
POLITECNICO DI MILANO

Facoltà di Ingegneria dell'Informazione

Master of Science in Computer Engineering

Dipartimento di Elettronica e Informazione

Design and implementation of an Ant Colony

Optimization algorithm for traffic assignment

Relatore: Ing. Matteo MATTEUCCI

Correlatore: Prof. Lorenzo MUSSONE

Tesi di Laurea di:

Marco Roland FERENCZI Matr. 734687

Anno Accademico 2011 - 2012

To My Family.

Computers are incredibly fast, accurate, and stupid.
Human beings are incredibly slow, inaccurate, and

brilliant. Together they are powerful beyond imagination.

Albert Einstein

Contents

List of Figures..V

List of Algorithms/Code Snippets..VII

List of Tables... IX

Abstract XI

Estratto XIII

1 Introduction 1

1.1 From swarm intelligence to flow assignment...................................3

1.2 Outline of the thesis...5

2 Preliminary concepts 7

2.1 Introduction..7

2.2 The traffic assignment problem..7

2.3 Wardrop equilibria..11

2.4 Extensions to Wardrop equilibria model..14

2.5 Frank-Wolfe algorithm...16

2.6 Other algorithms for Traffic Assignment..18

3 Ant colony optimization for the Traffic Assignment 21

3.1 Introduction..21

3.2 Ant Colony Optimization...21

3.3 Ant System...23

II CONTENTS

3.4 Ant Colony System for Traffic Assignment...................................25

3.4.1 Network initialization..29

3.4.2 Ant exploration and travel from origin to destination........30

3.4.3 Pheromone distribution and evaporation............................39

3.4.4 Flow assignment and link cost update................................42

3.4.5 Rho update...44

3.4.6 Stop condition..45

3.4.7 Further optimization...47

4 Design and implementation 51

4.1 Introduction..51

4.2 Software requirements overview..51

4.2.1 Input data...53

4.2.2 Output data...57

4.3 The Network Model design and implementation...........................59

4.3.1 Network nodes...64

4.3.2 Network links...64

4.3.3 Network visualization..65

4.4 The ACS-TA algorithm design and implementation.......................67

4.4.1 The ant colony...69

4.4.2 Pheromone release...71

4.4.3 Link choosing..71

4.4.4 Flow assignment..75

4.4.5 Rho value update..75

4.4.6 Stop condition..76

4.4.7 Data logging and final results save.....................................76

CONTENTS III

5 Simulations and results 79

5.1 Networks overview..79

5.2 ACS-TA algorithm performance analysis.......................................81

5.3 Memory management...92

6 Conclusions and Future Work 95

Appendices 99

A Software use manual 99

B Class diagrams 111

C Tested networks images 125

Bibliography and links 131

List of Figures

2.1 Relationship between traffic demand, flows and costs.....................8

3.1 An example of possible network..32

3.2 An example of possible network with backward links...................34

3.3 Efficient links in the Sioux Falls Network for an O/D pair............39

3.4 Relationships between pheromone distribution, flows and costs....43

3.5 Ignored links on Area Maggi Network after optimization..............50

4.1 Traffic model class diagram...61

4.2 ACS-TA algorithm class diagram...68

4.3 Blacklist tree example..74

4.4 Class diagram for the data loggers...77

5.1 Bastioni network plot...88

5.2 Napoli network plot...89

5.3 Maggi network plot..90

5.4 Sioux network plot...91

5.5 Memory usage during software execution on Bastioni network.....92

List of Algorithms / Code Snippets

2.1 Frank-Wolfe conditional gradient method......................................17

3.1 Ant system...24

3.2 Ant colony system for traffic assignment.......................................28

3.3 Network optimization...49

4.1 Network model initialization..63

4.2 Pheromone distribution..70

List of Tables

5.1 Physical and functional characteristics of the networks.................80

5.2 Performance analysis of different link choosers.............................82

5.3 Flow variance convergence over different networks......................84

5.4 Convergence analysis using variable ρ ..85

5.5 A-posterior convergence analysis...86

5.6 Performance comparison between ACS-TA and CUBE.................87

Abstract

Swarm Intelligence (SI) is a concept used by artificial intelligence to solve

decision making problems. A peculiar trait of SI algorithms is the use of multiple

agents that interact locally and use simple rules to find a globally valid solution.

There is no centralized control and the agents have only a limited knowledge of

the entire system. In this work we develop and implement a software in Java that

extends the basic Ant Colony System (ACS) algorithm, a particular algorithm of

the SI family, to model traffic distribution over transportation networks. The

objective is to have a software that can work on networks with separable and

non-separable cost link functions, searching for a deterministic or stochastic user

equilibrium. The flow assignment process is possible over large and real

networks with multiple flow origins and destinations, vehicle categories, and

limited traffic zones. To achieve this, careful development is done to have an

efficient memory consumption, a critical aspect in every software written in Java

that uses large amount of data, while maintaining a good computational speed.

The software is optimized to work on many threads in parallel, giving a huge

increment in performance on multi-core systems. Finally, the software

performance and solutions quality is confronted with other commercial software

used to solve this type of problems.

Estratto

La swarm intelligence (SI, traducibile come: teoria dello sciame intelligente) è un

concetto usato in intelligenza artificiale per risolvere problemi di decisione. Un

tratto di questa famiglia di algoritmi è l'uso di agenti multipli che interagiscono

localmente e usano delle semplici regole per trovare una soluzione globalmente

valida. Non c'è alcun controllo centralizzato e gli agenti hanno solo una

conoscenza limitata dell'intero sistema in cui si muovono e agiscono. In questo

lavoro viene sviluppato e implementato un software in Java che estende

l'algoritmo chiamato Ant Colony System (ACS), un particolare algoritmo della

famiglia degli SI, per modellare da distribuzione del traffico su diverse reti.

L'obiettivo è avere un software che può lavorare su diverse reti, con funzioni di

costo degli archi dipendenti sia dal traffico sullo stesso arco che su archi

incidenti, cercando una soluzione con un equilibrio deterministico o non

deterministico. La ricerca di equilibrio è possibile su grandi reti prese dal mondo

reale, con diverse origini e destinazioni per il traffico, categorie di veicoli e zone

a traffico limitato. Si è data molta attenzione sia alla velocità di esecuzione sia al

consumo di memoria, che deve rimanere il più efficiente possibile sopratutto in

considerazione del fatto che il software è scritto in Java e lavora su grandi

quantità di dati. Il software è ottimizzato per lavorare in parallelo usando diversi

processi indipendenti, in modo da avere un ottimo incremento di prestazioni su

sistemi multi processore.

Chapter 1

Introduction

In the last century, thanks to mass production of automobiles, there has been an

exponentially increasing amount of cars circulating in large urban centers and on

highways. This created a great concern over traffic congestion, which is a

condition where the volume of traffic on a road is near the road maximum

capacity. High level of congestion causes to the drivers a big economical impact

in the form of increased delays and travel time. While many different measures

have been taken into consideration to contrast the problem, like promoting an

efficient public transportation, a careful development of the road network can

reduce traffic congestion. That is why many transport analysts, economists,

mathematicians and, later, computer scientists have started to investigate how to

cope with road congestion, finding models for traffic distribution and how to plan

a good road network to avoid it.

First work that introduced the concept of traffic equilibrium was done by Frank

Knight in 1924, where he presented an argument about how the taxation of roads

can reduce the congestion to its efficient levels [1].

Based on Frank Knight work, in 1952 John Glen Wardrop introduced his First

and Second principles of equilibrium [2]. The first principle was derived from

game theory and formalized the notion of traffic equilibrium, based on the

2 Introduction

concept that agents selfish behavior degrades the system efficiency and leads to

models with Nash Equilibrium. The second principle introduced the alternative

behavior where the system optimal equilibrium is reached through the

minimization of the average travel costs and therefore of the total costs.

The first basic formulation for the Transportation System Theory, that uses

Wardrop's first and second principles of equilibrium, was done by Beckman in

1968. He introduced the concept of “network” to model the connections between

traffic demand and supply on a territory and the interactions between demand and

supply, while the traffic demand was still an independent variable not related to

the system [3].

In the same year a German mathematician, called Dietrich Braess, demonstrated

a paradox where adding one link to a network decreased the overall performance

of the network, due to the selfish behavior of the agents and the consequent Nash

equilibrium [4]. This paradox can happen in real world road networks as many

successive studies demonstrated. For reference see the work of Springer and

Verlag [5], where it is described how a new traffic section in Stuttgart was not

effective in reducing traffic congestion until some sections where closed or [6], a

New York Times article written in 1990 where it is described how closing a road

decreased overall traffic congestion.

A better analysis to construct mathematical models for transportation demand

was later given by Daniel McFadden [7]. Here the fundamentals for the

Transportation System Theory were a number of hypotheses and relations that

represented the supply of transportation services, the behavior of travelers and

how supply and demand interact [8].

Today, many other studies have been done to improve the Transportation System

Theory to determine facility needs, costs and benefits. The main problem in these

studies is the traffic assignment, over a network, needed to simulate how

Introduction 3

additions made to a network affect the overall efficiency. Major urban centers

that provide the infrastructures to monitor traffic have made very easy to collect

large amount of data about traffic going in and out the city. Many of the older

algorithms used to solve this problem, like Frank–Wolfe algorithm [9] or method

of successive averages (MSA), suffer of high computation costs and slow

convergence to equilibrium over complex networks. This made a primary

concern the development of new algorithms that can reach equilibrium in a

relatively low amount of time.

Finding a good algorithm is the subject of this thesis. To achieve this goal we use

a particular branch of artificial intelligence derived from observation of natural

biological systems, called Swarm Intelligence [10].

1.1 From swarm intelligence to flow assignment

Studies in biology about behavior of large communities of insects, like ants or

bees, have given surprising results on their ability to solve problems through

cooperation of many elements. Without cooperation this kind of problems would

be otherwise impossible to approach because of the low intelligence or ability of

a single member of the community. An interesting characteristic of these

communities is the lack of a central authority that makes decisions for every

member. The members simply relieve to a set of rules depending on the role

taken inside a colony. For example, in the case of ants, it has been observed that

an ant with the role of forager will only move outside the colony to bring back

food if enough scout ants have returned. To accomplish this, the members of the

community need the ability to communicate between them. Continuing the

previous example, ants use the antennae to know if the other ants they are

interacting with are members of the same colony and the role they assume inside

4 Introduction

the colony. The interactions are always simple and done locally, this means that

ants rely only on local information to take decisions about what to do. Inspired

by this idea computer scientists started to create mathematical procedures that

imitate insects, flock of birds, fish schooling or bacterial growth behaviors to

solve particular human problems like routing, scheduling and optimization in

general.

Swarm intelligence and traffic supply/demand over a network have some

interesting common features. Both describe the collective behavior of agents that

interact locally within the environment, without any centralized control and with

independent decision process from each other. Considering a static network

where travel time is not affected by the numbers of agents traveling on a route,

the Nash and optimal equilibrium is the same and it is reached when all the

agents follow the shortest path. Finding the shortest path is a problem that has

been successfully resolved by a particular swarm intelligence algorithm called

Ant Colony System (ACS), that simulate the behavior of cooperating ants in

finding and following the shortest path between a source of food and the nest

[23]. This is done through a mechanism called stigmergy, used by ants to

communicate locally using pheromone.

The aim of the thesis is to develop and implement a software that extends the

ACS algorithm and makes agents search routes over a network where travel time

is in relation with traffic intensity, i.e. travel time on roads is related to traffic

intensity on the same road or other roads that intersect with it. Another important

difference from standard ACO algorithm is the presence of multiple traffic supply

sources and destinations that affect traffic over roads. The software has been

tested on different traffic networks to analyze their behavior and to simulate the

traffic distribution on real large cities like Milan or Naples. The result we

obtained is, under different assumptions, to converge to user equilibrium in a

Introduction 5

reasonable time.

1.2 Outline of the thesis

The thesis is organized as follows:

• In Chapter 2 we formalize the traffic assignment problem and discuss

how equilibrium can be reached, particularly focusing on the Wardrop

equilibrium and to some extensions to it. Next, we describe some

algorithms used to find the equilibrium, like the Frank-Wolfe algorithm,

and describe the principal algorithm classes used to resolve traffic

assignment problems.

• In Chapter 3 we first explain how the ant colony optimization algorithms

works, and then describe a particular algorithm called Ant System. Next,

we discuss how we extended the algorithm into a new algorithm called

Ant Colony System for Traffic Assignment (ACS-TA) to resolve the

traffic assignment problem, the problems encountered during the

simulations and how we resolved them making various optimization to the

algorithm.

• In Chapter 4 we focus on the software implementation, explaining the

software requirements, and what data we expect at the end of the

algorithm execution. The software implementation is divided in two parts,

the former is the transportation network model, the latter is the previously

described ACS-TA algorithm and sub-algorithms implementation.

• In Chapter 5 we describe the characteristics of the networks used to test

the software execution. After, we compare and analyze the results of

different simulation that used various parameters and sub-algorithms, to

6 Introduction

find how they affect the algorithm in finding the equilibrium and the

computation time to reach it.

• In Chapter 6 we report the conclusions of the whole work, discussing on

the results obtained. Next, we give several indications on future lines of

works that can be followed both in extending the ACS-TA algorithm to

achieve better solutions, and the possible software improvements.

• In Appendix A, we provide a manual to correctly configure and run the

software, explaining what files are needed and how all the configurable

parameters change the behavior of the algorithm. It is also explained how

to do the best tuning for the Java Virtual Machine memory occupation,

given a network.

• In Appendix B, we provide the class diagram of the software described.

• In Appendix C, we provide the network graphical visualization for every

network used.

Chapter 2

Preliminary concepts

2.1 Introduction

In this chapter all the concepts needed to understand the scope of this thesis work

are introduced. First the definition of the traffic assignment problem is given and

the most common models of the problem are explained. Finally the most

common algorithms used to find a solution to the problem are described.

2.2 The Traffic Assignment Problem

The problem to determine how users choose different routes between origins and

destinations over transportation networks, taking in consideration the congestion

on the passed roads, is called Traffic Assignment Problem. In the transportation

realm, congestion usually relates to an excess of vehicles with respect to a

portion of roadway at a particular time resulting in speeds that are much slower

than normal or “free flow” speeds.

An instance of the traffic assignment problem is given by the transportation

supply, and demand. The transportation supply is usually represented by the

network topology, road geometry, road capacity and arc link travel cost functions

8 Preliminary concepts

while the transportation demand is represented by the list of OD pairs and their

demand rates. A transportation planner, who is generally involved in evaluating,

assessing and designing the transportation facilities1, needs to find or estimate all

the elements that comprise the model. The topology of the network is usually

digitized from maps, if it is not already available. Link travel cost functions are

calibrated from historical information using tabulated functions that relate

geometry of the road to capacity. One may need also to add tolls or other costs to

the arcs, which, in most cases, can be converted to the same units by using the

average value of time for the population. The transportation supply can usually

be estimated from socioeconomic information coming from census data. The

transportation demand can be measured directly or may come from historical OD

matrices that can be calibrated using up-to-date traffic counts [15].

To formalize the Traffic Assignment Problem, we consider an instance where the

network topology is modeled as a directed graph G = (N, L) consisting a set of N

1 Examples of transport facilities are streets, highways, bike lanes and public transportation lines.

Fig. 2.1: A model of transportation system describing the equilibrium relationship
between traffic demand,flows and costs. The cost c for traveling on a certain link
depends on the observed traffic f generated by traffic demand. Traffic demand d, in
turn, is distributed on links according to the cost vector c.

Preliminary concepts 9

nodes and a set of L links. The transportation demand is modeled by a set of

origin-destination (OD) pairs. Each node that is part of a pair is called centroid.

The flow demand rate that must be routed from the corresponding origin to its

destination is considered arbitrarily divisible and for each k∈M it is equal to dk.

The set of routes connecting an OD pair in G is enumerated in Ik for every k∈M

while R is the union of all the possible routes. Each origin-destination demand dk

generates a set of network path flows Fi, with i∈I k . For a given link l∈L , the

sum of all path flows crossing this link is called

the propagation model:

(1)

where a li is 1 if the path i contains the link l and 0 otherwise. In matrix form:

(2)

where F and f are the vectors of path and link flows, respectively with a

dimension equal to the number of paths ∣I k∣=npath and to the number L of links,

while the link-path incidence matrix A is made up of the a li .

The model of a transportation system that we consider describes the behavior of

the traffic demand, i.e., the average number of users moving between centroids in

M, and its relationship with link flows according to the scheme of Figure 2.1. In

particular let cl be a function, called cost, with values in ℝ⩾0 that represent the

travel time over an arc I, and Ci the total traveling time on a certain path i,

depending on the observed traffic (f or F). Assuming that all costs on links are

additive, the relationship between the c vector of link costs and the C vector of

path costs can be written as:

(3)

Traffic demand d is distributed on links according to the cost vectors c and C; in

C=AT c

f l=∑
i∈I k

a li F i

f =AF

10 Preliminary concepts

particular, the relationships between F, f and d are:

(4)

(5)

where P is the path choice probability matrix, also known as path choice map of

dimensions (npaths, ∣M∣). Each element pij of P expresses the probability that

traffic demand di (of the i-th od-couple) is routed on path j. Its value is zero when

path j does not start in O or does not end in D, otherwise it depends on the cost of

traveling on path j. Its functional form can vary according to the distribution of

the cost itself. The equilibrium solutions F* and f*, for Equation 4 and 5 can be

written as:

(6)

(7)

Equations 6 and 7 describe the circular dependencies upon which the equilibrium

problem of Figure 2.1 is based; these equations represent the fixed point solution,

i.e., the equilibrium, of Equations 4 and 5. The dynamics of the system, and the

transient until the equilibrium is reached, are not specified by the model we are

focusing on; it is assumed that when the system reaches equilibrium it is steady,

and this is the state we are interested to analyze. Equilibrium can be analyzed by

taking into consideration another element regarding dk, that is, demand elasticity.

