inhibiting the circum-

ferential deformation. A test with the walls as thick as the stiffeners has
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Figure 4.17: Tunnel invert receptance obtained with WANDS model compared
to the Polimi model
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Figure 4.18: Tunnel invert receptance obtained with WANDS model compared
to Polimi model with equivalent wall hight
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been made in order to see if they actually affect the response that much,

the density of the walls has been changed to maintain the same mass found

before.
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Figure 4.19: Tunnel invert receptance obtained with WANDS model compared
to Polimi model with thick walls

Fig. 4.19 shows the invert receptance of the WANDS model after making

the walls of the tunnel as thick as the circumferential stiffeners. It can be

seen that the thickness of the walls has a big effect on the response but

by making the walls as thick as the stiffeners rings gives a response which

is too low, this is because the stiffeners in Polimi’s model are periodically

spaced. Since in WANDS is not possible to implement a periodic behavior

an equvalent hight has to be found.

Fig. 4.20 shows the invert receptance of the WANDS model after ad-

justing the walls thickness and walls density. It can be seen that now that

the right hight of the tunnel walls has been found there is good agreement

between the frequency responses of the two cases.

The dispersion curve and the transfer function of the ground surface

can also be inspected. As seen before from the dispersion curve it is possi-

ble to evaluate the wave speed of the propagating waves while the transfer

functions give the level of vibration.

Fig. 4.21 shows the dispersion curve for the ground surface in the vertical

direction due to a force on the tunnel invert. With the simplified procedure
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Figure 4.20: Tunnel invert receptance obtained with WANDS model compared
with Polimi model with right thickness of walls

Figure 4.21: Dispersion curve for the ground surface
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Figure 4.22: Ground surface transfer functions from 0 m (top line) to 24 m
(bottom)

presented before it is possible to calculate the S-wave speed for this ground

that is around 250 m/s. This is in accordance with the data found in [26]

for the ground parameters.

Fig. 4.22 shows the transfer functions of the ground surface due to a

force on the tunnel invert. It can be noticed that they are all very close due

to the fact that the tunnel is very far underground.
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Chapter 5

Results from the hybrid

formulation

This Chapter presents the results from the hybrid model for the different

configurations of ground and track, in terms of RMS of the velocity. The

ground responses are obtained with the hybrid formulation presented in Sec-

tion 2.3. In order to show the results four different distances from the point

of application of the force have been selected. This gives the opportunity of

investigate how the ground response is affected by the distance. The results

for the three different types of ground are presented: the simple halfspace,

the two layered ground and the deep bored tunnel. At these grounds have

been applied the forces from the two different rails, with and without the

joint, in order to obtain the responses.

The position considered to show the results of the ground vibration are

4, 6, 8 and 10 m away from the section at which the force is applied, along

the y axis.

The results are also compared with the International Standard ISO 2631

that reports the limit levels for the human exposure to whole-body vibration.

The curve reported on the graphs is the 24 hours exposure which is the most

restrictive.

Halfspace with simple track

Here are presented the levels of vibration of the receiver, for the case of

the halfspace, with a regular track laying on top of it. The test train used

for the time domain simulations is a three cars train with two motor cars
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and one trailer car. In order to obtain these results 153 sleepers have been

considered with a total length of the track of 160 m and a total time of

the pass-by of T = 22.5 s. Since the level of the response depend on the

total time of the pass-by, due to the auto and cross spectra of the forces, a

normalization has been used to report the levels to the length of the train by

adding 10 log10 T/tv where tv is the length of the train divided by its speed.
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Figure 5.1: Third octave bands ground response to train pass-by for the soft
halfspace with regular track

Fig. 5.1 shows the results for the pass-by of the train on a track laying on

a halfspace with the characteristics of the upper layer presented in table 4.1,

in third octave bands.

Fig. 5.2 shows the results for the pass-by of the train on a track laying on

a halfspace with the characteristics of the halfspace presented in table 4.1,

in third octave bands.

Fig. 5.3 shows the results for the pass-by of the train on a track laying

on a halfspace with the characteristics presented in table 4.2, in third octave

bands.

It can be noticed that the shape of the spectra of the responses of the

ground remains almost the same as the distance from the point of application

of the force increases while the magnitude decreases. This is due to the

transfer functions of the ground, as seen in Section 4.2.1. While the shape
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Figure 5.2: Third octave bands ground response to train pass-by for the stiff
halfspace with regular track
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Figure 5.3: Third octave bands ground response to train pass-by for the
Horstwalde halfspace with regular track
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mainly depends on the shape of the spectra of the force used as input because

the transfer functions of the ground are almost flat up to 100 Hz. It can

also be noticed that the magnitude of the velocity decreases as the stiffness

of the ground increases and that there are two main peaks at around 50

and 100 Hz. By looking at the standard levels it could be noticed that for

the distances considered the levels are, almost for all cases, over the limit

this means that if a building where people have to live or work need to be

built it has to be farther than 10 m away otherwise vibration mitigation

mechanisms have to be taken into account.

