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Abstract

The most important solution concept in game theory is the Nash equilibrium

(NE). However, this solution concept fails when agents can form coalition,

even in the case of two–agent games. Strong Nash equilibrium (SNE) is

an appealing solution concept that refines NE to capture such a case. An

SNE must simultaneously be a NE and the optimal solution of multiple non-

convex optimization problems. This makes even the derivation of necessary

and sufficient equilibrium constraints in a mathematical programming fash-

ion difficult. Moreover it is known that finding an SNE is a NP–complete

problem. In the first part of this work we study the properties of mixed–

strategy SNEs in bimatrix game, providing two main contributions. We

show that if there exists an SNE in a bimatrix game, then the payoffs of

the actions in the SNE support must lay on the same line in agents’ utilities

space. Furthermore, we show that finding an SNE is a problem in smoothed–

P, admitting a deterministic support-enumeration algorithm with smoothed

polynomial running time. In the second part of the work we derive different

sets of conditions for a strategy to be an SNE. We show that forcing an SNE

to be resilient only to pure strategy deviations by coalitions, unlike for NEs,

is only a necessary condition. We also show that the application of Karush–

Kuhn–Tucker (KKT) conditions leads to another set of necessary conditions

that are not sufficient. Finally we can show that forcing the Pareto efficiency

of a NE for each coalition with respect to coalition correlated–strategies is

sufficient but not necessary. In the end we develop a tree search algorithm

for SNE finding which, at each node, calls an oracle to suggest a candidate

SNE and then verifies the candidate. We show that our necessary conditions

can be leveraged to make the oracle more powerful. Experiments show that

the new conditions reduce search tree size compared to using NE conditions

alone, however it is necessary to use an incomplete nonlinear solver, which

affects the soundness and the completeness of the whole algorithm.
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Sommario

La ricerca degli equilibri di Nash (NE) è un problema di grande impor-

tanza nel campo dell’intelligenza artificiale. Tuttavia, il concetto di NE è

valido solo quando gli agenti non possono formare coalizioni. L’equilibrio di

Nash forte (SNE) estende il concetto di NE in modo da catturare proprio

queste situazioni. Uno SNE deve essere contemporaneamente un NE e la

soluzione di diversi problemi non convessi di ottimizazione. Questo rende

difficile derivare un insieme finito di vincoli necessari e sufficienti affinchè

una strategia sia uno SNE. Inoltre è noto che trovare uno SNE è un prob-

lema NP–completo. Nella prima parte di questo testo vengono studiate le

proprietà degli SNE e vengono forniti due contributi principali. Dapprima

viene mostrato che se esiste uno SNE in un gioco a due giocatori allora i

payoff delle azioni nel supporto dell’equilibrio devono essere allineati nello

spazio dell’utilità degli agenti. In secondo luogo viene mostrato che trovare

uno SNE in un gioco a due giocatori è un problema che ha classe di com-

plessità smoothed–P. Nella seconda parte di questa tesi vengono derivati

diversi insiemi di condizioni affinché una strategia sia uno SNE. Si dimostra

che è possibile ricavare un insieme di condizioni necessarie, ma non suffici-

enti, o imponendo ad una strategia di essere robusta rispetto a deviazioni

multilaterali in strategie pure, o utilizzando le condizioni di Karush-Kuhn-

Tucker. Inoltre si dimostra che imporre la Pareto efficienza di un NE in

strategie correlate, per ogni possibile coalizione, è una condizione sufficiente

ma non necessaria. Per concludere viene sviluppato un algoritmo branch–

and–bound per la ricerca di uno SNE che, ad ogni iterazione, utilizza un

oracolo per generare un candidato e verifica se tale candidato è uno SNE.

Viene mostrato che utilizzando gli insiemi di condizioni necessarie individ-

uati si ottengono degli oracoli più performanti, infatti si riduce in maniera

significativa il numero di branch rispetto all’uso di oracoli che genereano

candidati che sono NE. Tuttavia si rende necessario l’utilizzo di un risolu-

tore non lineare e non completo, il che ha un impatto sulla completezza e la

correttezza dell’algorimo.
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Chapter 1

Introduction

The computational characterization of game–theoretic solution concepts is

a central topic in artificial intelligence with the aim of developing compu-

tationally efficient tools to deal with strategic interaction situations among

rational agents. The most important solution concept provided by game

theory is Nash equilibrium. Although every finite game admits at least a

Nash equilibrium in mixed strategies, game theory itself does not provide

any tool to find such equilibria. Computer science provides a number of al-

gorithms and characterizes the complexity of such a problem. Many papers

have focused on the computational study of Nash equilibrium [26], show-

ing that searching for it is PPAD–complete [8] even with two agents [6] and

designing various algorithms. Two–agent games can be solved by linear com-

plementarity programming [17], support enumeration [22], or mixed–integer

linear programming [24]. With more agents, classical methods based on a

nonlinear complementarity programing, simplicial subdivision, or homotopy

can be used [26], as can support enumeration [28].

Even though PPAD ⊆ NP , it is generally believed that PPAD 6= P

and therefore that the worst–case complexity of finding a Nash equilibrium is

exponential in the size of the game. Furthemore, bimatrix games do not have

a fully polynomial–time approximation scheme unless PPAD ⊆ P [6] and

finding a Nash equilibrium in two–agent games is not in smoothed–P unless

PPAD ⊆ RP [5] and, therefore, by definition of smoothed complexity, game

instances keep to be hard even if subjected to small perturbations. For two–

agent games, instances [25] that require exponential time when solved with

a number of algorithms [17, 22] are known. However, these instances are

unstable, becoming easy when small perturbations are applied [11].

Nash equilibrium captures the situation in which no agent can gain more

by unilaterally changing her strategy, while, when agents can form coalitions
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and change their strategy multilaterally in a coordinate way, strong Nash

equilibrium concept is adopted [1]. It captures the situation in which agents

can form coalitions and change their strategies multilaterally in a coordi-

nated way. Strong Nash equilibrium presents different properties from Nash

equilibrium: a strong Nash equilibrium is not assured to exist and searching

for it is NP–complete: the hardness is shown in [7], while the membership

to NP is shown in [12]. Few computational results are known about the

strong Nash equilibria. An strong Nash equilibrium must be simultaneously

an Nash equilibrium and the optimal solution of multiple non–convex op-

timization problems [15]. This makes even the derivation of necessary and

sufficient equilibrium constraints, in mathematical programming fashion, a

difficult and currently open task. The literature provides a number of algo-

rithm for finding pure–strategy equilibria only for specific classes of games,

e.g., congestion games [16, 14, 23, 15], connection games [9], and maxcut

games [13]. However, hardness is due to the existence of mixed–strategy

strong Nash equilibria, given that the pure–strategy ones can be found in

polynomial time by combining support enumeration and verification. The

only algorithm working also with mixed strategies is provided in [12], how-

ever it is limited to the class of two–agents games.

In the first part of this thesis we provide the following main contributions.

• We show that, if there is a mixed–strategy strong Nash equilibrium,

then the payoffs restricted to the actions in the support must satisfy a

restrictive property: they must lay on the same line in agents’ utilities

space.

• We show that finding a strong Nash equilibrium is in smoothed–P with

two agents, admitting a deterministic support–enumeration algorithm

with smoothed polynomial running time, and therefore hard instances

are isolated.

It is interesting to notice that the last point implies that, except for a space

of the parameters with null measure, games admit only pure–strategy strong

Nash equilibria.

In the second part of this work we focus on deriving a set of conditions

for a strategy to be a strong Nash equilibrium and we design a general algo-

rithm for strong Nash equilibrium finding. Remark that the only prior algo-

rithm that works also for mixed strategies is only for two–agent games [12].

It is a special kind of tree search algorithm, and at each node it calls an

NP–complete oracle (a variation of MIP Nash [24]) that returns an Nash

equilibrium, if one exists, in a given subspace of the agents’ utilities and
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then verifies whether the returned equilibrium is a strong Nash equilibrium.

In this work we provide the following contributions.

• We provide a mixed–integer nonlinear program to find Nash equilibria

that are resilient to pure strategy multilateral deviations. We prove

that, unlike in the case of Nash equilibrium, it is only necessary (not

sufficient) for a strategy to be a strong Nash equilibrium.

• We provide a nonlinear program to find an NE that satisfies Karush–

Kuhn–Tucker conditions [19]. We prove that it is necessary, but not

sufficient, for a strategy to be a strong Nash equilibrium.

• We provide a nonlinear program in which a strategy profile is forced

to be Pareto efficient with respect to coalition correlated–strategies.

We prove that this is sufficient, but not necessary, for a strategy to be

a strong Nash equilibrium.

• We characterize the relationships between the solutions of these three

formulations, the set of Nash equilibria, and the set of strong Nash

equilibria.

• We extend the prior strong Nash equilibrium–finding tree search al-

gorithm [12] to multiple agents. We do this by introducing a general-

ization to the tree search framework and by leveraging our necessary

conditions in the oracle that is used at each search node.

• We show how the use of a nonlinear incomplete solver affects the sound-

ness and the completeness of our algorithm.

• We conduct experiments that validate the overall tree search approach

and shows the benefits of our new nonlinear necessary conditions in

the oracle.
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Chapter 2

Prior Art

This chapter is composed of three main parts. In the first section some basic

game theoretical concepts are introduced. These preliminaries are widely

used through the rest of the work. In the second part we introduce three

main solution concepts: the Pareto optimality, the Nash equilibrium and the

strong Nash equilibrium. Furthermore we briefly discuss the computational

complexity of the general problem of finding these solutions and some of the

most known algorithms. In the last section we introduce some basics on the

nonlinear programming with a particular focus on the Karush–Kuhn–Tucker

conditions, that is an approach to nonlinear programming that generalizes

the method of Lagrange multipliers. This technique is interesting as it allow

us to we write a set of necessary conditions for Pareto optimality.

2.1 Game Theoretical Preliminaries

Game theory is the mathematical study of interaction among independent,

self–interested agents [26]. It has been applied to disciplines as diverse as

economics (historically, its main area of application), political science, biol-

ogy, psychology, linguistics and computer science. The noncooperative game

theory has become the dominant branch of game theory, and the normal-

form games are a canonical representation in this discipline. In noncooper-

ative game theory the basic modeling unit is the individual, including his

beliefs, preferences, and possible actions. In this section we are providing

the basic definitions and properties which will be used through the rest of

the work.

5
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2.1.1 Self-interested agents and utility function

The notion of self-interested agent means that each agent has his own de-

scription of which states of the world he prefers and that he acts in an

attempt to bring about these states of the world. The dominant approach

to model an agent’s interests is utility theory. This theoretical approach

aims to quantify an agent’s degree of preference across a set of available

alternatives.

Definition 2.1.1. A utility function is a mapping from states of the world

to real numbers [26].

These numbers are interpreted as measures of an agent’s level of satisfaction

in the given states. When the agent is uncertain about which state of the

world he faces, his utility is defined as the expected value of his utility

function with respect to the appropriate probability distribution over states.

2.1.2 Strategic form game

The strategic form, also known as normal or matrix form, is the most familiar

representation of strategic interactions in game theory. A game written in

this way amounts to a representation of every player’s utility for every state

of the world, in the special case where states of the world depend only

on the players’ combined actions. In general most other representations of

interest can be reduced to a strategic form game, therefore the normal-form

representation is the most fundamental in game theory.

Definition 2.1.2. A strategic–form game is a G = (N,A,U) where: [26]

• N = {1, . . . , n} is the set of agents (we denote by i a generic agent),

• A = A1 × · · · ×An is the set of agents’ actions where Ai is a finite set

of actions available for agent i; moreover we denote a generic action

by a, and by mi the number of actions in Ai,

• U = {U1 . . . , Un} is the set of agents’ utility arrays where Ui(a1, . . . , an)

is agent i’s utility when the agents play actions a1, . . . , an.

A natural way to represent games is via an n–dimensional matrix.

It is easy to prove that for every couple of strategic form game the

following lemma holds:

Lemma 2.1.3. Two strategic games are equivalent if the utility matrix of

one can be obtained by applying the same affine transformation to every

entry of the utility matrix of the other.
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Hence, each strategic form game has an equivalent game where the following

equations hold:

max
a1,...,an

{Ui(a1, . . . , an)} = 1,∀i ∈ N

min
a1,...,an

{Ui(a1, . . . , an)} = 0,∀i ∈ N

2.1.3 Strategies

The first kind of strategy is to select a single action and play it. We call

such a strategy a pure strategy, notice that each action a ∈ Ai is said to be

a pure strategy for agent i. We call a choice of pure strategy for each agent

a pure–strategy profile or pure joint strategy. Players can also randomize

over the set of available actions according to some probability distribution.

Such a strategy is called a mixed strategy. We denote by xi(aj), or xi,aj
for a more compact representation, the probability with which agent i plays

action aj ∈ Ai and by xi the vector of probabilities xi(aj) of agent i. Then

we define a mixed strategy for a normal-form game as follows.

Definition 2.1.4. Let (N,A,U) be a strategic–form game, a mixed strategy

xi for agent i is a probability distribution over the agent’s set of actions Ai,

where xi,a is the probability with which agent i plays action a ∈ Ai [26].

We also denote by ∆i the space of strategies over Ai, i.e. vectors xi such

that 0 ≤ xi,a ≤ 1, for each a ∈ Ai, and
∑

a∈Ai
xi,a = 1 for each i ∈ N . By

the previous definition every mixed strategy for agent i belongs to ∆i.

Given a mixed strategy xi, for player i, the subset of actions that are

assigned positive probability by xi is called the support of xi.

Definition 2.1.5. The support of a mixed strategy xi for a player i is the

set of pure strategies {aj |xi(aj) > 0} [26].

Note that a pure strategy is a special case of a mixed strategy, in which

the support is a single action. At the other end we have totally mixed

strategies: a totally mixed strategy for player i is a mixed strategy in which

the player assigns a strictly positive probability to every action a ∈ Ai.

2.1.4 Expected Utility

The payoff matrix defines the utility only for the special case of pure-strategy

profiles, i.e. given a pure strategy profile x = (a1, ..., ak), where ai is the

action played by agent i, the utility outcome for each player is given by

Ui(a1, ..., ak) = Ui(x). However the generalization to mixed strategies is
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straightforward, and relies on the basic notion of expected utility. To com-

pute the expected utility for player i we first compute the probability of

reaching each outcome given the strategy profile, and then we compute the

average of the payoffs of the outcomes, weighted by the probabilities of each

outcome. Formally, we define the expected utility as follows

Definition 2.1.6. Given a strategic–form game (N,A,U), the expected

utility EUi for agent i of the mixed strategy profile x = (x1, . . . ,xn) is

defined as [26]:

EUi(x) =
∑

(a1,...,ak)∈A1×···×Ak

Ui(a1, . . . , ak)
∏

i∈N
xi,ai

2.1.5 Correlated strategies

Up to now it has been assumed that the players choose their strategies

independently of each other, i.e. there is no communication. However, if

coordination and communication are allowed among agents it is possible to

choose a strategy profile which is “favourable” to each agent.

Definition 2.1.7. A correlated strategy is a probability distribution over

the set of pure strategy profiles a ∈ A.

agent 2

ag
en
t
1 a4 a5

a1 a11, b11 a12, b12

a2 a21, b21 a22, b22

a3 a31, b31 a32, b32

Table 2.1: A generic bimatrix game where there are three actions available for the first agent and two

for the second.

Remark that we can consider a mixed strategy for agent i a probability

distribution over the set Ai, hence it is obvious that each mixed strategy

profile is also a correlated strategy. On the other hand there are correlated

strategies that can not be expressed as mixed strategies. For example con-

sider the generic two–players game described in Table 2.1. Here the mixed

strategy x1 = (12a1,
1
2a2,

1
2a3), x2 = (12a4,

1
2a5) is equivalent to the correlated

strategy that assigns to every pure strategy profile the same probability:

P ((ai, aj)) =
1
6 for every i ∈ {1, 2, 3} and j ∈ {4, 5}. However if we consider

the correlated strategy P ((a1, a4)) = P ((a2, a5)) = 1
2 , P ((ai, aj)) = 0 for
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every other pure strategy, there is no mixed strategy profile equivalent to

this correlated strategy.

If correlated strategies are allowed then the characterization of the Pareto

frontier becomes a trivial task.

Proposition 2.1.8. Given a strategic–form game (N,A,U) if all the agents

in N can play correlated strategies then the Pareto frontier, in the utility n–

dimensional space, is the convex combination of consecutive points in the set

{(u1, . . . , un) : ui = Ui(a1, . . . , an),∀(a1, . . . , an) ∈ A Pareto dominant}

2.1.6 Bimatrix games

A particular case of strategic–form game is the bimatrix game, that is a

game with only two players. In this case the game is defined by two payoff

matrices, one for each player. In order to use a lighter notation, we can

make the following assumptions:

• we will refer the utility matrices U1, U2 as A,B respectively, in order

to remove players indices;

• the set of actions for the first agent is A1 = {a1, ..., am} and the set of

actions for the second agent is A2 = {a1, ..., an}, hence A,B ∈ R
m×n;

• actions will be addressed by their indices rather than their name, there-

fore, given a mixed strategy for the first player x1, the probability with

which the agent plays action a1 is denoted by x11 in place of x1,a1 .