The demand dk may be rigid, in the sense that the increasing costs due to

congestion affect only the choice of the path; in this case the vector d is assumed

invariant to link costs. Vector f or F are then defined by the equations:

(8)

(9)

Otherwise, if demand is elastic, that is, it depends on congestion costs as well as

F=P (C (f))d (C (f))

f =AP (C (f))d (C (f))

F*
=P (AT c(AF *

))d (AT c(AF *
))

f *
=AP (AT c (f *

))d (AT c(f *
))

F*
=P (C (AF *

))d where C (AF *
)=AT c (AF *

)

f *
=AP(C (f *

))d where C (f *
)=AT c(f *

)

Preliminary concepts 11

on system attributes, then Equations 6 and 7 must be used.

An example of rigid demand could be railway commuters whereas elastic

demand could refer to weekend or holiday travelers. In general rigid demand

assumptions can be adopted when we analyze mono-modal (that is, single mode)

networks in standard conditions. Indeed, in these conditions user choices are

related only to path choice considering fixed any other demand dimension (mode

and/or destination choice). Therefore, elastic demand hypotheses have to be

assumed in the case of multi-modal (that is, with at least two different modes)

networks or in the case of unusual conditions, that is, when user reconsider path

choice jointly with mode/destination choice.

2.3 Wardrop equilibria

A common assumption in the study of transportations systems is that a traveler

choose the route that he perceives as the fastest (or least expensive) to reach his

destination, taking in consideration the traffic congestion on the roads [11].

The consequences of these individual decisions are that travelers cannot reduce

the travel time choosing unilaterally a different route, creating a condition called

Wardrop equilibrium.

The first principle of Wardrop that describe this equilibrium is here enunciated

[2, p. 345]:

<< The journey times on all the routes (of the same origin/destination couple)

actually used are equal, and less (or equal) than those which would be

experienced by a single vehicle on any unused route. >>

The same concept was already enunciated by Kohl [11] and Knight [1] in

precedent works. This principle regarding the path choosing has been accepted as

12 Preliminary concepts

simple and sound to describe the behavior of the travelers that have to choose the

route to take under traffic congestion conditions [12].

The Wardrop equilibrium is considered as the result of a transitory phase where

the travelers iteratively change the chosen route until the situation becomes

stable, which means that everyone travels the fastest route perceived and there

are not any more variations of traffic flow on the transportation network.

A mathematically formalized Wardrop equilibrium in the context of

transportation networks was done by Beckmann, McGuire and Winsten in 1952

[13], and it has become the most used by network planners to predict the decision

taken by travelers on real networks [14, 15]. This model have remained valid

until today to estimate how the traffic is redistributed after a change on the

transportation network, like adding a road, a bridge or introducing of tolls.

Wardrop’s first principle can be interpreted as requiring that flow travels along

the shortest paths because no single user can change his own route reducing his

travel cost. That means Wardrop equilibrium can be studied by means of the

following variational inequalities:

(10)

where SF is the set of admissible path flow vectors. Equivalent variational

inequality models are based on link flow leading to:

(11)

where Sf is the set of admissible link flows vectors.

Beckmann et al. [13] proved that such a flow always exists by considering the

following min-cost multicommodity flow problem with separable objective

function:

 (12)f *
=arg min∑

l∈L
∫
0

f l

cl (z)dz : f ∈S f

C (F*
)
T
(F−F*

)≥0∀F∈S F

c(f *
)
T
(f − f *

)≥0∀ f ∈S f

Preliminary concepts 13

The previous problem is convex because the objective is the integral of non-

decreasing function and, since its domain is a compact set, the problem solution

attains its optimum. If cost functions cl are strictly increasing, f is unique.

Computationally, equation (12) implies that an equilibrium can be calculated

using general convex optimization techniques.

Charnes and Cooper [17] were the first to notice that the concepts of Nash and

Wardrop equilibria are related, while Haurie and Marcotte [18] proved that a

Nash equilibrium in a network game with a finite number of players converges to

a Wardrop equilibrium when the number of players increases.

For this reason, although the solution concepts are different, a Wardrop

equilibrium can be viewed as an instance of a Nash equilibrium in a game with a

large numbers of players. De Palma and Nesterov [19] looked at generalizations

and alternative definitions of the basic model and established conditions that

guarantee the existence of equilibria. For example, Wardrop equilibria still exist

if cost functions are lower semicontinuous1. Marcotte and Patriksson [20] also

discussed alternative definitions of equilibria in network games and the

relationships between them. Since the Wardrop equilibrium considers that users

unilaterally choose their routes to minimize their route cost, the solution is not

necessarily efficient.

The second Wardrop principle gives a definition that leads to a social optimal

equilibrium [2]:

<< At equilibrium the average journey time is minimum. >>

It states that users minimize the total travel time in the system, a system optimum

f* is an optimal solution to the min-cost multicommodity flow problem:

1 A definition of lower semicontinuous function can be found at http://en.wikipedia.org/wiki/Semi-
continuity.

14 Preliminary concepts

(13)

As general equilibria typically do not minimize the social cost, Koutsoupias and

Papadimitriou [21] proposed to analyze the inefficiency of equilibria from a

worst-case perspective; this led to the notion of “price of anarchy” [22], which is

the ratio of the worst social cost of a Nash equilibrium to the cost of an optimal

solution.

2.4 Extensions to Wardrop equilibria model

The Wardrop equilibrium is also a Deterministic User Equilibrium (DUE)

because it makes the following assumptions:

• all travelers are perfectly aware of the travel times on the network;

• all travelers are always capable of identifying the shortest travel time

route;

• network travel times are deterministic for a given flow pattern.

This assumption will not stand in the real world, where we cannot realistically

assume the drivers have an exact idea of the length of every possible route

connecting an origin to its destination or about the real topology of the network.

A more realistic model would introduce some uncertainty in the decision making

process. The way to deal with this issue is to assume that the drivers estimate the

travel time of the routes, i.e. that their perception is affected by some random

errors.

To overcome the limitations of the deterministic model, some researchers have

proposed different Stochastic User Equilibrium (SUE) models to leave aside the

assumption of perfect knowledge of network travel times and to take into account

minC (f): f ∈S f

Preliminary concepts 15

dispersion among users, user perception errors, and modeling errors [25, 26, 27].

Stochastic user equilibrium models date back to the 1970s, when Dial [24]

proposed a model where the demand on each OD is distributed among routes

(with random lengths) according to a logit distribution, in the case of

uncongested traffic networks. In the same work Dial tried to reduce the route

enumeration, taking in consideration for the flow distribution only “efficient

routes” (see paragraph 3.4.2).

Analogously to the deterministic equilibrium, an optimization problem can also

be formulated for SUE and, in case the Jacobian of the cost function is

symmetric, it can be written as:

(14)

where f is the link flow, f * is the link flow which minimizes the objective

function, c is the link cost, d is the demand, and s is a measure of demand

satisfaction (or utility).

Another unrealistic assumption in the Wardrop equilibria model is that travel

time on a road is not affected by the congestion level on other roads that intersect

with it. This cannot be true if we consider roads ending with non-signalized

intersections such as T-intersections and roundabouts, still many algorithms used

for resolution use convex optimization techniques need strictly increasing cost

functions. The reason behind the difficult to abandon this assumption is that

models with highly general and realistic equilibrium foundations with non-

separable link cost functions suffer from computational difficulties [29] and some

tradeoff between theoretical consistency and computational tractability is needed,

particularly for urban-scale travel demand analyzes. Research has been done to

f *
=arg min∑

k∈M

d k sk (−Δk
T c(f))+c(f)T f +∫

0

f l

c l(z)dz : f ∈S f

16 Preliminary concepts

find models that extend Wardrop equilibria releasing some of the more strict

assumptions while maintaining a good computational speed. Examples of these

extensions allow tradeoffs among cost components in route choice [30], contain

temporal dynamics [31] and allow for imperfect decision-making and

information [32].

2.5 Frank-Wolfe algorithm

Frank-Wolfe algorithm can be applied on convex optimization problems of the

form:

 (15)

In the traffic assignment problem, f is the cost function of the roads and it needs

to be continuously differentiable in the domain D, while x is a vector containing

for each link the flow of an OD. The algorithm follows these steps for each OD:

1. Choose an initial solution x(0)∈D .

In traffic assignment problem this means choosing randomly how the

traffic distributes on the network for each OD. For example, an

initialization can be choosing the shortest route considering the cost when

no flow is present on the network.

2. Determine a search direction pk

In the Frank-Wolfe algorithm one determines pk through the solution of

the approximation of the problem (15) that is obtained by replacing the

min
x∈D

f (x)

Preliminary concepts 17

Algorithm 2.1: Frank-Wolfe conditional gradient method (1956)

Initialize k = 0
Let x(0)∈D
do

 Compute pk:=yk−xk that minimize f (xk)+∇ f (xk)
T(y−xk)

 Determine step length αk∈[0,1] that minimize f (xk+α pk)

 Calculate xk+1=xk+αk pk

 Increment k
while (f (x k)−zk(yk))/∣zk(y k)∣ ≤ ϵ

function f with its first order Taylor expansion around xk: therefore, solve

the following problem:

(16)

The value of y needs to be in the domain D. This is an LP problem, and it

gives an extreme point, yk, as an optimal solution. The search direction is

pk:=yk−xk , that is the direction vector from the feasible point xk towards

the extreme point. Observe that this is a feasible direction, since both xk

and yk belong to D and D is convex.

3. Determine a step length αk , such that:

 (17)

Here, we must limit the step length to be at most 1, because for α>1 the

solution becomes infeasible; the line search therefore has the form:

(18)

4. New iteration point:

(19)

f (xk+αk pk)< f (x k)

mina∈[0,1]{ f (x k+α pk)}

x k+1=xk+αk pk

min{zk(y):= f (xk)+∇ f (x k)
T(y−xk)}

18 Preliminary concepts

5. Check the stop condition:

 (20)

If it is fulfilled then stop, else go back to point 2

2.6 Other algorithms for Traffic Assignment

The Frank-Wolfe algorithm is an example of decomposition algorithm, which

separate the main problem into subproblems. It performs well for problems with

separable objective function (12), but sometimes it shows poor convergence

because it tends to move around the equilibrium solution.

Another famous decomposition approach is done in the Bar-Gera's algorithm

[33], where flows are separated by node of origin whereby every iteration assigns

all destinations for each origin at the same time. This algorithm has proven to be

one of the most efficient to compute Wardrop equilibria.

Partial linearization is a class of algorithms that try to simplify the objective

function to be able to find a search direction. An example is the Partan (parallel

tangents), developed by Leblanc, Helgason, and Boyce that determines the

descent direction using the results of two consecutive iterations, diminishing the

oscillations around the equilibrium [34].

The class of column generation algorithms deal with a path formulation of the

model. These algorithms are necessary used when there are constraints based on

paths, because an arc formulation is not powerful enough to represent the

problem, or when costs along routes are not addictive. Instead of keeping track of

all the possible routes, new routes are added only when discovered or needed

during the search direction procedure. The path formulation (12) uses only the

discovered routes.

(f (x k)−zk(yk))/∣zk(yk)∣ ≤ ϵ

Preliminary concepts 19

The class of simplicial decomposition algorithms are similar to the Frank-Wolfe

algorithm, but at each iteration instead of searching through all the possible

solutions, they use a subset of the restricted set of solutions computed from the

previous iterations. Since all the route information previously computed are

badly utilized by algorithms that perform line search, this class can solve

problems more efficiently at the cost of doing more work per iteration.

Last is the method of successive averages, a heuristic method used for computing

equilibrium in complex models where exact techniques are not available. It starts

by computing the costs on all arcs for an arbitrary feasible flow. After that, it

iteratively computes a new solution using an auxiliary linear program that keeps

costs fixed, and updates the current solution by averaging it with the new one

using a factor that depends on the iteration.

Most commercial software packages that resolve traffic assignment problem use

the algorithms described here. A non-exhaustive list of software implementations

is Aimsun [45], Cube [46], CONTRAM [47], DynaMIT [48], DYNASMART

[49], Emme/4 [50], Paramics [51], TransCAD [52], transims [53], TSIS-

CORSIM [54], SATURN [55], Vistro [56] and VISTA [57].

Chapter 3

Ant colony optimization for the
Traffic Assignment

3.1 Introduction

In this chapter we first introduce how the basic ant colony optimization algorithm

works and the advantages of using this type of algorithms to solve combinatorial

optimization problems. Next we explain the Ant System algorithm and finally

show how the algorithm has been modified to solve the traffic assignment

problem.

3.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a paradigm for designing meta-heuristic

algorithms for combinatorial optimization problems, ranging from quadratic

assignment to protein folding or routing vehicles. The first algorithm which can

be classified within this framework was presented by Dorigo in 1991 [35, 36]

and, since then, many different variants of the basic principle were reported in the

literature.

22 Ant colony optimization for the Traffic Assignment

 Ant Colony Optimization algorithms have been originally inspired by Dorigo

observation of real ants behavior during the search for food, where he discovered

that after sufficient time, ants tend to find and follow the shortest path between

the nest and the food source. This is done thanks to stigmergy, a mechanism of

indirect coordination between agents [37], where an action done by an agent

leaves a trace in the environment and stimulates the performance of another

action by the same or different agents. Subsequent actions tend to reinforce and

build on each other, leading to the spontaneous emergence of coherent,

apparently systematic activity. This mechanism is used by ants during the

exploration around the nest in search for food, where they release pheromones

that make the path more likely followed by them or by other ants. the more

pheromone is present on a path, the more likely that path will be preferred over

other paths. The shortest path to a food source will accumulate pheromone faster

than the longer ones, and this will increase the number of ants choosing it.

Finally, pheromone evaporates over paths, and this leads ants to avoid choosing

longer paths over the shorter one because, given enough time, only the shortest

path will have pheromone. This behavior has a weakness: when all ants follow

the shortest path if a new shorter path becomes available it will be probably

ignored.

The principal trait of ACO algorithms is the use of meta-heuristic to find a

solution using information from previous iterations. This is possible either

starting from a null solution and adding elements to build a good complete one,

or making a local search starting from a complete solution and iteratively

modifying some of its elements in order to achieve a better one. The meta-

heuristic approach allows to search over a wide number of solutions, possibly

avoiding local optima. The use of elements found in previous iterations is

combined using a Monte Carlo approach to find a better solution.

Ant colony optimization for the Traffic Assignment 23

The particular way of defining components and associated probabilities is

problem-specific, and can be designed in different ways, facing a trade-off

between the specificity of the information used for the conditioning and the

number of solutions which need to be constructed before effectively biasing the

probability distribution to favor the emergence of good solutions. Another

advantage over simulated annealing and genetic algorithm approaches of

optimization problems is that ACO algorithms can be run continuously and adapt

to changes in real time, like in the case of network routing and urban

transportation systems. Lastly, ACO algorithms can take advantage of using

several constructive computational threads that do a parallel search to find a

problem solution. Every thread uses local problem data and a dynamic memory

structure containing information on the quality of previously obtained results.

The collective behavior emerging from the interaction of the different search

threads has proved effective in solving combinatorial optimization (CO)

problems.

3.3 Ant System

The first algorithm of the ant colony optimization paradigm to resolve

combinatorial optimization problems was developed by Dorigo and is called Ant

System (AS) [35].

A combinatorial optimization problem is defined over a set C :=c1 ,...,cn of basic

components. A subset S of components represents a solution of the problem;

F⊆2C
is the subset of feasible solutions, thus a solution S is feasible if and only

if S∈F . A cost function z is defined over the solution domain, z:2C→R , the

24 Ant colony optimization for the Traffic Assignment

Algorithm 3.1: Ant system (1991)

Initialize
do
 for each ant k (currently in state i) do
 repeat
 choose in probability the state to move into.
 append the chosen move to the k-th ant's set tabuk .
 until ant k has completed its solution.
 end for
 for each ant move (ij) do
 compute Δτij

 update the trail matrix.
 end for
while found better solution

objective being to find a minimum cost feasible solution S*, i.e., to find

S *:S*∈F and z(S*)≤z(S)∀S∈F . To find a solution for this type of

problems, AS uses a set of concurrent and asynchronous agents called ants,

that move through states of the problem corresponding to partial solutions.

Each move of an ant from a state i to a state j is chosen through a stochastic

local decision that is based on 2 parameters:

• the attractiveness ηij of the move that indicates a fixed desirability of the

move;

• the trail level τij of the move, indicating the quantity of pheromones

released by ants that chose this move in the past. The more pheromones

are present, the better was the solution found by the ants that chose this

move, leading to increase move desirability.

The move probability distribution used by an ant k to move from a state i to a

state j is the following:

(21)pij
k={

τij
α+ηij

β

∑
(ij)∉tabuk

(τℑ
α+ηℑ

β
)

if (ij)∉tabuk

0 otherwise
}

τij
α and ηij

β ,∀(ij)

Ant colony optimization for the Traffic Assignment 25

where 0≤α ,β≤1 are user defined parameters that give more weight to trail or

attractiveness and tabuk is the set of not permitted movements for ant k.

The ants continue to change the state in a loop until a complete solution is found.

At this point, every ant evaluates the solution and releases the pheromone, while

some pheromone previously released evaporates. The trail update formula is the

following:

(22)

where Δτij represents the sum of the contributions of all ants that have used move

(ij) to construct their solution and ρ is a user-defined parameter called

evaporation coefficient that assumes a value between 0 and 1. The ants

contributions are problem dependent, proportional to the quality of the solutions

achieved, i.e., the better is a solution found by an ant, the higher is the trail

contributions added to the moves used by the ant. For example, if we want to find

the shortest path in a graph, the pheromone released would be inversely

proportional to the travel distance.

The main loop where m ants construct in parallel their solutions and release

pheromones continues until there are not many variations on the solutions found

by the ants and no better solution is found after some iterations.

