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To My Family.



Computers are incredibly fast, accurate, and stupid.
Human beings are incredibly slow, inaccurate, and

brilliant. Together they are powerful beyond imagination.

Albert Einstein
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Abstract

Swarm Intelligence (SI) is a concept used by artificial intelligence to solve 

decision making problems. A peculiar trait of SI algorithms is the use of multiple 

agents that interact locally and use simple rules to find a globally valid solution.  

There is no centralized control and the agents have only a limited knowledge of 

the entire system. In this work we develop and implement a software in Java that 

extends the basic Ant Colony System (ACS) algorithm, a particular algorithm of 

the SI family, to model traffic distribution over transportation networks. The 

objective is to have a software that can work on networks with separable and 

non-separable cost link functions, searching for a deterministic or stochastic user 

equilibrium. The flow assignment process is possible over large and real 

networks with multiple flow origins and destinations, vehicle categories, and 

limited traffic zones. To achieve this, careful development is done to have an 

efficient memory consumption, a critical aspect in every software written in Java 

that uses large amount of data, while maintaining a good computational speed. 

The software is optimized to work on many threads in parallel, giving a huge 

increment in performance on multi-core systems. Finally, the software 

performance and solutions quality is confronted with other commercial software 

used to solve this type of problems.





Estratto

La swarm intelligence (SI, traducibile come: teoria dello sciame intelligente) è un

concetto usato in intelligenza artificiale per risolvere problemi di decisione. Un 

tratto di questa famiglia di algoritmi è l'uso di agenti multipli che interagiscono 

localmente e usano delle semplici regole per trovare una soluzione globalmente 

valida. Non c'è alcun controllo centralizzato e gli agenti hanno solo una 

conoscenza limitata dell'intero sistema in cui si muovono e agiscono. In questo 

lavoro viene sviluppato e implementato un software in Java che estende 

l'algoritmo chiamato Ant Colony System (ACS), un particolare algoritmo della 

famiglia degli SI, per modellare da distribuzione del traffico su diverse reti. 

L'obiettivo è avere un software che può lavorare su diverse reti, con funzioni di 

costo degli archi dipendenti sia dal traffico sullo stesso arco che su archi 

incidenti, cercando una soluzione con un equilibrio deterministico o non 

deterministico. La ricerca di equilibrio è possibile su grandi reti prese dal mondo 

reale, con diverse origini e destinazioni per il traffico, categorie di veicoli e zone 

a traffico limitato. Si è data molta attenzione sia alla velocità di esecuzione sia al 

consumo di memoria, che deve rimanere il più efficiente possibile sopratutto in 

considerazione del fatto che il software è scritto in Java e lavora su grandi 

quantità di dati. Il software è ottimizzato per lavorare in parallelo usando diversi 

processi indipendenti, in modo da avere un ottimo incremento di prestazioni su 

sistemi multi processore. 





Chapter 1

Introduction

In the last century, thanks to mass production of automobiles, there has been an 

exponentially increasing amount of cars circulating in large urban centers and on 

highways. This created a great concern over traffic congestion, which is a 

condition where the volume of traffic on a road is near the road maximum 

capacity. High level of congestion causes to the drivers a big economical impact 

in the form of increased delays and travel time. While many different measures 

have been taken into consideration to contrast the problem, like promoting an 

efficient public transportation, a careful development of the road network can 

reduce traffic congestion. That is why many transport analysts, economists, 

mathematicians and, later, computer scientists have started to investigate how to 

cope with road congestion, finding models for traffic distribution and how to plan

a good road network to avoid it. 

First work that introduced the concept of traffic equilibrium was done by Frank 

Knight in 1924, where he presented an argument about how the taxation of roads 

can reduce the congestion to its efficient levels [1]. 

Based on Frank Knight work, in 1952 John Glen Wardrop introduced his First 

and Second principles of equilibrium [2]. The first principle was derived from 

game theory and formalized the notion of traffic equilibrium, based on the 
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concept that agents selfish behavior degrades the system efficiency and leads to 

models with Nash Equilibrium. The second principle introduced the alternative 

behavior where the system optimal equilibrium is reached through the 

minimization of the average travel costs and therefore of the total costs.

The first basic formulation for the Transportation System Theory, that uses 

Wardrop's first and second principles of equilibrium, was done by Beckman in 

1968. He introduced the concept of “network” to model the connections between 

traffic demand and supply on a territory and the interactions between demand and

supply, while the traffic demand was still an independent variable not related to 

the system [3].

In the same year a German mathematician, called Dietrich Braess, demonstrated 

a paradox where adding one link to a network decreased the overall performance 

of the network, due to the selfish behavior of the agents and the consequent Nash

equilibrium [4]. This paradox can happen in real world road networks as many 

successive studies demonstrated. For reference see the work of Springer and 

Verlag [5], where it is described how a new traffic section in Stuttgart was not 

effective in reducing traffic congestion until some sections where closed or [6], a 

New York Times article written in 1990 where it is described how closing a road 

decreased overall traffic congestion.

A better analysis to construct mathematical models for transportation demand 

was later given by Daniel McFadden [7]. Here the fundamentals for the 

Transportation System Theory were a number of hypotheses and relations that 

represented the supply of transportation services, the behavior of travelers and 

how supply and demand interact [8]. 

Today, many other studies have been done to improve the Transportation System 

Theory to determine facility needs, costs and benefits. The main problem in these

studies is the traffic assignment, over a network, needed to simulate how 
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additions made to a network affect the overall efficiency. Major urban centers 

that provide the infrastructures to monitor traffic have made very easy to collect 

large amount of data about traffic going in and out the city. Many of the older 

algorithms used to solve this problem, like Frank–Wolfe algorithm [9] or method 

of successive averages (MSA), suffer of high computation costs and slow 

convergence to equilibrium over complex networks. This made a primary 

concern the development of new algorithms that can reach equilibrium in a 

relatively low amount of time.

Finding a good algorithm is the subject of this thesis. To achieve this goal we use 

a particular branch of artificial intelligence derived from observation of natural 

biological systems, called Swarm Intelligence [10].

1.1 From swarm intelligence to flow assignment

Studies in biology about behavior of large communities of insects, like ants or 

bees, have given surprising results on their ability to solve problems through 

cooperation of many elements. Without cooperation this kind of problems would 

be otherwise impossible to approach because of the low intelligence or ability of 

a single member of the community. An interesting characteristic of these 

communities is the lack of a central authority that makes decisions for every 

member. The members simply relieve to a set of rules depending on the role 

taken inside a colony. For example, in the case of ants, it has been observed that 

an ant with the role of forager will only move outside the colony to bring back 

food if enough scout ants have returned. To accomplish this, the members of the 

community need the ability to communicate between them. Continuing the 

previous example, ants use the antennae to know if the other ants they are 

interacting with are members of the same colony and the role they assume inside 
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the colony. The interactions are always simple and done locally, this means that 

ants rely only on local information to take decisions about what to do. Inspired 

by this idea computer scientists started to create mathematical procedures that 

imitate insects, flock of birds, fish schooling or bacterial growth behaviors to 

solve particular human problems like routing, scheduling and optimization in 

general.

Swarm intelligence and traffic supply/demand over a network have some 

interesting common features. Both describe the collective behavior of agents that 

interact locally within the environment, without any centralized control and with 

independent decision process from each other. Considering a static network 

where travel time is not affected by the numbers of agents traveling on a route, 

the Nash and optimal equilibrium is the same and it is reached when all the 

agents follow the shortest path. Finding the shortest path is a problem that has 

been successfully resolved by a particular swarm intelligence algorithm called 

Ant Colony System (ACS), that simulate the behavior of cooperating ants in 

finding and following the shortest path between a source of food and the nest 

[23]. This is done through a mechanism called stigmergy, used by ants to 

communicate locally using pheromone.

The aim of the thesis is to develop and implement a software that extends the 

ACS algorithm and makes agents search routes over a network where travel time 

is in relation with traffic intensity, i.e. travel time on roads is related to traffic 

intensity on the same road or other roads that intersect with it. Another important 

difference from standard ACO algorithm is the presence of multiple traffic supply

sources and destinations that affect traffic over roads. The software has been 

tested on different traffic networks to analyze their behavior and to simulate the 

traffic distribution on real large cities like Milan or Naples. The result we 

obtained is, under different assumptions, to converge to user equilibrium in a 
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reasonable time.

1.2 Outline of the thesis

The thesis is organized as follows:

• In Chapter 2 we formalize the traffic assignment problem and discuss 

how equilibrium can be reached, particularly focusing on the Wardrop 

equilibrium and to some extensions to it. Next, we describe some 

algorithms used to find the equilibrium, like the Frank-Wolfe algorithm, 

and describe the principal algorithm classes used to resolve traffic 

assignment problems. 

• In Chapter 3 we first explain how the ant colony optimization algorithms 

works, and then describe a particular algorithm called Ant System. Next, 

we discuss how we extended the algorithm into a new algorithm called 

Ant Colony System for Traffic Assignment (ACS-TA) to resolve the 

traffic assignment problem, the problems encountered during the 

simulations and how we resolved them making various optimization to the

algorithm.

• In Chapter 4 we focus on the software implementation, explaining the 

software requirements, and what data we expect at the end of the 

algorithm execution. The software implementation is divided in two parts, 

the former is the transportation network model, the latter is the previously 

described ACS-TA algorithm and sub-algorithms implementation.

• In Chapter 5 we describe the characteristics of the networks used to test 

the software execution. After, we compare and analyze the results of 

different simulation that used various parameters and sub-algorithms, to 
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find how they affect the algorithm in finding the equilibrium and the 

computation time to reach it.

• In Chapter 6 we report the conclusions of the whole work, discussing on 

the results obtained. Next, we give several indications on future lines of 

works that can be followed both in extending the ACS-TA algorithm to 

achieve better solutions, and the possible software improvements.

• In Appendix A, we provide a manual to correctly configure and run the 

software, explaining what files are needed and how all the configurable 

parameters change the behavior of the algorithm. It is also explained how 

to do the best tuning for the Java Virtual Machine memory occupation, 

given a network.

• In Appendix B, we provide the class diagram of the software described.

• In Appendix C, we provide the network graphical visualization for every 

network used.



Chapter 2

Preliminary concepts

2.1    Introduction

In this chapter all the concepts needed to understand the scope of this thesis work

are introduced. First the definition of the traffic assignment problem is given and 

the most common models of the problem are explained. Finally the most 

common algorithms used to find a solution to the problem are described. 

2.2    The Traffic Assignment Problem

The problem to determine how users choose different routes between origins and 

destinations over transportation networks, taking in consideration the congestion 

on the passed roads, is called Traffic Assignment Problem. In the transportation 

realm, congestion usually relates to an excess of vehicles with respect to a 

portion of roadway at a particular time resulting in speeds that are much slower 

than normal or “free flow” speeds. 

An instance of the traffic assignment problem is given by the transportation 

supply, and demand. The transportation supply is usually represented by the 

network topology, road geometry, road capacity and arc link travel cost functions 
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while the transportation demand is represented by the list of OD pairs and their 

demand rates.  A transportation planner, who is generally involved in evaluating, 

assessing and designing the transportation facilities1, needs to find or estimate all 

the elements that comprise the model. The topology of the network is usually 

digitized from maps, if it is not already available. Link travel cost functions are 

calibrated from historical information using tabulated functions that relate 

geometry of the road to capacity. One may need also to add tolls or other costs to 

the arcs, which, in most cases, can be converted to the same units by using the 

average value of time for the population. The transportation supply can usually 

be estimated from socioeconomic information coming from census data. The 

transportation demand can be measured directly or may come from historical OD

matrices that can be calibrated using up-to-date traffic counts [15].

To formalize the Traffic Assignment Problem, we consider an instance where the 

network topology is modeled as a directed graph G = (N, L) consisting a set of N 

1 Examples of transport facilities are streets, highways, bike lanes and public transportation lines.

Fig. 2.1: A model of transportation system describing the equilibrium relationship 
between traffic demand,flows and costs. The cost c for traveling on a certain link 
depends on the observed traffic f generated by traffic demand. Traffic demand d, in 
turn, is distributed on links according to the cost vector c.
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nodes and a set of L links. The transportation demand is modeled by a set of 

origin-destination (OD) pairs. Each node that is part of a pair is called centroid. 

The flow demand rate that must be routed from the corresponding origin to its 

destination is considered arbitrarily divisible and for each k∈M it is equal to dk. 

The set of routes connecting an OD pair in G is enumerated in Ik for every k∈M

while R is the union of all the possible routes. Each origin-destination demand dk 

generates a set of network path flows Fi, with i∈I k . For a given link l∈L , the 

sum of all path flows crossing this link is called 

the propagation model:

(1)

where a li is 1 if the path i contains the link l and 0 otherwise. In matrix form:

(2)

where F and f are the vectors of path and link flows, respectively with a 

dimension equal to the number of paths ∣I k∣=npath and to the number L of links, 

while the link-path incidence matrix A is made up of the a li .

The model of a transportation system that we consider describes the behavior of 

the traffic demand, i.e., the average number of users moving between centroids in

M, and its relationship with link flows according to the scheme of Figure 2.1. In 

particular let cl be a function, called cost, with values in ℝ⩾0 that represent the 

travel time over an arc I, and Ci the total traveling time on a certain path i, 

depending on the observed traffic (f or F). Assuming that all costs on links are 

additive, the relationship between the c vector of link costs and the C vector of 

path costs can be written as:

(3)

Traffic demand d is distributed on links according to the cost vectors c and C; in 

C=AT c

f l=∑
i∈I k

a li F i

f =AF
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particular, the relationships between F, f and d are:

(4)

(5)

where P is the path choice probability matrix, also known as path choice map of 

dimensions (npaths, ∣M∣ ). Each element pij of P expresses the probability that 

traffic demand di (of the i-th od-couple) is routed on path j. Its value is zero when

path j does not start in O or does not end in D, otherwise it depends on the cost of

traveling on path j. Its functional form can vary according to the distribution of 

the cost itself. The equilibrium solutions F* and f*, for Equation 4 and 5 can be 

written as:

(6)

(7)

Equations 6 and 7 describe the circular dependencies upon which the equilibrium

problem of Figure 2.1 is based; these equations represent the fixed point solution,

i.e., the equilibrium, of Equations 4 and 5. The dynamics of the system, and the 

transient until the equilibrium is reached, are not specified by the model we are 

focusing on; it is assumed that when the system reaches equilibrium it is steady, 

and this is the state we are interested to analyze. Equilibrium can be analyzed by 

taking into consideration another element regarding dk, that is, demand elasticity. 

The demand dk may be rigid, in the sense that the increasing costs due to 

congestion affect only the choice of the path; in this case the vector d is assumed 

invariant to link costs. Vector f or F are then defined by the equations:

(8)

(9)

Otherwise, if demand is elastic, that is, it depends on congestion costs as well as 

F=P (C ( f ))d (C ( f ))

f =AP (C ( f ))d (C ( f ))

F*
=P (AT c(AF *

))d (AT c(AF *
))

f *
=AP (AT c ( f *

))d (AT c( f *
))

F*
=P (C (AF *

))d where C (AF *
)=AT c (AF *

)

f *
=AP(C ( f *

))d where C ( f *
)=AT c( f *

)
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on system attributes, then Equations 6 and 7 must be used.

An example of rigid demand could be railway commuters whereas elastic 

demand could refer to weekend or holiday travelers. In general rigid demand 

assumptions can be adopted when we analyze mono-modal (that is, single mode) 

networks in standard conditions. Indeed, in these conditions user choices are 

related only to path choice considering fixed any other demand dimension (mode 

and/or destination choice). Therefore, elastic demand hypotheses have to be 

assumed in the case of multi-modal (that is, with at least two different modes) 

networks or in the case of unusual conditions, that is, when user reconsider path 

choice jointly with mode/destination choice.

2.3    Wardrop equilibria

A common assumption in the study of transportations systems is that a traveler 

choose the route that he perceives as the fastest (or least expensive) to reach his 

destination, taking in consideration the traffic congestion on the roads [11]. 

The consequences of these individual decisions are that travelers cannot reduce 

the travel time choosing unilaterally a different route, creating a condition called 

Wardrop equilibrium. 

