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Abstract 
 
 
This thesis work focused on the study of a quadrotor helicopter. The dynamic system 
modeling and control of attitude of Quadrotor Helicopter carried out. To test the results, a 
simulator and a real platform were developed. 
 
 
           The Newton-Euler formalism was used to model the dynamic system. Particular 
attention was given to the group composed of the gearbox and the propeller which needed 
also the estimation of aerodynamic lift and torque to reach better accuracy. 
 
 
         PID control algorithms were compared. The first stage tests were performed on a 
simulated model where it was easy to evaluate the performance with a mathematical 
approach. The second stage tests were carried out on the quadrotor platform to evaluate 
the behavior of the real system. 
 
 
     A simulator based on Matlab-Simulink was developed. With this program it was 
possible to test the accuracy of the model and the robustness of the control algorithms. 
This made easier the testability and the observability of the system. 
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Preface 
 
 
In this study, development and modeling of a quadrotor helicopter were performed. The 
main activities can be divided into four groups. The dynamic system modeling needed to 
be examined to understand the evolution of the forces in play. The control algorithm 
evaluation pointed out the stability and robustness using several control laws. The Matlab 
simulator was a good tool to test the correctness and the accuracy of the model and the 
control algorithms. 
 
     
      The	   motivation	   for	   the	   research	   in	   this	   thesis	   builds	   on	   the	   previous	   work	  
discussed	   above	   in	   quadrotor	   research.	  While	   each	   of	   these	   systems	   provides	   an	  
important	  component	  of	  the	  bigger	  picture	  (high	  tech	  research,	  usable	  commercial	  
product,	   fun	   and	   inexpensive	   toy),	   none	  of	   them	  provide	   full	   systems	   engineering	  
approach	   to	   the	  problem	  of	  usability	   in	  a	   combat	   theater.	  The	   research	  presented	  
here	  is	  the	  first	  step	  towards	  a	  more	  complete	  understanding	  of	  the	  quadrotor	  as	  a	  
dynamic	   system.	   Although	   much	   of	   the	   work	   presented	   has	   been	   completed	   or	  
overcome	  before,	  working	  through	  it	  personally	  while	  keeping	  in	  mind	  the	  end	  goal	  
of	   a	   troop	   usable	   system	   has	   uncovered	   problems	   not	   addressed	   in	   the	   previous	  
endeavors.	   Relying	   on	   external	   sensing	   systems	   or	   complex	   controllers	   and	  
disregarding	  flight	  time	  and	  platform	  weight	  may	  still	  result	  in	  a	  usable	  system,	  as	  is	  
evident	   from	   the	   commercial	   and	   academic	   successes	   listed	   previously.	   But	   by	  
tackling	  the	  problem	  with	  a	  fresh	  set	  of	  objectives,	  this	  thesis	  aims	  to	  correct	  those	  
inadequacies	   and	   offer	   solutions	   and	   alternatives	   in	   response	   to	   the	   development	  
and	   testing	   of	   a	   new	   platform.	  The whole system can be tested thanks to a Matlab-
Simulink program, which is	  interfaced with the remote controller. 
 
 
 
Myself, Qasim Muhammad carried out the project. Most of the studies were performed in 
the Dept. of Automation Engineering Politecnico di Milano, Italy. Many thanks to Prof. 
Marco Lovera for his advise throughout the whole project. 
 
 
 
 
Qasim Muhammad. 
  



 
 
 
 

 
Chapter 1 

 
 
Introduction 

 
This thesis work focuses on the study of a Vertical Take-Off and Landing (VTOL) 
Unmanned Aerial Vehicle (UAV). The proposed structure is a four-propeller helicopter 
called quadrotor.  
 
 
         In these last years, a growing interest has been shown in robotics. In fact, several 
industries (automotive, medical, manufacturing, space ) require robots to replace men in 
dangerous, boring or onerous situations. A wide area of this research is dedicated to aerial 
platform. 
   
  
 
         Several structures and configurations have been developed to allow 3D movements. 
For example, there are blimps, fixed-wing planes, single rotor helicopters, bird-like 
prototypes, and quadrotors. Each of them has advantages and drawbacks. The Vertical 
Take-Off and Landing requirement of this project exclude some of the previous 
configuration. However the platforms, which show this characteristic, have unique ability 
for vertical, stationary and low speed flight. The quadrotor architecture has been chosen 
for this research for its low dimension, good maneuverability, simple mechanics and 
payload capability. As main drawback, the high-energy consumption can be mentioned. 
However, the trade-off results very positive. 
 
 This structure can be attractive in several applications, in particular for surveillance, 
imaging, dangerous environments, indoor navigation and mapping. The goals of this 
thesis are the system modeling, the control algorithm evaluation, the simulator design and 
the real platform development.  



 
 
                The study of the kinematics and dynamics helps to understand the physics of 
the quadrotor and its behavior. Together with the modeling, the determination of the 
control algorithm structure is very important to achieve a better stabilization. The whole 
system can be tested thanks to a Matlab-Simulink program that is interfaced with the 
remote controller. 
 
         According to the goals of this project, the research has been very detailed in both 
modeling and simulation. Thanks also to the identification process, the performance of 
the real platform has been satisfactory. The quadrotor tests shows roll and pitch errors 
always less than one degree. The yaw error has values less than two degrees under static 
condition and less than four degrees under dynamic tracking. The height stabilization has 
an error of just two centimeters. 
 
          To improve this quadrotor project, several modifications can be done. For example, 
a high level controller can be implemented to follow position requirements, obstacle 
avoidance and trajectory planning.  
 
 
         Chapter 2 gives an overview of the state of the art of the research area. Other related 
works are cited to show what has already been done in this field. 
 
 
        Chapter 3 provides the derivation of the quadrotor model. The dynamics is 
explained from the basic concepts to the Newton-Euler formalism. Particular attention is 
given to the motor-gears-propeller system and to the whole quadrotor architecture. 
 