3.4 Ant Colony System for Traffic Assignment

The Ant System algorithm described in the previous paragraph was applied to

traffic assignment problems by Matteucci and Mussone in [38, 39], where they

studied the influence that parameters such as pheromone or heuristic information

have on the ACO meta-heuristic performance. Leveraging from there, D’Acierno

τij(t)=ρτi(t−1)+Δτij

26 Ant colony optimization for the Traffic Assignment

proposed an MSA algorithm for SUE simulation based on the ant colony

optimization paradigm [46]. His work is particularly relevant since it states that,

under some specific hypotheses, the ant system originally proposed is capable of

solving a particular SUE formulation of the traffic assignment problem.

The algorithm that we use, called Ant Colony System for Traffic Assignment

(ACS-TA) is a generalization of the D’Acierno analysis, with the following

assumption made on the traffic assignment problem:

1. The travel time (cost) over a road can be dependent from the travel time

over other different roads, like in the case of roundabouts. This leads to

non separable cost functions that are not generally monotonically

increasing.

2. There can be uncertainty in the path decision making process, to simulate

the imperfect perceptions of the drivers when they estimate the travel time

of the routes. This leads to a Stochastic User Equilibrium (SUE).

3. There are many different origin/destination pairs, each of them can

generate flow for different categories of vehicles.

4. Some roads can be traveled only by a subset of vehicle categories, to

simulate the common situation where roads are reserved to particular

vehicles like taxi.

5. Some roads are part of restricted traffic zones that have a toll for particular

vehicles categories.

The first and second assumption are of great importance and need to be further

analyzed because they go against the conditions needed to reach Wardrop

equilibrium. To better understand the implications, let's consider the traffic

assignment as a problem where we have to find the fixed point that is solution of:

(23)f=P(c),c=H (f)

Ant colony optimization for the Traffic Assignment 27

where f is the path flow, c is the path cost and P and H are continuous functions.

Under proper assumptions on P and H, equation (23) becomes a composed fixed

point problem that can be written as f=P(H (f)) or c=H (P(c)) , where P is the

user choice model and H is the link cost function like the one reported later in

equation (55).

Cascetta and Cantarella in their works [41, 42] demonstrated that the existence of

the solution for such fixed point problems is guaranteed to exist for SUE and it

has at least a solution if path choice probability functions and cost functions are

continuous. Uniqueness is guaranteed when link cost functions are strictly

monotonically increasing. No assumptions over equilibrium can be made for cost

functions that are not monotonically increasing as in the case of non separable

cost. For DUE, the same conditions obviously hold, keeping in mind that there is

no uncertainty in the path choice policy since it depends only on costs. Hence,

with DUE, existence is guaranteed if link cost functions are continuous, while

uniqueness is guaranteed when cost functions are monotonically increasing.

The third and forth assumptions are easily handled in the ant colony algorithms,

because every origin/destination/category combination can be considered as an

independent entity, handled by his own thread that see only the portion of the

network he has access to. Roads not accessible by a given category are simply

ignored by the colony as if they do not exist. Independent entities can easily be

computed in parallel, drastically increasing the algorithm performance.

28 Ant colony optimization for the Traffic Assignment

Algorithm 3.2: Ant colony system for traffic assignment (ACS-TA)

Initialize the network and the pheromone trails
do
 for each colony do
 for each ant do
 find the path from origin to destination (sequence of nodes and links)
 deposit pheromones on the path
 end for
 end for
 Evaporate the pheromones
 Assign flow
 Calculate cost on links
while convergence not reached

Finally the fifth assumption is easily implemented considering a toll as a

generalized cost added to the total travel cost of a route that runs through a

limited traffic zone. The amount of the added cost is dependent on the vehicle

category.

As in Ant System, ACS-TA is a meta-heuristic which uses many iterations and

information found on previous iterations to determine how the flow distributes on

a directed graph that models the topography of a city. Each link in the graph

contains the following information: the travel cost and, for each

origin/destination/category, the flow and the pheromone released by ants. The

distribution of the pheromone and the traffic flow for each

origin/destination/category combination is elaborated by an independent ant

colony, that uses his own pheromone trails. At the end of the iteration the travel

cost on each link is obtained using the cost function and the sum of flows on the

current link, or the links that intersect with it in the non separable cost case. In

the next sections the various steps of the algorithm, used for each colony, will be

analyzed.

Ant colony optimization for the Traffic Assignment 29

3.4.1 Network initialization

An important concept in ACS-TA is that when ants choose the next link to travel,

only the pheromone trail level comes into play in the decision process. To

achieve this, an initial pheromone distribution is needed on each link if we want

to guarantee some degree of initial exploration. If this is not done, after the first

iteration only links that have pheromone, which are all the links that have been

previously chosen by ants, can be chosen again.

When assigning the initial pheromone on the links, we have to consider that

every origin/destination pair can have very different average path costs.

Initializing with an arbitrary value of pheromone on each link for every

origin/destination couple is very inefficient and should be avoided. If we use too

much initial pheromone on a link in respect to the average pheromone released

by ants, the released pheromones will not affect the desirability of a link until the

initial pheromone evaporate enough and reach an order of magnitude similar to

the one of the released pheromone. Using too few initial pheromone will cause a

high pheromone difference between the links that have been chosen by ants

during the first iteration and the links which have not, making very unlikely for

ants to use a new path that does not contain a link previously chosen.

To avoid this, for every origin/destination couple, we use the shortest path

obtained using Dijkstra's algorithm to find a path cost which can be used to

simulate how much pheromone will be released by the ants during the normal

algorithm execution. Using that cost, we can initialize the links with a value that

is at least of the same order of magnitude of the future released pheromone.

The pheromone initialization is done in two steps:

1. First the cost Cmin of the shortest route F min
* from the origin to the

destination is calculated:

30 Ant colony optimization for the Traffic Assignment

(24)

where ci , j(f ,t) is the cost of link that goes from node i to node j at time t

having a flow of f, Capi , j is the capacity of the same link, F min
* is the set

of links that are part of the shortest route, and Constf is a value between 0

and 1 that we can choose: the higher the value, the less pheromone will

be released, making the pheromone evaporate faster and decreasing the

exploration; the lower the value, the more pheromone will be released

making the desiderability less affected by ants decision on the first

iterations, increasing exploration and execution time.

2. The pheromone on each link is initialized with the amount that would be

released by an ant choosing a path with cost Cmin :

(25)

where Const is another constant to increase pheromone and leads to better

exploration at cost of slowest convergence, and R(C min) is the pheromone

release function, that will be explained in detail in the next paragraph.

The first iteration of the algorithm is done with the network without any traffic,

so the flow is initialized to 0 in each link. For the purpose of traffic distribution,

we need to save the total released pheromone τ̌tot
C (0) and the released pheromone

on each link τ̌i , j
C (0) , both initialized to 0 because no pheromone has been

released by ants at the beginning.

3.4.2 Ant exploration and travel from origin to destination

In ACS-TA each ant builds a solution, that is, a path from the origin to the

destination of its colony, by selecting at each node i of the graph the next link l i , j

Cmin =∑ c i , j(Capi , j⋅Const f ,0) ∀ ci , j∈F min
*

τi , j
c
(0)= Const ⋅R(Cmin) ∀ i , j : l i , j∈L

Ant colony optimization for the Traffic Assignment 31

to be added to the path. This choice is made according to a decision probability

table P
i
c=[p

i , j
c (t)]

∣L
i
∣ , where the probability of selecting a forwarding link l i , j

depends on the pheromone trail left on the same link by the preceding ants

belonging to the same colony c. The basic function used is the following:

(26)

where τ i , j(t) is the amount of pheromone trail on link (i, j) at time t and Li is the

set of outgoing links from node i.

Another possible function introduces some uncertainty to the pheromone

perceived by ants, making it a stochastic process; the perception error is

determined using a Gaussian function:

(27)

Increasing error in perception has a double effect: it can increase the probability

to choose a link with low pheromone increasing path exploration, and by adding

a perception error on the usefulness of a link, it leads to a stochastic user

equilibrium. A high degree of exploration is an advantage on smaller networks to

try many different paths, but it has a drawback on more complex network.

An important rule is that a path between two nodes, with a total cost of C1, which

crosses a node more than once, it will always contain a sub-path without repeated

nodes and with a total cost C2 <C1. Taking into consideration this rule, we know

that if an ant chooses a link that leads to a node it already passed, it will find a

p
i , j
c
(t) =

τ
i , j
(t)

∑
i , j∈L

i

(τ
i , j
(t))

∀ i , j : l
i , j
∈L

pi , j
c
(t)=

max (0, τ i , j (t)+N (0,σ)⋅τ i , j (t))

∑
i , j∈Ai

max(0, τ i , j(t)+N (0,σ)⋅τ i , j(t))
∀ i , j : l i , j∈L

32 Ant colony optimization for the Traffic Assignment

sub-optimal solution. To avoid this we have considered two possible

improvements:

• Solution 1: When an ant moves on a node already passed, it forgets the

route taken and starts again from the beginning.

• Solution 2: When an ant choose what link it will take next, it only

considers links that lead to nodes he never passed. If no possible link can

be selected, he forgets the route taken and starts again from the beginning.

Both solutions need that ants memorize the nodes they already passed, and both

have some advantages and disadvantages. The first solution has the decision

probability table P c computed only once at the beginning of the iteration and

used by all the ants. The second solution cannot use a fixed probability table,

because the probability to choose a link is measured at every node using only a

subset of Ai where all the links that lead to an already passed node are excluded.

An example, where we can measure which method is more convenient, is given

in Figure 3.1. This network has one path that connects origin and destination and

(N-1) paths that come back to the origin node where ants block and restart. Let's

Fig. 3.1 : an example of network where traffic moves from node 1 to node 5. Only
one possible path without repeated nodes is possible.

Ant colony optimization for the Traffic Assignment 33

examine the computation complexity for both solutions on the first iteration,

when every link has the same probability to be chosen. In this example, consider

the cost of determining the probability to choose a node being comparable with

the cost of moving on links.

Solution 1: the decision probability table P c is calculated only once at the

beginning of the iteration {1} and it will be used by all the m ants. On the first

iteration every neighbor link has the same probability to be chosen and this gives,

in this particular network, a probability of po=1−1/2N to choose a path that

brings back to the origin node and a probability po=1/2N to choose the only path

that leads to destination. The average number of times an ant will choose a path

that goes back to the origin is 1/ p0=2N , and every time it happens he will move

on an average of∑k=1
N (1

k
k)=N nodes before arriving to the origin and reset {2}.

When it chooses the path that go to destination, he will go through N nodes {3}.

(28)

Solution 2: as in the first solution, an ant will choose the path that goes back to

the origin with an average of N times, but in this case it moves to the next node, it

will have to recalculate the probability to choose the out links {1}.

(29)

In this example, solutions 1 and 2 have the same computational complexity,

because the larger term, that is the cost of ants moving on the nodes, dominates

on the cost given by the probability calculation term.

O(N)
{1}

+O(m(O(2N N)
{2}

+O(N)
{3}

)) = O(2N N m)

O(m(O(2N N)O(1)
{1}

+O(N)O(1)
{2}

)) = O(2N N m)

34 Ant colony optimization for the Traffic Assignment

Let's now examine a second example given in Figure 3.2. In this example, there

is again only one path that leads to destination without repeated nodes and (N-1)

paths that come back to the origin node.

Solution 1: we can make the same considerations of the first example, the only

difference is that an ant does not have to come back to the beginning to restart

when it chooses a wrong path. The computation complexity is then of O(2N m) .

Solution 2: all the links that are part of a path that would reset the ant are

excluded, only one link remain to choose so the probability is never computed

and it takes only one iteration for each ant to find the destination node. The

computation complexity is O(N m) .

As we can see, the performance depends on the network topology. The second

solution can achieve a much better performance on networks with many back

links, but its complexity is the same as that of Solution 1 in the worst-case

scenario. An observation we can make about the topology of the real word

transportation networks like the ones that we will use for the experiments, is that

it is very common to have back links to nodes that were already passed like in the

examples shown in Figure 3.1 and Figure 3.2. This is easily understandable, as

real word road networks are usually designed to make simple to reach any place

starting from any position using roundabouts, intersections where it is possible to

do a U-turn or taking a secondary road parallel to a one-way road.

Another possible improvement, using the second solution, is to save in a blacklist

Fig 3.2: another example of network where traffic moves from
node 1 to node 5.

Ant colony optimization for the Traffic Assignment 35

all the found paths that lead an ant to reset and share this information among all

the ants of the colony. The ants can then avoid links that would result in choosing

a path contained in the blacklist. Excluding a large number of links in the

decision process, without having to enumerate all possible paths, can lead to a

good increment of computation performance.

Let's consider again the network in Figure 3.1, where Solution 2 had the same

performance as Solution 1. When an ant finds one of the (N-1) paths that brings

back to the origin, it examines the chosen links starting from the last one and

moves backward until it was possible to choose between more than one link, then

it saves the link sequence from the start by putting it into a blacklist. An example

of sequence is 1→2→2a; if the sequence is into the blacklist when an ant does

the movement sequence 1→2, it will not consider the link 2a when calculating

the probability to move to the adjacent nodes. To analyze the computation

complexity, let's consider the worst case scenario, where the first ant puts into the

blacklist every path that go back to the origin, starting from the longest path,

before he can reach the destination node {1}. The following ants will reach the

destination node using the remaining path {2}. The computation complexity is

the following:

(30)

On networks with many nodes, if we keep the number of ants less or equal to the

number of nodes, the complexity becomes O(N 2) that is comparable to the

Solution 2 in the best case scenario. If we consider that the blacklist can be saved

and used in the following iterations, or even in the following algorithm

O(∑i=1
N (2(N−i)))O(1)

{1}

+O((m−1)O(N))
{2}

=

O(∑i=1
N
(N−i))+O((m−1)N) =

O(N 2)+O((m−1)N) =
m≤N

O(N 2)

36 Ant colony optimization for the Traffic Assignment

executions, being it dependent on the network topology, the advantages of using

a blacklist can increase even more. In the example used above, the computation

cost of reading and saving the blacklist is O(1); this assumption cannot be

possible in the real application and the efficiency of the blacklist largely depends

on how it is implemented. We will examine better how the implementation is

done in Chapter 4.4.3. In a worst-case scenario a blacklist basically enumerate

the complement of all the possible paths between an origin and destination,

without repeated nodes. On a network as simple as the one in Figure 3.1 the

enumeration has a cost of O(N 2) , but on a hypothetical network where all nodes

are intersected with every other node the computation cost is O(N N) , making the

blacklist not enough to decrease the computation time and ensure the ants reach

the destination node by filtering not useful paths. Without a blacklist the

probability to choose a path that reaches the destination node remains extremely

low and, as some simulations in real networks demonstrated, ants cannot find the

path to reach the destination after many thousands iterations.

To address the problem of helping ants to find a path to the destination, we need

to sacrifice some of the exploration and increase the probability to choose links

that are part of paths that lead to destination:

(31)

where k is the number of failed tries done by ants to reach the destination node

p i , j(t) =
(τ i , j(t)⋅bi , j

l
)

∑
i , j∈P ni

(τ i , j (t)⋅bi , j
l
)

lk +1 = {
0 if k = 0 or all the ants arrived at destination
lk if an ant arrive at destination at the k+1 try
lk+1 if an ant is blocked at k+1 try

Ant colony optimization for the Traffic Assignment 37

during an iteration of the algorithm and b is the bias applied to the path. The bias

is increased exponentially as the ant continues to reset, until it reaches a value

where the ant can finally reach the destination node. This mechanism makes

possible for ants to reach the destination while keeping the most possible

exploration and is most effective on networks with many origin/destination pairs

that need different value of bias or no bias at all, depending on where the pair is

positioned.

 To calculate the value of the bias, a possible solution is to apply it to the shortest

path found using Dijkstra shortest path algorithm:

(32)

where F min
* is the shortest path and Const1>1 is a value we can choose. The

higher is the value of Const1 , the faster the bias value will reach a point where

ants start to find the destination, while the smaller it is, the most exploration is

ensured when the bias value is found, but it can take many more iterations to find

it. The shortest path is calculated only when needed, maximum once every

iteration because the shortest path can change only if the flow distribution

changes. The computation cost of the Dijkstra shortest path algorithm is, in a

network with a set of N nodes and A arcs, O(∣A∣+∣N∣log∣N∣) .

Another possible solution to help ants to find a path to the destination, is to give a

bias to the links that are part of Dial definition of “efficient routes”. A link is part

of the set E of efficient links only if the following condition is met:

(33)

bi , j = {Const1 ∀ i , j : l i , j∈F min
*

1 ∀ i , j : l i , j∉F min
*
∧ l i , j∈L

l i , j∈ E ⇒ r (ni) < r (n j) ∧ s(ni) > s(n j)

r (ni): the smallest cost from origin node r to node i

s(ni): the highest cost from node i to destination node s

38 Ant colony optimization for the Traffic Assignment

When we have found the set E of efficient links, the bias value is calculated as in

the best path example:

(34)

Using a bias on efficient links guarantees a much higher exploration on complex

networks, at the cost of a much higher computation complexity, because the

Dijkstra shortest path algorithm needs to be used on every node twice instead of

only once for origin and destination, leading to a computation complexity of

O(O(A+N log N)2N) = O(AN+N 2log N)

An example of efficient routes is shown in Figure 3.3.

bi , j = {Const1 ∀ i , j : l i , j∈ E
1 ∀ i , j : l i , j∉ E ∧ l i , j∈L

Ant colony optimization for the Traffic Assignment 39

3.4.3 Pheromone distribution and evaporation

Once an ant reaches the destination, it adds an amount of pheromone Δ τi , j
c (t) to

the links that are part of the followed path. The value of the pheromone released

is obtained using the previously introduced R(C) function, the more pheromone

is released, the better is the path. A measure involved in the evaluation of the path

goodness is the total cost of the path used by ant n:

(35)Cn(t)=∑ ci , j(f i , j (t) ,t) ∀ i , j : l i , j∈Fn
*

Fig 3.3: The Sioux-Falls network, with highlighted in red the efficient
links, having as origin the node 3 and as destination the node 10.

