
POLITECNICO DI MILANO 
Scuola di Ingegneria Industriale 

Corso di Laurea Magistrale in Ingegneria Aeronautica 

Design and development of the new generation of the  
"Mnemosine" FTI system for light aircraft

Relatore: prof. Alberto ROLANDO 

  Tesi di Laurea di:                
Federico ROSSI                 
Matr. 763665                      

Anno Accademico 2011/2012





Sommario

Questa tesi nasce per rispondere alla richiesta di una nuova generazione di strumentazione

per prove di volo per velivoli ultraleggeri sviluppata dal Dipartimento di Scienze e Tecnolo-

gie Aerospaziali del Politecnico di Milano. Tale strumentazione andrà a sostituire la precedente

versione chiamata Mnemosine MK III che essenzialmente si compone di più case metallici con-

tenenti i nodi, ognuno con le proprie caratteristiche, che comunicano fra loro tramite protocollo

Controller Area Network (CAN) data bus appositamente sviluppato.

Quanto segue è il risultato di diverse analisi volte allo sviluppo del nuovo sistema �ight test

instrumentation (FTI) chiamato Mnemosine MK IV. Capitalizzando i progressi dell'industria

dei semiconduttori, questa nuova versione introduce l'integrazione di più nodi in un'unica unità

centrale, le cui funzioni sono governate da un sistema operativo real-time.

Fin da subito si espone la volontà di utilizzare il più possibile software e codici sorgenti Open

Source.

Il lavoro qui presentato è composto da una parte introduttiva, dove si riporta brevemente la

storia dell'evoluzione di Mnemosine con una parentesi rivolta al mondo dell'aviazione, la ricerca

formale dei nuovi requisiti raccolti durante le campagne di �ight test sia in ambito accademico sia

in ambito aziendale grazie al progetto Poli-XFlight. Segue il progetto di massima dell'hardware,

che in alcuni casi si spingerà più in dettaglio secondo le esigenze funzionali e la descrizione della

�loso�a software �no alla redazione della speci�ca dei requisiti e la presentazione dei codici di

validazione realizzati con lo scopo di veri�care l'e�ettiva fattibilità dell'intero progetto.

i





Abstract

This thesis was created to meet the demand for a new generation of �ight test instrumentation

for ultra-light aircraft developed by the Dipartimento di Scienze e Tecnologie Aerospaziali of

Politecnico di Milano. This instrumentation will replace the previous version called Mnemosine

MK III which essentially consists of several metal cases containing nodes, each one with its own

characteristics, which communicate with each other through a specially developed protocol based

on Controller Area Network (CAN).

What follows is the result of several analysis aimed at developing the new �ight test instru-

mentation (FTI) system called Mnemosine MK IV. Thanks to the progress of the semiconductor

industry, this new version introduces the integration of multiple nodes in a single central unit,

whose operations are governed by a real time operating system.

Right from the start it exposes the desire to use as much as possible Open Source software

and source code.

This work consists of an introduction, where is given a brief history of general �ight test activity

and the evolution of Mnemosine, the formal research of new requirements gathered during the

�ight test campaigns both in academic and in business through to the project Poli-XFlight.

Follows the hardware preliminary design, that in some cases goes into detail according to the

functional requirements. Then the description of the software philosophy until the preparation

of the requirements speci�cation and the presentation of the demo made with the purpose of

verifying the actual feasibility of entire project.

iii





Contents

Abstract iii

Contents v

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1

1.1 A bit of FTI history... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Data Acquisition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Data Processing and Analysis Methods . . . . . . . . . . . . . . . . . . . 3

1.2 ULM Ultra Light Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 EASA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 CS-VLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 CS-LSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 ULM Regulation in Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 History of Mnemosine FTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Initial requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.2 Actual state: Mnemosine MK III . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Operating limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Upgrade requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Hardware Realization 13

2.1 Development board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 STM32F407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Power Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Multi-Mode Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Analog Signal Conditioning Module . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Noise Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Schematics of Analog Signal Conditioning Module . . . . . . . . . . . . . 22

2.4.3 PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Secure Digital Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 SPI vs SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Air Data Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



CONTENTS

2.7 Engine Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Stick Force Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Inertial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 GPS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 CDU (Command and Display Unit) . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Software Realization 33

3.1 Real Time Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Choosing the RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Thread de�nitions (High Level Software Requirements) . . . . . . . . . . . . . . . 37

3.3.1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Time scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 SD thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.4 Ethernet thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.5 CAN thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.6 GPS thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.7 Stick force thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.8 AHRS thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.9 CDU thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.10 Control surface position thread . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.11 Air thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Software Requirements Speci�cation (SRS) . . . . . . . . . . . . . . . . . . . . . 45

4 Hardware & Software Suitability Validation Code 47

4.1 Serial Driver SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 USART/UART SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Analog to Digital Converter SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 SD SDIO Mode SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Time Scheduler SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Input Capture SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 CAN SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 I²C SVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusion and Future Developments 59

5.1 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 61

Appendix A (SRS) 63

vi



CONTENTS

Appendix B (SVC) 91

Serial Driver source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

USART/UART Driver source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ADC Driver source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

SDIO Driver source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Time Scheduler source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

IC Driver source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

CAN Driver source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

I²C Driver source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Appendix C (ChibiStudio) 113

Appendix D (Software Upgrade Procedures) 115

JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vii





List of Figures

1.1 Block diagram of Mnemosine MK III . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Mnemosine MK III installed on board . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Mnemosine MK IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Mnemosine MK IV Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 STM32E407 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Power Supply Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Conceptual diagram of multi-mode serial peripheral interface . . . . . . . . . . . 19

2.6 Noise Filter schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Schematics of Analog Signal Conditioning Module . . . . . . . . . . . . . . . . . 22

2.8 PCB of Analog Signal Conditioning Module . . . . . . . . . . . . . . . . . . . . . 23

2.9 3D PCB of Analog Signal Conditioning Module . . . . . . . . . . . . . . . . . . . 23

2.10 SPI vs SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.11 HCLA Pressure Sensors Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.12 Typical Hall e�ect sensor and type J thermocouple . . . . . . . . . . . . . . . . . 27

2.13 Futek MU300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.14 Mantracourt DSC Load Cell Embedded Digitiser . . . . . . . . . . . . . . . . . . 28

2.15 Xsens MTi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.16 U-Blox LEA-XT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.17 CDU Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 ChibiStudio screen shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 SDC diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 CAN diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 SD driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 UART driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 UART driver transmission diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 UART driver receiver diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 ADC driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 I²C driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Overall Software Con�guration Flowchart . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Serial Driver SVC Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 USART/UART Driver SVC Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 ADC Driver SVC Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 SDIO Driver SVC Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



LIST OF FIGURES

4.5 Time Scheduler SVC Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Input Capture SVC Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 CAN Driver SVC Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 I²C Driver SVC Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Boards Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Flash Loader Demonstrator 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Flash Loader Demonstrator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Flash Loader Demonstrator 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Flash Loader Demonstrator 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Flash Loader Demonstrator 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

x



List of Tables

2.1 Pin con�guration of multi-mode serial peripheral interface . . . . . . . . . . . . . 19

2.2 Pin con�guration of multi-mode serial peripheral interface . . . . . . . . . . . . . 20

2.3 pad assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 ADC board: pin con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi





List of Acronyms

ADC Air Data Computer

ADC Analog To Digital Converter

AHRS Attitude Heading Reference System

AOA Angle Of Attack

AOS Angle Of Sidesleep

API Application Program Interface

ATZ Air Tra�c Zone

CAFFE CAN for Flight-test Equipment

CAN Controller Area Network

CAS Calibrated Air Speed

CCM Core Coupled Memory

CDU Command and Display Unit

CPU Central Processing Unit

CS-LSA Certi�cation Speci�cation Light Sport Aircraft

CS-VLA Certi�cation Speci�cation Very Light Aircraft

DAC Digital Converter To Analog

DMA Direct Memory Access

DPR Decreto Presidente della Repubblica

DSP Digital Signal Processor

EASA European Aviation Safety Agency

EFIS Electronic Flight Instrument System

EFIS Electronic Flight Instruments System

EGT Exhaust Gas Temperature

EICAS Engine Indicating and Crew Alerting System

xiii



List of Acronyms

ELT Emergency Locator Transmitter

FM Frequency Modulation

FPU Floating Point Unit

FTE Flight Test Engineer

FTI Flight Test Instrumentation

GPIO General Purpose Input/Output

GPS Global Positioning System

HAL Hardware Abstraction Layer

HTTP Hypertext Transfer Protocol

I²C Inter-Integrated Circuit

I²S Inter IC Sound

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

ISR Interrupt service routine

JTAG Joint Test Action Group

lwIP light-weight Internet Protocol

MCU Microcontroller Unit

MPU Memory Protection Unit

MTOW Maximum Take-o� Weight

NetBIOS Network Basic Input/Output System

OPSW Operational Software

OTG On The Go USB Peripheral

PCM Pulse Code Modulation

PLL Phase-Locked Loop

PPPoE Point-to-Point Protocol Over Ethernet

PWM Pulse Width Modulation

RISC Reduced Instruction Set Code

RMS Rate Monotonic Scheduling

xiv



List of Acronyms

ROM Read-Only Memory

RPM Revolutions Per Minute

RTOS Real Time Operating System

RTT Round-Trip Time

SBAS Satellite-Based Augmentation System

SDC Secure Digital Card

SDIO Secure Digital Input/Output

SRAM Static Random Access Memory

SRS Software Requirement Speci�cation

SVC Suitability Validation Code

TCP/IP Transmission Control Protocol / Internet Protocol

UART Universal Asynchronous Receiver-Transmitter

ULM Ultra Light Machine

USART Universal Synchronous/Asynchronous Receiver/Transmitter

VFR Visual Flight Rules

xv





1 Introduction

1.1 A bit of FTI history...

In less than a century the airplane has undergone a spectacular evolution[34]. This evolution

was marked by recurring cycles of research, ground testing, production, �ight testing, improved

products, and it stemmed from man's constant striving for better, more capable, more e�ective,

more economical airplanes. The early pioneers in aviation combined many disciplines: they were

aerodynamicist, materials specialist, researcher, designer, airframe manufacturer and sometimes,

like the Wright brothers, engine-manufacturer too. They were also test pilot, �ight test engineer

and data analyst, all in one person. As time progressed, technology advanced and the com-

plexity of airplanes increased, it was no longer possible for one person to remain ahead of the

developments in all �elds. Specialist disciplines started to develop and the former �one-man� job

eased in many specialist functions. The function of Flight Test Engineer (FTE) was one of those

specialist functions. In itself the profession of FTE has changed quite a bit over the years, as a

consequence of further specialization...