 
        Chapter 4 focuses on the control algorithms needed to stabilize the quadrotor. The 
model of the helicopter is simplified to be able to use an easier controller and to lower the 
algorithm complexity. PID techniques are adopted in this work. The different phases of 
the control structure are presented. 
 
        Chapter 5 shows the quadrotor simulator. It is a Matlab-Simulink program used to 
verify the correctness of the helicopter dynamic model and to test the control algorithm 
performance. The system structure, block implementations are deepened to better explain 
the power of this tool. 
 
       Chapter 6 summarizes the goals of this thesis, evaluates the performance and the 
results of the project and proposes solutions to improve this quadrotor platform. 



 
 
Chapter 7 Conclusion 
 
         Appendix A describes the basic equations that identify a 6 DOF rigid body with the 
Newton-Euler formulation. 
         
Appendix B shows the linear regression method in which data are fitted with a straight 
line according to the ordinary least squares. 
 
 
 
    Appendix C lists all the constants used in this thesis with their symbols, units, values 
and descriptions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



Chapter 2 
 
 
State of the art 

 
      In the last few years, the state of the art in Vertical Take-Off and Landing 
(VTOL) Unmanned Aerial Vehicle (UAV) has received several contributes. Moreover, 
most of the attention has been focused on, the quadrotor structure. Some projects are 
based on commercially available platforms like Draganflyer [1], X-UFO [2] and MD4-
200 [3]. Other researchers prefer instead to build their own structure. A few examples are 
the helicopter, the X4-Flyer and the STARMAC. 
 
 

 
 
          	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Figure	  1:	  Dragon	  flyer	  X8	  from	  Dragonfly	  Innovations	  
 
      There are articles that present hybrid configuration such as structure with non-
symmetric rotation directions or with two directional rotors A few other works focus 
instead on modeling derivation and efficient configurations. 
 
           Even though there are a lot of different topics about the qudrotor structure, that 
one on which most of the publications have focused on is the control algorithm. It can be 
stated that the 85% of the articles propose a control low or compare the performance of 
few of them. 
  



 
 
 The most important techniques and the respective publications are now presented: 
 
 

• The first control is done using Lyapunov Theory. According to this technique, it 
is possible to ensure, under certain condition, the asymptotical stability of the 
helicopter. 

 
 
 
• The second control is provided by PD2 feedback and PID structures .The strength 

of the PD2 feedback is the exponential convergence property mainly due to the 
compensation of the Carioles and gyroscopic terms. 

 
• The third control uses adaptive techniques. These methods provide good 

performance with parametric uncertainties and un modeled dynamics. 
 

• The fourth control is based on Linear Quadratic Regulator (LQR). The main 
advantage of this technique is that the optimal input signal turns out to be 
obtainable from full state feedback. 

 
• The fifth control is done with back stepping control. In the respective publications 

the convergence of the qudrotor internal states is guaranteed, but a lot of 
computation is required. 

 
• The sixth control is provided by dynamic feedback. This technique is 

implemented in a few quadrotor projects to transform the closed loop part of the 
system into a linear, controllable and decoupled subsystem. 

 
Other control algorithms are done with fuzzy techniques [30], neural networks and 
reinforcement learning. 
 
The contribution of this thesis lies mainly in four fields: 
• Accurate dynamic and aerodynamic modeling 
• Easy and robust control structure 
• Powerful and interactive simulator 
• System identification and design of a real platform 



 
 

Chapter 3 
 
 
 
Quadrotor model & system 

 
 
            In this chapter, the derivation of the quadrotor model is provided. This result is 
very important because it describes how the helicopter moves according to its inputs. 
Thanks to these equations it is possible to define and predict the positions reached by the 
helicopter by investigating just the four motor speeds. The model equations will be 
”inverted” in the next chapter (Control algorithms) to identify which inputs are needed to 
reach a certain position. 
 
3.1 Basic concepts 
 
         The quadrotor is very well modeled with a four rotors in a cross configuration. This 
cross structure is quite thin and light, however it shows robustness by linking 
mechanically the motors (which are heavier than the structure). Each propeller is 
connected to the motor through the reduction gears. All the propellers axes of rotation are 
fixed and parallel. Furthermore, they have fixed-pitch blades and their air flows points 
downwards (to get an upward lift). These considerations point out that the structure is 
quite rigid and the only things that can vary are the propeller speeds.  
       
          In this section, neither the motors nor the reduction gears are fundamental because 
the movements are directly related just to the propellers velocities. The others parts will 
be taken into account in the following sections. Another neglected component is the 
electronic box. As in the previous case, the electronic box is not essential to understand 
how the quadrotor flies. It follows that the basic model to evaluate the quadrotor 
movements it is composed just of a thin cross structure with four propellers on its end. 
  



 
 
 
              The front and the rear propellers rotate counter-clockwise, while the left and the 
right ones turn clockwise. This configuration of opposite pairs directions removes the 
need for a tail rotor (needed instead in the standard helicopter structure). For Hovering all 
the propellers rotate at the same (hovering) speed H [rad s−1] to counterbalance the 
acceleration due to gravity. Thus, the quadrotor performs stationary flight and no forces 
or torques move it from its position. 
 
• Throttle (U1 [N]) 
        This command is provided by increasing (or decreasing) all the propeller speeds by 
the same amount. It leads to a vertical force WRT body-fixed frame that raises or lowers 
the quadrotor. If the helicopter is in horizontal position, the vertical direction of the 
inertial frame and that one of the body-fixed frame coincide. Otherwise the provided 
thrust generates both vertical and horizontal accelerations in the inertial frame. 
 
 
• Roll (U2 [N m]) 
       This command is provided by increasing (or decreasing) the left propeller speed and 
by decreasing (or increasing) the right one. It leads to a torque with respect to the xB axis, 
which makes the quadrotor turn. The overall vertical thrust is the same as in hovering 
hence this command leads only to roll angle acceleration. 
 