Halfspace with track containing joint

Here are presented the results for the case of the halfspace, with a track

containing a joint laying on top of it. The parameters choose for the analysis

are the same as the one of the previous case.
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Figure 5.4: Third octave bands ground response to train pass-by for the soft
halfspace with joint

Fig. 5.4 shows the results for the pass-by of the train on a track with

joints laying on a halfspace with the characteristics of the upper layer pre-

sented in table 4.1, in third octave bands.

Fig. 5.5 shows the results for the pass-by of the train on a track with

joints laying on a halfspace with the characteristics of the halfspace presented

in table 4.1, in third octave bands.
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Figure 5.5: Third octave bands ground response to train pass-by for the stiff
halfspace with joint
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Figure 5.6: Third octave bands ground response to train pass-by for the
Horstwalde halfspace with joint
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Fig. 5.6 shows the results for the pass-by of the train on a track with

joints laying on a halfspace with the characteristics presented in table 4.2,

in third octave bands.

It can be noticed that the addition of the joint gave a higher level of

the force for all three grounds. This is reasonable due to what was found in

Section 3.2.5.

Two layered ground

Here are presented the levels of vibration for the case of the two layered

ground with characteristics shown in table 4.1, the first with a regular track

and the second with a track with joints. Also for this case the other param-

eters are the same as for the first case presented.
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Figure 5.7: Third octave band ground response to train pass-by for the two layered
ground with regular track

Fig. 5.7 shows the results for the pass-by of the train on a regular track

laying on a two layers ground. It can be noticed that the magnitude of

this case is higher than the one of the halfspaces presented before, this is

congruent with what found for the ground transfer functions in Section 4.2.2.

For this case due to the wave reflection at the interface between the first

and second layer there is an increase in the vibration levels. The two peaks

at 50 and 100 Hz are still present but the difference is not as sharp as for

the halfspaces.
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Figure 5.8: Third octave band ground response to train pass-by for the two layered
ground with joint

Fig. 5.8 shows the results for the pass-by of the train on a track containing

joints.

Underground tunnel

Here are presented the levels of vibration for the case of the underground

tunnel embedded in the ground. At first are proposed the results for the

regular track and than for the track containing the joints. Also for this case

the other parameters are the same as for the first case presented.

Fig. 5.9 shows the results on the ground surface due to the pass by of

the train on a regular track inside an underground tunnel. It can be seen

that the responses are not very different because the levels of the ground

mobilities are not very different at different distances. This is due because

the tunnel is berried very deep in the ground and this gives a similar response

at different distances. Also for this case can be shown the results for the

pass by of the train on a track containing joints.

Fig. 5.10 shows the results on the ground surface due to the pass by of

the train on a track containing joints. Also for this case can be noticed that

the levels increased and also the peak is less narrow this means that the

energy introduced by the joints is relevant.
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Figure 5.9: Third octave band ground surface response to train pass-by for the
underground tunnel with regular track
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Figure 5.10: Third octave band ground surface response to train pass-by for the
underground tunnel with joint
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Results from the hybrid formulation

Comparison with the old hybrid model

A comparison of the results from the old version of the hybrid model and the

new version implemented for this work of thesis is made in order to verify

if the new model gives reasonable results.
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Figure 5.11: Comparison between old and new hybrid model

Fig. 5.11 shows the comparison of the results from the two different

hybrid models at three different distances. The simulation has been carried

on with the same parameters in order to investigate if the responses of the

two different models are comparable. It can be noticed that there is good

agreement between the two models. This is an important result because the

previous hybrid model has been compared with the model TGV which has

been compared with experimental results and both have good agreement

with the experimental data so this means that also the new hybrid model

has good agreement with the experimental data used to verify the TGV

model, [24].

Unfortunately the results from the underground tunnel do not match

well with the experimental data found in the CONVURT project but the

reason is uncertain. It could be because of the different top layer properties

that was not model in the ground model or to a different magnitude of the

forces exchanged between the train and the rail.
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Conclusions

Because of the competitiveness of rail over other forms of transport new,

heavier and faster trains and an increasing amount of underground lines are

being built; therefore concern is growing regarding the impact on society of

rail transport systems and ground-borne noise and vibration are therefore

important issues for railway companies. The research carried out in this

thesis was aimed at assessing ground vibration levels due to a train pass-by

in the frequency range 20-200 Hz.

