
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

AdKey: a Personalized Situation-Aware

Soft Keyboard

Internal Supervisor: Prof. Pier Luca Lanzi

Politecnico di Milano

External Supervisor: Prof. Piotr J. Gmytrasiewicz

University of Illinois at Chicago

Master Thesis by:

Angeleri Michael Leo Idek

Student ID 755907

Academic Year 2012-2013

To Brendon . . .

Abstract

With the advance of technology, mobile devices allow users to perform

on the go tasks that were delegated to the desktop. One disadvantage

is the difficulty of text input due to the lack of a physical keyboard.

In our work we investigated how the external context induced situa-

tional impairments that changed the users behavior. We believed that

being able to model such changes would reduce the effort required by

the users to adapt to different situations.

We developed a soft keyboard that was able to sense the external

variables that define the situation and infer the typing dynamics of the

user. Using this information we adjusted its shape and reduced the

error rate caused by one or more situational impairments.

Our final prototype reduced the error rate to half the values observed

on a non adaptive keyboard, letting the user type about 1.2 times

faster.

I

Sommario

Con lo sviluppo della tecnologia, i dispositivi mobili permettono di

svolgere operazioni che erano prima relegate al desktop. Uno svantag-

gio è la difficoltà di inserire testo, dovuta alla mancanza di una tastiera

fisica.

In questo lavoro abbiamo esplorato in che modo il contesto esterno

induca disabilità situazionali, che influenzano il comportamento del-

l’utente. Siamo convinti che, modellando questi cambiamenti, si pos-

sa ridurre lo sforzo richiesto dall’utente per adattarsi alla situazione

avversa.

Abbiamo sviluppato una tastiera adattiva in grado di rilevare le va-

riabili esterne che definiscono la situazione e di dedurre le modalità di

digitazione dell’utente. Usando queste informazioni per modificare la

configurazione dei tasti, abbiamo ridotto il margine di errore dell’utente

causato da una o più disabilità situazionali.

Il nostro prototipo definitivo riduce il margine di errore a circa la metà,

permettendo inoltre agli utenti di guadagnare un fatttore di 1.2 in

velocità di digitazione.

III

Acknowledgements

I want to thank my parents that supported me throughout this expe-

rience, financing me spiritually and monetarily. − I love my grandma

and I want to thank her saying . . . “t’è vist’? t’a gà un nivùd ingeg-

nier!” − Thanks to my friends that supported me through all this

process, either they came on holiday with me, enjoyed Sulella’s, Bagh-

dad (now Sofi), patios, secretaries . . .− Special thanks to whom paid

taxes for me. − Thanks to Chicago, I’m leaving a piece of my hearth

there, thanks to a special person that lives there. − Thanks to my

advisors, without them I wouldn’t graduate!

V

Contents

Abstract I

Sommario III

Acknowledgments V

List of Figures IX

List of Tables XI

1 Introduction 1

2 State of the Art 5

2.1 Text input in digital devices 5

2.2 The advent of touchscreen . 7

2.3 Touch typing on soft keyboards 8

2.4 Adapting the layout . 10

2.5 Keeping into account the situation 12

3 Motivations and Goals 15

3.1 Preliminary phase . 15

3.2 Topic definition . 17

3.2.1 Improving typing through adaptation 18

3.2.2 Situational impairments and their influence on touch

typing . 21

3.3 Improving text input through adaptation to the situation . . 22

4 Design of the Work 25

4.1 Ethical aspects in research involving human subjects 25

4.2 Data retrieval session . 26

4.3 Selection of the relevant variables 29

4.3.1 Assessing the typing speed model 29

VII

4.3.2 Intra-stroke movement 32

4.3.3 Error rate as a function of the situation 34

4.4 Shaping the keyboard . 35

4.4.1 Choice of the learning algorithm 36

4.4.2 Bayesian inference . 38

4.4.3 Model validation . 42

4.5 Putting it all together . 45

4.5.1 Bayesian networks . 47

4.5.2 AdKey underlying model 48

4.6 Extending it with the language 50

4.6.1 Hidden Markov Models 50

4.6.2 A simple language model 53

5 Description of the Architecture 55

5.1 The components . 55

5.2 Keyboard for data acquisition 56

5.3 How we stored the data . 57

5.4 Model learning and testing 59

5.5 The final adaptive soft keyboard 61

5.5.1 Graphic interface and sensors management 62

5.5.2 Situational quantifiers 63

5.5.3 Underlying models . 64

6 Results and Conclusions 67

6.1 Evaluation on field . 67

6.2 Contributions to the state of the art 68

6.3 Possible follow-ups . 70

Bibliography 73

A Architecture Diagrams 81

B Materials and Statistics 87

C AdKey Documentation 91

D Code Snippets 115

List of Figures

2.1 The 12-key keypad of a Nokia 3310 6

2.2 The QWERTY soft keyboards of (a) iPhone, (b) Android, (c)

Windows Phone . 8

3.1 Layout of the Leah Findlater [9] keyboard after adaptation . 19

4.1 A screenshot of the data retrieval application 27

4.2 The subjects average speed for (blue) normal, (red) in a hurry

sessions . 31

4.3 Subjects average pressure and inter-stroke times for users typ-

ing with both thumbs in normal condition and the relative

regression line, with ρ = 0.80 , MSE = 17.46 31

4.4 Azenkot and Zhai [1] results on inspecting touch behavior for

(left) both hands typing, (right) right thumb typing, show-

ing horizontal and vertical skews and the average standard

deviation . 43

4.5 Shape of keyboard for subject 6 while (a) normal, (b) walking,

(c) glare on screen, (d) overlapped 46

4.6 X and Y are conditionally independent given Z 47

4.7 Bayesian network representation of the AdKey classifier model 49

4.8 Shape of the keyboard for subject 10 when typing at very

high speed while walking and with a glare on the screen . . . 50

4.9 A Dynamic Bayesian Network graph of a HMM 51

5.1 The application that parsed the XML retrieved during the

experiment and loaded it into the database 58

6.1 Picture showing the glare on the screen 70

A.1 The database schema . 82

A.2 AdKey class diagram . 84

IX

List of Tables

4.1 The misinterpreted character rate on keystrokes in which fin-

ger sliding occurred, when classifying them with the the re-

lease point, medium travel point and first touch point, for

each session . 33

4.2 The number of errors present classifying the keystrokes with

the last retrieved location, and the ones that get correctly

interpreted versus misinterpreted using the first retrieved lo-

cation . 33

4.3 The aggregated error rate over the sessions, with relative sam-

ple standard deviations with respect to the center of the key

(in pixels) . 34

4.4 Performance of the three tested algorithms in classifying the

intended key over each session 38

4.5 Performance improvement, w.r.t. the classical keyboard, of

each model when simulated with different test samples 45

5.1 Some sample data from Event table 60

6.1 Observed improvement w.r.t same sentence typed on the clas-

sical keyboard with and without the language model 68

B.1 Average occurrences of keys in each session 89

B.2 Aggregated parameter estimation over keys 90

XI

Chapter 1

Introduction

A new form of computing devices has appeared on the market, and is gain-

ing huge portions of the electronics market share. With the rapid increase

of their power, these small devices are almost reaching the computing ca-

pabilities of their desktop counterparts. Whether they are smartphones,

tablets, or even watches, they permit the users to perform a huge variety of

tasks on the move; thanks to their advanced connectivity, they let you check

the e-mails while waiting in line to pay the grocery or write an important

document while on the bus.

But portability comes at a price: the limited size of these devices forces

the producer to make compromises on the hardware they can use. In partic-

ular, the majority of the devices does not to carry a physical keyboard, that

has been replaced by a soft keyboard rendered on a touch screen. This choice

leaves more space for interaction when there is no need for a keyboard, but

becomes limiting when performing text input: the reduced size of the keys,

combined with the lack of haptic feedback that the flat surface of the screen

can not provide, make typing on mobile an area open to improvement.

In our work, we investigated how the external context induced situational

impairments that changed the users behavior, and we defined a model that

aims both to detect a change in the context and to automatically adapt in

order to reduce the effects of the diminished performance.

We performed an exploratory study in which we asked subjects to type

on a soft keyboard in an observed environment, while performing different

tasks that would in our opinion lead to situational impairments. With the

information retrieved, we had insights on how these situations affected both

the user performance and their typing dynamics.

These findings brought us to the development of an adaptive soft key-

board that, being aware of the user patterns and of the situation he was

Chapter 1. Introduction

typing in, adjusted its shape with the aim of reducing the errors performed.

Simulations on data retrieved showed us the importance of keeping in

count the situation when designing a typing interface, and a final evaluation

session with subjects confirmed these findings.

Our final product reduced the error rate up to a factor of two, by means

that the average error rate of users dropped to half the value that we ob-

served in the retrieval session with a standard, non adaptive, keyboard.

We approached our problem as a machine learning instance, in which we

had to perform all the steps: retrieve the data, select the variables, analyze

them with different techniques, create a model that best performs on the

data, eventually test the model on the field.

The data retrieval is in some case an implicit process, because data is

already available from other sources. This was not the case for our prob-

lem: we specifically wanted to observe the behavior of users while typing in

different conditions; while there had been previous works on retrieving user

typing dynamics, none of them dealt with the conditions in which they were

typing, but asked them to type in an observed environment, while seating

or standing.

We decided to build a prototype that would have been our tool to per-

form data retrieval, as this approach had already been performed in other

researches similar to ours. Our prototype would need to behave, from a

user point of view, as a smartphone keyboard with which he could type; in

addition to that, it should have recorded all the information provided by the

phone built-in sensors that was pertinent to typing.

We recruited participants to our experiment from the student popula-

tion, through the campus mailing list, asking them to participate in our

research. They were not compensated monetary, since our research was

not funded, but they were offered some appetizers brought by the authors.

They agreed to participate in our research after receiving proper information

about it and signing a user consent.

Participants population was composed by eleven grad students, with

average age of 24.3 years; all of them declared to possess a smartphone

that used regularly, even if few of them specified that thumb typing on soft

keyboard was not their usual input method, preferring other techniques to

it.

During the training session, users were asked to type a set of phrases

while performing different tasks that were proposed on the screen of the

device. The tasks were: type as usual, as fast as you can, while walking and

with a glare on the screen.

In order to have access to the data from a variety of platforms, we loaded

[2 \

them on a persistent database. We associated each keystroke to the key that

was meant to be typed, by comparison with the proposed phrases. Such

classification was carried out with human supervision, because we observed

that in some tasks it would have been hard for a software to correctly classify

the majority of the strokes.

We performed several analyzes on the data, in order to select the correct

variables for the learning algorithm. In this phase, a model for inferring the

user subjective typing speed was also defined: we observed that keystroke

pressure durations were almost constant given the user, independently from

the speed, and that its average had a good linear correlation with the user

preferred typing speed.

Three different machine learning classifiers were trained on the data,

aiming to classify the user intended key. Tree classifiers and neural networks

were discarded for a probabilistic approach in which the keystroke location

was modeled as a bivariate normal distribution, and the most likely key was

selected as the intended one.

Simulations on this model gave us evidence on our hypothesis that the

situation in which one types does affect the typing dynamic, and the best

performing classifier is the one learned from data acquired in the same sit-

uation. Furthermore, they confirmed other works hypotheses that person-

alizing the shape of the keyboard on the user provides better performance

than an aggregated model.

In order to put this acquired knowledge into a practical application, we

developed a Bayesian network model that was responsible of quantifying

the variables representing the external situation and accordingly adjust the

probability distribution over the keys. Given knowledge about the user and

the situation, we were able to adapt the shape of the keyboard to the one

that from our simulations performed best.

The choice of probabilistic modeling permitted us to extend what we had

defined, defining a hidden Markov model that added knowledge about the

language. We developed a very simple language model, just to prove that

this possibility was available, but leaving out complexity of a well-defined

one because our goal was focusing on the effects of the situation.

With the obtained results, we implemented an Android application,

namely AdKey, that exploited all the findings described above, to offer a

better typing experience with reduced error rate. Since the models pa-

rameters were personalized on the user, we invited the subjects that had

participated to the data retrieval, and we gave them the opportunity to test

our application; seven of them agreed to participate to this second session,

and confirmed the trend observed with simulations.

[3 \

Chapter 1. Introduction

Results showed that our adaptive soft keyboard let the user type doing

about half the errors they did with a non adaptive keyboard, and this af-

fected their typing confidence by slightly improving also their typing speed.

Nevertheless, we observed that the improvement was decreasing when the

language model was added to the classifier; we thus suggested that a first

order Markovian process is unreliable to model the language.

The thesis is structured in the following way.

In chapter two we denote some historical facts about typing on digital

devices, and then we outline the state of the art of the research on mobile

typing.

In chapter three we analyze the reasons that led us into the topic and

we state the purpose that we aim to.

In chapter four we describe how we approached the design of the work

from a logical perspective.

In chapter five we define the components of our model and specify the

implementation choices.

In chapter six we illustrate the performance of our application and out-

line the goals and their evaluation.

In appendix A we report the graphical models of our components.

In appendix B we show the materials used and report some statistics on

them.

In appendix C we provide the documentation of the project.

In appendix D we make accessible the source code.

[4 \

Chapter 2

State of the Art

In this chapter we outline the state of the art in mobile typing.

We take a brief historical overview to define what brought the

research to analyze the current problematics, and then we cite

the most recent works that addresses the problematic of typing

on mobile, with a special attention on the ones that aim to keep

in count the device external context.

2.1 Text input in digital devices

Text input is one of the most frequent user tasks that is performed during

interaction with digital devices. Text writing can be carried out to reach

various goals, including write email and chat messages, typing commands,

taking notes and coding programs.

The desktop computer has accustomed us to the pointing device-key-

board-display paradigm, where the keyboard is a flat device with mechanical

buttons whose pressing induce an interrupt to the operative system, which

in turn takes care of notifying the inputted text to the active application.

It is interesting to point out that the actual design of the keyboard that

all the world is used to, commonly referred to as QWERTY layout, was

defined years before the advent of the computer by a typewriter company.

It was specifically designed to reduce the jams in the typebars when typing

at fast speed, by placing commonly subsequent characters such as “th” in

non adjacent positions [48].

Thus, even if the QWERTY layout was designed to improve typing

speed, the advent of digital devices overcame the issue of jams, leading to

critics about its effectiveness. The DVORAK layout was proposed, which

Chapter 2. State of the Art

Figure 2.1: The 12-key keypad of a Nokia 3310

permits to type a higher ratio of English words without moving the fingers

from the central row; despite this performance oriented design, there has

been no proof that this could provide significant advantages [38, 47]. The

QWERTY has been so widely adopted as the de facto standard layout that

has been analyzed in the economics as one of the most important cases of

open standard adoption [6].

Earlier mobile phones did not require text input, since they adopted a

numeric keypad to compose telephone number identifiers. Only the advent

of SMS (Short Message Service) introduced the issue of how to compose text

with this small devices.

First solutions were based on the same 12-key layout, but with keys

labeled with multiple characters, as the one showed in Figure 2.1, in which

multitap was performed [17]; this could be achieved mainly in two different

ways: either by tapping the key showing the intended character a number

of times corresponding to the position of it, or by two presses, the first of

which identifies the intended key and the second the position [5].

A great improvement in terms of keystrokes per character (KSPC) [39]

occurred with the introduction of character disambiguation. The most

known technology in this field is undoubtedly T9 by Tegic Communica-

tions [20], which seeks to match to a given key sequence the most likely

word selected from a dictionary.

With disambiguation, the user did not need anymore to perform multi-

presses, except when selecting from alternative words. This was proven to

lead to more than twice faster typing speed with reduced error rate, once

the user has gained a proper level of experience [29]. Other techniques were

proposed, using probabilities of letter sequences to guess the intended letter

[6 \

2.2. The advent of touchscreen

[40], rather than exploiting different layouts to reduce the need for disam-

biguation [14].

2.2 The advent of touchscreen

In the last decade, mobile phones became pervasive in our society, and a

new typology, capable of performing a wider selection of functions other

than calling and sending short texts, emerged.

We refer to them as smartphones, and are portable devices running a

complete operating system, permitting the development and installation of

third-party applications. The intrinsic capabilities extensibility, combined

with their advanced connectivity, made it possible to perform many tasks

on this devices that were previously confined to desktop computers, such as

navigating the internet and writing documents.

The key factor that expanded this market was the release of touch screen

equipped devices. This devices provided an innovative way of interaction

with them, based on touching with one or more fingers the screen surface.

Despite the technology was invented in the forties, attempts to create

consumer products did not succeed until 2006, with the release of Apple

iPhone. A detailed analysis of the factors that determined the success of

iPhone is beyond the scope of this thesis, but we would like to outline

one aspect, that is the design of an innovative and intuitive user interface,

capable of transmitting to the user the idea that he is actually interacting

with what is showed on the screen [36].

When gathering information on experiments performed with touchscreen

devices, one should almost always distinguish whether they were performed

with a stylus rather than with direct finger, because they provide a different

way of interaction. While stylus has been proven to be more effective both

for speed and accuracy [28], it is less convenient for users, who have to take

it out every time they want to interact with the device, with the risk of

losing it. In the following, we will focus our findings on fingers interaction.

The lack of accuracy was attributed for a long time to the so called fat

finger problem. That is, users are not able to point precisely on a touch

screen because the softness of the skin leads to a big, hardly controllable

touch area and that the target is not visible because it is occluded by the

finger [55].

Solutions to this has been proposed such as showing a copy of the oc-

cluded screen area in a non-occluded location. This approached appeared

to be useful especially to acquire very small targets [56].

[7 \

Chapter 2. State of the Art

(a) (b) (c)

Figure 2.2: The QWERTY soft keyboards of (a) iPhone, (b) Android, (c) Windows

Phone

A recent work from Holtz et al. suggested that inaccuracy should instead

be attributed to the failure in modeling the perceived input point, which

varies among users, how they are holding the device, and the different angle

at which they point to the screen [26]. In a follow-up work they showed that

touch accuracy can be incremented if the mental model of the user is known

[27].

Other research confirmed this finding, showing that analyzing the user

pattern and subsequently building a personalized model increases accuracy

[10]. Indirectly, this brought researchers to invert the process and analyze

user patterns in order to identify them, as it can be useful for security

applications [51, 33, 59].

2.3 Touch typing on soft keyboards

In the majority of the devices in this category, text input is performed via a

QWERTY software keyboard, that is, a keyboard rendered on the display

with which the user can interact by touching over the keys on the screen.

The reduced size of such keyboards, and the lack of a tactile feedback over

the boundaries of the keys makes this method less precise than its desktop

parent. Figure 2.2 shows how this keyboards are rendered for the actual

three most widespread mobile operative systems.

Data on user performance are scarce, but one evaluation claims that

texting on iPhone took twice as long as texting on a physical phone-sized

QWERTY physical keyboard [25].

To overcome the lack of feedback, different techniques have been pro-

posed, some of which are applied in current systems. One solution is to

display the character associated to the key with a bigger font in an area

visible to the user when he is keeping a finger on the screen; this lets the

[8 \

2.3. Touch typing on soft keyboards

user correct the finger position before lifting the finger when entering text

slowly and to see the entered key within their visual focus on the keyboard

to help notice errors when entering text rapidly.

Lack of tactile feedback can be slightly reduced by providing an haptic

feedback through the built-in mobile phone vibration actuator [4]. This

guarantees that one key has been pressed, but cannot deliver the information

on which was pressed; nevertheless, it has been proven to slightly increase

speed while typing [25], and is currently applied in most of the available

smartphones.

The QWERTY layout was designed for ten fingers typing, and researches

pointed out that this may not be the optimal layout for typing with either

one or two fingers.

Fitts’ law [11] describes the relation between travel time T and distance

between two keys D in the form of

T = a+ b log2

(
1 +

D

W

)
where W is the size of the key that has to be reached, a and b are empirical

parameters. Experiments showed that this model, while designed for more

general interactions, might also be advantageous in touch screen typing.

Novel layouts were proposed, designed with the specific aim of reducing

the finger travel time with the aid of automatic techniques to reach the

optimal layout, such as Metropolis [58] and OPTI [40]. Unfortunately, while

these layouts showed improvements in text typing, the need of long training

phases to achieve optimal results seems to leave this works in the theoretic

modeling realm, since the users prefer to stick with the already mastered

classical layout.

The progress in touchscreen devices brought to the development of new

categories of devices, such as tablets and tabletops; the former is basically

a bigger smartphone, that maintains its portability characteristics, while

the latter is equipped with an even bigger touchscreen, usually with more

advanced touch recognition, e.g., the Microsoft PixelSense has a 30 inches

display. In this devices the space available for adaptation is bigger, so they

were the first on which experiments on personalizing soft keyboards were

performed.

Findlater et al. implemented an on-line adaptive keyboard capable of

reshaping itself knowing the user intended keystrokes [9], while a similar

project used more data coming from the sensors to create a probabilistic

model [7]. However, the increased dimension of the screen allows both for

more accurate typing and more space for adaptation than a handheld device.

[9 \

Chapter 2. State of the Art

2.4 Adapting the layout

Since soft keyboards receive input as a continuous variable, representing the

position of the point of touch, rather than discrete events such as keypresses,

a probabilistic approach can be exploited to infer the most likely key to

associate with the registered position given some model, usually based on

the language.

In its simplest connotation, of an early exploratory work, this was achieved

by relaxing Fitts’ law on the assumption that some bigrams, i.e., sequences

of adjacent characters, are very unlikely to appear in English language. This

suggests that they should be replaced with a more likely character in the

proximities of the one pressed [34].

Exploiting the same observation, Faraj et al. implemented a visually

adaptive keyboard, that expands the keys as a function of their letter prob-

ability of entry [8]. This is also based on the Fitts’ law, specifically on the

assumption that enlarging keys will reduce acquiring time. This solution

provided a better accuracy, though the approach of visually resizing keys is

still debated, with some work showing that it might distract the user [24, 9]

by requiring him to adapt to the changing layout.

A more accurate language model was provided by Goodman et al., thanks

to his studies on language model [18], he formalized the interaction between

language and keyboard models [19]; using Bayes’ law, the most likely se-

quence of characters given a sequence of touch points becomes

k∗1, . . . , k
∗
n = arg max

k1,...,kn

P (k1, . . . , kn|l1, . . . , ln)

= arg max
k1,...,kn

P (k1, . . . , kn) P (l1, . . . , ln|k1, . . . , kn)

P (l1, . . . , ln)

= arg max
k1,...,kn

P (k1, . . . , kn) P (l1, . . . , ln|k1, . . . , kn)

in which the last passage is thanks to the fact that the denominator is

a constant given the sequence of keys on which we are maximizing. We

have thus expressed the probability of the word in relation to the language

probability (first term) and the touch probability (second term).

This relationship has an important drawback also on our work, and

will be deeply analyzed in Chapter 4, but basically it permits to define

a probabilistic model of the keyboard, that does not have to necessarily

coincide with the standard one, i.e., with the mean values placed in the

center of the keys. A subsequent work expanded this findings by placing

anchors on the keys to avoid excessive reshaping [21].

[10 \

2.4. Adapting the layout

Different approaches have been attempted in order to define what can

be the actual keyboard model, and it has been discovered that this does not

necessarily coincide with the standard model we defined above. Henze et al.

deployed an Android application on the market that had many thousands

of installations, which asked the users to enter text with a scoring function

to engage them and encourage them to type faster. They observed that,

on aggregated data, the keypresses were shifted towards the bottom of the

screen, and proposed a modified model that was able to better classify the

input [23]. A similar work reshaped the keyboard using both aggregated

and personalized acquired information, showing that the input error rate

can jump from 78.2% to 82.4% when resizing the keys [52].