40 Ant colony optimization for the Traffic Assignment

where F n
* is the path chosen by an ant n.

The basic R(C) function used in ACS-TA is deterministic and it simply release

the pheromone proportionally to the cost of the path chosen by the ant:

(36)

An alternative to the basic function is to add a perception error modeled as a

Gaussian distribution, leading to a stochastic model for the pheromone

distribution and consequently to a stochastic user equilibrium:

(37)

Finally, we can simulate the Logit stochastic user equilibrium. As proved by

D'Acierno in [40], this is possible by using an exponential utility function:

(38)

where θ is a parameter related to the variance of the random residuals of the

perceived utility. Using an exponential utility function can lead to very different

pheromone release for each Origin/Destination path. This can be a problem on

paths with high cost, because the pheromone value is numerically too low and

can end up approximated to 0, making necessary an high θ value. If this

approximation is done on the shortest path, no pheromone will be ever released

causing the algorithm to not work correctly. To avoid this problem, it is possible

τi , j , n
c

(t) = {
1

C n

∀ i , j : l i , j∈F n
*

0 ∀ i , j : l i , j∉F n
*
∧ li , j∈L

τi , j , n
c

(t) = {
1

max(0 , N (0,σ)⋅Cn(t))
∀ i , j : l i , j∈F n

*

0 ∀ i , j : l i , j∉Fn
*
∧ l i , j∈L

τi , j , n
c (t) = {e

(−C n(t) / θ)
∀ i , j : l i , j∈F n

*

0 ∀ i , j : l i , j∉F n
* ∧ l i , j∈L

Ant colony optimization for the Traffic Assignment 41

to normalize the exponential utility function, by subtracting the path cost with the

cost of the fastest path when no flow is assigned:

(38b)

Once all the ants have reached their destination and they have distributed their

pheromone, the pheromone trails evaporate on every link. This is obtained by

implementing the following rule:

(39)

where ρ∈(0,1] is the pheromone trail decay coefficient. The higher is the value

of the decay, the faster the information about previously found solution will be

forgotten, leading to a faster convergence time but less precision of the solution.

A possible weakness introduced by the evaporation is that after some iterations,

links that never have been used and the relative paths that contain them, will

continue to decrease in desirability even if ants never had a chance to check the

goodness of the path. This can lead to use only a subset of feasible solutions

decided by how the ants moved in the first few iterations of the algorithm,

making the solution dependent by the seed used for the random link choosing. To

prevent this, it is possible to evaporate pheromone only on links that have been

used by an ant, without reducing the desirability of unused links:

(40)τi , j
c
(t)= {τi , j

c
(t−1)⋅(1− ρ(t)) + (∑

n=1

N

τ i , j , n
c

(t))⋅ ρ(t) ∀ i , j , n : l i , j∈F n
*

τi , j
c
(t−1) ∀ i , j , n : l i , j∉Fn

*
∧ l i , j∈L

τi , j
c
(t)= τi , j (t−1)⋅(1−ρ(t)) + (∑

n=1

N

τ i , j ,n
c

(t))⋅ ρ(t) ∀ i , j : l i , j∈L

τi , j , n
c (t) = {e

(−C n(t)−C min / θ)
∀ i , j : l i , j∈F n

*

0 ∀ i , j : l i , j∉F n
* ∧ l i , j∈L

42 Ant colony optimization for the Traffic Assignment

Another update we need to do at this point, is the value of released pheromone on

each link and the total released pheromone:

(41)

(42)

where ρ̌∈(0,1] is the pheromone trail decay coefficient. The higher is value of

the decay, the faster the traffic flow will adapt to follow the solution found by the

ants, but this can lower the quality of the solution because there will be more

oscillations of the flow when the algorithm is near the equilibrium.

τ̌ tot
c (t) = τ tot(t−1)⋅(1− ρ̌) + (∑

n=1

N

∑
i , j∈F n

*

τi , j , n
c (t))⋅ ρ̌

τ̌i , j
c (t) = τ̌i , j

c (t−1)⋅(1−ρ̌) + (∑
n=1

N

τ i , j ,n
c (t))⋅ ρ̌ ∀ i , j : li , j∈L

Ant colony optimization for the Traffic Assignment 43

3.4.4 Flow assignment and link cost update

This section of the algorithm completes the circular relationship shown in

Figure 3.4. In ACS-TA the pheromone trails, besides being a means to guide the

ants in the building of their paths, are used to distribute the traffic flow on the

network. For each link, a quantity of flow proportional to the pheromone present

on it is assigned; this turns into a variation of the costs that the following ants

will experience in their paths. This is obtained by having on link (i, j) at time t a

quantity of flow equal to:

(43)
f i , j

c
(t)=∑

c=1

N OD

d c τ̌i , j
c
(t)

τ̌tot
c (t)

Fig. 3.4: Circular relationships between pheromone distribution, flows and costs: the
cooperation among ants in the same colony acts as user decision optimization; the
competition among colonies can be compared to the congestion effect in road traffic.
This circular relationship mimic the circular relationships of equilibrium between
traffic demand, flows and costs.

44 Ant colony optimization for the Traffic Assignment

where d c is the flow demand of colony c, N OD
is the number of colonies, τ̌i , j

c (t)

are the released pheromone of colony c on link (i, j) and τ̌tot is the total sum of

released pheromone. We use the added pheromone instead of the current

pheromone on a link because they are initialized at a value higher than 0 and the

evaporation of the current pheromone on links can happen only if they are used

by ant ant, leading to an inhomogeneous evaporation.

The cooperation among ants in a same colony acts as user decision optimization,

while the competition among colonies can be compared to the congestion effect

in road traffic. All this can be viewed in the same manner as the circular

relationships of equilibrium between traffic demand, flows and costs explained

previously where pheromone substitutes traffic demand (see Figure 3.4). This

view is commonly proposed for the SUE case but it can also be extended to the

DUE case (preferably solved using the Frank-Wolfe algorithm) since the latter is

a particular case of SUE.

To avoid using released pheromone instead of the current pheromone on a link,

there are two other possible solutions. The first is to enumerate all the possible

paths that have pheromone and distribute the flow proportionally on each path:

(44)

Starting on the origin node, we divide the flow that goes on the connected nodes

proportionally to the pheromone on the link that connects the nodes, creating a

tree with all the paths having the destination node as the leaf. The problem of this

algorithm is that having initialized every link with some pheromone, it ends up

enumerating all the paths that connect the origin and destination, which is a

computationally expensive operation we usually want to avoid. As an alternative

f i , j
c
(t) = ∑

l y , i∈F k

f y ,i(t)⋅ ∑
li , j∈F k

(
τ i , j

∑
∀ l i , x∈L

τ i , x

) ∀ F k∈F , ∀ i , j : l i , j∈L

Ant colony optimization for the Traffic Assignment 45

without path enumeration, we can use again the ants to simulate how the flow is

distributed. In this case, the probability table used by the ants to choose a link is

proportional to the pheromone on it:

(45)

where Li are all the outgoing links from the node i. The colony release k ants

which use different paths that reach the destination. To find the flow on a link, we

simply compare the total number of ants with the number of ants that used the

link:

(46)

Using the current pheromone on the links to calculate the flow has the advantage

of consuming less memory, but the computation complexity of both solutions is

considerably higher than the one using released pheromone.

When all the parallel threads finish to calculate the flow of a colony on each link,

we obtain the sum of the flows on every link and update the cost of the link using

the cost function:

(47)

3.4.5 Rho update

The value ρ , the pheromone trail decay coefficient, can have a huge impact on

the precision of the found solution and the time to reach convergence. Ideally, we

want a high value of ρ at the beginning, to reach the convergence in less time,

and reduce the value as we arrive near the solution, to achieve a better precision.

c i , j(f i , j(t) , t) ∀ i , j : li , j∈F

p i , j
c
(t) =

(τ i , j
c
(t))

∑
i , j∈Li

(τi , j
c
(t))

∀ i , j : l i , j∈L

f i , j(t) = d c
⋅

k i , j (t)

k
∀ i , j : l i , j∈L

46 Ant colony optimization for the Traffic Assignment

Having a small ρ means that the variations of pheromone and of the flow after

every iteration are small, and there are less oscillations near the solution.

This behavior can be obtained by checking the variations of the solution, the sum

of cost integrals on the links, over the last I iterations, and if the solution does not

have much variation, decrease the value of ρ . This check should be done at the

end of each iteration after calculating the solution:

(48)

where d∈(0,1) is the maximum distance variation over the last I iterations

between the cost integral average and the cost integral last value, q is used to

decide how much the ρ will decrease if the conditions are met and ρmin is the

minimum value after which the algorithm stop decreasing the ρ value.

3.4.6 Stop condition

After we find the cost on each link, we have to decide if we stop the algorithm or

proceed with a new iteration. To measure the quality of a solution we use the sum

of the cost integral on each link. On real networks we cannot know what is the

value of the solution, which we know to exist and is unique only in the case of

deterministic user equilibrium. That is why we use the variance of some variables

of interest observed in the previous K iterations. If in the last iterations the

variance is below a certain threshold, we assume that we are near the solution.

The variables of interest that we use in our algorithm are the following:

C I
(t) =∑ c i , j

I
(f i , j(t) , t) ∀i , j : ai , j∈A

Cavg
I =∑

i=0

I C I
(t−i)
I

ρ(t) = {
ρ(t−1)

q
if C avg

I
⋅(1−d) ≤ C I

(t) ≤ Cavg
I
⋅(1+d) ∧ ρ(t−1)> ρmin

ρ(t−1) otherwise

Ant colony optimization for the Traffic Assignment 47

Cost Variance

1. For each link the average cost in the last K iterations is found:

(49)

2. Using the average we can easily compute the variance:

(50)

3. To stop the algorithm, the variance should remain below a certain

threshold on every link. The condition to be verified is the following:

(51)

Flow Variance

1. For each link the average flow in the last K iterations is found:

 (52)

2. Using the average we can easily compute the variance:

(53)

3. To stop the algorithm, the variance should remain below a certain

threshold on every link. The condition to be verified is the following:

(54)

To avoid premature stopping in the experiments, we adopt a third criterion to

calculate the number of iterations to convergence based on the final value of flow

after a maximum number of 1000 iterations. When we present the experimental

M i , j(t) =∑
k=0

K c i , j(f (t−k) ,t−k)

K
∀ i , j : l i , j∈L

σ i , j
2
(t)= ∑

K=0

K (c i , j(f (t−k) ,t−k)−M i , j (t))
2

K
∀ i , j : li , j∈L

M i , j(t) =∑
k=0

K f i , j(t−k)

K
∀ i , j : l i , j∈L

σ i , j
2
(t)= ∑

K=0

K (f i , j(t−k)−M i , j(t))
2

K
t.c ∀ i , j : l i , j∈L

∀ l i , j∈F :
σ i , j(t)

f i , j(t)
< ε

∀ l i , j∈F :
σ i , j(t)

c i , j(f (t) , t)
< ε

48 Ant colony optimization for the Traffic Assignment

results we assume the algorithm has reached convergence when 90% of the flows

are inside the interval defined by the values below and above 1% of the final

value. This criterion can only be applied off-line, but provides a non optimistic

estimate of the number of iterations the algorithm needs to reach convergence.

3.4.7 Further optimization

As explained in chapter 3.4.2, a lot of computation time on larger networks is

wasted in ants that end up choosing sub-optimal paths and do a reset. To further

reduce the probability to select a sub-optimal path, it is possible for every colony,

to do an optimization on the network topology that filters links which will surely

lead to choosing a sub-optimal path. The best optimization is possible by

enumerating all the optimal paths for a colony and, during the link choosing,

ignoring the links that are not in any optimal path. The problem is that

enumerating all the paths on big networks is a very long operation and should be

avoided; a tradeoff is needed to find a good optimization algorithm that is

executed in an acceptable amount of time. The algorithm we use analyzes every

link and excludes it if one of the following conditions is met:

 1 connects the destination node to another node;

 2 connects a node to the origin node;

 3 enters in a node that does not have out links, with the exception of the

destination node;

 4 exits from a node that does not have any entering link, with the exception

of the origin node.

 5 is part of a ring of connected nodes where, with the exception of only one

node, all the other nodes have only one outgoing link.

Ant colony optimization for the Traffic Assignment 49

Algorithm 3.3: Network optimization

 6 for each colony do
 7 remove visibility of links coming out from the destination node;
 8 remove visibility of links entering into the origin node;
 9 do
 10 For each node that is not origin or destination do
 11 if node does not have visible exiting links then
 12 remove visibility of links entering in the node
 13 end if
 14 if node does not have visible entering links then
 15 remove visibility of links exiting in the node
 16 end if
 17 if node has only one visible out link then
 18 set the current node as the first node;
 19 while next node has one out link and is not the destination node do
 20 if next node is the first node then
 21 remove visibility of the link that connect to next node
 22 break;
 23 end if
 24 select next node
 25 end while
 26 end if
 27 end for
 28 while no visibility is removed from any link;
 29 end for

Last three points are repeatedly checked on every link until there are not any

more excluded links, because the exclusion of a link can create the conditions to

have new links that can be excluded. Using this algorithm on the network of

Figure 3.1 would leave visible only the links used to reach the destination,

making impossible to choose a sub-optimal path. In Figure 3.5 there is an

example of real network with highlighted the links excluded after the algorithm

application.

50 Ant colony optimization for the Traffic Assignment

Fig. 3.5: The Area Maggi network with highlighted in red the ignored links, for a
particular origin/destination pair, after the network optimization.

Chapter 4

Design and implementation

4.1 Introduction

In this chapter we explain how the software that runs the algorithm is designed

and implemented. First we perform an analysis of software requirements, then we

describe how the transportation networks are coded in files and how they are

parsed to create a model of the network in memory. Next we explain how the

ACS-TA algorithm is implemented and how we use the model of the network to

search for a solution. Finally we explain how the data obtained during the

algorithm execution and the final results is saved and ready to be analyzed.

4.2 Software requirements overview

During the design of the software the following requirements have been

discussed and accepted:

• the software runs on the most common operative systems, using single or

multi-core processors, with different size of memory available;

• it works on any network given, as long as it is coded in files that use a

52 Design and implementation

specific syntax. The networks need to follow the specifications discussed

in paragraph 3.4;

• it implements the basic ACS-TA algorithm and all the variants discussed

in chapter 3, with the possibility to select a different variant in a

configuration file or as an input parameter;

• it gives the possibility to choose which data we are interested and save the

data on files using a specific syntax;

• it gives the possibility to graphically visualize the network and show how

the traffic is distributed for a specific origin/destination/category

combination;

• it makes simulations repeatable by passing a seed as input parameter.

The programming language that we use is Java, which can work on many

different operating systems and system specifications, and it provides many

functions to easily implement parallel computing on different threads. The library

we use to easily implement and visualize the network model is the Java Universal

Network/Graph Framework (JUNG)1. One weakness of using Java is the low

control given on memory management which, although it makes easier the code

writing, needs lot of attention to avoid memory leak and optimal usage of

memory. Considering the amount of data on larger networks, every little memory

leak or inefficiency can cause huge performance loss or lot of avoidable memory

occupation.

To make possible the use of the algorithm on large networks we have to make

some tradeoff between performance and memory consumption. This is caused by

the amount of additional data we need on every link on the network, like

1 See http://jung.sourceforge.net/

Design and implementation 53

pheromone and released pheromone for every origin/destination/category. A good

tradeoff is done by avoiding the use of indexes on the links, because they would

increase by a significant amount the memory consumption. The search for a

specific link and the data regarding it is done by a binary search on an ordered

list of link ids, to occupy less memory while still using a fast search algorithm.

The Java Runtime Environment (JRE) where the simulations run is the 1.7

version. It is possible to use JRE 1.6, but it turns out to be slower.

4.2.1 Input data

Most of the input data is divided into different files which are parsed by the

software to create the network model and configure how we want the algorithm

to work. The location of the files is given as an argument when lunching the

program; by default the configuration file is expected with the name

“parameters_ant.txt”. It is possible to specify a different location, to make

possible the execution of many simulations using a batch that tries different

configurations for the same network. For a detailed description of the arguments

that can be used and the parameters in the configuration files see the “Use

Manual” (Appendix A).

In the next section is provided the description of the files that contain the data

regarding the network. In each file, if not specified otherwise, the first row is the

header where the column names are indicated, so that the order of the columns is

not important. Each column is separated by a tab and each row by a newline.

Nodes: the file name is specified in the parameters file, and it needs three

columns. The first one is ID, used to give an identification number for each node

and it is also shown in the graphic representation; the last two columns are X and

Y which indicate the position of the node, used in the graphic representation.

54 Design and implementation

Links: the file name is specified in the parameters file, and it can have various

formats depending on the cost function ci , j(f ,t) , used to determine the travel

time through a link given the flow. It needs the two columns: A, which for each

link indicate the origin node identification number, and B, which indicates the

destination node identification number. After this, the remaining columns depend

from the cost function;

• Type 2 (A; B; L_i; V_0; Cap_u_i; delta; gamma): described by Cascetta

(equation 2.3.3 in [41]) and it writes as:

(55)

where Ll (column L_i) is the length of link l, v0l (V_0) is the free-flow

average speed, v cl (V_c) is the average speed with flow equal to capacity

(Cap_u_i), and δ , γ (delta, gamma) are two additional parameters for

cost function calibration; the parameter referring to the link in the opposite

direction is denoted by l* and the overall capacity in both directions by

Ql l * (obtained multiplying the column Cap_u_i with n_lanes_i).