In the field of ground-induced vibration, historically there have always

been two separate fields, one that studies the vehicle dynamics and the

wheel/rail interaction phenomenon, usually in the time domain, and one

that studies the propagation of the waves in the ground, usually in the

frequency/wavenumber domain. Recently a new way of studying the prob-

lem of train-induced ground vibration has arise called hybrid method, [24].

This thesis presents this novel method that combines the time domain ve-

hicle dynamics with the wavenumber/frequency domain wave propagation

in solids and shows a few examples where the method can be applied. To

do so the work was carried on at two different universities: Politecnico di

Milano contributed with knowledge on vehicle dynamics and wheel/rail con-

tact problems while the University of Southampton shared expertise on wave

propagation and ground dynamics.

This enabled the use of two powerful softwares developed in the last

decades in these two universities. The software from Politecnico di Milano

models the train as a mixed rigid/flexible multi-body model and the struc-

ture as a finite element model. It integrates the pass-by of the train in the

time domain giving as outputs the time histories of the forces, displacements,

velocities and accelerations of the nodes the structure and the trainset. The

software from University of Southampton is a linear model of the ground
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that operates in the frequency/wavenumber domain (so called 2.5D). It uses

the finite element and boundary element method to describe the cross sec-

tion of the ground and then the wave propagation in the third direction is

reconstructed by means of wavenumbers.

The hybrid method presented in this work uses the forces transmitted

to the ground obtained from the time domain calculation and the transfer

functions of the the ground between the point of application of the force and

the position of the receiver. The linking between the two results is done using

the auto and cross spectra of the forces; in this way the information about

the phase of the force is not lost, thus taking into account the movement of

the train in time and space. The result of this linking process is the PSD of

the velocity at a receiver position located anywhere on the ground surface.

During this research this methodology was used to predict the levels

of vibration induced by trains transiting on a surface railway line and on

an underground railway. A possible application is its adoption during the

design stage of a new line to investigate if the new railway would significantly

affect or not the people living or working in the surrounding area. It can

also be used to investigate whether a vibration mitigation solution proposed

for an existing or for a new line would be effective or not.

The main disadvantage of this method is the computational time needed

to run both the time domain calculation and the frequency domain calcu-

lation. As an example the time needed to solve the time domain pass-by

of the train in the tunnel structure, on the Politecnico’s server, takes about

24 hours while the frequency/wavenumber domain model of the two layer

ground, with 1024 wavenumbers, takes about 12 hours on the University of

Southampton’s cluster. For a case of an underground railway the contribu-

tion of the tunnel can be considered in the frequency wavenumber domain

calculation because only a limited number of nodes is needed. This would

speed up the time domain calculation and will not slow down too much the

frequency wavenumber domain one.

Both improvements in computational time and measurement validation

are required before the process can be successfully transfered to the industry

and these are the topics where further developments are needed in the near

future.
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CONVURT experimental

data

First of all is reported the experimental set and data found from the CON-

VURT (CONtrol of Vibrations from Underground Rail Traffic) project which

has been used to validate the models developed, [26]. This was a project

carried on as a collaboration among different universities and different com-

panies. Its aim was to create validated innovative and quantitative modelling

tools to enable prediction of locations where ground-borne vibration trans-

mission and thereby noise would occur in metropolitan railway networks.

The measurements have been taken at a site in Regent’s Park on the

Bakerloo line of London Underground. The track in the tunnel is of the

conventional London Underground type. It is a non-ballasted concrete slab

track with a 47 kg Bullhead rail supported on hard Jarrah wooden sleepers

nominally spaced at 0.95 m with cast iron chairs, table A.1 shows the rail

characteristics for the Bakerloo line. The space between the sleepers is filled

with shingle, which does not support the sleepers but provides drainage

and a flat surface for evacuation in case of emergencies. The rails are

not supported by rail pads and the resilience is mainly provided by the

local resilience of the timber sleeper, which has a stiffness of approximately

70 kN/mm.