In a bimatrix game, given a strategy profile x = (x1,x2), we can define

the expected utility in a more fancy way using the definition of vector–matrix

product. Hence, the expected utility is denoted by

EU1(x) = xT
1 Ax2 (2.1)

EU2(x) = xT
1 Bx2 (2.2)

A generic bimatrix game can be represented through a matrix whose

element are pairs (aij , bij) ∈ R
2, where aij and bij are the utility outcomes

for the first and the second agent respectively, when the first agent plays

action ai and the second agent plays action aj. An example of a bimatrix

game is shown in Table 2.1.

There are particular cases in which the number of best responses to a

strategy exceeds the size of the support of the strategy, we call this kind

of games degenerate games. As these games represent particular cases, in

general we are interested in non–degenerate games.
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Definition 2.1.9. A bimatrix game is non–degenerate if and only if for

every strategy x1 of the first agent, |supp(x1)| is at least the number of

pure best responses to x1, and for every strategy x2 of the second agent,

|supp(x2)| is bigger than or equal to the number of pure best responses to

x2 [26].

In a degenerate game, Definition 2.1.9 is violated, for example if there is a

pure strategy that has two pure best responses.

2.2 Solution Concepts

The problem of choosing the best strategy profile is not simple, as what is

best for one agent might not be good for another. As such, different solution

concepts have been proposed. In this section we will introduce three solution

concepts: the Pareto efficiency, the Nash equilibrium and the strong Nash

equilibrium.

2.2.1 Pareto efficiency

In general, given a strategic–form game, it is not possible to identify the

single best outcome, as a state of the world that is good, i.e. give a high

payoff, for one agent may be bad for the others. However there are situations

in which one outcome is better than another for every agent. For example,

in a bimatrix game the outcome (10, 3) is better than (9, 2) for both agents,

and is better than (9, 3), for the first agent. We formalize this intuition in

the following definition.

Definition 2.2.1. In a strategic form game (N,A,U), given two strategy

profiles x and x′, the strategy x′ is said to be (weakly) Pareto dominated by

x if EUi(x) ≥ EUi(x
′) for each i ∈ N , and EUi(x) > EUi(x

′) for at least

one i ∈ N , in this case we say x′ <P x [26].

The previous definition introduces a binary relation <P which is a partial

order over the space of strategy profiles. Using this relation we can define

the Pareto efficiency as follows:

Definition 2.2.2. A strategy x is Pareto optimal, or strictly Pareto efficient

if there does not exists a strategy x′ 6= x such that x <P x′ [26].

The relation <P , that is the Pareto domination, allows us to state that

some strategies are definitely better than others. In fact, given two strategy

profiles x and x′, if x <P x′ we are sure that the strategy x′ at least one agent
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has an higher payoff and the other agents does not have a lower outcome

than in x. Nevertheless the Pareto dominance relation induces only a partial

order over the strategy profiles, hence we cannot generally identify a single

best outcome; instead, we may have a set of non–comparable optima.

We can relax the Pareto optimality requirement introducing the concept

of weak Parteo efficiency. A strategy is weakly Pareto efficient if there are

no other strategies whose outcome would cause every individual to gain.

Definition 2.2.3. A strategy profile x is weakly Pareto efficient if there

does not exists a strategy profile x′ such that EUi(x
′) > EUi(x),∀i [26].

Weak Pareto-optimality is weaker than strong Pareto optimality in the

sense that any strategy which is a strong Pareto optimum is also a weak

Pareto optimum, conversely a weak Pareto optimum allocation is not nec-

essarily a strong Pareto optimum.

The problem of verifying whether a given strategy profile is weakly

Pareto efficient is in a well known complexity class as stated in the following

proposition.

Proposition 2.2.4. Given a strategic–form game (N,A,U) and a strategy

profile x, the problem of verifying whether x is weakly Pareto efficient is in

P [12].

The Pareto frontier is the set of all strategies which are Pareto optimal.

In the utility k–dimensional space, where k is the number of agents, the

Pareto frontier is the set P = {u ∈ R
k | u = (EU1(x), ..., EUk(x)) ∧ x is

Pareto optimal }.

In a generic strategic form game (N,A,U) we can state the problem

of finding Pareto optimal strategy profiles as a nonlinear multi–objective

optimization problem [19] as follows:

max (EU1(x1, . . . ,xn), . . . , EUn(x1, . . . ,xn))
T (2.3)

subject to: xT
i · 1− 1 = 0,∀i ∈ N (2.4)

xi ≥ 0,∀i ∈ N (2.5)

Here through Constraint 2.4 and Contraint 2.5 we state that each vector

x1 is a probability distribution over the set of actions Ai, hence the vector

x = (x1, . . . ,xn) is a valid strategy profile for n players. The set of points

that solve the Problem 2.3–2.5 denotes the Pareto frontier.
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2.2.2 Nash equilibrium

The central solution concept in game theory is the Nash equilibrium. In-

formally, a strategy profile is a NE if no player can improve his payoff by

unilaterally changing his or her strategy.

In order to define the Nash equilibrium, first of all consider the case in

which the strategy of the agents other than i is known in advance, let say

x−i, a utility–maximizing agent i would face the problem of determining his

best response.

Definition 2.2.5. Agent i’s best response to the strategy profile x−i is

a mixed strategy x∗
i ∈ ∆i such that EUi(x

∗
i ,x−i) ≥ EUi(xi,x−i) for all

strategies xi ∈ ∆i [26].

The best response is not necessarily unique. Indeed, except in the extreme

case in which there is a unique best response that is a pure strategy, the

number of best responses is always infinite. When the support of a best

response x∗ includes two or more actions, the agent must be indifferent

among them otherwise, the agent would prefer to reduce the probability

of playing at least one of the actions to zero. But thus any mixture of

these actions must also be a best response. Similarly, if there are two pure

strategies that are individually best responses, any mixture of the two is

necessarily also a best response. In general an agent will not know what

strategies the other players will adopt. Thus, the notion of best response is

not a solution concept, however we can leverage the idea of best response

to define what is arguably the most central notion in noncooperative game

theory, the Nash equilibrium.

Definition 2.2.6. A strategy profile x = (x1, . . . ,xn) is said to be a Nash

equilibrium if, for all agents i, xi is a best response to x−i [26].

However when we speak about Nash equilibrium we always refer to the

notion of weak Nash equilibrium.

Definition 2.2.7. A strategy profile x = (x1, . . . ,xk) is a (weak) Nash

Equilibrium i, EUi(xi,x−i) ≥ EUi(x
′
i,x−i) for every x′

i ∈ ∆i, for all agents i

and for all strategies x′
i 6= xi [26].

Note that if mixed strategies are allowed, then every game with a finite

number of players in which each player can choose from finitely many pure

strategies has at least one Nash equilibrium.

Finally notice that Nash equilibria are resilient to unilateral deviations,

as by Definition 2.2.7 no agent can improve his utility by changing his strat-

egy. Therefore the Nash equilibrium is a stable solution concept under the

hypothesis of noncooperative game.
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2.2.3 Finding Nash equilibria

The equilibrium computation in non–cooperative games is one of the main

topics in artificial intelligence and computer science. However the issue of

characterizing the complexity of computing a sample Nash equilibrium is

tricky. No known reduction exists from this problem to a decision problem

which is NP–complete, nor has the problem been shown to be easier [26].

Current knowledge about the complexity of computing a sample Nash equi-

librium thus relies on another complexity class that describes the problem

of finding a solution which always exists. This class is called PPAD, which

stands for “polynomial parity argument, directed version”. The problem

of searching for a Nash equilibrium is PPAD–complete [8] even with two

agents [5]. Many algorithms has been designed to compute Nash equilibria:

two–agents games can be solved by linear complementary programming [17],

support enumeration [22], or mixed–integer programming [24]. With more

than two agents, classical methods based on a nonlinear complementarity

programing, simplicial subdivision, or homotopy can be used [26], as can

support enumeration [28].

Our interest is toward the general problem of finding a Nash equilibrium

in a strategic–form game with n players and its representation through a

nonlinear feasibility problem [26].

Formulation 2.2.8. The problem of finding a Nash equilibrium can be

formulated through a nonliear feasibility problem as:

vi −
∑

a−i∈A−i

Ui(ai, a−i) ·
∏

j∈N :
j 6=i

xj(aj) ≥ 0 ∀i ∈ N, ai ∈ Ai (2.6)

xi(ai) ·

(

vi −
∑

a−i∈A−i

Ui(ai, a−i)·

·
∏

j∈N :
j 6=i

xj(aj)

)

= 0 ∀i ∈ N, ai ∈ Ai (2.7)

xi(ai) ≥ 0 ∀i ∈ N, ai ∈ Ai (2.8)
∑

ai∈Ai

xi(ai) = 1 ∀i ∈ N (2.9)

Here vi is the expected utility of agent i. Constraints (2.6) force the expected

utility vi of agent i to be non–smaller than the expected utility given by every

action ai available to agent i. Constraints (2.7) force the expected utility vi

of agent i to be equal to the expected utility given by every action ai that is
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played with strictly positive probability by agent i. Constraints (2.8) force

each probability xi(ai) to be non–smaller than zero. Constraints (2.9) force

each vector of probability xi to sum to one.

2.2.4 Strong Nash equilibrium

The strong Nash equilibrium concept strengthens the Nash equilibrium by

requiring the strategy profile to be resilient also tu multilateral deviations,

including deviations in the grand coalition which contains all the agents [1],

i.e. it is a Nash equilibrium in which no coalition, taking the actions of its

complements as given, can cooperatively deviate in a way that benefits all of

its members. While the Nash concept of stability defines equilibrium only in

terms of unilateral deviations, strong Nash equilibrium allows for deviations

by every conceivable coalition, including the grand coalition. In this case two

concepts are combined: in order to be a strong Nash equilibrium a strategy

profile has to be a Nash equilibrium and it has to be weakly Pareto efficient

over the space of all the strategy profiles, including the mixed ones, for each

possible coalition, given the strategies of the agents outside the coalition.

In order to define the strong Nash equilibrium, we introduce some nota-

tions.

Notation 2.2.9. Consider a strategic–form game (N,A,U). Let C = {C :

C ∈ P(N), | C |≥ 2} be the set of non–singleton, non–empty coalitions and

let C ∈ C be a coalition. We denote aC a profile of actions, i.e. a pure

strategy profile, for each agent i that is a member of C and by aC(i) the

action of agent i in aC . In a similar way we denote by a−C a profile of actions

for the agents that are not members of C and by a−C(j) the action of agent j

in a−C . Finally we denote by xC a strategy profile for the members of C

and by x−C a strategy profile for the agents that are not members of C.

Note that by the previous statements, given a coalition C, every profile of

actions (a1, . . . , an) ∈ A can be partitioned as (aC , a−c) ∈ A and, in the same

way, every mixed strategy profile x can be partitioned as x = (xC ,x−C).

Notation 2.2.10. Let C ∈ C be a coalition of game (N,A,U), where N =

{1, . . . , n}, A = A1 × · · · × An, U = {U1, . . . , Un}, we denote the game

(C,AC , UC) as a game with players j ∈ C, where AC =
∏

j∈C Aj and

UC is the set of the utility arrays for the agents in C such that UC,j =
∑

a−C∈A−C
Uj(aC , a−C)

∏

j 6∈C xj(aj) is the utility of agent j, when the agents

in the coalition C play actions aC
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Definition 2.2.11. A strategy profile x is a strong Nash equilibrium of

game (N,A,U), if [1] for every possible coalition C ∈ C there does not exists

any strategy xC such that EUi(xC ,x−C) > EUi(x),∀i ∈ N

The Definition 2.2.11 immediately implies that any strong equilibrium is

both weakly Pareto efficient and a Nash equilibrium. Indeed, if a coalition

C deviates from its strategy xC in some strong Nash equilibrium x, then it

cannot improve the earning of all its players at the same time if the rest of

the players maintain its strategy x−C of x. This equilibrium is stable with

regard to the deviation of any coalition.

We can now formulate the following Lemma, whose proof is straightfor-

ward given the previous definition and considerations.

Lemma 2.2.12. A strategy profile x of game (N,A,U) is a Strong Nash

equilibrium if all the following conditions hold:

1. x is a Nash equilibrium of game (N,A,U),

2. for every possible coalition C ∈ C, the strategy profile xC , such that x =

(xC ,x−C), is a weakly Pareto efficient strategy of game (C,AC , UC).

Finally notice that even though every strategic–form game has at least

a Nash equilibrium [26], the same existence result does not hold for strong

Nash equilibria, in fact there are games in which such equilibrium does not

exist, even in mixed strategies.

Lemma 2.2.13. A strong Nash equilibrium may not exist in a strategic–

form game.

agent 2

ag
en
t
1 a3 a4

a1 3,3 0,5

a2 5,0 1,1

Table 2.2: Utility matrix of Prisoner’s dilemma

Proof. Consider the strategic–form game in Table 2.2 (prisoners dilemma),

this game has a unique Nash equilibrium that is the strategy (a2, a4). How-

ever this strategy profile is weakly Pareto dominated by (a1, a3), therefore

there are no strategy profiles resilient to both unilateral and multilateral

deviations, thus in the prisoners dilemma game a strong Nash equilibrium

does not exist, even allowing mixed strategies.
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Figure 2.1: The Pareto frontier of the game described in Table 2.2.

2.2.5 Finding strong Nash equilibria

The problem of finding a strong Nash equilibrium in a strategic–form game

has shown to be NP–complete when the number of agents is a constant [12].

In general a strong Nash equilibrium must be simultaneously a Nash equi-

librium and a solution of multiple non–convex optimization problems [15].

This makes even the derivation of necessary and sufficient equilibrium con-

straints in mathematical programming fashion a difficult and currently open

task.

Some results have been proven about the computation of pure–strategy

SNEs in specific classes of games, e.g., congestion games [16, 14, 23, 15], con-

nection games [9], maxcut games [13], and continuous games [20]. The only

prior algorithm that works also for mixed strategies is very recent [12]. It is

only for two–agent games. It is a special kind of tree search algorithm, and

at each node it calls an NP–complete oracle, a variation of MIP Nash [24],

that returns an Nash equilibrium (if one exists) in a given subspace of the

agents’ utilities and then verifies whether the returned Nash equilibrium is

a strong Nash equilibrium. It has been proven that the problem of verify

whether a strategy profile is a strong Nash equilibrium is in P [12].

2.3 Nonlinear Programming

In mathematics, nonlinear programming is the process of solving an opti-

mization problem defined by a system of equalities and inequalities, col-

lectively termed constraints, over a set of unknown real variables, along

with an objective function to be maximized or minimized, where some of

the constraints or the objective function are nonlinear. As discussed in
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the previous sections it is possible to find some particular strategies solv-

ing nonlinear programs, in particular the solutions of the Problem 2.3–2.5

are the Pareto efficient strategies and the solutions of the Problem 2.6–2.9

are the strategy profiles that are Nash equilibria. Notice that the first is a

multi–objective optimization problem with linear constraints and nonlinear

objective functions, while the latter is a feasibility problem with two non-

linear constraints: 2.6, 2.7. The Karush–Kuhn–Tucker method allows us to

derive from a multi–objective optimization problem P a feasibility problem

K(x), such that if x is a solution for P then K(x) is feasible. In other words

we can write a set of necessary conditions for Pareto optimality.

2.3.1 Karush–Kuhn–Tucker Conditions

The Karush-Kuhn-Tucker conditions [19] are first order necessary conditions

for a solution in nonlinear programming to be optimal. Allowing inequality

constraints, the Karush–Kuhn–Tucker approach to nonlinear programming

generalizes the method of Lagrange multipliers [2], which allows only equal-

ity constraints.

Remark that an optimization problem can be defined as the minimization

(or maximization) of a function over a given set. When we have more

than one objective function to be optimized simultaneously we are dealing

with multi-objective optimization. A typical multi–objective optimization

problem is the following [19]:

Minimize (f1(x), f2(x), ..., fn(x))
T

subject to: gi(x) ≤ 0 ∀i = 1, ...,m

hi(x) = 0 ∀i = 1, ..., ℓ

where fi(x) are the objective functions, gj(z) are the inequality constraints

and hk are the equality constraints. Notice that, given a point x̄ ∈ F , if

gi(x̄) = 0 the i-th inequality constraint is said to be active.

Consider a problem P as sated above, let x̄ ∈ F , be a feasible solution,

and let I = {i : gi(x̄) = 0}, i.e. the set of indices of active constraints.

Suppose that f and gi for i ∈ I are differentiable at x̄, that each gi for

i 6∈ I is continuous at x̄, and that each hi for i = 1, ..., ℓ is continuously

differentiable at x̄. Further, suppose that ∇gi(x̄) for i ∈ I and ∇hi(x̄) for

i = 1, ..., ℓ are linearly independent. If x̄ solves problem P locally, there

exists unique scalars λi for i = 1, ..., k, µi for i ∈ I and νi for i = 1, ..., ℓ such
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that[2]:

k
∑

i=1

λi∇fi(x̄) +
∑

i∈I
µi∇gi(x̄) +

l
∑

i=1

νi∇hi(x̄) =0 (2.10)

λi >0 ∀i = 1, ..., k (2.11)

µi ≥0 ∀i ∈ I (2.12)

In addition to the above assumptions, if each gi for i 6∈ I is also differentiable

at x̄, the Karush–Kuhn–Tucker conditions can be written in the following

equivalent form [2]:

k
∑

i=1

λi∇fi(x̄) +
∑

i∈I
µi∇gi(x̄) +

l
∑

i=1

νi∇hi(x̄) =0 (2.13)

µigi(x̄) =0 ∀i = 1, . . . ,m (2.14)

λi >0 ∀i = 1, . . . , k (2.15)

µi ≥0 ∀i = 1, . . . ,m (2.16)

Thus the Equation 2.13 is a group of |x| equations. The λi, µj , νk are called

Karush-Kuhn-Tucker multipliers: λi is the weight of objective function fi,

µj is the weight of constraint gj , and νk is the weight of constraint hk.