• Type 3 separable cost (A; B; L_i; alpha; beta; C; green, f): the cost

function of type 3 is the BPR (Bureau of Public Roads) and it writes as:

(56)

where tr0l (obtained as 3.6 * L_i / V_0) is the free-flow average travel time

for the link l, and parameters α , and β (alpha, beta) are calibration

parameters of the cost function; Ql (C) is the capacity of link l. The value

of green is always 1, indicating that it has separable cost. It is possible to

tr l(f i , f
l *)=

Ll

v0l

+δ(Ll

vcl

−
L l

v0l
)(f l+ f l*

Q l l *)
γ

tr l(f l)=tr0l(1+α(f l

Q l
)
β

)

Design and implementation 55

use symbolic links that have no cost, setting to 1 the value of column f.

• Type 3 non separable cost (A; B; L_i; alpha; beta; C; green; f;

links_number; link_{n}_in and link_{n}_out): in this case, the value of

green is 0 indicating that it is a non-separable cost link. For this kind of

links the TRB cost function is used, introducing a delay due to all

conflicting links:

(57)

where f conf is the sum of flows on conflicting links. To specify what are

the links that are used to calculate f conf , we use the column

links_number that indicate the number n of links used in the sum and then

for each link we use the columns link_{n}_in and link_{n}_out that

indicate the origin node and destination node that identify the links.

• Type 3 with limited access (A; B; alpha; beta; TIMEBASE; CAPACITY;

CURVA_DEFL; JURISDICTIO; VL15): it is possible to use the type 3

cost function in networks with limited access links and reserved links. In

this case the value of tr0l is obtained from the column TIMEBASE and Ql

from the column CAPACITY. To indicate a link with no cost, the value of

column CURVA_DEFL need to be set to 0. The reserved links are

identified using the column JURISDICTIO, that contains an identification

number used to decode the cost to travel through the link for each

category. The limited access links are identified using the column VL15,

that contains an identification number used to decode the accessibility of a

link for each category

Origin/Destination/Category: the file name is specified in the parameters file, it

needs the two columns O and D. The former indicates the origin node

identification number, the latter indicates the destination node identification

trn−sep(f conf)=exp (−0.2661+0.3967⋅ln(f conf))

56 Design and implementation

number. If only one category is used, the column F is used to indicate the value

of the flow generated for each O/D couple. If more than one vehicle category is

present, we use a column named with the category identification number (starting

from 0 and incrementing by 1 for each successive category), and each column

contains the flow for the Origin / Destination / Category combination.

Accessibility: the file is named “accessibility.txt”, it contains a matrix where the

first line is the column CategoryId, followed by the columns named with the

identification numbers used in the column VL15 of the file containing the links.

The following rows contain, under the column CategoryId, the categories used in

the file that contains the Origin / Destination /Categories combinations. Under

the other columns, there is the value “t” if the category have access to the links

that have the column name in the value of column VL15, “f” otherwise.

Reserved links: the file is named “reserved_link_cost.txt”, it contains a matrix

where the first line is the column reservedId, followed by the column names of

the categories used in the file that contains the Origin / Destination /Categories

combinations. The next rows contain, under the column reservedId, the

identification numbers used in the column JURISDICTIO of the file containing

the links. Under the other columns, indicating the vehicle category identification

number, there is the value of the travel time cost penalty that need to be added if

a path uses a link that has this identification number in the value of column

JURISDICTIO.

Seeds: the file name is specified in the parameters file, it does not have a header

in the first row, and each row contains a different seed used by the Origin /

Destination / Category combination ant colony. If there are not enough rows for

each ant colony, new values are generated using the current time and saved in the

file.

Design and implementation 57

4.2.2 Output data

The output data is saved in a sub directory called logs. In the same directory there

are two files, the first one called “logEvents.txt” that contains the events we want

to log (only those which do not start with # are considered). The possible events

are:

• executionTime: the software writes in a file named “log.log” the

execution time of the pheromone distribution, flow distribution and total

execution time for every ant colony;

• flowUpdate: it writes in a file named “flows.csv”, a matrix that contains

the flow value on each link, at each iteration;

• costUpdate: it writes in a file named “costs.csv”, a matrix that contains

the cost of each link, at each iteration;

• flowEnd: it writes in a file named “flows_end.csv”, the flow value on each

link at the last iteration;

• costEnd: it writes in a file named “costs_end.csv”, the cost on each link at

the last iteration;

• checkEndCondition: it writes in a file named “variance.csv”, the

maximum cost (or flow) variance calculated at each iteration;

• costIntegralUpdate: it writes in a file named “cost_integral.csv”, the sum

of the cost integral of each link, for every iteration;

• costIntegralEnd: it writes in a file named “cost_integral_end.csv”, the

sum of the cost integral of each link at the last iteration;

• antBlockUpdate: it writes in a file named

“ant_block_update_<colony>.csv”, how many ants have been reset

58 Design and implementation

because they ended up blocked at each iteration for a specific ant colony;

• chooseUpdate: it writes in a file named “choose_table_<colony>.csv”,

the probability to choose a link when it changes, for a specific ant colony.

Only used when a probability table is calculated at the beginning of the

iteration;

• pheromoneUpdate: it writes in a file named “pheromone_<colony>.csv”,

a matrix that, for each link and for each iteration, contains the pheromone

for the colony indicated in the file name;

• newPheromoneUpdate: it writes in a file named

“new_pheromone_<colony>.csv”, a matrix that for each link and for each

iteration, contains the pheromone released by the ants of the colony

indicated in the file name. A special value “-1” is used for links that have

been used by one or more ants, but the ants always ended up blocked and

had to be reset;

• rhoChange: it writes in a file named “rho.csv”, a matrix that contains the

value of the pheromone trail decay coefficient ρ , at each iteration;

• rhoUpdateRequest: it writes in a file named “log.log” the new value of

ρ when it changes, and the iteration number where the change happened;

• blackListUpdate: it writes in a file named

“black_list_update_<colony>.csv”, all the paths that are added to the

blacklist of the colony in the file name. The paths are represented as a set

of links;

• flowInLinksEnd: it writes in a file named

“flow_links_end_<colony>.csv”, the total flow that is present on each

link, and the contribution given by each colony to the total flow, only for

Design and implementation 59

the last iteration.

A second file called “authorizedFlows.txt” is needed here. The first row has the

header with the column names O, D and C; starting from the second row it

contains the Origin / Destination / Category combination that we want to be

logged for the events that happen inside a colony (antBlockUpdate,

chooseUpdate, pheromoneUpdate, newPheromoneUpdate, blackListUpdate). If

there is only one category, the value 0 is used under C. Saving too much data on

files can slow down the algorithm execution time, so it is better to carefully

choose what data we are interested in instead of saving everything.

4.3 The Network Model design and implementation

As explained in the software requirements, all the data needed to create the

model is contained in different files. The parameters contained in the

configuration file are parsed and saved in a utility class called ParameterParser,

and passed as an argument for the network model initialization. As an alternative

it is possible to specify the path where the configuration data is located and let

the model build the parser. The class that models the transportation network is

called GraphTrafficModel. The initialization is composed of various steps:

1. Creates a RowParser object for every file used by the network model

(Nodes, Links, Origin/Destination/Category combinations, Accessibility

and Reserved links). This object parses the assigned file and creates a map

between the header and the value in each row.

2. Creates the nodes of the network using the class called

TrafficNodeFactory. This class initialization takes as argument a row read

60 Design and implementation

by the node file parser and creates a TrafficNode object using the data in

each row. Every node uses a numeric identification number which is long

10 decimals.

3. Creates the links of the network using the class called TrafficLinkFactory.

This class initialization takes as argument a row read by the links file

parser and creates a TrafficLink object using the data in the row and in the

configurations file. Every link uses an identification number. To use less

possible memory, the identification number is saved as a long primitive

(64 bit), where the first 10 decimals are the destination node id, the last 10

decimals are the origin node id.

4. Creates the links of the network using the parser of the Origin /

Destination / Category file. For every combination, a FlowGeneratorNode

object is created, which is a special node that contains how much flow is

generated. The node is connected with his origin node through a link that

does have any cost (FlowGeneratorLink). Every FlowGeneratorNode uses

a numeric identification number to differentiate each other, where the first

2 decimals are the category id, the next 10 decimals are the destination

node id and the last 10 decimals are the origin node id.

5. Each link needs to know which Origin / Destination / Category

combination can go through it. To obtain this information two operations

are attempted: first is an attempt to parse a file, which name is obtained

from the configuration file, that contains which flow can go through each

link. If the file exist, each row is parsed and used to save the O/D/C

combinations that are authorized to use the link related to the row. If the

file does not exists, the accessibility file is parsed and for each link is

determined if a particular category can go through it, filtering every

FlowGeneratorNode with a category that cannot access the link. After

Design and implementation 61

Fig. 4.1: Class diagram for the network model

62 Design and implementation

this, the network model is used to initialize a TrafficOptimizer, which

creates a TrafficDeadEndsRemover object for each FlowGenerator and

then execute them in different threads. Each TrafficDeadEndsRemover

does the operations listed in Chapter 3.4.7 to optimize the network. Finally

the file containing the permitted flows on each link is saved, to avoid the

filter and optimization operation next time the software is run for this

network.

6. Creates an ordered list of the TrafficLink, using the id as key, excluding

the links used to connect the FlowGeneratorNode to its origin node. The

purpose of the list is to be a main index which easily retrieves the position

of a TrafficLink with a binary search. Every data that is associated to a link

but is not part of the model, i.e. the pheromone, can be saved using only

the position in this list, without the use of a Map between the link id and

the value.

7. Having the network model initialized, it is now possible to use it for the

traffic assignment problem. The public methods of TrafficModel, which is

an interface implemented by GraphTrafficModel, gives a complete view

of the network, with his nodes, links, and O/D/C combinations. Any

algorithm can use this interface to distribute the flow and calculate how

the link cost changes after the flow assignment using the method

updateCosts(). A utility method getShortestPathAlgorithm() gives the

instruments to easily find the links part of the shortest path for an O/D/C

combination.

Design and implementation 63

Routine 4.1: Network model initialization

1 Parse the files containing the network data using different RowParser objects
2 for each row in nodes RowParser do
3 create a TrafficNode object using the data in the row and adds it to an array
4 end for
5 for each row in links RowParser do
6 create a TrafficLink object using the data in the row and adds it to an array
7 end for
8 for each row in origin/destination/category RowParser do
9 create a FlowGeneratorNode object using the data in the row and add it to an

array
10 connect the FlowGeneratorNode with his origin node using a NoCostLink
11 end for
12 if authorized flows file exists then
13 for each row in authorized flow RowParser do
14 retrieve the TrafficLink associated to the row
15 for each FlowGeneratorNode do
16 if row contains FlowGeneratorNode identification number then
17 add the FlowGeneratorNode to the TrafficLink authorized flows
18 end if
19 end for
20 end for
21 else
22 if exists accessibility file then
23 for each row in the accessibility RowParser do
24 retrieve the link associated to the row
25 for each FlowGeneratorNode do
26 if FlowGeneratorNode has the accessibility id of the link then
27 authorize the FlowGeneratorNode to use the link
28 end if
29 end for
30 end for
31 end if
32 for each FlowGeneratorNode do
33 create a TrafficRoutesOptimizer assigning the FlowGeneratorNode
34 end for
35 run all the TrafficRoutesOptimizer in different threads
36 create a new authorized flows file
37 for each TrafficLink do
38 save the authorized flows in a new row of the file
39 end for
40 end if
41 order the TrafficLink array using the link identification number

64 Design and implementation

4.3.1 Network nodes

The network nodes are generated through the class TrafficNodeFactory and

extend the abstract class TrafficNode. This abstract class contains the basic

information, for a node: an identification number, the coordinates where it is

located, and a collection of the links going out from it. Only two implementations

of the node exist:

• FlowGeneratorNode: contains the origin, destination, category and the

flow generated. There is also a method for formatting the identification

number in a human readable format for the data logging;

• NoCostNode: the basic nodes of the network, with no additional data.

For the complete class diagrams see Appendix B.

4.3.2 Network links

All the links are generated through the class TrafficLinkFactory and extend the

abstract class TrafficLink. This abstract class contains the basic information, for a

link: an identification number, the cost, the total flow, which O/D/C combination

can use it, the O/D/C combination flow and the accessibility id used to determine

which categories can go through it during the network initialization. The

implementation of this class provide functions to obtain the cost integral, and the

link capacity. There are various possible implementations returned by the factory,

depending the data read in the row and the link type in the configuration file (see

Chapter 4.2.1):

• Type2Link: implements the cost as the type 2 link (see Chapter 4.2.1)

using the parameters passed.

Design and implementation 65

• Type2LimitedAccessLink: same as Type2Link, with added a limited access

for certain categories that need to apply an additional path cost if they pass

through it.

• Type3Link: implements the cost as the type 3 link (see Chapter 4.2.1)

using the parameters passed.

• Type3LimitedAccessLink: same as Type3Link, with added a limited access

for certain categories that need to apply an additional path cost if go

through it.

• Type3NotSeparableLink: it is a non separable cost link type (see Chapter

4.2.1) that needs, during the creation, the set of links which flows have an

influence on the link cost.

• NoCostLink: a link with no cost, used in some particular cases as

explained in Chapter 4.2.1.

Another type of link, not created through the factory, is the FlowGeneratorLink,

which connect the FlowGeneratorNode with his origin node. For the complete

class diagrams see Appendix B.

4.3.3 Network visualization

To visualize the network, the GraphTrafficModel extends a class of the Jung

library called DirectedSparseMultigraph, while the nodes extend TrafficNode

which in turn extends Point2D. The model, with a selected FlowGeneratorNode,

is used by a class named Visualizer, which creates another Jung class called

VisualizationViewer that can be used by a frame (JFrame) to visualize the

network. In the Visualizer, before showing the network, various transformations

66 Design and implementation

are applied on the network to correctly visualize all the information needed,

using utility classes of the Jung library:

• TrafficLinkPredicate: filters all the links that do not have any possible

flow passing through or are a FlowGeneratorLink;

• TrafficNodePredicate: filters all the FlowGeneratorNode type of nodes;

• TrafficLinkLabelTransformer: does not show any label on the links;

• TrafficNodeLabelTransformer: shows the node identification number;

• TrafficLinkToolTipTransformer: shows a tooltip on the links that contains

the identification number, flow passing through it and cost;

• TrafficNodeToolTipTransformer: shows a tooltip on the node that contains

the identification number;

• TrafficLinkPaintTransformer: changes the color of the link, that will range

from blue where the passing flow is negligible, to red where the passing

flow is near the maximum generated by the selected FlowGeneratorNode.

The links that cannot be used by the current FlowGeneratorNode are

black;

• TrafficNodePaintTransformer: changes the color of the node. The origin

node is green, the destination node is red and all the nodes where flow is

passing through are yellow;

• PositionTransformer: returns the TrafficNode, which contains the node

coordinates;

• TrafficLinkStrokeTransformer: shows a dash line for links that do not have

any flow passing through for the selected FlowGeneratorNode, a dotted

line otherwise.

Design and implementation 67

Various examples of visualized networks are shown in Appendix C.

4.4 The ACS-TA algorithm design and implementation

The algorithm implementation is done by the class AntColonySolver. For the

initialization, it needs a TrafficModel and a ParameterParser, that contains all the

settings, sub-algorithms to be used and algorithm parameters. Using this data it

creates an AntColonyLoader for each FlowGeneratorNode in the model,

assigning a different seed obtained by the seeds file or, if not available,

generating a new one and adding it to the file. The AntColonyLoader contains an

AntColony, which is the core of the algorithm; it contains all the data necessary

for the pheromone release, the flow distribution, and all the selected sub-

algorithms used by ACS-TA (a more detailed description is given in Chapter

4.4.1).

To avoid too much overhead during the algorithm parallel execution, with the

creation of too many threads, and to have the possibility to share information

among flows that have the same Origin / Destination, all the colonies with the

same O/D are grouped in containers called SerialAntColonyExecutor. The

AntColonySolver initialization also selects a stop condition and a ρ update (see

Chapter 3.4.5 and 3.4.6), using two classes called StopConditionFactory and

RhoUpdaterFactory. They read the information contained in the

ParameterParser and respectively generate a StopCondition and a RhoUpdater.

After the initialization, the AntColonySolver runs the algorithm execution

procedure, which does the following operations:

• runs all the SerialAntColonyExecutor on different threads and wait that all

68 Design and implementation

Fig. 4.2: Class diagram for ACS-TA algorithm

Design and implementation 69

the ants on every colony release the pheromone;

• for each AntColony assigns the flow by running on different threads a

FlowDistributionSolver returned by each AntColony (see Chapter 4.4.4);

• updates the value of ρ , which will be eventually used for the next flow

assignment (see Chapter 4.4.5);

• checks if the stop conditions are met. If not, it starts again with the

pheromone distribution (see Chapter 4.4.6).