From the CONVURT reports it’s known that the rail receptance mea-

surements have been performed in an unloaded track condition by applying

lateral and vertical excitations to the rail head at two positions, directly

over the sleeper and at mid-span between sleepers. Two instrumented ham-
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A 5490 10−6 m2

E 2.06 1011 Pa
ν 0.3
J22 1602 10−12 m4

J33 171 10−12 m4

ρ 7800 kg/m3

ms 70 kg

Table A.1: Characteristics of the rail, [34]

mers have been used to improve the accuracy of the frequency response and

to cover the frequency range up to 5 kHz: a relatively big hammer with an

effective mass of 4.218 kg and a soft plastic tip, covering the frequency range

up to 1 kHz, and a smaller hammer with an effective mass of 0.646 kg with

a harder tip, covering the frequency range up to 5 kHz at lower force levels.
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Figure A.1: Experimental rail receptance from the CONVURT project, [26]

Fig. A.1 shows the vertical rail receptance measured over the sleeper and

at mid span taken from [26]; the latter curve clearly shows a ‘pinned–pinned’

resonance frequency of 380 Hz. The ‘pinned-pinned’ resonance occurs when

a half wavelength corresponds with the length between the sleepers, hence

this depends firstly of the spacing between the supports and than also on the

bending stiffness of the rail. In fig. A.1 it’s evident that at low frequency the
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response of the track keeps on growing, this is not what usually is observed

and it is not what has been found using the numerical or analytical models

[39], so it’s possible that below 100 Hz the experimental frequency response

of the rail suffers of some errors due to the way the frequency response has

been measured, this could be verified by looking at the phase information

of the receptance but from [26] there is no information regarding the phase

of the receptance.

From the CONVURT project there are also the specification for the

tunnel on the Bakerloo line. It is a deep-bored tunnel with a cast iron lining

and a single track, embedded in London clay at a depth of about 28 m

below the surface. The tunnel has an external radius of 1.953 m, while the

thickness of the lining is 0.022 m. There are six longitudinal stiffeners (with

a height of 0.102 m and a width of 0.057 m) and one circumferential stiffener

at an interval of 0.508 m in the longitudinal direction, resulting in a periodic

tunnel structure

Figure A.2: Drawing of the tunnel from the CONVURT project [26]

Fig. A.2 shows the drawing of the tunnel at the sight considered in [26].

Table A.2 show the materials characteristics of the tunnel found in [26].

These characteristics are not present in the paper but have been found in

the literature.

During the experimental campaign of the CONVURT project also cone
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Cast iron Concrete

ρ kg/m3 7200 2000
E Pa 1.2 1011 3.5 1010

ν 0.3 0.28

Table A.2: Characteristics of the tunnel

penetration tests were performed in different positions up to a depth of

21 m. Two different layers have been identified: a shallow top one which

were found to be not very homogeneous made of clay with inclusions of sand;

a second very deep layer which were found to be very homogeneous.

Upper layer Halfspace

P-wave speed m/s 1964 1571
S-wave speed m/s 275 220
ρ kg/m3 1980 1980
β 0.042 0.039

Table A.3: Characteristics of the soil, [26]

Table A.3 reports the characteristics of the soil found in the test site in

London.

The test train used for the data acquisition is a normal refurbished 1972

passenger train, consisting of seven cars: a driving motor car, a trailer car,

two non-driving motor cars, two trailer cars and a driving motor car. The

length of a motor car is 16.09 m, while the length of a trailer car is 15.98 m.

The bogie and axle distances on all cars are 10.34 and 1.91 m, respectively.

The total length of the test train is 112.29 m, while the distance between

the first and the last axle of the train is 108.33 m. The wheels are of the

monobloc type and have a diameter of about 0.70 m. The tare mass of a

motor car is 15330 kg, while the bogie mass is 6690 kg and the mass of a

wheelset is 1210 kg. The tare mass of a trailer car is 10600 kg, while the

bogie mass is 4170 kg and the mass of a wheelset is 950 kg.
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Infinite plate strip

To better understand how the program WANDS works a simple structure

is been investigated: the simply supported plate strip. Two different finite

element types have been used: the plate elements and the solid elements.

The advantage of the plate elements is that the number of nodes, compared

with the solid elements, is much smaller but the solid elements are easier to

couple with other elements.

Table B.1 shows the characteristics of the plate chose as example.

L 1 m
h 6e-3 m
E 7.100e+10 Pa
ν 0.332
ρ 2700 kg/m3

η 0.100

Table B.1: Plate specifications

B.1 Analytical solution

For a thin undamped plate, the out-of-plane displacement w(x, y, t) in the

absence of external forces satisfies the following differential equation

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ (ρh)

∂2w

∂t2
= 0 (B.1)

Where D = Eh3

12(1−ν2)
is the plate bending stiffness.
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Harmonic motion is assumed at the angular frequency ω, with a time de-

pendence ejωt. Due to the use of simply supported boundaries, the response

amplitude w of the plate may be separated into its x and y components and

written as a summation over components with m half-sine waves across the

width L

w(x, y) =
∞∑
m=1

wm(x) sin
(mπy

L

)
(B.2)

where wm(x) is the complex amplitude of the mth component that depends

on the excitation. This series forms a complete set of functions which satisfy

the boundary conditions on y = 0 end y = L. Considering one term in the

series, substituting this into equation (B.1) yields(
d4wm
dx4

− 2
(mπ
L

)2 d2wm
dx2

+
(mπ
L

)4
wm

)
− ρh

D
ω2wm = 0 (B.3)