Remark that the Karush-Kuhn-Tucker conditions in general are neces-

sary but not sufficient conditions for the given optimization problem.



Chapter 3

Properties of strong Nash

equilibria

In this chapter we want to define under which conditions a strong Nash

equilibrium exists. Moreover, using this result, we want to characterize the

smoothed–complexity of the problem of finding a strong Nash equilibrium.

Our analysis starts considering the class of bimatrix games, i.e. games

with two players. In this class of games, as there is only one possible non–

singleton coalition, a strong Nash equilibrium can be defined as a Nash

equilibrium which is also Pareto dominant. Our approach is to join these

two problems by means of necessary conditions and consider the properties

of the resulting problem.

In the first section of this chapter we provide necessary conditions for

a strategy to be Pareto dominant through the Karush–Kuhn–Tucker con-

ditions, with a particular focus on the case of maximal–support strategies.

In the second section we derive a set of necessary conditions for a mixed–

strategy to be a Nash equilibrium. In the third section we join together the

two sets of necessary conditions in order to derive the necessary conditions

for a strategy to be a strong Nash equilibrium. Again, we focus on the

maximal–support strategies that allow us to write the necessary conditions

as a set of equality constraints. In the fourth section we show that if a

strong Nash equilibrium exists, then the payoffs restricted to the actions in

the support of the equilibrium must satisfy a restrictive property: they must

lie on the same line in the agents’ utility space. In the last section we show

that the problem of finding a strong Nash equilibrium is in smoothed–P,

admitting a deterministic support–enumeration algorithm with smoothed

polynomial running time.

19
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3.1 Pareto optimality in bimatrix games

As stated in Section 2.2.1, given a strategic form game, the problem of

finding Pareto optimal strategies is a nonlinear multi-objective optimiza-

tion problem P , with objective functions (2.3) and constraints (2.4), (2.5).

Moreover, as described in Section 2.3.1, given a multi-objective optimiza-

tion problem P and a candidate solution x, we can derive a set of necessary

conditions K(x) such that if x is a solution for P then K(x) is satisfiable.

The set K(x) is the set of Karush–Kuhn–Tucker conditions. In this section

we focus on deriving the Karush–Kuhn–Tucker conditions for the Pareto

optimality problem in a bimatrix game.

3.1.1 Necessary conditions

When we are dealing with a bimatrix game, i.e. a strategic form game with

two players, the nonlinear multi-objective optimization problem P is the

following:

max(EU1(x1,x2), EU2(x1,x2))
T (3.1)

subject to: xT
1 · 1− 1 = 0 (3.2)

xT
2 · 1− 1 = 0 (3.3)

x1 ≥ 0 (3.4)

x2 ≥ 0 (3.5)

Remark that in a bimatrix game we call A and B the agents’ payoff

matrices. Moreover we denote by aij and bij the elements of A and B

respectively. The dimensions of the sets of actions, |A1| = m and |A2| = n,

define the dimensions of the matrices: A,B ∈ Rm ×Rn. If we consider the

Equation (2.1), the Equation (2.2) and the definition of the mixed strategies

x1 = (x11, ..., x1m) and x2 = (x21, ..., x2n), where x1 and x2 are column

vectors, we can write the utility functions as follows:

EU1(x1,x2) =
m
∑

i=1

n
∑

j=1

aij · x1i · x2j

EU1(x1,x2) =
m
∑

i=1

n
∑

j=1

bij · x1i · x2j

It is easy to verify that the gradients of the utility functions are:

∇EU1 =

(

Ax2

ATx1

)
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∇EU2 =

(

Bx2

BTx1

)

Considering the first agent’s strategy x1, the gradient of the i–th in-

equality constraint x1i ≥ 0, where i = 1, . . . ,m, is a column vector with

m + n elements, where the i–th element is equal to one and all the others

are zeros. Similarly, for the second agent, the gradient of the j–th inequality

constraint x2j ≥ 0, for j = 1, . . . , n, is a column vector with m+n elements,

where the m + j–th element is equal to one and all the others are zeros.

Therefore the sum
∑

i∈I µi∇gi(x̄) has as result a column vector µ such that

µi is the i th element of µ.

The gradient of the equality constraint h1(x) = xT
1 ·1−1 = 0 is a column

vector of m + n elements, with the first m elements equal to one and the

others equal to zero. Conversely the gradient of h2(x) = xT
1 · 1− 1 = 0 is a

column vector with m zeros and n ones.

Notice that ∇gi(x), for all i ∈ I, ∇h1(x) and ∇h2(x), are always linearly

independent as required in Section 2.3.1. Remark that I is the set of indices

of active inequality constraints, i.e. I = {i : gi(x) = 0}, hence the set of

active inequality constraints depends on the supports of agents’ strategies.

At most there can be m− 1 active inequality constraints for the first agent,

and n− 1 for the second.

Replacing the previous definitions in the generic Problem (2.13)–(2.16),

we write the Karush–Kuhn–Tucker conditions associated to the problem of

Pareto optimality in bimatrix games:

λ1

(

Ax2

ATx1

)

+ λ2

(

Bx2

BTx1

)

+ µ+ ν1

(

1m

0n

)

+

+ν2

(

0m

1n

)

=0 (3.6)

µi · x1i =0, for i = 1, . . . ,m (3.7)

µm+j · x2j =0, for j = 1, . . . , n (3.8)

µi ≥0, for i = 1, . . . ,m+ n (3.9)

λ1 >0 (3.10)

λ2 >0 (3.11)

Notice that the Pareto optimality problem is a maximization problem, how-

ever it is always possible to obtain an equivalent minimization problem like

the one described is Section 2.3.1. By trivial mathematics it is possible to
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show that the above conditions, derived from the maximization problem,

are the same of those derived from the equivalent minimization problem.

We can write the Equation (2.13) by means of scalar equations as follows:

λ1(a11x21 + . . . + a1nx2n) + λ2(b11x21 + . . .+ b1nx2n)+

+µ1 + ν1 = 0
...

λ1(am1x21 + . . .+ amnx2n) + λ2(bm1x21 + . . .+ bmnx2n)+

+µm + ν1 = 0

λ1(a11x11 + . . .+ am1x1m) + λ2(b11x11 + . . .+ bm1x1m)+

+µm+1 + ν2 = 0
...

λ1(a1nx11 + . . .+ amnx1m) + λ2(b1nx1n + . . .+ bmnx1m)+

+µm+n + ν2 = 0

(3.12)

Notice that the sum ai1x21 + . . . + ainx2n is the result of the product

between the i–th row of the matrix A and the vector x2. The same holds

for the sum a1jx11 + . . .+ amjx1m, which is the product of the j–th column

of A and x1. Therefore, if we denote by:

• rAi the i–th row of A,

• rBi the i–th row of B,

• cAj the j–th column of A,

• cBj the j–th column of B;

we can use a more compact notation:

ai1x21 + . . .+ ainx2n = rAix2 (3.13)

bi1x21 + . . .+ binx2n = rBix2 (3.14)

a1jx11 + . . .+ amjx1m = xT
1 cAj (3.15)

b1jx11 + . . . + bmjx1m = xT
1 cBj (3.16)

With this notation we can write the Equations (3.12) as follows:

λ1rAix2 + λ2rBix2 + µ1 + ν1 = 0, for i = 1, . . . ,m (3.17)

λ1x
T
1 cAj + λ2x

T
1 cBj + µm+1 + ν2 = 0, for j = 1, . . . , n (3.18)

Observe that rAix2 is the utility outcome for the first agent when he plays

his i–th action, given the strategy of the second agent, and xT
1 cBj is the



3.2. Mixed strategy Nash equilibrium conditions 23

utility outcome for the second agent when he plays his j–th action, given

the first agent’s strategy.

However we have to keep in mind that the Karush–Kuhn–Tucker condi-

tions are first order necessary, and in general not sufficient, conditions for

the local Pareto optimality. Therefore, given a bimatrix game and a strat-

egy profile x, if conditions (3.17),(3.18), (3.7)–(3.11) are satisfiable there

is no guarantee that x is Pareto optimal. Conversely this problem is not

satisfiable, then we are sure that x is Pareto dominated.

3.1.2 Maximal support strategies

It is interesting to notice that, if we are dealing with a maximal support

strategy profile x∗, in the problem P of determine whether x∗ is Pareto

efficient, as stated in Section 2.3.1, there are no active inequality constraints.

In fact by definition each action of a strategy with maximal support is played

with positive, non–zero, probability. Therefore in the Equations (3.17),

(3.18) we have µi = 0 for all i = 1, ...,m + n. As usual remark that,

according to the Karush–Kuhn–Tucker conditions, if x∗ is Pareto efficient,

then the Problem (3.6)–(3.11) is feasible. Considering only maximal support

strategies this problem looses some degrees of freedom, and since ν1, ν2 are

arbitrary constants we can write the Karush–Kuhn–Tucker conditions as

follows:

λ1rAix
∗
2 + λ2rBix

∗
2 = ν1,∀i = 1, ...,m (3.19)

λ1x
∗
1
T
cAj + λ2x

∗
1
T
cBj = ν2,∀j = 1, ..., n (3.20)

λ1, λ2 > 0 (3.21)

3.2 Mixed strategy Nash equilibrium conditions

In a bimatrix game, it is easy to show that a mixed strategy profile x =

(x1,x2) is a mixed Nash equilibrium if and only if each action in the support

of x1 is a best response to the strategy x2 and vice versa. Therefore if

the second agent plays the strategy x2 the first agent has the same utility

outcome for each action in supp(x1) and there are no actions outside this

set which provide higher utility.

Thanks to this property we can derive a set of necessary conditions for
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a mixed strategy profile x to be a Nash equilibrium.

EU1(ai,x2) = EU1(aj ,x2) ∀ai, aj ∈ supp(x1)

EU2(x1, ai) = EU2(x1, aj) ∀ai, aj ∈ supp(x2)

Where EU1(ai,x2) is the expected utility of the first agent if the action ai

is played, fixed the second agent’s strategy x2.

Moreover notice that EU1(x) = EU1(ai,x2) for each ai in supp(x1), and

EU2(x) = EU2(x1, aj) for each aj in supp(x2).

In general, the expected utility for the first agent, given a strategy for

the second agent x2, when action ai is played is:

EU1(ai,x2) = ai1x21 + ...+ ainx2n

considering the Equation (3.13) we can write:

EU1(ai,x2) = rAix2

The same holds for the second agent, in fact, by the previous definitions and

by Equation (3.16), we have:

EU2(x1, ai) = rBix2

Therefore if a mixed strategy x is a Nash equilibrium, then necessarily:

rAix2 = rAjx2 ∀i, j ∈ {k : ak ∈ supp(x1)} (3.22)

xT
1 cBi = xT

1 cBj ∀i, j ∈ {k : ak ∈ supp(x2)} (3.23)

Moreover if we consider a maximal–support mixed strategy x∗ = (x∗
1,x

∗
2),

then, by the previous considerations, it is a Nash equilibrium if and only

if for both agents each action provides the same expected utility, given the

strategy profile of the other agent, that is:

rAix
∗
2 = rAjx

∗
2 ∀i, j ∈ {1, ...,m} (3.24)

x∗
1
T
cBi = x∗

1
T
cBj ∀i, j ∈ {1, ..., n} (3.25)

In a bimatrix game with m available actions for the first agent and n

actions for the second, the above conditions are necessary and sufficient for

a maximal–support mixed strategy profile to be a Nash equilibrium.
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3.3 Strong Nash Necessary Conditions

Up to now we derived necessary conditions for a strategy to be Pareto op-

timal and a Nash equilibrium. Remark that, by the lemma 2.2.12, in a two

players game a strategy is a strong Nash equilibrium if and only if it is a

Nash equilibrium and it is Pareto dominant. Hence we can now derive a set

of necessary conditions for a strategy to be a strong Nash equilibrium.

Let a strategy profile x be a strong Nash equilibrium, then it has to be

a Nash equilibrium too and it satisfies conditions (3.22)–(3.23), moreover

x is also Pareto efficient, hence the problem (3.17), (3.18), (3.7)–(3.11) is

feasible. We can combine the two sets of conditions as follows:

rAix2 = rAjx2 ∀i, j ∈ supp(x1)

xT
1 cBi = xT

1 cBj ∀i, j ∈ supp(x2)

λ1 · (rAix2) + λ2 · (rBix2) + µi + ν1 = 0 ∀i = 1, ...,m

λ1x
T
1 cAj + λ2x

T
1 cBj + µm+j + ν2 = 0 ∀j = 1, ..., n

µi = 0 ∀i ∈ supp(x1)

µm+j = 0 ∀j ∈ supp(x2)

µ ≥ 0

λ > 0

Consider now a strategy x∗ which is a mixed strong Nash equilibrium

with maximal support, then in the previous problem every possible action

for agent i is in supp(xi). Therefore the problem reduces to:

rAix
∗
2 − rAjx

∗
2 = 0 ∀i, j = 1, ...,m

x∗
1
T
cBi − x∗

1
T
cBj = 0 ∀i, j = 1, ..., n

λ1rAix
∗
2 + λ2rBix

∗
2 = ν1 ∀i = 1, ...,m

λ1x
∗
1
T
cAj + λ2x

∗
1
T
cBj = ν2 ∀j = 1, ..., n

λ > 0

It is easy to verify that the previous problem has a solution if and only

if rBix
∗
2 = rBjx

∗
2 for all i, j = 1, ...,m and x∗

1
T cAi = x∗

1
T cAj for all i, j =

1, ..., n. As our concern is the satisfiability of the problem and not the

problem itself, we can write the strong Nash equilibrium necessary conditions
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for a maximal support strategy in a equivalent form as follows:

rAix
∗
2 − rAjx

∗
2 = 0 ∀i, j = 1, ...,m (3.26)

x∗
1
T
cBi − x∗

1
T
cBj = 0 ∀i, j = 1, ..., n (3.27)

rBix
∗
2 − rBjx

∗
2 = 0 ∀i, j = 1, ...,m (3.28)

x∗
1
T
cAi − x∗

1
T
cAj = 0 ∀i, j = 1, ..., n (3.29)

This is the set of strong Nash necessary conditions for a maximal support

strategy in a bimatrix game. Notice that, by the transitivity and reflexiv-

ity of the equality relation, in order to solve this problem it is sufficient to

satisfy 2(m + n) − 4 equations: m + n − 2 equations from the Nash equi-

librium conditions and m+ n− 2 equations from the Karush–Kuhn–Tucker

conditions.

3.4 Games with mixed strategy strong Nash equi-

librium

In this section we use the previous results and definitions to show proper-

ties of games which allow the existence of a mixed–strategy strong Nash

equilibrium. At first we will focus our analysis on bimatrix games with two

actions per agent, then we generalize our results. In particular we are able

to show that if a game has a mixed–strategy strong Nash equilibrium, then

the payoffs, restricted to the actions of the support of the equilibrium, have

to satisfy a restrictive property: they must lie on the same line in agents’

utility space.

3.4.1 Bimatrix games with two actions per agent

Let denote by PM and by PC the Pareto frontier when the agents play mixed

and correlated strategies respectively. Obviously, points in PC non–strictly

dominate points in PM , given that mixed strategies constitute a subset of

correlated strategies as stated in Section 2.1.5. In addition, we denote by

PM (S) and PC(S) the Pareto frontiers in mixed and correlated strategies

respectively restricted to the set of actions in S.

Theorem 3.4.1. Given a non–degenerate two–agent game with two actions

per agent, if there is a mixed–strategy strong Nash equilibrium, then PM ≡

PC .
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agent 2

ag
en
t
1 a3 a4

a1 p1, q1 p2, q2

a2 p3, q3 p4, q4

Table 3.1: A generic bimatrix game with two actions per agent.

Proof. Consider a non–degenerate game as shown in Table 3.1, assume that

there are no dominant pure strategies and assume that there exists a mixed

strategy x = (x1,x2) which is a strong Nash equilibrium. By these assump-

tions the support of x is the union of the two agents’ sets of actions, hence x

is a maximal support strategy. Remark that x1 and x2 are two–dimensional

column vectors, such that x1 = (x11, x12) and x2 = (x21, x22). We can write

the Problem (3.26)–(3.29), i.e. the strong Nash necessary conditions for a

maximal support strategy profile, for this bimatrix game as follows:

x21 · p1 + x22 · p2 − x21 · p3 + x22 · p4 = 0

x11 · q1 + x12 · q3 − x11 · q2 + x12 · q4 = 0

x21 · q1 + x22 · q2 − x21 · q3 + x22 · q4 = 0

x11 · p1 + x12 · p3 − x11 · p2 + x12 · p4 = 0

To solve the problem first of all we factor the xij variables and then we

explicit a value for x11 and x21. The result is the following:

x21 · (p1 − p3) = x22 · (p4 − p2)

x11 · (q1 − q2) = x12 · (q4 − q3)

x21 · (q1 − q3) = x22 · (q4 − q2)

x11 · (p1 − p2) = x12 · (p4 − p3)

We can safely assume that p1 6= p3, p4 6= p2, p4 6= p3 and p1 6= p2, and the

analogous inequalities for the second agent. This assumption excludes only

degenerate games, in fact if p1 = p3, as by assumption x22 > 0, then by

the above equations we have p4 = p2 and therefore actions a1 and a2 are

the same for the first agent. However in such a game every pure strategy

of the second agent has two best responses, violating Definition 2.1.9, thus

the resulting game is degenerate. Moreover if p1 = p2 then, as x12 > 0,

necessarily p4 = p3, thus if p1 6= p3 one action of the first player strictly

dominates the other and the dominated action can be ignored as it will

never be played. In this case the game is equivalent to a bimatrix game
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with one action for the first player and two actions for the second. The

same reasoning holds for the second agent. By the previous assumptions, it

is easy to verify that this problem allows solutions if and only if:

q4 − q2

p4 − p2
=

q1 − q3

p1 − p3
(3.30)

q1 − q2

p1 − p2
=

q4 − q3

p4 − p3
(3.31)
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Figure 3.1: Examples used in the proof of Theorem 3.4.1.