At �rst gradually, but from the beginning of the seventies at an ever increasing rate, electronics

started to ful�ll functions previously unheard of or previously performed by electro-mechanical,

pneumatic, or hydraulic devices. Each new generation of aircraft had more on-board electron-

ics for communication, navigation and other functions. Weather radar was introduced. The

cockpit instruments that, in the thirties, had become full of electro-mechanical instruments,

were replaced by an Electronic Flight Instruments System (EFIS) and an Engine Indicating and

Crew Alerting System (EICAS). The vacuum-tube electronics became transistor electronics, the

transistor was soon replaced by integrated circuits. The birth of digital electronics and the asso-

ciated digital computer marked the beginning of a new era in aviation, in which we experienced

an increased growth in aircraft system capabilities. The rapid development of electronics and

software-intensive systems contributed considerably to the development of aviation. The minia-

turization of the electronic modules enabled more functions to be installed in less space, with

less weight and consuming less electrical power.

Automatic Flight Control systems took over the classical autopilot functions, but they were

also put to work for automatic landings and stability augmentation or even to provide arti�cial

stability in aircraft with inherent instability. The hydro-mechanical method of control surface

actuation was, in some modern aircraft, replaced by a new method. These aircraft, such as

the civil Airbus 320 passenger transport, feature Fly-By-Wire technology. The command inputs

from the pilot are no longer mechanically transferred to the control servos but electrically by

a simple pair of electrical wires. In the future these wires will be replaced by �bre-optic data

links, i.e., the Fly-By-Light concept. In the late eighties the Global Positioning System (GPS)

1



1 Introduction

was introduced, allowing very accurate navigation worldwide. Modern electronics are required

to perform many complex functions in a very short or near-real time. To achieve this, present

day electronic circuitry has to work with very low energy levels, which makes it sensitive to

interference from outside sources generating electrical or electromagnetic �elds. Today's modern

aircraft have numerous electronic systems for numerous functions, all of which have to be tested

in �ight. It is no wonder that the job of the FTE has changed considerably over the years.

Flight test engineering can be summarized as the engineering associated with the testing, in

�ight, of an aircraft or item(s) of aircraft equipment. The aims of that testing can be very

di�erent: investigate new concepts, provide empirical data to substantiate design assumptions,

or demonstrate that an aircraft and/or its equipment achieve speci�ed levels of performance, etc.

Thus �ight testing covers a broad spectrum of topics, all demonstrating that there is a degree of

novelty in the aircraft, its equipment or its intended usage which requires assessment in �ight.

1.1.1 Data Acquisition Methods

At the beginning of �ight testing the main source of �ight test information was the �ight test

pilot's subjective judgment. At best the pilot had some basic instruments the readings of which

he could jot down on his kneepad if the maneuver permitted that.

NACA, in 1930, was probably the �rst to use special �ight instruments to record measurands

of interest during �ight tests for the determination of aircraft handling qualities. At a later

stage cameras were used to photograph or �lm the pilot's instrument panel or other panels

specially installed in the test aircraft for the purpose of the �ight test and provided with special

instruments and warning or indicator lights. These were the so-called �Automatic Observers� or

Photo Panel Recorders.

After WWII special �ight test instruments became available, in which a small mirror could be

de�ected under the in�uence of an electrical current, an air pressure, an acceleration or another

physical phenomenon. By re�ecting a sharp light beam onto photo-sensitive paper, signals could

be recorded.

From the early �fties, Frequency Modulation (FM) techniques were used for recording these

electrical signals on magnetic tape. Later, in the sixties, Pulse Code Modulation (PCM) became

the major recording standard. This digital technique had the advantage of a better accuracy, a

bigger dynamic range, so more data could be packed into the same space on the tape. Moreover,

it facilitated the direct interfacing with the digital data processing computer. However, FM

techniques are still being used at some �ight test facilities for high frequency recording. In this

period the use of telemetry became more widespread. It had the big advantage of providing

real-time results, which could reduce the time needed to complete a �ight test program.

In the sixties the combination of digital techniques and the micro-miniaturization of electronic

components triggered the development of high-capacity data acquisition, telemetry and data

processing systems. These were necessary as the number of parameters to be recorded and

analyzed during �ight tests increased sharply from a few tens just after WWII to some tens of

thousands for the �ight testing of present day aircraft. Not only the total number of parameters

increased enormously during this period but also the number of parameters with a high sampling

rate for high frequency signals, resulting in enormous �gures for the total system sampling rate.

2



1.1 A bit of FTI history...

Nowadays, data systems which can cope with several millions of measurement values per second

are not uncommon.

This increase in capacity of �ight test data systems has only been made possible by the great

advances in electronic technology during the past few decades.

1.1.2 Data Processing and Analysis Methods

The �rst tools that were used to reduce �ight test data to standard conditions and other calcu-

lations were the hand-cranked mechanical calculator and the slide rule. Data reduction was a

tedious process, involving a lot of manpower and time. The error rate was high and equations

had to be simpli�ed to avoid complex, time consuming calculations. Starting from late �fties

the situation improved. The rapidly increasing capabilities of the digital computer were easily

absorbed by the now growing demand for computing power, generated by the new PCM data

acquisition systems.

The computer also became an invaluable tool for the storage of �ight test data, results of

calculations, administrative data, aircraft and data system con�guration data, and calibration

data. Large relational data base management systems were introduced for the storage and

retrieval of such data. The main advantage coming from that, was the capability of an orderly

known fashion storage, which is also accessible to many users of various disciplines. Computer

networks and commercial data transmission facilities enabled users to transmit their �ight test

data from and to virtually any place in the world and provided access to their data bases from

wherever they choose to do their �ight tests.

3



1 Introduction

1.2 ULM Ultra Light Machine

Ultra Light Machines (ULM) are lightweight aircraft with one or two seat. Nowadays di�erent

types ULM are product, including[28]:

� Weight-shift control trike: while the �rst generation of ultralights were also controlled by

weight shift, most of the current weight shift ultralights use a hang glider-style wing, below

which is suspended a three-wheeled carriage, which carries the engine and aviators. These

aircraft are controlled by pushing against a horizontal control bar in roughly the same way

as a hang glider pilot �ies. Trikes generally have impressive climb rates and are ideal for

rough �eld operation, but are slower than other types of �xed-wing ultralights.

� Powered parachutes: cart mounted engines with parafoil wings, which are wheeled aircraft.

Powered paragliding: backpack engines with para-foil wings, which are foot-launched. Pow-

ered hang glider: motorized foot-launched hang glider harness.

� Autogyro: rotary wing with cart mounted engine. Gyrocopter is di�erent from a helicopter

since the rotating wing is not powered, the engine provides forward thrust and the air�ow

through the rotary blades causes them to autorotate or �spin up� to create lift.

� Helicopter : there are a number of single-seat and two-place helicopters that are included in

the microlight categories in many countries such as New Zealand. However, few helicopter's

design are included in the more restrictive FAA ultralight category.

� Hot air balloon: there are numerous ultralight hot air balloons in the USA, and several

more have been built and �own in France and Australia in recent years. Some ultralight

hot air balloons are hopper balloons, while others are regular hot air balloons that carry

passengers in a basket.

� Advanced ULM: is a ULM that responds to the technical speci�cation reported in the

Decreto Presidente della Repubblica, 9/10/2010 n° 133 also called DPR 133/2010. These

types of advanced ULM are equipped with radio, A or C mode transponder and Emergency

Locator Transmitter (ELT); registered at the AeCI (Aeroclub d'Italia) as advanced ULM.

In most countries, microlights or ultralight aircraft now account for a signi�cant percentage of

the global civilian-owned aircraft. The increasing cost of fuel, the current crisis and the research

of a low cost way to �y are indexes of expansion of the ULM market.

4



1.3 EASA

1.3 EASA

The European Aviation Safety Agency (EASA) promotes the highest common standards of safety

and environmental protection in civil aviation in Europe and worldwide. Its �rst aim is to

provide an unique regulatory system for the entire European aviation market. The agency's

responsibilities include:

� Expert advice to the EU for drafting new legislation.