 
• Pitch (U3 [N m]) 
        This command is very similar to the roll and is provided by increasing (or 
decreasing) the rear propeller speed and by decreasing (or increasing) the front one. It 
leads to a torque with respect to the yB axis that makes the quadrotor turn. The overall 
vertical thrust is the same as in hovering hence this command leads only to pitch angle 
acceleration. 
 
 
• Yaw (U4 [N m]) 
         This command is provided by increasing (or decreasing) the front-rear propellers’ 
speed and by decreasing (or increasing) that of the left-right couple. It leads to a torque 
with respect to the zB axis that makes the quadrotor turn. The yaw movement is generated 
thanks to the fact that the left-right propellers rotate clockwise while the front-rear ones 
rotate counterclockwise. Hence, when the overall torque is unbalanced, the Helicopter 
turns on itself around zB. The total vertical thrust is the same as in hovering hence this 
command leads only to yaw angle acceleration 



 
	  
	  
FIGURE 2: Quadrotor differential thrust example 
 
 
3.2 Newton-Euler model 
          This section provides the specific model information of the quadrotor architecture 
starting from the generic 6 DOF rigid-body equation derived with the Newton-Euler 
formalism in appendix A. 

 

HOVER / ALTITUDE CHANGE 
When all actuators are at equal 
thrust, the craft will either hold in 
steady hover (assuming no 
disturbance) or increase/decrease 
altitude depending on actual thrust 
value. 

 

YAW RIGHT 
If the CW spinning actuators are 
decreased (or the CCW actuators 
increased), a net torque will be 
induced on the craft resulting in a 
yaw angle change. In this instance, a 
CW torque is induced. 

 

ROLL RIGHT 
If one of the actuators is decreased 
or increased on the roll axis as 
compared to the other actuator on 
the same axis, a roll motion will 
occur. In this instance, the craft 
would roll towards the right. 

 

PITCH UP 
Similar to the roll axis, if either 
actuator is changed on the pitch axis, 
the axis will rotate in the direction of 
the smaller thrust. In this instance, 
the craft nose would pitch up 
towards the reader (out of the page) 
due to the differential on the pitch 
axis. 



    
 
          Two frames have to be defined: 
 
          •  The earth inertial frame (E-frame) 
          • The body-fixed frame (B-frame) 
     
        The equations of motion are more conveniently formulated in the body-fixed frame 
because of the following reasons: 
        • The inertia matrix is time-invariant. 
        • Advantage of body symmetry can be taken to simplify the equations. 
        • Measurements taken on-board are easily converted to body-fixed frame. 
        • Control forces are almost always given in body-fixed frame. 
 
Equation (3.1) describes the kinematics of a generic 6 DOF rigid-body. 
 
 
                                                  ! = !!!                                                                                               3.1  
 
! [+] is composed of the quadrotor linear ΓE [m] and angular ΘE [rad] position vectors 
WRT E-frame as shown in equation (3.2).  
  
   
                           ! =   !    !    !      ∅      !      ! !                                                                                                     3.2  
 
Similarly, !    [+] is composed of the quadrotor linear V B [m s−1] and angular !!  [rad s−1] 
velocity vectors WRT B-frame as shown in equation (3.3).  
 

!       = !    !    !    !  !    !     !                                                                                                                                                                                        (3.3) 
 
While the rotation !! [−] and the transfer  !! [−] matrices are defined  
 
 

                             !! =
!! 0!!!
0!!! !!

                                                                (3.4) 
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                                            !!  !!           !!!! + !!!!!! −!!!! + !!!!!!  
  −!!                                   !!!!                         !!!!

               (3.5) 

  



 
 
 

                              !! =     

1 !!!! !!!!
0 !! −!!
0

!!
!!          

!!
!!          

                                                           (3.6) 

 
 
 
 
 
 
Two assumptions have been done in this approach: 
 
• The first one states that the origin of the body-fixed frame oB is coincident with the 
center of mass (COM) of the body. Otherwise, another point (COM) should have been 
taken into account and it would have considerably complicated the body equations. 
 
• The second one specifies that the axes of the B-frame coincide with the body principal 
axes of inertia. In this case the inertia matrix I is diagonal and, once again, the body 
equations become easier. 
 
 
A generalized force vector Λ can be defined according to equation (3.7). 
 

                                                                                       
                                                                      Λ = [    !!          !!          !!        !!      !!      !!]!         (3.7) 
 
 
Hence the last vector contains specific information about its dynamics. Λ Can be divided 
in three components according to the nature of the quadrotor contributions. 
 
                 The first contribution is the gravitational vector GB(!) [+] given from the 
acceleration due to gravity g [m s−2]. It’s easy to understand that it affects just the linear 
and not the angular equations since it’s a force and not a torque. 
 
                  The second contribution takes into account the gyroscopic effects produced by 
the propeller rotation. Since two of them are rotating clockwise and the other two 
counterclockwise, there is a overall imbalance when the algebraic sum of the rotor speeds 
is not equal to zero. If, in addition, the roll or pitch rates are also different than zero, the  



quadrotor experiences a gyroscopic torque. Equation (3.8) defines the overall propellers’ 
speed  [rad s−1] and the propellers’ speed vector  [rad s−1] 
 

                                     

                                                          Ω = −Ω! + Ω! − Ω! + Ω!         Ω =
!"
!"
!"
!"
                                          (3.8) 

 
Where Ω 1 [rad s−1] is the front propeller speed, Ω 2 [rad s−1] is the right propeller speed, 
Ω3 [rad s−1] is the rear propeller speed. Ω 4 [rad s−1] is the left propeller speed. 
 