Seeking solutions of the form wm(x) = e−jkx,mx gives(
k4
x,m + 2

(mπ
L

)2
k2
x,m +

(mπ
L

)4
)
− ρh

D
ω2 = 0 (B.4)

which can be written as (
k2
x,m +

(mπ
L

)2
)2

= k4
B (B.5)

where kB =
√
ω 4

√
ρh
D is the free bending wavenumber of the plate. Equa-

tion (B.5) has four solutions which can be divided in two fundamentally

different wave-type solutions for each m

kx1,m = ±
√
k2
B −

(mπ
L

)2
(B.6)

kx2,m = ±
√
−k2

B −
(mπ
L

)2
(B.7)

Real wavenumbers represent propagating waves while imaginary wavenum-

bers represent evanescent waves which decay with distance. At low fre-

quency, kB < mπ/L, all four wavenumbers are imaginary so that all four

waves behave as evanescent or nearfield waves. In contrast, when kb >

mπ/L, kx1,m is real but kx2,m remains imaginary. Therefore, both propagat-
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Figure B.1: Analytical dispersion curves for simply supported plate strip

ing waves and nearfield waves are present for the latter case. The frequency

at which kB = mπ/L is referred to as the mth cut-on frequency ωm and is

given by

ωm =
(mπ
L

)2

√
D

ρh
(B.8)

The relation between the real part of the wavenumbers kx1,m and frequency ω

gives the dispersion curves shown in fig. B.1 where the blue line corresponds

to the free bending wavenumber, kB, these are calculated for the example

parameters listed in table B.1 While fig. B.2 reports the dispersion curves

due to the relation between the imaginary part of the wavenumbers kx2,m

where the blue line, again, corresponds to the free bending wavenumber.

Response due to a point force

There are two wave solutions for each m in equation (B.6) and two wave

solutions for each m in equation (B.7), allowing the complete solution to be

written as

w(x, y) =
∑
m

{
A1,me

jkx1,mx +A2,me
jkx2,mx +A3,me

−jkx1,mx+

+A4,me
−jkx2,mx

}
sin
(mπy

L

) (B.9)
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Figure B.2: Analytical dispersion curves for simply supported plate strip

In order to determine the constants A1,m, A2,m, A3,m and A4,m, boundary

conditions are required. In Appendix C the mathematical steps to determine

the point mobility of the plate strip are presented.

The point mobility for the structure can be found by setting x = 0 and

y = y0

Y (ω) =

∞∑
m=1

ω

DLkx1,m
(
k2
x1,m − k2

x2,m

) [1− kx1,m
kx2,m

]
sin2

(mπy0

L

)
(B.10)

Considering a finite number of cut-on frequencies the point mobility

becomes

Fig. B.3 show the analytical point mobility of the plate strip for two

different values of the loss factor: η = 0 and η = 0.1. The red line is the

point mobility of an infinite plate.

B.2 Finite Element Modelling

To investigate better how WANDS works and the differences between the

solid topologies two different models have been tested: one of the plate

assembled using plate elements; and on of the plate assembled using eight

nodes solid elements.
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Figure B.3: Analytical point mobility of the plate strip with loss factor η = 0 and
loss factor η = 0.1

B.2.1 Plate elements

In WANDS the plate element has 4 degree of freedom, {xi, yi, zi, θi}, each

node so in order to obtain a simply supported plate we have to restrain the

{x, y, z} displacements of the first and last node of the plate.

In Appendix D.1 are reported all the mathematical steps to obtain the

system equations with the system matrices. From equation (D.10), using

the unforced solution, can be obtained the dispersion relations for the plate

by substituting the solution e−jk where k is the wavenumber

K4k
4 −K2k

2 − jK1k + K0 − ω2M2 = 0 (B.11)

Since there are two variables, ω and k, there are two main ways to obtain

the dispersion relations. The first and easier way is to impose the vector for

k and to invert the equation (B.11). Using this method we obtain that the

only variable is ω and it becomes

ω =

√
M−1

2 [K4k4 −K2k2 − jK1k + K0] (B.12)

This way the values for ω correspond to the eigenvalues of the term on the

right and the modeshapes correspond to the eigenvectors.
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Otherwise a vector for ω can be impose and solve equation (B.11) for k.

This method needs to be implemented numerically as shown for example in

[40] and [41].