We can give a simple geometric interpretation of Conditions 3.31–3.30.

Call Ri = (pi, qi). Each Ri is a point in the space E[U1],E[U2]. The above

conditions state that:

• R1R2 is parallel to R3R4,

• R1R3 is parallel to R2R4,

and therefore R1, R2, R3, R4 are the vertices of a parallelogram, see Fig-

ure 3.1(a). Given that:

• a mixed strategy Nash equilibrium is strictly inside the parallelogram,

being the convex combination of the vertices, see Figure 3.1(a)

• a strong Nash equilibrium has to be on a Pareto efficient edge since, if

it is strictly inside the parallelogram, then it is Pareto dominated by

some point on some edge, see Figure 3.1(a),

we have that R1, R2, R3, R4 must be aligned according to a line of the form

φ·E[U1]+(1−φ)·E[U2] = const with φ ∈ [0, 1], see, e.g., Figure 3.1(b). Thus,

the combination of R1, R2, R3, R4 through every mixed–strategy profile lays
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on the line connecting the two extreme vertices, e.g., in Figure 3.1(b), the

extreme vertices are R2 and R1. It trivially follows that PM ≡ PC . �

The proof of the above theorem provides necessary conditions for a

game to admit a mixed–strategy strong Nash equilibrium. These condi-

tions are not sufficient. Indeed, we can show that only some alignments of

R1, R2, R3, R4 lead to the existence of a strong Nash equilibrium.

Corollary 3.4.2. The only alignments of R1, R2, R3, R4 leading to a mixed–

strategy strong Nash equilibrium satisfy the following conditions:

• R1 or R4 is one extreme,

• moving from the previous extreme, the next vertex is R4 or R1,

• the next vertex is R2 or R3,

• R3 or R2 is the other extreme,

• the slope of the line where the Ri points lie is strictly negative.

Proof. For alignments different from those considered in the corollary, it

is not possible to have a mixed–strategy Nash equilibrium.

First of all consider the case in which the slope of the line where the

Ri points lie is positive or equal to zero. It is immediate to notice that

in this case there is only one pure strategy profile which Pareto dominates

each other strategy, that is the upper–right edge of the segment connecting

the Ri points. Also notice that this strategy is a Nash equilibrium, as

no agent can improve his utility. Hence there exists a pure–strategy strong

Nash equilibrium, but there can be no mixed–strategy Nash equilibria which

are also Pareto efficient as, by assumption, there is a pure strategy which

dominates every other. Therefore a mixed–strategy strong Nash equilibrium

does not exist. An example of this situation is shown in Figure 3.2.

agent 2

ag
en
t
1 a3 a4

a1 2, 2 (R1) 3, 3 (R2)

a2 1, 1 (R3) 4, 4 (R4)

Table 3.2: Example of two–agent game which satisfies Conditions 3.31–3.30 but does not have a

mixed–strategy strong Nash equilibrium.

Now, consider a generic bimatrix game with two actions per agent, in

order to have a mixed–strategy strong Nash equilibrium, a mixed–strategy
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Figure 3.2: The Pareto frontier of the game described in Table 3.2.

Nash equilibrium has to exist. Hence, at first we need to determine un-

der which conditions a mixed strategy x = (x1,x2), whose support is such

that |supp(x1)| = |supp(x1)| = 2, is a Nash equilibrium. If we consider

the game described in Table 3.1, as x is a maximal–support strategy, by

Conditions 3.24–3.25 we have that x is a Nash equilibrium if and only if:

x21 · p1 + x22 · p2 = x21 · p3 + x22 · p4

x11 · q1 + x12 · q3 = x11 · q2 + x12 · q4

Remark that by definition of mixed strategy we have x12 = 1 − x11 and

x22 = 1− x21. By trivial mathematics we obtain:

x21 =
p4 − p2

p1 − p2 − p3 + p4

x11 =
q4 − q3

q1 − q2 − q3 + q4

By definition of maximal–support strategy x11 and x21 have to be non–

negative and smaller than one, hence the following inequalities have to hold:

0 <
p4 − p2

p1 − p2 − p3 + p4
< 1

0 <
q4 − q3

q1 − q2 − q3 + q4
< 1

Solving these inequalities we obtain two different sets of solutions which are

conditions on the payoff matrices:

(p1 > p3 ∧ p4 > p2) ∨ (p1 < p3 ∧ p4 < p2)

(q1 > q2 ∧ q4 > q3) ∨ (q1 < q2 ∧ q4 < q3)
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Combining these solutions we obtain four sets of conditions over the elements

of the payoff matrices.

agent 2

ag
en
t
1 a3 a4

a1 3, 0 (R1) 0, 3 (R2)

a2 1, 2 (R3) 2, 1 (R4)

Table 3.3: Example of two–agent game with a mixed–strategy strong Nash equilibrium.
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Figure 3.3: The Pareto frontier of the game described in Table 3.3.

Remark that the necessary condition for the existence of a mixed–strategy

strong Nash equilibrium is that, in the utility space, each point Ri = (pi, qi)

has to lie on the same line, and we already showed that this line necessarily

has a negative slope. As a consequence of the decreasing trend of this line,

for each couple of point Ri, Rj their ordering over the E[U1] axis is inverted

over the E[U2] axis, i.e. if pi < pj then qi > qj and vice versa. Consider

now the set p1 > p3 ∧ p4 > p2, these conditions together with te alignment

condition are not compatible with q1 > q2 ∧ q4 > q3, in fact

q1 > q2 ⇒p1 < p2

q4 > q3 ⇒p4 < p3

p1 > p3 ∧ p1 < p2 ⇒p3 < p2

p3 < p2 ∧ p4 > p2 ⇒p3 < p4

p3 < p4 ∧ p3 > p4 ⇒ ⊥
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In the same way it is possible to show that p1 < p3 ∧ p4 < p2 together with

q1 < q2 ∧ q4 < q3 are not compatible with the alignment condition.

Therefore the only possible sets of conditions are:

p1 > p3 ∧ p4 > p2 ∧ q1 < q2 ∧ q4 < q3

p1 < p3 ∧ p4 < p2 ∧ q1 > q2 ∧ q4 > q3

As the Ri points lie on a negative slope line we can consider only the order-

ings over the E[U1] axis:

p1 > p3 ∧ p4 > p2 ∧ p1 > p2 ∧ p4 > p3

p1 < p3 ∧ p4 < p2 ∧ p1 < p2 ∧ p4 < p3

It is easy to verify from this last set of conditions that the only alignments

that guarantee the existence of a mixed–strategy strong Nash equilibrium

are those described in Corollary 3.4.2.

3.4.2 Generic bimatrix games

Now we extend the previous result to the case in which each agent has m

actions.

Corollary 3.4.3. Given a non–degenerate two–agent game with m actions

per agent, if there is a mixed–strategy strong Nash equilibrium with |supp(x1)| =

|supp(x2)| = 2, then PM (supp(x1), supp(x2)) ≡ PC(supp(x1), supp(x2)).

Proof. Nash equilibrium constraints and Karush–Kuhn–Tucker conditions

over the actions belonging to supp(x1) and supp(x2) are the same of the

case with two actions per agent considered in the proof of Theorem 3.4.1,

notice that additional constraints over the actions off the supports are not

useful for the proof. Thus, restricting the game to the actions in supp(x1)

and supp(x2), Theorem 3.4.1 holds and therefore PM (supp(x1), supp(x2)) ≡

PC(supp(x1), supp(x2)), see, e.g., Figure 3.4.

We extend Corollary 3.4.3 to the case in which the supports have an

arbitrary size.

Theorem 3.4.4. Given a non–degenerate two–agent game with m actions

per agent, if there is a mixed–strategy strong Nash equilibrium with |supp(x1)| =

|supp(x2)| = m, then PM (supp(x1), supp(x2)) ≡ PC(supp(x1), supp(x2)).

Proof (sketch). The proof is similar to the proof of Theorem 3.4.1. Define

Ri,j = (U1(i, j), U2(i, j)). By the Nash equilibrium constraints 3.22–3.23,

and Karush–Kuhn–Tucker conditions 3.6–3.11, we have that:
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agent 2

a5 a6 a7 a8

ag
en
t
1 a1 3,0 0,3 -5,-5 -5,-5

a2 1,2 2,1 -5,-5 -5,-5

a3 -5,-5 -5,-5 5,0 0,0

a4 -5,-5 -5,-5 0,0 0,5

Table 3.4: Example of two–agent game, with more than two actions per agent, with a mixed–strategy

strong Nash equilibrium.
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Figure 3.4: The Pareto frontier of the game described in Table 3.4.

• the convex combinations, with the same weights, of points {Ri,j : ∀i}

for all j must be the same (i.e., the convex combination of the elements

of each column of the bimatrix must be the same),

• the convex combinations, with the same weights, of points {Ri,j : ∀j}

for all i must be the same (i.e., the convex combination of the elements

of each row of the bimatrix must be the same),

in addition we have that:

• each convex combination is strictly inside the polygon whose vertices

are points Ri,j, the combination not being degenerate,

• the combination must be on a Pareto efficient edge, it would be Pareto

dominated otherwise,

and therefore all the vertices must be aligned. In this way, the combination

of all the points Ri,j for every mixed strategy leads to a point that lays in the
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line connecting all the Ri,j . As a result, we have PM (supp(x1), supp(x2)) ≡

PC(supp(x1), supp(x2)). �

With can also extend this proof to the general n agents problem, given

that each convex combination is strictly inside a n–dimensional polytope

and the combination must be on a Pareto efficient edge, then the polytope

must collapse to a line (1–dimensional polytope).

3.5 Smoothed complexity

Worstcase complexity, being too pessimistic, is often a bad indicator of the

actual performance of an algorithm, and average–case complexity is difficult

to determine. A new metric of complexity, called smoothed complexity, has

been gaining interest in recent years, see [3]. It studies how the introduction

of small perturbations affects the worst–case complexity. There might be

several models of perturbations. The most common two perturbation models

are the uniform perturbation and Gaussian perturbation.

In the case of stron Nash equilibrium finding problem, given a perturba-

tion Dσ of magnitude σ, we have:

• uniform perturbation: every entry of Ui is subjected to an additive

perturbation [−σ,+σ] with uniform probability,

• Gaussian perturbation: every entry of Ui is subjected to an additive

perturbation [−z,+z] with probability 1
σ
√
2π
e−|Ui(j,k)−z|2/σ2

.

Denote by Ũi the perturbed utility matrix. The smoothed running time of

an algorithm A given a perturbation Dσ is defined as follows:

smoothed–tA = EŨ1,Ũ2∼Dσ
[tA(Ũ1, Ũ2)|U1, U2]

where tA(Ũ1, Ũ2) is the running time for the game instance (Ũ1, Ũ2). An

algorithm has smoothed time complexity if for all 0 < σ < 1 there are

positive constants c, k1, k2 such that:

smoothed–tA = O(c ·mk1 · σ−k2)

where m is the size of the game in terms of actions per agent. Basically,

a problem is in smoothed–P if it admits a smoothed polynomial time algo-

rithm. We can state the following theorem.

Theorem 3.5.1. The problem of finding a strong Nash equilibrium is in

smoothed–P class.
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Proof. Initially, we provide Algorithm 1. It is organized in three main

parts.

In the first part (Steps 1–3), the algorithm searches for a pure–strategy

strong Nash equilibrium by enumerating all the pure–strategy profiles and

verifying whether each strategy profile is a strong Nash equilibrium. The

verification is accomplished by checking whether or not Nash equilibrium

constraints are satisfied (this can be done in polynomial time in m) and by

checking whether or not the strategy profile is on the Pareto frontier (this can

be done in polynomial time as shown in [12]). If a strong Nash equilibrium

is found, the algorithm returns it, the algorithm continues otherwise. The

maximum number of iterations in the first part of the algorithm is m2.

In the second part (Steps 4–7), the algorithm verifies whether there

there are strategy profile of supports |supp(x1)| = |supp(x2)| = 2 such

that PM (supp(x1), supp(x2)) = PC(supp(x1), supp(x2)). This can be ac-

complished in polynomial time, i.e., O(m4), by checking whether there is

a line connecting all entries of all the sub–bimatrix of size 2 × 2. In the

affirmative case, the temporary variable temp is set true. Otherwise, temp

is set false.

In the third part (Steps 8–13), if temp is false, the algorithm returns

non–existence, given that, by Theorem 3.4.4, there is no mixed–strategy

strong Nash equilibrium. Otherwise, the algorithm enumerate all the mixed–

strategy profile and for each of them the algorithm verifies whether it is

a strong Nash equilibrium as done in Steps 1–3. In the latter case, the

algorithm can take exponential time.

Thus, the running time of Algorithm 1 is exponential if and only if it

needs to enumerate an exponential number of supports during Steps 8–13.

This happens only when PM (supp(x1), supp(x2)) = PC(supp(x1), supp(x2))

for some supp(x1), supp(x2) with |supp(x1)| = |supp(x2)| = 2. However,

given that the perturbations Dσ over all the entries of the utility matrices

are independent and identically distributed, the probability that the per-

turbed entries are aligned as required by Theorem 3.4.4 to have strong Nash

equilibria with |supp(x1)| = |supp(x2)| > 1 is zero. Therefore, the smoothed

running time of Algorithm 1 is polynomial in m and independent of σ, for

both uniform and Gaussian perturbations. As a result, finding a strong

Nash equilibrium is a problem in smoothed–P. �

The above result shows that, except for a space of the parameters with

null measure, games admit only pure–strategy strong Nash equilibria and

therefore that verifying the existence of a strong Nash equilibrium and find-

ing them is computationally easy. Interestingly, the instability is due to

the combination of Nash equilibrium constraints and Pareto efficiency con-
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straints. Indeed, both the problem of finding a Nash equilibrium and the

problem of finding Pareto efficiency are not sensible to perturbations.

Algorithm 1 findSNE

1: for all pure–strategy profiles do

2: if the strategy profile is an SNE then

3: return the strategy profile

4: temp← false

5: for all strategy profile with |S1| = |S2| = 2 do

6: if payoffs restricted to supports are aligned then

7: temp← true

8: if not temp then

9: return non–existence

10: else

11: for all non–pure–strategy profiles do

12: if the strategy profile is an SNE then

13: return the strategy profile



Chapter 4

Mathematical equilibrium

constraints

In this chapter our intent is to provide a set of constraints for a strategy

to be a strong Nash equilibrium, in a mathematical programming fashion.

However, as showed in Section 2.2.3, the problem of finding Nash equilibria is

equivalent to a nonlinear feasibility problem, whereas the problem of finding

Pareto dominant stategies requires a multi–objective nonlinear optimization

problem, as described in Section 2.2.1. The integration these two problems

is not straightforward. In this chapter we provide different approximations

through nonlinear feasibility programs that represent necessary or sufficient

conditions.

At first we provide a mixed–integer nonlinear program to find Nash equi-

libria that are resilient to pure strategy multilateral deviations. We prove

that, unlike in the case of Nash equilibrium, this condition is only necessary,

and not sufficient, for a strategy to be a strong Nash equilibrium. Then we

provide a nonlinear program to find a Nash equilibrium that satisfies the

Karush–Kuhn–Tucker conditions. We prove that it is necessary, but not

sufficient, for a strategy to be a strong Nash equilibrium. Moreover we pro-

vide a nonlinear program in which a strategy profile is forced to be Pareto

efficient with respect to every possible coalition in correlated–strategies. We

prove that this is sufficient, but not necessary, for a strategy to be a strong

Nash equilibrium. In the end we characterize the relationships between the

sets of solutions of these three formulations, the set of Nash equilibria, and

the set of strong Nash equilibria.

37
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4.1 Strong Nash equilibrium conditions

First of all we focus on the problem of deriving equilibrium constraints in a

mathematical programming fashion for strong Nash equilibria.

Remark that, as stated by Lemma 2.2.12, a strategy profile x is a strong

Nash equilibrium if and only if:

• it is a Nash equilibrium, that is, it satisfies constraints (2.6)–(2.9), and

• it is Pareto efficient for each non–singleton, non–empty coalition C ∈

C. That is, for each C, it is an optimal solution to the nonlinear multi–

objective optimization program in which the objective functions are

the expected utilities of the agents that are members of C.

We already defined in Section 2.2.1 the Pareto efficiency problem through the

nonlinear program (2.3), (2.4), (2.5), now we need to write the same problem

for each coalition C. Given a strategy profile x, we want to express the

expected utilities of the agents that are members of C, for every conceivable

non–singleton, non–empty coaltion. i.e. EUi(x), for all i ∈ C, for all C ∈ C.