� Implementing and monitoring safety rules, including inspections in the Member States.

� Type-certi�cation of aircraft and components, as well as the approval of organizations

involved in the design, manufacture and maintenance of aeronautical products.

� Authorization of third-country (non EU) operators.

� Safety analysis and research.

The agency's responsibilities are growing to meet the challenges of the fast developing aviation

sector. In a few years, the Agency will also be responsible for safety regulations regarding airports

and air tra�c management systems 1.

1.3.1 CS-VLA

This Certi�cation Speci�cation was born in 2003 called Certi�cation Speci�cation �Very Light

Aircraft� or CS-VLA. This airworthiness code is applicable to aeroplanes with a single engine

(spark or compression-ignition) having not more than two seats, with a Maximum Certi�cated

Take-o� Weight of not more than 750 kg and a stalling speed in the landing con�guration of not

more than 83 km/h CAS, to be approved for day-VFR only. This CS-VLA applies to aeroplanes

intended for non-aerobatic operation only. Non-aerobatic operation includes: any manoeuvre

incident to normal �ying, stalls (except whip stalls) and lazy eights, chandelles, and steep turns,

in which the angle of bank is not more than 60°[29].

1.3.2 CS-LSA

Since 2011 the EASA issued a new type certi�cate called Certi�cation Speci�cation �Light Sport

Aircraft� (CS-LSA), that is applicable to Light Sport Aeroplanes to be approved for day-VFR

only, that meet all of the following criteria:

� Maximum Take-O� Mass of not more than 600 kg for aeroplanes not intended to be oper-

ative on water or 650 kg for aeroplanes intended to be operative on water.

� Maximum stalling speed in the landing con�guration of not more than 83 km/h CAS at

the aircraft's maximum certi�cated Take-O� Mass and most critical centre of gravity.

� Maximum seating capacity of no more than two persons, including the pilot.

� Single, non-turbine engine �tted with a propeller and non-pressurized cabin.

1https://www.easa.europa.eu/what-we-do.php April 4, 2013

5

https://www.easa.europa.eu/what-we-do.php


1 Introduction

The CS-LSA is applicable to aeroplanes that are by de�nition engine-driven by design and there-

fore CS-LSA is not applicable to powered sailplanes that are designed for sailplane characteristics

when the engine is inoperative[33].

6



1.4 ULM Regulation in Italy

1.4 ULM Regulation in Italy

Currently in Italy there are two types of ultra-light categories:

� Ultralight or �Ultraleggero� is an aircraft totally not certi�ed with the following main fea-

tures:

� Maximum weight requirements excluding seat belts, parachute and instruments. Single-

seat maximum weight of 300 kg, and 330 kg for amphibious, stall speed must not

exceed 65 km/h. Two-seat maximum weight of 450 kg, and 500 kg for amphibious.

� Must remain within the territory of the state. From 30 min before dawn till 30 min

after sunset, �ight must be below 500 ft (152 m), on Saturday and holidays �ight must

be below 305 m with 5 km separation from airports not located within Air Tra�c Zone

(ATZ).

� Advanced ULM or �Ultraleggero Avanzato� must comply with the law DPR 133/2010 and

its main features are:

� Land version Maximum Take-o� Weight (MTOW) must not exceed 600 kg that be-

come 630 kg for snow con�guration and 650 kg for amphibious operations.

� Stall speed V S0 must not exceed 65 km/h Calibrated Air Speed (CAS) 2.

� VHF radio with A or C mode Transponder and ELT.

� They aren't subject to altitude limits imposed on the ULM, being able to take full

advantage of �all air navigation services in the same mode and the same obligations

as other aircraft�, although they should conduct their �ights outside the controlled

airspace by the airport tra�c areas, at a safe distance from obstacles and with not less

than 5 km of distance from the airport. Therefore registered advanced-ULM can �y

in uncontrolled air space with Visual Flight rules (VFR)equivalent to those of general

aviation (few times night VFR ).

Both ULM and Advanced ULM may be certi�ed according to CS-LSA or CS-VLA; although in

Italy, as in other countries of Europe, is not formally required. This helps in keeping the overall

cost of these planes very low, allowing a large di�usion of these aircrafts[1].

For this reason, normally no systematic �ight test activity is planned by the manufacturing

companies as a part of the design, development and production process but it is an activity

that is mandatory if the company wants to certify the aircraft in compliance with EASA or

DPR 133/2010. Even when �ight test is performed, it is generally carried out adapting to

the task some kind of general-purpose, PC based data acquisition system. Such systems tend

to be bulky, highly intrusive-especially considering the lack of real estate available in a 450

Kg Maximum Take O� Weight (MTOW) aircraft and very little �exible. Keeping in mind

the particular requirements of ULM aircraft, and with the aim to realize a Flying Laboratory

capable of ful�lling the necessities and requirements of both research and didactic activities the

Dipartimento di Scienze e Tecnologie Aerospaziali of the Politecnico di Milano, since 2007 it has

launched the Mnemosine project to design, make and exploit a low cost, federated FTI system.

2DPR 133/2010 1.2 see allegato legge 106/85

7



1 Introduction

1.5 History of Mnemosine FTI

1.5.1 Initial requirements

The system requirements are deeply in�uenced by the academic nature of the project. Apart the

unavoidable low budget constraints, in fact, the highly dynamic nature of the project called for

a system capable of being upgraded or maintained in one or more components without a�ecting

the operational capability of the remaining parts. In addition, it was clear that it was necessary

to provide a huge growth potential, because of the predictable expansion of the system as new

inputs from the research activities will arise. To summarize, the initial requirements identify the

system as: a low cost, reliable and �exible FTI which must be capable to assure a considerable

growth potential (open). Other essential features of the system are: non intrusive, easy to

manage and maintain.

It immediately appeared that the most suitable architecture to satisfy the above requirements

was the federate one, in which the system is divided in a number of autonomous nodes. Every

single node can operate independently from the others and is specialized for speci�c task: it

has processing power, memory, power supply and all the signal conditioning/interface resources

required to manage the particular sensor/device it manages. All the data generated by the

modules are then shared by means of a common communications line: a digital data bus. Among

the advantages of such an architecture, the possibility to distribute the units across the aircraft

permits to place every module as close to the sensor it manages as it is possible, avoiding to lay

down long, noise sensible analog signal lines, since information is immediately converted to a

digital format, processed and transmitted over a robust medium.

The nodes communicate with each other using a special version of CANAerospace protocol[3]

that is an extremely lightweight protocol/data format de�nition which was designed for the highly

reliable communication of microcomputer-based systems in airborne applications via CAN[2]

with built-in data time-stamping capability. The entire communication protocol is called CAN

for Flight-test Equipment (CAFFE).

The choice hardware for the single module fell on a single multipurpose board whose primary

functions were carried out by: dsPIC30F4011 16-bit �xed point Digital Signal Processor (DSP)

by Microchip Technology Inc, CAN line driver integrated circuit (IC), MCP2551 by Microchip

Technology Inc. The used board appears to be divided into two parts: one part common to all

modules that implements the basic functionality and another ad hoc that allows to characterize

each node to its purpose.

8



1.5 History of Mnemosine FTI

1.5.2 Actual state: Mnemosine MK III

Mnemosine MK III is made up of the following nodes: Terpsicore, Urania, Melete, Polimnia,

Eutherpe and Talia.

Figure 1.1: Block diagram of Mnemosine MK III

� Clio, performs data logging on Secure Digital card (SDC) using a speci�c CAN data logger.

� Calliope, receives the signal from the Load Cell Embedded Digitiser and creates the message

to be sent on the bus.

� Eutherpe, through the use of potentiometers allows the monitoring of the positions of

equilibrator, ailerons, �aps and pedals.

� Melete, is the power unit.

� Melpomene, communicates with the command and display unit (CDU).

� Polyhymnia, via GPS module, it transmits speed, position and satellites in view with a

frequency of 4 Hz on the data bus.

� Talia, engine data, through a Hall e�ect sensor calculates the speed rotation of the propeller.

� Terpsichore, communicates serially with AHRS 400CC-200 [4] with a frequency of 58 Hz

providing speed and angles of roll, pitch and yaw, as well as accelerations along the three

axes XYZ.

� Urania, in e�ect an air date computer, uses a di�erential pressure sensor MPXV5004G[5]

and a absolute pressure MPX5100[6].It allows to obtain information on: static pressure,

dynamic pressure, temperature and angles of attack and sideslip.

9



1 Introduction

1.6 Operating limits

After using the system for few years, some critical aspects have been found: �rst of all the

decentralized nature in multiple nodes leads to an increase of the space occupied by the system;

data was asynchronous and a�ected by presence of short random data delay. As a matter of fact

it has been noted that it needs a new on-board user interface.

Figure 1.2: Mnemosine MK III installed on board

10



1.7 Upgrade requirements

1.7 Upgrade requirements

At �rst glance it is immediately apparent the need for a deep change in the con�guration, the

integrated architecture makes it possible to obtain smaller volumes and in this case it's the

highest grade of e�ciency. In order to face the undesired presence of asynchronism it will be

used a deterministic software, while as far as it concerns the last issue it is necessary to design

a new user interface.