            The third contribution takes into account the forces and torques directly produced 
by the main movement inputs. It is possible to describe the quadrotor dynamics 
considering these last three contributions according to equation (3.9). 
   
                       
                          MB   !   + CB(!    ) !    = GB(!) + OB(!    )  + EB  Ω!                           (3.9) 
 
 
 
By rearranging equation (3.8) it is possible to isolate the derivate of the generalized 
velocity vector WRT B-frame ! ˙ . 
 
               
                        !=!!

!!(- CB (!    ) !    + GB(!) + OB(!    ) Ω+ EB  Ω!)            (3.10) 
 
 
Equation (3.9) shows the previous expression not in a matrix form, but in a system of 
equations. 
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!!!

                                                                                                       3.11  

  



 
 
 
Where the propellers’ speed inputs are given through equation (3.12) 
 

                            

!! = ! Ω!! + Ω!! + Ω!! + Ω!!     
!! =       !" −Ω!! + Ω!!

!! = !" −Ω!! + Ω!!

!! = ! −Ω!! + Ω!! − Ω!! + Ω!!
    Ω = −Ω! + Ω! − Ω! + Ω!  

                                  (3.12) 

The quadrotor dynamic system in equation (3.11) is written in the body fixed frame. As 
stated before, this reference is widely used in 6 DOF rigid body equations. However in 
this case it can be useful to express the dynamics with respect to a hybrid system 
composed of linear equations WRT E-frame and angular equations WTR B-frame. 
Therefore the following equations will be expressed in the new ”hybrid” frame called H-
frame. This new reference is adopted because it’s easy to express the dynamics combined 
with the control (in particular for the vertical position in the earth inertial frame).Equation 
(3.13) shows the quadrotor generalized velocity vector WRT H-frame. 
 
                                              ! = Γ! !! ! =    ! ! ! ! ! ! !                              (3.13) 
 
 
             The goal of the quadrotor stabilization is to find those values of the motor’s 
voltage, which maintains the helicopter in a certain position required in the task. This 
process is also known as inverse kinematics and inverse dynamics. Unlike the direct 
ones, the inverses operations are not always possible and not always unique. For these 
reasons their consideration is much more complicated. 
 
 

• The goal of the quadrotor stabilization is to find those values of the motor’s 
voltage, which maintains the helicopter in a certain position required in the task. 
This process is also known as inverse kinematics and inverse dynamics. Unlike 
the direct ones, the inverses operations are not always possible and not always 
unique. For these reasons their consideration is much more complicated. The 
whole control algorithm is used to give the right signals to the propellers. Since 
they are four, no more than four variables can be controlled in the loop. From the  

  



 
 
 
 
Beginning of the project, it has been decided to stabilize attitude (Euler angles) and 
height. According to this choice, the equations, which describe the X and Y position, 
have been deleted. 

 
 
Equation (3.14) shows the quadrotor dynamics used in the control. 
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!!
!
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!!
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                                                                                                                                (3.14) 

 
The control algorithm receives, as inputs, the data from the sensors and from the task. 
During the computation it uses a lot of constants and variables, which describe the 
dynamics and the quadrotor states. The output of the algorithm is the code, which 
determine the PWM signal of the four motors. 
 

 
 
  



 
 
Chapter 4 
 
Control algorithms 

 
The control algorithms tested in this work are presented in this chapter. The first stage 
tests were performed on the Matlab simulated model where it was easy to evaluate the 
performance with a mathematical approach. The second stage tests were carried out on 
the quadrotor platform to evaluate the behavior of the real system. This chapter is strictly 
connected with the previous one (3), because it analyzes the quadrotor model and tries to 
”invert” it to reach a certain attitude and height. 
 
      The first section (4.1: Control modeling) shows the basic quadrotor model 
simplifications. These must be done to be able to use an easier controller and to lower the 
algorithm complexity. In addition, thanks to the parameters determined (Identification of 
the constants), further reductions were possible in the control chain. 
 
     The second section (4.2: PID techniques) introduces the PID theory and its strengths. 
After that it shows and explains in detail the four inner control diagrams. Their goal is to 
determine the basic movement signals from attitude and height data (sensors) and from 
task references (remote controller). According to the controlled variable, an enhanced 
PID structure has been implemented. 
 
 
 
4.1 Control modeling 
 
The dynamics of the quadrotor is well described in the previous chapter. However the 
most important concepts can be summarized in equations (4.1), (4.2) and (4.3). The first 
one shows how the quadrotor accelerates according to the basic movement commands 
given. 
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          (4.1) 

 
       
 
The second system of equations explains how the basic movements are related to the 
propellers’ squared speed. 
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The goal of the quadrotor stabilization is to find those values of the motor’s voltage, 
which maintains the helicopter in a certain position required in the task. This process is 
also known as inverse kinematics and inverse dynamics. Unlike the direct ones, the 
inverses operations are not always possible and not always unique. For these reasons their 
consideration is much more complicated. 
 
 
The whole control algorithm is used to give the right signals to the propellers. Since they 
are four, no more than four variables can be controlled in the loop. From the beginning of 
the project, it has been decided to stabilize attitude (Euler angles) and height. According 
to this choice, the equations, which describe the X and Y position, have been deleted. 
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The control algorithm receives, as inputs, the data from the sensors and from the task. 
During the computation it uses a lot of constants and variables, which describe the 
dynamics and the quadrotor states. The output of the algorithm is the code, which 
determine the PWM signal of the four motors. The controller can be divided in four 
components according to figure . 
 
 

 
 
 
 
  



 
 
 
INNER CONTROL ALGORITHMS” represents the core of the control algorithms. It 
processes the task and the sensors data and provides a signal for each basic movement, 
which balances the position error. Equation (4.4) is used in this block to transfer an 
acceleration command to a basic movement one. The control rules used to estimate the 
acceleration commands are PID techniques. The implementation of this block will be 
explained with better accuracy in the next section. 
 