Since the works mentioned above were performed on a very large amount

of users, there was no control over the external variables, because the ex-

periment was not observed. Opposed to that, experiments executed in an

observed environment, such as a research laboratory, permitted to under-

stand how the keyboard model can change widely when the user is asked to

type in different modalities, such as using one or both thumbs [1].

The other key factor while is also the language model, by means of a

model that assigns to a sequence of words a probability of it to appear. The

most simple model in this case considers each words independent from the

other words in the sequence, and for this reason is called unigram model; in

this case

P (w1.w2.w3) = P (w1)P (w2|w1)P (w3|w1.w2) = P (w1)P (w2)P (w3)

where . is the concatenation operator.

More complex models keep in count the relationship between words, thus

considering the second term of the formula above, but limited to a n long

sequence of words.

In this case problems arise on how to estimate the probability of these

n-grams, because simply counting their occurrences, even from huge text

corpora such as the Google n-gram database, will assign zero probability

to sequences that are not present in that corpus, but that could appear

in a newly observed text. Smoothing techniques, such as Katz [31] and

Kneser-Ney [46], are designed to deal with this issue, taking out probabilities

of unlikely sequences and redistributing them over unseen trigrams, under

the assumption that if the observed sequence was unlikely in the analyzed

corpus, other similar sequences should have almost the same probability to

appear even if they did not.

[11 \

Chapter 2. State of the Art

2.5 Keeping into account the situation

Mobile computing introduced a new paradigm of how user interact with

their digital devices. What was previously intended as a typical desktop

activity, became something that could be performed in any kind of situa-

tions. While this can be seen as revolution for users, that can perform tasks

such as checking their account balance or writing an e-mail on the move,

it introduces a new variable that should be kept in count when designing

a mobile interface: we will refer to it in this dissertation as the situation,

meaning all the features of the external environment and the user current

state that hypothetically influence the interaction with the device.

We think that the best way to describe this concept is by reporting an

image from Jacob O. Wobbrok.

“A person using a mobile device on the beach in San Diego may

struggle to read the device’s screen due to glare caused by bright

sunlight, while a user on an icy sidewalk in Pittsburgh may have

gloves on and be unable to accurately press keys or extract a

stylus.”

The Future of Mobile Device Research in HCI [57]

While this quote probably addresses only a few elements that can in-

fluence the usage, it shows how important it can become, and thus that it

should be kept in count while designing a mobile application.

In psychology, it is referred to as situationally-induced impairments and

disabilities, that is the difficulty in accessing computers due to the context or

situation one is in, as opposed to a physical impairment. Sears et al. defined

a three dimensional context space which categorized these impairments by

their primary cause, that can be human, environmental or given by the

application itself [54].

When Wobbrok in his exploratory work underlined the problem of how

mobile devices increased the amount of personal computing done away from

the desktop, human-computer interfaces evaluations were performed in lab-

oratories, where users were observed in an ideal situation; no works on how

this could impact on the usability had been performed [57].

Different researches addressed how walking makes the user less accurate

in acquiring a target. Walking through a given pattern reduced the capabil-

ity of reading [2] and of acquiring a target on the screen [53]. In particular,

it has been showed, by usage of a treadmill to perform the test, that the

speed of walking is a relevant variable, since even walking at a very low

[12 \

2.5. Keeping into account the situation

pace reduces the capacity of acquiring a target, and this increments almost

linearly with the speed, with a local optimum at roughly the 80% of the

subject preferred walking speed [3].

Interacting with a mobile device in different light conditions or with a

glare on the screen, even if evidenced as a potentially influencing factor by

different papers, e.g., [49, 57], has been explored in a lesser extent. As far

as we know, only one work included in its use scenarios one where changes

in lightning conditions are performed, showing that this can increase the

response time of the user [2].

To the best knowledge, no work has been performed on the influence of

typing speed on accuracy, as this has only been evaluated as a variable for

estimating the goodness of text interfaces.

If understanding how these factors affect the interaction is important, at

the same time we need to make the device capable of recognizing them in

order to eventually adapt. Many devices are equipped with a set of sensors

that, if correctly exploited, can carry information on some of the external

factors, and other could be inferred directly from the interaction dynamics.

By reading the information provided by the built-in accelerometer, it

is possible to infer what is the user activity, such as walking, running or

climbing stairs, while the phone is kept inside the pocket [35], and the way

the user is holding the device [16]. Bergstrom et al. proposed a simple way

to read the user walking speed while he is interacting the device by means

of standard deviation of the acceleration measured over the y-axis of the

phone [3].

[13 \

Chapter 2. State of the Art

[14 \

Chapter 3

Motivations and Goals

In this chapter we describe the process that led us to the develop-

ment of the thesis. We start from the motivations that brought

us into the topic, then we describe the research work that in-

spired the actual title and the early assessment of the research by

defining the concept of context. Finally, we make explicit con-

siderations that set the key points of the development.

3.1 Preliminary phase

We started inspecting the topic of mobile typing even before the development

of this thesis. We knew, from personal experiences and feedbacks from

different sources, how this is an issue that would need to be improved, and

we had already inspected the current approaches to achieve that.

While having informal conversations with smartphone users on this topic,

the main impressions that we were getting varied from the disappointment

on the performance that can be reached, to the frustration for the incorrect

behavior of the automatic correction tools. These facts triggered our interest

in the topic, leading us to the development of the thesis being discussed in

this paper.

Furthermore, if one types into an internet search engine the words “mo-

bile typing”, the results that he will face will regard either applications that

promise a better typing experience, or articles on online magazines describ-

ing the issues of this task, and how to improve it by the use use of such

applications. This can by no means be interpreted as another evidence that

even the public opinion is aware of this issue, and the software industry is

working to offer products that aim to reduce it.

Chapter 3. Motivations and Goals

It is interesting to point out what are their most recurrent features:

apart from the ones that boast of the aesthetic customization, which is out

of our scope, either they offer new keyboard layouts supposed to improve

typing accuracy, or they exploit artificial intelligence techniques to predict

the intended entered text.

For the time being, the only mobile platform available on the market

which permits the installation of a personalized keyboard from a choice

available on the Internet is Google Android. This can be explained through

the fact that Android is an open source operative system, permitting the

development of applications that run at a lower level. We are waiting for

the release of Ubuntu Phone, that is expected later this year, to see whether

it will bring this feature, being another open source system.

We confide that this option will progressively become available on more

devices, due to the fact that typing can not be considered anymore as the

same task for every user. New typing techniques have been developed and

in general user should be able to choose the system that better meets their

needs; one example is the so called swiping, that lets input text by sliding

the finger over the keys.

We could easily imagine that most of these aspects had already been

explored by researches in the human computer interaction field. This was

an issue that influenced so many users worldwide, and whose improvement

would increase productivity and even opening possible usage scenarios for

smartphones (imagine a journalist, capable of taking notes on his touch-

screen device while performing an interview, as they would do on a laptop).

Nevertheless, we assumed that, because the spread of touchscreen de-

vices is a relatively recent fact, there could exist areas that had not been

completely explored yet . This reasoning led us to the choice of what would

have become the main topic of our thesis.

We would also like to outline how the main author of this dissertation has

been interested in the mobile environment since its very beginning, observing

with particular care the evolution process that it has followed during the last

recent years.

As owner of one of the earliest smartphones, carrying a Symbian system,

then developer of an application for Microsoft Windows Mobile platform for

his bachelor thesis, and currently possessor of a Google Android equipped

phone, he directly experienced this kind of devices. He also had the opportu-

nity to study them during his everyday life, and deepening his knowledge in

the field through specialized sources. These aspects undoubtedly influenced

his choice for this thesis, and will hopefully lead his future career into this

area.

[16 \

3.2. Topic definition

3.2 Topic definition

A natural way to start a research project is to look for other works related

to the topic, and this is how we proceeded. As expected, a great number

of papers had addressed this topic, dealing with it in many different ways;

while a comprehensive description of these works can be found in Chapter

2, in this section we will discuss how these works influenced ours.

At the beginning of our investigation, we were focusing more on the study

of a technique to improve word prediction and correction systems. This is a

category of softwares that help the users to type by proposing them, usually

on the upper part of the keyboard, a selection of words based on the last

keystrokes, that are supposed to interpret what was meant to type. They

usually exploits artificial intelligence techniques, specifically in the field of

natural language processing, to interpret the user input as a noisy signal

and try to understand the word that was meant to be typed, even if errors

were performed and the word has not been completely entered.

Our expectation was to find a way to improve this category of softwares

by applying some refinement to the models they use, but it soon became

apparent that this could be a conspicuously hard task, due to the amount

of research done in this field since the late 1940s, that apply not only to the

specific problem of mobile typing, but more in general to all those that deal

with natural language, e.g., speech recognition, typing with disabilities and

text translation.

Thanks to these studies, that are categorized as part of the artificial

intelligence, but take their cue also from psychology and linguistics, emerged

that natural language can be analyzed at several levels of abstraction; the

lower levels are the ones that have been widely implemented, mainly through

statistical approaches, and that perform at acceptable standards for most

applications [37].

In conclusion, the methods that are still under research investigation are

the ones that deal with very large texts and keep in consideration specific

targeted knowledge; they wouldn’t then fit with a task like mobile typing, in

which the sentences entered are usually short and the topic can vary often.

Given that going at a higher level would not have helped, it seemed

reasonable to us to see what could be done descending through the degree

of abstraction. This drove our research to topics that were more closely

related to the problem of typing on touchscreen devices, and here appeared

to be more space for intervention.

While papers and articles from some year ago would cover issues that

were mostly resolved or did not appear to be of concern due to the devel-

[17 \

Chapter 3. Motivations and Goals

opment of the matter, there appeared to be an active area of research that

was proposing new approaches, some of which could potentially lead us to

real improvements in the execution of the task we were interested in.

Apart from articles measuring the performances of the different available

text input methods, we could define two main categories that were attempt-

ing instead to improve them through the study of specific techniques.

Redesigning the layout. This could be interpreted as the direct ap-

proach; given that typing on a touchable surface is a different task from

typing on a physical keyboard (just to mention a few, only one or two fin-

gers are utilized and the typing area is usually small sized) attempts were

made in order to rethink the layout basing on these factors in order to

provide a more effective one.

Adapting the layout. This is a more subtle approach, that takes advan-

tage from the fact that a software keyboard does not need to have a static

layout; keys can be rearranged, moving their centroids or enlarging certain

keys using heuristics. These heuristics can exploit either models inherent to

the language or personalized to the user. The adaptation can occur even

online, by mean that it happens while the user is typing.

The latter category immediately aroused our interests, because it could

potentially deal with artificial intelligence aspects. In fact, adaptation of the

interface to the user is a topic which researchers in the AI have already dealt

with; in a broad view, this means understand what the user is performing

within the application, and predict what he will do in order to propose him a

narrowed set of options, thus permitting him to achieve his tasks in an easier

and faster way. A very famous, even if despised, example is Clippy, the user

assistant for earlier versions of Microsoft Office, which offered advice based

on Bayesian algorithms.

3.2.1 Improving typing through adaptation

The Findlater et al. work [9] particularly inspired us, because it was showing

a new approach that could be better defined. We will analyze it deeply in this

section, showing what were the points that most attracted our interest, and

what in our opinion could be extended to gain even a better improvement.

Finally, we will observe in the next section how we adapted their work, that

relates to ten finger typing, to the same task on handheld devices, where

usually typing happens through the use of one or two fingers.

[18 \

3.2. Topic definition

Figure 3.1: Layout of the Leah Findlater [9] keyboard after adaptation

The main point of this work was to generate a keyboard personalised

to the users’ dynamics, retrieving entry points while they were typing and

using their distribution to assess the position of the keys. Three sessions

took place and performance were compared in term of WPM (Word per

Minute) showing significant improvements in this typology of keyboard.

An important contribution to the field is the fact that they outlined what

are, according to their analysis, the dimensions of an adaptive keyboard, that

we report here since they pose the basis for our work:

Key-press classification model. This model associates a touch event on

the screen to a given character; in the standard applications, this is a static

function from every point of the keyboard to a letter, while in an adaptive

one, the touch point is processed with other information, in this case the

previous keystrokes, by a classifier algorithm.

Visual key layout. The layout resulting from the adaptation can then be

showed to the user, thus giving him a visual clue of where the keys currently

reside. Since classifier algorithms can result in an arbitrary layout with

very irregular bounds between the keys, it is opportune, if one chooses to

implement this dimension, to apply a different algorithm that maintains a

visually acceptable layout.

Keyboard positioning and orientation. This dimension refers to the

positioning on the screen of the keyboard itself, rather than that of the

individual keys. While this seems more something to deal with on larger

screens, interesting results showed that even in mobile phones a keyboard

placed right below the input text can perform better than the one we are

[19 \

Chapter 3. Motivations and Goals

used to placed in the lower part of the screen [44].

The reasons why we did not include adaptation at the visual level are

based on various observations.

Firstly, the screen of a smartphone is considerably smaller than one of a

tabletop, thus leaving fewer space for adaptation, that could have resulted in

a messy layout confusing for the user; in addition, as stated in the previous

paragraph, we aimed to obtain a model that could adapt not only to the

user keypresses, but also to the external factors that influence the typing

experience. This could have resulted in extremely rapid changing in the

layout that would disorient the users.

In previous works that experimented with this aspect, results did not

show considerable improvements in terms of quantitative measures, and even

the work being reviewed in this section showed the same trend, performing

worse than the standard non adaptive keyboard. Also qualitative measures

acquired by interviewing the users reported a generally negative trend.

The position of the keyboard, as we noted previously, has been explored

in other works with interesting results, but appeared to us out of the scope

of our thesis.

Then, having chosen a way to explore, we started focusing on what could

have been improved when performing such approach, and we noticed that

some assumptions had been taken during the research, based on intuitive

observations but implemented in a naive way.

For example, they point out how, in their adaptive keyboard with static

visual layout, it appeared necessary to them to deal with this specific event:

the user is looking carefully at the keyboard, so that he knows exactly where

to position his finger.

The problem of an adaptive keyboard in a situation like this is that,

having adjusted its layout, it may not output what the user expect when

he touches the surface, and this could lead the application to behave un-

predictably: an interface should respond to an action of the user with what

the user expects to happen. They overcame to this issue by simply setting

a timeout of one second; after measuring such time of inactivity, the soft

keyboard would disable its personalized layout to let the user tap with more

accuracy its first letter. The same assumption and relative solution were

applied to the similar situation of when the user pressed the first key after

having performed a correction.

This was the first clue that suggested us that this was an early approach

to the matter, and that a naive approach like that could have been better

defined putting more analysis on it.

[20 \

3.2. Topic definition

3.2.2 Situational impairments and their influence on touch

typing

If it is true that every user has its own pattern and it is a good approach

to try to learn it, on a mobile environment there are other variables that

influence the way the user types. We have previously summarized this con-

cept with one term: the situation. In fact, while a tabletop is supposed to

be placed in a given environment, and the way the user interact with it is

always the same, owners of smartphones use their devices in many different

surroundings.

By situation, we intend all the variables that could affect in a certain

extent the user behavior while typing. Our analysis, based on the one from

Barnard et al. [2] splits these variables in two main categories:

External environment. The world influences our actions, and so can

influence the typing experience. Probably the most conditioning variable

is the light, that can interact with the typing experience in many ways: a

strong source of light will cause to the user difficulty to discern where he is

touching and what is he typing, and if that light is pointed directly to the

screen, it will be almost impossible to discern what is shown on it. But this

is not the only environmental cause, lower temperatures affect the sensibility

of the fingers, thus causing a less sensible feedback of touching.

In this category are included also causes that are not strictly natural,

as the fact of being traveling on a car or on a train, whose vibrations will

decrease the user accuracy in pressing the intended key.

Human environment. The user itself can influence his typing in different

ways. With this category we identify all the factors that depend from the

user choices, attitude and social environment.

If he needs to complete the task of writing while being in a hurry, and

he does not need to write an error free document, he will type faster, disre-

garding of the loss of accuracy.

It is also possible that he is accomplishing different tasks not related

with the phone; one meaningful example is to walk while writing a text,

thanks to the mobility feature of the device, or it may be the case that he is

driving, even if in most of the countries this attitude is illegal, or talking with

an interlocutor. This subcategory is often referred to as divided attention

impairments.

The way the user holds the phone, or the number of fingers used, are

just a user choice based on how he feels more comfortable, but could change

[21 \

Chapter 3. Motivations and Goals

depending on the device they have in hand.

Also the mood takes its place in this category; if a user is very tired he

might be unable to put the same attention to its task than he usually does,

or if he is distracted by some external factor, e.g., he is watching a movie,

he may be tempted to type without staring at the screen the whole time.

All the factors that we outlined, and many more, take their part in influ-

encing the act of typing, but they do it in different ways, so as first approach

we tried to define a variable that could summarize them, but we left this

task to be accomplished when we would have had some data to analyze.

Another aspect that the reader could have already noticed is that most

of these ambient variables that define the situation are not directly known

neither to the device nor to the typing application; for example, is impossible

to know whether the user is tired without explicitly asking him, but this

approach would imply to make him fill a long survey before he could start

typing even just a few words, leading to an overly complex system that

would not be judged as usable.

Fortunately, smartphones come equipped with a variety of different sen-

sors that, with the opportune software, can be exploited to measure variables

of the external situation, and subsequently infer aspects from it.

For the internal situation, analyses on typing dynamics could potentially

lead to models capable of inferring it.

3.3 Improving text input through adaptation to

the situation

Our goal, from a high level perspective, is to improve the text input on

touchscreen devices. But there may be different ways of perceiving such

improvement; does it mean that the user is capable of typing faster? Or

that he may perform less errors, thus feeling more accurate? Or could it be

simply enough to make him feel like he is achieving these results without

being there an effective and measurable improvement?

In our opinion, all of these aspects have their weight when dealing with

typing enhancement; the first mentioned measure is probably the easiest to

quantify, and the one that would seem more appealing to aim, but it would

not be enough without keeping in count that is very likely that a higher

speed, if we don’t take proper countermeasures, will result in a higher error

rate. Finally, one has to keep in count also how the user will perceive its

experience, being this one of the key principles of the design of a human

[22 \

3.3. Improving text input through adaptation to the situation

computer interface.

Speed of typing can be measured by mean of characters per second (cps)

or words per minute (wpm). Speed can not be seen as an user independent

parameter because, besides of the situation, it can vary enormously from one

user to another. Bigger thumbs will force the user to be slower, and studies

have been performed to see if even the age of the subject can influence its

speed [55].

We stated as hypothesis that the error rate, besides being user inde-

pendent, is also influenced by the situation, as defined in Section 3.2.2.

Furthermore, we believed that the higher the error rate is, the less the user

will feel whether an automatic correction tool is aiding him.

It is also noticeable that the state of the art correction tools already

perform well in aiding the user by interpreting his touch at word level,

making it seem like our work would not be useful.

We are of the opinion that a tool such ours, working at the keystroke

level instead of the language one, could be used concurrently with a word

prediction system to improve its performance; additionally, while it is true

that the mentioned tools correct the typing, they do it only when the user

has typed the whole word, thus showing its incorrect spelling while he is

still typing it, instead our work would permit to show more likely characters

even during the act of inserting the word.

While it may seem that correcting the user input is a good practice, it

may not always be the case, because, since it is impossible to always infer

the correct letter (in which case, the system could write in place of the user),

the system would eventually correct typos that were not actually performed,

and this could lead the user to frustration because he would feel that the

system is not behaving as he expected.

We assumed that, if the user is typing in a more inattentive way, he

will simultaneously perform a greater number of errors, and he will notice

less that the system is correcting him with letters that in its “opinion” are

wrong.

Asserting our goal in a single statement, would then sound as: build a

platform capable of inferring the user intended keypresses without letting

him notice it.

[23 \

Chapter 3. Motivations and Goals

[24 \

Chapter 4

Design of the Work

In this chapter we analyze our research from a logical perspective.

We describe the design choices that brought us to intermediate

results, and how these influenced the following steps. For all

the techniques that we exploited, we will give a short theoretical

introduction, and then we will describe how we set them to solve

specific parts of our work, to finally show the results that we

obtained.

4.1 Ethical aspects in research involving human

subjects

During the design process we had to deal with the ethical issues related to

performing a research involving human subjects. In the United States, this

kind of research is important and is dependent on the approval from the

Office for Human Research Protection (OHRP).

This process is necessary after the Belmont report, [12] where it defines

the ethical issues that must be kept when performing clinical and social/be-

havioral research conducted on humans. The main belief of this act is that

any research should treat human subjects with respect, beneficence, and

justice. Not overstep their rights despite of the improvements it could bring

to a much larger population.

Since some investigators who performed research were biased, and to

further their quest for knowledge, they often posed their test subjects to

risks, as a result, specific offices were instituted who are responsible of eval-

uating and assessing the risks of participants, with particular attention to

vulnerable populations such as children and prisoners.

In our specific case, after taking the required course for social/behavioral

Chapter 4. Design of the Work

research investigators, we designed our research so that we would not involve

hazardous situations while performing the tests. Special attention was given

to the retrieval of data in order to keep the anonymity and all the personal

information was kept in a secure place.

Another relevant point was designing the subject recruitment in a way

that it would not focus to specific populations involved in the research, as

it would have been discriminating.

A protocol of our research was submitted to the Institutional Review

Board who gave us the permission to proceed with our work, as it was

exempted from risks involving the subjects.

4.2 Data retrieval session

A crucial part of the research was the designing of the first prototype that

would be used to retrieve the data. It evaluated the aspects that we wanted

to explore and that, once fixed, could not be changed.

We opted to develop our sample application for the Android platform,

because it is the only one as of the date of publication, that permits us to

substitute the software keyboard from the one provided by the system. For

our research, we built a simple study application, able to produce text only

within itself and therefore not usable as an everyday keyboard. We liked

the concept and consider the possibility for future enhancements in order to

be a usable application.

For testing, we had available a Sony-Ericsson Xperia Neo device, running

the Android 4.0.1 Ice Cream Sandwich operative system. Its key features

were a Qualcomm Snapdragon MSM825 1 GHz processor, an Adreno 205

GPU and 512 MB RAM. The screen was a 3.7 inches capacitive touch screen

with a resolution of 480x854 pixels; even if the screen size was higher than

that of the iPhone (3.5 inches), it was a wide screen resolution with a ratio

of 16:9, thus bringing the screen width very close to the iPhone one, that

carries a 3:2 aspect ratio screen: 57 vs. 58.6 millimeters.

In order to provide a consistency with this selection, we decided to imple-

ment the same layout of the standard Android keyboard, thus keeping the

same key disposition and proportions. This layout differs very slightly from

the iPhone one, that is a little higher, thus covering the most commonly

used keyboards (even if iPhone users pointed out that they were feeling a

change in the layout that could have affected their typing).

We wanted to simulate a typing experience similar to the real one. For

this reason, we used the feedbacks that are commonly used on devices: a

visual feedback was displayed over the currently pressed button, a label

[26 \

4.2. Data retrieval session

Figure 4.1: A screenshot of the data retrieval application

showing the character, and the haptic feedback was performed when the

screen was pressed to validate the user touch. The keyboard was behaving

exactly as a standard, non adaptive keyboard, and users could correct their

input through the backspace key.

The test sentences were displayed on top of the screen, and the user

could continue through different sentences and tasks by pressing the Next

button. Phrases were sampled from Scott MacKenzie et al. set [39], es-

pecially designed to evaluate text input techniques. Its key features were

ability to remember the sentences, moderate length and representativeness

of the target language. This choice permitted us to achieve two goals: first,

it would have been harder to ask the user to type free text, since we needed

to know what was the intended input in order to subsequently classify it,

and second we could avoid secondary effects such as pondering.