4.4.1 The ant colony

The flow and pheromone distribution for a single Origin / Destination / Category

combination is implemented by the AntColony class. The data used by the

algorithm, such as the pheromone on links and the released pheromone, are all

contained in a class called AntColonyData, which uses the network model sorted

list as index to retrieve the correct value for each link. There is also a mechanism

that tries to retrieve the data on files if not already in memory. Using this method,

every AntColony can read the data at the beginning of the pheromone distribution

and releases the occupied memory after the completion, saving everything in a

file, at the cost of a loss of performance for the read/write overhead time. Instead

of keeping the data for every AntColony in memory, only the instance under

execution will occupy memory, using a very low amount of it. During the

AntColony initialization, there is also the selection of the sub-algorithms, based

on the passed parameters, that will be used during the pheromone distribution

and the flow assignment:

• Ant: it is the interface used to determine the amount of released

pheromone (chapter 3.4.3)

70 Design and implementation

Routine 4.2: Pheromone distribution

 1 for each ant do
 2 reset ant to origin node
 3 while ant not on destination node do
 4 try to move the ant to the next node using a link chooser
 5 if ant is blocked then
 6 increment block counter
 7 if total block counter reach max value then
 8 exit the program with an error
 9 break
 10 end if
 11 if block counter reach max value then
 12 apply bias to link chooser
 13 reset block counter
 14 reset ant to origin node
 15 end if
 16 end if
 17 end while
 18 ant release the pheromone on links used to reach the destination
 19 end for
 20 evaporate pheromone on links

• TrafficLinkChooser: it is the interface used to determine what link

chooses an ant from the node he is staying (Chapter 3.4.2)

• FlowDistributionSolver: it is the interface used to determine how the flow

distributes using the pheromone on the links (Chapter 3.4.3)

To avoid unnecessary memory consumption, only one Ant is kept in memory for

each AntColony, since no parallel computing is done on the ants, and it is always

reset to beginning when it reaches the destination. Finally, all the initialization

operations needed for the ACS-TA algorithm explained in Chapter 3.4.1, are

completed in the AntColony initialization.

After the initialization, the AntColony provides the methods to run a pheromone

distribution (see “Routine 5.2”) and the flow assignment (see Chapter 4.4.4).

Design and implementation 71

4.4.2 Pheromone release

The pheromone release sub-algorithm is done through the implementation of the

Ant interface, returned by an AntFactory, which uses the settings in

ParameterParser to determine which implementation has to be returned. The

category is also needed to apply the correct added cost to the path if the ant goes

through a limited access link. The possible Ant implementations are the

following:

• AntDue: implements the deterministic user equilibrium, as in

equation (36);

• AntProbit: it adds perception error to the cost in an AntDue

implementation, as in equation (37);

• AntLogit: implements the Logit stochastic user equilibrium, as in

equation (38).

• AntLogitNormalized: implements the Logit stochastic user equilibrium

with normalized cost, as in equation (38b).

4.4.3 Link choosing

The ants link choosing sub-algorithm is done through the implementation of the

TrafficLinkChooser interface, returned by a TrafficLinkChooserFactory, which

uses the settings in ParameterParser, to determine which implementation has to

be returned. The possible TrafficLinkChooser implementations are the following:

• StandardTrafficLinkChooser: it is the basic implementation, that randomly

chooses one of the links going out the node where the ant stays. It uses a

probability table, calculated at the beginning of an iteration and used by

72 Design and implementation

all the ants in equation (26);

• PheromoneGaussTrafficLinkChooser: extends the basic implementation,

but instead of using a probability table, calculates the probability to

choose a link every time an ant moves, adding a perception error to the

pheromone (27);

• BestBiasTrafficLinkChooser: extends the basic implementation, adding the

capability to increase the bias towards the links part of shortest path, when

ants get stuck too many times, as in (31) and (32);

• EfficientBiasTrafficLinkChooser: extends the previous implementation,

but instead of using the shortest path, the links with the applied bias are

those part of the efficient set, as in (33) and (34),.

• BlackListChooser: extends the basic implementation, but it does not use a

probability table and, during the link choosing it, filters all the links that

lead to a path in the blacklist or leads to a node already used by the ant

(see Chapter 3.4.2);

• BestBiasBlackListChooser: extends the best bias algorithm, adding the

blacklist functionality;

• EfficientBiasBlackListChooser: extends the efficient bias algorithm

adding the blacklist functionality.

The three blacklist implementations are delegated1 to a helper class called

BlackListChooserHelper, since the three classes already extend a flow chooser

implementation and cannot have a common parent to implement the blacklist.

The utility class contains a tree, in an object of type BlackListTree, with all the

blocked paths. A path in the BlackListTree is composed by a set of

1 Delegation pattern, see http://en.wikipedia.org/wiki/Delegation_pattern for reference

http://en.wikipedia.org/wiki/Delegation_pattern

Design and implementation 73

BlackListNode objects, which corresponds to a link of the network. Each

origin/destination couple has a common BlackListTree, which means that

different categories have a common tree. This is done to greatly reduce the

memory occupation of the blacklist, assuming that most of the links will be

accessible for every category. The blacklist is read and saved to file by the

AntColonySolver using the utility class BlackListUtil. In the configuration file it

is possible to select between keeping the tree in memory during all the algorithm

execution, or to save to file, when not used, to free as much memory as possible.

To avoid using all the memory during the software execution, there is a minimum

value of memory that needs to be available when adding a new path. At the end

of the algorithm execution, the tree is always saved to a file.

The root node of the blacklist always exists and corresponds to the link

connecting the FlowGeneratorNode to the origin node. To allow the filtering of

links, every time an ant moves on a link of the network, it also moves on the

blacklist tree, but only if the next node exists in the tree. When the links going

out a node are selected, two conditions need to be met:

• the link does not lead to a node already used by the ant;

• if the next child node (associated to the link) of the blacklist tree exists, it

is not a leaf.

When an ant blocks, the path is added to the blacklist tree only if there are not

links going out the node that are not accessible by the current AntColony

category, and are accessible by any other vehicle category. When adding a path to

the blacklist tree, it is also checked if the previous node does not have all the

possible out links filtered. In that case, all the leafs are deleted and the node

become a new leaf. In Figure 5.3 it is possible to see a trial network with the

corresponding blacklist tree. To decrease the computation time the blacklist is

used only during the first iteration, because most of the ant blocks are

74 Design and implementation

concentrated here. Starting from the second it is used the parent chooser1.

1 EfficientBiasTrafficLinkChooser instead of EfficientBiasBlackListChooser, BestBiasTrafficLinkChooser

instead of BestBiasBlackListChooser and StandardTrafficLinkChooser instead of BlackListChooser.

Fig 4.3: A network where origin is in node 1 and destination in node 9. Below there is
the blacklist tree obtained from it. In red are the links connecting the removed nodes
during the blacklist tree execution.

Design and implementation 75

4.4.4 Flow assignment

The flow distribution sub-algorithm is done through the implementation of the

FlowDistributionSolver interface, returned by an FlowDistributionFactory,

which uses the settings in ParameterParser to determine which implementation

has to be returned. The possible FlowDistributionSolver implementations (see

chapter 3.4.4) are the following:

• PheromoneDistribution: assigns the flow using the distributed pheromone

on the links, uses the equation (43);

• RoutesTreeDistribution: assigns the flow enumerating all the paths, uses

the equation (44);

• Ant distribution: use ants to distribute the flow using the equations shown

in (45) and (46).

4.4.5 Rho value update

The rho update sub-algorithm is done through the implementation of the

RhoUpdater interface, returned by a RhoUpdaterFactory, which uses the settings

in ParameterParser to determine what implementation return. The possible

RhoUpdater implementations are the following:

• CostIntegralAvgRhoUpdater: implements the rho update if the cost

integral average change below a set threshold in the last iterations as in

equation (48);

• NoRhoUpdate: the value of rho remains always the same.

76 Design and implementation

4.4.6 Stop condition

The stop condition sub-algorithm is done through the implementation of the

StopCondition interface, returned by a StopConditionFactory, which uses the

settings in ParameterParser to determine which implementation has to be

returned. The possible StopCondition implementations are the following:

• CounterCondition: stops if the iteration number reach a certain value

specified in the parameters.

• CostVarianceCondition: stops if the flow variance is below a threshold

specified in the parameters (51).

• FlowVarianceCondition: stops if the flow variance is below a threshold

specified in the parameters (54).

During the stop condition, there is always a check that the current iteration

number is between a configured minimum and maximum using the

CounterCondition. After that, another condition can be selected using the

parameter file. If the iteration number condition is the only one needed, an

implementation called NoStopCondition is used for the second check.

4.4.7 Data log and final results save

The log of all the data is done by two classes:

• Logger: implements the basic methods to format into strings and save to

file;

• ModelLogger: logs the data during the ACS-TA algorithm execution.

Both of them use some parameters taken from the ParameterParser, such as the

label to apply to the file names. During the initialization, AntColonySolver, every

Design and implementation 77

AntColony and every sub-routine register to the logger, indicating the events

that will be launched (i.e. pheromone update, cost update,...), the format to

use to save the data regarding the event, the file name and, if present, the

AntColony lunching the event. During the registration the Logger enables

Fig. 4.4: Class diagram for the data loggers

78 Design and implementation

only the events selected in the file “logEvents.txt” file and check that the

requiring colony Origin / Destination / Category combination is in the

“authorizedFlows.txt” file. Finally, during the execution, events are launched

and the data associated to these events is passed to the logger, which

proceeds to log to file only if the event was enabled during the registration.

Chapter 5

Simulations and results

In this chapter we present the experiments worked out to evaluate the ACS-TA

algorithm and the implemented software. The experiments were worked out on a

system with 48 AMD cores with 64bit technology and a working frequency of

2300MHz. We used 40 parallel threads during the elaboration, and a maximum of

13GB of memory. The Java Virtual Machine was version 1.7.

5.1 Networks overview

Five different transportation network have been chosen to run simulations. Some

of the physical and functional characteristics are shown in table 5.1, and the

networks topology is shown in Appendix B. Here is a short description for each

of them:

• Non Separable Costs: it is a very simple trial network with 28 links,

which 7 of them use a type 3 non separable cost functions. There is only

one vehicle category and no restricted traffic zones or tolls;

• Sioux-falls: a well-known test network first introduced by LeBlanc in his

PhD thesis in 1975 [58], it is still used to test traffic assignment

80 Simulations and results

Table 5.1 Physical and functional characteristics of the networks used in the
experimental validation.

Cost Function
Type

#Links #Nodes # O/D/Cs Demand
[vehicles]

Non Separable Costs
Sioux Falls
Area Maggi (Milan, Italy)
Extra urban Naples (Italy)
Area Bastioni (Milan, Italy)

3
3
3
2
3

28
76
273

1363
3919

12
24

189
994
1779

8
24

332
772

17448

23,000
360,600

~ 40,000
~ 45,800
~ 46,500

algorithms. For this network, the demand is given, the optimal objective

function value (that is the average vehicular cost at equilibrium) is known

to be 42.31 minutes;

• Area Maggi: it is a quite large area in the southern part of Milan. The

demand used is that of the morning peak hour (8:00-9:00am); it is

characterized by a limited number of paths and by a high number of O/D

couples (332), with only one vehicle category and no limited traffic zones.

• Extra Urban Naples: represents the very large area of the extra-urban

network of Naples (with 1363 links); this network was the subject of an

Italian national PRIN grant project named “Road transport systems in the

information society: monitoring, simulation and preparation of dynamic

information databases” [59] which produced and studied the demand for

each day in the course of a year; also in these experiments we used the

demand of a typical weekday at 8 a.m.

• Bastioni: a very large central area of Milan. The demand used is that of

the morning peak hour (8:00-9:00am); it is characterized by a very

complex road network with a huge number of O/Ds. There are 4 different

vehicle categories1, restricted traffic zones to different subsets of vehicle

categories and limited traffic zones where tolls are applied.

1 Vehicle categories: car, motorbike, light, heavy

Simulations and results 81

5.2 ACS-TA algorithm performance analysis

The first set of experiments were conducted to evaluate the performance of the

different ant link choosing policies. The policies without bias where not

considered, because on complex networks ants could not reach the destination

even after 10000 tries, and the algorithm can't obtain convergence. The blacklist

was pre-populated with the paths that blocked the first 1000 ants in the networks,

and then different experiments were run to test the bias applied on the efficient or

best route links, with or without the use of a blacklist. Only the deterministic case

was considered, using 100 ants and the pheromone trail decay coefficient ρ was

kept fixed to 0.8. During all the experiments, the value of the decay coefficient

for the total released pheromone ρ̌ was maintained to 1. For the stop condition,

we considered the flow variance in the last 10 iterations, and blocked only when

the value of ε was below 0.1. If the number of iterations is 1001, it means that

after 1000 iterations the convergence was not yet achieved. The quality of the

solution is measured using the using the total time spent by the vehicles in the

network [veh*min].

The results are shown in Table 5.2. As we can see, the effectiveness of the

various link choose methods are very dependent on the network size. On small

networks, like the non separable cost, both the usage of blacklist and bias on

efficient links makes harder to converge. This can be explained as more paths are

used by ants, leading to more flow variations on the links. On medium sized

networks like Area Maggi and Sioux-Falls, both using a blacklist or a bias on

efficient links performs better than using a bias on the fastest route. This is

possible because many paths that lead to ant blocks are filtered and mostly good

paths are chosen. Having paths filtered has the consequence of needing less bias

to reach the destination, which leads to a better exploration of paths with more

82 Simulations and results

Table 5.2 Performance analysis of different link choosers

Bias on links &
blacklist

#Iterations Time to
converge[s]

Total time
spent

in the network
[veh*min]

#blocks

Non Separable Costs best
efficient

best+blacklist
efficient+blacklist

130
1001
1001
1001

0.6
2.9
2.6
2.7

1,893,044
1,889,256
1,890,257
1,897,329

32,516
225,373
160,037
159,180

Sioux Falls best
efficient

best+blacklist
efficient+blacklist

14
13
13
13

3.7
3.5
3.3
3.9

274,397
269,960
268,935
269,019

122,087
122,364
123,772
122,896

Area Maggi (Milan, Italy) best
efficient

best+blacklist
efficient+blacklist

60
15
23
27

13.8
15.1
9.7
11.7

311,468
309,403
309,362
307,281

2,263,747
988,652
861,422
952,242

Extra urban Naples (Italy) best
efficient

best+blacklist
efficient+blacklist

1001
1001
1001
1001

142.2
174.0
141.2
181.6

359,802
359,881
359,843
360,124

152,214
151,839
150,525
150,939

ant blocks as side effect. The final effect is a convergence using less iterations

and less time, finding a better solution. On big networks like Naples, the added

computation time for finding the efficient links becomes noticeable, while no

benefits are given for the convergence. The blacklist fails to decrease the

computation time, because the number of possible routes is too much to have a

noticeable reduction of ant blocks, although a reduction is present. Considering

that the blacklist is easily saved and reused, it should be possible to increase the

blacklist performance by doing many more iterations to populate it.

Next set of experiments were conducted to evaluate the effects of three different

parameters on the number of iterations needed to converge, the amount of time to

converge and the quality of the solution measured. The evaluated parameters are

the following:

Simulations and results 83

• Ant number: varied between 100 and 1000;

• Pheromone trail decay coefficient ρ : varied between 0.1 and 0.8

• Traffic assignment model: tested using DUE and SUE Logit with

normalized costs. In the case of SUE Logit, standard deviation of their

probability density function distributions θ value was varied between 1

and 100.

For the stop condition, we considered the flow variance in the last 10 iterations,

and blocked only when the value of ε was below 0.1. The link choosing policy

was the bias on the best route without a blacklist. The results of the experiments

are shown in Table 5.3. If the cost integral is not present, it means that the value

of released pheromone was too low and was approximated to 0, making

impossible to distribute the flow. The number of ants has an impact on two

aspects, the accuracy of the final solution and the time needed to escape local

minima. While the latter might be obvious, the former comes from the

Montecarlo interpretation of the ACS-TA algorithm: each ant is a sample from

the final flow distribution and thus the more the ants, the more accurate the

sample-based estimate of the true flow. The evaporation coefficient ρ

significantly affects the convergence of the algorithm: the higher the ρ

coefficient, the faster is the convergence. This calls for an accurate setting of this

parameter since high values of ρ might induce premature convergence or prevent,

due to oscillations, the final convergence to the true value of flow. This usually

happens with a value of ρ that is too low. The parameter θ deserves some

discussion as well. In SUE assignments, it represents the user uncertainty in cost

perception and thus, the higher its value, the less deterministic the user choice. A

too low value of θ prevents early convergence, but having a too much low value

has proven to give numerical instability. That is because of too few pheromone

84 Simulations and results

Table 5.3 Flow variance convergence over different networks
Non Separable

Costs
Sioux Falls Area Maggi Naples

Ants θ ρ #iter

Total time
spent
in the

network
[veh*min]

#iter

Total time
spent
in the

network
[veh*min]

#iter

Total time
spent
in the

network
[veh*min]

#iter

Total time
spent

in the network
[veh*min]

SUE
Logit

100
100
100

1
10

100

0.1

1
1

1001

-
-

2,309,759

1
577
22

-
268,677
305,837

1
1

1001

-
-

325,764

1001
1001
1001

354,689
354,807
356,397

1000
1000
1000

1
10

100

1
1

1001

-
-

2,281,969

1
187
26

-
269,284
305,773

1
1

71

-
-

302,586

1001
1001
1001

354,746
354,784
354,957

DUE 100
1000

-
-

1001
1001

1,895,234
1,856,982

30
15

295,671
295,365

459
42

310,282
313,933

1001
1001

358,503
355,171

SUE
Logit

100
100
100

1
10

100

0.4

1
1

1001

-
-

8,525,308

1
79
15

-
267,942
295,261

1
1

1001

-
-

315,669

1001
1001
1001

354,746
354,805
356,584

1000
1000
1000

1
10

100

1
1

1001

-
-

2,657,262

1
37
17

-
269,792
290,282

1
1

142

-
-

301,407

1001
1001
1001

354,717
354,783
354,974

DUE 100
1000

-
-

1001
1001

1,893,628
1,856,577

15
15

279,552
275,097

863
48

312,235
309,741

1001
1001

359,109
355,353

SUE
Logit

100
100
100

1
10

100

0.8

1
1

1001

-
-

3,858,955

1
17
14

-
268,487
286,012

1
1

1001

-
-

304,451

1001
1001
1001

354,717
354,807
356,180

1000
1000
1000

1
10

100

1
1

1001

-
-

2,522,362

1
21
14

-
267,115
281,110

1
1001
59

-
805,986
300,043

1001
1001
1001

354,751
354,783
354,959

DUE 100
1000

-
-

130
37

1,893,044
1,861,989

13
13

274,276
270,178

60
49

311,468
309,045

1001
1001

359,802
355,370

released, which usually end up approximating the released pheromone to 0 and

prevent the flow distribution.