 
”INVERTED MOVEMENTS MATRIX” is the second block in the control chain. It is 
used to compute the propellers’ squared speed from the four basic movement signals. 
Since the determinant of the movement matrix is different than zero, it can be inverted to 
find the relation U to Ω!. The block computation is shown in equation (4.4) is  
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4.2 PID techniques 
 
 
In the industrial area the most used liner regulators are surely the PID. The reasons of this 
success are mainly three: 
 
• Simple structure, 
 
• Good performance for several processes, 
 
•  Tunable even without a specific model of the controlled system . 
  
In robotics, PID technique represents the basics of control. Even though a lot of different 
algorithms provide better performance than PID, this last structure is often chosen for the 
reasons expressed above. 
 
 
The traditional PID structure is composed of the addition of three contributes, 
as shown in figure 4.2 and equation (4.5). 
 
 
 
 

 
 
  



 
The blocks ”1/s” and ”s” represents the integration and derivation operations. 
 
                                U (t)=Kp e (t) + Ki !  (!!

! )  !" +  Kz. de (t)/dt 
 
The first contribute (P) is proportional to the error and define the proportional bandwidth. 
Inside this interval the output will be proportional to the error while outside the output 
will be minimum or maximum. The second contribute (I) varies according to the integral 
of the error. Even though this component increases the overshoot and the settling time, it 
has a unique propriety: it eliminates the steady state error. The third contribute (D) varies 
according to the derivate of the error. This component help to decrease the overshoot and 
the settling time . 
 
In the Laplace domain, the traditional PID structure can be rewritten according to 
equation (4.6). 
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The description of the four inner control algorithms for the height and attitude 
stabilization is now presented. 
 

 
 
• ROLL CONTROL:    
 
 
 
 

 
  



 
 

!d [rad] represents the desired roll angle, ! [rad] is the measured roll angle, e! [rad] is 
the roll error and U2 [N m] is the required roll torque. KP! [s−2], KI! [s−3] and KD! [s−1] 
are the three control parameters. At last IXX [N m] is the body moment of inertia around 
the x-axis. It can be noted that the roll stabilization has a structure very close to that one 
explained before. The only difference is that there is the block ”IXX” after the sum of the 
three main components. This contribute comes from equation (4.3) and is necessary to 
relate the roll control to U2. 
 
 
 
 
 
 

• PITCH CONTROL: 
 
 

 
 
 
 
!d [rad] represents the desired pitch angle, _ [rad] is the measured pitch angle, e! [rad] is 
the pitch error and U3 [N m] is the required pitch torque.KP! [s−2], KI! [s−3] and KD! [s−1] 
are the three control parameters. At last IY Y [N m] is the body moment of inertia around 
the y-axis. It is easy to see that the pitch stabilization has a structure very close to the roll 
one. The only difference is that the roll acts around the x-axis while the pitch acts around 
the y-axis, according to equation (4.3). 
 
  



 
• YAW CONTROL:   

 
  

 
 
 
!d [rad s−1] represents the desired yaw angle velocity, !d [rad] represent the desired yaw 
angle,  ! [rad] is the measured yaw angle, e!  [rad] is the yaw error and U4 [N m] is the 
required yaw torque. KP ! [s−2], KI! [s−3] and KD!  [s−1] are the three control parameters. 
At last IZZ [N m] is the body moment of inertia around the z-axis. The ”IZZ” block is 
needed to relate the yaw control to U4, according to equation (4.3). 
 
 
 

• HEIGHT CONTROL:   

 
  



 
 
 
 
zd [m] represents the desired height, zIR [m] is the height measured by the IR module, 
zSONAR [m] is the height measured by the SONAR module, z [m] is the height estimated 
from the sensors, ez [m] is the height error and U1 [N] is the required thrust. KPz [s−2], KIz 

[s−3] and KDz [s−1] are the three control parameters. At last g [m s−2] is the acceleration 
due to gravity, m [kg] is the mass of the quadrotor, c! [−] is the roll angle cosine and c  ! 
[−] is the pitch angle cosine. 
 
 
According to equation (4.3) the height dynamics is more complex than the other three. In 
fact, it also depends from the roll and pitch angles. Furthermore the acceleration due to 
gravity must be compensated. The quadrotor mass (m) has the same role as the moments 
of inertia in the angular case. 

 
Chapter 5 
 
Quadrotor simulator 
 
 
 
 
Here the quadrotor simulator is presented. This tool is very helpful to verify the 
correctness of the helicopter dynamic model and to test the control algorithms 
performance. Furthermore, thanks to a real-time interface with the remote controller, it is 
possible to evaluate the behavior of the quadrotor through a 3D view. This simulator has 
been developed with the Matlab tool Simulink. 
 
 
The first section (5.1: System structure) introduces the simulation tools Matlab and 
Simulink. Furthermore it provides an overview of the quadrotor system architecture and 
it gives a brief description of blocks and commands.  
 
The second section (5.2: Blocks implementation) shows the implementation of the 
previously introduced blocks. Particular attention is given to the model of the dynamics, 
the quantization (in both time and frequency) of the sensors signals, and the interface of 
the inputs and the portability of the control algorithm. 



 
 
 
5.1 System structure 
 
Matlab is a high-level technical computing language and interactive environment for 
algorithm development, data visualization, data analysis and numeric computation. It is 
widely used in engineering and science because of its easy interface and powerful 
commands. 
 
The main strengths of Matlab are: 
 
• Is relatively easy to learn. 
 
• Optimized code to be relatively quick when performing matrix operations. 
 
• May behave like a calculator or as a programming language. 
 
• Is an interpreted language, errors are easier to fix. 
 
 
 
Matlab main weakness is instead its slowness: it is almost always much slower than a 
compiled language such as C. 
 