A crucial point was the choice of the tasks that user would perform. We

had available a wide variety of different possible contexts in which the user

could find themselves typing in normal smartphone usage, so we accurately

chose them by evaluating the following features:

[27 \

Chapter 4. Design of the Work

Relevance. Often users can find themselves typing in very different en-

vironments, such as riding a train, driving a car or walking. They also

have different postures such as standing, sitting or even laying in bed; we

wanted to evaluate the most common ones. Furthermore, we had to re-

strict our analysis to the ones that could have reproduced in an observed

environment, such as our laboratory.

Quantifiability. Even though it would have been interesting to analyze

the dynamics of typing in contexts that had never been explored, such as

users affected by divided attention, e.g., carrying out a conversation while

typing, we decided to limit our test cases to the ones that we had a chance

to measure, either by typing dynamics or by exploiting the phone’s sensors.

We chose four test cases, that would compose the retrieval experiment

sessions:

1. Normal condition. Users were asked to type normally while seating

on a chair, taking care of the correctness of the input and eventually

performing corrections.

2. Walking. Users walked through the laboratory, without following a

given path but being asked to perform variations in their trajectory.

As already showed by previous works [15, 3], walking can be detected

through the device built-in accelerometer.

3. At high speed. Users were asked to type at the maximum speed they

could achieve. We decided to observe this case because we expected

that user would type faster on an adaptive keyboard, so we wanted to

anticipate the effects of this factor.

4. With a glare on the screen. A flashlight was pointed directly on

the screen, thus limiting the visibility of the rendered keyboard. As

far as our knowledge, only few works dealt with this variable [2], and

no one inspected the effects of typing in such condition.

A factor that we did not directly keep in count was how the user was

holding the phone while typing. While this has been showed to be a deter-

minant element of the user pattern [1], and can be inferred through sensors

[16], we aimed to observe the natural user behavior, so we instructed them to

hold the phone the same way they were used to in most common condition,

and we subsequently adapted the model to their choice.

[28 \

4.3. Selection of the relevant variables

4.3 Selection of the relevant variables

Our application registered all the information regarding each key press of

our evaluation study in a log file stored on the device.

The raw information stored was: the position and timestamp in which

the user pressed the screen, intermediate positions if the finger was slided

during the keypress, the position and timestamp of when the finger was

released, and for convenience the selected key. Additionally, the touch size

was registered but was subsequently discarded since it was presenting too

much noise due from the inaccurate sensor that was more suited for longer

presses, where one can average through measurements.

We loaded this information on a persistent database, we classified it by

assigning to each keystroke the intended letter. This step was performed

manually, by scanning the data and interpreting it; only keystrokes that hit

a key next to the intended one instead of the correct one were classified,

and the others were discarded. We opted for a manual approach because we

observed that the impairments that we were experimenting on introduced

a big variety of errors not depending on the accuracy, such as missed and

swapped strokes that an automatic system would have had difficulty to spot.

Since in the next subsections we analyze the data discriminating it within

the different observed situations, we define the set of our use cases as

S = {n, h,w, g} , s ∈ S

where n stands for normal condition, h for in a hurry, w for walking, g for

with glare and s is the generic session.

4.3.1 Assessing the typing speed model

As mentioned in Section 2.5, no work has been performed that keeps in

account the user typing speed to model its accuracy, so we needed to denote

a model capable of inferring the speed at which the user was typing, in order

to relate it to his accuracy.

The average typing speed of a subject in each session can be measured

in characters per second as

vs =
1

t̄s + p̄s

where t̄s is the average time elapsed between two subsequent strokes, referred

to as inter-stroke time, and p̄s the average time the finger was touching the

screen for each keypress, referred to as pressure time.

[29 \

Chapter 4. Design of the Work

Figure 4.2 shows the typing speed for each subject. The lowest three val-

ues were retrieved by users typing with only one thumb, while the remaining

ones are from users typing with both thumbs.

Even if we can infer that typing using only one finger is slower, one can

easily see that there is a big discrepancy between the values, showing that

the typing speed is a property relative to the user, as it was suggested by

Robinson et al. when analyzing physical keyboard dynamics [51].

We needed a way to model this relative speed, thus we observed that the

pressure time p̄s was roughly constant over all sessions, and could then be

interpreted as a user static property. Performing a regression over it would

have permitted us to estimate the user preferred speed.

Figure 4.3 shows the pressure times of the subjects in relation to their

inter-stroke time observed when they were typing in normal condition; there

is an observable correlationship between the two values, that we decided

to estimate with a linear regression technique, specifically Weka’s linear

regression, that computes the least squared error regression line [22]. In our

opinion, while it is true that this might not be the most accurate model,

given the small amount of data at our disposal, we believe that a more

advanced regression would have had the risk of overfitting the data.

The resulting linear function that we obtained was

t̄n = 1.20p̄n + 93.85 .

Thanks to this model we were able to estimate simply from the typing

dynamics, and specifically by its timings, whether the user was typing at his

average speed, the one that he reputed to be more convenient when he was

asked to type normally. Since the pressure time was observed to be constant

for a given user, if we observed a value of the inter-stroke times that was

smaller than the one predicted by the linear regression equation, we could

infer that he was typing faster than is usual, and we could consequently

adapt the keyboard to that situation.

Defining an analogous model for the subjects typing with only one thumb

was not straightforward, because we only had three observation. We ob-

served that one hand typists were showing inter-stroke times about 1.5 times

greater than two hands typists, so we multiplied the previous equation by

that factor, obtaining

t̄n = 1.80p̄n + 140.87 .

This equation is based on an assumption made on the few observations

that we had at our disposition, and has no statistical meaning; nevertheless,

we needed a model also for the subjects typing with one hand, and this one

[30 \

4.3. Selection of the relevant variables

0 1 2 3 4 5 6 7 8 9 10 11
Subject ID

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
yp

in
g

sp
ee

d
(c

p
s)

Figure 4.2: The subjects average speed for (blue) normal, (red) in a hurry sessions

0 50 100 150 200
p̄n (ms)

0

50

100

150

200

250

300

350

400

t̄ n
(m

s)

t̄n = 1.20 p̄n + 93.85

Figure 4.3: Subjects average pressure and inter-stroke times for users typing with both

thumbs in normal condition and the relative regression line, with ρ = 0.80 , MSE =

17.46

[31 \

Chapter 4. Design of the Work

showed to correctly fit our data. In order to produce a generalizable model,

we would need to observe more one hand typist dynamics.

4.3.2 Intra-stroke movement

On a mobile system, when the user hits the display on a given point what

usually happens is that the graphic element underlying the touch point is

selected; then, if the user slides his finger outside the boundary of that

element, it will become deselected and releasing the finger from the screen

will not produce any action. As an analogy, one can think of the same

behavior to happen when clicking a button with the mouse pointer on a

desktop environment: if the user did not intend to press that button, he can

still move the mouse away from it before releasing the click physical button,

and the action will be canceled.

While this fact is true for many interfaces, it does not hold when inter-

acting with a soft keyboard, where this behavior would be frustrating for the

user, that does not receive any output after having pressed a key, eventually

leading to a series of missing keystrokes.

All the (non-adaptive) keyboards that we inspected select as character

for the text input field the one that was under the perceived touch point in

the moment the user ends it by releasing his finger. From our hypotheses,

this could have been either a good choice, permitting to the user that realizes

to have just hit the wrong location to adjust the shot and slide his finger to

the adjacent one, or a bad feature, because involuntary sliding of the finger,

that can be as well caused by the excessive sensitivity of the touch sensor,

could lead to wrong key classification.

We decided to explore this factor taking at first a naive approach. We

restricted the analysis to the keystokes k in which a the location of first

touch lfk differed from the one of release lrk

k s.t. lfk 6= lrk

and for each of them we simulated which would have been the misclassifi-

cation rate if instead of using the last retrieved touch point, we would have

used the first; results from this simulation showed that the number of er-

rors would increase, and even relaxing this assumption by using the travel

midpoint

lmk =
lfk + lrk

2

would lead to a smoother, but still negative effect. Results of this simulation

are shown on Table 4.1, where for each session is reported the ratio of

[32 \

4.3. Selection of the relevant variables

Error rate using

Session Release Middle First

n 0.04 0.08 0.10

h 0.12 0.16 0.19

w 0.18 0.16 0.14

g 0.20 0.22 0.26

Table 4.1: The misinterpreted character rate on keystrokes in which finger sliding

occurred, when classifying them with the the release point, medium travel point and

first touch point, for each session

Errors

Session Initial Fixed Introduced

n 110 48 219

h 334 161 387

w 324 144 256

g 306 101 184

Table 4.2: The number of errors present classifying the keystrokes with the last retrieved

location, and the ones that get correctly interpreted versus misinterpreted using the first

retrieved location

erroneous keypresses over presses experiencing finger travel; the first column

can be interpreted as the error rate caused by involuntary sliding the finger

over an adjacent key with respect to sliding that ended on the intended key.

Further inspection showed that these simulations, despite misclassifying

a greater number of errors than the normal model, were nevertheless correct-

ing a conspicuous set of mistaken presses, thus confirming our hypothesis

that, while it is the case that many errors are performed due to unnoticed

finger sliding over a neighbor key, this feature is more often used to select

the correct key when the user realizes he posed his finger on the wrong one

(as it is in effect designed any point-and-click interface).

As shown in table 4.2, almost half of the errors are caused by this wrong

behavior, problem is that blindly applying a different classification that uses

the either the first or medium point instead of the last would also include a

bigger number of errors than the one corrected.

If we build a model that is capable of classifying the involuntary finger

slides from the voluntary ones, this could decrease the error rate, but with

the time and resources at our disposition we were not able to find a feature

and a technique that could aid in spotting this behavior.

Despite we think this is an interesting problem that would need deeper

[33 \

Chapter 4. Design of the Work

Session Error rate Sx (px) Sy (px)

n 0.05 15.11 13.94

h 0.12 22.20 17.60

w 0.14 19.37 16.45

g 0.23 26.77 20.82

Table 4.3: The aggregated error rate over the sessions, with relative sample standard

deviations with respect to the center of the key (in pixels)

inspection, we decided to leave it for future works, because we did not have

the necessary resources and time to do that, and our main goal was to build

an adaptive keyboard.

We nevertheless made use of the results of this analysis, selecting the

touch release location as the valid variable to use in input for our classifier.

4.3.3 Error rate as a function of the situation

Probably the most strong hypothesis that we posed when defining our work

was that varying the situation in which the user was typing, he would behave

differently, showing a different pattern that could have been exploited to

build a better classifier model.

While in the previous sessions we showed that this should be the case,

with different experiments showing consistently different values, we wanted

to deeper inspect how our superimposed situational impairments would im-

pact on the user performance. The most direct way to measure it is un-

doubtedly the error rate, i.e., the ratio of keystrokes that the user hit on a

character. This analysis was run independently from the fact that the user

corrected or not the mispelled character, thanks to the fact that we were

keeping trace also of deleted insertions.

Table 4.3 shows the observed error rates, and their relative sample

variances over the two axis. As one can see, variances over the horizontal

axis are higher than over the vertical, thus expecting that most of the error

will select a key laterally adjacent to the intended one, rather than one on

a different row.

The last session was probably the most critical, with almost one mis-

pressed keystroke over four, showing that the inability to observe the screen

makes the user type very loosely.

Furthermore, it is easy to spot that the error rate increases when in-

troducing situational impairments, partially confirming the hypothesis of

different patterns caused by variation in the user experience; specifying that

[34 \

4.4. Shaping the keyboard

this is a partial result was needed, because we had still to investigate how

these patterns changed, and whether it was possible to model such changes.

This made our hypothesis of treating the different situations differently,

handling the ones that showed a higher error rate with a stronger correction

algorithm.

Notation

In the following sections are discussed several techniques that are based on

probabilistic rules; we define here the notation that will be used throughout

the next sections.

Given a stochastic variable X, we denote by x the possible values it can

assume, by x a specific value. For P (X . . .) we mean a specific probabil-

ity value, and for p(X . . .) a probability distribution1 over the variable(s)

specified within the parenthesis.

To keep track of the time, we introduce the subscript .t to indicate the

tth instance of the variable. Generally, the cardinality of the timesteps is

identified by k, thus .k is the last element of the sequence.

We denote with α the normalization constant. This appears in those

expressions in which a constant term should appear, and is instead stripped

off thanks to the fact that the values resulting from the distribution must

sum up to 1. α can be computed knowing all the values of the distribution

after the expression has been evaluated.

Finally, we mean by prior distribution the distribution over a variable

in absence of any evidence, and by posterior the one given a set of evidence

(observed) variables.

4.4 Shaping the keyboard

Once that we proved that the situation was effectively influencing the users

typing dynamics, and we had some insight on how that was happening,

we needed to define a technique that would be able to define an improved

keyboard.

Formally speaking, a keyboard can be seen as a function f that, given

a sequence of strokes, returns an equivalently long sequence of characters

according to its internal model. For simplicity, we will consider for now a

static keyboard, i.e., classifying one stroke at a time independently from the

1a probability distribution is a function whose summation of the values it assumes

over the range it is defined (the integral if continuous) is one

[35 \

Chapter 4. Design of the Work

others, and the stroke as the last retrieved point over the touchscreen

f (s) = c

s ∈ R2, c ∈ {a, b, . . . } .

To be precise , the domain of s should be over integers, since measures

of it are provided by the system in pixel unit measure, the highest available

resolution; but we will see shortly how modeling it as a real numbers pair

permitted to define more sophisticated models.

This static model can be also seen as a mapping between the locations

on the screen and the available keys. Our goal is to search over the defined

function space the one that minimizes the number of discrepancies between

the classified character and the user intended one i

f = arg min
f

#
(
f (s) 6= i

)
where # is the function counting the number of occurrences.

Unfortunately, this is just a theoretical lower bound; since the problem of

stating which keyboard will perform best in any circumstance is undecidable,

we will again make a simplification and state that we are looking for a

function that is the result of a compromise between its ability of fitting the

data we have available and its capacity of generalizing over unseen data.

In order to have quantifiable results, in the following we will compare the

performance of our models to the non-adaptive keyboard with classification

bounds correspondent to the visual ones, referred to as classical keyboard,

or f̂ , in terms of improvement in the error rate

#
(
f̂(s) 6= i

)
#
(
f(s) 6= i

) .
The reader may note that the inverse of this expression is not the per-

centage of corrected errors, because new errors may have been introduced

by the model that were not present with the classical keyboard.

4.4.1 Choice of the learning algorithm

Once we defined our problem as an instance of the general problem of learn-

ing a function, many machine learning techniques were available for this

scope. Some of them are really general, and can be applied to any problem,

others require refinements over the assumptions in order to be executed;

in this section we will show results achieved testing some of the techniques

[36 \

4.4. Shaping the keyboard

within the first category, and then motivate the choice for a more specific

model.

The models that we selected were the following three, each with its own

characteristic features that we will briefly explain.

Tree classifier. Use a decision tree as a predictive model which maps

observations about an item to conclusions about the item’s target value. In

these tree structures, leaves represent class labels and branches represent

conjunctions of features that lead to those class labels. Tree classifier are

simple to learn: at each step, the feature that permits to discriminate a

greater number of instances within their class is selected, and then the nested

subtree is constructed greedily. The output model is also lightweight, in that

it classifies an instance in logarithmic time with respect to the number of

nodes in the tree.

Neural network. Are composed of artificial neurons with weighted in-

terconnections, aiming to abstract away the complexity of how biological

neurons work, still maintaining a similar behavior. Usually it implements

one or hidden layers of neurons between the input and the output layer,

and learns the weights with a back-propagation algorithm, that takes non-

polynomial time. Even if it is in general hard to abstract from the obtained

model the properties of the system in study, they perform well on a large

range of scenarios.

Multivariate normal classifier. This is a probabilistic model that de-

scribes the classes with a multivariate normal distribution, with parameters

to be determined. Learning of such model usually requires exploiting sta-

tistical techniques, such as parameter estimation. Once each class has its

own distribution fully specified, the one showing higher probability given

the instance to be classified is selected.

Table 4.4 shows the performance improvement obtained by these three

algorithms when asked to estimate the function from the touch location to

the intended key, with respect to the classical keyboard.

Results of tree and neural network classifiers were retrieved using Weka

algorithms, respectively J48 and Multilayer Perceptron, while the last col-

umn was computed using the algorithm that we will define in the next

sessions.

As one can see, tree classifier was the best performing, but we had to

discard it because it was showing one of its greatest issues, that is it was

[37 \

Chapter 4. Design of the Work

Session Tree NN MultiGauss

n 1.36 1.07 1.21

h 1.25 1.13 1.16

w 1.25 1.19 1.12

g 1.28 1.21 1.10

Table 4.4: Performance of the three tested algorithms in classifying the intended key

over each session

overfitting the function by estimating it pixel by pixel. Since the whole key-

board was approximately 300× 400 pixels, it was very likely that one pixel

had only one observation, so the algorithm was choosing the key correspon-

dent to that observation even if all the surroundings were attributed to a

different key.

Having to choose between neural networks and a probabilistic model, we

opted for the second for two important reasons: first of all neural networks

are defined as black boxes models, where is difficult to evaluate the choice

it makes because of its internal complexity, on the other hand, probabilistic

models permit to exploit all the mathematical properties of the probability

framework, thus letting us expand our model as we will show in the next

sections.

To further enhance the achievable improvement, we also decided to con-

sider a personalized model, that is, training the model separately for each

user to get different parameters defined for each of them. From now on, all

the results shown are the average over the different model of each subject,

rather than the performance of a single model that tries to classify them all.

4.4.2 Bayesian inference

The goal now was to estimate consistent parameters for the latter model

described in previous section. We assumed that the touch location L was

generated from a bivariate Gaussian distribution over the two possibly cor-

related aleatory variable X and Y

L ∼ N2(µ ,Σ)

[38 \

4.4. Shaping the keyboard

where µ and Σ are respectively a 2× 1 vector and a 2× 2 positive definite2

matrix representing the mean and covariance of L

µ =

[
µX
µY

]
, Σ =

[
σ2X ρσXσY

ρσXσY σ2Y

]
,

ρ =
cov(X,Y)

σXσY
.

The density function of the p-variate is basically a generalization of the

univariate using matrices

f(x) =
1

(
√

2π)p
|Σ |−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

The most used estimator for the parameters µ and Σ is the maximum

likelihood estimator.

It is obtained by maximizing the likelihood function, that represents the

joint probability to observe the data, given the parameters. The idea under-

lying this process is to choose as estimate the parameters that provide the

highest likelihood to the data x representing our observed training keystrokes

(not to be confused with xi, which represents a single observation); this pro-

vides unbiased estimators for many families of probability distributions, as

it is the case for the multivariate normal, where the likelihood is given by

p(x | θ) =
n∏
i=1

f(xi | θ) = L(θ | x) .

The logarithm of the likelihood can be expressed in closed form as

lnL(θ | x) =
n∑
i=1

ln f(xi | θ)

= −p
2

ln(2π)− 1

2
ln |Σ| − 1

2
(x− µ)TΣ−1(x− µ)

and we are now interested in obtaining the value that maximizes it

θ̂MLE = 〈µ̂MLE , Σ̂MLE〉 = arg max
θ

lnL(θ | x) .

Maximizing L(θ | x), that is the same that maximizing its logarithm,

thanks to the monotonicity property of the same, gives the two unbiased

2an n × n real matrix M is said to be positive definite if zTMz is positive, for any

non-zero column vector z of n real numbers.

[39 \

Chapter 4. Design of the Work

estimators for mean and covariance

µ̂MLE =
1

n

n∑
i=1

xi ,

Σ̂MLE =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T .

Unfortunately, these estimators have a good confidence over the values

that are estimating only for big samples (cardinality is usually set over 50)

because they depend only on the retrieved data.

In our case, we had to estimate the distribution over each key and each

subject over each session. Each of these sets contained roughly 500 stroke in-

stances, so an average of 16.1 for each key, but unevenly distributed because

of the property of the English language of showing with higher frequences

certain letters, e.g., vowels, with respect to other letters such as q and z,

of which we had respectively an average of 1.7 and 1.5 occurrences per set;

Table ?? in Appendix B shows this information for all the keys.

To overcome this issue, we decided to put a prior knowledge over our

data; in fact, maximum likelihood estimator are designed to estimate pa-

rameters that are completely unknown. In a keyboard, we would expect that

users will try to hit a key roughly at its center, with a variance inversely

proportional to their accuracy.

A prior knowledge p(θ) is represented as a probability distribution over

the parameters of the density function; from Bayes’ theorem

P (A | B) =
P (B | A)P (A)

P (B)

we can thus express the distribution over our parameter given the observed

data, usually referred to as posterior distribution, as product of the likeli-

hood function and the prior, normalized (divided) by the probability of the

data p(x)

p(θ | x) =
p(x | θ) p(θ)

p(x)
.

usually, the denominator p(xp(x) does not need to be computed explic-

itly and can be treated as a normalization factor, since it is independent from

θ, so that it can be determined after the nominator has been computed as

the value that makes the function integrate to one

p(x) =

+∞∫
−∞

p(x | θ) p(θ) dθ .

[40 \

4.4. Shaping the keyboard

Now, since the prior distribution is conjugate prior of the likelihood

[42], we do not need to integrate to calculate the resulting posterior p(θ |
x), because it will be in the same form with parameters update. In our

case, since the likelihood p(x | θ) has multivariate normal distribution, its

conjugate prior is the normal-inverse-Wishart distribution

p(θ) ∼ NIW(µ0, κ0,Ψ, ν0) .

The parameters of this distribution will be referred to as hyperparame-

ters, to distinguish them from parameters of the underlying model µ ,Σ. µ0

represents the mean of the prior, Ψ its covariance matrix, and κ0 , ν0 their

respective degrees of freedom; intuitively, they can be seen as the number of

pseudo-observations that defined µ0 and Ψ, or also as how much informative

our prior is.

As previously mentioned, the posterior probability of the parameters

after observing a sequence of samples x of length n is still a normal-inverse-

Wishart with updated hyperparameters

p(θ | x) ∼

NIW

(
κ0µ0 + nx̄

κ0 + n
, κ0 + n ,Ψ + C +

κ0n

κ0 + n
(x̄− µ0)(x̄− µ0)

T , ν0 + n

)
where

x̄ =
1

n

n∑
i=1

xi ,

C =

n∑
i=1

(xi − x̄)(xi − x̄)T

are the sample mean and sample covariance.

After the update, we can use as estimation of our parameters the mode

of the obtained distribution, as it represents the maximum a posteriori

θ̂MAP = 〈µ̂MAP , Σ̂MAP 〉 = arg max
θ

p(x | θ) p(θ) .

Since normal-inverse-Wishart encodes a normal, and the mode of a nor-

mal coincides with the mean, we have

µ̂MAP = Mode(µ) = IE(µ) =
κ0µ0 + nx̄

κ0 + n

while the covariance can be computed as

Σ̂MAP = Mode(Σ) =
Ψ + C + κ0n

κ0+n
(x̄− µ0)(x̄− µ0)

T

ν0 + n+ p+ 1

where p in our case is 2, because we are analyzing the bivariate case.

[41 \

Chapter 4. Design of the Work

4.4.3 Model validation

In the previous section, we defined a technique to estimate the parameters

of a the bivariate normal that would model our keyboard. As mentioned,

we opted per an a posterior estimator because we did not have enough data,

but we could formulate assumptions over the distribution.

These assumptions came from a previous work of Shiri Azenkot and

Shumin Zhai, who investigated the patterns of different users typing on a

keyboard similar to ours (only with a few key missing), asking them to type

sentences from the same set using different hands postures [1].

Compared to ours, they had ten times more subjects, and their experi-

ment included more sentences, but this is explainable by the fact that they

aimed to provide generalizable knowledge, rather than a user specific im-

provement.

They published a paper showing aggregated skews and variances of each

key for the different postures, basically proving that there exist methodical

skews when the user was typing, and that they are influenced by the posture;

two handed typers tend to move their fingers to the relative edges of the

screen, while one thumb typers struggle to reach the opposite edge. On both

cases distributions are slightly skewed towards the bottom of the keyboard.