Collecting all the ideas it's possible to write the new high level requirements and the new

Mnemosine MK IV will be made up by: a microcontroller unit (MCU) mounted on the mother

board which also provides: all inputs for external sensors, all power supply components and of

course all plug connectors for external module. Mnemosine MK IV will be equipped with sensors

able to acquire:

� air data: total air pressure, static air pressure, angle of attack (AOA), angle of sidesleep

(AOS)

� engine data: propeller revolutions per minute (RPM), fuel �ow, exhaust gas temperature

(EGT)

� control surface positions: aileron, equilibrator, rudder, �ap

� stick forces

� 3D inertial data: accelerations, Eulerian angle rates, Eulerian angles

� GPS data

The lower level requirements of Mnemosine MK IV must ensure:

� the use of a standard development board

� communication with:

� GPS module with time pulse over UART port

� attitude heading reference system(AHRS) platform over multi-mode serial peripheral

interface (RS232, RS485, RS422)

� embedded stick force acquisition system over multi-mode serial peripheral interface

(RS232, RS485, RS422)

� SD card

� CDU also through bluetooth module

� Ethernet port

� CAN port

� air data computer (ADC) over Inter-Integrated Circuit port (I²C)

� possibility of software upgrade through universal asynchronous receiver-transmitter port

(UART)

11





2 Hardware Realization

All the choices that led to the �nal hardware con�guration of the system Mnemosine MK IV will

be motivated in this chapter. Obviously it was an iterative process with the aim of �nding the

best �t of the requirements.

Figure 2.1: Mnemosine MK IV

13



2 Hardware Realization

Figure 2.1 allows to observe all the hardware subsystems that compose MK IV, comparing

it with the diagram of MK III it is immediately note the absence of a data bus in favor of an

integrated architecture. The only external module is Urania (air data) that communicates with

the main board using I²C protocol. The entire system is enclosed in a metal case that will

protect the delicate circuits during the �ight test. It should be noted the ability to update the

software externally, without changing the boarded con�guration; this skill ensures a high degree

of software maintainability.

Figure 2.2: Mnemosine MK IV Rendering

The new hardware architecture allows to assemble the most part of the system inside one

single metal case.

14



2.1 Development board

2.1 Development board

As previously mentioned Mnemosine MK IV is constituted by a single central core: the mi-

crocontroller. Currently there are hundreds, if not thousands, of models all di�erent from each

other, each one having its own features. By conducting research in the automotive and industrial

automation it has been possible to draw up a list of products. Through a simple comparison it

emerged that the more suitable microcontroller for our purposes is produced by STMicroelec-

tronics [21] and it's called STM32F407.

2.1.1 STM32F407

STM32F407 is in fact not a single �chip� but identi�es a whole family of controllers based on

ARM CORTEX-M4 32-bit with reduced instruction set code (RISC)[23] capable of operating up

to 168 MHz (clock frequency). The CORTEX M4 is equipped with a single precision �oating

point unit (FPU) and is therefore able to work with all types of data and instructions. An-

other peculiarity is the presence of a digital signal processor (DSP) and memory protection unit

(MPU) that improves the security of the application code[13]. The memory of the microprocessor

is composed by up to 1 Mbyte of �ash memory and up to 192+4 Kbytes of static random access

memory (SRAM) including 64 Kbyte of core coupled memory (CCM) that certainly guarantees

an adequate memory space for the full application of Mnemosine MK IV. The timing source

is composed by a factory-trimmed (1% accuracy) 16 MHz crystal oscillator and a 32 kHz os-

cillator for the real-time clock separately powered, which can rely on 4 KBytes of SRAM. The

microcontroller shall be supplied from 1.8 V to 3.6 V.

It's possible to obtain a maximum of three 12 bit, 2.4 MSPS analog to digital converters (ADC)

with up to 24 channels and 7.2 MSPS in triple interleaved mode. In opposite direction are also

being o�ered two 12 bit digital to analog converters (DAC). There are 16 stream direct memory

access (DMA), that can be used to direct transfer of data from or to memory to minimize the

interruptions caused by program-controlled data transfers.

The STM32F407 contains twelve 16 bit and two 32 bit timers up to 168 MHz, each with up

to 4 input capture, output compare or pulse width modulation (PWM).

Up to 15 communication interfaces are present, which include: three I²C interfaces, 4 universal

synchronous/asynchronous receiver/transmitter (USART) and two UART (10.5 Mbit/s, ISO

7816 interface), three SPI (37.5 Mbits/s) two of which capable of muxed full-duplex inter-IC

sound (I²S) to achieve audio class accuracy via internal audio phase-locked loop (PLL) or external

clock. Last two communication interfaces are essential for Mnemosine: the two CAN interfaces

and Secure Digital Input/Output interface (SDIO) which allows saving all �ight data.

15



2 Hardware Realization

Figure 2.3: STM32E407 Layout

This microprocessor is used by several development board manufacturers with the e�ort to

meet as many as possible requirements with a single board. In this project it was decided to

use the Olimex STM32 development board-E407 equipped with STM32F407ZG[9]. This choice

is justi�ed by the presence of connectors for devices including also the slot for SD card and

Ethernet interface, the presence of hardware abstraction layer (HAL) for ChibiOS/RT. Its main

features are:

� Joint Test Action Group (JTAG) connector with ARM 2x10 pin layout for program-

ming/debugging

� Ethernet 100Mbit UEXT connector

� USB host USB On The Go (OTG)

� SD card Input

� DC/DC power supply which allows operation from 6 V to 16 V source Power and User

LEDs

� Reset and User buttons

� 4 full 20 pin Ports with the external memory bus

� Dimensions: 101.6 x 86 mm

16



2.2 Power Supply Section

2.2 Power Supply Section

The power supply circuit must ensure an adequate stabilized voltage during all phases of �ight

tests. Especially during the critical phase of engine startup. To meet this requirement it's

necessary to provide a separate power supply that can be replaced by the voltage coming from the

aircraft during the �ight. The circuit must also ensure a minimum period of time which provides

energy to Mnemosine MK IV even if the power fails. If this happens, the board shall immediately

notify to the microcontroller in order to follow the emergency power falling procedure.

Figure 2.4: Power Supply Diagram

17



2 Hardware Realization

2.3 Multi-Mode Serial Peripheral Interface

As expressly indicated by the requirement, the system uses a number of sensors that transmit

data by serial interface directly to the doors USART or UART of the microcontroller. By the

way in the world of aviation and automation in general, there are several serial communication

protocols, including[24]:

RS232 (EIA RS-232) is a standard EIA equivalent to the European standard CCITT V21/V24.

It de�nes a low-speed serial interface for the data exchange between digital devices. Stretch-

ing a physical cable between two electronic devices equipped with a RS-232 port is possible

to realize a communication between them. EIA standard RS-232 was born in the early

sixties by the work of the �Electronic Industries Association� and was oriented to the com-

munication between the mainframe and terminals (Data Terminal Equipment) through the

telephone line using a modem (Data Communication Equipment). Over the years, changes

have been made to obtain di�erent standards such as RS-232c widely used in the industrial

�eld. Viewing from the electrical point, three logical levels are de�ned: mark between -3

V and -15 V, space between +3 V and +15 V and uncertainty between +3 V and -3 V.

RS-422 (EIA RS-422) is a standard EIA or CCITT V11 in European legislation. It is a protocol

for serial data communication that involves the use of two wires with multi-point di�erential

line (balanced di�erential). By using two pairs of wires, and of course with two similar

circuits, it is possible to obtain the full duplex connection. Unlike EIA RS-485, from which

it di�ers only for the ability to be on line in the high impedance if not selected, the EIA-422

does not allow multiple transmitters but only multiple receivers. Unlike the standard EIA

RS-232 is designed to directly connect two devices (either DTE or DCE) with high noise

immunity even at considerable distances (typically up to 1550 m) and at considerable speed.

Since the change of state of the data is determined by the di�erence of the voltages on the

two wires in a balanced mode (0 to +5 V and -5 V on the two conductors respectively)

and since the wire is a twisted pair this standard is resistant to the electrical noise and

jamming disturbance (high noise immunity). The maximum length of cable is 1550 m for

speeds up to 1 Mbit/s.

RS485 (EIA RS-485) equivalent to the European standard CCITT V11 is a speci�c OSI Model

Physical Layer of a two-wire half-duplex and multi-point serial interface. The standard

speci�es a management system of the signal in di�erential form: the di�erence between the

voltage present on the two wires constitutes the data in transit. A polarity indicates a logic

level 1 and the null state the logic level 0. The potential di�erence should be at least 0.2 V

for a valid operation, but any voltage between 12 V and -7 V allows the correct operation

of the receiver. The RS-485 only speci�es the electrical characteristics of the transmitter

and the receiver. It does not indicate or recommend any protocol for data transmission;

EIA RS-485 allows the con�guration of a low cost local area networks or multi-point data

communications. It permits a very high speed transmission (35 Mbit/s up to 10 m and 100

kbps to 1.200 m). Since it uses a signaling system with a non-negligible voltage, with a

balanced line through the use of a pair of twisted cable (as is the case in the EIA RS-422),

you can reach far distances (up to 1.200 m) . Compared to the EIA RS-422, which has a

18



2.3 Multi-Mode Serial Peripheral Interface

single driver circuit, which must not be turned o�, the transmitter for the EIA-485 is placed

in transmission mode explicitly, by applying a signal. EIA RS-485, such as EIA RS-422

can be made using four-wire/full-duplex (two pairs), but since EIA-485 is a speci�c type

of multi-point, this is not strictly necessary. As it is di�erential, it resists to interferences

of electromagnetic nature.