Since the first method is easier to implement and requires a lower com-

putational time, and for simple geometries, like the simply supported plate,

gives reasonable results this method has been used. The solution of equa-

tion (B.11) gives as output the eigenvalues, ω, and the eigenvectors, Φi, of

the matrix at the frequency ωi.
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Figure B.4: FE model strip plate dispersion relations with plate elements

In fig. B.4 can be seen that there are also some wavenumbers completely

different from the analytical solution, this because with the FE solution

we obtain also the wavenumbers for ky,m and kz,m that in the analytical

solution shown before are not considered. In fig. B.5 are showed the first

three modeshapes for the plate modeled with plate elements.

Response due to a point force

The response due to a point force is obtained by the numerical integration

of the structure. The outputs are the displacements of the nodes of the

structure due to a force that changes in frequency applied to a node of the

structure. Unfortunatly for this type of elements the forced response has

not been fully implemented yet so it won’t be possible to show the force
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Figure B.5: FE model strip plate modeshapes with plate elements normalized by
the maxima of each modeshape

response of the plate for the plate elements.

B.2.2 Solid elements

The program WANDS offers two different kind of solid elements: the four

nodes and eight nodes elements. This kind of element has 3 degree of freedom

per node {xi, yi, zi}. It’s been notice that if the nodes on the corners of

the plate are restrained different results from the analytical solution are

obtained, this because of the coupling of the waves at the corner. In order

to obtain the same results of the analytical solution a node at the center

of the thickness of the plate has to be restrain. The eight nodes elements

already give this opportunity also with only one element in the thickness,

instead the four nodes elements don’t, so at least two rows of elements has

to be used in the thickness in order to obtain right results with this topology

of elements. In this case the eight nodes elements have been used.

In Appendix D.2 are reported all the mathematical steps to obtain the

system equtions with the system matrices. Making the same assumptions

that we made in Appendix B.2.1 the dispersion relations can be obtain as

before

ω =

√
M−1

2 [−K2k2 − jK1k + K0] (B.13)
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Figure B.6: FE model strip plate dispersion relations with solid elements

In fig. B.6 are represented the dispersion relations for the plate modeled

with solid eight nodes elements. In fig. B.7 are showed the first three mode-

shapes for the plate modeled with solid elements. As it can be seen there

are some differences in the frequency of the modeshape, that increase with

the increasing of the modeshape number, this is due to the type and number

of elements used. Increasing the number of elements for both models this

difference decreases.

Response due to a point force

As show in the above section the mobility of the plate can be obtained

multiplying the outputs of the point force frequency response, obtained with

the numerical integration, by jω

Fig. B.8 shows the comparison between the analytical point mobility and

the numerical point mobility of the plate modelled with solid FE. It can be

noticed that at low frequency there is a very good agreement between the

analytical and the numerical solution. Growing with the frequencies the

numerical solution becomes less accurate, this could be because of the FE

discretization.

From the numerical integration in WANDS also the dispersion curves are

obtained. These can be compared with the ones obtained with the analytical

model and by the system matrices.
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Figure B.7: FE model strip plate modeshapes with solid elements normalized by
the maxima of each modeshape
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Figure B.8: Comparison between analytical point mobility and numerical point
mobility for the same value of the loss factor η = 0.1
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Figure B.9: Dispersion curves of the plate described with solid FE obtained with
the numerical integration

Fig.B.9 shows the dispersion curves for the plate described with the

solid FE method. The higher picks correspond to the dispersion curves.

From fig. B.9 can be seen that the cut-on frequencies correspond to the ones

obtained with the analytical solution. Since the damping is considered the

dispersion curves are spread over the whole are of the frequency wavenumber

range considered.

Fig. B.10 shows the displacements of the plate along the X direction

per every frequency. It can be seen that waves at lower cut-on frequencies

propagate further than waves at higher cut-on frequencies.
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Figure B.10: Displacements in the X direction per every frequency
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Analytical point mobility of

infinite plate strip

In order to solve equation B.9 the boundary conditions have to be applied.

For a force applied at x = 0 it should be noted that, to ensure that waves

decay in both directions, A1,m and A2,m are zero in the region x ≥ 0 while

A3,m and A4,m are zero in the region x ≤ 0. These assumptions give as

result that the out of plane displacement of the infinite plate strip, for every

mode m, becomes

wm(x ≤ 0, y) = A1,me
jkx1,mx +A2,me

jkx2,mx (C.1)

wm(x ≥ 0, y) = A3,me
−jkx1,mx +A4,me

−jkx2,mx (C.2)

The generalized force acting on the mth order motion is

Fm =
2F

L
sin
(mπy0

L

)
(C.3)

The boundary conditions for this structure evalueted at x = 0 are

• Continuity equation: wm(0)− = wm(0)+

A1,m +A2,m = A3,m +A4,m (C.4)