The first principle of Wardrop that describe this equilibrium is here enunciated  

[2, p. 345]:

<< The journey times on all the routes (of the same origin/destination couple) 

actually used are equal, and less (or equal) than those which would be 

experienced by a single vehicle on any unused route. >>

The same concept was already enunciated by Kohl [11] and Knight [1] in 

precedent works. This principle regarding the path choosing has been accepted as
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simple and sound to describe the behavior of the travelers that have to choose the

route to take under traffic congestion conditions [12]. 

The Wardrop equilibrium is considered as the result of a transitory phase where 

the travelers iteratively change the chosen route until the situation becomes 

stable, which means that everyone travels the fastest route perceived and there 

are not any more variations of traffic flow on the transportation network. 

A mathematically formalized Wardrop equilibrium in the context of 

transportation networks was done by Beckmann, McGuire and Winsten in 1952 

[13], and it has become the most used by network planners to predict the decision

taken by travelers on real networks [14, 15]. This model have remained valid 

until today to estimate how the traffic is redistributed after a change on the 

transportation network, like adding a road, a bridge or introducing of tolls.

Wardrop’s first principle can be interpreted as requiring that flow travels along 

the shortest paths because no single user can change his own route reducing his 

travel cost. That means Wardrop equilibrium can be studied by means of the 

following variational inequalities:

(10)

where SF is the set of admissible path flow vectors. Equivalent variational 

inequality models are based on link flow leading to:

(11)

where Sf  is the set of admissible link flows vectors.

Beckmann et al. [13] proved that such a flow always exists by considering the 

following min-cost multicommodity flow problem with separable objective 

function:

 (12)f *
=arg min∑

l∈L
∫
0

f l

cl ( z)dz : f ∈S f

C (F*
)
T
(F−F*

)≥0∀F∈S F

c( f *
)
T
( f − f *

)≥0∀ f ∈S f
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The previous problem is convex because the objective is the integral of non-

decreasing function and, since its domain is a compact set, the problem solution 

attains its optimum. If cost functions cl are strictly increasing, f is unique. 

Computationally, equation (12) implies that an equilibrium can be calculated 

using general convex optimization techniques.

Charnes and Cooper [17] were the first to notice that the concepts of Nash and 

Wardrop equilibria are related, while Haurie and Marcotte [18] proved that a 

Nash equilibrium in a network game with a finite number of players converges to

a Wardrop equilibrium when the number of players increases.

For this reason, although the solution concepts are different, a Wardrop 

equilibrium can be viewed as an instance of a Nash equilibrium in a game with a 

large numbers of players. De Palma and Nesterov [19] looked at generalizations 

and alternative definitions of the basic model and established conditions that 

guarantee the existence of equilibria. For example, Wardrop equilibria still exist 

if cost functions are lower semicontinuous1. Marcotte and Patriksson [20] also 

discussed alternative definitions of equilibria in network games and the 

relationships between them. Since the Wardrop equilibrium considers that users 

unilaterally choose their routes to minimize their route cost, the solution is not 

necessarily efficient.

The second Wardrop principle gives a definition that leads to a social optimal 

equilibrium [2]:

<< At equilibrium the average journey time is minimum. >>

It states that users minimize the total travel time in the system, a system optimum

f* is an optimal solution to the min-cost multicommodity flow problem:

1 A definition of lower semicontinuous function can be found at http://en.wikipedia.org/wiki/Semi-
continuity.
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(13)

As general equilibria typically do not minimize the social cost, Koutsoupias and 

Papadimitriou [21] proposed to analyze the inefficiency of equilibria from a 

worst-case perspective; this led to the notion of “price of anarchy” [22], which is 

the ratio of the worst social cost of a Nash equilibrium to the cost of an optimal 

solution.

2.4    Extensions to Wardrop equilibria model

The Wardrop equilibrium is also a Deterministic User Equilibrium (DUE)  

because it makes the following assumptions:

• all travelers are perfectly aware of the travel times on the network;

• all travelers are always capable of identifying the shortest travel time 

route;

• network travel times are deterministic for a given flow pattern.

This assumption will not stand in the real world, where we cannot realistically 

assume the drivers have an exact idea of the length of every possible route 

connecting an origin to its destination or about the real topology of the network. 

A more realistic model would introduce some uncertainty in the decision making 

process. The way to deal with this issue is to assume that the drivers estimate the 

travel time of the routes, i.e. that their perception is affected by some random 

errors. 

To overcome the limitations of the deterministic model, some researchers have 

proposed different Stochastic User Equilibrium (SUE) models to leave aside the 

assumption of perfect knowledge of network travel times and to take into account

minC ( f ): f ∈S f
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dispersion among users, user perception errors, and modeling errors [25, 26, 27]. 

Stochastic user equilibrium models date back to the 1970s, when Dial [24] 

proposed a model where the demand on each OD is distributed among routes 

(with random lengths) according to a logit distribution, in the case of 

uncongested traffic networks. In the same work Dial tried to reduce the route 

enumeration, taking in consideration for the flow distribution only “efficient 

routes” (see paragraph 3.4.2).

Analogously to the deterministic equilibrium, an optimization problem can also 

be formulated for SUE and, in case the Jacobian of the cost function is 

symmetric, it can be written as:

(14)

where f is the link flow, f * is the link flow which minimizes the objective 

function, c is the link cost, d is the demand, and s is a measure of demand 

satisfaction (or utility).

Another unrealistic assumption in the Wardrop equilibria model is that travel 

time on a road is not affected by the congestion level on other roads that intersect

with it. This cannot be true if we consider roads ending with non-signalized 

intersections such as T-intersections and roundabouts, still many algorithms used 

for resolution use convex optimization techniques need strictly increasing cost 

functions. The reason behind the difficult to abandon this assumption is that 

models with highly general and realistic equilibrium foundations with non-

separable link cost functions suffer from computational difficulties [29] and some

tradeoff between theoretical consistency and computational tractability is needed,

particularly for urban-scale travel demand analyzes. Research has been done to 

f *
=arg min∑

k∈M

d k sk (−Δk
T c( f ))+c( f )T f +∫

0

f l

c l( z)dz : f ∈S f
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find models that extend Wardrop equilibria releasing some of the more strict 

assumptions while maintaining a good computational speed. Examples of these 

extensions allow tradeoffs among cost components in route choice [30], contain 

temporal dynamics [31] and allow for imperfect decision-making and 

information [32]. 

2.5    Frank-Wolfe algorithm

Frank-Wolfe algorithm can be applied on convex optimization problems of the 

form:

  (15)

In the traffic assignment problem, f is the cost function of the roads and it needs 

to be continuously differentiable in the domain D, while x is a vector containing 

for each link the flow of an OD. The algorithm follows these steps for each OD:

1. Choose an initial solution x(0)∈D . 

In traffic assignment problem this means choosing randomly how the 

traffic distributes on the network for each OD. For example, an 

initialization can be choosing the shortest route considering the cost when 

no flow is present on the network.

2. Determine a search direction pk

In the Frank-Wolfe algorithm one determines pk through the solution of 

the approximation of the problem (15) that is obtained by replacing the 

min
x∈D

f (x)
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Algorithm 2.1: Frank-Wolfe conditional gradient method (1956)

Initialize k = 0
Let x(0)∈D
do

      Compute pk:=yk−xk  that minimize f (xk )+∇ f (xk )
T( y−xk )

      Determine step length αk∈[0,1]  that minimize f (xk+α pk)

      Calculate xk+1=xk+αk pk

      Increment k
while ( f (x k)−zk( yk))/∣zk(y k)∣ ≤ ϵ

function f with its first order Taylor expansion around xk: therefore, solve 

the following problem:

    

(16)

The value of y needs to be in the domain D. This is an LP problem, and it 

gives an extreme point, yk, as an optimal solution. The search direction is

pk:=yk−xk , that is the direction vector from the feasible point xk towards

the extreme point. Observe that this is a feasible direction, since both xk 

and yk belong to D and D is convex.

3. Determine a step length αk , such that:

  (17)

Here, we must limit the step length to be at most 1, because for α>1 the 

solution becomes infeasible; the line search therefore has the form:

(18)

4. New iteration point:

(19)

f (xk+αk pk)< f (x k)

mina∈[0,1 ]{ f (x k+α pk)}

x k+1=xk+αk pk

min{zk( y):= f (xk )+∇ f (x k)
T( y−xk)}
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5. Check the stop condition:

             (20)

If it is fulfilled then stop, else go back to point 2

2.6    Other algorithms for Traffic Assignment 

The Frank-Wolfe algorithm is an example of decomposition algorithm, which 

separate the main problem into subproblems. It performs well for problems with 

separable objective function (12), but sometimes it shows poor convergence 

because it tends to move around the equilibrium solution.

Another famous decomposition approach is done in the Bar-Gera's algorithm 

[33], where flows are separated by node of origin whereby every iteration assigns

all destinations for each origin at the same time. This algorithm has proven to be 

one of the most efficient to compute Wardrop equilibria.

Partial linearization is a class of algorithms that try to simplify the objective 

function to be able to find a search direction. An example is the Partan (parallel 

tangents), developed by Leblanc, Helgason, and Boyce that determines the 

descent direction using the results of two consecutive iterations, diminishing the 

oscillations around the equilibrium [34].

The class of column generation algorithms deal with a path formulation of the 

model. These algorithms are necessary used when there are constraints based on 

paths, because an arc formulation is not powerful enough to represent the 

problem, or when costs along routes are not addictive. Instead of keeping track of

all the possible routes, new routes are added only when discovered or needed 

during the search direction procedure. The path formulation (12) uses only the 

discovered routes. 

( f (x k)−zk( yk))/∣zk(yk)∣ ≤ ϵ
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The class of simplicial decomposition algorithms are similar to the Frank-Wolfe 

algorithm, but at each iteration instead of searching through all the possible 

solutions, they use a subset of the restricted set of solutions computed from the 

previous iterations. Since all the route information previously computed are 

badly utilized by algorithms that perform line search, this class can solve 

problems more efficiently at the cost of doing more work per iteration. 

Last is the method of successive averages, a heuristic method used for computing

equilibrium in complex models where exact techniques are not available. It starts 

by computing the costs on all arcs for an arbitrary feasible flow. After that, it 

iteratively computes a new solution using an auxiliary linear program that keeps 

costs fixed, and updates the current solution by averaging it with the new one 

using a factor that depends on the iteration.

Most commercial software packages that resolve traffic assignment problem use 

the algorithms described here. A non-exhaustive list of software implementations 

is Aimsun [45], Cube [46], CONTRAM  [47], DynaMIT [48], DYNASMART 

[49], Emme/4 [50], Paramics [51], TransCAD [52], transims [53], TSIS-

CORSIM [54], SATURN [55],  Vistro [56] and VISTA [57].





Chapter 3

Ant colony optimization for the 
Traffic Assignment

3.1    Introduction

In this chapter we first introduce how the basic ant colony optimization algorithm

works and the advantages of using this type of algorithms to solve combinatorial 

optimization problems. Next we explain the Ant System algorithm and finally 

show how the algorithm has been modified to solve the traffic assignment 

problem.

3.2    Ant Colony Optimization 

Ant Colony Optimization (ACO) is a paradigm for designing meta-heuristic 

algorithms for combinatorial optimization problems, ranging from quadratic 

assignment to protein folding or routing vehicles. The first algorithm which can 

be classified within this framework was presented by Dorigo in 1991 [35, 36] 

and, since then, many different variants of the basic principle were reported in the

literature.
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 Ant Colony Optimization algorithms have been originally inspired by Dorigo 

observation of real ants behavior during the search for food, where he discovered 

that after sufficient time, ants tend to find and follow the shortest path between 

the nest and the food source. This is done thanks to stigmergy, a mechanism of 

indirect coordination between agents [37], where an action done by an agent 

leaves a trace in the environment and stimulates the performance of another 

action by the same or different agents. Subsequent actions tend to reinforce and 

build on each other, leading to the spontaneous emergence of coherent, 

apparently systematic activity. This mechanism is used by ants during the 

exploration around the nest in search for food, where they release pheromones 

that make the path more likely followed by them or by other ants. the more 

pheromone is present on a path, the more likely that path will be preferred over 

other paths. The shortest path to a food source will accumulate pheromone faster 

than the longer ones, and this will increase the number of ants choosing it. 

Finally, pheromone evaporates over paths, and this leads ants to avoid choosing 

longer paths over the shorter one because, given enough time, only the shortest 

path will have pheromone. This behavior has a weakness: when all ants follow 

the shortest path if a new shorter path becomes available it will be probably 

ignored. 

The principal trait of ACO algorithms is the use of meta-heuristic to find a 

solution using information from previous iterations. This is possible either 

starting from a null solution and adding elements to build a good complete one, 

or making a local search starting from a complete solution and iteratively 

modifying some of its elements in order to achieve a better one. The meta-

heuristic approach allows to search over a wide number of solutions, possibly 

avoiding local optima. The use of elements found in previous iterations is 

combined using a Monte Carlo approach to find a better solution. 
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The particular way of defining components and associated probabilities is 

problem-specific, and can be designed in different ways, facing a trade-off 

between the specificity of the information used for the conditioning and the 

number of solutions which need to be constructed before effectively biasing the 

probability distribution to favor the emergence of good solutions. Another 

advantage over simulated annealing and genetic algorithm approaches of 

optimization problems is that ACO algorithms can be run continuously and adapt

to changes in real time, like in the case of network routing and urban 

transportation systems. Lastly, ACO algorithms can take advantage of using 

several constructive computational threads that do a parallel search to find a 

problem solution. Every thread uses local problem data and a dynamic memory 

structure containing information on the quality of previously obtained results. 

The collective behavior emerging from the interaction of the different search 

threads has proved effective in solving combinatorial optimization (CO) 

problems. 

3.3    Ant System 

The first algorithm of the ant colony optimization paradigm to resolve 

combinatorial optimization problems was developed by Dorigo and is called Ant 

System (AS) [35]. 

A combinatorial optimization problem is defined over a set C :=c1 ,...,cn of basic 

components. A subset S of components represents a solution of the problem;

F⊆2C
is the subset of feasible solutions, thus a solution S is feasible if and only 

if S∈F . A cost function z is defined over the solution domain, z:2C→R , the 
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Algorithm 3.1: Ant system (1991)

Initialize 
do
    for each ant k (currently in state i) do
       repeat
             choose in probability the state to move into.
             append the chosen move to the k-th ant's set tabuk .
         until ant k has completed its solution.
    end for
    for each ant move (ij) do
        compute Δτij

        update the trail matrix.
    end for
while found better solution

objective being to find a minimum cost feasible solution S*, i.e., to find

S *:S*∈F and z(S*)≤z(S )∀S∈F . To find a solution for this type of 

problems, AS uses a set of concurrent and asynchronous agents called ants, 

that move through states of the problem corresponding to partial solutions. 

Each move of an ant from a state i to a state j is chosen through a stochastic 

local decision that is based on 2 parameters:

• the attractiveness ηij of the move that indicates a fixed desirability of the 

move;

• the trail level τij of the move, indicating the quantity of pheromones 

released by ants that chose this move in the past. The more pheromones 

are present, the better was the solution found by the ants that chose this 

move, leading to increase move desirability.

The move probability distribution used by an ant k to move from a state i to a 

state j is the following:

(21)pij
k={

τij
α+ηij

β

∑
(ij)∉tabuk

(τℑ
α+ηℑ

β
)

if (ij)∉tabuk

0 otherwise
}

τij
α  and ηij

β ,∀(ij)
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where 0≤α ,β≤1 are user defined parameters that give more weight to trail or 

attractiveness and tabuk is the set of not permitted movements for ant k.

The ants continue to change the state in a loop until a complete solution is found. 

At this point, every ant evaluates the solution and releases the pheromone, while 

some pheromone previously released evaporates. The trail update formula is the 

following:

(22)

where Δτij represents the sum of the contributions of all ants that have used move

(ij) to construct their solution and ρ is a user-defined parameter called 

evaporation coefficient that assumes a value between 0 and 1. The ants 

contributions are problem dependent, proportional to the quality of the solutions 

achieved, i.e., the better is a solution found by an ant, the higher is the trail 

contributions added to the moves used by the ant. For example, if we want to find

the shortest path in a graph, the pheromone released would be inversely 

proportional to the travel distance. 