The part of their results that is of our interest is showed in Figure 4.4.

We used the information encoded in that image to define our prior knowl-

edge for the mean of each key, while for the variance we used their average

standard deviation for all key, assuming a zero covariance, even if in their

work, and as we will show later also in ours, there appeared to be some light

form of correlation between the touch coordinates.

Having defined µ0 and Σ0 , we needed to assign a value to κ0 and ν0 ,

that would reflect how much confident we were on the previous values.

Since we aimed to reshape the keyboard with few observations available,

we decided to put a weak prior on the mean. It would still have been useful to

have the prior since it would not allow keys with with fery few observations

(in the worst case, only one observation and much distant from the center of

the key) to influence too much on the model, and at the same time would let

keys with many observations reshape according to them. Furthermore, we

were aware, from how we built our dataset, that data could not be excessively

noisy, because only keystrokes falling in the adjacencies had been considered.

An opposite consideration was made for the prior to set for the variance.

We did not any have control on how the strokes were distributed within a

single key; when there were only few observations, whether they were close

this would have resulted in a very low, eventually close to zero, variance

[42 \

4.4. Shaping the keyboard

Figure 4.4: Azenkot and Zhai [1] results on inspecting touch behavior for (left) both

hands typing, (right) right thumb typing, showing horizontal and vertical skews and the

average standard deviation

[43 \

Chapter 4. Design of the Work

and on the contrary when two keystrokes were at the opposite side of the

key we would have measured high variances. This unpredictable behavior

would have risked to compromise our keyboard, because keys showing low

variance values would have been almost impossible to select.

Running a local optimization over these parameters was not feasible

(each simulation over the full dataset required about ten minutes on our

machine), but empirically testing of some different values confirmed our

hypothesis, and eventually showed that there was a trade-off on the value

to assing to ν0, with higher values favoring the normal session, thanks to its

higher regularity, against sessions with less accuracy.

Finally, the two parameter were set to

κ0 = 2

ν0 = 500

and the variances on Figure 4.4 were normalized to

Ψboth t = (ν0 − 2− 1)

[
12.0 0.0

0.0 11.8

]

Ψone t = (ν0 − 2− 1)

[
11.0 0.0

0.0 10.0

]

We performed a K-fold cross-validation [32] with K = 9, for each fold

selecting 8 sentences from the section for the training, and testing over

the remaining; we chose this deterministic folding in order not to break the

integrity of the typed sentences, as it would have become useful when testing

the language model. We repeat this procedure in pseudo-code, for clarity:

for s in s e s s i o n s :

for u in use r s :

for k in (1 , 9) :

model [s] [u] [k] = l ea rn (t ra in samp l e [s] [u] ,

p r i o r [u])

For each fold, we performed the Bayesian learning described in the previ-

ous section separately for each session and user, and we stored personalized

parameters. Then, we used the obtained distributions to simulate the per-

formance of our model over the test data; we performed this step simulating

also how each model learned in a certain situation performed in a different

situation.

[44 \

4.5. Putting it all together

Test sample

Model n h w g

n 2.23 1.32 1.36 1.04

h 1.42 1.79 1.41 1.15

w 1.39 1.49 1.70 1.08

g 1.14 1.48 1.23 2.22

Table 4.5: Performance improvement, w.r.t. the classical keyboard, of each model

when simulated with different test samples

for s1 in s e s s i o n s :

for s2 in s e s s i o n s :

for u in use r s :

for k in range (9) :

performance [u] [k] = s imulate (model [s1] [u] ,

t e s t s amp l e [s2] [u] [k])

r e s [s1] [s2] = average (performance)

Results of this simulation are showed in table 4.5; they exhibit the

expected trend: the highest values of each column and row were on the di-

agonal, thus proving that there is an improvement in considering the current

situation with respect to using the same model, e.g., the one in the first row,

to classify keystrokes in every situation.

Figure 4.5 shows how the resulting distributions determined the shape of

the keyboard for one subject, by selecting for each pixel the most likely key,

that is the one with highest probability of being the intended key. Figure

4.5(d) overlaps the three images to highlight their difference.

4.5 Putting it all together

In the previous section, we showed how we performed the learning of the

shape of the keyboard. After this process, we had a model of the keyboard

of each participant over the sessions; we also concluded that the final model

should have kept in count the current situation and adapt according to it.

We needed a technique that made possible to put together these pieces of

information in a single model.

Having chosen a probabilistic approach, we could exploit the properties

of a probabilistic framework, that permit to easily calculate values of, e.g.,

joint or posterior probabilities using proved axioms of probability theory.

Probabilistic reasoning is a large set of techniques in an artificial intelligence

[45 \

Chapter 4. Design of the Work

(a) (b)

(c) (d)

Figure 4.5: Shape of keyboard for subject 6 while (a) normal, (b) walking, (c) glare on

screen, (d) overlapped

[46 \

4.5. Putting it all together

X

Z

Y

Figure 4.6: X and Y are conditionally independent given Z

for inference when the data is uncertain.

We opted for modeling the various components of our application with a

Bayesian network, this permitted to use all the information we had without

having to convert it, in order to have a smooth effect on the output.

4.5.1 Bayesian networks

Bayesian network [13] is a probabilistic graphical model that represents a

set of random variables and their conditional dependencies via a directed

acyclic graph3, where nodes represent random variables and edges represent

conditional dependencies between them.

Conditionally independence is the property of two variables X and Y to

be independent given some evidence on a third variable Z; in other words,

given knowledge that Z occurs, knowledge of whether X occurs provides no

information on the likelihood of Y occurring, and knowledge of whether Y

occurs provides no information on the likelihood of X occurring

P (X ∩ Y | Z) = P (X | Z)P (Y | Z) .

In a Bayesian network, two variables that are not directly connected

are conditionally independent given knowledge on all the variables on the

common paths that start from them . Eventually, if there does not exist

such a path, they are unconditionally independent.

In case all variables are discrete, each node is associated to a conditional

probability table that defines the probability distribution over the values

that it can assume given all the possible combination of values of its parents.

As one can note, the values of nodes other than the parents does not directly

influence the variable represented by the node, but they still might do it

indirectly if there is a path that connects them to one of its parents.

3a directed acyclic graph is a directed graph in which there is no way to start at some

vertex v and follow a sequence of edges that eventually loops back to v again

[47 \

Chapter 4. Design of the Work

Extending this framework to handle continuous variable is obtained by

adding two features: if the variable represented by the node is continuous,

then the probability distribution is described by a density function, and

if the parent is continuous it must be defined a generic function from the

domain of the parent to the parameters of the distribution of the child.

Bayesian networks encode a joint probability distribution over all the

variables in the model, so it is always possible to rewrite them as a joint

probability table. The improvement they introduce is in the fact that they

permit to simplify the description of this joint distribution by considering

only the parameters that are evaluated to be relevant for the problem, and

disregarding unnoticeable or negligible effects of some variables on others.

The reduction in parameters ensures both a easier development of the model,

and more lightweight implementations.

Thanks to this property, it is possible to retrieve the joint probability of

any set of variables, given knowledge on any (disjoint) set of other variables.

4.5.2 AdKey underlying model

First step of the process of defining a Bayesian network was to determine

which were the variables that were playing a role in determining the user

typing pattern. From previous analysis, emerged that the situation had to be

kept in count, so we modeled each situation as an independent variable, that

altogether defined the abstract concept of context. The values these variables

could assume were reals comprised between zero and one, representing how

much that situation was influencing the context.

Once these values were known, and this could be accomplished exploiting

the device sensors and the speed model outlined in Section 4.3.1, they would

define how the user would type. We modeled the variable context as a set of

four weights, one for each distribution that we had learned (refer to Section

4.3.1), and then defined a function that reflected the interaction between

the three observed situations.

Since the normal situation contrasted with the other three, or in other

words when there was a situational impairment the situation was not normal

anymore, its correspondent weight was determined as one minus the value

of hurry situation minus the maximum value between walking and hurry;

then all values were normalized to sum up to one.

Clearly, such distribution would not be useful if it did not carry with

it some information, specifically, which key the user intended to type when

hitting that position on the screen, so we introduced the variable key. This

would be the variable which we would like to perform inference on, to select

[48 \

4.5. Putting it all together

walking
speed

context

modality

typing
speed

touch
location

key

lightning
condition

Figure 4.7: Bayesian network representation of the AdKey classifier model

the key that is most likely.

The function between context and touch location was straightforward: it

was enough to multiply the learned distributions for the respective weight

to obtain one mixture of Gaussians for each key, that is a discrete variable.

Finally, we have already showed how the modality, that is, how the user

is holding the phone while typing, conditions both the typing speed (Section

4.3.1) and the touch location (Section 4.4.3). Modality is another discrete

variable representing whether the subject used one or both thumbs; this

value would change the parameters of the linear model to infer the relative

speed of the user, and also the distribution over the screen. In our case it

affected only the prior, so the arrow towards touch location has been put

just to show this relation, implemented by an identity function; in an on-

line model this would have actually an effect.

Figure 4.7 shows how we modeled these relations in a Bayesian network.

Our task with the network was to select the key that was most likely to

be pressed given the context and the observed touch locations. In the figure

the variables that are known at runtime are represented by a shadowed node.

In order to compute the value of the context we simply used the function

described above, that was defined by us and represented the most likely

[49 \

Chapter 4. Design of the Work

Figure 4.8: Shape of the keyboard for subject 10 when typing at very high speed while

walking and with a glare on the screen

value the context should have assumed (another approach could have been

to learn it, but we decided to put our knowledge about how the situations

were influencing each other.

Finally, the key k was from the mixture of Gaussians obtained distribu-

tion as the one having the highest probability

k = arg max
key

P (key | touch location , context) .

Figure 4.8 shows how the three situation models combined to form the

shape depicted, in a simulation of a very unfortunate situation in which

the subject had to type fast while walking and with a glare on the screen

(we did not actually ask anyone to do that). The weights were respectively

0, 0.33, 0.33, 0.33 .

4.6 Extending it with the language

As we mentioned at the beginning of this chapter, probabilistic models have

the nice property that can be combined together, as long as the axioms of

probability theory are respected. We will here show how it is possible to

include in the model proposed in the last section another one, that adds

knowledge about the language.

4.6.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a model for probabilistic reasoning over

time. HMMs were developed as a technique in the mid ’80s [50], and were

subsequently showed to be a special case of Dynamic Bayesian Networks

(DBN) [43]. A representation in form of DBN of a sample HMM is shown in

Figure 4.9, where the state is denoted as Zk and the corresponding evidence

as Xk. We will use this notation through all this section.

[50 \

4.6. Extending it with the language

Figure 4.9: A Dynamic Bayesian Network graph of a HMM

HMMs permit us to deal with processes that vary over time, modeling the

time flow as a Markov Chain, thus the evolving of the state Z of the model

(that must necessarily be discrete) is regulated by the Markov Assumption,

that is, the current state depend on a finite fixed number of previous states.

In case of a first-order Markov Process

p(Zt | Z0:t−1) = p(Zt | Zt−1) .

What differentiates HMMs from a Markov Decision Process is the fact

that the state is not directly observable. What we observe is an evidence of

it, or in other words what the agent’s sensors are capable of measuring from

the state.

Under the Markov Sensor Assumption, the evidence X depends only on

the current state, that is

p(Xt | Z0:t, X0:t−1) = p(Xt | Zt) .

Given a HMM, several inference tasks can be performed; the most inter-

esting for the scope of language modeling are:

Filtering. Filtering means computing the belief state, given all evidence

up to date, that, thanks to the Markov assumptions, becomes

p(Zt+1 | x1:t+1) = αp(xt+1 | Zt+1)
∑
zt

p(Zt+1 | zt)P (zt | x1:t)

where the first element is specified by the sensor model, and the summation

weights the transition model for the current belief state.

Thus, the belief state is updated at every timestep given the observation,

and this becomes the message for the next timestep.

[51 \

Chapter 4. Design of the Work

Prediction. This is the task of computing the posterior probability over

the future states, before observing the new evidence, it turns out to be a

very similar computation, without the contribute from the evidence

p(Zt+k+1 | x1:t) =
∑
zt+k

p(Zt+k+1 | zt+k)P (zt+k | x1:t) .

Smoothing. This is somehow a derivation of the filtering task, that com-

putes the posterior distribution over a past state k for 0 ≤ k < t given all

the evidence up to the present t. Smoothing provides better estimation of

the belief state, because it incorporates more evidence.

This probability can be decomposed in the two terms

p(Zk | x1:t) = αp(Z1:k | x1:k)p(xk+1:t | Zk) .

The first term has the same value of filtering up to the state k, while

it turns out that the second term can be computed in a similar way as a

recursive message, but starting from t.

p(xk+1:t | Zk) =
∑
zk+1

P (xk+1 | zk+1)P (xk+2:t | zk+1)p(zk+1 | Zk)

where the first term is retrieved from the sensor model and the third from

the transition model, while the second is the recursive call from the previous

step. The first step, that corresponds to the last observation available, is

p(xt+1:t | Zt) = p(| Zt) = 1

because xt+1:t is an empty sequence.

Most likely sequence. In this case, given a sequence of observations, we

want to find the corresponding most likely sequence of states that generated

those observations, that is arg maxz1:t P (z1:t | x1:t).

This task is solved by the Viterbi algorithm [45], and is very useful in

many applications, in particular speech recognition where the aim is to find

the most likely sequence of words, given a series of sounds.

The algorithm achieves the result by at each step (for each observation)

computing the probability for each state of generating that message and

then selecting the most likely to compute next joint probability

max
z1...zt

p(z1, . . . zt, Zt+1 | x1:t+1)

= αp(xt+1 | Zt+1) max
xt

(
p(Zt+1 | zt) max

z1...zt−1

P (z1, . . . zt | x1:t)

)
.

[52 \

4.6. Extending it with the language

Since at every step is stored the probability of the most likely sequence

until that state, once the most likely final state is known, we can reconstruct

recursively backward which was the sequence of states that brought to that

state.

4.6.2 A simple language model

In our model, the variable on which we were performing inference on was

the key, which is defined a discrete variable, so we could assume it to be

the hidden state of a HMM. This implied that the classification of the key

would become a process that involved both the context and the time flow,

sampled at each keystroke.

Many language models have as underlying description a HMM, because

it simple to estimate the transition probability of a word being after another

by observing the frequency with which this sequence happen on a large text

corpus, e.g., the Google n-gram database [41] with respect to the total count

of the first word in the sequence

P (wk+1 | wk) =
P (wk.wk+1)

P (wk)
.

Since this process will assign probability zero to any sequence that has

not been observed in the corpus, this estimation is usually adjusted by a

smoothing procedure. There are many available, such as Katz [31] and

Kneser-Ney [46], some of them are more accurate than others but what

they basically all do is to take away some probability from the observed

sequences, and redistribute it to the unobserved.

The same process can be performed with frequencies of characters within

words, so we proceeded by taking the estimated bigram frequencies over a

large English text corpora [30] and computing with the formula above the

conditional probabilities of any character given observation of the previous

character. This probability table was equivalent to a transition matrix be-

tween the states of the HMM, thus specifying an initial distribution, that

we assumed equally distributed over the keys, we had a completely specified

HMM.

We opted for the filtering algorithm, that gave us a real-time estimation

of which was the probability of each key. The probability of each key being

pressed became

k = arg max
kt

P (kt|touch location, context)
∑
keys

P (kt | kt−1)P (kt−1)

[53 \

Chapter 4. Design of the Work

We are aware that this model is overly simplified, but our purpose was

just to show that our model could be extended with other knowledge, in our

example about the language. Our main goal was still to prove that there

exists a correlation between the typing patterns and the situation in which

they are performed.

It is easy to extend this model with a more predictive one, for example

just by considering strings of length greater than one, or, as more advanced

statistical language processors do, by using dictionaries with words tagged

with the grammatical function they assume in the sentence.

Finally, it would be possible to combine it with other algorithms de-

scribed in previous section, like for example Viterbi, that performing a

backward analysis of the sequence likelihood is able to correct misclassified

characters when new evidence appears that contradicts them.

[54 \

Chapter 5

Description of the

Architecture

In this chapter we describe how we implemented the modules that

composed our work. We start by listing them and further go into

details.

5.1 The components

In order to obtain the final product, we developed several software modules

that aided as tools to, starting from the definition of the problem, reach a

working prototype of a situation-aware adaptive keyboard, namely AdKey.

At certain points during the research, these modules had to communicate

with each other, so we had also to design them in order they could transmit

pieces of information using some sort of standard language.

We introduce here the main components of our work, that are described

later in this chapter.

The data acquisition application. As mentioned in Section 4.2, we

needed to collect data on people typing in different observed conditions.

Many different keyboards are available for the Android platform, but we

needed the feature of registering touch events with related information, in

order to subsequently analyze them, so we developed our keyboard clone,

working as an Android application but simulating a soft keyboard.

The database. Data was retrieved on an Android handheld device, but

needed to be analyzed in a desktop environment. When considering how to

Chapter 5. Description of the Architecture

transfer the log from one to another we evaluated to store it in a platform

that would ensure both security for our data and an interface to make it

available to many analysis tools; we opted for a relational database manage-

ment system.

The learning process. Once it was clear that a specific model needed to

be developed for our problem, because standard machine learning tools were

not providing expected results, we needed to develop an application specific

learning tools, which included also methods for testing the obtained models.

We developed this as a series of Python modules, because of its versatility

that permitted to test various models writing short and well-readable code.

All the graphs in this essay are also printed in Python.

AdKey, the final prototype. Again, the final application needed to

run on Android, to test its performances on actual people typing, while

exploiting the device’s sensors to adjust the shape of the keyboard. We call

this a prototype because, despite being a completely working keyboard, it

does not let input type in other applications, such as e-mails, but only in

the application itself for evaluation purposes.

5.2 Keyboard for data acquisition

This was an Android application which rendered a soft keyboard on the

screen and proposes some phrases to be inputted by the subject participating

in the experiment. It registered information about the subject interaction

with the touch screen and it saved it persistently on the device external

storage, in order to be later accessed.

The layout was specified, following Android instructions, in an XML

file that the Android SDK automatically parsed to generate the effective

UI components. The file /res/layout/activity main.xml contained the

declaration of the graphical elements, that were essentially a TextView to

show the phrase to be inserted, a Button to flow between sentences, an

EditText to show the user the text he typed, and the keyboard.

The keyboard was described by a RelativeLayout that contained the

information on where to render each key, which itself was a Button. The

trick we set up for detection the touch locations was to pose a transparent

TextView over the rendered keys, that would intercept user touch. The logic

would then manage to inform the correspondent underlying key that it had

been pressed.

[56 \

5.3. How we stored the data

The MainActivity activity was the class that was called when the ap-

plication was started. The OnCreate method contained the procedure to

initialize the graphical interface, including all the event listener associated

to them. The core of the application was the event listener associated with

the TextView overlying the keyboard, onTouch that was activated when-

ever the user touched the screen in the keyboard area. This method was

responsible of discriminating what was the event that generated the call.

It could be ACTION DOWN, meaning the user has posed his finger on the

screen, ACTION POINTER 2 DOWN meaning the user has posed a second fin-

ger on the screen, ACTION MOVE that indicated a sliding of the posed finger,

ACTION POINTER 1 UP meaning that the user released his first finger but

there was still one finger touching the screen, ACTION UP to indicate that all

finger had been released from the screen.

All this events were translated into a portion of XML containing the

related information (x, y, timestamp, size, pointer id, key selected) that

was concatenated to the log String, which was flushed to file with a

BufferedWriter when the subject had finished typing the sentence and

hits the next Button.

At each event, the getButtonAt method was also called, that received

in input the coordinates and selected the key correspondent to that coor-

dinates; if the event was of category down or move, the returned Button

was selected, a label TextView visualized over it and a 30 milliseconds vi-

bration performed, to guarantee visual and haptic feedback; when it was

instead of category up the correspondent character was added to the form

EditText, except for the backspace key, that eliminated the last inserted

character, and the shift key, that switched all the keys to capital letters.

The PhraseGenerator class encoded all the sentences that the subjects

were asked to type, retrieved through the getPhrase method when the next

Button is pressed.

5.3 How we stored the data

Data retrieved from the experiment was stored in an XML file on the device

external memory (micro SD) with the following DTD structure, where ba-

sically event is just a container for all the events related to a given touch,

from when the first finger touched the screen to when the last released it,

stored as single TouchEvents.

<!ELEMENT root (phrase)+>

<!ELEMENT phrase (event)+>

[57 \

Chapter 5. Description of the Architecture

Figure 5.1: The application that parsed the XML retrieved during the experiment and

loaded it into the database

<!ELEMENT event (touchEvent)+>

<!ELEMENT touchEvent EMPTY>

<!ATTLIST touchEvent

x CDATA #REQUIRED

y CDATA #REQUIRED

type CDATA #REQUIRED

time CDATA #REQUIRED

size CDATA #REQUIRED

pointer CDATA #REQUIRED >

We set up a MySQL Server version 5.5.29, with graphical interface pro-

vided by phpMyAdmin 3.4.10.1 running on Apache 2.2.22 web server, that

lets you visualize and manipulate the database content in a web-browser

environment.

We built a Java application for loading these files into the database, that

had a basic graphic interface showed in Figure 5.1 to permit the insertion

of additional information about the experiment; the subject ID, in order to

subsequently identify it for the evaluation session (no personal information

was stored on the database), date and time and how the experiment had

been performed.

This application was composed of a XMLParser that exploiting the Java

DocumentBuilder returned an ArrayList of Event objects, each of them

containing another ArrayList of associated TouchEvent objects.

This data structure was then iterated by the DBLoader and inserted in

the database with standard INSERT commands using the Java database con-

[58 \

5.4. Model learning and testing

troller MySQL-connector version 5.1.22. Care was taken in order to maintain

a reference between the Event and TouchEvent through its field EventKey,

in order to be able to later compute relevant information on Event.

The schema of the database is showed on Figure A.1.

5.4 Model learning and testing

This was the critical part of the process, where data was analyzed, used

to train and test the final model described in Chapter 4 and finally loaded

on the device to be used for the final prototype. All of these steps were

performed in Python, a general-purpose, high-level programming language.

The main drawback of this language is its feature of being interpreted,

rather than compiled and executed, but this was overcome by the great

extensibility given by its modularity and the ease of coding with a high-

level interface. Furthermore, execution times were not a priority, given that

we were simulating.

We can split this part of the process in various steps.

Classify the data. Once data was loaded onto the database it still did not

included the most important piece of information we needed: the intended

key. This is not in fact something a system could know by itself, but we had

to insert this knowledge in order to proceed. This is something that always

happens in supervised learning, as it was ours where the algorithms need a

pre-classified set of data from which to infer the generalizing model.

We performed this process by hand, scrolling through the database spot-

ting the errors and correcting them. As previously mentioned, we opted for

a manual approach because we noted that the situational impairments we

were experimenting introduced a big variety of errors; not only users were

pressing keys adjacent to the intended one, but were also performing errors

such as missed or reversed keystrokes, that would have been difficult to spot

for an automated technique.

We kept the information on the actual key pressed in the field PressB,

and the corrected one in IntentB, in order to subsequently analyze difference

in performance.

Compute additional information. Raw data at this point included only

basic information, such as the touch coordinates and the timestamps (in

milliseconds) in which they happened, other than experiment related data

such as the subject who generated them Subject and the relative Session.