From conceptual point of view, in order to choose which standard to use to communicate between

the device and the microcontroller it becomes necessary the realization of a line driver that brings

the signal by the above listed protocols to TTL logic level useful for the MCU.

Figure 2.5: Conceptual diagram of multi-mode serial peripheral interface

Referring to Figure 2.1, it's possible to �ll the following table:

mode α β γ δ ε

o� o� o� o� o� o�

232 on o� o� o� o�

422 o� on o� o� on

485 TX o� on o� o� o�

485 RX o� o� on o� o�

Table 2.1: Pin con�guration of multi-mode serial peripheral interface

19



2 Hardware Realization

It turns out that the Transmission Enable (δ) of the second driver 485 will be permanently

disabled. To conclude other 4 general purpose input/output (GPIO) are needed for the following

functions:

GPIO Function

ζ +12 enable

η digital out

ϑ +5 enable

ι event in

Table 2.2: Pin con�guration of multi-mode serial peripheral interface

20



2.4 Analog Signal Conditioning Module

2.4 Analog Signal Conditioning Module

For the position detection of the control surfaces, as for the old version of the Mnemosine FTI,

potentiometric sensors will be used. This easy integration type of sensor guarantees the per-

formance of a common linear rigid rod potentiometer but at the same time allows an adequate

safety from the moment in which a malfunction of the same, thanks to the wire behaving like

a �programmed fracture�, allows however the government of the surface. The potentiometer

FMDK46-1000 produced by Atheris [25] is the smallest design in this sensor class with measur-

ing range of 1000 mm (resolution 0.3 mm) and it is able to work within temperature range of

-20 °C to +80 °C.

2.4.1 Noise Filter

Figure 2.6: Noise Filter schematic

Before the signals are acquired by the DAC (Digital to Analog Converter) site internally in the

microcontroller, it's necessary to �lter those that are obviously the more noisy signals within the

system Mnemosine. The Sallen-Key �lter is used with cuto� frequency less than or equal to half

of the frequency sampling.

For this type of active �lter is provided an algebraic formula to calculate the cut-o� frequency:

Fc = 1
2π
√
C1C2R1R2

By suitably choosing the values of capacitance and resistance it is obtained:

C1 = C2 = 100 nF

R1 = R2 = 180 KΩ

Fc w 9 Hz

21



2 Hardware Realization

2.4.2 Schematics of Analog Signal Conditioning Module

To ensure electrical isolation between potentiometer and microcontroller it has been studied the

use of analog photocoupler.

This device costs of a high-brightness light emitting diode and two photodiodes tightly cou-

pled; from the logical point of view, the input signal, a voltage, allows the passage of current

through the photoemitter, that thanks to a simple feedback circuit, emits a signal bright directly

proportional to the signal itself. At this point the second photodiode transposes the same light

signal and reconverted it into a current signal that can be reconstructed from the last operational

that actually remains isolated from the �rst.

This component is produced by Avago with code HCNR20x whose performances are[27]: non-

linearity under 0.01% as ratio between the current input and output with -5% of transfer gain,

wide bandwidth from DC up to 1 MHz and worldwide safety approval (UL 1577) recognized,

minimum isolation guaranteed of 5 kV rms for 1 min.

2.4.3 PCB

Using Design Spark PCB [8] it is possible to draw both the schematics and PCB also in 3d view.

Figure 2.7: Schematics of Analog Signal Conditioning Module

22



2.4 Analog Signal Conditioning Module

Figure 2.8: PCB of Analog Signal Conditioning Module

Figure 2.9: 3D PCB of Analog Signal Conditioning Module

23



2 Hardware Realization

2.5 Secure Digital Card

This is the real physical memory of Mnemosine MK IV, that takes its name from its characteristic

to allow the protection of data stored in it. This feature is also called key revocation and allows

reading only by speci�c readers. Specially developed to store information very quickly, it is

currently the digital memory of smallest size. The main characteristics of a typical µSD on the

market are:

� Dimension: 15 mm x 11 mm x 1 mm

� Default mode: 0-25 MHz, up to 12.5 MB/s interface speed

� High-speed mode:0-50 MHz, up to 25 MB/s interface speed

� Temperature range -25 °C a +85 °C

� Free fall 1.5 m

� MTBF > 1'000'000 h

� Voltage supply 2.7 V a 3.6 V

� Standby current 0.3 mA

� Read/Write current 15 mA

Pad Number Name Type Description Name Type Description

SDIO mode SPI mode

1 DAT2 I/O/PP data line bit2 - - -

2 CD/DAT3 I/O/PP data line bit3 CS I chip select

3 CMD PP command/response DI I data input

4 VDD S supply voltage VDD S supply voltage

5 CLK I clock SCLK I clock

6 VSS S supply voltage ground VSS S supply voltage ground

7 DAT0 I/O/PP data line bit0 DO 0 data output

8 DAT1 I/O/PP data line bit1 - - -

Table 2.3: pad assignment

24



2.5 Secure Digital Card

2.5.1 SPI vs SDIO

This memory supports two types of communication bus called SPI and SDIO. The �rst, which

stands for Serial Peripheral Interface, is a full-duplex synchronous serial. It is de�ned to use

only 4 wires and is now widely used in communication between microprocessors and sensors of

all types. The data transmission on the SPI bus is based on the operation of the shift registers.

Each device, master and slave, is equipped with an internal shift register, whose bits are output

and, simultaneously, enter via the output SDO/MOSI and the input SDI/MISO. The shift register

(8 bits) is a complete interface through which commands are given and transmitted as a serial

stream even if they are taken internally in parallel. At each clock pulse, the devices that are

communicating on the bus lines send a bit from their internal register, replacing it with a bit

received.

The second, Secure Digital Input/Output is an advanced standard for this type of memories

which uses several communication lines in order to improve the speed of reading or writing

procedures. In an attempt to evaluate whether increased complications in the communication

protocol were acceptable, di�erent comparison tests were made using the same hardware and

high level software.

20

40

60

80

100

120

140

160

10 10 10 10
2 3 4 5

Byte

T
im

e
 [

m
s
]

SDIO

SPI

Figure 2.10: SPI vs SDIO

As expected communication through SDIO interface is much more e�cient than the SPI 1.

1Graph obtained using Scilab http://www.scilab.org April 4, 2013

25

http://www.scilab.org


2 Hardware Realization

2.6 Air Data Computer

It is the only external module of system Mnemosine MK IV, indeed to avoid a long linkage pipe

for the weak pressures detected by taps. It was decided to maintain it as unique external module

in order to facilitate as much as possible the phase of integration on the aircraft. It uses the

same Urania sensors (Mnemosine MK III) and communicates via I²C with the main board.

� As di�erential pressure transducer to measure the dynamic pressure it is used the HCLA0050EU[5]

made by Sensor Technics. Its main features are:

� Range 0 to 50 hPa

� Max pressure 1200 hPa

� Temperature range =25 °C to +80 °C

� Sensitivity 80 mV/hPa

� As total pressure transducer to measure the total pressure it is used the HCA0611ARH8

[6] also made by Sensor Technics. Its main features are:

� Range 600 to 1100 hPa

� Max pressure 3000 hPa

� Temperature range 0°C to +85°C

� Sensitivity 8 mV / hPa

� Accuracy 1.0 % ES

� Response time 2 ms

Regarding the sensors for angle of attack and sideslip, given the di�culty of installation of a nose

boom in ULM aircraft, sometimes they were omitted. However the use of classical �ag sensors

is always possible.

Figure 2.11: HCLA Pressure Sensors Family

26



2.7 Engine Data

2.7 Engine Data

By exploiting a hall e�ect sensor installed near the propeller, it is possible to detect the number

of turns of the same. In order to detect the fuel consumption a fuel �ow sensor may be installed

inner the engine cowl and a thermocouple allows detection of EGT. This thermocouple must be

of type �J� given the high temperature of the engine and must necessarily be mounted at the

critical point i.e. the less cooled part.

Figure 2.12: Typical Hall e�ect sensor and type J thermocouple

2.8 Stick Force Data

Using a small 3D load cell, originally built for automotive application and its acquisition board

that is connected with Mnemosine MK IV via UART port, it is possible to record stick force

during the �ight test.

Figure 2.13: Futek MU300

27



2 Hardware Realization

This subsystem is composed of a load cell produced by Futek2 and load cell embedded digitiser,

also called DSC, produced by Mantracourt3. The load cell gathers the stick forces in both

directions, while the DSC allows complete processing of the signals coming from the strain

gauges; it also transmits data, already engineered, via serial protocol to Mnemosine MK IV.

Figure 2.14: Mantracourt DSC Load Cell Embedded Digitiser

2http://www.futek.com/ April 4, 2013
3http://www.mantracourt.com/ April 4, 2013

28

http://www.futek.com/
http://www.mantracourt.com/ 


2.9 Inertial Data

2.9 Inertial Data

To capture the inertial �ight data, it is necessary to use an AHRS. It was choosed the MTi

Xsens[31]. The MTi is a miniature, gyro-enhanced Attitude and Heading Reference System.

Its internal low-power signal processor provides drift-free 3D orientation as well as calibrated

3D acceleration, 3D rate of turn and 3D earth-magnetic �eld data. The MTi is an excellent

measurement unit (IMU) for stabilization and control of cameras, robots, vehicles and other

(un)manned equipment. The main features of MTI are:

� Real-time computed attitude, heading and inertial dynamic data 360º orientation refer-

enced by gravity and Earth Magnetic.