The main loop where m ants construct in parallel their solutions and release 

pheromones continues until there are not many variations on the solutions found 

by the ants and no better solution is found after some iterations.

3.4    Ant Colony System for Traffic Assignment

The Ant System algorithm described in the previous paragraph was applied to 

traffic assignment problems by Matteucci and Mussone in [38, 39], where they 

studied the influence that parameters such as pheromone or heuristic information 

have on the ACO meta-heuristic performance. Leveraging from there, D’Acierno 

τij(t )=ρτi(t−1)+Δτij
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proposed an MSA algorithm for SUE simulation based on the ant colony 

optimization paradigm [46]. His work is particularly relevant since it states that, 

under some specific hypotheses, the ant system originally proposed is capable of 

solving a particular SUE formulation of the traffic assignment problem. 

The algorithm that we use, called Ant Colony System for Traffic Assignment 

(ACS-TA) is a generalization of the D’Acierno analysis, with the following 

assumption made on the traffic assignment problem:

1. The travel time (cost) over a road can be dependent from the travel time 

over other different roads, like in the case of roundabouts. This leads to 

non separable cost functions that are not generally monotonically 

increasing.

2. There can be uncertainty in the path decision making process, to simulate 

the imperfect perceptions of the drivers when they estimate the travel time

of the routes. This leads to a Stochastic User Equilibrium (SUE).

3. There are many different origin/destination pairs, each of them can 

generate flow for different categories of vehicles.

4. Some roads can be traveled only by a subset of vehicle categories, to 

simulate the common situation where roads are reserved to particular 

vehicles like taxi.

5. Some roads are part of restricted traffic zones that have a toll for particular

vehicles categories.

The first and second assumption are of great importance and need to be further 

analyzed because they go against the conditions needed to reach Wardrop 

equilibrium. To better understand the implications, let's consider the traffic 

assignment as a problem where we have to find the fixed point that is solution of:

(23)f=P(c),c=H ( f )
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where f is the path flow, c is the path cost and P and H are continuous functions. 

Under proper assumptions on P and H, equation (23) becomes a composed fixed 

point problem that can be written as f=P(H ( f )) or c=H (P(c)) , where P is the

user choice model and H is the link cost function like the one reported later in 

equation (55). 

Cascetta and Cantarella in their works [41, 42] demonstrated that the existence of

the solution for such fixed point problems is guaranteed to exist for SUE and it 

has at least a solution if path choice probability functions and cost functions are 

continuous. Uniqueness is guaranteed when link cost functions are strictly 

monotonically increasing. No assumptions over equilibrium can be made for cost

functions that are not monotonically increasing as in the case of non separable 

cost. For DUE, the same conditions obviously hold, keeping in mind that there is 

no uncertainty in the path choice policy since it depends only on costs. Hence, 

with DUE, existence is guaranteed if link cost functions are continuous, while 

uniqueness is guaranteed when cost functions are monotonically increasing. 

The third and forth assumptions are easily handled in the ant colony algorithms, 

because every origin/destination/category combination can be considered as an 

independent entity, handled by his own thread that see only the portion of the 

network he has access to. Roads not accessible by a given category are simply 

ignored by the colony as if they do not exist. Independent entities can easily be 

computed in parallel, drastically increasing the algorithm performance.
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Algorithm 3.2: Ant colony system for traffic assignment (ACS-TA)

Initialize the network and the pheromone trails
do
    for each colony do
        for each ant do
             find the path from origin to destination (sequence of nodes and links)
             deposit pheromones on the path
         end for
    end for
    Evaporate the pheromones
    Assign flow
    Calculate cost on links
while convergence not reached

Finally the fifth assumption is easily implemented considering a toll as a 

generalized cost added to the total travel cost of a route that runs through a 

limited traffic zone. The amount of the added cost is dependent on the vehicle 

category.

As in Ant System, ACS-TA is a meta-heuristic which uses many iterations and 

information found on previous iterations to determine how the flow distributes on

a directed graph that models the topography of a city. Each link in the graph 

contains the following information: the travel cost and, for each 

origin/destination/category, the flow and the pheromone released by ants. The 

distribution of the pheromone and the traffic flow for each 

origin/destination/category combination is elaborated by an independent ant 

colony, that uses his own pheromone trails. At the end of the iteration the travel 

cost on each link is obtained using the cost function and the sum of flows on the 

current link, or the links that intersect with it in the non separable cost case. In 

the next sections the various steps of the algorithm, used for each colony, will be 

analyzed.
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3.4.1    Network initialization

An important concept in ACS-TA is that when ants choose the next link to travel, 

only the pheromone trail level comes into play in the decision process. To 

achieve this, an initial pheromone distribution is needed on each link if we want 

to guarantee some degree of initial exploration. If this is not done, after the first 

iteration only links that have pheromone, which are all the links that have been 

previously chosen by ants, can be chosen again. 

When assigning the initial pheromone on the links, we have to consider that 

every origin/destination pair can have very different average path costs. 

Initializing with an arbitrary value of pheromone on each link for every 

origin/destination couple is very inefficient and should be avoided. If we use too 

much initial pheromone on a link in respect to the average pheromone released 

by ants, the released pheromones will not affect the desirability of a link until the 

initial pheromone evaporate enough and reach an order of magnitude similar to 

the one of the released pheromone. Using too few initial pheromone will cause a 

high pheromone difference between the links that have been chosen by ants 

during the first iteration and the links which have not, making very unlikely for 

ants to use a new path that does not contain a link previously chosen. 

To avoid this, for every origin/destination couple, we use the shortest path 

obtained using Dijkstra's algorithm to find a path cost which can be used to 

simulate how much pheromone will be released by the ants during the normal 

algorithm execution. Using that cost, we can initialize the links with a value that 

is at least of the same order of magnitude of the future released pheromone.

The pheromone initialization is done in two steps: 

1. First the cost Cmin of the shortest route F min
*  from the origin to the 

destination is calculated:
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(24)

where ci , j( f ,t) is the cost of link that goes from node i to node j at time t 

having a flow of f, Capi , j is the capacity of the same link, F min
* is the set 

of links that are part of the shortest route, and Constf is a value between 0 

and 1 that we can choose: the higher the value, the less pheromone will 

be released, making the pheromone evaporate faster and decreasing the 

exploration; the lower the value, the more pheromone will be released 

making the desiderability less affected by ants decision on the first 

iterations, increasing exploration and execution time.

2. The pheromone on each link is initialized with the amount that would be 

released by an ant choosing a path with cost Cmin :

(25)

where Const is another constant to increase pheromone and leads to better 

exploration at cost of slowest convergence, and R(C min) is the pheromone 

release function, that will be explained in detail in the next paragraph.

The first iteration of the algorithm is done with the network without any traffic, 

so the flow is initialized to 0 in each link. For the purpose of traffic distribution, 

we need to save the total released pheromone τ̌tot
C (0) and the released pheromone 

on each link τ̌i , j
C (0) , both initialized to 0 because no pheromone has been 

released by ants at the beginning.

3.4.2    Ant exploration and travel from origin to destination

In ACS-TA each ant builds a solution, that is, a path from the origin to the 

destination of its colony, by selecting at each node i of the graph the next link l i , j

Cmin =∑ c i , j(Capi , j⋅Const f ,0) ∀ ci , j∈F min
*

τi , j
c
(0)= Const ⋅R(Cmin) ∀ i , j : l i , j∈L
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to be added to the path. This choice is made according to a decision probability 

table P
i
c=[ p

i , j
c (t)]

∣L
i
∣ , where the probability of selecting a forwarding link l i , j  

depends on the pheromone trail left on the same link by the preceding ants 

belonging to the same colony c. The basic function used is the following:

(26)

where τ i , j(t) is the amount of pheromone trail on link (i, j) at time t and Li  is the 

set of outgoing links from node i.

Another possible function introduces some uncertainty to the pheromone 

perceived by ants, making it a stochastic process; the perception error is 

determined using a Gaussian function:

(27)

Increasing error in perception has a double effect: it can increase the probability 

to choose a link with low pheromone increasing path exploration, and by adding 

a perception error on the usefulness of a link, it leads to a stochastic user 

equilibrium. A high degree of exploration is an advantage on smaller networks to 

try many different paths, but it has a drawback on more complex network. 

An important rule is that a path between two nodes, with a total cost of C1, which

crosses a node more than once, it will always contain a sub-path without repeated

nodes and with a total cost C2 <C1. Taking into consideration this rule, we know 

that if an ant chooses a link that leads to a node it already passed, it will find a

p
i , j
c
(t) =

τ
i , j
(t)

∑
i , j∈L

i

(τ
i , j
(t ))

∀ i , j : l
i , j
∈L

pi , j
c
(t )=

max (0, τ i , j (t)+N (0,σ)⋅τ i , j (t))

∑
i , j∈Ai

max(0, τ i , j( t)+N (0,σ)⋅τ i , j(t ))
∀ i , j : l i , j∈L
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sub-optimal solution. To avoid this we have considered two possible 

improvements:

• Solution 1: When an ant moves on a node already passed, it forgets the 

route taken and starts again from the beginning.

• Solution 2: When an ant choose what link it will take next, it only 

considers links that lead to nodes he never passed. If no possible link can 

be selected, he forgets the route taken and starts again from the beginning.

Both solutions need that ants memorize the nodes they already passed, and both 

have some advantages and disadvantages. The first solution has the decision 

probability table P c computed only once at the beginning of the iteration and 

used by all the ants. The second solution cannot use a fixed probability table, 

because the probability to choose a link is measured at every node using only a 

subset of Ai where all the links that lead to an already passed node are excluded. 

An example, where we can measure which method is more convenient, is given 

in Figure 3.1. This network has one path that connects origin and destination and 

(N-1) paths that come back to the origin node where ants block and restart. Let's 

Fig. 3.1 : an example of network where traffic moves from node 1 to node 5. Only 
one possible path without repeated nodes is possible.
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examine the computation complexity for both solutions on the first iteration, 

when every link has the same probability to be chosen. In this example, consider 

the cost of determining the probability to choose a node being comparable with 

the cost of moving on links.

Solution 1: the decision probability table P c is calculated only once at the 

beginning of the iteration {1} and it will be used by all the m ants. On the first 

iteration every neighbor link has the same probability to be chosen and this gives,

in this particular network, a probability of po=1−1/2N to choose a path that 

brings back to the origin node and a probability po=1/2N to choose the only path 

that leads to destination. The average number of times an ant will choose a path 

that goes back to the origin is 1/ p0=2N , and every time it happens he will move 

on an average of∑k=1
N ( 1

k
k )=N nodes before arriving to the origin and reset {2}. 

When it chooses the path that go to destination, he will go through N nodes {3}. 

(28)

Solution 2: as in the first solution, an ant will choose the path that goes back to 

the origin with an average of N times, but in this case it moves to the next node, it

will have to recalculate the probability to choose the out links {1}. 

(29)

In this example, solutions 1 and 2 have the same computational complexity, 

because the larger term, that is the cost of ants moving on the nodes, dominates 

on the cost given by the probability calculation term.

O(N )
{1}

+O(m(O(2N N )
{2}

+O(N )
{3}

)) = O(2N N m)

O(m(O(2N N )O(1)
{1}

+O(N )O(1)
{2}

)) = O(2N N m)
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Let's now examine a second example given in Figure 3.2. In this example, there 

is again only one path that leads to destination without repeated nodes and (N-1) 

paths that come back to the origin node.

Solution 1: we can make the same considerations of the first example, the only 

difference is that an ant does not have to come back to the beginning to restart 

when it chooses a wrong path. The computation complexity is then of O(2N m) .

Solution 2: all the links that are part of a path that would reset the ant are 

excluded, only one link remain to choose so the probability is never computed 

and it takes only one iteration for each ant to find the destination node. The 

computation complexity is O(N m) .

As we can see, the performance depends on the network topology. The second 

solution can achieve a much better performance on networks with many back 

links, but its complexity is the same as that of Solution 1 in the worst-case 

scenario. An observation we can make about the topology of the real word 

transportation networks like the ones that we will use for the experiments, is that 

it is very common to have back links to nodes that were already passed like in the

examples shown in Figure 3.1 and Figure 3.2. This is easily understandable, as 

real word road networks are usually designed to make simple to reach any place 

starting from any position using roundabouts, intersections where it is possible to

do a U-turn or taking a secondary road parallel to a one-way road. 

Another possible improvement, using the second solution, is to save in a blacklist

Fig 3.2: another example of network where traffic moves from 
node 1 to node 5.
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all the found paths that lead an ant to reset and share this information among all 

the ants of the colony. The ants can then avoid links that would result in choosing

a path contained in the blacklist. Excluding a large number of links in the 

decision process, without having to enumerate all possible paths, can lead to a 

good increment of computation performance. 

Let's consider again the network in Figure 3.1, where Solution 2 had the same 

performance as Solution 1. When an ant finds one of the (N-1) paths that brings 

back to the origin, it examines the chosen links starting from the last one and 

moves backward until it was possible to choose between more than one link, then

it saves the link sequence from the start by putting it into a blacklist. An example 

of sequence is 1→2→2a; if the sequence is into the blacklist when an ant does 

the movement sequence 1→2, it will not consider the link 2a when calculating 

the probability to move to the adjacent nodes. To analyze the computation 

complexity, let's consider the worst case scenario, where the first ant puts into the

blacklist every path that go back to the origin, starting from the longest path, 

before he can reach the destination node {1}. The following ants will reach the 

destination node using the remaining path {2}. The computation complexity is 

the following:

(30)

On networks with many nodes, if we keep the number of ants less or equal to the 

number of nodes, the complexity becomes O(N 2) that is comparable to the 

Solution 2 in the best case scenario. If we consider that the blacklist can be saved

and used in the following iterations, or even in the following algorithm 

O(∑i=1
N (2(N−i)))O(1)

{1}

+O((m−1)O(N ))
{2}

=

O(∑i=1
N
(N−i ))+O((m−1)N ) =

O(N 2)+O((m−1)N ) =
m≤N

O(N 2)
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executions, being it dependent on the network topology, the advantages of using 

a blacklist can increase even more. In the example used above, the computation 

cost of reading and saving the blacklist is O(1); this assumption cannot be 

possible in the real application and the efficiency of the blacklist largely depends 

on how it is implemented. We will examine better how the implementation is 

done in Chapter 4.4.3. In a worst-case scenario a blacklist basically enumerate 

the complement of all the possible paths between an origin and destination, 

without repeated nodes. On a network as simple as the one in Figure 3.1 the 

enumeration has a cost of O(N 2) , but on a hypothetical network where all nodes 

are intersected with every other node the computation cost is O(N N ) , making the

blacklist not enough to decrease the computation time and ensure the ants reach 

the destination node by filtering not useful paths. Without a blacklist the 

probability to choose a path that reaches the destination node remains extremely 

low and, as some simulations in real networks demonstrated, ants cannot find the 

path to reach the destination after many thousands iterations.

To address the problem of helping ants to find a path to the destination, we need 

to sacrifice some of the exploration and increase the probability to choose links 

that are part of paths that lead to destination:

(31)

where k is the number of failed tries done by ants to reach the destination node 

p i , j(t) =
(τ i , j(t)⋅bi , j

l
)

∑
i , j∈P ni

(τ i , j (t)⋅bi , j
l
)

lk +1 = {
0 if k = 0  or all the ants arrived at destination
lk if an ant arrive at destination at the k+1  try
lk+1 if an ant is blocked at k+1  try
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during an iteration of the algorithm and b is the bias applied to the path. The bias 

is increased exponentially as the ant continues to reset, until it reaches a value 

where the ant can finally reach the destination node. This mechanism makes 

possible for ants to reach the destination while keeping the most possible 

exploration and is most effective on networks with many origin/destination pairs 

that need different value of bias or no bias at all, depending on where the pair is 

positioned.