Where C is a subset of P(N).

Remark that aC is a profile of actions, i.e. a pure strategy profile, for

each agent i, and conversely a−C is a profile of actions for the agents that

are not members of C. Moreover a (aC , a−C) is a pure strategy profile for

the whole set of agents. By Definition 2.1.2, Ui(aC , a−C) is agent i’s utility

when the agents in C play the pure strategy aC and the other agents play

the pure strategy a−C .

Remark also that, in the same way a strategy profile x can be partitioned

in a strategy for the agents in C: xC , and a strategy for the other agents:

x−C . Given a mixed–strategy xC , we denote by xi(aC(i)) the probability

with which agent i, member of C, plays his action in the pure–strategy

profile aC , or equivalently, we denote by aC(i) the action of agent i in the

pure–strategy aC .

Therefore the expected utility for agent i can be expressed as the sum

of the utility outcomes of every pure–strategy profile weighted by the prob-

ability of playing that strategy:

EUi =
∑

(aC ,a−C)∈A
Ui(aC , a−C) ·

∏

i∈C
xi(aC(i)) ·

∏

j 6∈C
xj(a−C(j))

Notice that the strategy of the agents outside the coalition C is not a vari-

able, but it is rather a parameter of the problem. We replace the notation

xj(a−C(j)) with xj(aj) where aj is the action of agent j in the given profile

of actions a−C .
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Now we can write the Problem (2.3), (2.4), (2.5) for a generic coalition

C ∈ C as:

max
xC





∑

(aC ,a−C)∈A
Ui(aC , a−C)·

·xC(aC) ·
∏

j 6∈C
xj(aj) : i ∈ C



 (4.1)

subject to: xC(aC) =
∏

i∈C
xi(aC(i)) ∀aC ∈ AC (4.2)

xi(ai) ≥ 0 ∀i ∈ C, ai ∈ Ai (4.3)
∑

ai∈Ai

xi(ai) = 1 ∀i ∈ C (4.4)

Here the objective function (4.1) is the vector of the expected utility func-

tions of the agents i of the coalition C. Constraints (4.2) force the probability

xC(aC), i.e. the probability with which the coalition plays the pure–strategy

profile aC , to be equal to the product of the probabilities xi(aC(i)), with

which each single agent i of C plays his action in aC . Constraints (4.3)

and (4.4) force xi to be a well–defined strategy.

The satisfiability problem (2.6)–(2.9) and the multi–objective programs

(4.1)–(4.4), one for each coalition C, constitute separate programs that must

be satisfied together. However their integration is not straightforward. Con-

sider, e.g., the class of bimatrix games. Only one coalition is possible:

C = {1, 2}. If we solve program (4.1)–(4.4) for C = {1, 2} with, as ad-

ditional constraints, the Nash equilibrium constraints (2.6)–(2.9), we are

searching for Nash equilibrium that is not Pareto dominated by other Nash

equilibria. Instead, a strong Nash equilibrium is an Nash equilibrium that

is Pareto efficient among all the strategy profiles, i.e. it is not Pareto dom-

inated by any other strategy. This is not surprising, in fact, if we simply

add new constraints to an optimization problem, we alter the search space

and therefore we are going to find optima that are solutions to a different

problem. Thus, in order to find a set of constraints for a strategy to be

a strong Nash equilibrium, we need to translate, for each coalition C, pro-

gram (4.1)–(4.4) into a feasibility problem that is satisfied by, and only by,

all the optimal solutions of (4.1)–(4.4).

However the derivation of such necessary and sufficient equilibrium con-

straints is an open problem. It is elusive because program (4.1)–(4.4) is

non–convex and therefore strong duality and complementary slackness con-
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dition do not hold, unlike in the case of Nash equilibrium, where agents do

not form coalitions.

In the next sections we derive necessary or sufficient conditions for a

strategy to be a strong Nash equilibrium, using three different approaches,

respectively.

4.2 Resilience to pure multilateral deviations

In this section we try to define Pareto efficiency requiring Pareto optimality

of a solution with respect to only pure joint strategies of the coalition. That

is, we require that no coalition can deviate from a generic strategy profile

to a pure strategy profile that is strictly Pareto dominant for that coalition.

A motivation for this approach comes from what is known for Nash

equilibria. Although the Nash equilibrium concept requires a strategy to be

the best with respect to all the mixed strategies, it is sufficient to require

that a strategy is best with respect to all pure strategy deviations.

Obviously, if we look at the Definition 2.2.11, resilience to pure multi-

lateral deviations is a necessary condition for a strong Nash equilibrium.

However, constraining a strategy to be Pareto optimal with respect to pure

strategies of each coalition is not straightforward. A unilateral deviation is

always possible, i.e., for each strategy, if there is an action that provides a

better utility outcome, the agent will deviate. Instead, a multilateral devi-

ation is possible if and only if all the members of the coalition can improve

their utility reward by deviating. The need for activating and deactivating

constraints related to a multilateral deviation pushes us to resort to mixed

integer programming. Given a coalition C, we can formulate the constraints

to force a Nash equilibrium to be resilient to pure multilateral deviations

of C as a mixed integer nonlinear program:

ri,C(aC) ∈ {0, 1}
∀aC ∈ AC ,

i ∈ C
(4.5)

vi −
∑

a−C∈A−C

Ui(aC , a−C) ·
∏

j∈−C

xj(aj) ≥ −M · (|C|−

−
∑

j∈C
rj,C(aC))

∀i ∈ C,

aC ∈ AC

(4.6)

vi −
∑

a−C∈A−C

Ui(aC , a−C) ·
∏

j∈−C

xj(aj) ≥ −M · ri,C(aC)
∀i ∈ C,

aC ∈ AC

(4.7)
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where M is the largest payoff of all the agents. Constraints (4.5) force

ri,C(aC) to take on binary values. If the left hand side of (4.7) is nega-

tive, then there is a pure strategy profile (aC , a−C), where a−C is fixed,

that provides a better utility for agent i, in the coalition C. Therefore we

have ri,C(aC) = 1, meaning that the deviation towards the pure strategy

(aC , a−C) is active for agent i, member of coalition C. Constraints (4.6)

force the left hand side to be positive if the variables ri,C(aC) of all the

members of the coalitions are set to one. That is, if playing (aC , a−C),

where as usual a−C is fixed, is the best for all the members of the coalitions,

then this multilateral deviation is active and the utility of each member of

the coalition must be at least the utility given by playing (aC , a−C), that is

vi ≥ EUi(aC , a−C), for every agent i in C.

Formulation 4.2.1. The problem of finding a Nash equilibrium that is
resilient to pure multilateral deviations (NEPMD) can be formulated as:

• Constraints (2.6)–(2.9)

• Constraints (4.5)–(4.7) for all C ∈ C

If there are only two agents, this set of constraints constitutes a mixed

integer linear program, given that the Nash equilibrium constraints can be

expressed in mixed integer linear fashion [24].

We can state the following theorem.

Theorem 4.2.2. The constraints 2.6–2.9, 4.5–4.7, (NEPMD) are necessary

conditions for a strategy profile to be a strong Nash equilibrium.

Proof. By Lemma 2.2.12 a strategy profile to be a strong Nash equilibrium

has to be a Nash equilibrium and by Definition 2.2.11 a strong Nash equi-

librium is resilient to multilateral deviations. If a strategy is resilient to

multilateral deviations it immediately follows that it is also resilient to pure

multilateral deviations (i.e. a propre subset of all the possible multilateral

deviations). Hence if a strategy is a strong Nash equilibrium the problem

(2.6)–(2.9), (4.5)–(4.7) for all C ∈ C, is feasible.

However, unlike in the case of Nash equilibrium, these conditions are not

sufficient, in fact:

Theorem 4.2.3. Resilience to pure multilateral deviations is not sufficient

for a Nash equilibrium to be a strong Nash equilibrium.

Proof. Consider the two–agents game described in Table 4.1. In this case

there are three Nash equilibria:
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• NE1 = (a3, a6),

• NE2 = (12a1 +
1
2a2,

1
2a4 +

1
2a5)

• NE3 = (17a1 +
1
7a2 +

5
7a3,

1
7a4 +

1
7a5 +

5
7a6).

The first one is a pure strategy, and the other two are mixed strategies. Focus

on NE1: for both agents the expected utility is 1 and there is no outcome

achievable by pure strategy multilateral deviations that provides both agents

a utility strictly greater than 1. For instance, the pure strategy (a1, a4) is

better for agent 1 than NE1, but this does not hold for agent 2. With (a2, a4)

we have the reverse. However, NE1 is not weakly Pareto efficient, as shown

by the Pareto frontier in Figure 4.1. Indeed, the mixed–strategy NE2 strictly

Pareto dominates NE1, providing an expected utility of 1.25 for both agents.

The former, being a Nash equilibrium that lies on the Pareto frontier, is a

strong Nash equilibrium.

agent 2

a4 a5 a6

ag
en
t
1 a1 5,0 0,5 0,0

a2 0,5 5,0 0,0

a3 0,0 0,0 1,1

Table 4.1: Example of a game with a Nash equilibrium which is resilient to pure–strategies multilateral

deviations but is not a strong Nash equilibrium, being Pareto dominated.
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Figure 4.1: The Pareto frontier of the game described in Table 4.1.

The conditions (2.6)–(2.9), (4.5)–(4.7) for all C ∈ C, are stronger than

the Nash equilibrium conditions, e.g, see the prisoner dilemma, described in

Table 2.2, therefore the following proposition holds.
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Proposition 4.2.4. There are Nash equilibria that do not satisfy constraints (4.5)–

(4.7).

4.3 Karush–Kuhn–Tucker Conditions

In this section we present our second formulation approach, which is based

on Karush–Kuhn–Tucker conditions. In Section 2.3.1 we defined the Karush-

Kuhn-Tucker conditions as first order necessary conditions for a solution in

nonlinear programming to be optimal. As in Chapter 3 the idea is to use

these conditions to convert the Pareto optimality problem (2.3), (2.4), (2.5),

into a feasibility problem (2.13)–(2.16) which is a set of first order necessary

conditions for local Pareto efficiency.

In Secrion 3.1.1 we already showed how it is possible to derive the

Karush–Kuhn–Tucker conditions for a bimatrix game, now we can map these

conditions to the case of Pareto efficiency for a single coalition C as follows:

• fi: is agent i’s expected utility;

• gj : is a constraint of the form xw(aw) ≥ 0;

• hk: is a constraint of the form
∑

ai∈Ai
xi(ai)− 1 = 0.

Given a coalition C, we obtain the following conditions:

∑

i∈C
λi,C ·

∑

a∈A:
aw=aw

Ui(a) ·
∏

j∈C:
j 6=w

xj(aj)·

·
∏

j 6∈C
xj(aj) + µC(aw) + νw,C = 0

∀w ∈ C,

aw ∈ Aw

(4.8)

µC(ai) · xi(ai) = 0 ∀i ∈ C, ai ∈ Ai (4.9)

λi,C ≥ 0 ∀i ∈ C (4.10)

µC(ai) ≥ 0 ∀i ∈ C, ai ∈ Ai (4.11)
∑

i∈C
λi,C = 1 (4.12)

Notice that, when using a modelling language, such as AMPL [10], the

irreflexive order relation < is not supported, hence, in this, formulation we

approximate constraint (2.15) through constraint (4.10) and (4.12).

Now, we can leverage the above results, producing a nonlinear mathe-

matical program for strong Nash equilibrium.
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Formulation 4.3.1. The problem of finding a Nash equilibrium such that
the Karush–Kuhn–Tucker conditions are satisfiable (NEKKT ) can be formu-

lated as:

• Constraints (2.6)–(2.9),

• Constraints (4.8)–(4.12) ∀C ∈ C

We can state the following theorem.

Theorem 4.3.2. The satisfiability of constraints (2.6)–(2.9), (4.8)–(4.12)
∀C ∈ C, (NEKKT ) is a necessary condition for a strategy profile to be a strong

Nash equilibrium.

Proof. By Lemma 2.2.12 a strategy profile to be a strong Nash equilibrium

has to be a Nash equilibrium and has to be Pareto efficient for every possi-

ble coalition C ∈ C. Moreover a strategy is a Nash equilibrium if and only

if satisfies the set of constraints (2.6)–(2.9). On the other hand for every

coalition C a strategy that is Pareto efficient satisfies the set of constraints

(4.8)–(4.12), as the Karush-Kuhn-Tucker conditions are, by definition, nec-

essary conditions. Therefore if a strategy profile is a strong Nash equilibrium

it satisfies constraints (2.6)–(2.9), (4.8)–(4.12) ∀C ∈ C.

However, we can show that the above conditions are not sufficient.

Theorem 4.3.3. The satisfiability of constraints (2.6)–(2.9), (4.8)–(4.12)
∀C ∈ C, (NEKKT ) is not a sufficient condition for a strategy profile to be a

strong Nash equilibrium, nor for Nash equilibria to be locally Pareto efficient.

Proof. Consider the game in Table 4.2. The game admits a mixed strategy

Nash equilibrium (12a1 +
1
2a2,

1
2a5 +

1
2a6) that gives each of the two agents

utility 1. This Nash equilibrium is Pareto dominated by, e.g., the mixed

strategy (12a3 +
1
2a4,

1
2a7 +

1
2a8) that gives each agent utility 9

4 . Moreover

the previous Nash equilibrium satisfies the Karush-Kuhn-Tucker conditions,

which, in a bimatrix game, can be expressed through constraints (3.6)–

(3.11), for all feasible λ1, λ2 with µ1(a3) = µ1(a4) = µ2(a7) = µ2(a8) = 6

and ν1 = ν2 = 1.

However, we can also show that not every Nash equilibrium satisfies the

Karush–Kuhn–Tucker conditions.

Proposition 4.3.4. There are Nash equilibria that do not satisfy the set of

constraints (4.8)–(4.12).
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agent 2

a5 a6 a7 a8

ag
en
t
1 a1 2,0 0,2 -5,-5 -5,-5

a2 0,2 2,0 -5,-5 -5,-5

a3 -5,-5 -5,-5 5,0 0,0

a4 -5,-5 -5,-5 0,0 0,5

Table 4.2: Example of a game with a Nash equilibrium that satisfies Karush–Kuhn–Tucker conditions

even though it is Pareto dominated.
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Figure 4.2: The Pareto frontier of the game described in Table 4.2.

Proof. Consider the prisoners dilemma, described in Table 2.2. We show

that conditions (3.6)–(3.11) are not satisfied considering the strategy (a2, a4),

which is a Nash equilibrium. The Karush–Kuhn–Tucker conditions at x1(a2) =

x2(a4) = 1 are:

µ1(a2) = 0

µ2(a4) = 0

5λ2 + µ1(a1) = ν1

λ1 + λ2 = ν1

5λ1 + µ2(a3) = ν2

λ1 + λ2 = ν2

By straightforward mathematics, we obtain:

3λ1 + 3λ2 = −µ1(a1)− µ2(a3)

Given that λi, µi(ai) ≥ 0 and
∑

i∈N λ = 1, the above equality is unsatisfiable

and therefore Karush–Kuhn–Tucker conditions are not satisfied.
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4.4 Correlated Pareto frontier

In this section we present our third formulation approach. In order to pro-

vide sufficient conditions, we relax the constraints of program (4.1)–(4.4),

allowing the agents belonging to coalition C to play correlated strategies.

By Proposition 2.1.8 when correlated strategies are allowed the Pareto fron-

tier becomes a convex combination of known points, hence we can write a

linear program to find Pareto efficient points.

Remark that correlated strategies include all the mixed strategies. Thus,

if a strategy profile of the members of coalition C is the best with respect

to all their correlated strategies, then it is the best also with respect to

all the mixed strategies. However, requiring Pareto optimality with respect

to correlated strategies, we may discard solutions that are optimal when

correlated strategies are not allowed.

At first, we reformulate program (4.1)–(4.4) when the members of coali-

tion C can play correlated strategies. We already defined xC(aC) in Equa-

tion (4.2) as the probability with which the coalition plays the pure–strategy

profile aC . Hence the vector xC represents the probability distribution over

the set of pure–strategy profiles AC , i.e. it is the correlated strategy profile

of the agents in the coalition C. More precisely the Equation (4.2) binds

correlated strategy to mixed strategy, therefore this constraint limits the

search space to the correlated strategies that are indeed mixed strategies.

As a correlated strategy is a probability distribution each element xC(aC)

has to be greater than, or equal to zero and all the elements in xC must sum

to one. We can state these properties with the following constraints.

xC(a) ≥ 0 ∀a ∈ AC (4.13)
∑

a∈AC

xC(a) = 1 (4.14)

Notice that the optimization problem with objective function (4.1) and

constraints (4.13), (4.14) is linear in xC , as the xj(aj) are parameters of

the problem. If a solution xC is optimal for program (4.1), (4.13), (4.14),

then there is a vector of multipliers λi ≥ 0 in which at least one multiplier is

strictly positive such that xC is an optimal solution of the following problem:
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max
xC

∑

i∈C
λi,C ·

∑

(aC ,a−C)∈A
Ui(aC , a−C) · xC(aC) ·

∏

j 6∈C
xj(aj) (4.15)

Subject to: λi,C ≥ 0, ∀i ∈ C, (4.16)
∑

i∈C
λi,C = 1, (4.17)

constraint (4.13)

constraint (4.14)

We can now derive the dual problem s:

min
vC

vC (4.18)

subject to: vC ≥
∑

i∈C
λi,C ·

∑

a−C∈A−C

Ui(aC , a−C)·

·
∏

j 6∈C
xj(aj)∀ac ∈ Ac (4.19)

where vC is the dual variable of xC . Given that the primal problem is

convex, strong duality holds and we can apply the complementary slackness

theorem [4], obtaining the following feasibility problem:

xC(ac) ·



vC −
∑

i∈C
λi,C ·

∑

a−C∈A−C

Ui(aC , a−C)·

·
∏

j 6∈C
xj(aj)



 = 0, ∀ac ∈ Ac (4.20)

constraint (4.13)

constraint (4.14)

constraint (4.19)

The above constraints are sufficient conditions for a correlated–strategy pro-

file xC to be Pareto efficient, once the strategies of agents outside C are fixed.