� Field Integrated 3D gyroscopes, accelerometers and magnetometers.

� On board DSP, running sensor fusion algorithm.

� Gyroscopes enable high-frequency orientation tracking High update rate (120 Hz), inertial

data processing at max 512 Hz.

� Individually calibrated for temperature, 3D misalignment and sensor cross-sensitivity.

� Accepts and generates synchronization pulses.

This last point is prime for Mnemosine MK IV that is a synchronous real time system and allows

the essential command response from the board and the MTi. The MTi returns and technical

speci�cations are:

· 3D Orientation (360°) · 3D acceleration

· 3D rate of turn · 3D magnetic �eld

· Static accuracy (roll / pitch) <0.5° · Digital interface RS-232, RS-485, RS-422

· Dynamic accuracy 2° RMS · Static accuracy (heading) <1°

· Operating voltage 4.5 - 30 V · Angular resolution 0.05°

Figure 2.15: Xsens MTi

29



2 Hardware Realization

2.10 GPS Data

The GPS module for Mnemosine MK IV is not just a simple position sensor but it is the main

source of the entire time system, this means that it is probably one of the major critical points

of the whole project.

As previously mentioned, Mnemosine MK IV allows to acquire measurements synchronously;

to obtain this, the system receives in input a pulse every second that gives start to a default

sequence of operations. Thus the source of time is the external time-pulse of GPS. Following a

brief marketing research the LEA-5T made by U-Blox [32] has been chosen as Mnemosine GPS

module.

The LEA-5T features a Time Mode function whereby the GPS receiver assumes a stationary

3D position, either manually programmed or determined by an initial self-survey. Stationary

operation enables GPS timing with only one visible satellite and eliminates timing errors which

otherwise would result in positioning errors. The accuracy of the time pulse is as good as 30 ns,

synchronized to GPS or UTC time. An accuracy of 15 ns is achievable by using the quantization

error information to compensate the granularity of the time pulse. A built-in time mark and

counter unit provides precise time measurement of an external signal (�EXTINT0� input). Main

features:

� 50-channel U-Blox 5 engine with over 1 million e�ective correlators.

� Hybrid GPS, GALILEO and Satellite-Based Augmentation System (SBAS) engines like

WAAS, EGNOS, MSAS, GAGAN.

� < 1 second Time-To-First-Fix for hot and aided starts.

� Stationary mode for GPS timing operation.

� Super sense indoor GPS with best-in-class acquisition and tracking sensitivity.

� Output time pulse with at least one satellite in view.

Figure 2.16: U-Blox LEA-XT

30



2.11 CDU (Command and Display Unit)

2.11 CDU (Command and Display Unit)

Inside the aircraft the operator has two CDUs. The �rst controls the power supply circuits of

Mnemosine MK IV and contains the recording switch.

Figure 2.17: CDU Rendering

In order to facilitate the integration of CDU it was decided to design it, into a classical 3.5�

aircraft instrument case; this CDU is splitted into three main parts: the rotary power switch, the

recording switch and the light indicators. Its minimalist design ensures the minor probability to

cause confusion although the operator retains full situation awareness.

The four lights identify:

� Orange, external power supply in use

� Green 1, aircraft power supply in use

� Green 2, GPS �x

� Red, Recording!

The second, currently under development, is a multifunction touchscreen that makes possible to

upload the test card or other documents. It communicates with Mnemosine MK IV through a

bluetooth module.

31





3 Software Realization

Once de�ned the physical structure of the system, it is now possible focus on the software. In

this chapter all the choices that have been carried out for the operating system and application

software will be introduced and motivated.

3.1 Real Time Operating System

From �rst instant it was clear that in order to meet the requirements, the presence of a real-

time operating system had to be considered imperative. Mnemosine MK IV, like other real-time

systems are characterized by the severe consequences that result if logical as well as timing

correctness properties of the system are not met. Two types of real-time systems exist: soft

and hard. In a soft real-time system, task are performed by the system as fast as possible,

but the task don't have to �nish by speci�c times. In hard real-time systems, task have to be

performed not only correctly but on time. Mnemosine MK IV like most real-time systems have

a combination of soft and hard requirements. This systems are called foreground/background

systems or super-loops.

An application consists of an in�nite loop that calls modules (i.e., function) to perform the de-

sired operation (background or task level). Interrupt service routine (ISR) handles asynchronous

events (foreground) that is also called interrupt level.

Critical operations must be performed by ISRs to ensure that they are dealt with in timely

fashion. Because of this, ISRs have the tendency to take longer than they should. Also, informa-

tion for background module that an ISR makes available is not processed until the background

routine gets its turn to execute, which is called the task-level response.

During the operation of the software, the Real Time Operating System (RTOS) inside Mnemo-

sine MK IV must guarantee the determinism of events, for this reason all task and functions have

a speci�c timeout.

Shared Resource: can be used by more than one task. Each task should gain exclusive

access to shared resource to prevent data corruption. This process is called mutual exclusion and

of course this feature must be present in the chosen RTOS.

Multitasking: is the process of scheduling and switching the central processing unit (CPU)

between several tasks; Multitasking allow to have more backgrounds, this helps to design a

speci�c application for each peripheral of the system, these application program are easier to

design and to maintain in comparison to a single background software.

Currently there are many types of operating systems, each of them with their own particu-

larities and peculiarities. Below it will be exposed the motivations that led to the choice of the

RTOS.

33



3 Software Realization

Task: also called thread, is a simple program that thinks it has the CPU all to itself. The

design process for our real-time application involves splitting the work to be done into tasks

responsible for a portion of the problem. To each task is assigned a priority, its own set of CPU

registers, and its own stack area.

Kernel: is the part of multitasking system responsible for management of task i.e., for man-

aging the CPU's time and communication between tasks. A kernel adds overhead to the system

because the services provided by the kernel requires execution time. The amount of overhead

depends on how often these services are invoked and naturally how the kernel is made. One of

the major performance index for kernel is the Context Switch. When a multitasking kernel

decides to run a di�erent task, it saves the current task's context (CPU registers) in the current

task's context storage area. After this operation is performed, the new task's context is restored

from its storage area and then resumes execution of the new task's code.

Preemptive kernel means that the highest priority task ready to run is always given control

of CPU. It is used when system responsiveness is important, therefore this feature is explicitly

required. When a task makes a higher priority task ready to run, the current task is preempted

(suspended), and higher priority task is immediately given control of the CPU. If an ISR makes

a higher priority task ready, when the ISR completes, the interrupted task is suspended, and the

new higher priority task is resumed[35].

3.1.1 Choosing the RTOS

Using a survey in the RTOS world and excluding all operating systems with proprietary license,

substantially two products are emerged : FreeRTOS [10] and ChibiOS/RT [11]. Remembering

that both FreeRTOS and ChibiOS/RT are distributed under GPL3 license [12], this means that

it can be used the code or part of code for a commercial product. The reasons that led to

the choice of ChibiOS compared to FreeRTOS can be summarized as: ChibiOS/RT is designed

for deeply embedded real time applications where execution e�ciency and compact code are

important requirements. This RTOS is characterized by its high portability, compact size and,

mainly, by its architecture optimized for extremely e�cient context switching. ChibiOS/RT

has an e�cient and portable preemptive kernel, best in class context switch performance i.e.,

withARMCM3/STM32F4xx-168-GCC4.6.2 the context switch time is 0.40µS with a kernel size

of 6172 byte (all the non-debug subsystems enabled). The architecture is static, everything is

statically allocated at compile time nevertheless dynamic extensions and objects are supported by

an optional layer built on top of the static core. There is an entire set of primitives: threads, vir-

tual timers, semaphores, mutexes, condition variables, messages, mailboxes, event �ags, queues.

It support priority inheritance algorithm on mutexes. HAL component supporting a many if not

all abstract device drivers also supporting external components like uIP, lwIP and FatFs essential

for the proper functioning of the SD card.

34



3.1 Real Time Operating System

The ChibiOS's father is Giovanni Di Sirio, in the eighties he developed an ancestor that was

an Operating System for Motorola 68000 [17]. In 1989 it supported GCC, ran EMACS, was

preemptive and real-time but in 1991 Linus Torvalds began the development of Linux and the

project changed course. The original full-featured OS turned in a minimalistic, e�cient, RTOS:

ChibiOS/RT's father... In 2007, 15 years later, it turned to ChibiOS/RT: an open source RTOS

project targeted to embedded systems. Currently the project is led and mainly developed by

Giovanni Di Sirio and in the last years ChibiOS/RT started growing in features, ports and users...

Now it is a real software community.

As underlined ChibiOS/RT is meant to be a whole operating system not just a scheduler. The

kernel has no internal tables, there is nothing that must be con�gured at compile time or that

can over�ow at run time, no upper bounds, the internal structures are all dynamic even if all

the objects are statically allocated. System application program interface (API) has no error

conditions, all the previous points are �nalized to this objective. The APIs are not slowed down

by parameter checks; they do exist but only are activated when the related debug switches. All

the static core APIs always succeed if correct parameters are passed. Exception to this rule are

the optional dynamic APIs that, of course, can report memory exhausted.

� Note, �rst �fast� then �compact�, the focus is on speed and execution e�ciency and then on

code size. This does not mean that the OS is large, the kernel size with all the subsystems

activated weighs around 5.5KiB (STM32, Cortex-M3).