In the next experiment, a varying ρ was used to address the convergence and the

accuracy problem of having a high ρ . The more the cost integral converges, the

more the value of ρ decreases to have a better precision and reduce oscillations.

The experiments where conducted using 100 and 1000 ants, DUE traffic

assignment model, a starting ρ of 0.8, that is halved every time the update

conditions explained in equation (48) are met, until it reaches the value of 0.01.

Simulations and results 85

Table 5.4 Convergence analysis using variable ρ
Non Separable Costs Sioux Falls Area Maggi Naples

Ants d ρ #iter
Total time spent
in the network

[veh*min]
#iter

Total time spent
in the network

[veh*min]
#iter

Total time spent
in the network

[veh*min]
#iter

Total time spent
in the network

[veh*min]

100
100
100

0.1
0.005
0.001

0.8

1001
1001
1001

1,893,413
1,891,877
1,890,401

13
13
13

274,737
274,465
274,882

1001
1001
721

313,014
312,938
313,413

1001
1001
1001

358,367
358,207
358,910

1000
1000
1000

0.1
0.005
0.001

83
33
37

1,863,055
1,866,123
1,861,989

13
13
13

270,340
270,047
270,170

28
37
49

309,912
309,338
309,045

1001
1001
1001

355,311
355,245
355,278

The d value of equation (48) was varied between 0.1 and 0.001, while the

average windows was kept to 10. The final results are visible in Table 5.4.

From the table we can see that a varying ρ helps in reducing the number of

iterations needed to have convergence only in some scenarios, like in Area

Maggi, using 1000 ants. If a lesser ants are used, a decreasing ρ makes

convergence more difficult to reach. Analyzing how the ρ decrease, we saw that

its value started to decrease too soon, when the convergence was still distant. To

resolve this problem, a lower d should be used. Varying ρ also does not affect the

convergence when it is reached after a low number of iterations. Experiments

show also that, using 1000 ants, a too high value of d is like using a fixed ρ ,

because its value is decreased only when the algorithm is too near the

convergence.

During the last experiments, it was clear that a convergence using the flow

variance is not effective in finding a good solution. The first cause is the early

convergence on networks like Sioux-Falls. The second cause is the missing

convergence on bigger networks or networks with non separable costs, where the

variations on flows are usually higher. To find a better convergence, a new run of

simulations was done for one SUE and DUE scenario. This time, the

86 Simulations and results

Table 5.5 A-posterior convergence analysis
Non Separable Costs Sioux Falls Area Maggi Naples

Ants θ ρ #iter Total time spent
in the network

[veh*min]

#iter Total time spent
in the network

[veh*min]

#iter Total time spent
in the network

[veh*min]

#iter Total time spent
in the network

[veh*min]

SUE 1000 100
0.8

1001 2,522,361 961 264,701 110 300,063 106 367,670

DUE 1000 100 1001 1,856,625 497 264,405 89 308,842 110 355,198

convergence analysis was conducted a-posterior over 1000 iterations and the

convergence is reached when the 90% of flows are less then 1% from the flow at

the end of the 1000 iterations. Table 5.5 shows the obtained the results. With the

new convergence system, we obtained an effective convergence on all the

Networks with separable cost links. Using this convergence, we can do a

performance comparison between ACS-TA and the CUBE5 Voyager [46]

commercial software. This commercial software can develop a deterministic

multi-class equilibrium assignment and it is very commonly used especially in

public administrations for transport network analysis and planning. For

comparison we have considered the best configuration (in the sense of number of

iterations and time to convergence) for ACS-TA in a DUE assignment of the

Naples network: number of ants equal to 1000, θ=100 and ρ=0.8 ; the criteria of

convergence are the same as presented in the previous section. Table 5.6 reports

the main indexes of performance. The number of iterations of ACS-TA is twice

the number of iterations of CUBE, but the quality of the final equilibrium is

better. Unfortunately, we could not carry out a performance comparison for SUE

assignments where ACS-TA should be much more effective with respect to other

algorithms being CUBE suitable only for DUE assignment.

Finally, an experiment was done on the most complex network, Bastioni. The

tested scenario was a SUE using 1000 ants, θ=100 and ρ=0.8 . In this network

the second convergence criteria was met in 1071 minutes, after 687 iterations,

Simulations and results 87

Table 5.6 Performance comparison between ACS-TA and CUBE-Voyager
Iterations Time to

convergence
(s)

Total time spent in the network
[veh]*min

CUBE-Voyager 50 9 390,901

DUE 110 64.9 355,198

with a final total time spent in the network of 601,731 veh*min.

88 Simulations and results

Fig 5.1: Bastioni network (SUE-Logit assignment,1000 ants, θ=100 and ρ=0.8). These
plots are representative of the results obtained. The figures show the link flow and the
link cost of the six highest flow links (top left and top right respectively in the figure),
the total cost (cost integral in 107 minutes, bottom left) and, the second criteria plot. In
brackets is reported the number of iterations at convergence.

Simulations and results 89

Fig 5.2: Napoli network (DUE assignment,1000 ants and ρ=0.8). These plots are
representative of the results obtained. The figures show the link flow and the link cost of
the six highest flow links (top left and top right respectively in the figure), the total cost
(cost integral in 107 minutes, bottom left) and, the second criteria plot. In brackets is
reported the number of iterations at convergence.

90 Simulations and results

Fig 5.3: Maggi network (DUE assignment,1000 ants and ρ=0.8). These plots are
representative of the results obtained. The figures show the link flow and the link cost of
the six highest flow links (top left and top right respectively in the figure), the total cost
(cost integral in 107 minutes, bottom left) and, the second criteria plot. In brackets is
reported the number of iterations at convergence.

Simulations and results 91

Fig 5.4: Sioux network (SUE-Logit assignment,1000 ants, θ=100 and ρ=0.8). These
plots are representative of the results obtained. The figures show the link flow and the
link cost of the six highest flow links (top left and top right respectively in the figure),
the total cost (cost integral in 107 minutes, bottom left) and, the second criteria plot. In
brackets is reported the number of iterations at convergence.

92 Simulations and results

5.3 Memory management

Another aspect that was considered during the experiments, that can be critical

on bigger networks, is memory consumption. In Figure 5.1 it is shown the

memory consumption during the algorithm execution on Bastioni, taken with a

profiling software called VisualVM1. The memory consumption proved to be

stable, without any memory leaks during the execution. It is present a fixed

amount of occupied memory, around 3.4GB. This is not surprising, because in

the case of 8 byte primitives, every information on links regarding a O/D/C

combination will take 3919⋅17448⋅8=547,029,696 bytes of memory. That means

that only keeping in memory the flow, the list of permitted O/D/C that can access

a link, pheromone present on links and released pheromone on links, will

consume 2,188,118,784 bytes. The remaining amount is used for indexes, class

addressing and other model data like identification numbers or link costs. It

would be possible, at the cost some performance loss, to save the pheromone on

file, freeing another 1,094,059,392 bytes of memory. The rest of the used

memory show in Figure 5.1, is used during the algorithm execution for temporary

data that is frequently garbage collected. The amount of this memory is

1 See http://visualvm.java.net/

Fig 5.5: Memory usage during software execution on Bastioni network

Simulations and results 93

maximum 2GB and was fixed using JVM parameters (see Appendix A, “Java

Virtual Machine parameters” for more details).

Chapter 6

Conclusions and future work

At the end of this work, we can affirm that we successfully designed and

implemented the ACS-TA algorithm, an extended version of Ant Colony System,

to solve DUE and SUE traffic assignment problems. ACS-TA is particularly

versatile and suitable for application in many real cases without assuming

simplifying hypotheses on cost functions. Differently from classical traffic

assignment algorithms, the applicability of ACS-TA does not depend on the

shape of the objective function and hence the particular cases of non-separable

cost link function and multi-class demand can also be tackled easily and

successfully. Moreover, the user choice model is implicitly defined through the

definition of a suitable pheromone update formula. Different models, ranging

from the classical Logit to more sophisticated ones that use perception error,

could be defined by changing this updating formula. Applications to real

networks show a computation time that is short enough, with respect to

traditional approaches, for converging also in complex networks cases.

The impact of pheromone decay was also analyzed and we can suggest that its

effects depend strongly on network structure and on cost functions. Generally, we

expect that by increasing the value of ρ oscillations increase, but this holds true

only if the feasible set of possible paths is wide. For the SUE model, the

choosing of a good value of θ is critical, as the performance becomes better as

96 Conclusions and future work

the value decrease, but with a too low value the released pheromone are too few

and close to 0.

Usually a few iterations are sufficient for the algorithm to converge, also in

complex networks, and probably a better tuning of parameters could reduce the

number of iterations even more. Particularly, using a varying ρ and a populated

blacklist can decrease the convergence time. The impact of standard deviation in

cost perception distribution has been investigated and the results show how the

stochastic nature of ACS can solve SUE faster than DUE problems.

More research is required to investigate convergence mechanisms, especially

when the existence and uniqueness of convergence cannot be theoretically

demonstrated. A future step of this research will be the application of ACS-TA to

the study of very large networks (that is, ones with more than 40,000 links) to

test all the above-mentioned features and evaluate the time reduction obtainable

by parallel implementation. On very large networks, memory consumption

becomes a critical aspect. This issue was already partially taken into

consideration in this work, with the possibility to save data on disk. This feature

was not used in these experiments because memory size was sufficient to contain

all the data.

A future possible works on the software is to rewrite the algorithm in a faster

language, like c or c++, to increase the computation speed and reduce memory

consumption. To easily implement the network data visualization, it should be

relatively simple to save the network final state on disk. A software designed in a

high level language, like Java using Jung library, should be able to visualize the

network and provide tools to easily access all the useful data, which for now is

only saved on files. Using files is convenient for small to medium networks, but

for very huge networks having the possibility to easily select the interesting data

becomes a critical aspect. Finally, it is possible to increase parallelization, by

Conclusions and future work 97

implementing a client/server architecture with a centralized software that assigns

work to multiple clients in a network.

Appendix A

Software use manual

This manual explains how the software need to be configured to run all the

simulations used in the thesis, and the configurations needed to run it on any

network.

General definitions

Here are the definitions that will be used in the manual:

A set of links of the network
N set of nodes of the network
n i∈N node in the network
a i , j∈A link that connects two nodes ni and n j

Ai set of links that go out node ni

f i , j(t) flow on a link at time t
c i , j(f , t) cost to travel through a link with flow f at time t
Capi , j capacity of link ai , j

F all the possible paths between an Origin/Destination couple
F *
∈F all the path between an Origin/Destination couple choose by ants

F min
* path with less cost between an Origin/Destination couple

F n
* path choose by an ant

M total number of ants
M i , j number of ants that go through link a i , j

100 Software use manual

Requirements

 The software needs the following files and directories to work correctly:

AntColonyFlowAssignment.jar
<network_directory>/parameters_ant.txt
<network_directory>/seeds.txt
<network_directory>/arcs.txt
<network_directory>/nodes.txt
<network_directory>/OD.txt
<network_directory>/logs/logEvents.txt
<network_directory>/logs/authorizedFlows.txt
<network_directory>/tmp/

After having installed Java (the tested version are JRE 1.6 and JRE 1.7), with the

software compiled into the jar file, it is possible to start the elaboration with the

command:

java -jar AntColonyFlowAssignment.jar [-network {path to network
directory}] [-noresolve] [-parameters {path to file with
parameters}] [-nogui] [-flow {O} {D} {C}] [-p {parameterName}
{parameterValue}]*

The parameters used have the following meaning:

• network: indicates the path to the folder where are stored the files of the
network;

• noresolve: creates the network model without any flow assignment;

• parameter: indicates the path/filename containing the network
parameters. If not specified, it uses a default value “parameters_ant.txt” in
the folder indicated in the network parameter;

• nogui: disables the network visualization at the end of the flow
assignment;

• flow: indicates the origin/destination/category combination that is
visualized on the network at the end of the elaboration. Link colors have a
gradation ranging from blue, when no flow is using the link, to red, when
all the flow is going through the link. The origin and destination node will
be respectively green and red;

Software use manual 101

• p: adds the specified parameter, eventually overwriting the parameter
written in the parameters file. Multiple parameters can be specified.

Data log during execution

The file log/logEvents.txt contains various events where data is saved to file,

while log/authorizedFlows.txt contains the flow that we want to be logged. The

possible events are described in chapter 4.1.2.

Settings and parameters

All the parameters are defined in the file parameters_ant.txt, divided into various

subsections. A parameter name is always preceded by “-”, the next line contains

the value of the parameter. Every line that does not respect this convention is

considered a comment. In the parentheses are indicated the default values, used

when the parameter is not defined in the file.

Basic Parameters

• Seed_file (seeds.txt): file name containing the seeds used for the
generation of casual values;

• OD_File (OD.txt): file name containing the O/D/C combinations and flow
generated by them. If a flow value is 0 or less, it will be ignored;

• Nodes_File (nodes.txt): file name containing the nodes and their position;
• Coordinates_divisor (100): the value used to divide the nodes position

coordinates. Used to correctly show the network in the graphic
visualization;

• Coordinates_add_x (0): added value to the coordinate X, to correctly
show the network in the graphic visualization;

• Coordinates_add_y (0): added value to the coordinate Y, to correctly
show the network in the graphic visualization;

• Thread_number (4): number of threads to use during parallel
computation;

• Thread_timeout (1000): maximum execution time, in seconds, after
which a thread is considered to be in an endless loop and the software

102 Software use manual

return an error;
• Add_date_to_log (true): if 'true', adds the date to the log file names, to

avoid overwriting different tests;
• Use_decimal_formatter (false): if 'true', uses the exponential format to

visualize long values in the logs;
• Label: if present, puts the label before the log file name. Useful to

differentiate a set of test runs on a batch;
• Arcs_File (arcs.txt): file name containing the arcs and their parameters;
• Arcs_Type (3): type of cost functions used for the arcs, described in

chapter 4.2.1;
• Save_pheromone_on_file (false): if 'true', at each iteration after the

calculation of how much pheromone are released by an ant colony, the
values are saved to disk and the memory is released to have enough of it
for the next elaboration. At the next iteration, the pheromone will be read
from file. Useful for huge networks on systems that does not have enough
memory to contain all the data. If the value is false, the pheromone are
always kept in memory to have a faster execution time;

• Save_total_pheromone_on_file (false): as the parameter before, but for
the total released pheromone;

• Low_memory_blacklist (true): if 'true', at each iteration after the
calculation of how much pheromone are released by an ant colony, the
blacklist is saved on disk and the memory released to have enough for the
next elaboration.

Network optimization

The network optimization, described in 3.4.7, can work really well on networks

like Maggi, to reduce the number of possible routes. It is important to run again

the algorithm if an O/D/C combination is added or removed, or if any link is

added or removed. Not doing it, can lead to a wrong solution calculation, because

the ants ignore links that could be used.

• Use_optimization (true): if 'true', applies the network optimization
explained in chapter 3.4.7;

• Recalculate_flow (false): recalculates the flow even if there is already a
file containing a previous calculation;

• Flow_File (link_flow.txt): file name containing which colonies can use

Software use manual 103

each link, created after the optimization algorithm.

Network initialization

The parameters listed here are used during the network initialization, described in

chapter 3.4.1.

• Initial_flow_modifier (1.0): value of Constf used to calculate the cost of
the fastest path:

• Ant_type (Due): used for the pheromone initialization on the links. Can
assume the following values:

◦ Due:

τ i , j (0) = Const1⋅
1

C min

∀ i , j : ai , j∈A

◦ Due_2:

 τ i , j (0) = Const1⋅
1

C min
2
(0)

∀i , j : a i , j∈A

◦ Due_3:

τ i , j (0) = Const1⋅
1

C min
3
(0)

∀i , j : a i , j∈A

◦ Probi:

τ i , j (0)=Const1
1

max (0.1 , Const2⋅N (0,σ)⋅C min(0))
∀ i , j :a i , j∈A

◦ Logit:

τ i , j(0) = Const1⋅e
(−C min(0) / θ)

∀ i , j : ai , j∈A

◦ LogitNormalized:
τ i , j (0) = Const1 ∀ i , j : a i , j∈A

• Initial_flow_modifier (1.0): value of Constf;

Cmin(0) = ∑ ci , j(Capi , j⋅Const f , 0) ∀ ci , j∈F min
*

104 Software use manual

• Initial_pheromone_modifier (1.0): value of Const1;
• Probit_aleatory_width (0.1): value of Const2;
• Probit_sigma (1.0): value of σ;
• Theta (10): value of θ.

Path choosing

The parameters listed here are used during the path choosing, described in

chapter 3.4.2.

• Chooser_type (Standard):

◦ Standard: basic path choosing algorithm (26)
◦ PheromoneGaussWithBias: standard with perception error on

pheromone as in (27);
◦ CostGaussWithBias: standard with perception error on link cost
◦ BestBias: bias on fastest path as in (31) and (32);
◦ EfficientBias: bias on efficient links as in (33) and (34);
◦ BlackList: standard algorithm using blacklist;
◦ BestBiasBlackList: bias on the best route using blacklist;
◦ EfficientBlackList: bias on efficient links using blacklist;

• Bias_value (2): value of Const1, which is the bias to add in BestBias and
EfficientBias algorithms;

• Aleatory_width (0.1): value of σ2 , the Gaussian variance;
• Add_black_list_route (false): if 'false', no new paths will be added to the

blacklist;
• Max_memory_usage_percent (50): new paths will be added only if the

memory is at least this percentage free.

Software use manual 105

Pheromone distribution

The parameters listed here are used during the pheromone distribution, described

in chapter 3.4.3.