• Continuity of rotation: ∂wm
∂x

∣∣
x=0−

= ∂wm
∂x

∣∣
x=0+

jkx1,mA1,m + jkx2,mA2,m = −jkx1,mA3,m − jkx2,mA4,m (C.5)
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• Continuity of bending moment: ∂2wm
∂x2

∣∣∣
x=0−

= ∂2wm
∂x2

∣∣∣
x=0+

−k2
x1,mA1,m − k2

x2,mA2,m = −k2
x1,mA3,m − k2

x2,mA4,m (C.6)

• Force equilibrium condition: Sm(0, y)+ − Sm(0, y)− = Fm([
jA3,mk

3
x1,m + jA4,mk

3
x2,m

]
− [(2− ν) [−jA3,mkx1,m−

−jA4,mkx2,m]
(mπ
L

)2
])
−
([
−jA1,mk

3
x1,m − jA2,mk

3
x2,m

]
−

−
[
(2− ν) [jA1,mkx1,m + jA2,mkx2,m]

(mπ
L

)2
])

=
Fm
D

(C.7)

From the boundary conditions four equations are obtained. Solving the

four equations if four variables problem the coefficients A1,m, A2,m, A3,m and

A4,m are obtained. From equation (C.4) and equation (C.6) the following

relations are obtained

A1,m = A3,m (C.8)

A2,m = A4,m (C.9)

A4,m = −kx1,m
kx2,m

A3,m (C.10)

By solving the system of equations can be found that

A1,m =
−jFm

2Dkx1,m
(
k2
x1,m − k2

x2,m

) (C.11)

Based on these coefficients, the solution may be written as follows

wm(x ≤ 0) =
−jFm

2Dkx1,m
(
k2
x1,m − k2

x2,m

) [ejkx1,mx − kx1,m
kx2,m

ejkx2,mx
]

(C.12)

wm(x ≥ 0) =
−jFm

2Dkx1,m
(
k2
x1,m − k2

x2,m

) [e−jkx1,mx−
−kx1,m
kx2,m

e−jkx2,mx
] (C.13)
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The complete solution is than given by

wm(x ≤ 0, y) =

∞∑
m=1

−jFm
2Dkx1,m

(
k2
x1,m − k2

x2,m

) [ejkx1,mx−
−kx1,m
kx2,m

ejkx2,mx
]

sin
(mπy

L

) (C.14)

wm(x ≥ 0, y) =
∞∑
m=1

−jFm
2Dkx1,m

(
k2
x1,m − k2

x2,m

) [e−jkx1,mx−
−kx1,m
kx2,m

e−jkx2,mx
]

sin
(mπy

L

) (C.15)

From equation (C.14) and equation (C.15) the mobility for the infinite

plate strip Y = ẇ
F = jωwF can be derived as

Y (x, y, ω) = jω
∞∑
m=1

− j 2
L sin

(mπy0
L

)
2Dkx1,m

(
k2
x1,m − k2

x2,m

) [e−jkx1,m|x|−
−kx1,m
kx2,m

e−jkx2,m|x|
]

sin
(mπy

L

) (C.16)
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WANDS FE theory

A variation of a Lagrangian is defined by

δL =

∫ t2

t1

δ(U − T )− δW dt (D.1)

where δ denotes first variation, t1 and t2 are the interval ends, U and T are

the potential and kinetic energies and δW is the virtual work of the forces.

In the absence of other systems Hamilton’s modified principle states that

for any given t1 and t2

δL = 0 (D.2)

This means that the system state at t1 and t2 is irrelevant, given that

harmonic motion over a long period of time is considered. Thus, t2 and t1

may tend to ±∞ respectively without any loss of information.

Parseval’s identity for two real valued functions, f(t) and g(t) yields∫ +∞

−∞
f(t)g(t) dt =

∫ +∞

−∞
f̂(ω)∗ĝ(ω) dω (D.3)

where t is time, ω is the angular frequency, * denotes complex conjugate

andˆdenotes the Fourier transform. Applying Parseval’s identity on equa-

tion (D.1) gives

δL(ω) =

∫ +∞

−∞
δU(ω)− δT (ω)− δW (ω) dω (D.4)

Calculate response at different frequencies are independent when linear

systems are considered. Consequently, a variation formulation defined for
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each frequency is given by

δLω = δU(ω)− δT (ω)− δW (ω) (D.5)

Depending on what element type it’s used there is a different formulation

of the potential and kinetic energies

D.1 Plate elements

In order to solve equation (D.5) all the single terms have to be identified for

the plate element.