[59 \

Chapter 5. Description of the Architecture

Subject Session FirstX FirstY LastX LastY Dist

1 1 153 148 153 148 0

1 1 246 38 242 37 4.12

1 1 110 86 98 81 13

1 1 80 38 78 28 10.19

1 1 269 36 262 36 7

PDist Time Ptime AccXInt AccYInt PressB IntentB

-1 172 -1 -7 11 v v

144.04 206 441 -15 10 o i

140.80 215 434 2 -2 d d

46.61 235 230 -2 1 e e

191.16 225 261 10 -10 o o

Table 5.1: Some sample data from Event table

In order to have analyzable data, we needed it to be at a higher descriptive

level.

For each keystroke Event we added the sequent fields and computed their

relative values: the location of laying, FirstX and FirstY and release LastX

and LastY, including the eventual sliding distance Dist (simple euclidean

distance between the previous two values), the duration of the pressure

Time and its time distance from the previous stroke PTime whether they

were coinciding and in negative case.

For shaping the keyboard, we opted to give the learner algorithm a

relative coordinate systems such as the center of the intended key, so that

he had not to distinguish between keys and at the end we could simply

sum up the offset given by the key center position to reobtain the absolute

coordinates. The distance from the center of the key, that can be interpreted

as the accuracy in hitting that key, was stored in AccXInt and AccYInt.

Create the folds. Now the data was almost ready to be parsed by the

learning algorithm. We just needed to split it in order to have a training

and a test set of samples. So we replicated the data over nine different

tables EventTest-i each containing samples retrieved from typing one of

the sentences in each session. The remaining sentences used to train the

i-th fold were replicated in EventFold-i.

Choice of nine over the classical k-folding value of ten was due to the

fact that we had exactly nine sentences for each session, and in this way we

avoided splitting them between the sets.

[60 \

5.5. The final adaptive soft keyboard

Learn the user distribution. We implemented a Python object

MultiNormalBayesLearner that retained information on the prior distri-

bution mean prior, cov prior, nu 0 and kappa 0. The train received in

input a list train sample of all the keystokes which the intended each user

in each session.

Thanks to numpy, a library for mathematical calculus in Python, all the

computation described in formulas in Section 4.4.2 was expressible in a few

and intuitive lines of code.

All the estimation performed were stored and subsequently averaged to

find what were the parameters of our personalized situation-aware model.

Each user had thus nkeys×nparams×nsessions = 32×5×4 = 640 parameters.

Simulate the obtained model. With the retrieved parameters, we ran

a simulation of how a keyboard implementing our probabilistic model with

these parametric quantities would have performed. The simulation involved

loading all the keystrokes in the testing folds and classifying them using the

models we learned at previous step.

Each keystroke was classified with a model of the user who generated it,

but we iterated over all the models that we learned for that user, in order

to compare them and select the one that was performing better. As showed

in Table 4.5, these were the model corresponding to the session in which

the keystrokes had been collected.

The classifier itself was straightforward: it retrieved the keystroke release

location, LastX and LastY and computed the probability of that keystroke

being under the probability distribution of each key. The one with highest

probability was selected and compared to the intended one; if they were

coincident, the classification was accepted, otherwise an error counter was

increased. The final value of the error counter was compared with the pre-

vious error occurrence, that is the number of keystrokes in which PressB !=

IntentB.

5.5 The final adaptive soft keyboard

Simulation results proved that a personalized situation-aware keyboard could

increase typing accuracy by a factor of roughly two, which means that the

number of errors performed would be halved. In order to test this on a real

environment, and to produce a tangible realization of what observed, we

proceeded adapting the keyboard that we had built for the data retrieval

session enhancing it with the adaptive-model.

[61 \

Chapter 5. Description of the Architecture

We kept the graphical interface we had developed but we extended it

with the logic derived from our research, so that the classification of the

keystrokes would happen as a function also of the user and the external

situation, rather than only on the touch position.

While for the learning process we used a description that was mainly se-

quential, we will here describe our application in a more structural way, list-

ing the main components that together worked to classify the user keystrokes

online, i.e., while the user was actually typing. Please refer also to Figure

A.2 on page 84 for the class diagram.

Graphical elements. As we said, we maintained the same graphical

structure of the data retrieval application; the reader can refer to Section

5.2 for the details.

Sensor models. They were three modules, namely WalkingQuantifier,

SpeedQuantifier and LightQuantifier, that were responsible of monitor-

ing the context in which the user was typing, either by receiving information

from sensors or inferring it from user typing dynamics. The state of the sit-

uation was then read by the stroke classifying process to parametrize the

distribution over the keys.

Classifier. The classification was performed in the class Model, which

was the core of the application; when a stroke was performed, it read the

values from the sensor models and computed the relative weights to be

associated to the distributions stored in UserModel, eventually coupled with

the LanguageModel ones.

We will now analyze in detail how these components are defined and how

they interact with each other.

5.5.1 Graphic interface and sensors management

The Android system defines the applications as composed by Activity

classes, that are responsible of communicating with the system to acquire

or handle its resources. Our application had two activities, UserSelect

and Keyboard; the former was a very simple window permitting to insert

the subject ID, needed to load its personalized distribution, users were in-

formed on which was their subject ID so that they could personally type

it.

Then, the Keyboard was started, rendering on screen the same layout

described in Section 5.2. This was the main activity, responsible of instanti-

[62 \

5.5. The final adaptive soft keyboard

ating all the objects needed by the application. Furthermore, since only the

activities are designed to communicate with the system, and in particular

with the touch screen and the accelerometer, it was responsible with oppor-

tune event listener of intercepting hardware interrupts and forwarding them

to the indicated components.

The number of keys was defined as a static property of this class nKeys,

but accessible within all the project. All the reference to the keys were

stored in an array, that for our scope worked as a map between integers and

real keys; in this way we could abstract the classifier from knowing on which

key it was working, and referring to it as an index. When the correct index

was selected, it was possible to perform the correspondent action on the key

in constant time.

The activity needed to implement the OnTouchListener method onTouch

to retrieve the events related to the touches on the screen. Switching over

the type of event was performed, so that when the screen was pressed the

classified key was selected, a magnified version of it was displayed over it

to provide visual feedback and a small vibration of thirty milliseconds was

performed. When the touch was released instead, we retrieved the character

represented by the key and we appended it to the EditText form designed

to contain the inserted text.

Another implemented class was SensorEventListener, needed to re-

trieve values measured by the accelerometer through the overridden method

onSensorChanged and sending them to the walking speed model.

Finally, the label showed when over the key when touch was performed

was a simple TextView that was set to visible only when a finger was touch-

ing the screen, showing the same text that was present on the underlying

key and shifted in order to appear over it.

5.5.2 Situational quantifiers

These modules were responsible of keeping track of the situation in which

typing was performed, in order to let it accessible to the classifier when

needed. We had three of these quantifier, one for each situation we were

considering.

An important design choice is that we instantiated them in the Keyboard

activity and then we passed the references to the classifier, so that they

could be updated from the activity, responsible of reading the values from

the hardware sensors, and accessed directly within the Model. This property

is showed in the class diagram on page 84 by the common arrows between

the two, we are here specifying that those arrows represent shared objects.

[63 \

Chapter 5. Description of the Architecture

WalkingQuantifier was responsible of estimating the speed at which

the user was walking. This was achieved by measuring the standard devi-

ation of the measured acceleration over the y-axis of the device, over the

last 50 observations (at a sampling frequency of 14 Hertz, this meant ap-

proximately over the last 4 seconds). This approach had already been used

by [3], which showed how this value estimates the walking speed accurately

enough. Observations were stored in a Queue (FIFO servicing), of fixed

length, and the value sum was updated at each step in order to have the

mean immediately available; when requested, the standard deviation was

computed as average quadratic distance from that value.

The value was limited to 1.6, which appeared to be the value of a user

walking at normal speed, and then normalized to 1.

SpeedQuantifier worked in a similar manner, but in order to estimate

the typing speed used the model that we defined in Section 4.3.1. In this

case the values of inter and intra stroke time were smoothed over the last

ten observations, stored also in a Queue; to retrieve the effective times the

object took as input the timestamp in which the stroke was generated and

subtracted it to the previous observed one, stored respectively in LastPress

and LastRelease.

Then it computed the distance of the newly observed keystroke times

from the linear model developed in Section 4.3.1, which parameters were

depending on the way the user was holding the device. If the inter measured

inter stroke time was higher or equal to the one predicted by the model, then

a value of zero was returned, meaning the user was typing slowly; the more

this time was lower than the expected, the more the inferred speed was

inferred to be higher, till the value of one third was reached.

Finally, LiqhtQantifier did not receive any input from the sensor, be-

cause we realized that the device, despite being equipped with a light sensor,

this was not available at API level, or the system was not able to read its

value. We solved this issue by manually setting the value to one when we

knew that there was a light pointed to the screen, that is, in the last session

of the experiment.

5.5.3 Underlying models

There were two classes UserModel and LangaugeModel responsible respec-

tively of handling the keyboard model, personalized on the user that was

currently typing, and the language model. The former stored the four distri-

butions that we had learned in the previous section, accessible through the

method getProbabilities that returned the probability distribution over

[64 \

5.5. The final adaptive soft keyboard

the keys given a certain position on the screen, while the latter behaved as

an HMM, storing the distribution computed after the last keystroke and re-

turning the predictive probability distribution for the next stroke, retrieved

using the internal representation of the language transitionMatrix.

The Model class was responsible of handling all the logic of the classifi-

cation process. As we said, it had access to the quantifiers instantiated by

the Keyboard by sharing their references; furthermore, he had control over

the two specific models UserModel and LanguageModel.

When a touch event was detected, the method classifyThis received

in input its coordinates and type of event, then interrogated the situation

quantifiers about their status, which was in all the three cases a value com-

prised between zero and one. The function computeWeights was responsible

of adapting these three values to the four weights correspondent to the dis-

tribution.

The reason why there were three situations and four models is to at-

tribute to the fact that the normal situation is complementary to all the

others: when the user is walking, he is not in a normal situation anymore,

and so it is when writing at high speed. In the opposite, the other three

situations can manifest together, so the weights between them should be

balanced in that case. This was achieved by removing a certain amount

to the normal situation weight, and redistributing it proportionally to the

other weights.

Once the weights were note, it was straightforward to calculate the prob-

abilities, by weighting each distribution given by the different situations.

One approximation that we made was of computing the probability from

the density function; this was necessary because the multivariate normal

distribution has no closed form of the cumulative function, so the other

approaches would have been random sampling over the distribution, or nu-

merical integration, but we considered them too much computationally ex-

pensive.

Furthermore, we believed the density function to be a good approxima-

tion, since we needed to integrate over an area of one, and with that we were

basically assuming that the mean over that area coincided with the value of

the function, that is the median.

[65 \

Chapter 5. Description of the Architecture

[66 \

Chapter 6

Results and Conclusions

In this chapter we show the performance of our final prototype

on the field, and compare it to similar works. Next, we draw the

conclusions of our work and list possible future scenarios.

6.1 Evaluation on field

We performed a second experimental session in which we recontacted a sub-

set of subjects who had participated to the first session and gave them the

opportunity to test AdKey with personalized model.

We had to contact specifically subjects that participated to the first

session because our model was personalized on their behavior during the

first; six users agreed to participate to this second session.

We reduced the amount of typing required by them, primarily because

we did not need the data retrieved to perform other testings, but just to

verify what our simulation showed, and also because we received complaints

about the length of the test during first experiment.

Subjects were asked to type four sentences for each of the same situations

we had retrieved data, but this time the keyboard was not preprogrammed

to know the situation, but was instead sensing it thanks to the models we

developed. The first two sentences of each session used just the user models,

while the other two exploited also the language model.

Table 6.1 shows the improvements obtained by the users over the sec-

tions, compared as usual to the non adaptive keyboard, but this time com-

pared with the same sentence typed at distance of some day. Reported

values have no statistical meaning, because they were acquired on a very

small sample of six users typing twenty sentences; nevertheless, we believe

Chapter 6. Results and Conclusions

Language

Session Without With

n 2.53 1.29

h 2.11 1.81

w 2.50 2.79

g 1.95 1.56

Table 6.1: Observed improvement w.r.t same sentence typed on the classical keyboard

with and without the language model

they confirm the trend showed in the simulation, with values that are similar

to the one in Table 4.5.

We compared also the values of the speed, that showed an average in-

crease of 20% in both the first two sessions, specifically

1.21 1.22

A separate discussion should be made for the values observed with the

language model active. While they are still greater than one, thus showing

better performance over the classic keyboard, the language model seemed

to have less predictive power than the one based only on the situation.

We assume that this can be attributed to the fact that a first order

Markovian process is not accurate enough to model the language complexity.

Our work was not the first that shaped a soft keyboard for smartphone

with a probabilistic model. An approach similar to ours is from Goodman et

al. [19], who adopted the same multivariate Gaussian approach, but putting

more emphasis on the language model, that was based on a seven order

Markov process. Their results were very similar to ours, showing a 1.87

improvement with respect to the standard keyboard.

We hypothesize that combining our keyboard model to their language

model, which appears to more accurately reflect the complexity of the lan-

guage, could lead to higher improvements.

6.2 Contributions to the state of the art

First of all, we believe that our work confirmed our hypothesis that typing

dynamics are influenced by different variables. Some of them had already

been explored, and we confirmed them by adding new experimental evi-

dence, and other were completely unexplored and we set up for them some

hypothetical models, that will eventually need to be confirmed by other

observations.

[68 \

6.2. Contributions to the state of the art

In particular, regarding the first category of already explored facts, we

think that we confirmed with new evidence how important is, when designing

mobile interfaces, to keep in count how the user personally perceives the

interaction; this applies not only to soft keyboard but to any mobile interface

in general. Nevertheless keyboards, as interfaces for an important task such

as text input, need particular care.

As mentioned in Section 2.2, for years inaccuracy observed in touch

screen interaction has been attributed to the so said fat finger problem, that

is the inability to point accurately a target showed on the screen because of

the softness of the skin and the occlusion of what is being touched. Only

recent works suggested that the accuracy can be improved if the perceived

input model of the user is known; we took this fact as an hint, and in fact

we proved that having a model that is personalized on what observed by a

single user increases accuracy up to a factor of two (refer to Table 4.4 on

page 38).

Our hypothesis was that the patterns exhibited while interacting are a

variable not that only depends on the user himself, but also the external

environment takes part into it. Our work proved this to be true, showing

that a model that does not keep in count the situation performs worse when

there is a shift in the situation in which the user is interacting (refer to Table

4.5 on page 45).

Even if it takes a secondary part in our research, the model we developed

for inferring the user typing speed analyzes a new aspect of typing that as far

as we know had never been explored. The typing speed is clearly a variable

that depends on the user, its level of experience and also his hurry to perform

the task. Being able to infer whether a user is typing at his average speed,

rather than faster, permits to adjust the model parameters in different way:

in our work we focused in adjusting the shape of the keyboard to the one we

observed when typing faster, but this information could be exploited even

at higher levels, as we point out in Section 6.3.

Lightning condition has been supposed to be a factor of influence in mo-

bile typing, but has not been inspected deeply. In our work, we showed how

lighting conditions, and in particular a glare showing off on the screen, par-

ticularly influence the interaction dynamic, being the context that performed

worse when simulated with model learned in different situations (refer to ta-

ble 4.5 on page 45). We suggest that this has to do with the fact that the

inability to look at the screen makes the user type following even more his

own patterns, because he can not rely anymore on a visual feedback.

As one can see from the picture in Figure 6.1, glare was one of the tough-

est situational impairments we considered. The number of errors was still

[69 \

Chapter 6. Results and Conclusions

Figure 6.1: Picture showing the glare on the screen

high even with the adaptive keyboard, but the performance improvement

maintained on line with the other sessions.

From a higher perspective, we think we contributed to diminish the level

of effort users need to put when interacting with devices; we firmly believe

that the more a system knows or is able to infer about the user, the easier

will be for him to accomplish his tasks with the machine.

6.3 Possible follow-ups

We conducted an exploratory work, mainly focused on how induced situ-

ational impairments can be modeled to produce a keyboard that lets the

user perform less errors. The keyboard that we developed is far from being

usable as a real product, because of many simplification we introduced in

our work.

First of all, the lack of an on-line learning process, with the need of

external supervision to classify the intended keystrokes, makes this keyboard

not designed for the final user, who wants a product working out of the box.

Secondly, we introduced a very basic language model, based only on the

previous keystroke, thus modeling the language as a first order Markovian

process. This can be extended to longer sequences in order to provide better

predictions that are actually based on a dictionary, and can go even further,

by modeling probabilities of words within phrases; most advanced techniques

might classify label words by their grammatical function within the sentence,

in order to predict words even more accurately by discarding part of speech

[70 \

6.3. Possible follow-ups

that are unlikely, e.g., in common English, a noun is very rarely followed by

an adjective.

The two aspects we mentioned go along well, in fact having a good lan-

guage model is the first step to implement an automated technique capable

of learning the distribution over the keys. Imagine a user typing “vodeo”, if

the language model corrects it to “video” and the user leaves it unchanged,

then the system knows that the “o” has to be attributed to a wrong key-

press, and if this happens to be frequent, it can adjust its distribution over

the correspondent key, so that next out of that key could be interpreted

correctly, or at least given an higher probability of the intended key being

the adjacent one.

On the other hand, further analysis is necessary to better inspect the

typing speed model we introduced in Section 4.3.1. While our model appear

to fit good our data, with a correlation coefficient ρ = 0.80, we really had

too few observations to produce reproducible knowledge. It might also be

the case that the real underlying relation is not linear, but has some quasi-

linear shape, e.g., a slow exponential, but as we said also in the definition of

the model, we did not consider opportune to try better fitting models with

so little data.

Nevertheless we believe that knowing the user relative had an important

part in our work, and could be exploited at higher levels, for example to

infer even more about the context. In a hypothetical application, when the

user appears to be in a hurry the system could automatically propose him

predefined messages such as “I’m going to work” or “Talk to you later”.

It would also be interesting to further investigate how the users adapt

to interfaces that let them type with less accuracy, because the system au-

tomatically corrects them. In our work, we implemented an adaptive model

that adjusts its parameters to the user, but there was no observation on how

the user would react to this adaptation, by counter-adapting himself.

We would like to close this essay with an open question: will the predic-

tive capabilities of the machines become so powerful that there will be no

need for the user to interact with them?

[71 \

Chapter 6. Results and Conclusions

[72 \

Bibliography

[1] Shiri Azenkot and Shumin Zhai. Touch behavior with different pos-

tures on soft smartphone keyboards. In 14th international conference

on Human-computer interaction with mobile devices and services, page

251, New York, New York, USA, 2012. ACM Press.

[2] Leon Barnard, Ji Soo Yi, Julie A. Jacko, and Andrew Sears. Captur-

ing the effects of context on human performance in mobile computing

systems. Personal and Ubiquitous Computing, 11(2):81–96, 2006.

[3] Joanna Bergstrom-Lehtovirta, Antti Oulasvirta, and Stephen Brewster.

The effects of walking speed on target acquisition on a touchscreen inter-

face. In 13th International Conference on Human Computer Interaction

with Mobile Devices and Services, pages 143–146, 2011.

[4] Stephen Brewster, Faraz Chohan, and Lorna Brown. Tactile feedback

for mobile interactions. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’07, pages 159–162, 2007.

[5] Lee Butts and Andy Cockburn. An Evaluation of Mobile Phone Text

Input Methods. In Third Australasian conference on User interfaces,

volume 24, pages 55–59, 2002.

[6] Tony Casson and Patrick S. Ryan. Open standards, open source adop-

tion in the public sector, and their relationship to microsoft’s market

dominance. Standards Edge:Unifier or Divider?, 2010.

[7] Jörg Edelmann, Philipp Mock, Andreas Schilling, Peter Gerjets, and

Wolfgang Rosenstiel. Towards the Keyboard of Oz: Learning Individual

Soft-Keyboard Models from Raw Optical Sensor Data. In 2012 ACM

international conference on Interactive tabletops and surfaces, pages

163–172, 2012.

[8] Khaldoun Al Faraj, Mustapha Mojahid, and Nadine Vigouroux.

BigKey: A Virtual Keyboard for Mobile Devices. In Human-Computer

BIBLIOGRAPHY

Interaction. Ambient, Ubiquitous and Intelligent Interaction, volume

5612, pages 3–10. 2009.

[9] Leah Findlater and Jacob O. Wobbrock. Personalized input: improv-

ing ten-finger touchscreen typing through automatic adaptation. In

SIGCHI Conference on Human Factors in Computing Systems, pages

815–824, 2012.

[10] Leah Findlater, Jacob O. Wobbrock, and Daniel Wigdor. Typing on

flat glass: examining ten-finger expert typing patterns on touch sur-

faces. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’11, pages 2453–2462, New York, NY, USA,

2011. ACM.

[11] Paul M. Fitts. The information capacity of the human motor system

in controlling the amplitude of movement. Journal of Experimental

Psychology, 47(3):381–391, 1954.

[12] National Commission for the Protection of Huamn Subjects of Biomed-

ical and Behavioral Research (US). The belmont report: Ethical prin-

ciples and guidelines for the protection of human subjects of research,

1979.

[13] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network

classifiers. Machine Learning, 29:131–163, 1997.

[14] Vadim Fux, Michael G. Elizarov, and Sergey V. Kolomiets. Handheld

electronic device with text disambiguation, 2006.

[15] Mayank Goel, Leah Findlater, and Jacob O. Wobbrock. WalkType:

Using Accelerometer Data to Accommodate Situational Impairments

in Mobile Touch Screen Text Entry. In SIGCHI Conference on Human

Factors in Computing Systems, pages 2687–2696, 2012.

[16] Mayank Goel, Jacob O. Wobbrock, and Shwetak N. Patel. GripSense:

Using Built-In Sensors to Detect Hand Posture and Pressure on Com-

modity Mobile Phones. In User Interface Software and Technology,

pages 545–554, 2012.

[17] Jun Gong and Peter Tarasewich. Alphabetically constrained keypad

designs for text entry on mobile devices. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’05, pages

211–220, New York, NY, USA, 2005. ACM.

[74 \

BIBLIOGRAPHY

[18] Joshua T. Goodman. A bit of progress in language modeling. Computer

Speech & Language, 15(4):403 – 434, 2001.

[19] Joshua T. Goodman, Gina Venolia, Keith Steury, and Chauncey Parker.

Language modeling for soft keyboards. In Proceedings of the 7th inter-

national conference on Intelligent user interfaces, IUI ’02, pages 194–

195, New York, NY, USA, 2002. ACM.

[20] Dale L. Grover, Martin T. King, and Clifford A. Kushler. Reduced

Keyboard Disambiguating Computer, 1998.

[21] Asela Gunawardana, Tim Paek, and Christopher Meek. Usability

guided key-target resizing for soft keyboards. In 15th international con-

ference on Intelligent user interfaces, page 111, New York, New York,

USA, 2010. ACM Press.

[22] Mark Hall, Frank Eibe, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten. The weka data mining software: An

update. In Intelligent Information Systems,1994. Proceedings of the

1994 Second Australian and New Zealand Conference on, volume 11,

pages 357–361, 2009.

[23] Niels Henze, Enrico Rukzio, and Susanne Boll. Observational and ex-

perimental investigation of typing behaviour using virtual keyboards for

mobile devices. In ACM annual conference on Human Factors in Com-

puting Systems, pages 2659–2668, New York, New York, USA, 2012.

ACM Press.

[24] Johan Himberg, Jonna Häkkilä, Petri Kangas, and Jani Mäntyjärvi.

On-line personalization of a touch screen based keyboard. In 8th inter-

national conference on Intelligent user interfaces, page 77, New York,

New York, USA, 2003. ACM Press.

[25] Eve Hoggan, Stephen A. Brewster, and Jody Johnston. Investigat-

ing the Effectiveness of Tactile Feedback for Mobile Touchscreens. In

SIGCHI Conference on Human Factors in Computing Systems, pages

1573–1582, 2008.