Test results on all the supported platforms and performance metrics are included in each ChibiOS/RT

release. The test code is released as well, all the included demos are capable of executing the

test suite and the OS benchmarks[30].

35



3 Software Realization

3.2 Development Environment

The development environment chosen for the realization of the software is ChibiStudio. It is an

Integrated Development Environment (IDE) composed by freely distributed softwares grouped

in a handy suite.

It is essentially composed by Eclipse Juno 4.2 classic, con�gured for execution of embedded

applications.

Today is o�cially distributed and free of charge1 for Windows platform and uno�cially for

Linux2.

Figure 3.1: ChibiStudio screen shot

See Appendix C for the complete ChibiStudio software components.

1http://sourceforge.net/projects/chibios/�les/ChibiStudio/ 4 April, 2013
2ftp://ftp.elet.polimi.it/users/Martino.Migliavacca/ 4 April, 2013 - Special thanks to Ing. Martino Migliavacca
Dipartimento di Elettronica E Informazione del Politecnico di Milano

36

http://sourceforge.net/projects/chibios/files/ChibiStudio/
ftp://ftp.elet.polimi.it/users/Martino.Migliavacca/ 


3.3 Thread de�nitions (High Level Software Requirements)

3.3 Thread de�nitions (High Level Software Requirements)

The software is mainly divided into threads, each thread manages its own work. The purpose of

the threads is to support the following capabilities:

� Data acquisition of the following parameters:

� Air data: static pressure P_STAT, dynamic pressure P_DIN, OAT, AOA, AOS.

� GPS data: 3D ECEF position, 3D ECEF velocity.

� Stick force.

� Control Surface positions: elevator ELE_POS, rudder RUD_POS, aileron AIL_POS,

�aps FLP_POS.

� Engine data: RPM, EGT, Fuel Flow. Data saving on secure digital SD.

� ETH port communication.

� CAN port communication.

� I²C port communication.

� Software maintenance via UART port.

� Ensure data synchronization

The following notation has been used in order to guarantee a project-unique identi�er for each

operational software (OPSW) requirement:

THD_xxx_yyy_zzz

The characters xxx denote the type the requirement belongs to, among the following:

HAL hardware abstraction layer

COM peripheral communication

CAL calculate/compute/do something

SAV save

UPT update

EXP export data

The characters yyy denote the type the requirement belongs to, among the following:

DEF de�nition

STP setup structure

FUN function

and zzz denote a serial number useful for identi�cation.

As mentioned ChibiOS / RT is written entirely in ANSI C, for this reason all the code that

will be proposed is intended written in this language; hereinafter will displays all the expected

threads with their general characteristics.

37



3 Software Realization

3.3.1 Main

The �main� has the task to initialize the operating system according to the operating parameters

of the board OLIMEX STM32E407 [9], allow the creation of all threads and their respective mail

boxes. Substantially the work of the script main ends with the initialization phase, where the

thread scheduler thanks to the operating system takes control of the entire software, common

aspect of all embedded real time operating systems.

3.3.2 Time scheduler

The time scheduler is not just a simple thread but a set functions independently managed through

the use of hardware and software interrupts. It receives a pulse every second from GPS time

pulse, starting from here and knowing the sampling frequencies of all desired measures, a timer

starts and sends a startup message that allows the execution of the task. To give a fair priority

execution to each thread it is set at the creation time in the �main�. The priority policy is based on

the need of time of each task. Assigning task priorities is not a trivial undertaking because of the

complex nature of real-time system. An interesting technique called rate monotonic scheduling

(RMS) has been established to assign task priorities based on how often tasks execute. Simply

put, tasks with the highest rate of execution are given the highest priority.

Given a set of n task that are assigned RMS priorities, the basic RMS theorem states that

all task hard real-time deadlines are always met if the inequality in the following equation is

veri�ed.

∑
i

Ei

Ti
≤ n

(
21/n − 1

)
Where Ei corresponds to the maximum execution time of task i and Ti corresponds to the

execution period of task i. In other words,
Ei

Ti
corresponds to the fraction of CPU time required to

execute task i [35]. It is likely that Mnemosine MK IV can not be run entirely by this philosophy,

but RMS is a good starting point.

38



3.3 Thread de�nitions (High Level Software Requirements)

3.3.3 SD thread

The SD thread should con�gure hardware abstraction layer and ChibiOS's SDC module. The

SDC driver implements a state machine internally, not all the driver functionalities can be used

in any moment, any transition not explicitly shown in the following diagram has to be considered

an error...

Figure 3.2: SDC diagram

In agreement with the above diagram, the thread must initialize the driver from left to right.

After the initialization phase, the thread enters a phase of waiting until it is released by the time

scheduler. The software should guarantee the following functions:

� create a new mission folder in the SD card

� create e close a new �le each second where writes all acquired measurements in that time

period

� start/stop recording

� communicates its state and errors

� keeping track of all written bytes

� keeping track of all free bytes in the SD card

� mount/unmount card

� secure power falling procedure without loss of information

In order to use SD card a �le system is needed, ChibiOS uses FatFS3. FatFs is a generic FAT

�le system module for small embedded systems. The FatFs is written in compliance with ANSI

C and completely separated from the disk I/O layer. Therefore it is independent of hardware

architecture, its features are:

3http://elm-chan.org/fsw/�/00index_e.html April 4, 2013

39

http://elm-chan.org/fsw/ff/00index_e.html


3 Software Realization

� Windows compatible FAT �le system.

� Platform independent and easy to port.

� Very small footprint for code and work area.

� Various con�guration options: Multiple volumes (physical drives and partitions).

� Long �le name support in ANSI/OEM or Unicode.

� RTOS support.

� Multiple sector size support.

� Read-only, minimized API, I/O bu�er.

3.3.4 Ethernet thread

This thread uses light-weight Internet Protocol (lwIP) that is a small independent implemen-

tation of the transmission control protocol for Internet Protocol (TCP/IP) suite that has been

initially developed by Adam Dunkels4.

The focus of the lwIP TCP/IP implementation is to reduce resource usage while still having

a full scale TCP. This makes lwIP suitable for use in embedded systems with tens of kilobytes

of free RAM and around 40 kilobytes of code read-only memory (ROM).

Main features include: Internet Control Message Protocol (ICMP), Point-to-Point Protocol

Over Ethernet (PPPoE). Other extended features: IP forwarding over multiple network in-

terfaces, TCP congestion control, round-trip time (RTT) estimation and fast recovery/fast re-

transmit; are also includes addon applications like Hypertext Transfer Protocol (HTTP) server,

Network Basic Input/Output System (NetBIOS) nameserver.

The Ethernet port will ensure proper delivery of data stream to ground stations. The data

transmission is unidirectional from airplane to ground.

3.3.5 CAN thread

The CAN thread should con�gure hardware abstraction layer and ChibiOS's CAN module. The

CAN driver implements a state machine internally, not all the driver functionalities can be used

in any moment, any transition not explicitly shown in the following diagram has to be considered

an error.

4http://savannah.nongnu.org/projects/lwip/ April 4, 2013

40

http://savannah.nongnu.org/projects/lwip/


3.3 Thread de�nitions (High Level Software Requirements)

Figure 3.3: CAN diagram

3.3.6 GPS thread

The GPS thread should con�gure hardware abstraction layer and ChibiOS's SD (Serial Driver)

module. The thread is generally divided into 2 parts, the initialization should perform a commu-

nication test that checks the GPS operation; while the in�nite loop is freed from time scheduler

every 200 ms (5 Hz), it requires GPS data and check its integrity.

Figure 3.4: SD driver

3.3.7 Stick force thread

The stick force thread should con�gure hardware abstraction layer and ChibiOS's UART module.

After the initialization phase, the thread must perform a communication test, in case of errors

will have to report it in an appropriate way.

Every 100 ms (10 Hz), the time scheduler will ensure the enforceability of the loop using

the traditional command-response method with the stick force conversion board sited near the

cloche.

41



3 Software Realization

3.3.8 AHRS thread

It is the thread that runs at higher frequency (50 Hz or 20 ms). The AHRS thread should

con�gure hardware abstraction layer and ChibiOS's UART module. After the initialization

phase, the thread must perform a communication test, in case of errors must report it in an

appropriate way. Once entered the stage of loop, it should require the latest data to the AHRS,

receive and store it.

Figure 3.5: UART driver

Figure 3.6: UART driver transmission diagram

Figure 3.7: UART driver receiver diagram

42



3.3 Thread de�nitions (High Level Software Requirements)

3.3.9 CDU thread

The CDU thread should con�gure hardware abstraction layer and ChibiOS's UART module in

order to use the multifunction touchscreen and other GPIO peripheral for the CDU. Since the

rotary supply selector switch is fully connected to Mnemosine with hardware cables, no software

code is needed. Only the recording switch is monitored by the thread. The multifunction

touchscreen is linked with bluetooth module that is actually a normal UART module and doesn't

need a speci�c abstraction layer.

3.3.10 Control surface position thread

The CDU thread should con�gure hardware abstraction layer and ChibiOS's ADC module. The

driver implements a state machine internally, not all the driver functionalities can be used in any

moment, any transition not explicitly shown in the following diagram has to be considered an

error.