Potential energy

Following thin plate theory and considering the frequency domain the first

variation of potential energy in an area A may be written as

δU =

∫
A

[
δεH δκH

]
D

[
ε

κ

]
dA (D.6)

where ε are the strains and κ are the curvatures of the plate.

As shown in [20] it can be seen that the potential energy can be written

as ∫ 2∑
i=0

2∑
j=0

∂iδũH

δxi
aij

δj ũ

δxj
dx (D.7)

This can be seen as a weak form equation for the potential energy.

Kinetic energy

The first variation of the kinetic energy in the frequency domain is

δT =

∫
A
ρh
[
δu∗ δv∗ δw∗

]uv
w

 dA (D.8)

With the approximation of chapter 4 of [20] the kinetic energy becomes

δT =

∫
x
δũHm2ũ dx (D.9)
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Inserting variations of potential and kinetic energies into Hamilton’s

principle, followed by integration by parts while neglecting boundary terms

of the ends of the waveguide and subsequently applying calculus of variation

yields [
K4

∂4

∂x4
+ K2

∂2

∂x2
+ K1

∂

∂x
+ K0 − ω2M2

]
ũ− f̃ = 0 (D.10)

Where ω is the round frequency. The program WANDS gives as output the

matrices K4, K2, K1, K0 and M2.

D.2 Solid elements

In order to solve equation (D.5) all the single terms have to be identified for

the solid element.

Potential energy

The first variation of potential energy in the frequency domain is given by

δU(ω) =

∫
V
δε̂HDε̂ dV (D.11)

This can be rewrite as

δU(ω) =

∫
x

∂iδũ

∂xi

1∑
i=0

1∑
j=0

aij
∂j ũ

∂xj
dx (D.12)

Kinetic energy

The first variation of the kinetic energy in the frequency domain is given by

δT (ω) = ω2

∫
x
δũHm2ũ dx (D.13)

External forces

The virtual energy in the frequency domain is given by

δW (ω) =

∫
x
δũH f̃ dx (D.14)
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Inserting the expressions for δU , δT and δW in equation (D.5) yields

δLω =

∫
x

1∑
i=0

1∑
j=0

∂iδũ

∂xi
aij

∂j ũ

∂xj
− ω2δũHm2ũ− δũH f̃ dx (D.15)

This equation may be denoted as the weak form of the waveguide-FE model.

Hamilton’s principle integration by parts with respect to the x-coordinate

and calculus of variation yields[
K2

∂2

∂x2
+ K1

∂

∂x
+ K0 − ω2M2

]
ũ− f̃ = 0 (D.16)
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Traction vector

The traction vector is related to the shape functions of the boundary el-

ement and since it is in WANDS only the quadratic boundary element is

implemented, its shape functions are described in equation (E.1)
φ1(ξ) = 1

2ξ(ξ − 1)

φ2(ξ) = 1− ξ2

φ3(ξ) = 1
2ξ(ξ + 1)

(E.1)

where −1 ≤ ξ ≤ 1 is the non dimensional local coordinate of the bound-

ary element ξ = y/a, where a is half of the boundary element length. In

equation (E.1) the number 1, 2 and 3 correspond to the local nodes of the

element.

Fig. E.1 shows the shape functions for the three nodes of the boundary

element.

There is an issue on the point of application of the force and the shape

functions. If the equivalent point force is applied to the center node of an

element than the traction vector is spread over the same boundary element

with a shape equal to the shape function φ2. The equivalent point force is

Feq = a

∫ 1

−1
φ2(ξ)p dξ (E.2)

where Feq is the equivalent point force at the center node of the boundary

element for the given traction vector p. If the point force is applied to a node

at the edge of the boundary element the traction vector is spread on both

element that the node describes. The shape of the traction vector is than
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Figure E.1: Shape functions for the three nodes of the boundary element

the union of shape function φ3(ξ) for the boundary element at the left of

the node and φ1(ξ) for the element at the right of the node. The equivalent

point force is than calculated as

Feq = a

∫ 1

−1
[φ1(ξ) + φ3(ξ)] p dξ (E.3)

Since in wands to the boundary elements can not be applied a point

force but only a traction vector it is necessary to understand what is the

equivalent traction vector in order to obtain the point force wanted. To do

so is than needed to know at which node of the boundary element is applied

the point force, than a simple loop on the residual of the equivalent force

obtained with equation (E.2) or (E.3) whit as variable the traction vector p

has to be used. This returns the equivalent traction vector to be given as

input to WANDS in order to obtain a desired point force on the boundary

element.

In this thesis the trapezoidal numerical integration has been used in order

to obtain the equivalent point force. In particular the MatLab implemented

routine trapz has been used.
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