 To calculate the value of the bias, a possible solution is to apply it to the shortest 

path found using Dijkstra shortest path algorithm:

(32)

where F min
* is the shortest path and Const1>1 is a value we can choose. The 

higher is the value of Const1 , the faster the bias value will reach a point where 

ants start to find the destination, while the smaller it is, the most exploration is 

ensured when the bias value is found, but it can take many more iterations to find

it. The shortest path is calculated only when needed, maximum once every 

iteration because the shortest path can change only if the flow distribution 

changes. The computation cost of the Dijkstra shortest path algorithm is, in a 

network with a set of N nodes and A arcs, O(∣A∣+∣N∣log∣N∣) .

Another possible solution to help ants to find a path to the destination, is to give a

bias to the links that are part of Dial definition of “efficient routes”. A link is part 

of the set E of efficient links only if the following condition is met:

(33)

bi , j = {Const1 ∀ i , j : l i , j∈F min
*

1 ∀ i , j : l i , j∉F min
*
∧ l i , j∈L

l i , j∈ E ⇒ r (ni) < r (n j) ∧ s(ni) > s(n j)

r (ni): the smallest cost from origin node r to node i

s(ni): the highest cost from node i to destination node s
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When we have found the set E of efficient links, the bias value is calculated as in 

the best path example:

(34)

Using a bias on efficient links guarantees a much higher exploration on complex 

networks, at the cost of a much higher computation complexity, because the 

Dijkstra shortest path algorithm needs to be used on every node twice instead of 

only once for origin and destination, leading to a computation complexity of

O(O(A+N log N )2N) = O( AN+N 2log N )

An example of efficient routes is shown in Figure 3.3.

bi , j = {Const1 ∀ i , j : l i , j∈ E
1 ∀ i , j : l i , j∉ E ∧ l i , j∈L
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3.4.3    Pheromone distribution and evaporation

Once an ant reaches the destination, it adds an amount of pheromone Δ τi , j
c (t ) to 

the links that are part of the followed path. The value of the pheromone released 

is obtained using the previously introduced R(C ) function, the more pheromone 

is released, the better is the path. A measure involved in the evaluation of the path

goodness is the total cost of the path used by ant n:

(35)Cn(t )=∑ ci , j( f i , j (t) ,t) ∀ i , j : l i , j∈Fn
*

Fig 3.3: The Sioux-Falls network, with highlighted in red the efficient
links, having as origin the node 3 and as destination the node 10.
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where F n
* is the path chosen by an ant n.

The basic R(C ) function used in ACS-TA is deterministic and it simply release 

the pheromone proportionally to the cost of the path chosen by the ant:

(36)

An alternative to the basic function is to add a perception error modeled as a 

Gaussian distribution, leading to a stochastic model for the pheromone 

distribution and consequently to a stochastic user equilibrium:

(37)

Finally, we can simulate the Logit stochastic user equilibrium. As proved by 

D'Acierno in [40], this is possible by using an exponential utility function:

(38)

where θ is a parameter related to the variance of the random residuals of the 

perceived utility. Using an exponential utility function can lead to very different 

pheromone release for each Origin/Destination path. This can be a problem on 

paths with high cost, because the pheromone value is numerically too low and 

can end up approximated to 0, making necessary an high θ value. If this 

approximation is done on the shortest path, no pheromone will be ever released 

causing the algorithm to not work correctly. To avoid this problem, it is possible 

τi , j , n
c

(t) = {
1

C n

∀ i , j : l i , j∈F n
*

0 ∀ i , j : l i , j∉F n
*
∧ li , j∈L

τi , j , n
c

(t) = {
1

max(0 , N (0,σ )⋅Cn( t))
∀ i , j : l i , j∈F n

*

0 ∀ i , j : l i , j∉Fn
*
∧ l i , j∈L

τi , j , n
c ( t ) = {e

(−C n(t ) / θ)
∀ i , j : l i , j∈F n

*

0 ∀ i , j : l i , j∉F n
* ∧ l i , j∈L
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to normalize the exponential utility function, by subtracting the path cost with the

cost of the fastest path when no flow is assigned:

(38b)

Once all the ants have reached their destination and they have distributed their 

pheromone, the pheromone trails evaporate on every link. This is obtained by 

implementing the following rule:

(39)

where ρ∈(0,1] is the pheromone trail decay coefficient. The higher is the value 

of the decay, the faster the information about previously found solution will be 

forgotten, leading to a faster convergence time but less precision of the solution. 

A possible weakness introduced by the evaporation is that after some iterations, 

links that never have been used and the relative paths that contain them, will 

continue to decrease in desirability even if ants never had a chance to check the 

goodness of the path. This can lead to use only a subset of feasible solutions 

decided by how the ants moved in the first few iterations of the algorithm, 

making the solution dependent by the seed used for the random link choosing. To

prevent this, it is possible to evaporate pheromone only on links that have been 

used by an ant, without reducing the desirability of unused links:

(40)τi , j
c
(t)= {τi , j

c
( t−1)⋅(1− ρ(t )) + (∑

n=1

N

τ i , j , n
c

(t))⋅ ρ(t ) ∀ i , j , n : l i , j∈F n
*

τi , j
c
( t−1) ∀ i , j , n : l i , j∉Fn

*
∧ l i , j∈L

τi , j
c
(t)= τi , j (t−1)⋅(1−ρ( t)) + (∑

n=1

N

τ i , j ,n
c

(t ))⋅ ρ( t) ∀ i , j : l i , j∈L

τi , j , n
c ( t) = {e

(−C n(t )−C min / θ)
∀ i , j : l i , j∈F n

*

0 ∀ i , j : l i , j∉F n
* ∧ l i , j∈L
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Another update we need to do at this point, is the value of released pheromone on

each link and the total released pheromone:

(41)

(42)

where ρ̌∈(0,1] is the pheromone trail decay coefficient. The higher is value of 

the decay, the faster the traffic flow will adapt to follow the solution found by the

ants, but this can lower the quality of the solution because there will be more 

oscillations of the flow when the algorithm is near the equilibrium.

τ̌ tot
c (t ) = τ tot( t−1)⋅(1− ρ̌) + (∑

n=1

N

∑
i , j∈F n

*

τi , j , n
c ( t))⋅ ρ̌

τ̌i , j
c (t) = τ̌i , j

c ( t−1)⋅(1−ρ̌) + (∑
n=1

N

τ i , j ,n
c (t))⋅ ρ̌ ∀ i , j : li , j∈L
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3.4.4    Flow assignment and link cost update

This section of the algorithm completes the circular relationship shown in 

Figure 3.4. In ACS-TA the pheromone trails, besides being a means to guide the 

ants in the building of their paths, are used to distribute the traffic flow on the 

network. For each link, a quantity of flow proportional to the pheromone present 

on it is assigned; this turns into a variation of the costs that the following ants 

will experience in their paths. This is obtained by having on link (i, j) at time t a 

quantity of flow equal to:

(43)
f i , j

c
(t )=∑

c=1

N OD

d c τ̌i , j
c
(t )

τ̌tot
c (t)

Fig. 3.4: Circular relationships between pheromone distribution, flows and costs: the 
cooperation among ants in the same colony acts as user decision optimization; the 
competition among colonies can be compared to the congestion effect in road traffic. 
This circular relationship mimic the circular relationships of equilibrium between 
traffic demand, flows and costs.
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where d c is the flow demand of colony c, N OD
is the number of colonies, τ̌i , j

c (t )

are the released pheromone of colony c on link (i, j) and τ̌tot is the total sum of 

released pheromone. We use the added pheromone instead of the current 

pheromone on a link because they are initialized at a value higher than 0 and the 

evaporation of the current pheromone on links can happen only if they are used 

by ant ant, leading to an inhomogeneous evaporation.

The cooperation among ants in a same colony acts as user decision optimization, 

while the competition among colonies can be compared to the congestion effect 

in road traffic. All this can be viewed in the same manner as the circular 

relationships of equilibrium between traffic demand, flows and costs explained 

previously where pheromone substitutes traffic demand (see Figure 3.4). This 

view is commonly proposed for the SUE case but it can also be extended to the 

DUE case (preferably solved using the Frank-Wolfe algorithm) since the latter is 

a particular case of SUE.

To avoid using released pheromone instead of the current pheromone on a link, 

there are two other possible solutions. The first is to enumerate all the possible 

paths that have pheromone and distribute the flow proportionally on each path:

(44)

Starting on the origin node, we divide the flow that goes on the connected nodes 

proportionally to the pheromone on the link that connects the nodes, creating a 

tree with all the paths having the destination node as the leaf. The problem of this

algorithm is that having initialized every link with some pheromone, it ends up 

enumerating all the paths that connect the origin and destination, which is a 

computationally expensive operation we usually want to avoid. As an alternative 

f i , j
c
( t) = ∑

l y , i∈F k

f y ,i( t)⋅ ∑
li , j∈F k

(
τ i , j

∑
∀ l i , x∈L

τ i , x

) ∀ F k∈F , ∀ i , j : l i , j∈L
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without path enumeration, we can use again the ants to simulate how the flow is 

distributed. In this case, the probability table used by the ants to choose a link is 

proportional to the pheromone on it:

(45)

where Li are all the outgoing links from the node i. The colony release k ants 

which use different paths that reach the destination. To find the flow on a link, we

simply compare the total number of ants with the number of ants that used the 

link:

(46)

Using the current pheromone on the links to calculate the flow has the advantage 

of consuming less memory, but the computation complexity of both solutions is 

considerably higher than the one using released pheromone.

When all the parallel threads finish to calculate the flow of a colony on each link,

we obtain the sum of the flows on every link and update the cost of the link using

the cost function:

(47)

3.4.5    Rho update

The value ρ , the pheromone trail decay coefficient, can have a huge impact on 

the precision of the found solution and the time to reach convergence. Ideally, we

want a high value of ρ at the beginning, to reach the convergence in less time, 

and reduce the value as we arrive near the solution, to achieve a better precision. 

c i , j( f i , j(t ) , t) ∀ i , j : li , j∈F

p i , j
c
(t) =

(τ i , j
c
(t))

∑
i , j∈Li

( τi , j
c
( t))

∀ i , j : l i , j∈L

f i , j(t) = d c
⋅

k i , j (t )

k
∀ i , j : l i , j∈L
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Having a small ρ means that the variations of pheromone and of the flow after 

every iteration are small, and there are less oscillations near the solution. 

This behavior can be obtained by checking the variations of the solution, the sum

of cost integrals on the links, over the last I iterations, and if the solution does not

have much variation, decrease the value of ρ . This check should be done at the 

end of each iteration after calculating the solution: 

(48)

where d∈(0,1) is the maximum distance variation over the last I iterations 

between the cost integral average and the cost integral last value, q is used to 

decide how much the ρ will decrease if the conditions are met and ρmin is the 

minimum value after which the algorithm stop decreasing the ρ value.

3.4.6    Stop condition

After we find the cost on each link, we have to decide if we stop the algorithm or 

proceed with a new iteration. To measure the quality of a solution we use the sum

of the cost integral on each link. On real networks we cannot know what is the 

value of the solution, which we know to exist and is unique only in the case of 

deterministic user equilibrium. That is why we use the variance of some variables

of interest observed in the previous K iterations. If in the last iterations the 

variance is below a certain threshold, we assume that we are near the solution. 

The variables of interest that we use in our algorithm are the following:

C I
(t) =∑ c i , j

I
( f i , j(t ) , t) ∀i , j : ai , j∈A

Cavg
I =∑

i=0

I C I
(t−i)
I

ρ(t) = {
ρ(t−1)

q
if C avg

I
⋅(1−d ) ≤ C I

(t) ≤ Cavg
I
⋅(1+d ) ∧ ρ( t−1)> ρmin

ρ(t−1) otherwise
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Cost Variance

1. For each link the average cost in the last K iterations is found:

(49)

2. Using the average we can easily compute the variance:

(50)

3. To stop the algorithm, the variance should remain below a certain 

threshold on every link. The condition to be verified is the following:

(51)

Flow Variance

1. For each link the average flow in the last K iterations is found:

 (52)

2. Using the average we can easily compute the variance:

(53)

3. To stop the algorithm, the variance should remain below a certain 

threshold on every link. The condition to be verified is the following:

(54)

To avoid premature stopping in the experiments, we adopt a third criterion to 

calculate the number of iterations to convergence based on the final value of flow

after a maximum number of 1000 iterations. When we present the experimental 

M i , j(t ) =∑
k=0

K c i , j( f (t−k ) ,t−k )

K
∀ i , j : l i , j∈L

σ i , j
2
(t)= ∑

K=0

K (c i , j( f (t−k ) ,t−k )−M i , j (t))
2

K
∀ i , j : li , j∈L

M i , j(t) =∑
k=0

K f i , j(t−k )

K
∀ i , j : l i , j∈L

σ i , j
2
(t)= ∑

K=0

K ( f i , j(t−k )−M i , j( t))
2

K
t.c ∀ i , j : l i , j∈L

∀ l i , j∈F :
σ i , j(t)

f i , j(t )
< ε

∀ l i , j∈F :
σ i , j( t )

c i , j( f ( t) , t)
< ε
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results we assume the algorithm has reached convergence when 90% of the flows

are inside the interval defined by the values below and above 1% of the final 

value. This criterion can only be applied off-line, but provides a non optimistic 

estimate of the number of iterations the algorithm needs to reach convergence.

3.4.7    Further optimization

As explained in chapter 3.4.2, a lot of computation time on larger networks is 

wasted in ants that end up choosing sub-optimal paths and do a reset. To further 

reduce the probability to select a sub-optimal path, it is possible for every colony,

to do an optimization on the network topology that filters links which will surely 

lead to choosing a sub-optimal path. The best optimization is possible by 

enumerating all the optimal paths for a colony and, during the link choosing, 

ignoring the links that are not in any optimal path. The problem is that 

enumerating all the paths on big networks is a very long operation and should be 

avoided; a tradeoff is needed to find a good optimization algorithm that is 

executed in an acceptable amount of time. The algorithm we use analyzes every 

link and excludes it if one of the following conditions is met:

 1 connects the destination node to another node;

 2 connects a node to the origin node;

 3 enters in a node that does not have out links, with the exception of the 

destination node;

 4 exits from a node that does not have any entering link, with the exception 

of the origin node. 

 5 is part of a ring of connected nodes where, with the exception of only one 

node, all the other nodes have only one outgoing link.
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Algorithm 3.3: Network optimization

 6        for each colony do
 7            remove visibility of links coming out from the destination node;
 8            remove visibility of links entering into the origin node;
 9            do
 10                For each node that is not origin or destination do
 11                   if node does not have visible exiting links then
 12                       remove visibility of links entering in the node
 13                   end if
 14                   if node does not have visible entering links then
 15                       remove visibility of links exiting in the node
 16                   end if
 17                   if node has only one visible out link then
 18                     set the current node as the first node;
 19                     while next node has one out link and is not the destination node do
 20                         if next node is the first node then
 21                             remove visibility of the link that connect to next node
 22                             break;
 23                         end if
 24                         select next node
 25                     end while
 26                   end if
 27                end for
 28            while no visibility is removed from any link;
 29        end for

Last three points are repeatedly checked on every link until there are not any 

more excluded links, because the exclusion of a link can create the conditions to 

have new links that can be excluded. Using this algorithm on the network of 

Figure 3.1 would leave visible only the links used to reach the destination, 

making impossible to choose a sub-optimal path. In Figure 3.5 there is an 

example of real network with highlighted the links excluded after the algorithm 

application.
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Fig. 3.5: The Area Maggi network with highlighted in red the ignored links, for a
particular origin/destination pair, after the network optimization.



Chapter 4

Design and implementation

4.1    Introduction

In this chapter we explain how the software that runs the algorithm is designed 

and implemented. First we perform an analysis of software requirements, then we

describe how the transportation networks are coded in files and how they are 

parsed to create a model of the network in memory. Next we explain how the 

ACS-TA algorithm is implemented and how we use the model of the network to 

search for a solution. Finally we explain how the data obtained during the 

algorithm execution and the final results is saved and ready to be analyzed.