Remark that this problem is linear in xC . However if we want to include

the Nash equilibrium conditions, we can not limit our analysis to correlated

strategies, and therefore the problem is still nonlinear. Now, we can use the

above results to produce a nonlinear program for strong Nash equilibrium.
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Formulation 4.4.1. The problem of finding a Nash equilibrium that is
Pareto efficient when correlated strategies are allowed, with respect to every
conceivable coalition (corrSNE) can be formulated as:

• Constraints (2.6)–(2.9),

• Constraint (4.2), (4.16), (4.17), (4.19), (4.20) ∀C ∈ C.

where constraints (2.6)–(2.9) assure that x is a Nash equilibrium; constraints

(4.19), (4.20) ∀C ∈ C and constraints (4.16), (4.17) assure that, for every C,

there are some well defined multipliers λi,C such that xC is optimal among

all the correlated strategies and therefore xC is Pareto efficient; constraint

(4.2) guarantees that there exists a mixed strategy xmatching the correlated

strategy xC . We can now state the following theorem.

Theorem 4.4.2. The constraints (2.6)–(2.9), (4.2), (4.16), (4.17), (4.19),
(4.20) ∀C ∈, (corrSNE) are sufficient conditions for a strategy profile to be a

strong Nash equilibrium.

Proof. It is sufficient to notice that the correlated–Pareto frontier dominates

the Pareto frontier.

However, the above conditions are not necessary:

Theorem 4.4.3. The constraints (2.6)–(2.9), (4.2), (4.16), (4.17), (4.19),
(4.20) ∀C ∈, (corrSNE) are not necessary conditions for a strategy profile to be

a strong Nash equilibrium.

Proof. Consider the game described in Table 4.3, where ρ ∈ [0, 2). The

game has one strong Nash equilibrium, i.e., SNE = (a3, a6), but this equi-

librium does not satisfy the above constraints. Indeed, the agents’ utilities

at (a3, a6), i.e., (2, 2), are not on the correlated–strategy Pareto frontier,

i.e., the dashed line connecting (5,0) to (0,5). Thus, the above nonlinear

mathematical program is infeasible.

agent 2

a4 a5 a6

ag
en
t
1 a1 5,0 0,0 0,ρ

a2 0,0 0,5 0,ρ

a3 ρ,0 ρ,0 2,2

Table 4.3: Example of a game with a Nash equilibrium which does not lie on the correlated–strategy

Pareto frontier.
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Figure 4.3: The Pareto frontier of the game described in Table 4.3.

4.5 Relationships between the solutions

We now study the relationships between the solutions found by the formu-
lations provided in the previous sections. Given a strategic form game, call
NEPMD the set of strategies that are Nash equilibria and that are resilient to

pure multilateral deviations. Let NEKKT be the set of strategies that are Nash

equilibria and that satisfy the Karush–Kuhn–Tucker conditions. We can state the

following proposition.

Proposition 4.5.1. The following relationships hold:

• NEKKT 6⊆ NEPMD,

• NEPMD 6⊆ NEKKT .

Proof. We prove this by counterexamples. Consider the game described by Ta-

ble 4.4. It is easy to show that the Nash equilibrium (1
3
a1 + 2

3
a2,

3

4
a3 + 1

4
a4) is

resilient to pure multilateral deviations, hence it is in the set NEPMD . However it

does not satisfy the Karush–Kuhn–Tucker conditions and therefore it does not be-

long to NEKKT . This shows that there are elements in the set NEPMD \ NEKKT ,

obviously elements of this set are not strong Nash equilibria. It follows that NEKKT

is not a subset of NEPMD .

agent 2

ag
en
t
1 a3 a4

a1 1,0 0,2

a2 0,1 3,0

Table 4.4: Example of a game with a Nash equilibrium which is resilient to pure–strategies multilateral

deviations but does not satisfy the Karush–Kuhn–Tucker conditions.
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Figure 4.4: The Pareto frontier of the game described in Table 4.4.

Consider now the game described in Table 4.5. By trivial mathematics it is

possible to verify that the Nash equilibrium (a3, a6) satisfies the Karush–Kuhn–

Tucker conditions, thus it belongs to NEKKT . However it is not resilient to pure

strategies multilateral deviations as both (a1, a4) and (a2, a5) provide a better utility

for both agents, and so it does not belong to NEPMD . This shows that there are

elements in the set NEKKT \ NEPMD, and, like in the previous case, these

elements are not strong Nash equilibria. Therefore NEPMD is not a subset of

NEKKT .

agent 2

a4 a5 a6

ag
en
t
1 a1 5,2 0,0 0,0

a2 0,0 2,5 0,0

a3 0,0 0,0 1,1

Table 4.5: Example of a game with a Nash equilibrium which satisfies the Karush–Kuhn–Tucker

conditions but is not resilient to pure–strategies multilateral deviations.

Now, given a strategic form game, call SNE the set of all the strategies that are

strong Nash equilibria, and let corrSNE the set of strategies that are both Nash

equilibria and Pareto efficient, with respect to the correlated strategies. We can

prove the following proposition.

Proposition 4.5.2. The following relationship holds:

• SNE ⊂ (NEKKT∩NEPMD),

• corrSNE ⊂ SNE.

Proof. As for the first relation, the subset relation follows by Theorem 4.3.2 and

Theorem 4.2.2. In fact, as both the satisfiability Karush–Kuhn–Tucker conditions



4.5. Relationships between the solutions 51

0

1

2

3

4

5

0 1 2 3 4 5

b NE

E

E
[U

2
]

Figure 4.5: The Pareto frontier of the game described in Table 4.5.

and the resilience to pure multilateral deviations towards pure strategies are nec-

essary conditions for a strategy to be a strong Nash equilibrium, any strategy that

belongs to SNE also belongs to NEKKT and to NEPMD . Furthermore SNE is

a proper subset of (NEKKT ∩ NEPMD). Consider the game described in Ta-

ble 4.2, the strategy NE = (1
2
a1 +

1

2
a2,

1

2
a5 +

1

2
a6) is a Nash equilibrium. More-

over the strategy NE satisfies the Karush–Kuhn–Tucker conditions and is also re-

silient to multilateral deviations to pure strategies. Hence NE ∈ NEPMD and

NE ∈ NEKKT , but it is not an strong Nash equilibrium, as showed in Figure 4.2,

therefore NE 6∈ SNE.

The second relation is an immediate consequence of Theorem 4.4.2 and Theo-

rem 4.4.3.

We can summarize the relationships between the solutions as:

corrSNE ⊂ SNE ⊂ (NEKKT ∩NEPMD)

(NEKKT ∩NEPMD) ⊂ NEPMD ⊂ NE

(NEKKT ∩NEPMD) ⊂ NEKKT ⊂ NE

NEPMD 6⊆ NEKKT

NEKKT 6⊆ NEPMD

The (strict) inclusion relation induces a partial order among the defined sets, which

can be represented through a Hasse diagram, as shown in Figure 4.6.
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corrSNE

SNE

NEKKT ∩NEPMD

NEKKT NEPMD

NE

Figure 4.6: The Hasse diagram representing the partial order induced by the (strict) inclusion relation

among the sets corrSNE, SNE, NEKKT ∩NEPMD, NEKKT , NEPMD and NE.



Chapter 5

Iterative Algorithm for

Strong Nash equilibrium

In this chapter we present an algorithm for finding a strong Nash equilibrium, able

to handle mixed strategies, which is an extension of a tree search algorithm [12],

developed for the same purpose. The prior algorithm works only in the case of

two–agents game. Our aim is to design a more general algorithm which can handle

games with three or more agents.

The basic idea is to use a nonlinear solver to find a strategy which is a solution

to one of the problems presented in Chapter 4, then check whether this solution is

Pareto efficient, with respect to every conceivable non–singleton coalition. If this

is the case then the strategy is a strong Nash equilibrium, otherwise the process is

repeated, limited to a subpspace of the problem, in a branch–and–bound fashion.

However the use of nonlinear programming introduces incompleteness issues, due

to the algorithm used by the nonlinear solver.

In the first section of this chapter we describe how the algorithm works. In par-

ticular we can implement different algorithms using different oracles, i.e. functions

that provide strategies that are strong Nash candidate, one for each set of necessary

conditions (for a strategy to be a strong Nash equilibrium) defined in Chapter 4.

In the second section we discuss on how the incompleteness of the nonlinear solver

affects our algorithm. Finally, in the last part we describe how we designed our

tests and we discuss the results of the experiments.

5.1 Iterative strong Nash algorithm

In our previous analysis we could not derive a finite set of necessary and sufficient

constraints for a strategy to be a strong Nash equilibrium, and thus we can not

demand the computation of equilibria to a (nonlinear) mathematical programming

solver. Therefore we propose an algorithm that iterates between the computation

of a startegy that is a strong Nash candidate and its verification, which is logically

an extension of the algorithm presented in [12].

53
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The algorithm we propose is essentially a spatial branch–and–bound algorithm,

which uses an oracle to produce a candidate solution and then verifies whether

or not it is a strong Nash equilibrium. If not, a dominant strategy exists, and

the algorithm computes a new candidate solution in a subspace induced by the

dominant strategy. This process repeats until a strong Nash equilibrium is found

or it is proven that none exists. The oracle essentially consists in the invocation of

a nonlinear solver on one of the sets of necessary conditions for a strategy to be a

strong Nash equilibrium.

5.1.1 Operative principles

The existing algorithm, described in [12], iterates between the computation of a

Nash equilibrium, computed through a MIP Nash algorithm, and the verification

of its Pareto efficiency. However, MIP Nash is based on integer linear programming,

and with more than two agents the Nash equilibrium-finding program becomes non-

linear. Hence if we want to use mathematical programming we have no other choice

than using nonlinear models. For the oracle, we adopt our formulations for Nash

equilibrium, Formulation 2.2.8, Nash equilibrium resilient to pure multilateral de-

viations, Formulation 4.2.1, Nash equilibrium satisfying Karush–Kuhn–Tucker con-

ditions, Formulation 4.3.1, and Nash equilibrium satisfying both Formulation 4.2.1

and Formulation 4.3.1. As we proved, these are all sets of necessary, but not suffi-

cient, conditions for a strategy to be a strong Nash equilibrium.

Using a proper subset of the Nash equilibria to generate the solution candidates,

we also aim to reduce the tree search depth. In fact, assume that candidate solutions

are sampled with uniform probability distribution, let:

• PN = |SNE|
|NE| be the probability that a candidate from NE is a strong Nash

equilibrium,

• PK = |SNE|
|NEKKT | be the probability that a candidate from NEKKT is a strong

Nash equilibrium,

• PM = |SNE|
|NEPMD| be the probability that a candidate from NEPMD is a strong

Nash equilibrium,

• PMK = |SNE|
|NEPMD| be the probability that a candidate from NEPMD ∩

NEKKT is a strong Nash equilibrium;

We showed in Section 4.5 the relationships among these sets, in particular we

have that NEKKT and NEPMD are, in general, proper subsets of NE , therefore

|NE | > |NEKKT | and |NE | > |NEPMD |. We also showed that NEPMD ∩ NEKKT

is a proper subset of both NEPMD and NEKKT . This implies that the following

relations hold:

• PN < PK < PMK ,

• PN < PM < PMK ,
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5.1.2 Algorithm details

The algorithm is reported in Algorithm 2 and works as follows. The parameter

space is the n–dimensional space where candidate solutions have to be searched for

and it is initialized with the whole agents’ utility space. Notice that the agents’

utility space is can be defined as s = [Umin
1

, Umax
1

]× · · · × [Umin
n , Umax

n ]. At first a

solution candidate is generated by the oracle within the given space. As the oracle

uses a set of necessary conditions we assume that if a candidate solution can not be

generated, then a solution does not exists in the given search space. However, if the

oracle fails to find any candidate solution, as the nonlinear mathematical program

of the oracle is solved with an incomplete algorithm, a solution may indeed exists,

thus the overall algorithm is incomplete. We will further discuss these issues in the

following section.

Algorithm 2 iteratedFindSNE(space)

Require: The search space

1: x← callOracle(space)

2: if x = ∅ then

3: return ∅

4: isSNE ← true

5: for all C ∈ C do

6: x′ = findParetoDominantStrategy(x, C)

7: if x′ 6= ∅ then

8: isSNE ← false

9: for all i ∈ N do

10: x← iteratedFindSNE(subSpace(space,x′, i)
11: if x 6= ∅ then

12: return x

13: if isSNE then

14: return x

15: return ∅

Once a candidate solution is found, we check whether or not it is a strong Nash

equilibrium. The function isParetoDominant(x, C) checks if the strategy x is Pareto

dominated with respect to the coalition C. Given a coalition C, and a strategy x,

the strategies of the players outside C, x̄−C are fixed, then we look for a strategy

x′ = (x′
C , x̄−C) that Pareto dominates x. If such a strategy does not exists then x

is Pareto efficient with respect to the coalition C and the functions returns the value

∅. Conversely, the candidate is not a strong Nash equilibrium and the functions

returns a x′, which dominates x.

Given a solution candidate x we have to check if it is Pareto efficiency with

respect to every non–singleton coalition C ∈ C. If this is the case then it is a strong

Nash equilibrium and, after the for cycle, at Steps 5–12, the value of isSNE is
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true, therefore, at Step 14, the algorithm terminates and returns the strong Nash

equilibrium x. Otherwise, at some iteration of the cycle at Steps 5–12, a dominant

strategy x′ will be found, the variable isSNE is set to false and we proceed with

the branch step.

The branch–and–bound step consists in a partition of the search space. Given

an agent i, if the candidate solution x is not a strong Nash equilibrium, then there

exists a dominant (with respect to a coalition C ∈ C) strategy x′, therefore a

subspace of the search space is generated with EUi(x
′) as a lower bound for the

utility of the i th agent. If we denote Ūi = EUi(x
′), the subspace induced by agent i

is defined by s′ = S1 × · · · × Sn, where Sk is the utility range for the k–th agent.

Therefore Sk = [Ūi, U
max
i ] if the k–th agent is the agent–i, Sk = [Umin

j , Umax
j ] for

each agent–j different than agent–i. The function subSpace(space,x′, i) generates

the subspace induced by the strategy x′, which dominates x, and agent i, in the

current space.

This partition step allows to exclude the previous candidate solution x form the

search space. As for each agent a different subspace is induced, we have that the

branching factor is equal to the number of agents for every coalition C ∈ C, where

a dominant strategy can be found. The worst case is when a solution candidate

is Pareto dominated in every coalition, and therefore the branching factor is b =

n · (2n − n− 1).

Once the search subspace is defined the algorithm recursively calls itself until

a solution is found or the empty set is returned. At every branch, if a solution is

found then the current iteration terminates and returns this solution. Otherwise, if

the search in every subspace returns no solution then the execution reaches Step 15

and the empty set is returned, as it is assumed that, in the current space, the oracle

is unable to generate a candidate solution that is a strong Nash equilibrium.

The algorithm behaves as a depth–first tree search algorithm. In fact we can

consider every node of the tree as a different search space, and the i–th child of a

node is the subspace of the parent, induced by the utility of the i–th agent. The

root node is the whole agents’ utility space.

5.1.3 Implementation

We implemented the algorithm using Java programming language. For the oracle

function we used AMPL [10] as the modeling language to provide our formulation

and SNOPT (Sparse Nonlinear OPTimizer) [27] to solve them. The algorithm is

implemented for three–agents games, however, using the general formulations pro-

vided in the previous chapters, it is possible to generalize it to the m agents case. In

Appendix A the AMPL translations for the three–players case of Formulation 4.2.1,

Formulation 4.3.1 and Formulation 4.4.1 are reported.

5.2 Nonlinear solver issues

As stated in the previous section, the oracle function provides a solution for a

nonlinear program using SNOPT, the main issue is that its core, a sparse sequential
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quadratic programming algorithm, is not complete. Therefore it may be unable to

find a solution for the feasibility problems, that represent the strong Nash necessary

conditions, even though a solution actually exists. Remark that, differently from

the case of Nash equilibrium, a strong Nash equilibrium may not exists, therefore

we need a stop condition for a spatial search algorithm. Our algorithm relies on the

necessity hypothesis to check whether the equilibrium exists or not, i.e. in a given

search space, if the necessary conditions can not be satisfied, then it is assumed

that a strong Nash equilibrium does not exists. However these conditions may be

turn out not satisfiable due to the incompleteness of the nonlinear solver, rather

than because a solution does not actually exists. Therefore an algorithm that relies

on this kind of solver to find solution candidates is incomplete. We can state the

following theorem.

Theorem 5.2.1. The Algorithm 2 is not complete.