[26] Christian Holz and Patrick Baudisch. The generalized perceived input

point model and how to double touch accuracy by extracting finger-

prints. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’10, pages 581–590, New York, NY, USA,

2010. ACM.

[75 \

BIBLIOGRAPHY

[27] Christian Holz and Patrick Baudisch. Understanding touch. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’11, pages 2501–2510, New York, NY, USA, 2011. ACM.

[28] Andreas Holzinger, Martin Holler, Martin J. Schedlbauer, and Berndt

Urlesberger. An investigation of finger versus stylus input in medical

scenarios. In Information Technology Interfaces, 2008. ITI 2008. 30th

International Conference on, pages 433–438, 2008.

[29] Christina L. James and Kelly M. Reischel. Text input for mobile de-

vices: comparing model prediction to actual performance. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, CHI ’01, pages 365–371, New York, NY, USA, 2001. ACM.

[30] Michael N. Jones and Douglas J. K. Mewhort. Case-sensitive letter and

bigram frequency counts from large-scale English corpora. Behavior

Research Methods, Instruments, & Computers, 36(3):388–96, August

2004.

[31] S. Katz. Estimation of probabilities from sparse data for the language

model component of a speech recognizer. Acoustics, Speech and Signal

Processing, IEEE Transactions on, 35(3):400–401, 1987.

[32] Ron Kohavi. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Proceedings of the Fourteenth In-

ternational Joint Conference on Artificial Intelligence, volume 2, pages

1137–1143. Morgan Kaufmann, 1995.

[33] Sarah Martina Kolly, Roger Wattenhofer, and Samuel Welten. A Per-

sonal Touch - Recognizing Users Based on Touch Screen Behavior.

In Third International Workshop on Sensing Applications on Mobile

Phones, 2012.

[34] Per-Ola Kristensson and Shumin Zhai. Relaxing stylus typing precision

by geometric pattern matching. In 10th international conference on

Intelligent user interfaces, page 151, New York, New York, USA, 2005.

ACM Press.

[35] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activ-

ity Recognition using Cell Phone Accelerometers. In ACM SIGKDD

Explorations Newsletter, volume 12, pages 74–82, 2010.

[76 \

BIBLIOGRAPHY

[36] John Laugesen and Yufei Yuan. What factors contributed to the success

of apple’s iphone? In Mobile Business and 2010 Ninth Global Mobility

Roundtable (ICMB-GMR), pages 91–99, 2010.

[37] Elizabeth D. Liddy. Natural Language Processing. In Marcel Decker,

editor, Encyclopedia of Library and Information Science. 2nd edition,

2001.

[38] Stan J. (North Carolina State Univeristy) Liebowitz and Stephen E.

(North Carolina state University) Margolis. The Fable of Keys. Journal

of Law and Economics, 33(1):1–25, 1990.

[39] I. Scott MacKenzie. KSPC (keystrokes per character) as a characteristic

of text entry techniques. In Human Computer Interaction with Mobile

Devices, number i, pages 195–210. 2002.

[40] I. Scott MacKenzie, Hedy Kober, and Derek Smith. LetterWise: prefix-

based disambiguation for mobile text input. In 14th annual ACM sym-

posium on User interface software and technology, volume 3, pages 111–

120, 2001.

[41] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden, Adrian

Veres, Matthew K Gray, Joseph P Pickett, Dale Hoiberg, Dan Clancy,

Peter Norvig, Jon Orwant, et al. Quantitative analysis of culture using

millions of digitized books. science, 331(6014):176–182, 2011.

[42] Kevin P Murphy. Conjugate bayesian analysis of the gaussian distri-

bution. def, 1(2σ2):16, 2007.

[43] Kevin Patrick Murphy. Dynamic bayesian networks: representation,

inference and learning. PhD thesis, University of California, 2002.

[44] Takao Nakagawa and Hidetake Uwano. Usability Evaluation for Soft-

ware Keyboard on High-Performance Mobile Devices. In HCI Interna-

tional 2011 - Posters’ Extended Abstracts, pages 181–185. 2011.

[45] David L. Neuhoff. The Viterbi algorithm as an aid in text recognition

(Corresp.). IEEE Transactions on Information Theory, 21(2):222–226,

1975.

[46] H. Ney, U. Essen, and R. Kneser. On the estimation of ‘small’ proba-

bilities by leaving-one-out. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 17(12):1202–1212, 1994.

[77 \

BIBLIOGRAPHY

[47] Donald A. Norman and Diane Fisher. Why Alphabetic Keyboards Are

Not Easy to Use: Keyboard Layout Doesn’t Much Matter. Human

Factors: The Journal of the Human Factors and Ergonomics Society,

24:509–519, 1982.

[48] Joan Noyes. The qwerty keyboard: a review. International Journal of

Man-Machine Studies, 18(3):265 – 281, 1983.

[49] Tim F. Paymans, Jasper Lindenberg, and Mark Neerincx. Usability

trade-offs for adaptive user interfaces: ease of use and learnability. In

Proceedings of the 9th international conference on Intelligent user in-

terfaces, IUI ’04, pages 301–303, New York, NY, USA, 2004. ACM.

[50] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77(2):257

– 286, 1989.

[51] J.A. Robinson, V.W. Liang, J.A.M. Chambers, and C.L. MacKen-

zie. Computer user verification using login string keystroke dynamics.

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 28(2):236–241, 1998.

[52] Dmitry Rudchenko, Tim Paek, and Eric Badger. Text Text Revolution:

A Game that Improves Text Entry on Mobile Touchscreen Keyboards.

In Pervasive Computing, Lecture Notes in Computer Science, volume

6696, pages 206–213. 2011.

[53] Bastian Schildbach and Enrico Rukzio. Investigating selection and read-

ing performance on a mobile phone while walking. In 12th international

conference on Human computer interaction with mobile devices and ser-

vices, page 93, New York, New York, USA, 2010. ACM Press.

[54] Andrew Sears, Min Lin, Julie Jacko, and Yan Xiao. When computers

fade: Pervasive computing and situationally-induced impairments and

disabilities. In Proceedings of HCII 2003, pages 1298–1302, 2003.

[55] Katie A. Siek, Yvonne Rogers, and Kay H. Connelly. Fat Finger Wor-

ries: How Older and Younger Users Physically Interact with PDAs. In

Human-Computer Interaction, volume 3585, pages 267–280, 2005.

[56] Daniel Vogel and Patrick Baudisch. Shift: a technique for operating

pen-based interfaces using touch. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, CHI ’07, pages 657–

666, New York, NY, USA, 2007. ACM.

[78 \

BIBLIOGRAPHY

[57] Jacob O. Wobbrock. The Future of Mobile Device Research in HCI. In

Human-Computer Interaction. 2006.

[58] Shumin Zhai, Michael Hunter, and BA Smith. The metropolis

keyboard-an exploration of quantitative techniques for virtual keyboard

design. 13th annual ACM symposium on User interface software and

technology, 2:119–128, 2000.

[59] Nan Zheng, Kun Bai, Hai Huang, and Haining Wang. You are how you

touch: user verification on smartphones via tapping behaviors. Tech-

nical report, College of William & Mary - Department of Computer

Science, 2012.

[79 \

BIBLIOGRAPHY

[80 \

Appendix A

Architecture Diagrams

82 Appendix A. Architecture Diagrams

Figure A.1: The database schema

83

84 Appendix A. Architecture Diagrams

Figure A.2: AdKey class diagram

85

86 Appendix A. Architecture Diagrams

Appendix B

Materials and Statistics

Used sentences

All the sentences used to retrieve data in the different sessions:

Type the following phrases

video camera with a zoom lens, this is a very good idea.

a steep learning curve in riding a unicycle

the first time he tried to swim, he almost flooded

important news always seems to be late

I put garbage in an abandoned mine

Mario, you are a capitalist pig

dormitory doors are locked at midnight

if you come home late, the doors are locked

most judges are very honest

Type the following phrases at the maximum speed you can achieve don’t

care too much of errors!

the insulation is not working

a steep learning curve in riding a unicycle

Mario, you are a capitalist pig

meet tomorrow in the lavatory

if you come home late, the doors are locked

I put garbage in an abandoned mine

I like baroque and classical music

88 Appendix B. Materials and Statistics

the first time he tried to swim, he almost flooded

important news always seems to be late

Type the following phrases while walking

video camera with a zoom lens, this is a very good idea.

our life expectancy has increased

if you come home late, the doors are locked

I put garbage in an abandoned mine

the location of the crime

important news always seems to be late

a steep learning curve in riding a unicycle

the first time he tried to swim, he almost flooded

the accident scene is a shrine for fans

Type the following phrases with a glare on the screen (wait for the PI)

bring the offenders to justice

a steep learning curve in riding a unicycle

important news always seems to be late

a coupon for a free sample

the first time he tried to swim, he almost flooded

I put garbage in an abandoned mine

if you come home late, the doors are locked

Mario, you are a capitalist pig

the plug does not fit the socket

89

Key Occurences

a 36.31

b 5.12

c 13.86

d 16.90

e 51.79

f 6.45

g 9.10

h 11.85

i 35.48

j 1.65

k 3.23

l 16.55

m 16.17

n 24.76

o 32.48

p 7.55

q 1.70

r 23.62

s 22.90

t 31.36

u 9.79

v 3.81

w 6.12

x 1.55

y 7.74

z 1.48

↑ 2.33

⇐ 23.38

, 4.68

79.31

. 1.67

Table B.1: Average occurrences of keys in each session

90 Appendix B. Materials and Statistics

Key MeanX MeanY VarX VarY CovXY Count

a -3.65 -0.61 81.20 46.18 7.30 13024

b -2.18 3.41 24.66 16.35 1.99 2068

c -0.54 2.40 50.41 29.92 -2.38 5544

d 0.60 1.76 33.61 29.44 1.144 6765

e 3.50 2.24 55.29 52.66 6.72 20834

f 1.14 2.05 26.10 20.62 0.62 2596

g -1.53 2.75 29.86 26.26 2.14 3729

h -0.61 2.23 29.50 23.98 0.28 4708

i -1.63 2.14 52.11 45.65 -0.46 14366

j -0.82 -0.13 19.00 13.65 -0.94 319

k -3.19 1.83 19.37 15.25 0.15 1144

l 1.47 -0.17 52.20 35.71 -2.26 6457

m -3.94 2.14 37.00 35.72 -1.90 6556

n -4.73 3.29 57.61 36.76 -1.69 9900

o -2.75 1.51 40.85 39.82 -0.15 13178

p 2.33 2.59 28.06 21.58 -2.84 3058

q 0.51 0.67 18.00 12.41 0.37 165

r 0.33 2.72 34.84 31.46 -0.25 9614

s 1.35 1.19 44.12 33.19 1.02 9306

t 0.67 3.34 43.87 38.56 1.91 12738

u -0.86 2.95 31.56 25.45 -0.99 4026

v 0.24 1.89 19.75 15.33 0.35 1529

w 5.83 2.50 23.82 19.22 0.96 2464

x 2.80 0.16 17.64 13.06 0.20 165

y -2.70 3.78 39.28 22.57 1.38 3179

z 0.42 1.30 18.05 12.93 -0.16 308

↑ -2.41 2.11 20.12 13.64 0.05 484

⇐ 14.38 0.88 37.99 31.55 -2.22 8470

, -1.46 5.43 22.69 21.73 0.03 1419

17.68 7.67 149.88 105.28 4.97 31977

. 0.34 3.88 17.68 13.48 -0.07 198

Table B.2: Aggregated parameter estimation over keys

Appendix C

AdKey Documentation

Package com.unz.adkey

Package Contents Page

Classes

Keyboard . 92

The main activity of AdKey, an adaptive situation-aware keyboard.

LanguageModel . 94

Implements the language model for the keyboard.

LightQuantifier . 95

Stores the value of the quantified level of light.

Logger . 96

Stores the log and handles writings to file.

Model . 97

The logical model of the application.

PhraseGenerator . 99

Stores the sentences to be used in the experiment.

SpeedQuantifier . 100

Extimates the user writing speed.

UserModel . 103

Stores the user model and provides probability of events.

92 Appendix C. AdKey Documentation

UserSelect . 104

The application starting activity.

WalkingQuantifier . 105

The model that quantifies the user walking speed.

C.1 Class Keyboard

The main activity of AdKey, an adaptive situation-aware keyboard. This

class loads the GUI defined in /res/layout/activity keyboard.xml and han-

dles the sensor models SpeedQuantifier (in C.7, page 100), LightQuantifier (in

C.3, page 95) and WalkingQuantifier (in C.10, page 105). It also handles the

Model (in C.5, page 97) where the logic resides.

C.1.1 Declaration

public class Keyboard

extends Activity

C.1.2 Field summary

nKeys Number of keys of the keyboard.

C.1.3 Constructor summary

Keyboard()

C.1.4 Method summary

nextPressed(View) Gets the new sentence from the

PhraseGenerator (in C.6, page 99) and updates the label

preview.

onAccuracyChanged(Sensor, int)

onCreate(Bundle) Instantiates the GUI and the logic.

onPause() Unregister the accelerometer when the activity is

paused.

onResume() Register the accelerometer when the activity is

resumed.

onSensorChanged(SensorEvent) Handles the events re-

trieved from the accelerometer, updating the WalkingQuan-

tifier (in C.10, page 105).

onTouch(View, MotionEvent) Handles a touch event on the

sensitive area of the keyboard.

Class Keyboard 93

C.1.5 Fields

• public static final int nKeys

– Number of keys of the keyboard.

C.1.6 Constructors

• Keyboard

public Keyboard()

C.1.7 Methods

• nextPressed

public void nextPressed(View target)

– Description

Gets the new sentence from the PhraseGenerator (in C.6, page

99) and updates the label preview. Finally, communicates to the

Logger (in C.4, page 96) to flush the log to file.

– Parameters

∗ target –

• onAccuracyChanged

public void onAccuracyChanged(Sensor sensor, int accu-

racy)

• onCreate

public void onCreate(Bundle savedInstanceState)

– Description

Instantiates the GUI and the logic

• onPause

protected void onPause()

– Description

Unregister the accelerometer when the activity is paused.

• onResume

protected void onResume()

– Description

Register the accelerometer when the activity is resumed.

94 Appendix C. AdKey Documentation

• onSensorChanged

public void onSensorChanged(SensorEvent event)

– Description

Handles the events retrieved from the accelerometer, updating

the WalkingQuantifier (in C.10, page 105).

• onTouch

public boolean onTouch(View v, MotionEvent event)

– Description

Handles a touch event on the sensitive area of the keyboard.

Model (in C.5, page 97) is responsible of classifying the retrieved

touch, while SpeedQuantifier (in C.7, page 100) is updated. Fi-

nally, it updates the content of the form.

C.2 Class LanguageModel

Implements the language model for the keyboard. Logically, it stores

the current belief state of the Markov Model, described as a probability

distribution over the keys, and when it receives new evidence updates the

belief state.

C.2.1 Declaration

public class LanguageModel

extends java.lang.Object

C.2.2 Constructor summary

LanguageModel() Sets the initial distribution over the keys as

uniform.

C.2.3 Method summary

getProbabilities() Perform prediction on the next state given

the current belief state.

setCurrDistribution(double[]) Updates the current belief

state.

C.2.4 Constructors

• LanguageModel

public LanguageModel()

Class LightQuantifier 95

– Description

Sets the initial distribution over the keys as uniform.

C.2.5 Methods

• getProbabilities

public double[] getProbabilities()

– Description

Perform prediction on the next state given the current belief state.

– Returns – the predicted probability distribution over the keys.

• setCurrDistribution

public void setCurrDistribution(double[] newDistribution)

– Description

Updates the current belief state. It is also responsible of normal-

izing it to one.

– Parameters

∗ newDistribution – the new belief state.

C.3 Class LightQuantifier

Stores the value of the quantified level of light. No sensor handling

because the API of the phone did not give us access to it.

C.3.1 Declaration

public class LightQuantifier

extends java.lang.Object

C.3.2 Constructor summary

LightQuantifier()

C.3.3 Method summary

getLightValue() Gets the quantified level of light.

setLightValue(float) Sets the quantified level of light.

96 Appendix C. AdKey Documentation

C.3.4 Constructors

• LightQuantifier

public LightQuantifier()

C.3.5 Methods

• getLightValue

public float getLightValue()

– Description

Gets the quantified level of light. A value between 0 and 1.

– Returns – light level.

• setLightValue

public void setLightValue(float lightValue)

– Description

Sets the quantified level of light. Value must be between 0 and 1.

– Parameters

∗ lightValue – light level

C.4 Class Logger

Stores the log and handles writings to file. This class permits to retain

the log of the occurred keystrokes in memory until they are flushed to file.

C.4.1 Declaration

public class Logger

extends java.lang.Object

C.4.2 Constructor summary

Logger() Creates the log file.

C.4.3 Method summary

appendLog(String) Appends the new log to the currently

stored one.

writeLog() Flushes the content of the stored log to file.

Class Model 97

C.4.4 Constructors

• Logger

public Logger()

– Description

Creates the log file. To ensure file unicity, new file will have as

name System.currentTimeMillis().

C.4.5 Methods

• appendLog

public void appendLog(java.lang.String log)

– Description

Appends the new log to the currently stored one. It appends it

in a new line.

– Parameters

∗ log – the new log.

• writeLog

public void writeLog()

– Description

Flushes the content of the stored log to file.

C.5 Class Model

The logical model of the application. It is responsible of classifying a

touch location as a key, given knowledge about the UserModel , the current

state of the LanguageModel (in C.2, page 94) and the state of the sensors. In

order to know the latter, it shares a reference of a SpeedQuantifier (in C.7,

page 100), WalkingQuantifier (in C.10, page 105) and LightQuantifier (in C.3,

page 95) with the activity Keyboard (in C.1, page 92) that is responsible of

updating them. Weights between them are computed.

C.5.1 Declaration

public class Model

extends java.lang.Object

C.5.2 Constructor summary

Model(Context, String, SpeedQuantifier, LightQuanti-

98 Appendix C. AdKey Documentation

fier, WalkingQuantifier) Takes the reference of the sensor

models and loads the user distributions.

C.5.3 Method summary

classifyThis(double[]) Given a stroke, returns the most likely

key.

setUseLanguage(boolean) Enables or disables the language

model.

toLog() Returns the state of the model in a format valid for the

Logger (in C.4, page 96).

C.5.4 Constructors

• Model

public Model(Context context, java.lang.String userId,

SpeedQuantifier sq, LightQuantifier lq, WalkingQuantifier

wq)

– Description

Takes the reference of the sensor models and loads the

user distributions. User specific distribution are loaded from

res/values/usr distributions.xml and used to construct the

UserModel . References to sensor models are stored as attributes.

– Parameters

∗ context – the application context.

∗ userId – the user identifier.

∗ sq – the speed quantifier.

∗ lq – the light quantifier.

∗ wq – the walking quantifier.

C.5.5 Methods

• classifyThis

public int classifyThis(double[] pos)

– Description

Given a stroke, returns the most likely key. Computes probabil-

ities of each key to be pressed given the coordinates, eventually

joint with the language probabilities if the language model is en-

abled, and returns the index of the most likely key.

Class PhraseGenerator 99

– Parameters

∗ pos – size 2 array containing the x and y coordinates in pixels.

– Returns – the most likely key.

• setUseLanguage

public void setUseLanguage(boolean useLanguage)

– Description

Enables or disables the language model.

– Parameters

∗ useLanguage – the language model selector.

• toLog

public java.lang.CharSequence toLog()

– Description

Returns the state of the model in a format valid for the Logger

(in C.4, page 96).

– Returns – the log.

C.6 Class PhraseGenerator

Stores the sentences to be used in the experiment. The sentences are

returned to the caller one by one.

C.6.1 Declaration

public class PhraseGenerator

extends java.lang.Object

C.6.2 Constructor summary

PhraseGenerator() Initialize the set of sentences.

C.6.3 Method summary

getCurrentSentence() Gets the counter over the current sen-

tences.

getPhrase() Gets the next sentence.

100 Appendix C. AdKey Documentation

C.6.4 Constructors

• PhraseGenerator

public PhraseGenerator()

– Description

Initialize the set of sentences.

C.6.5 Methods

• getCurrentSentence

public int getCurrentSentence()

– Description

Gets the counter over the current sentences. Used by the Logger

(in C.4, page 96) to assign a unique ID to each sentence.

– Returns –

• getPhrase

public java.lang.String getPhrase()

– Description

Gets the next sentence. Gets the next sentence for the experiment

and updates the counters.

– Returns – a sentence.

C.7 Class SpeedQuantifier

Extimates the user writing speed. It uses a linear model between inter-

and intra-stroke times to estimate the user relative typing speed. Both times

are smoothed over the last 20 observations lower than 500 ms.

C.7.1 Declaration

public class SpeedQuantifier

extends java.lang.Object

C.7.2 Constructor summary

SpeedQuantifier(Context, String) Sets up the linear model

parameters.

Class SpeedQuantifier 101

C.7.3 Method summary

getRelativeSpeed() Gets the estimated typing speed.

setLastTime(long) Updates the last release timestamp.

toLog() Returns the state of the quantifier in a format valid for

the Logger (in C.4, page 96).

updatePressure(long) Updates the smoothed value of pres-

sure times.

updateTime(long) Updates the smoothed value of inter-stroke

times.

C.7.4 Constructors

• SpeedQuantifier

public SpeedQuantifier(Context context, java.lang.String

userId)

– Description

Sets up the linear model parameters. Paraeters are selected de-

pending on whether the user is typing with one or both tumbs,

as retrieved from res/values/user modality.xml.

– Parameters

∗ context – the application context.

∗ userId – the user identifier.

C.7.5 Methods

• getRelativeSpeed

public float getRelativeSpeed()

– Description

Gets the estimated typing speed. The estimation is performed

in terms of distance from the linear model of last observations,

smoothed to 1. Value returned is between 0 and 1. It should be

called before updating the model with the last touch, in order to

get results dependent only on previous touches.

– Returns – the estimated typing speed.

• setLastTime

public void setLastTime(long tTimeStamp)

102 Appendix C. AdKey Documentation

– Description

Updates the last release timestamp. This is called when the

spacebar is pressed, because intra-words times do not count in

the model in order to have more smoothed value, but is necessary

to know when they happened to calculate the next inter-stroke

time.

– Parameters

∗ tTimeStamp – the timestamp at which the spacebar was re-

leased.

• toLog

public java.lang.String toLog()

– Description

Returns the state of the quantifier in a format valid for the Logger

(in C.4, page 96).

– Returns – the log.

• updatePressure

public void updatePressure(long pTimeStamp)

– Description

Updates the smoothed value of pressure times. The intra-stroke

time is updated only when pressure was not greater than 500ms.

Also lastRelease is updated with the current timestamp.

– Parameters

∗ pTimeStamp – the timestamp at which the touch release oc-

curred.

• updateTime

public void updateTime(long tTimeStamp)

– Description

Updates the smoothed value of inter-stroke times. The inter-

stroke time is updated only when pressure was not greater than

500ms. Also lastPressure is updated with the current timestamp.

– Parameters

∗ pTimeStamp – the timestamp at which the touch is initiated.

Class UserModel 103

C.8 Class UserModel

Stores the user model and provides probability of events. User model is

a collection of bivariate gaussians over the keys for each situation, when a

touch is collected, given the weights of the situation is possible to retrieve

the probability of each key being the intended key.

C.8.1 Declaration

public class UserModel

extends java.lang.Object

C.8.2 Constructor summary

UserModel(MultiGaussianDistribution[], MultiGaus-

sianDistribution[], MultiGaussianDistribution[],

MultiGaussianDistribution[]) Initializes the user model

distributions.

C.8.3 Method summary

getProbabilities(double[], double[]) Gets the probability

distribution over the keys.