4.2    Software requirements overview

During the design of the software the following requirements have been 

discussed and accepted:

• the software runs on the most common operative systems, using single or 

multi-core processors, with different size of memory available;

• it works on any network given, as long as it is coded in files that use a 



52 Design and implementation

specific syntax. The networks need to follow the specifications discussed 

in paragraph 3.4;

• it implements the basic ACS-TA algorithm and all the variants discussed 

in chapter 3, with the possibility to select a different variant in a 

configuration file or as an input parameter;

• it gives the possibility to choose which data we are interested and save the 

data on files using a specific syntax; 

• it gives the possibility to graphically visualize the network and show how 

the traffic is distributed for a specific origin/destination/category 

combination;

• it makes simulations repeatable by passing a seed as input parameter.

The programming language that we use is Java, which can work on many 

different operating systems and system specifications, and it provides many 

functions to easily implement parallel computing on different threads. The library

we use to easily implement and visualize the network model is the Java Universal

Network/Graph Framework (JUNG)1. One weakness of using Java is the low 

control given on memory management which, although it makes easier the code 

writing, needs lot of attention to avoid memory leak and optimal usage of 

memory. Considering the amount of data on larger networks, every little memory

leak or inefficiency can cause huge performance loss or lot of avoidable memory 

occupation. 

To make possible the use of the algorithm on large networks we have to make 

some tradeoff between performance and memory consumption. This is caused by

the amount of additional data we need on every link on the network, like 

1 See http://jung.sourceforge.net/
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pheromone and released pheromone for every origin/destination/category. A good

tradeoff is done by avoiding the use of indexes on the links, because they would 

increase by a significant amount the memory consumption. The search for a 

specific link and the data regarding it is done by a binary search on an ordered 

list of link ids, to occupy less memory while still using a fast search algorithm. 

The Java Runtime Environment (JRE) where the simulations run is the 1.7 

version. It is possible to use JRE 1.6, but it turns out to be slower.

4.2.1    Input data

Most of the input data is divided into different files which are parsed by the 

software to create the network model and configure how we want the algorithm 

to work. The location of the files is given as an argument when lunching the 

program; by default the configuration file is expected with the name 

“parameters_ant.txt”. It is possible to specify a different location, to make 

possible the execution of many simulations using a batch that tries different 

configurations for the same network. For a detailed description of the arguments 

that can be used and the parameters in the configuration files see the “Use 

Manual” (Appendix A). 

In the next section is provided the description of the files that contain the data 

regarding the network. In each file, if not specified otherwise, the first row is the 

header where the column names are indicated, so that the order of the columns is 

not important. Each column is separated by a tab and each row by a newline.

Nodes: the file name is specified in the parameters file, and it needs three 

columns. The first one is ID, used to give an identification number for each node 

and it is also shown in the graphic representation; the last two columns are X and 

Y which indicate the position of the node, used in the graphic representation.
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Links: the file name is specified in the parameters file, and it can have various 

formats depending on the cost function ci , j( f ,t) , used to determine the travel 

time through a link given the flow. It needs the two columns: A, which for each 

link indicate the origin node identification number, and B, which indicates the 

destination node identification number. After this, the remaining columns depend 

from the cost function;

• Type 2 (A; B; L_i; V_0; Cap_u_i; delta; gamma): described by Cascetta 

(equation 2.3.3 in [41]) and it writes as:

(55)

where Ll  (column L_i) is the length of link l, v0l  (V_0) is the free-flow 

average speed, v cl  (V_c) is the average speed with flow equal to capacity 

(Cap_u_i), and δ , γ  (delta, gamma) are two additional parameters for 

cost function calibration; the parameter referring to the link in the opposite

direction is denoted by l* and the overall capacity in both directions by

Ql l * (obtained multiplying the column Cap_u_i with n_lanes_i).

• Type 3 separable cost (A; B; L_i; alpha; beta; C; green, f): the cost 

function of type 3 is the BPR (Bureau of Public Roads) and it writes as:

(56)

where tr0l (obtained as 3.6 * L_i / V_0) is the free-flow average travel time

for the link l, and parameters α , and β (alpha, beta) are calibration 

parameters of the cost function; Ql (C) is the capacity of link l. The value 

of green is always 1, indicating that it has separable cost.  It is possible to 

tr l( f i , f
l *)=

Ll

v0l

+δ( Ll

vcl

−
L l

v0l
)( f l+ f l*

Q l l * )
γ

tr l( f l)=tr0l(1+α( f l

Q l
)
β

)
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use symbolic links that have no cost, setting to 1 the value of column f.

• Type 3 non separable cost (A; B; L_i; alpha; beta; C; green; f; 

links_number; link_{n}_in and link_{n}_out): in this case, the value of 

green is 0 indicating that it is a non-separable cost link. For this kind of 

links the TRB cost function is used, introducing a delay due to all 

conflicting links:

(57)

where f conf is the sum of flows on conflicting links. To specify what are 

the links that are used to calculate f conf , we use the column 

links_number that indicate the number n of links used in the sum and then

for each link we use the columns link_{n}_in and link_{n}_out that 

indicate the origin node and destination node that identify the links.

• Type 3 with limited access (A; B; alpha; beta; TIMEBASE; CAPACITY; 

CURVA_DEFL; JURISDICTIO; VL15): it is possible to use the type 3 

cost function in networks with limited access links and reserved links. In 

this case the value of tr0l is obtained from the column TIMEBASE and Ql

from the column CAPACITY. To indicate a link with no cost, the value of 

column CURVA_DEFL need to be set to 0. The reserved links are 

identified using the column JURISDICTIO, that contains an identification

number used to decode the cost to travel through the link for each 

category. The limited access links are identified using the column VL15, 

that contains an identification number used to decode the accessibility of a

link for each category

Origin/Destination/Category: the file name is specified in the parameters file, it

needs the two columns O and D. The former indicates the origin node 

identification number, the latter indicates the destination node identification 

trn−sep( f conf )=exp (−0.2661+0.3967⋅ln( f conf ))
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number. If only one category is used, the column F is used to indicate the value 

of the flow generated for each O/D couple. If more than one vehicle category is 

present, we use a column named with the category identification number (starting

from 0 and incrementing by 1 for each successive category), and each column 

contains the flow for the Origin / Destination / Category combination.

Accessibility: the file is named “accessibility.txt”, it contains a matrix where the 

first line is the column CategoryId, followed by the columns named with the 

identification numbers used in the column VL15 of the file containing the links. 

The following rows contain, under the column CategoryId, the categories used in

the file that contains the Origin / Destination /Categories combinations. Under 

the other columns, there is the value “t” if the category have access to the links 

that have the column name in the value of column VL15,  “f” otherwise.

Reserved links: the file is named “reserved_link_cost.txt”, it contains a matrix 

where the first line is the column reservedId, followed by the column names of 

the categories used in the file that contains the Origin / Destination /Categories 

combinations. The next rows contain, under the column reservedId, the 

identification numbers used in the column JURISDICTIO of the file containing 

the links. Under the other columns, indicating the vehicle category identification 

number, there is the value of the travel time cost penalty that need to be added if 

a path uses a link that has this identification number in the value of column 

JURISDICTIO.

Seeds: the file name is specified in the parameters file, it does not have a header 

in the first row, and each row contains a different seed used by the Origin / 

Destination / Category combination ant colony. If there are not enough rows for 

each ant colony, new values are generated using the current time and saved in the

file.
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4.2.2    Output data

The output data is saved in a sub directory called logs. In the same directory there

are two files, the first one called “logEvents.txt” that contains the events we want 

to log (only those which do not start with # are considered). The possible events 

are:

• executionTime: the software writes in a file named “log.log” the 

execution time of the pheromone distribution, flow distribution and total 

execution time for every ant colony;

• flowUpdate: it writes in a file named “flows.csv”, a matrix that contains 

the flow value on each link, at each iteration;

• costUpdate: it writes in a file named “costs.csv”, a matrix that contains 

the cost of each link, at each iteration;

• flowEnd: it writes in a file named “flows_end.csv”, the flow value on each

link at the last iteration;

• costEnd: it writes in a file named “costs_end.csv”, the cost on each link at

the last iteration;

• checkEndCondition: it writes in a file named “variance.csv”, the 

maximum cost (or flow) variance calculated at each iteration;

• costIntegralUpdate: it writes in a file named “cost_integral.csv”, the sum

of the cost integral of each link, for every iteration;

• costIntegralEnd: it writes in a file named “cost_integral_end.csv”, the 

sum of the cost integral of each link at the last iteration;

• antBlockUpdate: it writes in a file named 

“ant_block_update_<colony>.csv”, how many ants have been reset 



58 Design and implementation

because they ended up blocked at each iteration for a specific ant colony;

• chooseUpdate: it writes in a file named “choose_table_<colony>.csv”, 

the probability to choose a link when it changes, for a specific ant colony. 

Only used when a probability table is calculated at the beginning of the 

iteration;

• pheromoneUpdate: it writes in a file named “pheromone_<colony>.csv”,

a matrix that, for each link and for each iteration, contains the pheromone 

for the colony indicated in the file name;

• newPheromoneUpdate: it writes in a file named 

“new_pheromone_<colony>.csv”, a matrix that for each link and for each 

iteration, contains the pheromone released by the ants of the colony 

indicated in the file name. A special value “-1” is used for links that have 

been used by one or more ants, but the ants always ended up blocked and 

had to be reset;

• rhoChange: it writes in a file named “rho.csv”, a matrix that contains the 

value of the pheromone trail decay coefficient ρ , at each iteration;

• rhoUpdateRequest: it writes in a file named “log.log” the new value of

ρ  when it changes, and the iteration number where the change happened;

• blackListUpdate: it writes in a file named 

“black_list_update_<colony>.csv”, all the paths that are added to the 

blacklist of the colony in the file name. The paths are represented as a set 

of links;

• flowInLinksEnd:  it writes in a file named 

“flow_links_end_<colony>.csv”, the total flow that is present on each 

link, and the contribution given by each colony to the total flow, only for 
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the last iteration.

A second file called “authorizedFlows.txt” is needed here. The first row has the 

header with the column names O, D and C; starting from the second row it 

contains the Origin / Destination / Category combination that we want to be 

logged for the events that happen inside a colony (antBlockUpdate, 

chooseUpdate, pheromoneUpdate, newPheromoneUpdate, blackListUpdate). If 

there is only one category, the value 0 is used under C. Saving too much data on 

files can slow down the algorithm execution time, so it is better to carefully 

choose what data we are interested in instead of saving everything.

4.3    The Network Model design and implementation

As explained in the software requirements, all the data needed to create the 

model is contained in different files. The parameters contained in the 

configuration file are parsed and saved in a utility class called ParameterParser, 

and passed as an argument for the network model initialization. As an alternative 

it is possible to specify the path where the configuration data is located and let 

the model build the parser. The class that models the transportation network is 

called GraphTrafficModel. The initialization is composed of various steps:

1. Creates a RowParser object for every file used by the network model 

(Nodes, Links, Origin/Destination/Category combinations, Accessibility 

and Reserved links). This object parses the assigned file and creates a map

between the header and the value in each row.

2. Creates the nodes of the network using the class called 

TrafficNodeFactory. This class initialization takes as argument a row read 
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by the node file parser and creates a TrafficNode object using the data in 

each row. Every node uses a numeric identification number which is long 

10 decimals. 

3. Creates the links of the network using the class called TrafficLinkFactory. 

This class initialization takes as argument a row read by the links file 

parser and creates a TrafficLink object using the data in the row and in the 

configurations file. Every link uses an identification number. To use less 

possible memory, the identification number is saved as a long primitive 

(64 bit), where the first 10 decimals are the destination node id, the last 10

decimals are the origin node id.

4. Creates the links of the network using the parser of the Origin / 

Destination / Category file. For every combination, a FlowGeneratorNode

object is created, which is a special node that contains how much flow is 

generated. The node is connected with his origin node through a link that 

does have any cost (FlowGeneratorLink). Every FlowGeneratorNode uses

a numeric identification number to differentiate each other, where the first 

2 decimals are the category id, the next 10 decimals are the destination 

node id and the last 10 decimals are the origin node id.

5. Each link needs to know which Origin / Destination / Category 

combination can go through it. To obtain this information two operations 

are attempted: first is an attempt to parse a file, which name is obtained 

from the configuration file, that contains which flow can go through each 

link. If the file exist, each row is parsed and used to save the O/D/C 

combinations that are authorized to use the link related to the row. If the 

file does not exists, the accessibility file is parsed and for each link is 

determined if a particular category can go through it, filtering every 

FlowGeneratorNode with a category that cannot access the link. After 
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Fig. 4.1: Class diagram for the network model
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this, the network model is used to initialize a TrafficOptimizer, which 

creates a TrafficDeadEndsRemover object for each FlowGenerator and 

then execute them in different threads. Each TrafficDeadEndsRemover 

does the operations listed in Chapter 3.4.7 to optimize the network. Finally

the file containing the permitted flows on each link is saved, to avoid the 

filter and optimization operation next time the software is run for this 

network.

6. Creates an ordered list of the TrafficLink, using the id as key, excluding 

the links used to connect the FlowGeneratorNode to its origin node. The 

purpose of the list is to be a main index which easily retrieves the position 

of a TrafficLink with a binary search. Every data that is associated to a link

but is not part of the model, i.e. the pheromone, can be saved using only 

the position in this list, without the use of a Map between the link id and  

the value.

7. Having the network model initialized, it is now possible to use it for the 

traffic assignment problem. The public methods of TrafficModel, which is 

an interface implemented by GraphTrafficModel, gives a complete view 

of the network, with his nodes, links, and O/D/C combinations. Any 

algorithm can use this interface to distribute the flow and calculate how 

the link cost changes after the flow assignment using the method 

updateCosts(). A utility method getShortestPathAlgorithm() gives the 

instruments to easily find the links part of the shortest path for an O/D/C 

combination.
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Routine 4.1: Network model initialization

1  Parse the files containing the network data using different RowParser objects
2  for each row in nodes RowParser do
3      create a TrafficNode object using the data in the row and adds it to an array
4  end for
5  for each row in links RowParser do
6      create a TrafficLink object using the data in the row and adds it to an array
7  end for
8  for each row in origin/destination/category RowParser do
9      create a FlowGeneratorNode object using the data in the row and add it to an

array
10      connect the FlowGeneratorNode with his origin node using a NoCostLink
11  end for
12  if authorized flows file exists then
13     for each row in authorized flow RowParser do
14         retrieve the TrafficLink associated to the row
15         for each FlowGeneratorNode do
16             if row contains FlowGeneratorNode identification number then
17                 add the FlowGeneratorNode to the TrafficLink authorized flows
18             end if 
19         end for
20     end for
21  else
22     if exists accessibility file then
23          for each row in the accessibility RowParser do
24             retrieve the link associated to the row
25             for each FlowGeneratorNode do
26                 if FlowGeneratorNode has the accessibility id of the link then
27                     authorize the FlowGeneratorNode to use the link
28                  end if
29             end for
30          end for
31     end if
32     for each FlowGeneratorNode do
33          create a TrafficRoutesOptimizer assigning the FlowGeneratorNode
34     end for      
35     run all the TrafficRoutesOptimizer in different threads
36     create a new authorized flows file 
37     for each TrafficLink do 
38        save the authorized flows in a new row of the file
39    end for
40 end if
41 order the TrafficLink array using the link identification number
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4.3.1    Network nodes

The network nodes are generated through the class TrafficNodeFactory and 

extend the abstract class TrafficNode. This abstract class contains the basic 

information, for a node: an identification number, the coordinates where it is 

located, and a collection of the links going out from it. Only two implementations

of the node exist:

• FlowGeneratorNode: contains the origin, destination, category and the 

flow generated. There is also a method for formatting the identification 

number in a human readable format for the data logging;

• NoCostNode: the basic nodes of the network, with no additional data. 

For the complete class diagrams see Appendix B. 