We use the same nonlinear solver to check wether a strategy is Pareto domi-

nated, at least for the grand coalition in three–agents games. We check if there

exists a strategy, different from the given one, that provides a better utility out-

come. If such a strategy does not exists, then we consider the given strategy Pareto

efficient. Again the solver may be unable to find a dominant strategy because of its

incompleteness, therefore we might consider a strategy Pareto efficient even when

it is actually dominated. As if a solution candidate is found to be Pareto efficient

with respect to every conceivable coalition, it is returned as a solution, it turns out

that our algorithm may find solutions that are not strong Nash equilibria. We can

state the following theorem.

Theorem 5.2.2. The Algorithm 2 is not sound.

However, using an incomplete nonlinear solver we can still design a sound algo-

rithm, that we can use for control purposes, using a set of sufficient conditions for

a strategy to be a strong Nash equilibrium. In fact, if a strategy satisfies sufficient

conditions, the correctness of the nonlinear solver guarantees that this strategy is

a strong Nash equilibrium. We can state the following theorem.

Theorem 5.2.3. The algorithm that finds a strong Nash equilibrium by solving

the problem defined by Formulation 4.4.1 (corrSNE), using a nonlinear solver, is

sound but not complete.

Notice that, by Theorem 4.4.3, it is clear that such an algorithm would not be

complete even with a complete solver.

A typical fix for the problem of the incompleteness of some nonlinear optimiza-

tion algorithms is using random restarts. Thus if there is a set of start points which

leads to local optima or, in the worst case, to singular points, setting many differ-

ent random start points can give a chance to avoid such undesired situations. In

our algorithm we implemented this technique as follows: when invoking the oracle

function a maximum number of random restarts has to be provided. If the first

execution of the oracle, with a random start point, that is a random initial strategy
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profile for each agent, fails to find a strategy that satisfies the given set of neces-

sary condition, then the oracle is executed again with a different initial strategy.

This process repeats until a candidate solution is found or the given number of

maximum. In the worst case, i.e. there are no strategies satisfying the given set

of conditions, the oracle function is executed a number of times that matches the

given number of maximum random restarts.

5.3 Experimental results

As the algorithm is not sound nor complete we are interested in evaluating its

accuracy, and how it is affected by the size of the game and the number of maximum

restarts. Moreover when a solution is found we interested in details on the algorithm

performances such as the tree depth and the average time. The main issue is that

to test the accuracy it is necessary to know in advance whether a given game has

a strong Nash equilibrium or not, hence we have to define proper test sets.

5.3.1 Test settings and objectives

First of all we focus on the total problem of finding Nash equilibria. We use SNOPT

to solve the nonlinear program defined by in (2.6)–(2.9), with uniform random

restarts over the strategy space, in order to find a Nash equilibrium. The accuracy

is measured as the number of games where the problem is solved, over the total

number games in the test set. As the set of conditions (2.6)–(2.9) is a subset of every

formulation in Chapter 4, it is meaningful to check if the nonlinear solver is able to

find a strategy that satisfies this problem with sufficient reliability. We expect the

reliability to be an increasing function of the maximum number of random restarts

allowed.

With the same approach we would be able to test the reliability of the strong

Nash equilibria finding algorithm but, in general, a strong Nash equilibrium may

not exists. However, by the considerations in Chapter 3 we know that random

games allow only pure strategy strong Nash equilibria, we can then derive sufficient

conditions for a random game to have no strong Nash equilibrium.

Proposition 5.3.1. If a strategic form game, with random payoff values, does

not have a pure strategy Nash equilibrium, then it does not have a strong Nash

equilibrium.

Moreover even if pure strategy Nash equilibria exist we are still able to de-

termine sufficient conditions that, when satisfied, guarantee that a strong Nash

equilibrium does not exist.

Proposition 5.3.2. If in a strategic form game with random payoff values, every

pure strategy Nash equilibrium is Pareto dominated by at least a different pure

strategy, then a strong Nash equilibrium does not exist.

It is clear that these conditions are sufficient but not necessary for a pure

strategy to be a strong Nash equilibrium. With these two requirements we can
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define the noSNE class, i.e. a class of games in which we know in advance that

strong Nash equilibria does not exist. On the other hand if the problem defined

by Formulation 4.4.1, corrSNE , is satisfiable by Theorem 5.2.3 we are sure the

game has a strong Nash equilibrium. Therefore we can define define a test class

hasSNE, and we know in advance that every game of this class has a strong Nash

equilibrium.

We can now test the accuracy of the our algorithm in two steps. At first we

check how often a solution is found when it actually exists, then we check how often

it finds a strong Nash equilibrium when the game does not have any.

We define three test cases.

• Test of the accuracy of the nonlinear program used to find Nash equilibria

and how it is affected by random restarts.

• Test of the accuracy of the strong Nash equilibrium algorithm in two steps:

– with the class of games hasSNE , we test how the algorithm is able to

find a solution given that it exists,

– with the class of games noSNE , we test how often the algorithm finds

a solution given that it does not exist.

However we have to consider that also the game class has an impact on the

nonlinear solver, in fact the payoff values characterize the utility space. For some

game classes the shape of the utility space is extremely regular, e.g. consider zero–

sum games or polymatrix games, and for some other classes, as the random class,

the characteristics of the utility space are not known in advance and its shape is

typically irregular.

The games samples for our test sets are generated using GAMUT [21]. We

generate instances of three agents games, with the same number of actions for esch

agent, from the RandomGame class. The experiments are conducted on a Intel

2.20GHz processor with Linux kernel 2.6.32.

5.3.2 Test results

In Table 5.1 we present the result of the execution of SNOPT to solve the NE

problem, Formulation 2.2.8. In the first column the number of actions per agent are

reported. The second field is the number of maximum random restarts allowed. The

accuracy is the percentage of games in which the nonlinear solver is able to find a

Nash equilibrium. In the time field the average time to compute a Nash equilibrium

is reported, notice that in general the time to compute a Nash equilibrium may be

different from the SNOPT execution time, as multiple restarts may be required.

In the restart column we report the average number of random restarts required

to compute a Nash equilibrium. Finally in the sample size column the number of

tested games is reported. Notice that when the maximum random restart parameter

is set to zero the solver is executed only once without initializing a random starting

strategy. Therefore in this case the time parameter matches the average time

required by SNOPT to solve the NE problem.
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From the experimental results we notice that SNOPT performances are quite

bad for this kind of problem if we do not provide random start points, allowing

multiple iterations. Even with a low number of different random starting point

accuracy increases, in particular for the higher dimension games. Notice that the

higher is the number of actions per agent the higher is the number of average

restarts needed to compute a solution. With a maximum of 50 restarts from random

starting points of the nonlinear solver we achieve a satisfactory accuracy, however

the average computation time greatly increases.

Max restarts Actions Accuracy Time Restarts Sample size

0 restart

2 60% 27,3 ms - 200

4 29% 35,2 ms - 100

6 16% 51,4 ms - 160

8 7% 116,3 ms - 160

10 6% 202,9 ms - 150

10 restarts

2 75% 110,3 ms 2,8 200

4 73% 182,33 ms 3,9 100

6 77% 338,3 ms 4,4 160

8 62% 643,9 ms 5,4 160

10 52% 1692,2 ms 6,3 150

25 restarts

2 85% 216,6 ms 6,1 200

4 92% 224,1 ms 4,8 100

6 91% 507 ms 7,2 160

8 89% 1043 ms 8,9 160

10 78% 2341 ms 11,1 150

50 restarts

2 91% 312,18 ms 8,8 200

4 95% 289,9 ms 6,5 100

6 98% 497,4 ms 6,9 160

8 97% 1047,9 ms 9,5 160

10 94% 2903,9 ms 14,8 150

100 restarts

2 93% 373,1 ms 11,9 200

4 98% 309,1 ms 6,7 100

6 99% 619,6 ms 8,4 160

8 99% 1240 ms 10,9 160

10 99% 3473,2 ms 17,1 150

Table 5.1: Experimental results: properties of Nash equilibrium–finding with SNOPT

Given the previous considerations we test the algorithm setting the maximum

number of restarts, for the solution of the nonlinear problems, from different random

points to 50. We test now the accuracy of our algorithm on the hasSNE game class.

For these games we used a mix of games from different classes. It turns out that

when the algorithm uses the NEPMD model, ref. to Formulation 4.2.1, for the

oracle it has a very low accuracy (always below 10%), probably due to the high

number of variables subjected to the integrality constraint, therefore for the oracle

implementation we focus on the NE , ref. to Formulation 2.2.8, and NEKKT , ref.
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to Formulation 4.3.1, models. In Table 5.3 we report the result on tests performed

on 50 games. The NE and NEKKT columns contain the fraction of games in which

the algorithm was able to find a strong Nash equilibrium using for the oracle the

NE and the NEKKT formulation respectively. The fields average NE depth and

average NEKKT depth show the average number of levels visited by the tree–search

algorithm.

Actions NE NEKKT Avg. NE depth Avg. KKT depth

2 92% 88% 2,8 1,2

4 94% 92% 3,4 1,5

6 90% 78% 3,7 1,2

8 88% 66% 5,2 1,3

Table 5.2: Experimental results: accuracy of SNE–finding algorithm, given a strong Nash equilibrium

exists.

We also test the accuracy of our algorithm on the noSNE game class. The

results on tests performed on 50 games are showed in Table 5.3. In this case the

percentages reported in this table are the fraction of games in which a strong Nash

equilibrium is found even if it does not exists.

Actions NE err. NEKKT err. Avg. NE depth Avg. KKT depth

2 4% 0% 2,8 1

4 6% 2% 3,5 1,1

6 6% 0% 4,2 1

8 12% 4% 4,8 1

Table 5.3: Experimental results: percentage of errors of SNE–finding algorithm, given a strong Nash

equilibrium does not exists.

From this experiments we can see that if a strong Nash equilibrium exists,

the algorithm has an higher accuracy when using for the oracle the nonlinear NE

feasibility problem, rather than the NEKKT problem. However in this case there

are more errors (false positives) when searching a strong Nash equilibrium in games

that do not have one. When the algorithm uses the NEKKT model for the oracle the

tree search algorithm typically expands only the first level, given that a candidate

solution exists at that level, and seldom it reaches the third level. Whereas if we

use the NE model for the oracle on average we obtain deeper search trees. As a

consequence in general we have a lower execution time when using the NEKKT

model, given all the other parameters. However when the dimensions of the game

increase, there is in both cases a general performance degeneration.
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Chapter 6

Conclusions and Future

Works

In this thesis, we provided an extended study on the solutions of games, played by

rational agents, that are resilient to unilateral and multilateral deviations, known

as strong Nash equilibria.

The first part of this work is focused on the study of bimatrix games where a

mixed–strategy Nash equilibrium exists, on their characterization and on the defi-

nition of a smoothed–complexity class for the problem of strong Nash equilibrium

finding.

The computational study of strong Nash equilibrium is a challenging task. The

literature provides a thorough computational characterization of Nash equilibrium,

while few results are known about strong Nash equilibrium and these two solution

concepts present different properties (e.g., Nash finding is a total problem, while

strong Nash finding is not). The problem of finding a strong Nash equilibrium in a

strategic–form game has shown to be NP–complete when the number of agents is

a constant. However a smoothed complexity class for this problem is not known.

In this work we were able to show that:

• if, in a bimatrix game a mixed–strategy strong Nash equilibrium exists, then

the payoffs, restricted to the actions in the support of the equilibrium, must

satisfy a restrictive property: they must lay on the same line in agents’

utilities space,

• finding a strong Nash equilibrium is in smoothed–P , admitting a determinis-

tic support–enumeration algorithm with smoothed polynomial running time,

and therefore that hard instances are isolated.;

The last result allowed us to show that, except for a null measure space of the

parameters, strategic–form games admit only pure–strategy strong Nash equilibria.

In the second part of this thesis we propose a general algorithm to find strong

Nash equilibria in games with three or more players. This algorithm extends the

one presented in [12], which works only with two agents game, to the case with
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multiple agents. The main contributions of this second part are:

• a nonlinear program for finding a Nash equilibrium that is resilient to pure

strategy coalitional deviations; we showed that it is a necessary condition for

a strategy to be a strong Nash equilibrium, but not sufficient,

• a nonlinear program to find Nash equilibria that satisfy Karush–Kuhn–Tucker

conditions; we showed that it is necessary for a strategy to be a strong Nash

equilibrium, but not sufficient,

• a nonlinear program to find Nash equilibria that are Pareto efficient for each

coalition with respect to coalition correlated–strategies; we showed that it is

sufficient for a strategy to be a strong Nash equilibrium, but not necessary,

• a tree search algorithm for strong Nash equilibrium finding; we leveraged our

necessary conditions to obtain better oracles for use at the search tree nodes.

The problem whether there is a necessary and sufficient set of equilibrium con-

straints in mathematical programming fashion is left open.

Experiments showed the viability of the approach. Using the new necessary

conditions in the oracle significantly reduces search tree size compared to using

Nash equilibrium conditions alone. However we also showed that, even though the

use of nonlinear mathematical programming tools is necessary, because the strong

Nash equilibrium problem with more than two agents is nonlinear, it has drawbacks:

• in order to find a solution we may require random restarts,

• solving nonlinar problems with Sparse Nonlinear OPTimizer, whose algo-

rithm is not complete, in general lead our algorithms to be incomplete or not

sound,

• the performance of the algorithm get worse as the game size increases.

As there are many results there are also many future research directions that

can be explored.

• In order to compare the performance of our algorithm with those of the one

presented in [12], it is possible to use compactly representable games that do

not require nonlinear programming, even with more than two agents, such as

polymatrix games. Thanks to this kind of games the linear algorithm of [12],

which is sound and complete, would be able to run on a three–players game,

however it has to be modified in order to work on polymatrix games.

• Moreover, it would be interesting to check how the algorithm general perfor-

mances change using a nonlinear solver different than SNOPT.

• The algorithm we developed has good performances, in terms of average tree

growth, however the use of many random start points to solve the nonlinar

feasibility problems with an adequate reliability entails a longer execution

time. A possible research direction is to develop a sound and complete algo-

rithm, able to deal with mixed strategies, and compare its time performances

with the algorithm presented here.
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• In this work we focused our interest on exact solutions, however it is possible

to find solutions allowing a certain error, i.e. an approximate solution. A

possible future research direction is to provide a study on the computational

complexity, both worst case and smoothed, of approximating a strong Nash

equilibrium. Moreover, for such a problem, there will be the need to study

and design new algorithms.

• Furthermore, we defined the strong Nash correlated equilibrium as a spe-

cial case of strong Nash equilibrium, but we did not provide an extensive

analysis on its properties. A subject for future works could be a study on

computational issues related to this kind of equilibrium.

• It would also be interesting to evaluate in depth the performance of both non–

linear programming solvers and mathematical programming with equilibrium

constraints [18] solvers.

• Finally one of the main topic still left open is to determine whether it is

possible or not to derive a finite set of necessary and sufficient conditions for

a strategy to be a strong Nash equilibrium.
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Appendix A

AMPL Models for

Three–Agents Games

Nash equilibrium resilient to pure multilateral de-

viations

### SETS ###

set A1;

set A2;

set A3;

### VARIABLES ###

#Strategy variables

var x1{A1};

var x2{A2};

var x3{A3};

#Nash Equilibrium NLCP variables

var v1;

var v2;

var v3;

#PMD Resilience binary grand coalition variables

rgc1{A1,A2,A3};

rgc2{A1,A2,A3};

rgc3{A1,A2,A3};

#PMD Resilience binary agent 1, agent 2 coalition variables

r121{A1,A2};

r122{A1,A2};

69
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#PMD Resilience binary agent 1, agent 3 coalition variables

r131{A1,A3};

r132{A1,A3};

#PMD Resilience binary agent 2, agent 3 coalition variables

r231{A2,A3};

r232{A2,A3};

### PARAMETERS ###

param a{A1,A2,A3};

param b{A1,A2,A3};

param c{A1,A2,A3};

param M:=100;

### OBJECTIVE ###

maximize foo: 1;

### CONSTRAINTS ###

subject to mixedStrategy1:

sum{i in A1} x1[i] = 1;

subject to mixedStrategy2:

sum{j in A2} x2[j] = 1;

subject to mixedStrategy3:

sum{k in A3} x3[k] = 1;

subject to mixedStrategy4{i in A1}:

x1[i] >= 0;

subject to mixedStrategy5{j in A2}:

x2[j] >= 0;

subject to mixedStrategy6{k in A2}:

x3[k] >= 0;

subject to NashEquilibrium1 {i in A1}:

v1 - sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k] >= 0;

subject to NashEquilibrium2 {j in A2}:

v2 - sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k] >= 0;

subject to NashEquilibrium3 {k in A3}:

v3 - sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j] >= 0;

subject to NashEquilibrium4 {i in A1}:

x1[i]*(v1 - sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k])=0;

subject to NashEquilibrium5 {j in A2}:

x2[j]*(v2 - sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k])=0;

subject to NashEquilibrium6 {k in A3}:

x3[k]*(v3 - sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j])=0;