C.8.4 Constructors

• UserModel

public UserModel(distribution.MultiGaussianDistribution[]

usrDistNormal, distribution.MultiGaussianDistribution[]

usrDistHurry, distribution.MultiGaussianDistribution[]

usrDistWalking, distribution.MultiGaussianDistribution[]

usrDistGlare)

– Description

Initializes the user model distributions. Receives a series of Multi-

GaussianDistribution that composes the user model.

– Parameters

∗ usrDistNormal – distribution in normal condition.

∗ usrDistHurry – distribution while in a hurry.

∗ usrDistWalking – distribution when walking.

∗ usrDistGlare – distribution when there there is glare on the

screen.

104 Appendix C. AdKey Documentation

C.8.5 Methods

• getProbabilities

public double[] getProbabilities(double[] weights,

double[] pos)

– Description

Gets the probability distribution over the keys. When a touch

is performed, this method computes the probability of the touch

of belonging to each key, as a mixture of bivariate gaussians of

weighted by weights.

– Parameters

∗ weights – the weight to assign to each distribution.

∗ pos – the location where touch was performed.

– Returns – probability distribution over the keys.

C.9 Class UserSelect

The application starting activity. This activity is created when the ap-

plication is run, and it serves to select the user performing the experiment,

that is communicated to the created Keyboard (in C.1, page 92) activity.

C.9.1 Declaration

public class UserSelect

extends Activity

C.9.2 Field summary

EXTRA MESSAGE

C.9.3 Constructor summary

UserSelect()

C.9.4 Method summary

onCreate(Bundle) Initialize the graphic elements.

startKeyboard(View) Starts the Keyboard (in C.1, page 92)

activity.

Class WalkingQuantifier 105

C.9.5 Fields

• public static final java.lang.String EXTRA MESSAGE

C.9.6 Constructors

• UserSelect

public UserSelect()

C.9.7 Methods

• onCreate

public void onCreate(Bundle savedInstanceState)

– Description

Initialize the graphic elements.

• startKeyboard

public void startKeyboard(View view)

– Description

Starts the Keyboard (in C.1, page 92) activity. Passing to it as a

message the content in the editText.

– Parameters

∗ view – the button to start the activity.

C.10 Class WalkingQuantifier

The model that quantifies the user walking speed. This stores readings

of values from the device y-axis accelerometer and uses them to compute

their standard deviation as an estimate of the user walking speed.

C.10.1 Declaration

public class WalkingQuantifier

extends java.lang.Object

C.10.2 Constructor summary

WalkingQuantifier() Class constructor.

C.10.3 Method summary

getGVariance() Return the variance over the last measured

acceleration values.

updateAccel(float) Updates the acceleration values Get the

y-acceleration as measured by the Keyboard activity and up-

dates the stored values (only y-axis considered)

C.10.4 Constructors

• WalkingQuantifier

public WalkingQuantifier()

– Description

Class constructor.

C.10.5 Methods

• getGVariance

public float getGVariance()

– Description

Return the variance over the last measured acceleration values.

The mean and standard deviation of the 50 last measured values

are computed and the latter is normalized to one.

– Returns – the variance over acceleration normalized to one.

• updateAccel

public void updateAccel(float value)

– Description

Updates the acceleration values Get the y-acceleration as mea-

sured by the Keyboard activity and updates the stored values

(only y-axis considered)

– Parameters

∗ value – the values acquired from the accelerometer

106

Interface MultiRandomDistribution 107

Package

com.unz.adkey.distribution

Package Contents Page

Interfaces

MultiRandomDistribution . 107
This interface must be implemented by all the package’s classes implementing

a multi-variate random distribution.
RandomDistribution . 109

This interface must be implemented by all the package’s classes implementing

a mono-variate random distribution.

Classes

GaussianDistribution .110

This class implements a Gaussian distribution.

MultiGaussianDistribution . 111

This class implements a multi-variate Gaussian distribution.

This package implements various pseudo-random distributions.

C.11 Interface MultiRandomDistribution

This interface must be implemented by all the package’s classes imple-

menting a multi-variate random distribution.

C.11.1 Declaration

public interface MultiRandomDistribution

108 Appendix C. AdKey Documentation

extends java.io.Serializable

C.11.2 All known subinterfaces

MultiGaussianDistribution (in C.14, page 111)

C.11.3 All classes known to implement interface

MultiGaussianDistribution (in C.14, page 111)

C.11.4 Method summary

dimension() Returns the dimension of the vectors handled by

this random distribution.

generate() Generates a pseudo-random vector.

probability(double[]) Returns the probability (density) of a

given vector.

C.11.5 Methods

• dimension

int dimension()

– Description

Returns the dimension of the vectors handled by this random

distribution.

– Returns – The generated vectors’ dimension.

• generate

double[] generate()

– Description

Generates a pseudo-random vector. The vectors generated by this

function must follow the pseudo-random distribution described

by the object that implements it.

– Returns – A pseudo-random vector.

• probability

double probability(double[] v)

– Description

Returns the probability (density) of a given vector.

– Parameters

∗ v – A vector.

– Returns – The probability of the vector v.

Interface RandomDistribution 109

C.12 Interface RandomDistribution

This interface must be implemented by all the package’s classes imple-

menting a mono-variate random distribution. Distributions are not mutable.

C.12.1 Declaration

public interface RandomDistribution

extends java.io.Serializable

C.12.2 All known subinterfaces

GaussianDistribution (in C.13, page 110)

C.12.3 All classes known to implement interface

GaussianDistribution (in C.13, page 110)

C.12.4 Method summary

generate() Generates a pseudo-random number.

probability(double) Returns the probability (density) of a

given number.

C.12.5 Methods

• generate

double generate()

– Description

Generates a pseudo-random number. The numbers generated by

this function are drawn according to the pseudo-random distri-

bution described by the object that implements it.

– Returns – A pseudo-random number.

• probability

double probability(double n)

– Description

Returns the probability (density) of a given number.

– Parameters

∗ n – A number.

110 Appendix C. AdKey Documentation

C.13 Class GaussianDistribution

This class implements a Gaussian distribution.

C.13.1 Declaration

public class GaussianDistribution

extends java.lang.Object

implements RandomDistribution

C.13.2 Constructor summary

GaussianDistribution() Creates a new pseudo-random, Gaus-

sian distribution with zero mean and unitary variance.

GaussianDistribution(double, double) Creates a new

pseudo-random, Gaussian distribution.

C.13.3 Method summary

generate()

mean() Returns this distribution’s mean value.

probability(double)

variance() Returns this distribution’s variance.

C.13.4 Constructors

• GaussianDistribution

public GaussianDistribution()

– Description

Creates a new pseudo-random, Gaussian distribution with zero

mean and unitary variance.

• GaussianDistribution

public GaussianDistribution(double mean, double vari-

ance)

– Description

Creates a new pseudo-random, Gaussian distribution.

– Parameters

∗ mean – The mean value of the generated numbers.

∗ variance – The variance of the generated numbers.

Class MultiGaussianDistribution 111

C.13.5 Methods

• generate

double generate()

– Description copied from RandomDistribution (in C.12,

page 109)

Generates a pseudo-random number. The numbers generated by

this function are drawn according to the pseudo-random distri-

bution described by the object that implements it.

– Returns – A pseudo-random number.

• mean

public double mean()

– Description

Returns this distribution’s mean value.

– Returns – This distribution’s mean value.

• probability

double probability(double n)

– Description copied from RandomDistribution (in C.12,

page 109)

Returns the probability (density) of a given number.

– Parameters

∗ n – A number.

• variance

public double variance()

– Description

Returns this distribution’s variance.

– Returns – This distribution’s variance.

C.14 Class MultiGaussianDistribution

This class implements a multi-variate Gaussian distribution.

112 Appendix C. AdKey Documentation

C.14.1 Declaration

public class MultiGaussianDistribution

extends java.lang.Object

implements MultiRandomDistribution

C.14.2 Constructor summary

MultiGaussianDistribution(double[], double[][]) Creates a

new pseudo-random, multivariate gaussian distribution.

MultiGaussianDistribution(int) Creates a new pseudo-

random, multivariate gaussian distribution with zero mean

and identity covariance.

C.14.3 Method summary

covariance() Returns (a copy of) this distribution’s covariance

matrix.

covarianceDet() Returns the covariance matrix determinant.

dimension()

generate() Generates a pseudo-random vector according to this

distribution.

mean() Returns (a copy of) this distribution’s mean vector.

probability(double[])

C.14.4 Constructors

• MultiGaussianDistribution

public MultiGaussianDistribution(double[] mean,

double[][] covariance)

– Description

Creates a new pseudo-random, multivariate gaussian distribution.

– Parameters

∗ mean – The mean vector of the generated numbers. This

array is copied.

∗ covariance – The covariance of the generated numbers. This

array is copied. covariance[r][c] is the element at row r and

column c.

• MultiGaussianDistribution

public MultiGaussianDistribution(int dimension)

Class MultiGaussianDistribution 113

– Description

Creates a new pseudo-random, multivariate gaussian distribution

with zero mean and identity covariance.

– Parameters

∗ dimension – This distribution dimension.

C.14.5 Methods

• covariance

public double[][] covariance()

– Description

Returns (a copy of) this distribution’s covariance matrix.

– Returns – This distribution’s covariance matrix.

• covarianceDet

public double covarianceDet()

– Description

Returns the covariance matrix determinant.

– Returns – The covariance matrix determinant.

• dimension

int dimension()

– Description copied from MultiRandomDistribution (in

C.11, page 107)

Returns the dimension of the vectors handled by this random

distribution.

– Returns – The generated vectors’ dimension.

• generate

public double[] generate()

– Description

Generates a pseudo-random vector according to this distribution.

The vectors are generated using the Cholesky decomposition of

the covariance matrix.

– Returns – A pseudo-random vector.

• mean

public double[] mean()

114 Appendix C. AdKey Documentation

– Description

Returns (a copy of) this distribution’s mean vector.

– Returns – This distribution’s mean vector.

• probability

double probability(double[] v)

– Description copied from MultiRandomDistribution (in

C.11, page 107)

Returns the probability (density) of a given vector.

– Parameters

∗ v – A vector.

– Returns – The probability of the vector v.

Appendix D

Code Snippets

Learning process

The sequent code snippets were used for the training and evaluation session

D.1 Bayesian learner

A reusable class to perform Bayesian learning of a multivariate normal

1 import numpy as np

2

3 class MultiNormalBayesLearner :

4 ”””Computes the maximum a p o s t e r i o r i o f a mu l t i v a r i a t e

Normal g i ven i t s p r i o r and the ob s e r va t i on ”””

5

6 def i n i t (s e l f , mean prior , cov pr i o r , kappa , nu) :

7 s e l f . mean prior = mean prior . astype (f l o a t)

8 s e l f . c o v p r i o r = c o v p r i o r . astype (f l o a t)

9 s e l f . kappa = f l o a t (kappa)

10 s e l f . nu = f l o a t (nu)

11

12 def t r a i n (s e l f , t r a in samp le) :

13 n = len (t ra in samp le)

14 i f n != 0 :

15 p = len (t ra in samp le [0])

16 else :

116 Appendix D. Code Snippets

17 p = 0

18 mean sample = np . z e ro s ((p , 1)) . astype (f l o a t)

19 cov sample = np . z e r o s ((p , p)) . astype (f l o a t)

20 for i in range (n) :

21 mean sample += tra in samp le [i]

22 mean sample /= n

23 for i in range (n) :

24 cov sample += (t ra in samp le [i] − mean sample) ∗ ((

t ra in samp le [i] − mean sample) . t ranspose ())

25 s e l f . mean estimated = (s e l f . kappa ∗ s e l f . mean prior + n ∗
mean sample) / (s e l f . kappa + n)

26 const = s e l f . kappa ∗ n / (s e l f . kappa + n)

27 s e l f . cov es t imated = (s e l f . c o v p r i o r + cov sample + const

∗ (mean sample − s e l f . mean prior) ∗ “

28 ((mean sample − s e l f . mean prior) . t ranspose ())) / (s e l f .

nu + n + p + 1)

D.2 Training algorithm

The selection of training samples and storage of the retrieved distribution

1 import l e a r n e r as ln

2 import numpy as np

3 import MySQLdb as mdb

4 import random

5 from s c ipy . s t a t s import norm

6 import math

7

8 def t r a i n (f o l d) :

9 centx = ((’ q ’ ,16) , (’w ’ ,16+32) , (’ e ’ ,16+32∗2) , (’ r ’ ,16+32∗3) , (

’ t ’ ,16+32∗4) , (’ y ’ ,16+32∗5) , (’u ’ ,16+32∗6) , (’ i ’ ,16+32∗7) , (

’ o ’ ,16+32∗8) , (’p ’ ,16+32∗9) ,

10 (’ a ’ , 32) , (’ s ’ ,32∗2) , (’d ’ ,32∗3) , (’ f ’ ,32∗4) , (’ g ’ ,32∗5) , (’h ’

,32∗6) , (’ j ’ ,32∗7) , (’ k ’ ,32∗8) , (’ l ’ ,32∗9) ,

11 (’ sh f ’ , 24) , (’ z ’ ,32∗2) , (’ x ’ ,32∗3) , (’ c ’ ,32∗4) , (’ v ’ ,32∗5) , (’b ’

,32∗6) , (’n ’ ,32∗7) , (’m’ ,32∗8) , (’ bks ’ ,32∗9) ,

12 (’ , ’ ,48+16) , (’ ’ , 160) , (’ . ’ , 256))

13 centy = ((’ q ’ , 2 7 . 5) , (’w ’ , 2 7 . 5) , (’ e ’ , 2 7 . 5) , (’ r ’ , 2 7 . 5) , (’ t ’

, 2 7 . 5) , (’ y ’ , 2 7 . 5) , (’u ’ , 2 7 . 5) , (’ i ’ , 2 7 . 5) , (’ o ’ , 2 7 . 5) , (’p ’

, 2 7 . 5) ,

14 (’ a ’ , 8 2 . 5) , (’ s ’ , 8 2 . 5) , (’d ’ , 8 2 . 5) , (’ f ’ , 8 2 . 5) , (’ g ’ , 8 2 . 5) , (’

h ’ , 8 2 . 5) , (’ j ’ , 8 2 . 5) , (’ k ’ , 8 2 . 5) , (’ l ’ , 8 2 . 5) ,

15 (’ sh f ’ , 1 3 7 . 5) , (’ z ’ , 1 3 7 . 5) , (’ x ’ , 1 3 7 . 5) , (’ c ’ , 1 3 7 . 5) , (’ v ’

, 1 3 7 . 5) , (’b ’ , 1 3 7 . 5) , (’n ’ , 1 3 7 . 5) , (’m’ , 1 3 7 . 5) , (’ bks ’

, 1 3 7 . 5) ,

16 (’ , ’ , 1 9 2 . 5) , (’ ’ , 1 9 2 . 5) , (’ . ’ , 1 9 2 . 5))

17

18 kappa = 2

Training algorithm 117

19 nu = 500

20 prior mean = np . z e ro s ((2 , 1))

21 p r i o r c o v = np . matrix ([[1 6 . 8 0 6 5 ∗ (nu−3) , 0] , [0 , 1 2 . 2 0 0 8 ∗ (nu−3)

]])

22 nbl = ln . MultiNormalBayesLearner (prior mean , p r i o r cov ,

kappa , nu)

23

24 con = mdb. connect (’ l o c a l h o s t ’ , ’ root ’ , ’ i n z ’ , ’ UnzKeyboard ’

)

25 with con :

26 cur = con . cur so r ()

27 cur . execute (”TRUNCATE TABLE Estimate%s ” , f o l d)

28

29 cur . execute (”SELECT MAX(‘ Key ‘) FROM Subject ”)

30 vaaa = cur . f e t chone () [0]

31 for subj in range (1 , vaaa + 1) :

32 cur . execute (”SELECT MAX(Se s s i on) FROM Event2 WHERE

SubjectKey = %s ” , subj)

33 for s e s s in range (1 , 6) :

34 chars = map(chr , range (97 , 123))

35 chars . extend ([’ sh f ’ , ’ bks ’ , ’ , ’ , ’ ’ , ’ . ’])

36 for char in chars :

37 cur . execute (”SELECT AccuracyXInt , AccuracyYInt FROM

EventFold%s WHERE Ses s i on = %s AND IntentB = %s

AND LastX <> 0 AND Multi = ’N ’ ” , (f o ld , s e s s ,

char))

38 s t r o k e s = cur . f e t c h a l l ()

39 s t r o k e s a r r = []

40 for s t r oke in s t r o k e s :

41 s t r o k e s a r r . append (np . matrix (s t r oke) . t ranspose ())

42 i f l en (s t r o k e s a r r) != 0 :

43 nbl . t r a i n (s t r o k e s a r r)

44 est mean = nbl . mean estimated

45 e s t c o v = nbl . cov es t imated

46 else :

47 est mean = prior mean

48 e s t c o v = p r i o r c o v / (nu−3)

49 cur . execute (”INSERT INTO Estimate%s VALUES (%s ,%s ,%

s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,NULL,NULL) ” , “

50 (fo ld , subj , s e s s , char , est mean . item (0) ,

est mean . item (1) , e s t c o v . item (0) , e s t c o v .

item (1) , e s t c o v . item (2) , e s t c o v . item (3) , l en

(s t r o k e s a r r)))

51 for char in chars :

52 for i in range (l en (chars)) :

53 i f centx [i] [0] == char :

54 cur . execute (”UPDATE Estimate%s SET OffX = %s , OffY

= %s WHERE ‘ Char ‘ = %s ” , (fo ld , centx [i] [1] ,

centy [i] [1] , char))

118 Appendix D. Code Snippets

D.3 Evaluation algorithm

The simulation of the training set over the obtained model.

1 def m u l t i v a r i a t e p d f (x , y ,mx,my, vx , vy , cov) :

2 mean = np . array ([mx,my])

3 cov = np . array ([[vx , cov] , [cov , vy]])

4 vec to r = np . array ([x , y])

5 quadrat i c fo rm = np . dot (np . dot (vector−mean , np . l i n a l g . inv (

cov)) , np . t ranspose (vector−mean))

6 return np . exp (−.5 ∗ quadrat i c fo rm) / (2∗np . p i ∗ np . l i n a l g .

det (cov))

7

8 def t e s t (fo ld , ses , use) :

9 con = mdb. connect (’ l o c a l h o s t ’ , ’ root ’ , ’ i n z ’ , ’ UnzKeyboard ’

)

10 with con :

11 cur = con . cur so r ()

12 i f use == 4 :

13 cur . execute (”SELECT LastX , LastY , SubjectKey , Sess ion ,

IntentB , PressB , ‘Key ‘ FROM EventTest%s WHERE

Ses s i on = %s AND SubjectKey > 6” , (f o ld , s e s))

14 else :

15 cur . execute (”SELECT LastX , LastY , SubjectKey , Sess ion ,

IntentB , PressB , ‘Key ‘ FROM EventTest%s WHERE

Ses s i on = %s AND SubjectKey <> 1 AND SubjectKey <>

5” , (f o ld , s e s))

16 s t r o k e s = cur . f e t c h a l l ()

17 count , e r ror , ok , o lde r ro r , co r rec ted , wronged = 0 , 0 ,

0 , 0 , 0 , 0

18 for s t r oke in s t r o k e s :

19 cur . execute (”SELECT ‘ Char ‘ , MeanX, MeanY, Cov00 , Cov11 ,

OffX , OffY , Cov01 FROM EstimateMean WHERE

SubjectKey = %s AND Ses s i on = %s ” ,“

20 (s t r oke [2] , use))

21 pdfs = cur . f e t c h a l l ()

22 currmaxval = 0 .0

23 currchar = ’ a ’

24 for pdf in pdfs :

25 p r o b a b i l i t y = m u l t i v a r i a t e p d f (s t r oke [0]− pdf [5] ,

s t r oke [1]− pdf [6] , pdf [1] , pdf [2] , pdf [3] , pdf [4] , pdf

[7])

26 i f p r o b a b i l i t y > currmaxval :

27 currmaxval = p r o b a b i l i t y

28 currchar = pdf [0]

29 i f cur rchar != s t roke [4] :

30 e r r o r +=1

31 else :

32 ok +=1

33 count+=1

34 i f s t r oke [4] != s t roke [5] :

35 o l d e r r o r += 1

36 i f s t r oke [4] != s t roke [5] and s t r oke [4] == currchar :

37 c o r r e c t e d += 1

38 i f s t r oke [4] == st roke [5] and s t r oke [4] != currchar :

39 wronged += 1

40 return (o lde r ro r , e r r o r)

AdKey

Main classes of AdKey

D.4 Class Model

1 package com . unz . adkey ;

2

3 import android . content . Context ;

4 import android . content . r e s . Resources ;

5 import android . content . r e s . TypedArray ;

6 import android . view . MotionEvent ;

7

8 import com . unz . adkey . d i s t r i b u t i o n . Mul t iGauss ianDis t r ibut ion ;

9

10 /∗∗
11 ∗ The l o g i c a l model o f the a p p l i c a t i o n .

12 ∗ I t i s r e s p on s i b l e o f c l a s s i f y i n g a touch l o c a t i o n as a key

, g i ven knowledge

13 ∗ about the {@link #userModel UserModel } , t he curren t s t a t e

o f the {@link #LanguageModel LanguageModel} and the s t a t e

14 ∗ o f the sensors . In order to know the l a t t e r , i t shares a

r e f e r ence o f a {@link #SpeedQuant i f i e r SpeedQuant i f i e r } ,
15 ∗ {@link #Walk ingQuant i f i er Walk ingQuant i f i er } and {@link #

Li gh tQuan t i f i e r L i gh tQuan t i f i e r }
16 ∗ with the a c t i v i t y {@link #Keyboard Keyboard} t h a t

17 ∗ i s r e s p on s i b l e o f updat ing them . Weights between them are

computed .

18 ∗ @author Michael Ange l e r i − michael . ange ler i@mai l . po l imi . i t

19 ∗

119

120 Appendix D. Code Snippets

20 ∗/
21 public class Model {
22

23 private boolean useLanguage = true ;

24

25 private UserModel userModel ;

26 private LanguageModel languageModel ;

27

28 private SpeedQuant i f i e r speedQ ;

29 private L igh tQuant i f i e r l ightQ ;

30 private WalkingQuant i f i er walkingQ ;

31

32 private double [] we ights ;

33

34 /∗∗
35 ∗ Takes the r e f e r ence o f the sensor models and l oads the

user d i s t r i b u t i o n s .

36 ∗ User s p e c i f i c d i s t r i b u t i o n are loaded from <code>re s /

va l u e s / u s r d i s t r i b u t i o n s . xml</code> and used to

37 ∗ cons t ruc t the {@link #userModel UserModel } . References

to sensor models are s t o r ed as a t t r i b u t e s .

38 ∗ @param con t ex t the a p p l i c a t i o n con t ex t .

39 ∗ @param user Id the user i d e n t i f i e r .

40 ∗ @param sq the speed q u a n t i f i e r .

41 ∗ @param l q the l i g h t q u a n t i f i e r .

42 ∗ @param wq the wa lk ing q u a n t i f i e r .