4.3.2     Network links

All the links are generated through the class TrafficLinkFactory and extend the 

abstract class TrafficLink. This abstract class contains the basic information, for a

link: an identification number, the cost, the total flow, which O/D/C combination 

can use it, the O/D/C combination flow and the accessibility id used to determine

which categories can go through it during the network initialization. The 

implementation of this class provide functions to obtain the cost integral, and the 

link capacity. There are various possible implementations returned by the factory,

depending the data read in the row and the link type in the configuration file (see 

Chapter 4.2.1): 

• Type2Link: implements the cost as the type 2 link (see Chapter 4.2.1) 

using the parameters passed. 
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• Type2LimitedAccessLink: same as Type2Link, with added a limited access 

for certain categories that need to apply an additional path cost if they pass

through it.

• Type3Link: implements the cost as the type 3 link (see Chapter 4.2.1) 

using the parameters passed. 

• Type3LimitedAccessLink: same as Type3Link, with added a limited access 

for certain categories that need to apply an additional path cost if go 

through it.

• Type3NotSeparableLink: it is a non separable cost link type (see Chapter 

4.2.1) that needs, during the creation, the set of links which flows have an 

influence on the link cost.

• NoCostLink: a link with no cost, used in some particular cases as 

explained in Chapter 4.2.1.

Another type of link, not created through the factory, is the FlowGeneratorLink, 

which connect the FlowGeneratorNode with his origin node. For the complete 

class diagrams see Appendix B.

4.3.3     Network visualization

To visualize the network, the GraphTrafficModel extends a class of the Jung 

library called DirectedSparseMultigraph, while the nodes extend TrafficNode 

which in turn extends Point2D. The model, with a selected FlowGeneratorNode, 

is used by a class named Visualizer, which creates another Jung class called 

VisualizationViewer that can be used by a frame (JFrame) to visualize the 

network. In the Visualizer, before showing the network, various transformations 
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are applied on the network to correctly visualize all the information needed, 

using utility classes of the Jung library:

• TrafficLinkPredicate: filters all the links that do not have any possible 

flow passing through or are a FlowGeneratorLink;

• TrafficNodePredicate: filters all the FlowGeneratorNode type of nodes;

• TrafficLinkLabelTransformer: does not show any label on the links;

• TrafficNodeLabelTransformer: shows the node identification number;

• TrafficLinkToolTipTransformer: shows a tooltip on the links that contains 

the identification number, flow passing through it and cost;

• TrafficNodeToolTipTransformer: shows a tooltip on the node that contains 

the identification number;

• TrafficLinkPaintTransformer: changes the color of the link, that will range

from blue where the passing flow is negligible, to red where the passing 

flow is near the maximum generated by the selected FlowGeneratorNode. 

The links that cannot be used by the current FlowGeneratorNode are 

black;

• TrafficNodePaintTransformer: changes the color of the node. The origin 

node is green, the destination node is red and all the nodes where flow is 

passing through are yellow;

• PositionTransformer: returns the TrafficNode, which contains the node 

coordinates;

• TrafficLinkStrokeTransformer: shows a dash line for links that do not have

any flow passing through for the selected FlowGeneratorNode, a dotted 

line otherwise.
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Various examples of visualized networks are shown in Appendix C.

4.4 The ACS-TA algorithm design and implementation

The algorithm implementation is done by the class AntColonySolver. For the 

initialization, it needs a TrafficModel and a ParameterParser, that contains all the

settings, sub-algorithms to be used and algorithm parameters. Using this data it 

creates an AntColonyLoader for each FlowGeneratorNode in the model, 

assigning a different seed obtained by the seeds file or, if not available, 

generating a new one and adding it to the file. The AntColonyLoader contains an 

AntColony, which is the core of the algorithm; it contains all the data necessary 

for the pheromone release, the flow distribution, and all the selected sub-

algorithms used by ACS-TA (a more detailed description is given in Chapter 

4.4.1).

To avoid too much overhead during the algorithm parallel execution, with the 

creation of too many threads, and to have the possibility to share information 

among flows that have the same Origin / Destination, all the colonies with the 

same O/D are grouped in containers called SerialAntColonyExecutor. The 

AntColonySolver initialization also selects a stop condition and a ρ update (see 

Chapter 3.4.5 and 3.4.6), using two classes called StopConditionFactory and 

RhoUpdaterFactory. They read the information contained in the 

ParameterParser and respectively generate a StopCondition and a RhoUpdater.

After the initialization, the AntColonySolver runs the algorithm execution 

procedure, which does the following operations:

• runs all the SerialAntColonyExecutor on different threads and wait that all 
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Fig. 4.2: Class diagram for ACS-TA algorithm
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the ants on every colony release the pheromone;

• for each AntColony assigns the flow by running on different threads a 

FlowDistributionSolver returned by each AntColony (see Chapter 4.4.4); 

• updates the value of ρ , which will be eventually used for the next flow 

assignment (see Chapter 4.4.5);

• checks if the stop conditions are met. If not, it starts again with the 

pheromone distribution (see Chapter 4.4.6).

4.4.1     The ant colony

The flow and pheromone distribution for a single Origin / Destination / Category 

combination is implemented by the AntColony class. The data used by the 

algorithm, such as the pheromone on links and the released pheromone, are all 

contained in a class called AntColonyData, which uses the network model sorted 

list as index to retrieve the correct value for each link. There is also a mechanism 

that tries to retrieve the data on files if not already in memory. Using this method,

every AntColony can read the data at the beginning of the pheromone distribution

and releases the occupied memory after the completion, saving everything in a 

file, at the cost of a loss of performance for the read/write overhead time. Instead 

of keeping the data for every AntColony in memory, only the instance under 

execution will occupy memory, using a very low amount of it. During the 

AntColony initialization, there is also the selection of the sub-algorithms, based 

on the passed parameters, that will be used during the pheromone distribution 

and the flow assignment:

• Ant: it is the interface used to determine the amount of released 

pheromone (chapter 3.4.3)
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Routine 4.2: Pheromone distribution

 1        for each ant do
 2            reset ant to origin node
 3            while ant not on destination node do
 4                try to move the ant to the next node using a link chooser
 5                if ant is blocked then
 6                    increment block counter
 7                    if total block counter reach max value then
 8                        exit the program with an error
 9                        break
 10                    end if
 11                    if block counter reach max value then
 12                        apply bias to link chooser
 13                        reset block counter
 14                        reset ant to origin node
 15                    end if
 16                end if
 17            end while
 18            ant release the pheromone on links used to reach the destination
 19        end for
 20        evaporate pheromone on links

•  TrafficLinkChooser: it is the interface used to determine what link 

chooses an ant from the node he is staying ( Chapter 3.4.2)

• FlowDistributionSolver: it is the interface used to determine how the flow 

distributes using the pheromone on the links ( Chapter 3.4.3)

To avoid unnecessary memory consumption, only one Ant is kept in memory for 

each AntColony, since no parallel computing is done on the ants, and it is always 

reset to beginning when it reaches the destination. Finally, all the initialization 

operations needed for the ACS-TA algorithm explained in Chapter 3.4.1, are 

completed in the AntColony initialization.

After the initialization, the AntColony provides the methods to run a pheromone 

distribution (see “Routine 5.2”) and the flow assignment (see Chapter 4.4.4).
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4.4.2     Pheromone release

The pheromone release sub-algorithm is done through the implementation of the 

Ant interface, returned by an AntFactory, which uses the settings in 

ParameterParser to determine which implementation has to be returned. The 

category is also needed to apply the correct added cost to the path if the ant goes 

through a limited access link. The possible Ant implementations are the 

following:

• AntDue: implements the deterministic user equilibrium, as in 

equation (36);

• AntProbit: it adds perception error to the cost in an AntDue 

implementation, as in equation (37);

• AntLogit: implements the Logit stochastic user equilibrium, as in 

equation (38).

• AntLogitNormalized: implements the Logit stochastic user equilibrium 

with normalized cost, as in equation (38b).

4.4.3     Link choosing

The ants link choosing sub-algorithm is done through the implementation of the 

TrafficLinkChooser interface, returned by a TrafficLinkChooserFactory, which 

uses the settings in ParameterParser, to determine which implementation has to 

be returned. The possible TrafficLinkChooser implementations are the following:

• StandardTrafficLinkChooser: it is the basic implementation, that randomly

chooses one of the links going out the node where the ant stays. It uses a 

probability table, calculated at the beginning of an iteration and used by 



72 Design and implementation

all the ants in equation (26);

• PheromoneGaussTrafficLinkChooser: extends the basic implementation, 

but instead of using a probability table, calculates the probability to 

choose a link every time an ant moves, adding a perception error to the 

pheromone (27);

• BestBiasTrafficLinkChooser: extends the basic implementation, adding the

capability to increase the bias towards the links part of shortest path, when

ants get stuck too many times, as in (31) and (32);

• EfficientBiasTrafficLinkChooser: extends the previous implementation, 

but instead of using the shortest path, the links with the applied bias are 

those part of the efficient set, as in (33) and (34),.

• BlackListChooser: extends the basic implementation, but it does not use a 

probability table and, during the link choosing it, filters all the links that 

lead to a path in the blacklist or leads to a node already used by the ant 

(see Chapter 3.4.2);

• BestBiasBlackListChooser: extends the best bias algorithm, adding the 

blacklist functionality;

• EfficientBiasBlackListChooser: extends the efficient bias algorithm 

adding the blacklist functionality.

The three blacklist implementations are delegated1 to a helper class called 

BlackListChooserHelper, since the three classes already extend a flow chooser 

implementation and cannot have a common parent to implement the blacklist. 

The utility class contains a tree, in an object of type BlackListTree, with all the 

blocked paths. A path in the BlackListTree is composed by a set of 

1 Delegation pattern, see http://en.wikipedia.org/wiki/Delegation_pattern for reference

http://en.wikipedia.org/wiki/Delegation_pattern
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BlackListNode objects, which corresponds to a link of the network. Each 

origin/destination couple has a common BlackListTree, which means that 

different categories have a common tree. This is done to greatly reduce the 

memory occupation of the blacklist, assuming that most of the links will be 

accessible for every category. The blacklist is read and saved to file by the 

AntColonySolver using the utility class BlackListUtil. In the configuration file it 

is possible to select between keeping the tree in memory during all the algorithm 

execution, or to save to file, when not used, to free as much memory as possible. 

To avoid using all the memory during the software execution, there is a minimum

value of memory that needs to be available when adding a new path. At the end 

of the algorithm execution, the tree is always saved to a file.

The root node of the blacklist always exists and corresponds to the link 

connecting the FlowGeneratorNode to the origin node. To allow the filtering of 

links, every time an ant moves on a link of the network, it also moves on the 

blacklist tree, but only if the next node exists in the tree. When the links going 

out a node are selected, two conditions need to be met:

• the link does not lead to a node already used by the ant;

• if the next child node (associated to the link) of the blacklist tree exists, it 

is not a leaf.

When an ant blocks, the path is added to the blacklist tree only if there are not 

links going out the node that are not accessible by the current AntColony 

category, and are accessible by any other vehicle category. When adding a path to

the blacklist tree, it is also checked if the previous node does not have all the 

possible out links filtered. In that case, all the leafs are deleted and the node 

become a new leaf. In Figure 5.3 it is possible to see a trial network with the 

corresponding blacklist tree. To decrease the computation time the blacklist is 

used only during the first iteration, because most of the ant blocks are 
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concentrated here. Starting from the second it is used the parent chooser1.

1 EfficientBiasTrafficLinkChooser instead of EfficientBiasBlackListChooser, BestBiasTrafficLinkChooser

instead of BestBiasBlackListChooser and StandardTrafficLinkChooser instead of BlackListChooser.

Fig 4.3: A network where origin is in node 1 and destination in node 9. Below there is 
the blacklist tree obtained from it. In red are the links connecting the removed nodes 
during the blacklist tree execution.
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4.4.4    Flow assignment

The flow distribution sub-algorithm is done through the implementation of the 

FlowDistributionSolver interface, returned by an FlowDistributionFactory, 

which uses the settings in ParameterParser to determine which implementation 

has to be returned. The possible FlowDistributionSolver implementations (see 

chapter 3.4.4) are the following:

• PheromoneDistribution: assigns the flow using the distributed pheromone 

on the links, uses the equation (43);

• RoutesTreeDistribution: assigns the flow enumerating all the paths, uses 

the equation (44);

• Ant distribution: use ants to distribute the flow using the equations shown 

in (45) and (46).

4.4.5    Rho value update

The rho update sub-algorithm is done through the implementation of the 

RhoUpdater interface, returned by a RhoUpdaterFactory, which uses the settings 

in ParameterParser to determine what implementation return. The possible 

RhoUpdater implementations are the following:

• CostIntegralAvgRhoUpdater: implements the rho update if the cost 

integral average change below a set threshold in the last iterations as in 

equation (48);

• NoRhoUpdate: the value of rho remains always the same.
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4.4.6    Stop condition

The stop condition sub-algorithm is done through the implementation of the 

StopCondition interface, returned by a StopConditionFactory, which uses the 

settings in ParameterParser to determine which implementation has to be 

returned. The possible StopCondition implementations are the following:

• CounterCondition: stops if the iteration number reach a certain value 

specified in the parameters.

• CostVarianceCondition: stops if the flow variance is below a threshold 

specified in the parameters (51).

• FlowVarianceCondition: stops if the flow variance is below a threshold 

specified in the parameters (54).

During the stop condition, there is always a check that the current iteration 

number is between a configured minimum and maximum using the 

CounterCondition. After that, another condition can be selected using the 

parameter file. If the iteration number condition is the only one needed, an 

implementation called NoStopCondition is used for the second check.

4.4.7    Data log and final results save

The log of all the data is done by two classes: 

• Logger: implements the basic methods to format into strings and save to 

file;

• ModelLogger: logs the data during the ACS-TA algorithm execution.

Both of them use some parameters taken from the ParameterParser, such as the 

label to apply to the file names. During the initialization, AntColonySolver, every 
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AntColony and every sub-routine register to the logger, indicating the events 

that will be launched (i.e. pheromone update, cost update,...), the format to 

use to save the data regarding the event, the file name and, if present, the 

AntColony lunching the event. During the registration the Logger enables 

Fig. 4.4: Class diagram for the data loggers
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only the events selected in the file “logEvents.txt” file and check that the 

requiring colony Origin / Destination / Category combination is in the 

“authorizedFlows.txt” file. Finally, during the execution, events are launched

and the data associated to these events is passed to the logger, which 

proceeds to log to file only if the event was enabled during the registration.



Chapter 5

Simulations and results

In this chapter we present the experiments worked out to evaluate the ACS-TA 

algorithm and the implemented software. The experiments were worked out on a 

system with 48 AMD cores with 64bit technology and a working frequency of 

2300MHz. We used 40 parallel threads during the elaboration, and a maximum of

13GB of memory. The Java Virtual Machine was version 1.7.

5.1     Networks overview

Five different transportation network have been chosen to run simulations. Some 

of the physical and functional characteristics are shown in table 5.1, and the 

networks topology is shown in Appendix B. Here is a short description for each 

of them:

• Non Separable Costs: it is a very simple trial network with 28 links, 

which 7 of them use a type 3 non separable cost functions. There is only 

one vehicle category and no restricted traffic zones or tolls;

• Sioux-falls: a well-known test network first introduced by LeBlanc in his 

PhD thesis in 1975 [58], it is still used to test traffic assignment 
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Table 5.1    Physical and functional characteristics of the networks used in the 
experimental validation.

Cost Function
Type

#Links #Nodes # O/D/Cs Demand
[vehicles]

Non Separable Costs
Sioux Falls
Area Maggi (Milan, Italy)
Extra urban Naples (Italy)
Area Bastioni (Milan, Italy)

3
3
3
2
3

28
76
273

1363
3919

12
24

189
994
1779

8
24

332
772

17448

23,000
360,600

~ 40,000
~ 45,800
~ 46,500

algorithms. For this network, the demand is given, the optimal objective 

function value (that is the average vehicular cost at equilibrium) is known 

to be 42.31 minutes;

• Area Maggi: it is a quite large area in the southern part of Milan. The 

demand used is that of the morning peak hour (8:00-9:00am); it is 

characterized by a limited number of paths and by a high number of O/D 

couples (332), with only one vehicle category and no limited traffic zones.