• Ant_type (Due):

◦ Due:

τ i , j , n(t) = {
1

Cn

∀i , j :a i , j∈F n
*

0 ∀i , j :a i , j∉F n
*
∧ a i , j∈A

◦ Due_2:

τ i , j , n(t) = {
1

Cn
2 ∀i , j :a i , j∈F n

*

0 ∀i , j :a i , j∉F n
*
∧ a i , j∈A

◦ Due_3:

τ i , j , n(t) = {
1

Cn
3
(t)

∀i , j : ai , j∈F n
*

0 ∀i , j : ai , j∉F n
*
∧ a i , j∈A

◦ Probit:

τ i , j , n(t)={
1

max(0.1,Const1⋅N (0,σ)⋅C n(t))
∀ i , j : ai , j∈F n

*

0 ∀ i , j : ai , j∉F n
*
∧ai , j∈A

◦ Logit:

τ i , j , n(t) = {e
(−C

n
(t) / θ)

∀ i , j :ai , j∈F n
*

0 ∀ i , j :ai , j∉F n
* ∧ a i , j∈A

◦ LogitNormalized

τ i , j , n(t) = {e
(−C

n
(t)−C

min
/ θ)

∀ i , j :a i , j∈F n
*

0 ∀ i , j :a i , j∉F n
* ∧ ai , j∈A

106 Software use manual

• Probit_aleatory_width (0.1): value of Const1 in Probit;
• Probit_sigma (1.0): value of σ;
• Theta (10): value of θ;

Pheromone evaporation

The parameters listed here are used during the pheromone evaporation, described

in chapter 3.4.3.

• Evaporate_unused_link (false): if 'true', pheromone evaporates on every
link as in (39), else the pheromone evaporates only on links used at least
once by an ant in the current iteration as in (40);

• Rho (0.5): value of ρ∈(0,1] , the pheromone trail decay coefficient;
• Total_rho (1): value of ρ̌∈(0,1] , the trail decay coefficient of the total

released pheromone. Giving it a value of 1, means that no memory is kept
on the previous iteration pheromone values when assigning the new flow.

Flow assignment

The parameters listed here are used during the flow assignment, described in

chapter 3.4.4.

• Flow_chooser_type (PheromoneDistribution):
◦ PheromoneDistribution: assigns the flow using the released

pheromone as in (43);
◦ RoutesTreeDistribution: assigns the flow enumerating all the paths as

in (44);
◦ AntDistribution: assigns the flow using ants as in (45) and (46)

• Flow_distribution_iterations (1000): value of ktot,, which is the number
of ants used in AntDistribution;

Software use manual 107

Rho update

The parameters listed here are used during the ρ update, described in chapter

3.4.5.

• Rho_updater_type (NoUpdate):
◦ NoUpdate: the value of ρ remains always the same during the

algorithm execution;
◦ CostIntegralAverage: the value of ρ varies if the cost integral does not

change much, as in (48);

• Average_length (10): the value of I;
• Average_distance (0.1): the value of d;
• Rho_division (2): the value of q;
• Rho_min (0.01): the value of ρmin

• Rho (0.5): the initial value of ρ ;

Stop condition

The parameters listed here are used during the stop condition, described in

chapter 3.4.6.

• Stop_type (optional):
◦ CostVariance: uses the highest variance of the links cost to determine

if stop, as in (51);
◦ FlowVariance: uses the highest variance of the flow in links to

determine if stop, as in (54);

• Min_iteration (1000): minimum number of iterations, regardless of the
selected Stop_type used;

• Max_iteration (1000): maximum number of iterations, regardless of the
selected Stop_type used;

• Epsilon (0.01): value of ε used in variance check;
• Variance_length (20): value of K, the iterations number used in the

variance calculation.

108 Software use manual

Java Virtual Machine parameters

Using the right JVM parameters when lunching the software can have a huge

impact on the application performance. To avoid dynamical memory assignment,

which takes some time and blocks the application, it is better to assign the same

value for the heap minimum and maximum value, using the parameters -Xms and

-Xmx. It is best to assign most of the available memory, leaving at least 1GB free

for the operative system, to avoid frequent use of garbage collector, which can

increase the computation time of the algorithm.

Another important parameter is the heap dimension assigned to the “Young

generation objects”. Every allocated object in java starts as a Young generation,

and only if it survives to several garbage collections because it is addressed, it

becomes a “Tenured Generation”. For efficiency reasons, only Young Generation

objects are checked and released during the normal garbage collection. The ideal

scenario is to have all the objects used by the model in the Tenured Generation,

while the frequently used and deleted objects remain in the Young Generation to

be released after the use. If the software try to promote Young Generation objects

into Tenured Generation and does not have enough memory, it will trigger a

Global Garbage Collector, which blocks all the threads and executes for several

seconds to remove unused objects in the Tenured Generation. Global Garbage

Collector can severally increase the algorithm execution time, or completely

block the program, if used too many times. To avoid this, it is important to assign

the right amount of memory for the Tenured Generation and Young Generation. It

is possible to choose the Young Generation heap space with the parameters

-XX:NewSize and -XX:MaxNewSize. The memory usable by the Tenured

Generation is the difference between the total allocated space and the Young

Generation heap space. When running a new network, it is best to select the

Tenured Generation heap space so that it is at least 20% more than the memory

Software use manual 109

used by the network model. To know how much memory is used, it is possible to

run a Global Garbage Collector during the algorithm execution using a profiling

software for Java, like VisualVM1, and check how much memory remains used

after its execution. The default garbage collector used by java is the “Parallel

garbage collector”, which is the most efficient when the software runs on multi-

core systems and generates lot of Young Generation object like in our case. For a

better understanding of the Java garbage collection, it is possible to read the

official documentation [43] and [44].

1 http://visualvm.java.net/

Appendix B

Class diagrams

Package it.polimi.traffic.model

112 Class diagrams

Package it.polimi.traffic.model.link

Class diagrams 113

Package it.polimi.traffic.model.node

114 Class diagrams

Package it.polimi.traffic.model.logger

Class diagrams 115

Package it.polimi.traffic.visualization

116 Class diagrams

Package it.polimi.traffic.parser

Class diagrams 117

Package it.polimi.traffic.solver – Part 1

118 Class diagrams

Package it.polimi.traffic.solver – Part 2

Class diagrams 119

Package it.polimi.traffic.solver.ant

120 Class diagrams

Package it.polimi.traffic.solver.chooser

Class diagrams 121

Package it.polimi.traffic.solver.chooser.blacklist

122 Class diagrams

Package it.polimi.traffic.solver.distribution

Class diagrams 123

Package it.polimi.traffic.solver.rhoupdater

124 Class diagrams

Package it.polimi.traffic.solver.stopcondition

Appendix C

Tested networks images

Transportation network of area Bastioni in Milan

126 Tested networks images

Transportation network of area Maggi in Milan

Tested networks images 127

A detail of the same network, showing how part of the traffic flow takes a detour

to avoid passing on a congested link with a high cost.

128 Tested networks images

Transportation network of Naples interurban area

Tested networks images 129

Transportation network of Sioux-falls

130 Tested networks images

“Not separable costs” trial network

Bibliography and links

[1] Frank Knight. Some Fallacies in the Interpretation of Social Cost, 1924.
[2] John Glen Wardrop et al. Correspondence. Some Theoretical Aspects of Road Traffic
Research, 1952.
[3] Beckman et. al. Studies in the economics of transportation, 1968.
[4] Dietrich Braess. Uber ein Paradoxon aus der Verkehrsplanung, 1968.
[5] Springer and Verlag. Graphentheoretische Methoden und ihre Anwendungen, 1969.
[6] New York Times. «What if They Closed 42d Street and Nobody Noticed?», 1990.
http://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-
noticed.html.
[7] McFadden et al. The urban travel demand forecasting project, 1979.
[8] Cascetta. Modello di interazione domanda/offerta, 2007.
[9] Frank Marguerite and Wolfe Philip. An algorithm for quadratic programming, 1956.
[10] Gerardo Beni. From Swarm Intelligence to Swarm Robotics, 2005.
[11] J. G. Kohl. Der verkehr und die ansiedelungen der menschen in ihrer
abh¨angigkeit von der gestaltung der erdoberfl¨ache, 1841.
[12] T. Larsson and M. Patriksson. «Side constrained traffic equilibrium models—
analysis, computation and applications», 1999.
[13] M. J. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of
Transportation. 1956.
[14] M. Florian. «Untangling traffic congestion: Application of network equilibrium
models in transportation planning» (1999).
[15] Y. Sheffi. Urban Transportation Networks. Prentice-Hall, Englewood, NJ, 1985.
[16] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. 1993.
[17] A. Charnes and W. W. Cooper. Multicopy traffic network models, 1959.
[18] A. Haurie and P. Marcotte. On the relationship between Nash-Cournot and
Wardrop equilibria, 1985.
[19] A. de Palma and Y. Nesterov. Optimization formulations and static equilibrium in
congested transportation networks. CORE Discussion Paper 9861, Universit´e
Catholique de Louvain, Louvain-la-Neuve, Belgium, 1998.
[20] P. Marcotte and M. Patriksson. Traffic equilibrium. In C. Barnhart and G. Laporte,
editors, Transportation, volume 14 of Handbooks in Operations Research and
Management Science, chapter 10, pages 623–713. Elsevier, New York, NY, 2007.
[21] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In C. Meinel and
S. Tison, editors, Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science (STACS), volume 1563 of Lecture Notes in Computer Science,
pages 404–413, Trier, Germany, March 1999. Springer, Heidelberg.

http://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html
http://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html

132 Bibliography and links

[22] C. H. Papadimitriou. Algorithms, games, and the Internet. In Proceedings of the
33rd Annual ACM Symposium on Theory of Computing (STOC), pages 749–753,
Hersonissos, Greece, 2001. ACM Press, New York, NY.
[23] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD thesis,
Politecnico di Milano, Italy, 1992.
[24] R. B. Dial. A probabilistic multi-path traffic assignment algorithm which obviates
path enumeration. Transportation Research, 5(2):83–111, 1971.
[25] Y. Sheffi and W. Powell. An algorithm for the traffic assignment problem with
random link costs. Networks, 12:191–207, 1982.
[26] M. Trahan. Probabilistic assignment: An algorithm. Transportation Science,
8(4):311–320, 1974.
[27] C. Fisk. Some developments in equilibrium traffic assignment. Transportation
Research, 14B(3):243–255, 1980.
[28] C. Daganzo and Y. Sheffi. On stochastic models of traffic assignment.
Transportation Science, 11(3):253–274, 1977.
[29] S. Daferemos. Traffic equilibrium and variational inequalities. Transport. Sci 14,
1980.
[30] R. Dial. T2: Another multipath probabilistic traffic assignment model that obviates
path enumeration. Transportation Research B, 1995.
[31] B. N. Jason. Dynamic traffic assignment for urban road networks. Transportation
Research, 1991.
[32] Fisk, C. S. Some developments in equilibrium traffic assignment. Transportation
Research B, 14B 243-255, 1980.
[33] H. Bar-Gera. Origin-based algorithm for the traffic assignment problem.
Transportation Science, 36(4):398–417, 2002.
[34] L. J. LeBlanc, R. V. Helgason, and D. E. Boyce. Improved efficiency of the Frank-
Wolfe algorithm for convex network programs. Transportation Science, 19:445–462,
1985.
[35] A. Colorni, M. Dorigo, and V. Maniezzo, Distributed optimization by ant colonies.
Proceedings of ECAL'91, European Conference on Artificial Life, Elsevier Publishing,
Amsterdam, 1991.
[36] M. Dorigo, V. Maniezzo, and A. Colorni, The ant system: an autocatalytic
optimizing process. Technical Report TR91-016, Politecnico di Milano, 1991.
[37] Marsh, L. & Onof, C. Stigmergic epistemology, stigmergic cognition. Cognitive
Systems Research, 2007.
[38] M. Matteucci, L. Mussone., M. Ponzi. Ant colony optimization for stochastic user
equilibrium. In Bifulco G (ed) I sistemi stradali di trasporto nella società
dell’informazione: monitoraggio, simulazione e predisposizione di basi informative
dinamiche, Aracne, Rome, pp 175–199, 2005.
[39] M. Matteucci, L. Mussone. Ant colony optimization technique for equilibrium
assignment in congested transportation networks. In Proceedings of the 8th annual
Conference on Genetic and Evolutionary Computation. ACM Press, New York, NY, pp
87–88, 2006.

Bibliography and links 133

[40] L. D’Acierno, B. Montella, F. De Lucia. A stochastic traffic assignment algorithm
based on ant colony optimisation. In: Lecture Notes in Computer Science, vol 4150,
Springer, pp 25–36, 2006.
[41] E. Cascetta. Transportation Systems Engineering: Theory and Methods. No. 49 in
Applied Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands,
2001.
[42] G. Cantarella. A general fixed-point approach to multimodal multi-user equilibrium
assignment with elastic demand. Transport Science 31:107–128, 1997.
[43] «Tuning Garbage Collection with the 5.0 Java[tm] Virtual Machine». Last viewed
on 30 March 2013. http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html.
[44] «Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning». Accessed
March 30, 2013. http://www.oracle.com/technetwork/java/javase/gc-tuning-6-
140523.html.
[45] «Aimsun». Accessed March 30, 2013. http://www.aimsun.com/wp/.
[46] «Cube | Citilabs». Accessed March 30, 2013.
http://www.citilabs.com/products/cube.
[47] Taylor, NicholasB. «The CONTRAM Dynamic Traffic Assignment Model».
Networks and Spatial Economics 3, n. 3 (1 September 2003): 297–322.
[48] Ben-Akiva, Moshe, HarisN. Koutsopoulos, Constantinos Antoniou, and
Ramachandran Balakrishna. “Traffic Simulation with DynaMIT.” In Fundamentals of
Traffic Simulation, edited by Jaume Barceló, 145:363–398. International Series in
Operations Research & Management Science. Springer New York, 2010.
[49] “DYNASMART.” Accessed March 30, 2013.
http://www.its.uci.edu/~paramics/sim_models/dynasmart.html.
[50] “Emme Transportation Forecasting Software.” Accessed March 30, 2013.
http://www.inrosoftware.com/en/products/emme/index.php.
[51] “Quadstone Paramics | Traffic and Pedestrian Simulation, Analysis and Design
Software.” Accessed March 30, 2013. http://www.paramics-online.com/.
[52] “TransCAD Transportation Planning Software.” Accessed March 30, 2013.
http://www.caliper.com/tcovu.htm.
[53] “Transims - an Open Source Transportation Modeling and Simulation Toolbox -
Google Project Hosting.” Accessed March 30, 2013. http://code.google.com/p/transims/.
[54] “TSIS: Traffic Software Integrated System.” Accessed March 30, 2013.
http://www-mctrans.ce.ufl.edu/featured/TSIS/Version6/.
[55] “Atkins-ITS SATURN.” Accessed March 30, 2013.
http://www.saturnsoftware.co.uk/.
[56] “Vision Traffic - PTV Group.” Accessed March 30, 2013. http://vision-
traffic.ptvgroup.com/en-uk/.
[57] “Traffic Assignment Vista Transport Group.” Accessed March 30, 2013.
http://vistatransport.com/products/traffic-assignment/.
[58] LeBlanc LJ, Morlok EK, Pierskalla WP, An efficient approach to solving the road
network equilibrium traffic assignment problem.”Transportation Research 9(1):309–
318, 1975

http://vistatransport.com/products/traffic-assignment/
http://vision-traffic.ptvgroup.com/en-uk/
http://vision-traffic.ptvgroup.com/en-uk/
http://www.saturnsoftware.co.uk/
http://www-mctrans.ce.ufl.edu/featured/TSIS/Version6/
http://code.google.com/p/transims/
http://www.caliper.com/tcovu.htm
http://www.paramics-online.com/
http://www.inrosoftware.com/en/products/emme/index.php
http://www.its.uci.edu/~paramics/sim_models/dynasmart.html
http://www.citilabs.com/products/cube
http://www.aimsun.com/wp/
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

134 Bibliography and links

[59] G. Bifulco. I sistemi stradali di trasporto nella societ`a dell’informazione:
monitoraggio, simulazione e predisposizione di basi informative dinamiche. Aracne,
Rome, Italy (2005)

	Contents
	List of Figures
	List of Algorithms / Code Snippets
	List of Tables
	Abstract
	Estratto

	Introduction
	1.1 From swarm intelligence to flow assignment
	1.2 Outline of the thesis

	Preliminary concepts
	2.1 Introduction
	2.2 The Traffic Assignment Problem
	2.3 Wardrop equilibria
	2.4 Extensions to Wardrop equilibria model
	2.5 Frank-Wolfe algorithm
	2.6 Other algorithms for Traffic Assignment

	Ant colony optimization for the Traffic Assignment
	3.1 Introduction
	3.2 Ant Colony Optimization
	3.3 Ant System
	3.4 Ant Colony System for Traffic Assignment
	3.4.1 Network initialization
	3.4.2 Ant exploration and travel from origin to destination
	3.4.3 Pheromone distribution and evaporation
	3.4.4 Flow assignment and link cost update
	3.4.5 Rho update
	3.4.6 Stop condition
	3.4.7 Further optimization

	Design and implementation
	4.1 Introduction
	4.2 Software requirements overview
	4.2.1 Input data
	4.2.2 Output data

	4.3 The Network Model design and implementation
	4.3.1 Network nodes
	4.3.2 Network links
	4.3.3 Network visualization

	4.4 The ACS-TA algorithm design and implementation
	4.4.1 The ant colony
	4.4.2 Pheromone release
	4.4.3 Link choosing
	4.4.4 Flow assignment
	4.4.5 Rho value update
	4.4.6 Stop condition
	4.4.7 Data log and final results save

	Simulations and results
	5.1 Networks overview
	5.2 ACS-TA algorithm performance analysis
	5.3 Memory management

	Conclusions and future work
	Software use manual
	Class diagrams
	Tested networks images
	Bibliography and links