Simulink is an environment for multi domain simulation and Model-Based Design for 
dynamic and embedded systems. It provides an interactive graphical environment and a 
customizable set of block libraries, which allow designing, simulating, implementing, and 
testing a variety of time-varying systems. Simulink has been chosen in this work for its 
easy and clear graphic interface. 
 
The model of the whole system is composed of several interconnected blocks in a classic 
feedback structure. ”Dynamics” represents the physics of the quadrotor and provides the 
position, velocity and acceleration of both linear and angular quantities. The actuators 
dynamic is also modeled in this block. 
  



 
 
 

 
 
 
 
 
 
 
 
5.2 Blocks implementation 
 
”Dynamics” represents the physics of the quadrotor and provides the position, velocity 
and acceleration of both linear and angular quantities. Figure () shows a snapshot of the 
”dynamics” implementation in Simulink. 
 
 
  



 

 
This block (as most of the following) is implemented with a lot of hardware blocks 
instead of a software code. The reason of this choice is that a lot of time is saved for the 
computation and the simulation is much faster. The propellers’ speed is calculated from 
its past values and according to the theory presented in chepter3. The linear velocity 
vector ”dz” is obtained directly from the integral of the linear acceleration vector ”ddz”. 
The angular velocity vector ”dphi dtheta dpsi” is obtained from the integral of both the 
angular acceleration vector ”dp dq dr” and itself through the ”angular matrix” 
transformation. 
 
The linear acceleration vector ” ddz” is composed of two components: the ”linear 
friction” (depending on the linear velocity) and the product between the ”linear matrix” 
and the ”U1” command (obtained from the propellers’ speed). 
The angular acceleration vector ”dp dq dr” is also composed of two components: the ”rot 
friction” (depending on the angular velocity vector) and the sum of the ”gyro effects” and 
the ”omega to U” (obtained from both the propellers’ speed and the angular velocity 
vector). 
  



 

 
 
 
 
 
Chapter 6 
 
Experimental results 

 
 
The platform developed during this thesis is a small-scale helicopter with four rotors in 
cross configuration. It is very important that both roll and pitch errors are kept low to 
provide stable flight. In the hovering condition, if one of the two angles are different than 
zero a longitudinal acceleration occur. This behavior makes difficult to maintain a fixed 
position without drift. 
 
The yaw stabilization has lower requirements: an error in the yaw angle does not cause 
any longitudinal acceleration in hovering condition. However the dynamic range is much 
wider than the roll or pitches one. The yaw can be changed between -180 and +180 
degrees while the other two (roll and pitch) shows small variation (less than 10 degrees). 
Therefore, good performance in both dynamic and static tracking is required. 
Figure shows the results of attitude, roll, pitch and yaw.  
 
At low velocities and with small aerodynamic disturbances (for example in indoor flight), 
Proportional integral-derivative (PID) control is fully sufficient for good tracking of 
commanded attitude since the vehicle approximates a double-integrator with a first-order 
lag from the motor dynamics. In translational flight, the pitch and roll dynamics of a 
quadrotor are very sensitive to rotor blade flapping. The control effort commanded by the 
PD controller is sufficient to bring the vehicle toward the commanded pitch. As the speed 
increases, the restoring moments caused by blade flapping increase until the commanded 
torque is insufficient to hold the vehicle at commanded pitch despite an increase in the 
pitch error.  
  



 
It is possible to apply integral control to account for this effect to some extent, although it 
is important to understand that the integrator accounts for constant biases most 
effectively, and so eventually compensates for the pitch moment caused by a specific 
velocity only if the velocity is held constant. The integrator, therefore, will need to adapt 
each time the vehicle speeds up or slows down. 
 
A linear controller provides attitude control with gain on the vertical acceleration as well 
as the usual PID terms. In general, the controller has proved to be very effective in 
altitude control, though performance can be improved by better filtering of the altitude s 
readings. It must provide strong active damping whenever descent velocity is 
encountered. Otherwise, altitude oscillations have been observed to occur, due to an 
apparent drop in thrust during small descent velocities, as predicted by the induced 
velocity model results. However, with strong damping, this effect has been reduced. By 
applying feedback control on the vertical acceleration. 
 
Position control is currently implemented using a PID controller design, which actuates 
the vehicle’s roll and pitch as control inputs. Tilting the vehicle in any direction causes a 
component of the thrust vector to point in that direction, so commanding pitch and roll is 
directly analogous to commanding accelerations in the X-Y plane. 
 
 

 
 
Yellow=Hovering;    Purple=Roll;     Accent=Pitch;    Red =yaw;       



 
 
Conclusion: 

 
 
The goals of this thesis work were to model the quadrotor helicopter and to test its control 
algorithm, thanks also to a simulator. Furthermore these theoretical considerations were 
taken into account to develop a real platform. The quadrotor model was presented in 
chapter 3. Two appendices deepened the dynamics and the aerodynamics basics (A and C 
respectively). In chapter 4 the control algorithm structure was explained. A simulator was 
adopted to test both dynamics and control, as shown in chapter 5. To develop a real 
platform, it was necessary to identify the physic constants used in the model. 
 
Quadrotor helicopters are popular as test beds for small UAV development, but their 
aerodynamics are complex and need to be accurately modeled in order to enable precise 
trajectory control. Although many good control results have been reported in previous 
work, these have focused primarily on simple trajectories at low velocities, in controlled 
indoor environments. In this paper, we have addressed a number of issues observed in 
quadrotor aircraft operating at higher speeds and in the presence of wind disturbances We 
have explored the resulting forces and moments applied to the vehicle through these 
aerodynamic effects and investigated their impact on attitude and altitude control. We 
have uncovered the extent of their influence using data from static measurements and 
flight data from the STARMAC II quadrotor. These results have shown that existing 
models and control techniques are inadequate for accurate trajectory tracking at speed 
and in uncontrolled environments. Careful consideration of these disturbances will allow 
us to improve both the physical configuration and control design of the STARMAC II 
quadrotor, improving attitude and altitude tracking performance and permitting 
controlled, stable flight at higher velocities and in the presence 
 
According to the goals of this project, the research was very detailed in both modeling 
and simulation. Thanks also to the identification process. To improve this quadrotor 
project, a more accurate model of the helicopter can be studied; in particular aerodynamic 
considerations can help in non-hovering operation. Together with this research, the 
identification of the real platform physics must be much more accurate. 
 