• Extra Urban Naples: represents the very large area of the extra-urban 

network of Naples (with 1363 links); this network was the subject of an 

Italian national PRIN grant project named “Road transport systems in the 

information society: monitoring, simulation and preparation of dynamic 

information databases” [59] which produced and studied the demand for 

each day in the course of a year; also in these experiments we used the 

demand of a typical weekday at 8 a.m. 

• Bastioni: a very large central area of Milan. The demand used is that of 

the morning peak hour (8:00-9:00am); it is characterized by a very 

complex road network with a huge number of O/Ds. There are 4 different 

vehicle categories1, restricted traffic zones to different subsets of vehicle 

categories and limited traffic zones where tolls are applied.

1 Vehicle categories: car, motorbike, light, heavy
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5.2     ACS-TA algorithm performance analysis

The first set of experiments were conducted to evaluate the performance of the 

different ant link choosing policies. The policies without bias where not 

considered, because on complex networks ants could not reach the destination 

even after 10000 tries, and the algorithm can't obtain convergence. The blacklist 

was pre-populated with the paths that blocked the first 1000 ants in the networks,

and then different experiments were run to test the bias applied on the efficient or

best route links, with or without the use of a blacklist. Only the deterministic case

was considered, using 100 ants and the pheromone trail decay coefficient ρ was 

kept fixed to 0.8. During all the experiments, the value of the decay coefficient 

for the total released pheromone ρ̌ was maintained to 1. For the stop condition, 

we considered the flow variance in the last 10 iterations, and blocked only when 

the value of ε was below 0.1. If the number of iterations is 1001, it means that 

after 1000 iterations the convergence was not yet achieved. The quality of the 

solution is measured using the using the total time spent by the vehicles in the 

network [veh*min].

The results are shown in Table 5.2.  As we can see, the effectiveness of the 

various link choose methods are very dependent on the network size. On small 

networks, like the non separable cost, both the usage of blacklist and bias on 

efficient links makes harder to converge. This can be explained as more paths are

used by ants, leading to more flow variations on the links. On medium sized 

networks like Area Maggi and Sioux-Falls, both using a blacklist or a bias on 

efficient links performs better than using a bias on the fastest route. This is 

possible because many paths that lead to ant blocks are filtered and mostly good 

paths are chosen. Having paths filtered has the consequence of needing less bias 

to reach the destination, which leads to a better exploration of paths with more 
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Table 5.2    Performance analysis of different link choosers

Bias on links & 
blacklist

#Iterations Time to
converge[s]

Total time
spent

in the network
[veh*min]

#blocks

Non Separable Costs best
efficient

best+blacklist
efficient+blacklist

130
1001
1001
1001

0.6
2.9
2.6
2.7

1,893,044
1,889,256 
1,890,257 
1,897,329 

32,516
225,373
160,037
159,180 

Sioux Falls best
efficient

best+blacklist
efficient+blacklist

14
13
13
13

3.7
3.5
3.3
3.9

274,397 
269,960
268,935 
269,019 

122,087
122,364
123,772
122,896

Area Maggi (Milan, Italy) best
efficient

best+blacklist
efficient+blacklist

60
15
23
27

13.8
15.1
9.7
11.7

311,468 
309,403 
309,362 
307,281 

2,263,747
988,652
861,422
952,242

Extra urban Naples (Italy) best
efficient

best+blacklist
efficient+blacklist

1001
1001
1001
1001

142.2
174.0
141.2
181.6

359,802 
359,881 
359,843 
360,124 

152,214
151,839
150,525
150,939

ant blocks as side effect. The final effect is a convergence using less iterations 

and less time, finding a better solution. On big networks like Naples, the added 

computation time for finding the efficient links becomes noticeable, while no 

benefits are given for the convergence. The blacklist fails to decrease the 

computation time, because the number of possible routes is too much to have a 

noticeable reduction of ant blocks, although a reduction is present. Considering 

that the blacklist is easily saved and reused, it should be possible to increase the 

blacklist performance by doing many more iterations to populate it.

Next set of experiments were conducted to evaluate the effects of three different 

parameters on the number of iterations needed to converge, the amount of time to

converge and the quality of the solution measured. The evaluated parameters are 

the following:
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• Ant number: varied between 100 and 1000;

• Pheromone trail decay coefficient ρ : varied between 0.1 and 0.8

• Traffic assignment model: tested using DUE and SUE Logit with 

normalized costs. In the case of SUE Logit, standard deviation of their 

probability density function distributions θ value was varied between 1 

and 100.

For the stop condition, we considered the flow variance in the last 10 iterations, 

and blocked only when the value of ε was below 0.1. The link choosing policy 

was the bias on the best route without a blacklist. The results of the experiments 

are shown in Table 5.3.  If the cost integral is not present, it means that the value 

of released pheromone was too low and was approximated to 0, making 

impossible to distribute the flow. The number of ants has an impact on two 

aspects, the accuracy of the final solution and the time needed to escape local 

minima. While the latter might be obvious, the former comes from the 

Montecarlo interpretation of the ACS-TA algorithm: each ant is a sample from 

the final flow distribution and thus the more the ants, the more accurate the 

sample-based estimate of the true flow. The evaporation coefficient ρ

significantly affects the convergence of the algorithm: the higher the ρ  

coefficient, the faster is the convergence. This calls for an accurate setting of this 

parameter since high values of ρ might induce premature convergence or prevent,

due to oscillations, the final convergence to the true value of flow. This usually 

happens with a value of ρ that is too low. The parameter θ deserves some 

discussion as well. In SUE assignments, it represents the user uncertainty in cost 

perception and thus, the higher its value, the less deterministic the user choice. A 

too low value of θ prevents early convergence, but having a too much low value 

has proven to give numerical instability. That is because of too few pheromone 
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Table 5.3    Flow variance convergence over different networks
Non Separable

Costs
Sioux Falls Area Maggi Naples

Ants θ ρ #iter

Total time
spent
in the

network
[veh*min]

#iter

Total time
spent
in the

network
[veh*min]

#iter

Total time
spent
in the

network
[veh*min]

#iter

Total time
spent

in the network
[veh*min]

SUE
Logit

100
100
100

1
10

100

0.1

1
1

1001

-
-

2,309,759

1
577
22

-
268,677
305,837

1
1

1001

-
-

325,764

1001
1001
1001

354,689
354,807
356,397

1000
1000
1000

1
10

100

1
1

1001

-
-

2,281,969

1
187
26

-
269,284
305,773

1
1

71

-
-

302,586

1001
1001
1001

354,746
354,784
354,957

DUE 100
1000

-
-

1001
1001

1,895,234
1,856,982

30
15

295,671
295,365

459
42

310,282
313,933

1001
1001

358,503
355,171

SUE
Logit

100
100
100

1
10

100

0.4

1
1

1001

-
-

8,525,308

1
79
15

-
267,942
295,261

1
1

1001

-
-

315,669

1001
1001
1001

354,746
354,805
356,584

1000
1000
1000

1
10

100

1
1

1001

-
-

2,657,262

1
37
17

-
269,792
290,282

1
1

142

-
-

301,407

1001
1001
1001

354,717
354,783
354,974

DUE 100
1000

-
-

1001
1001

1,893,628
1,856,577

15
15

279,552
275,097

863
48

312,235
309,741

1001
1001

359,109
355,353

SUE
Logit

100
100
100

1
10

100

0.8

1
1

1001

-
-

3,858,955

1
17
14

-
268,487
286,012

1
1

1001

-
-

304,451

1001
1001
1001

354,717
354,807
356,180

1000
1000
1000

1
10

100

1
1

1001

-
-

2,522,362

1
21
14

-
267,115
281,110

1
1001
59

-
805,986
300,043

1001
1001
1001

354,751
354,783
354,959

DUE 100
1000

-
-

130
37

1,893,044
1,861,989

13
13

274,276
270,178

60
49

311,468
309,045

1001
1001

359,802
355,370

released, which usually end up approximating the released pheromone to 0 and 

prevent the flow distribution.

In the next experiment, a varying ρ was used to address the convergence and the 

accuracy problem of having a high ρ . The more the cost integral converges, the 

more the value of ρ decreases to have a better precision and reduce oscillations. 

The experiments where conducted using 100 and 1000 ants, DUE traffic 

assignment model, a starting ρ  of 0.8, that is halved every time the update 

conditions explained in equation (48) are met, until it reaches the value of 0.01. 
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Table 5.4    Convergence analysis using variable ρ
Non Separable Costs Sioux Falls Area Maggi Naples

Ants d ρ #iter
Total time spent
in the network

[veh*min]
#iter

Total time spent
in the network

[veh*min]
#iter

Total time spent
in the network

[veh*min]
#iter

Total time spent
in the network

[veh*min]

100
100
100

0.1
0.005
0.001

0.8

1001
1001
1001

1,893,413
1,891,877
1,890,401

13
13
13

274,737
274,465
274,882

1001
1001
721

313,014
312,938
313,413

1001
1001
1001

358,367
358,207
358,910

1000
1000
1000

0.1
0.005
0.001

83
33
37

1,863,055
1,866,123
1,861,989

13
13
13

270,340
270,047
270,170

28
37
49

309,912
309,338
309,045

1001
1001
1001

355,311
355,245
355,278

The d value of equation (48) was varied between 0.1 and 0.001, while the 

average windows was kept to 10. The final results are visible in Table 5.4.

From the table we can see that a varying ρ helps in reducing the number of 

iterations needed to have convergence only in some scenarios, like in Area 

Maggi, using 1000 ants. If a lesser ants are used, a decreasing ρ makes 

convergence more difficult to reach. Analyzing how the ρ decrease, we saw that 

its value started to decrease too soon, when the convergence was still distant. To 

resolve this problem, a lower d should be used. Varying ρ  also does not affect the

convergence when it is reached after a low number of iterations. Experiments 

show also that, using 1000 ants, a too high value of d is like using a fixed ρ , 

because its value is decreased only when the algorithm is too near the 

convergence.

During the last experiments, it was clear that a convergence using the flow 

variance is not effective in finding a good solution. The first cause is the early 

convergence on networks like Sioux-Falls. The second cause is the missing 

convergence on bigger networks or networks with non separable costs, where the

variations on flows are usually higher. To find a better convergence, a new run of 

simulations was done for one SUE and DUE scenario. This time, the 
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Table 5.5    A-posterior convergence analysis
Non Separable Costs Sioux Falls Area Maggi Naples

Ants θ ρ #iter Total time spent
in the network

[veh*min]

#iter Total time spent
in the network

[veh*min]

#iter Total time spent
in the network

[veh*min]

#iter Total time spent
in the network

[veh*min]

SUE 1000 100
0.8

1001 2,522,361 961 264,701 110 300,063 106 367,670

DUE 1000 100 1001 1,856,625 497 264,405 89 308,842 110  355,198 

convergence analysis was conducted a-posterior over 1000 iterations and the 

convergence is reached when the 90% of flows are less then 1% from the flow at 

the end of the 1000 iterations. Table 5.5 shows the obtained the results. With the 

new convergence system, we obtained an effective convergence on all the 

Networks with separable cost links. Using this convergence, we can do a 

performance comparison between ACS-TA and the CUBE5 Voyager [46] 

commercial software. This commercial software can develop a deterministic 

multi-class equilibrium assignment and it is very commonly used especially in 

public administrations for transport network analysis and planning. For 

comparison we have considered the best configuration (in the sense of number of

iterations and time to convergence) for ACS-TA in a DUE assignment of the 

Naples network: number of ants equal to 1000, θ=100 and ρ=0.8 ; the criteria of

convergence are the same as presented in the previous section. Table 5.6 reports 

the main indexes of performance. The number of iterations of ACS-TA is twice 

the number of iterations of CUBE, but the quality of the final equilibrium is 

better. Unfortunately, we could not carry out a performance comparison for SUE 

assignments where ACS-TA should be much more effective with respect to other 

algorithms being CUBE suitable only for DUE assignment.

Finally, an experiment was done on the most complex network, Bastioni. The 

tested scenario was a SUE using 1000 ants, θ=100 and ρ=0.8 . In this network 

the second convergence criteria was met in 1071 minutes, after 687 iterations, 
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Table 5.6    Performance comparison between ACS-TA and CUBE-Voyager
Iterations Time to

convergence
(s)

Total time spent in the network
[veh]*min

CUBE-Voyager 50 9 390,901

DUE 110 64.9 355,198 

with a final total time spent in the network of 601,731 veh*min.
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Fig 5.1: Bastioni network (SUE-Logit assignment,1000 ants, θ=100 and ρ=0.8 ). These
plots are representative of the results obtained. The figures show the link flow and the 
link cost of the six highest flow links (top left and top right respectively in the figure), 
the total cost (cost integral in 107 minutes, bottom left) and, the second criteria plot. In 
brackets is reported the number of iterations at convergence.
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Fig 5.2: Napoli network (DUE assignment,1000 ants and ρ=0.8 ). These plots are 
representative of the results obtained. The figures show the link flow and the link cost of
the six highest flow links (top left and top right respectively in the figure), the total cost 
(cost integral in 107 minutes, bottom left) and, the second criteria plot. In brackets is 
reported the number of iterations at convergence.
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Fig 5.3: Maggi network (DUE assignment,1000 ants and ρ=0.8 ). These plots are 
representative of the results obtained. The figures show the link flow and the link cost of
the six highest flow links (top left and top right respectively in the figure), the total cost 
(cost integral in 107 minutes, bottom left) and, the second criteria plot. In brackets is 
reported the number of iterations at convergence.
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Fig 5.4: Sioux network (SUE-Logit assignment,1000 ants, θ=100 and ρ=0.8 ). These 
plots are representative of the results obtained. The figures show the link flow and the 
link cost of the six highest flow links (top left and top right respectively in the figure), 
the total cost (cost integral in 107 minutes, bottom left) and, the second criteria plot. In 
brackets is reported the number of iterations at convergence.
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5.3     Memory management

Another aspect that was considered during the experiments, that can be critical 

on bigger networks, is memory consumption. In Figure 5.1 it is shown the 

memory consumption during the algorithm execution on Bastioni, taken with a 

profiling software called VisualVM1. The memory consumption proved to be 

stable, without any memory leaks during the execution. It is present a fixed 

amount of occupied memory, around 3.4GB. This is not surprising, because in 

the case of 8 byte primitives, every information on links regarding a O/D/C 

combination will take 3919⋅17448⋅8=547,029,696 bytes of memory. That means 

that only keeping in memory the flow, the list of permitted O/D/C that can access

a link, pheromone present on links and released pheromone on links, will 

consume 2,188,118,784 bytes. The remaining amount is used for indexes, class 

addressing and other model data like identification numbers or link costs. It 

would be possible, at the cost some performance loss, to save the pheromone on 

file, freeing another 1,094,059,392 bytes of memory. The rest of the used 

memory show in Figure 5.1, is used during the algorithm execution for temporary

data that is frequently garbage collected. The amount of this memory is 

1 See http://visualvm.java.net/

Fig 5.5: Memory usage during software execution on Bastioni network
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maximum 2GB and was fixed using JVM parameters (see Appendix A, “Java 

Virtual Machine parameters” for more details).





Chapter 6

Conclusions and future work

At the end of this work, we can affirm that we successfully designed and 

implemented the ACS-TA algorithm, an extended version of Ant Colony System, 

to solve DUE and SUE traffic assignment problems. ACS-TA is particularly 

versatile and suitable for application in many real cases without assuming 

simplifying hypotheses on cost functions. Differently from classical traffic 

assignment algorithms, the applicability of ACS-TA does not depend on the 

shape of the objective function and hence the particular cases of non-separable 

cost link function and multi-class demand can also be tackled easily and 

successfully. Moreover, the user choice model is implicitly defined through the 

definition of a suitable pheromone update formula. Different models, ranging 

from the classical Logit to more sophisticated ones that use perception error, 

could be defined by changing this updating formula. Applications to real 

networks show a computation time that is short enough, with respect to 

traditional approaches, for converging also in complex networks cases. 

The impact of pheromone decay was also analyzed and we can suggest that its 

effects depend strongly on network structure and on cost functions. Generally, we

expect that by increasing the value of ρ oscillations increase, but this holds true 

only if the feasible set of possible paths is wide. For the SUE model, the 

choosing of a good value of θ  is critical, as the performance becomes better as 
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the value decrease, but with a too low value the released pheromone are too few 

and close to 0. 