#### PMD Grand coalition ####
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subject to BinaryGrandCoalition1{i in A1, j in A2, k in A3}:

rgc1[i,j,k] >= 0;

subject to BinaryGrandCoalition2{i in A1, j in A2, k in A3}:

rgc2[i,j,k] >= 0;

subject to BinaryGrandCoalition3{i in A1, j in A2, k in A3}:

rgc3[i,j,k] >= 0;

subject to BinaryGrandCoalition4{i in A1, j in A2, k in A3}:

rgc1[i,j,k]*(1-rgc1[i,j,k]) = 0;

subject to BinaryGrandCoalition5{i in A1, j in A2, k in A3}:

rgc2[i,j,k]*(1-rgc2[i,j,k]) = 0;

subject to BinaryGrandCoalition6{i in A1, j in A2, k in A3}:

rgc3[i,j,k]*(1-rgc3[i,j,k]) = 0;

subject to PMDGrandCoalition1{i in A1, j in A2, k in A3}:

v1 - a[i,j,k] >=

-M*(3-rgc1[i,j,k]-rgc2[i,j,k]-rgc3[i,j,k]);

subject to PMDGrandCoalition2{i in A1, j in A2, k in A3}:

v2 - b[i,j,k] >=

-M*(3-rgc1[i,j,k]-rgc2[i,j,k]-rgc3[i,j,k]);

subject to PMDGrandCoalition3{i in A1, j in A2, k in A3}:

v3 - c[i,j,k] >=

-M*(3-rgc1[i,j,k]-rgc2[i,j,k]-rgc3[i,j,k]);

subject to PMDGrandCoalition4{i in A1, j in A2, k in A3}:

v1 - a[i,j,k] >= -M*rgc1[i,j,k];

subject to PMDGrandCoalition5{i in A1, j in A2, k in A3}:

v2 - b[i,j,k] >= -M*rgc2[i,j,k];

subject to PMDGrandCoalition6{i in A1, j in A2, k in A3}:

v3 - c[i,j,k] >= -M*rgc3[i,j,k];

#### PMD agent 1, agent 2 coalition ####

subject to Binary12Coalition1{i in A1, j in A2}:

r121[i,j] >= 0;

subject to Binary12Coalition2{i in A1, j in A2}:

r122[i,j] >= 0;

subject to Binary12Coalition3{i in A1, j in A2}:

r121[i,j]*(1-r121[i,j]) = 0;

subject to Binary12Coalition4{i in A1, j in A2}:

r122[i,j]*(1-r122[i,j]) = 0;

subject to PMD12Coalition1{i in A1, j in A2}:

v1 - sum{k in A3} a[i,j,k]*x3[k] >=

-M*(2-r121[i,j]-r122[i,j]);

subject to PMD12Coalition2{i in A1, j in A2}:

v2 - sum{k in A3} b[i,j,k]*x3[k] >=

-M*(2-r121[i,j]-r122[i,j]);

subject to PMD12Coalition3{i in A1, j in A2}:

v1 - sum{k in A3} a[i,j,k]*x3[k] >= -M*r121[i,j];
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subject to PMD12Coalition4{i in A1, j in A2}:

v2 - sum{k in A3} b[i,j,k]*x3[k] >= -M*r122[i,j];

#### PMD agent 1, agent 3 coalition ####

subject to Binary13Coalition1{i in A1, k in A3}:

r131[i,k] >= 0;

subject to Binary13Coalition2{i in A1, k in A3}:

r132[i,k] >= 0;

subject to Binary13Coalition3{i in A1, k in A3}:

r131[i,k]*(1-r131[i,k]) = 0;

subject to Binary13Coalition4{i in A1, k in A3}:

r132[i,k]*(1-r132[i,k]) = 0;

subject to PMD13Coalition1{i in A1, k in A3}:

v1 - sum{j in A2} a[i,j,k]*x2[j] >=

-M*(2-r131[i,k]-r132[i,k]);

subject to PMD13Coalition2{i in A1, k in A3}:

v3 - sum{j in A2} c[i,j,k]*x2[j] >=

-M*(2-r131[i,k]-r132[i,k]);

subject to PMD13Coalition3{i in A1, k in A3}:

v1 - sum{j in A2} a[i,j,k]*x2[j] >= -M*r131[i,k];

subject to PMD13Coalition4{i in A1, k in A3}:

v3 - sum{j in A2} c[i,j,k]*x2[j] >= -M*r132[i,k];

#### PMD agent 2, agent 3 coalition ####

subject to Binary23Coalition1{j in A2, k in A3}:

r231[j,k] >= 0;

subject to Binary23Coalition2{j in A2, k in A3}:

r232[j,k] >= 0;

subject to Binary23Coalition3{j in A2, k in A3}:

r231[j,k]*(1-r231[j,k]) = 0;

subject to Binary23Coalition4{j in A2, k in A3}:

r232[j,k]*(1-r232[j,k]) = 0;

subject to PMD23Coalition1{j in A2, k in A3}:

v2 - sum{i in A1} b[i,j,k]*x1[i] >=

-M*(2-r231[j,k]-r232[j,k]);

subject to PMD23Coalition2{j in A2, k in A3}:

v3 - sum{i in A1} c[i,j,k]*x1[i] >=

-M*(2-r231[j,k]-r132[j,k]);

subject to PMD23Coalition3{j in A2, k in A3}:

v2 - sum{i in A1} b[i,j,k]*x1[i] >= -M*r231[j,k];

subject to PMD23Coalition4{j in A2, k in A3}:

v3 - sum{i in A1} c[i,j,k]*x1[i] >= -M*r232[j,k];
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Correlated strategy strong Nash equilibrium

### SETS ###

set A1;

set A2;

set A3;

### VARIABLES ###

#Strategy variables

var x1{A1};

var x2{A2};

var x3{A3};

#Nash Equilibrium NLCP variables

var v1;

var v2;

var v3;

#Correlated strategy variables Grand Coalition

var xcgc{A1,A2,A3};

var ugc;

var lambdagc1>=0;

var lambdagc2>=0;

var lambdagc3>=0;

#Correlated strategy variables agent 1, agent 2 Coalition

var xc12{A1,A2};

var u12;

var lambda121>=0;

var lambda122>=0;

#Correlated strategy variables agent 1, agent 3 Coalition

var xc13{A1,A3};

var u13;

var lambda131>=0;

var lambda132>=0;

#Correlated strategy variables agent 2, agent 3 Coalition

var xc23{A2,A3};

var u23;

var lambda231>=0;

var lambda232>=0;

### PARAMETERS ###

param a{A1,A2,A3};
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param b{A1,A2,A3};

param c{A1,A2,A3};

### OBJECTIVE ###

maximize foo: 1;

### CONSTRAINTS ###

subject to mixedStrategy1:

sum{i in A1} x1[i] = 1;

subject to mixedStrategy2:

sum{j in A2} x2[j] = 1;

subject to mixedStrategy3:

sum{k in A3} x3[k] = 1;

subject to mixedStrategy4{i in A1}:

x1[i] >= 0;

subject to mixedStrategy5{j in A2}:

x2[j] >= 0;

subject to mixedStrategy6{k in A2}:

x3[k] >= 0;

subject to NashEquilibrium1 {i in A1}:

v1 - sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k] >= 0;

subject to NashEquilibrium2 {j in A2}:

v2 - sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k] >= 0;

subject to NashEquilibrium3 {k in A3}:

v3 - sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j] >= 0;

subject to NashEquilibrium4 {i in A1}:

x1[i]*(v1 - sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k])=0;

subject to NashEquilibrium5 {j in A2}:

x2[j]*(v2 - sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k])=0;

subject to NashEquilibrium6 {k in A3}:

x3[k]*(v3 - sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j])=0;

### Grand Coalition ###

subject to MixedToGrandCoalitionCorr{i in A1,j in A2,k in A3}:

xcgc[i,j,k] = x1[i]*x2[j]*x3[k];

subject to corrGrandCoalition1{i in A1, j in A2, k in A3}:

xcgc[i,j,k]>=0;

subject to corrGrandCoalition2:

sum{i in A1, j in A2, k in A3} xcgc[i,j,k] = 1;

subject to corrGrandCoalition3:

lambdagc1+lambdagc2+lambdagc3=1;

subject to corrGrandCoalition4{i in A1, j in A2, k in A3}:

ugc>=lambdagc1*a[i,j,k]+lambdagc2*b[i,j,k]+

lambdagc3*c[i,j,k];
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subject to corrGrandCoalition5{i in A1, j in A2, k in A3}:

xcgc[i,j,k]*(ugc-lambdagc1*a[i,j,k]+lambdagc2*b[i,j,k]

+lambdagc3*c[i,j,k])=0;

### Agent 1, agent 2 Coalition ###

subject to MixedTo12CoalitionCorr{i in A1, j in A2}:

xc12[i,j] = x1[i]*x2[j];

subject to corr12Coalition1{i in A1, j in A2}:

xc12[i,j]>=0;

subject to corr12Coalition2:

sum{i in A1, j in A2} xc12[i,j] = 1;

subject to corr12Coalition3:

lambda121+lambda122=1;

subject to corr12Coalition4{i in A1, j in A2}:

u12>=lambda121*(sum {k in A3} (a[i,j,k]*x3[k]))+

lambda122*(sum {k in A3} (b[i,j,k]*x3[k]));

subject to corr12Coalition5{i in A1, j in A2}:

xc12[i,j]*(u12-lambda121*(sum {k in A3} (a[i,j,k]*x3[k]))+

lambda122*(sum {k in A3} (b[i,j,k]*x3[k])))=0;

### Agent 1, agent 3 Coalition ###

subject to MixedTo13CoalitionCorr{i in A1, k in A3}:

xc13[i,k] = x1[i]*x3[k];

subject to corr13Coalition1{i in A1, k in A3}:

xc13[i,k]>=0;

subject to corr13Coalition2:

sum{i in A1, k in A3} xc13[i,k] = 1;

subject to corr13Coalition3:

lambda131+lambda132=1;

subject to corr13Coalition4{i in A1, k in A3}:

u13>=lambda131*(sum {j in A2} (a[i,j,k]*x2[j]))+

lambda132*(sum {j in A2} (c[i,j,k]*x2[j]));

subject to corr13Coalition5{i in A1, k in A3}:

xc13[i,k]*(u13-lambda131*(sum {j in A2} (a[i,j,k]*x2[j]))+

lambda132*(sum {j in A2} (c[i,j,k]*x2[j])))=0;

### Agent 2, agent 3 Coalition ###

subject to MixedTo23CoalitionCorr{j in A2, k in A3}:

xc23[j,k] = x2[j]*x3[k];

subject to corr23Coalition1{j in A2, k in A3}:

xc23[j,k]>=0;

subject to corr23Coalition2:

sum{j in A2, k in A3} xc23[j,k] = 1;

subject to corr23Coalition3:

lambda231+lambda232=1;
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subject to corr23Coalition4{j in A2, k in A3}:

u23>=lambda231*(sum {i in A1} (b[i,j,k]*x1[i]))+

lambda232*(sum {i in A1} (c[i,j,k]*x1[i]));

subject to corr23Coalition5{j in A2, k in A3}:

xc23[j,k]*(u23-lambda231*(sum {i in A1} (b[i,j,k]*x1[i]))+

lambda232*(sum {i in A1} (c[i,j,k]*x1[i])))=0;

Nash equilibrium and Karush–Kuhn–Tucker condi-

tions

### SETS ###

set A1;

set A2;

set A3;

### VARIABLES ###

#Strategy variables

var x1{A1};

var x2{A2};

var x3{A3};

#Nash Equilibrium NLCP variables

var v1;

var v2;

var v3;

#Karush-Kuhn-Tucker grand coalition variables

var l11>=0;

var l12>=0;

var l13>=0;

var nu11;

var nu12;

var nu13;

var mu11{A1};

var mu12{A2};

var mu13{A3};

#Karush-Kuhn-Tucker agent 1, agent 2 coalition variables

var l21>=0;

var l22>=0;

var nu21;

var nu22;

var mu21{A1};

var mu22{A2};
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#Karush-Kuhn-Tucker agent 1, agent 3 coalition variables

var l31>=0;

var l33>=0;

var nu31;

var nu33;

var mu31{A1};

var mu33{A3};

#Karush-Kuhn-Tucker agent 2, agent 3 coalition variables

var l42>=0;

var l43>=0;

var nu42;

var nu43;

var mu42{A2};

var mu43{A3};

### PARAMETERS ###

param a{A1,A2,A3};

param b{A1,A2,A3};

param c{A1,A2,A3};

### OBJECTIVE ###

maximize foo: 1;

### CONSTRAINTS ###

subject to mixedStrategy1:

sum{i in A1} x1[i] = 1;

subject to mixedStrategy2:

sum{j in A2} x2[j] = 1;

subject to mixedStrategy3:

sum{k in A3} x3[k] = 1;

subject to mixedStrategy4{i in A1}:

x1[i] >= 0;

subject to mixedStrategy5{j in A2}:

x2[j] >= 0;

subject to mixedStrategy6{k in A2}:

x3[k] >= 0;

subject to NashEquilibrium1 {i in A1}:

v1 - sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k] >= 0;

subject to NashEquilibrium2 {j in A2}:

v2 - sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k] >= 0;

subject to NashEquilibrium3 {k in A3}:

v3 - sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j] >= 0;
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subject to NashEquilibrium4 {i in A1}:

x1[i]*(v1 - sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k])=0;

subject to NashEquilibrium5 {j in A2}:

x2[j]*(v2 - sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k])=0;

subject to NashEquilibrium6 {k in A3}:

x3[k]*(v3 - sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j])=0;

#### KKT Grand coalition ####

subject to KKTGrandCoalition1 {i in A1}:

mu11[i]*(x1[i])=0;

subject to KKTGrandCoalition2 {j in A2}:

mu12[j]*(x2[j])=0;

subject to KKTGrandCoalition3 {k in A3}:

mu13[k]*(x3[k])=0;

subject to KKTGrandCoalition4:

l11+l12+l13=1;

subject to KKTGrandCoalition5 {i in A1}:

l11*(sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k]) +

l12*(sum{j in A2, k in A3} b[i,j,k]*x2[j]*x3[k]) +

l13*(sum{j in A2, k in A3} c[i,j,k]*x2[j]*x3[k]) +

mu11[i] = nu11;

subject to KKTGrandCoalition6 {j in A2}:

l11*(sum{i in A1, k in A3} a[i,j,k]*x1[i]*x3[k]) +

l12*(sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k]) +

l13*(sum{i in A1, k in A3} c[i,j,k]*x1[i]*x3[k]) +

mu12[j] = nu12;

subject to KKTGrandCoalition7 {k in A3}:

l11*(sum{i in A1, j in A2} a[i,j,k]*x1[i]*x2[j]) +

l12*(sum{i in A1, j in A2} b[i,j,k]*x1[i]*x2[j]) +

l13*(sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j]) +

mu13[k] = nu13;

subject to KKTGrandCoalition8 {i in A1}:

mu11[i]>=0;

subject to KKTGrandCoalition9 {j in A2}:

mu12[j]>=0;

subject to KKTGrandCoalition10 {k in A3}:

mu13[k]>=0;

#### KKT agent 1, agent 2 coalition ####

subject to KKT12Coalition1 {i in A1}:

mu21[i]*(x1[i])=0;

subject to KKT12Coalition2 {j in A2}:

mu22[j]*(x2[j])=0;

subject to KKT12Coalition3:

l21+l22=1;
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subject to KKT12Coalition4 {i in A1}:

l21*(sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k]) +

l22*(sum{j in A2, k in A3} b[i,j,k]*x2[j]*x3[k]) +

mu21[i] = nu21;

subject to KKT12Coalition5 {j in A2}:

l21*(sum{i in A1, k in A3} a[i,j,k]*x1[i]*x3[k]) +

l22*(sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k]) +

mu22[j] = nu22;

subject to KKT12Coalition6 {i in A1}:

mu21[i]>=0;

subject to KKT12Coalition7 {j in A2}:

mu22[j]>=0;

#### KKT agent 1, agent 3 coalition ####

subject to KKT13Coalition1 {i in A1}:

mu31[i]*(x1[i])=0;

subject to KKT13Coalition2 {k in A3}:

mu33[k]*(x3[k])=0;

subject to KKT13Coalition3:

l31+l33=1;

subject to KKT13Coalition4 {i in A1}:

l31*(sum{j in A2, k in A3} a[i,j,k]*x2[j]*x3[k]) +

l33*(sum{j in A2, k in A3} c[i,j,k]*x2[j]*x3[k]) +

mu31[i] = nu31;

subject to KKT13Coalition5 {k in A3}:

l31*(sum{i in A1, j in A2} a[i,j,k]*x1[i]*x2[j]) +

l33*(sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j]) +

mu33[k] = nu33;

subject to KKT13Coalition6 {i in A1}:

mu31[i]>=0;

subject to KKT13Coalition7 {k in A3}:

mu33[k]>=0;

#### KKT agent 2, agent 3 coalition ####

subject to KKT23Coalition1 {j in A2}:

mu42[j]*(x2[j])=0;

subject to KKT23Coalition2 {k in A3}:

mu43[k]*(x3[k])=0;

subject to KKT23Coalition3:

l42+l43=1;

subject to KKT23Coalition4 {j in A2}:

l42*(sum{i in A1, k in A3} b[i,j,k]*x1[i]*x3[k]) +

l43*(sum{i in A1, k in A3} c[i,j,k]*x1[i]*x3[k]) +

mu42[j] = nu42;

subject to KKT23Coalition5 {k in A3}:
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l42*(sum{i in A1, j in A2} b[i,j,k]*x1[i]*x2[j]) +

l43*(sum{i in A1, j in A2} c[i,j,k]*x1[i]*x2[j]) +

mu43[k] = nu43;

subject to KKT23Coalition6 {j in A2}:

mu42[j]>=0;

subject to KKT23Coalition7 {k in A3}:

mu43[k]>=0;