Several control algorithms can be investigated to find the best trade-off between 
performance and software complexity. A lot of articles, which focus on quadrotor 
stabilization algorithm, have been already written. However it would be great to compare  



them and find better solutions. Even though the simulator showed already good accuracy 
and testability, it would be great to be able to simulate the environment too and to use 
tools, which interact with the real platform. 
 
The low level controller, implemented in this thesis, had the goal of height and attitude 
stabilization. A high level controller can be connected to the previous one to follow 
position requirements.  
 
Also there are vast ranges of task that can be developed by using this modal: some of 
them are as computed by the high level controller, can be obstacle avoidance and 
trajectory planning. Of course, to improve the locating performance, several sensors must 
be connected to the platform. A GPS can be used for knowing the global position in an 
outdoor scenario while a network of IR modules and/or SONARs can be mounted to have 
information about objects around the quadrotor as well as its position. 
 
A camera can be used not only to determine the position, but also for a lot of other 
purpose. For example it can be required for the tracking of mobile targets or for 
environment mapping. In both cases, a camera capable of pan-tilt rotation could achieve 
better performance. The mechanic structure can be developed to carry a higher payload 
and a dedicate electronic design can lower the size and weight of the needed circuitry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Appendix A 
 
Kinematics and Dynamics 

 
 
This appendix describes the basic equations, which identify a 6 DOF rigid body. The 
Newton-Euler formulation has been adopted in this work. The quadrotor model can be 
evaluated according kinematics (first) and dynamics (after) equations: 
 
• Kinematics (section A.1) 
 
• Dynamics (section A.2) 
 
A.1 Kinematics 
Kinematics is a branch of mechanics, which studies the motion of a body or a system of 
bodies without consideration of the forces and torques acting on it. To describe the   
 
 
 
motion of a 6 DOF rigid body it is usual to define two reference frames. 
 
• Earth inertial reference (E-frame) 
 
• Body-fixed reference (B-frame) 
 
 
The E-frame (oE, xE, yE, zE) is chosen as the inertial right-hand reference. xE points 
toward the North, yE points toward the West, zE points upwards respect to the earth and oE 

is the axis origin. This frame is used to define the linear position (ΘE [m]) and the angular 
position (ΓE [rad]) of the quadrotor. 
 
The B-frame (oB, xB, yB, zB) is attached to the body. XB points toward the quadrotor 
front, yB points toward the quadrotor left, zE points upwards and oB is the axis origin. OB 

is chosen to coincide with the center of the quadrotor cross structure. This reference is 



right-hand too. The linear velocity (V B [m s−1]), the angular velocity (!B [rad s−1]), the 
forces (FB [N]) and the torques (!B [N m]) are defined in this frame. 
 
The linear position ΓE of the helicopter is determined by the coordinates of the vector 
between the origin of the B-frame and the origin of the E-frame respect to the E-frame 
according to equation (A.1). 
 
                                                                                                                        Γ! = !    !    ! !                              (A.1) 
 
Figure A.1(Quadrotor frames) shows the two frames and their relation. Quadrotor frames 
 
 

 
 
The angular position (or attitude) ΘE of the helicopter is defined by the orientation of the 
B-frame respect to the E-frame. This is given by three consecutive rotations about the 
main axes, which take the E-frame into the B-frame. In this work the ”roll-pitch-yaw” set 
of Euler angles were used. Equation (A.2) shows the attitude vector. 
 
 
 

Θ! =    !            !              ! !                                                                                             (!. 2) 
 
The rotation matrix R  Θ [−] is obtained by post-multiplying the three basic rotation 
matrices in the following order: 
 
• Rotation about the zE axis of the angle   ! (yaw) through R (!, z) [−]. 



 
 
 
 

   
 
 
 

R (!, z)  = 
!" −!" 0
!" !! 0
0 0 1

                     (A.3) 

 
 
 
 
 
 
 
•  Rotation about the y1 axis of the angle ! (pitch) through R (!, y) [−]. 
 
 



 
 
 
 
 

R (!, y)  = 
!" 0 !"
0 1 0
−!" 0 !"

                                                      (!. 4)           

 
• Rotation about the x2 axis of the angle ! (roll) through R (!, x) [−].  
 
 
   

      
 

R (!, x)  = 
1 0 0
0 !! −!!
0 !! !!

                                                      (!. 5)           

 
In the previous three equations (and in the following), this notation has been adopted: ck = 



cos k, sk = sin k, tk = tan k. Equation (A.6) shows the composition of the rotating matrix 
RΘ. 
   
               RΘ = R (!, z) R (!, y) R (!, x)       (A.6)  
 
As stated before, the linear V B and the angular !B velocities are expressed in the body-
fixed frame. Their compositions are defined according to equations 
(A.7) And (A.8). 
 
 

!! = !      !      ! !                 (!. 7) 
         
         

                                                                                            !! = !      !      !   !    (A.8) 
 
It is possible to combine linear and angular quantities to give a complete representation of 
the body in the space. Two vectors, can be thus defined: the generalized position ! [+] 
and the generalized velocity ! [+], as reported in equations (A.9) and (A.10). 
 
 

! = !      !      !      !      !      ! !                                 (!. 9) 
 

! = !      !      !      !    !      !   !                               (!. 10) 
 
 
As for the linear velocity, it is also possible to relate the angular velocity in the earth 
frame (or Euler rates) ˙ΘE [rad s−1] to that one in the body-fixed frame wB thanks to the 
transfer matrix TΘ [−]. Equations (A.12) and (A.13) show the relation specified above. 
 