Usually a few iterations are sufficient for the algorithm to converge, also in 

complex networks, and probably a better tuning of parameters could reduce the 

number of iterations even more. Particularly, using a varying ρ and a populated 

blacklist can decrease the convergence time. The impact of standard deviation in 

cost perception distribution has been investigated and the results show how the 

stochastic nature of ACS can solve SUE faster than DUE problems. 

More research is required to investigate convergence mechanisms, especially 

when the existence and uniqueness of convergence cannot be theoretically 

demonstrated. A future step of this research will be the application of ACS-TA to 

the study of very large networks (that is, ones with more than 40,000 links) to 

test all the above-mentioned features and evaluate the time reduction obtainable 

by parallel implementation. On very large networks, memory consumption 

becomes a critical aspect. This issue was already partially taken into 

consideration in this work, with the possibility to save data on disk. This feature 

was not used in these experiments because memory size was sufficient to contain

all the data.

A future possible works on the software is to rewrite the algorithm in a faster 

language, like c or c++, to increase the computation speed and reduce memory 

consumption. To easily implement the network data visualization, it should be 

relatively simple to save the network final state on disk. A software designed in a 

high level language, like Java using Jung library, should be able to visualize the 

network and provide tools to easily access all the useful data, which for now is 

only saved on files. Using files is convenient for small to medium networks, but 

for very huge networks having the possibility to easily select the interesting data 

becomes a critical aspect. Finally, it is possible to increase parallelization, by 
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implementing a client/server architecture with a centralized software that assigns 

work to multiple clients in a network.





Appendix A

Software use manual

This manual explains how the software need to be configured to run all the 

simulations used in the thesis, and the configurations needed to run it on any 

network.

General definitions

Here are the definitions that will be used in the manual:

A set of links of the network
N set of nodes of the network
n i∈N node in the network
a i , j∈A link that connects two nodes ni  and n j

Ai set of links that go out node ni

f i , j(t) flow on a link at time t
c i , j( f , t) cost to travel through a link with flow f  at time t
Capi , j capacity of link ai , j

F all the possible paths between an Origin/Destination couple
F *
∈F all the path between an Origin/Destination couple choose by ants

F min
* path with less cost between an Origin/Destination couple

F n
* path choose by an ant

M total number of ants
M i , j number of ants that go through link a i , j
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Requirements

 The software needs the following files and directories to work correctly:

AntColonyFlowAssignment.jar
<network_directory>/parameters_ant.txt
<network_directory>/seeds.txt
<network_directory>/arcs.txt
<network_directory>/nodes.txt
<network_directory>/OD.txt
<network_directory>/logs/logEvents.txt
<network_directory>/logs/authorizedFlows.txt
<network_directory>/tmp/

After having installed Java (the tested version are JRE 1.6 and JRE 1.7), with the

software compiled into the jar file, it is possible to start the elaboration with the 

command:

java -jar AntColonyFlowAssignment.jar [-network {path to network
directory}] [-noresolve] [-parameters {path to file with 
parameters}] [-nogui] [-flow {O} {D} {C}] [-p {parameterName} 
{parameterValue}]*

The parameters used have the following meaning:

• network: indicates the path to the folder where are stored the files of the 
network;

• noresolve: creates the network model without any flow assignment;

• parameter: indicates the path/filename containing the network 
parameters. If not specified, it uses a default value “parameters_ant.txt” in 
the folder indicated in the network parameter;

• nogui: disables the network visualization at the end of the flow 
assignment;

• flow: indicates the origin/destination/category combination that is 
visualized on the network at the end of the elaboration. Link colors have a 
gradation ranging from blue, when no flow is using the link, to red, when 
all the flow is going through the link. The origin and destination node will 
be respectively green and red;
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• p: adds the specified parameter, eventually overwriting the parameter 
written in the parameters file. Multiple parameters can be specified.

Data log during execution

The file log/logEvents.txt contains various events where data is saved to file, 

while log/authorizedFlows.txt contains the flow that we want to be logged. The 

possible events are described in chapter 4.1.2.

Settings and parameters

All the parameters are defined in the file parameters_ant.txt, divided into various

subsections. A parameter name is always preceded by “-”, the next line contains 

the value of the parameter. Every line that does not respect this convention is 

considered a comment. In the parentheses are indicated the default values, used 

when the parameter is not defined in the file.

Basic Parameters

• Seed_file (seeds.txt): file name containing the seeds used for the 
generation of casual values;

• OD_File (OD.txt): file name containing the O/D/C combinations and flow
generated by them. If a flow value is 0 or less, it will be ignored;

• Nodes_File (nodes.txt): file name containing the nodes and their position;
• Coordinates_divisor (100): the value used to divide the nodes position 

coordinates. Used to correctly show the network in the graphic 
visualization;

• Coordinates_add_x (0): added value to the coordinate X, to correctly 
show the network in the graphic visualization;

• Coordinates_add_y (0): added value to the coordinate Y, to correctly 
show the network in the graphic visualization;

• Thread_number (4): number of threads to use during parallel 
computation;

• Thread_timeout (1000): maximum execution time, in seconds, after 
which a thread is considered to be in an endless loop and the software 
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return an error;
• Add_date_to_log (true): if 'true', adds the date to the log file names, to 

avoid overwriting different tests;
• Use_decimal_formatter (false): if 'true', uses the exponential format to 

visualize long values in the logs;
• Label: if present, puts the label before the log file name. Useful to 

differentiate a set of test runs on a batch;
• Arcs_File (arcs.txt): file name containing the arcs and their parameters;
• Arcs_Type (3): type of cost functions used for the arcs, described in 

chapter 4.2.1;
• Save_pheromone_on_file (false): if 'true', at each iteration after the 

calculation of how much pheromone are released by an ant colony, the 
values are saved to disk and the memory is released to have enough of it 
for the next elaboration. At the next iteration, the pheromone will be read 
from file. Useful for huge networks on systems that does not have enough 
memory to contain all the data. If the value is false, the pheromone are 
always kept in memory to have a faster execution time;

• Save_total_pheromone_on_file (false): as the parameter before, but for 
the total released pheromone;

• Low_memory_blacklist (true): if 'true', at each iteration after the 
calculation of how much pheromone are released by an ant colony, the 
blacklist is saved on disk and the memory released to have enough for the 
next elaboration.

Network optimization

The network optimization, described in 3.4.7, can work really well on networks 

like Maggi, to reduce the number of possible routes. It is important to run again 

the algorithm if an O/D/C combination is added or removed, or if any link is 

added or removed. Not doing it, can lead to a wrong solution calculation, because

the ants ignore links that could be used.

• Use_optimization (true): if 'true', applies the network optimization 
explained in chapter 3.4.7;

• Recalculate_flow (false): recalculates the flow even if there is already a 
file containing a previous calculation;

• Flow_File (link_flow.txt): file name containing which colonies can use 
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each link, created after the optimization algorithm.

Network initialization

The parameters listed here are used during the network initialization, described in

chapter 3.4.1.

• Initial_flow_modifier (1.0): value of Constf  used to calculate the cost of 
the fastest path:

• Ant_type (Due): used for the pheromone initialization on the links. Can 
assume the following values:

◦ Due:

τ i , j (0) = Const1⋅
1

C min

∀ i , j : ai , j∈A

◦ Due_2:

 τ i , j (0) = Const1⋅
1

C min
2
(0)

∀i , j : a i , j∈A

◦ Due_3:

τ i , j (0) = Const1⋅
1

C min
3
(0)

∀i , j : a i , j∈A

◦ Probi:

τ i , j (0)=Const1
1

max (0.1 , Const2⋅N (0,σ )⋅C min(0))
∀ i , j :a i , j∈A

◦ Logit:

τ i , j(0) = Const1⋅e
(−C min(0) / θ)

∀ i , j : ai , j∈A

◦ LogitNormalized:
τ i , j (0) = Const1 ∀ i , j : a i , j∈A

• Initial_flow_modifier (1.0): value of Constf;

Cmin(0) = ∑ ci , j(Capi , j⋅Const f , 0) ∀ ci , j∈F min
*
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• Initial_pheromone_modifier (1.0): value of Const1;
• Probit_aleatory_width (0.1): value of Const2;
• Probit_sigma (1.0):  value of σ;
• Theta (10): value of θ.

Path choosing

The parameters listed here are used during the path choosing, described in 

chapter 3.4.2.

• Chooser_type (Standard):

◦ Standard: basic path choosing algorithm (26)
◦ PheromoneGaussWithBias: standard with perception error on 

pheromone as in (27);
◦ CostGaussWithBias: standard with perception error on link cost
◦ BestBias: bias on fastest path as in (31) and (32);
◦ EfficientBias: bias on efficient links as in (33) and (34);
◦ BlackList: standard algorithm using blacklist;
◦ BestBiasBlackList: bias on the best route using blacklist;
◦ EfficientBlackList: bias on efficient links using blacklist;

• Bias_value (2):  value of Const1, which is the bias to add in BestBias and 
EfficientBias algorithms;

• Aleatory_width (0.1): value of σ2 , the Gaussian variance;
• Add_black_list_route (false): if 'false', no new paths will be added to the 

blacklist;
• Max_memory_usage_percent (50): new paths will be added only if the 

memory is at least this percentage free.
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Pheromone distribution

The parameters listed here are used during the pheromone distribution, described 

in chapter 3.4.3. 

• Ant_type (Due): 

◦ Due:

τ i , j , n(t) = {
1

Cn

∀i , j :a i , j∈F n
*

0 ∀i , j :a i , j∉F n
*
∧ a i , j∈A

◦ Due_2:

τ i , j , n(t) = {
1

Cn
2 ∀i , j :a i , j∈F n

*

0 ∀i , j :a i , j∉F n
*
∧ a i , j∈A

◦ Due_3:

τ i , j , n(t) = {
1

Cn
3
(t )

∀i , j : ai , j∈F n
*

0 ∀i , j : ai , j∉F n
*
∧ a i , j∈A

◦ Probit:

τ i , j , n(t)={
1

max(0.1,Const1⋅N (0,σ )⋅C n(t))
∀ i , j : ai , j∈F n

*

0 ∀ i , j : ai , j∉F n
*
∧ai , j∈A

◦ Logit:

τ i , j , n(t ) = {e
(−C

n
(t ) / θ)

∀ i , j :ai , j∈F n
*

0 ∀ i , j :ai , j∉F n
* ∧ a i , j∈A

◦ LogitNormalized

τ i , j , n(t ) = {e
(−C

n
(t )−C

min
/ θ)

∀ i , j :a i , j∈F n
*

0 ∀ i , j :a i , j∉F n
* ∧ ai , j∈A
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• Probit_aleatory_width (0.1): value of Const1 in Probit;
• Probit_sigma (1.0): value of σ;
• Theta (10): value of θ;

Pheromone evaporation

The parameters listed here are used during the pheromone evaporation, described

in chapter 3.4.3. 

• Evaporate_unused_link (false): if 'true', pheromone evaporates on every 
link as in (39), else the pheromone evaporates only on links used at least 
once by an ant in the current iteration as in (40);

• Rho (0.5): value of ρ∈(0,1] , the pheromone trail decay coefficient;
• Total_rho (1): value of ρ̌∈(0,1] , the trail decay coefficient of the total 

released pheromone. Giving it a value of 1, means that no memory is kept 
on the previous iteration pheromone values when assigning the new flow.

Flow assignment

The parameters listed here are used during the flow assignment, described in 

chapter 3.4.4. 

• Flow_chooser_type (PheromoneDistribution):
◦ PheromoneDistribution:  assigns the flow using the released 

pheromone as in (43);
◦ RoutesTreeDistribution: assigns the flow enumerating all the paths as 

in (44);
◦ AntDistribution: assigns the flow using ants as in (45) and (46)

• Flow_distribution_iterations (1000): value of ktot,, which is the number 
of ants used in AntDistribution;
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Rho update

The parameters listed here are used during the ρ update, described in chapter 

3.4.5. 

• Rho_updater_type (NoUpdate): 
◦ NoUpdate: the value of ρ remains always the same during the 

algorithm execution;
◦ CostIntegralAverage: the value of ρ varies if the cost integral does not

change much, as in (48);

• Average_length (10): the value of I;
• Average_distance (0.1): the value of d;
• Rho_division (2): the value of q;
• Rho_min (0.01): the value of ρmin

• Rho (0.5): the initial value of ρ ;

Stop condition

The parameters listed here are used during the stop condition, described in 

chapter 3.4.6. 

• Stop_type (optional): 
◦ CostVariance: uses the highest variance of the links cost to determine 

if stop, as in (51);
◦ FlowVariance: uses the highest variance of the flow in links to 

determine if stop, as in (54);

• Min_iteration (1000): minimum number of iterations, regardless of the 
selected Stop_type used;

• Max_iteration (1000): maximum number of iterations, regardless of the 
selected Stop_type used;

• Epsilon (0.01): value of ε used in variance check;
• Variance_length (20): value of K, the iterations number used in the 

variance calculation.
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Java Virtual Machine parameters

Using the right JVM parameters when lunching the software can have a huge 

impact on the application performance. To avoid dynamical memory assignment, 

which takes some time and blocks the application, it is better to assign the same 

value for the heap minimum and maximum value, using the parameters -Xms and

-Xmx. It is best to assign most of the available memory, leaving at least 1GB free 

for the operative system, to avoid frequent use of garbage collector, which can 

increase the computation time of the algorithm. 

Another important parameter is the heap dimension assigned to the “Young 

generation objects”. Every allocated object in java starts as a Young generation, 

and only if it survives to several garbage collections because it is addressed, it 

becomes a “Tenured Generation”. For efficiency reasons, only Young Generation 

objects are checked and released during the normal garbage collection. The ideal 

scenario is to have all the objects used by the model in the Tenured Generation, 

while the frequently used and deleted objects remain in the Young Generation to 

be released after the use. If the software try to promote Young Generation objects

into Tenured Generation and does not have enough memory, it will trigger a 

Global Garbage Collector, which blocks all the threads and executes for several 

seconds to remove unused objects in the Tenured Generation. Global Garbage 

Collector can severally increase the algorithm execution time, or completely 

block the program, if used too many times. To avoid this, it is important to assign

the right amount of memory for the Tenured Generation and Young Generation. It

is possible to choose the Young Generation heap space with the parameters 

-XX:NewSize and -XX:MaxNewSize. The memory usable by the Tenured 

Generation is the difference between the total allocated space and the Young 

Generation heap space. When running a new network, it is best to select the 

Tenured Generation heap space so that it is at least 20% more than the memory 
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used by the network model. To know how much memory is used, it is possible to 

run a Global Garbage Collector during the algorithm execution using a profiling 

software for Java, like VisualVM1, and check how much memory remains used 

after its execution. The default garbage collector used by java is the “Parallel 

garbage collector”, which is the most efficient when the software runs on multi-

core systems and generates lot of Young Generation object like in our case. For a 

better understanding of the Java garbage collection, it is possible to read the 

official documentation [43] and [44].

1 http://visualvm.java.net/





Appendix B

Class diagrams

Package it.polimi.traffic.model
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Package it.polimi.traffic.model.link
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Package it.polimi.traffic.model.node



114 Class diagrams

Package it.polimi.traffic.model.logger
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Package it.polimi.traffic.visualization
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Package it.polimi.traffic.parser
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Package it.polimi.traffic.solver – Part 1
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Package it.polimi.traffic.solver – Part 2



Class diagrams 119

Package it.polimi.traffic.solver.ant
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Package it.polimi.traffic.solver.chooser
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Package it.polimi.traffic.solver.chooser.blacklist
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Package it.polimi.traffic.solver.distribution
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Package it.polimi.traffic.solver.rhoupdater
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Package it.polimi.traffic.solver.stopcondition
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Tested networks images

Transportation network of area Bastioni in Milan
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Transportation network of area Maggi in Milan
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A detail of the same network, showing how part of the traffic flow takes a detour 

to avoid passing on a congested link with a high cost.
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Transportation network of Naples interurban area
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Transportation network of Sioux-falls
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“Not separable costs” trial network
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