43 ∗/
44 public Model (Context context , S t r ing userId ,

SpeedQuant i f i e r sq , L i gh tQuant i f i e r lq ,

WalkingQuant i f i er wq) {
45 // i n i t i a l i z i n g the user model

46 Resources r e s = context . getResources () ;

47 TypedArray tmx = r e s . obtainTypedArray (R. array . meanx) ;

48 TypedArray tmy = r e s . obtainTypedArray (R. array . meany) ;

49 TypedArray tvx = r e s . obtainTypedArray (R. array . var iancex) ;

50 TypedArray tvy = r e s . obtainTypedArray (R. array . var iancey) ;

51 TypedArray tcov = r e s . obtainTypedArray (R. array . covar iance

) ;

52

53 int o f f s e t = I n t e g e r . pa r s e In t (use r Id) ∗ Keyboard . nKeys ∗
4 ;

54 Mul t iGauss ianDis t r ibut ion [] usrDistNormal = new

Mult iGauss ianDis t r ibut ion [Keyboard . nKeys] ;

55 Mul t iGauss ianDis t r ibut ion [] usrDistHurry = new

Mult iGauss ianDis t r ibut ion [Keyboard . nKeys] ;

56 Mul t iGauss ianDis t r ibut ion [] usrDistWalking = new

Mult iGauss ianDis t r ibut ion [Keyboard . nKeys] ;

57 Mul t iGauss ianDis t r ibut ion [] us rDi s tGlare = new

Mult iGauss ianDis t r ibut ion [Keyboard . nKeys] ;

Class Model 121

58 for (int i = 0 ; i < Keyboard . nKeys ∗ 4 ; i++) {
59 double [] mean = {(double) tmx . ge tF loat (i + o f f s e t , 0) , (

double) tmy . ge tF loat (i + o f f s e t , 0) } ;

60 double [] [] cov = {{(double) tvx . ge tF loat (i + o f f s e t , 0) ,

(double) tcov . ge tF loat (i + o f f s e t , 0) } ,

61 {(double) tcov . ge tF loat (i + o f f s e t , 0) , (

double) tvy . ge tF loat (i + o f f s e t , 0) }} ;

62 i f (i < Keyboard . nKeys) {
63 usrDistNormal [i] = new Mult iGauss ianDis t r ibut ion (mean

, cov) ;

64 } else i f (i < Keyboard . nKeys ∗2) {
65 usrDistHurry [i − Keyboard . nKeys] = new

Mult iGauss ianDis t r ibut ion (mean , cov) ;

66 } else i f (i < Keyboard . nKeys ∗ 3) {
67 usrDistWalking [i − Keyboard . nKeys ∗ 2] = new

Mult iGauss ianDis t r ibut ion (mean , cov) ;

68 } else {
69 usrDi s tGlare [i − Keyboard . nKeys ∗ 3] = new

Mult iGauss ianDis t r ibut ion (mean , cov) ;

70 }
71 }
72 userModel = new UserModel (usrDistNormal , usrDistHurry ,

usrDistWalking , us rDi s tGlare) ;

73 languageModel = new LanguageModel () ;

74 speedQ = sq ;

75 l ightQ = lq ;

76 walkingQ = wq ;

77 }
78

79 /∗∗
80 ∗ Given a s t roke , r e tu rns the most l i k e l y key .

81 ∗ Computes p r o b a b i l i t i e s o f each key to be pres sed g iven

the coord inates , e v e n t u a l l y

82 ∗ j o i n t wi th the language p r o b a b i l i t i e s i f the language

model i s enabled , and re turns

83 ∗ the index o f the most l i k e l y key .

84 ∗ @param pos s i z e 2 array con ta in ing the x and y

coord ina t e s in p i x e l s .

85 ∗ @return the most l i k e l y key .

86 ∗/
87 public int c l a s s i f y T h i s (double [] pos , int type) {
88 computeWeights () ;

89 double [] usrProb = userModel . g e t P r o b a b i l i t i e s (weights ,

pos) ;

90 i f (useLanguage) {
91 double [] langProb = languageModel . g e t P r o b a b i l i t i e s () ;

92 for (int i = 0 ; i < Keyboard . nKeys ; i++) {
93 usrProb [i] ∗= langProb [i] ;

94 }

122 Appendix D. Code Snippets

95 i f (type == MotionEvent .ACTION UP | | type ==

MotionEvent . ACTION POINTER 1 UP) {
96 languageModel . s e t C u r r D i s t r i b u t i o n (usrProb) ;

97 }
98 }
99 double max = 0 ;

100 int index = −1;

101 for (int i = 0 ; i < Keyboard . nKeys ; i++) {
102 i f (usrProb [i] > max) {
103 max = usrProb [i] ;

104 index = i ;

105 }
106 }
107 return index ;

108 }
109

110 /∗∗
111 ∗ Enables or d i s a b l e s the language model .

112 ∗ @param useLanguage the language model s e l e c t o r .

113 ∗/
114 public void setUseLanguage (boolean useLanguage) {
115 this . useLanguage = useLanguage ;

116 }
117

118 private void computeWeights () {
119 double w = walkingQ . getGVariance () ;

120 double l = l ightQ . getLightValue () ;

121 double s = speedQ . getRe lat iveSpeed () ;

122 double n = 1 − s ;

123 double takeAway = Math . max(w, l) ;

124 double effTakeAway ;

125 i f (takeAway > n) {
126 effTakeAway = n ;

127 n = 0 ;

128 } else {
129 effTakeAway = takeAway ;

130 n −= takeAway ;

131 }
132 w += w ∗ effTakeAway / (w + l) ;

133 l += l ∗ effTakeAway / (w + l) ;

134 double sum = w + l + s + n ;

135 weights = new double [] { n / sum , s / sum , w / sum , l /

sum } ;

136 }
137

138 /∗∗
139 ∗ Returns the s t a t e o f the model in a format v a l i d f o r the

{@link #Logger Logger } .
140 ∗ @return the l o g .

Class UserModel 123

141 ∗/
142 public CharSequence toLog () {
143 St r ing log = ”” ;

144 log += speedQ . toLog () + ” , ” ;

145 for (int i = 0 ; i < weights . l ength ; i++) {
146 log += Str ing . valueOf (weights [i]) + ” , ” ;

147 }
148 return l og ;

149 }
150 }

D.5 Class UserModel

1 package com . unz . adkey ;

2

3 import com . unz . adkey . d i s t r i b u t i o n . Mul t iGauss ianDis t r ibut ion ;

4

5 /∗∗
6 ∗ Stores the user model and prov i de s p r o b a b i l i t y o f even t s .

7 ∗ User model i s a c o l l e c t i o n o f b i v a r i a t e gauss ians over the

keys f o r each s i t u a t i on ,

8 ∗ when a touch i s c o l l e c t e d , g i ven the we i gh t s o f the

s i t u a t i o n i s p o s s i b l e to

9 ∗ r e t r i e v e the p r o b a b i l i t y o f each key be ing the in tended

key .

10 ∗ @author Michael Ange l e r i − michael . ange ler i@mai l . po l imi . i t

11 ∗
12 ∗/
13 public class UserModel {
14 private Mult iGauss ianDis t r ibut ion [] usrDistNormal ;

15 private Mult iGauss ianDis t r ibut ion [] usrDistHurry ;

16 private Mult iGauss ianDis t r ibut ion [] usrDistWalking ;

17 private Mult iGauss ianDis t r ibut ion [] u s rDi s tGlare ;

18

19 /∗∗
20 ∗ I n i t i a l i z e s the user model d i s t r i b u t i o n s .

21 ∗ Receives a s e r i e s o f {@link #Mul t iGaus s ianDi s t r i bu t i on

Mu l t iGauss ianDi s t r i bu t i on } t h a t composes the user model

.

22 ∗ @param usrDistNormal d i s t r i b u t i o n in normal cond i t i on .

23 ∗ @param usrDistHurry d i s t r i b u t i o n wh i l e in a hurry .

24 ∗ @param usrDistWalking d i s t r i b u t i o n when wa lk ing .

25 ∗ @param usrDis tGlare d i s t r i b u t i o n when the r e t he r e i s

g l a r e on the screen .

26 ∗/
27 public UserModel (Mul t iGauss ianDis t r ibut ion [] usrDistNormal ,

Mul t iGauss ianDis t r ibut ion [] usrDistHurry ,

124 Appendix D. Code Snippets

28 Mult iGauss ianDi s t r ibut ion [] usrDistWalking ,

Mul t iGauss ianDis t r ibut ion [] u s rDi s tGlare) {
29 this . usrDistNormal = usrDistNormal ;

30 this . usrDistHurry = usrDistHurry ;

31 this . usrDistWalking = usrDistWalking ;

32 this . u s rDi s tGlare = usrDi s tGlare ;

33 }
34

35 /∗∗
36 ∗ Gets the p r o b a b i l i t y d i s t r i b u t i o n over the keys .

37 ∗ When a touch i s performed , t h i s method computes the

p r o b a b i l i t y o f the touch o f

38 ∗ be l ong ing to each key , as a mixture o f b i v a r i a t e

gauss ians o f we igh ted by

39 ∗ <code>weights</code>.

40 ∗ @param we igh t s the we igh t to a s s i gn to each d i s t r i b u t i o n

.

41 ∗ @param pos the l o c a t i o n where touch was performed .

42 ∗ @return p r o b a b i l i t y d i s t r i b u t i o n over the keys .

43 ∗/
44 public double [] g e t P r o b a b i l i t i e s (double [] weights , double []

pos) {
45 double [] p = new double [Keyboard . nKeys] ;

46 for (int i = 0 ; i < Keyboard . nKeys ; i++) {
47 p [i] = usrDistNormal [i] . p r o b a b i l i t y (pos) ∗ weights [0] +

usrDistHurry [i] . p r o b a b i l i t y (pos) ∗ weights [1] +

48 usrDistWalking [i] . p r o b a b i l i t y (pos) ∗ weights [2] +

usrDi s tGlare [i] . p r o b a b i l i t y (pos) ∗ weights [3] ;

49 } /∗
50 f o r (i n t i = 0 ; i < Keyboard . nKeys ; i++) {
51 p [i] /= sum ;

52 } ∗/
53 return p ;

54 }
55 }

D.6 Class LanguageModel

1 package com . unz . adkey ;

2

3 import java . u t i l . Arrays ;

4

5 /∗∗
6 ∗ Implements the language model f o r the keyboard .

7 ∗ Log i ca l l y , i t s t o r e s the current b e l i e f s t a t e o f the

Markov Model , d e s c r i b ed as a p r o b a b i l i t y

8 ∗ d i s t r i b u t i o n over the keys , and when i t r e c e i v e s new

ev idence updates the b e l i e f s t a t e .

Class LanguageModel 125

9 ∗ @author Michael Ange l e r i − michael . ange ler i@mai l . po l imi . i t

10 ∗
11 ∗/
12 public class LanguageModel {
13 private double [] c u r r D i s t r i b u t i o n = new double [Keyboard .

nKeys] ;

14

15 // smoothed language model

16 private f ina l stat ic double [] [] t r a n s i t i o n M a t r i x =

17 { { 0.00027900242013 , 0.0171700770224 , 0.0345762037089

, 0.0312858509044 , 0.00180978815082 ,

0.00698088235388 , 0.0189758609283 , 0.00145240564405

, 0.0422314519293 , 0.00145240564405 , 0.0104142112833

, 0.0850436152805 , 0.0256147035389 , 0.171256725142

, 0.000420363122443 , 0.0155361361754 ,

0.000493286080146 , 0 .10387248762 , 0.0769506532858 ,

0.126870124229 , 0.0115094745871 , 0.0189758609283 ,

0.00631657157969 , 0.00267298216645 , 0.0283086165684

, 0.00177395361215 , 0.031551261219 , 0.031551261219 ,

0.031551261219 , 0.031551261219 , 0.031551261219 }
. . . } ;

18

19 /∗∗
20 ∗ Se t s the i n i t i a l d i s t r i b u t i o n over the keys as uniform

21 ∗/
22 public LanguageModel () {
23 Arrays . f i l l (cu r rD i s t r i b u t i on , 1 / (double) Keyboard . nKeys

) ;

24 }
25

26 /∗∗
27 ∗ Perform pr ed i c t i on on the next s t a t e g i ven the current

b e l i e f s t a t e .

28 ∗ @return the p r ed i c t e d p r o b a b i l i t y d i s t r i b u t i o n over the

keys .

29 ∗/
30 public double [] g e t P r o b a b i l i t i e s () {
31 double [] r e s u l t = new double [Keyboard . nKeys] ;

32 double totalSum = 0 ;

33 for (int i = 0 ; i < Keyboard . nKeys ; i++) {
34 double sum = 0 ;

35 for (int j = 0 ; j < Keyboard . nKeys ; j++) {
36 sum += t r a n s i t i o n M a t r i x [j] [i] ∗ c u r r D i s t r i b u t i o n [j] ;

37 }
38 r e s u l t [i] = sum ;

39 totalSum += sum ;

40 }
41 for (int i = 0 ; i < Keyboard . nKeys ; i++) {
42 r e s u l t [i] /= totalSum ;

126 Appendix D. Code Snippets

43 }
44 return r e s u l t ;

45 }
46

47 /∗∗
48 ∗ Updates the curren t b e l i e f s t a t e .

49 ∗ I t i s a l s o r e s p on s i b l e o f normal i z ing i t to one .

50 ∗ @param newDis t r i bu t i on the new b e l i e f s t a t e .

51 ∗/
52 public void s e t C u r r D i s t r i b u t i o n (double [] newDist r ibut ion) {
53 double sum = 0 ;

54 for (int i = 0 ; i < Keyboard . nKeys ; i++) {
55 sum += newDist r ibut ion [i] ;

56 }
57 for (int i = 0 ; i < Keyboard . nKeys ; i++) {
58 c u r r D i s t r i b u t i o n [i] = newDist r ibut ion [i] / sum ;

59 }
60 }
61 }

D.7 Class SpeedQuantifier

1 package com . unz . adkey ;

2

3 import java . u t i l . concurrent . ArrayBlockingQueue ;

4

5 import android . content . Context ;

6 import android . content . r e s . Resources ;

7

8 /∗∗
9 ∗ Extimates the user wr i t i n g speed .

10 ∗ I t uses a l i n e a r model between in t e r− and in tra−s t r o k e
t imes

11 ∗ to e s t imate the user r e l a t i v e t yp ing speed . Both t imes are

smoothed over

12 ∗ the l a s t 20 o b s e r va t i on s lower than 500 ms .

13 ∗ @author Michael Ange l e r i − michael . ange ler i@mai l . po l imi . i t

14 ∗
15 ∗/
16 public class SpeedQuant i f i e r {
17 // l i n e a r model parameters

18 private stat ic f ina l f loat l in maxDecr = (f loat) 0 . 5 0 ;

19 private f loat l in m ;

20 private f loat l i n q ;

21

22 private stat ic f ina l int n obs = 20 ;

23

24 private int pSum, tSum ;

Class SpeedQuantifier 127

25 private long l a s t P r e s s , l a s t R e l e a s e ;

26 private int l a s tPressLength , l a s tRe l ea seLength ;

27 private ArrayBlockingQueue<Integer> pValues = new

ArrayBlockingQueue<Integer >(n obs) ;

28 private ArrayBlockingQueue<Integer> tValues = new

ArrayBlockingQueue<Integer >(n obs) ;

29

30

31 /∗∗
32 ∗ Se t s up the l i n e a r model parameters .

33 ∗ Paraeters are s e l e c t e d depending on whether the user i s

t yp ing

34 ∗ with one or both tumbs , as r e t r i e v e d from <code>re s /

va l u e s / use r moda l i t y . xml</code>.

35 ∗ @param con t ex t the a p p l i c a t i o n con t ex t .

36 ∗ @param user Id the user i d e n t i f i e r .

37 ∗/
38 public SpeedQuant i f i e r (Context context , S t r ing use r Id) {
39 l a s t P r e s s = l a s t R e l e a s e = System . cur rentT imeMi l l i s () ;

40 Resources r e s = context . getResources () ;

41 int [] usr mod = r e s . get IntArray (R. array . ur s moda l i ty) ;

42 int usr Id = I n t e g e r . pa r s e In t (use r Id) ;

43 switch (usr mod [usr Id]) {
44 case 0 :

45 l in m = (f loat) 1 . 8 7 0 6 ;

46 l i n q = (f loat) 44 . 4696 ;

47 break ;

48 case 1 :

49 l in m = (f loat) 0 . 0 ;

50 l i n q = (f loat) 0 . 0 ;

51 }
52 }
53

54 /∗∗
55 ∗ Gets the es t imated t yp ing speed .

56 ∗ The es t ima t ion i s performed in terms o f d i s t ance from

the l i n e a r model

57 ∗ o f l a s t ob se rva t i ons , smoothed to 1 . Value re turned i s

between 0 and 1 .

58 ∗ I t shou ld be c a l l e d b e f o r e updat ing the model wi th the

l a s t touch , in

59 ∗ order to g e t r e s u l t s dependent on ly on prev ious touches .

60 ∗ @return the es t imated t yp ing speed .

61 ∗/
62 public f loat getRe lat iveSpeed () {
63 f loat tMean , pMean ;

64 try {
65 tMean = tSum / tValues . s i z e () ;

66 pMean = pSum / pValues . s i z e () ;

128 Appendix D. Code Snippets

67 } catch (Ar ithmet icExcept ion e) {
68 // thrown at the f i r s t k e y s t r o k e

69 return (f loat) 0 ;

70 }
71 f loat t model = (f loat) ((l in m ∗ pMean + l i n q) ∗ 1) ;

72 i f (t model − tMean < 0) {
73 return 0 ;

74 } else i f (t model − tMean > l in maxDecr ∗ t model) {
75 return 1 ;

76 } else {
77 return (t model − tMean) / (l in maxDecr ∗ t model) ;

78 }
79 }
80

81 /∗∗
82 ∗ Updates the smoothed va lue o f p re s sure t imes .

83 ∗ The in tra−s t r o k e time i s updated only when pres sure was

not

84 ∗ g r ea t e r than 500ms . Also l a s tRe l e a s e i s updated wi th the

curren t

85 ∗ timestamp .

86 ∗ @param pTimeStamp the timestamp at which the touch

r e l e a s e occurred .

87 ∗/
88 public void updatePressure (long pTimeStamp) {
89 la s tPre s sLength = (int) (pTimeStamp − l a s t P r e s s) ;

90 l a s t R e l e a s e = pTimeStamp ;

91 i f (l a s tPre s sLength < 500) {
92 i f (pValues . s i z e () == n obs) {
93 pSum −= pValues . p o l l () ;

94 }
95 pSum += las tPre s sLength ;

96 pValues . add (la s tPre s sLength) ;

97 }
98 }
99

100 /∗∗
101 ∗ Updates the smoothed va lue o f in t e r−s t r o k e t imes .

102 ∗ The in t e r−s t r o k e time i s updated only when pres sure was

not

103 ∗ g r ea t e r than 500ms . Also l a s tP r e s s u r e i s updated wi th

the current

104 ∗ timestamp .

105 ∗ @param pTimeStamp the timestamp at which the touch i s

i n i t i a t e d .

106 ∗/
107 public void updateTime (long tTimeStamp) {
108 la s tRe l ea seLength = (int) (tTimeStamp − l a s t R e l e a s e) ;

109 l a s t P r e s s = tTimeStamp ;

Class WalkingQuantifier 129

110 i f (l a s tRe l ea seLength < 500) {
111 i f (tValues . s i z e () == n obs) {
112 tSum −= tValues . p o l l () ;

113 }
114 tSum += las tRe l ea seLength ;

115 tValues . add (la s tRe l ea seLength) ;

116 }
117 }
118

119 /∗∗
120 ∗ Updates the l a s t r e l e a s e timestamp .

121 ∗ This i s c a l l e d when the spacebar i s pressed , because

in t ra−words t imes

122 ∗ do not count in the model in order to have more smoothed

value , but

123 ∗ i s necessary to know when they happened to c a l c u l a t e the

next in t e r−s t r o k e
124 ∗ t ime .

125 ∗ @param tTimeStamp the timestamp at which the spacebar

was r e l e a s e d .

126 ∗/
127 public void setLastTime (long tTimeStamp) {
128 l a s t R e l e a s e = tTimeStamp ;

129 }
130

131 /∗∗
132 ∗ Returns the s t a t e o f the q u a n t i f i e r in a format v a l i d

f o r the {@link #Logger Logger } .
133 ∗ @return the l o g .

134 ∗/
135 public St r ing toLog () {
136 St r ing log = las tPre s sLength + ” , ” + las tRe l ea seLength ;

137 return l og ;

138 }
139 }

D.8 Class WalkingQuantifier

1 package com . unz . adkey ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . concurrent . ArrayBlockingQueue ;

5

6 /∗∗
7 ∗ The model t h a t q u a n t i f i e s the user wa lk ing speed .

8 ∗ This s t o r e s read ings o f va l u e s from the dev i c e y−ax i s
acce l e rometer

130 Appendix D. Code Snippets

9 ∗ and uses them to compute t h e i r s tandard d e v i a t i on as an

es t imate

10 ∗ o f the user wa lk ing speed .

11 ∗ @author Michael Ange l e r i − michael . ange ler i@mai l . po l imi . i t

12 ∗
13 ∗/
14 public class WalkingQuant i f i er {
15

16 private stat ic f ina l int qLen = 50 ;

17 private stat ic f ina l f loat maxVar = (f loat) 1 . 6 ;

18

19 private f loat gSum ;

20 private ArrayBlockingQueue<Float> gValues = new

ArrayBlockingQueue<Float >(qLen) ;

21

22 /∗∗
23 ∗ Class cons t ruc t o r .

24 ∗/
25 public WalkingQuant i f i er () {
26 }
27

28 /∗∗
29 ∗ Updates the a c c e l e r a t i o n va l u e s

30 ∗ Get the y−a c c e l e r a t i o n as measured by the Keyboard

a c t i v i t y and

31 ∗ updates the s t o r ed va l u e s (on ly y−ax i s cons idered)

32 ∗ @param va lue the va l u e s acqu i red from the acce l e rometer

33 ∗/
34 public void updateAccel (f loat value) {
35 i f (gValues . s i z e () == qLen) {
36 gSum −= gValues . p o l l () ;

37 }
38 gSum += value ;

39 gValues . add (value) ;

40 }
41

42 /∗∗
43 ∗ Return the var iance over the l a s t measured a c c e l e r a t i o n

va l u e s .

44 ∗ The mean and standard d e v i a t i on o f the 50 l a s t measured

va l u e s are computed

45 ∗ and the l a t t e r i s normal ized to one .

46 ∗ @return the var iance over a c c e l e r a t i o n normal ized to one

.

47 ∗/
48 public f loat getGVariance () {
49 f loat mean = gSum / gValues . s i z e () ;

50 f loat gSqrSum = 0 ;

Class WalkingQuantifier 131

51 for (I t e r a t o r <Float> i = gValues . i t e r a t o r () ; i . hasNext () ;

) {
52 gSqrSum += Math . pow(i . next () − mean , 2) ;

53 }
54 f loat var = gSqrSum / gValues . s i z e () ;

55 // normal i z ing the va lue to 1

56 i f (var > maxVar) {
57 var = maxVar ;

58 }
59 return var / maxVar ;

60 }
61 }

	Abstract
	Sommario
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Text input in digital devices
	The advent of touchscreen
	Touch typing on soft keyboards
	Adapting the layout
	Keeping into account the situation

	Motivations and Goals
	Preliminary phase
	Topic definition
	Improving typing through adaptation
	Situational impairments and their influence on touch typing

	Improving text input through adaptation to the situation

	Design of the Work
	Ethical aspects in research involving human subjects
	Data retrieval session
	Selection of the relevant variables
	Assessing the typing speed model
	Intra-stroke movement
	Error rate as a function of the situation

	Shaping the keyboard
	Choice of the learning algorithm
	Bayesian inference
	Model validation

	Putting it all together
	Bayesian networks
	AdKey underlying model

	Extending it with the language
	Hidden Markov Models
	A simple language model

	Description of the Architecture
	The components
	Keyboard for data acquisition
	How we stored the data
	Model learning and testing
	The final adaptive soft keyboard
	Graphic interface and sensors management
	Situational quantifiers
	Underlying models

	Results and Conclusions
	Evaluation on field
	Contributions to the state of the art
	Possible follow-ups

	Bibliography
	Architecture Diagrams
	Materials and Statistics
	AdKey Documentation
	Code Snippets