 

!! =   !!!!Θ!                                                                   (!. 11) 
 
 

Θ! =   !!!!                                                                       (!. 12) 
It is possible to describe equations (A.11) and (A.12) in just one equivalence which relate 
the derivate of the generalized position in the earth frame ! ˙ [+] to the generalized 
velocity in the body frame !. The transformation is possible thanks to the generalized 
matrix JΘ [−]. In this matrix, the notation 03Å~3 means a sub-matrix with dimension 3 
times 3 filled with all zeros. Equations (A.13) and (A.14) show the relation described 



above. 
 

! =      !!  !                                                                                                                                          (!. 13) 
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!!                                               0!!!

0!!! !!
                                     (A.14) 

 
 
A.2 Dynamics 
 
 
Dynamics is a branch of mechanics, which studies the effects of forces and torques on the 
motion of a body or system of bodies. There are several techniques, which can be used to 
derive the equations of a rigid body with 6 DOF. The Newton-Euler formulation has been 
adopted in this work. 
 
The equations of motion are more conveniently formulated in a body-fixed because with 
this notation. 
 
• The inertia matrix is time-invariant. 
 
• Advantage of body symmetry can be taken to simplify the equations. 
 
• Measurements taken on-board are easily converted to body-fixed frame. 
 
• Control forces are almost always given in body-fixed frame. 
 
The decision to describe the equations of motion in the body-fixed frame trades off 
complexity in the acceleration terms for relative simplicity in the force terms. Two 
assumptions have been made in this approach: 
 
• The first one states that the origin of the body-fixed frame oB is coincident with the 
center of mass (COM) of the body. Otherwise, another point (COM) should be taken into 
account and thus considerably complicating the body equations. 
• The second one specifies that the axes of t he B-frame coincide with the body principal 
axes of inertia. In this case the inertia matrix I is diagonal and, once again, the body 
equations become easier. 
 
 
From the Euler’s first axiom of the Newton’s second law follows the derivation of the 
linear components of the body motion, according to equation (A.15). 
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!  !!!! =     !!!! 

 
                                       m (!!!! + !!!!   ) =   !!!! 
 
                               m  !!  (    !! +   !!! !!)   = !!!! 
 
                                      m (    !! +   !!× !!)   =  !!         (A.15) 
 
 
Equation (A.16) shows the derivation of the angular components of the body motion from 
the Euler’s second axiom of the Newton’s second law. 
 

I    Θ  !   = !!  
I !! +   !!  ×     !  !!   =   !Θ  !!      (A.16) 

 
In equation (A.16) I [N m s2] is the body inertia matrix (in the body-fixed frame), Θ!  [rad 
s−2] is the quadrotor angular acceleration vector WRT E-frame, !!  [rad s−2] is the 
quadrotor angular acceleration vector WRT B-frame and ! E [N m] is the quadrotor 
torques vector WRT E-frame. 
 
In equation (A.20) I [N m s2] is the body inertia matrix (in the body-fixed frame), Θ!  [rad 
s−2] is the quadrotor angular acceleration vector WRT E-frame, !!   [rad s−2] is the 
quadrotor angular acceleration vector WRT B-frame and ! [N m] is the quadrotor torques 
vector WRT E-frame. 
By putting together equations (A.15) and (A.16), it is possible to describe the motion of a 
6 DOF rigid body. Equation (A.21) shows a matrix formulation of the dynamics. 
 

                                           !    !!!! 0!!!
0!!! !           !

!

!!
      + 

  !!   ×  (!!!)  
!!   ×(!  !!)

     = !
!

!!              (A.17)   

Where the notation I3Å~3 means an identity matrix with dimension 3 times 3. In addition, 
it’s easy to see that the first matrix in equation (A.17) is diagonal and constant. This 
equation is totally generic and is valid for all the rigid body, which obey to the hypothesis 
(or simplifications) previously done. However, it was used in this work to model the 
quadrotor helicopter, hence the last vector contains specific information about its 
dynamics. Chapter 3 provides the derivation of the specific dynamic model taking into 
account the forces and torques in play. 



Appendix B 
 
Acronyms and abbreviations 

 
 
Acronym Description 
 
AC       Alternated current 
 
ADC       Analog to Digital Converter 
 
BEMF       Back Electro-Motive Force 
 
BET       Blade Element Theory 
 
BSC       BaSiC 
 
BSPI       Buffered Serial Peripheral Interfaces 
 
CAN       Controller Area Network 
 
COM       Center Of Mass 
 
CPU       Central Processing Unit 
 
DAT       DATA sheet 
 
DC       Direct Current 
 
DMA       Direct Memory Access 
 
DOF       Degrees Of Freedom 
 
DSP       Digital Signal Processor 
MOSFET      Metal-Oxide-Semiconductor Field-Effect  
      Transistor 
 



 
 

Appendix C 
List of constants 

 
 
Symbol Unit Value Description 
 d    N m !!   1.1×  10!!             drag factor 
 
g   m !!!   9.81   acceleration due to  
         gravity 
 
l      m    0.24     center of quadrotor to  
         center of propeller  
         distance 
 
m    kg    1    mass of quadrotor 
 
A                                                                         !!   75.5×  10!!   propeller area 
 

CD    _    0.05    drag coefficient 
 
Ixx     N m !!   8.1 ×  10!!  body moment inertia  
         around x-axis 
 
 
Iyy       N m !!                     8.1 ×  10!!   body moment inertia  
         around y-axis 
 
Izz    N m !!                     14.2×  10!!   body moment inertia  
         around z-axis 
 
Rr    m                             8.5×  10!!     rotor radius 
 
Ap    rad!!!         -22.7   linearized propeller’s  
         speed coefficient. 
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