Figure 3.8: ADC driver

The ADC Conversion Group is the object that speci�es a physical conversion operation. This

structure contains some standard �elds and several implementation-dependent �elds. The stan-

dard �elds de�ne the conversion group mode, the number of channels belonging to the conversion

group and the optional callbacks. The implementation dependent �elds specify the physical ADC

operation mode, the analog channels belonging to the group and any other implementation spe-

ci�c setting. Usually the extra �elds just mirror the physical ADC registers.

The driver supports three conversion modes:

� One Shot, the driver performs a single group conversion then stops.

� Linear Bu�er, the driver performs a series of group conversions then stops. This mode

is like a one shot conversion repeated N times, the bu�er pointer increases after each

43



3 Software Realization

conversion. The bu�er is organized as an S(CG)*N samples matrix, when S(CG) is the

conversion group size (number of channels) and N is the bu�er depth (number of repeated

conversions).

� Circular Bu�er, much like the linear mode but the operation does not stop when the bu�er

is �lled, it is automatically restarted with the bu�er pointer wrapping back to the bu�er

base.

The driver is able to invoke callbacks during the conversion process. A callback is invoked when

the operation has been completed or, in circular mode, when the bu�er has been �lled and

the operation is restarted. In linear and circular modes a callback is also invoked when the

bu�er is half �lled. The �half �lled� and ��lled� callbacks in circular mode allow to implement

�streaming processing� of the sampled data, while the driver is busy �lling one half of the bu�er

the application can process the other half, this allows for continuous interleaved operations.

Said this, more than one choice is possible, it is currently foreseen the use of a circular bu�er

to obtain a �ltered measure for each channel.

3.3.11 Air thread

The AIR thread should con�gure hardware abstraction layer and ChibiOS's I²C (Inter-Integrated

Circuit) module. The driver implements a state machine internally, not all the driver function-

alities can be used in any moment, any transition not explicitly shown in the following diagram

has to be considered an error.

Figure 3.9: I²C driver

As for the other thread, after an initialization phase, the algorithm must test communication

with the air data computer Urania, if positive, with an interval of 100 ms (10 Hz), the time

scheduler require its execution.

44



3.4 Software Requirements Speci�cation (SRS)

3.4 Software Requirements Speci�cation (SRS)

A Software Requirements Speci�cation (SRS) is a complete description of the behavior of a

system to be developed. In order to align a well-established practice in the aviation world, it

is decided to draw up a formal SRS document that permits to verify the satisfaction of the

requirements set forth above and allows to write a faster and more e�cient source code. The

document is entirely given in Appendix A.

Figure 3.10: Overall Software Con�guration Flowchart

The diagram in Figure 3.10 shows the complete software architecture, which summarizes all

the individual threads previously seen.

45





4 Hardware & Software Suitability

Validation Code

The purpose of the following suitability validation code (SVC) is to show that the characteristics

expressed by the requirements are fully met by the union of the chosen hardware and software.

It should be noted that the following �demos� require the use of:

� ChibiStudio v2.5 or later 1

� OLIMEX STM32E407 development board 2

� OLIMEX ARM-USB-TINY-H 3

All source code are presented in Appendix B, while Appendix C shows how to load and update

the software using the two supported systems (UART and JTAG).

1http://sourceforge.net/projects/chibios/�les/ChibiStudio/ April 4, 2013
2https://www.olimex.com/Products/ARM/ST/STM32-E407/ April 4, 2013
3https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY-H/ April 4, 2013

47

http://sourceforge.net/projects/chibios/files/ChibiStudio/
https://www.olimex.com/Products/ARM/ST/STM32-E407/
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY-H/


4 Hardware & Software Suitability Validation Code

4.1 Serial Driver SVC

The purpose of this SVC is to verify the functionality of the ChibiOS/RT Serial Driver with the

board STM32E407. While the code is running, the green led blinks every second and connecting

a USB-TTL converter from PC to PD11 (TX-data) and PD12 (RX-data) with a serial virtual

terminal, the �hello world!!!� message is shown.

Figure 4.1: Serial Driver SVC Flowchart

After having extensively tested the software, the serial port communication requirement is

deemed satis�ed.

48



4.2 USART/UART SVC

4.2 USART/UART SVC

The purpose of this SVC is to verify the functionality of the ChibiOS/RT UART Driver with the

board STM32E407. While the demo is running, after connecting a USB-TTL converter from PC

to PD11 (TX-data) and PD12 (RX-data) the green led blinks every time a character is received

or the �hello world!!!� message is shown. The driver restarts every �ve seconds.

Figure 4.2: USART/UART Driver SVC Flowchart

After having extensively tested the software, the UART port communication requirement is

deemed satis�ed.

49



4 Hardware & Software Suitability Validation Code

4.3 Analog to Digital Converter SVC

The purpose of this demo is to verify the functionality of the ChibiOS/RT ADC Driver with the

board STM32E407. While the demo is running, after connecting a USB-TTL converter from

PC to PD11 (TX-data) and PD12 (RX-data), the green led blinks every time a string, that

contains the eight measure repeated twice, is shown. The conversions are done automatically

and continuously every 56 system ticks. Please note that the conversion is valid for a signal

between 0V - 3.3V and 3.3V is the maximum voltage rating. The eight values come from:

ADC3 Channel STM32 Pad External Connector Pin

IN9 PF3 PF pin 6

IN14 PF4 PF pin 7

IN15 PF5 PF pin 8

IN4 PF6 PF pin 9

IN5 PF7 PF pin 10

IN6 PF8 PF pin 11

IN7 PF9 PF pin 12

IN8 PF10 PF pin 13

Table 4.1: ADC board: pin con�guration

50



4.3 Analog to Digital Converter SVC

Figure 4.3: ADC Driver SVC Flowchart

After having extensively tested the software, the analog to digital converter requirements are

deemed satis�ed .

51



4 Hardware & Software Suitability Validation Code

4.4 SD SDIO Mode SVC

The purpose of this demo is to verify the functionality of the ChibiOS/RT SDIO Driver with

the board STM32E407. While the demo is running, after connecting a USB-TTL converter from

PC to PD11 (TX-data) and PD12 (RX-data) the green led blinks every half second. If WakeUP

button is pushed the SDIO's test is performed. The task reads information about the SD card

inserted and displays the results on the serial terminal emulator; a new mission folder is created

and inside the directory is written a generic log00.dat �le.

Figure 4.4: SDIO Driver SVC Flowchart

After having extensively tested the software, the SDIO operational requirements are deemed

satis�ed.

52



4.5 Time Scheduler SVC

4.5 Time Scheduler SVC

The purpose of this demo is to verify the functionality of the ChibiOS/RT EXT and GPT Drivers

with the board STM32E407 in order to simulate the Time Scheduler thread. While the demo is

running, after connecting a USB-TTL converter from PC to PD11 (TX-data) and PD12 (RX-

data), the Time Scheduler test is performed if WakeUP button is pushed. All �timer interrupts�

are �hardware interrupts� so the CPU is free to execute threads instructions during the message

post. All the threads do nothing but write their own identi�er character in the output structure

shown on the terminal at the end of execution.

Figure 4.5: Time Scheduler SVC Flowchart

53



4 Hardware & Software Suitability Validation Code

1 Serial : ( / dev/ttyUSB0 , 38400 , 8 , 1 , None , None − CONNECTED )

2

3 AHRS THREAD !

4 CSP THREAD !

5 AIR THREAD !

6 SF THREAD !

7 GPS THREAD !

8 CDU THREAD !

9 SD THREAD !

10

11 AHRS A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A

12 CSP C____C____C____C____C____C____C____C____C____C____C____C____C____C____C____C____C

13 AIR R_________R_________R_________R_________R_________R_________R_________R_________R

14 SF S_________S_________S_________S_________S_________S_________S_________S_________S

15 GPS G___________________G___________________G___________________G___________________G

16 CDU U________________________U________________________U________________________U_____

As it's visible from the results, ChibiOS proves to be able to fully meet the time scheduling

requirements.

54



4.6 Input Capture SVC

4.6 Input Capture SVC

The purpose of this demo is to verify the functionality of the ChibiOS/RT ICU Driver with the

board STM32E407 in order to simulate the capture of enigine's RPM. While the demo is running,

after connecting a USB-TTL converter from PC to PD11 (TX-data) and applying a square wave

to PD pin 16, the thread every 200 ms shows on the terminal the period of wave and in case of

timer over�ow it displays �over�ow=1�. It should be noted once again that all �timer interrupts�

are �hardware interrupts� so the CPU is completely free.

Figure 4.6: Input Capture SVC Flowchart

After having extensively tested the software, the ICU operational requirements are deemed

satis�ed.

55



4 Hardware & Software Suitability Validation Code

4.7 CAN SVC

The purpose of this demo is to verify the functionality of the ChibiOS/RT CAN Driver with

the board STM32E407. The demo uses two di�erent threads: the transmitter and the receiver.

Every half a second transmitter sends a message on the CAN bus (con�gured in loopback mode),

the message is transposed by receiver that �ashes the LED.

Figure 4.7: CAN Driver SVC Flowchart

After having extensively tested the software, the CAN operational requirement is deemed

satis�ed.

56



4.8 I²C SVC

4.8 I²C SVC

The purpose of this demo is to verify the functionality of the ChibiOS/RT I²C Driver with the

board STM32E407 in order to acquire the three angle rates provided by IDG600 (3D mems rate

gyro)4. While the demo is running, after connecting a USB-TTL converter from PC to PD11

(TX-data) and PD12 (RX-data) and the gyro to the I2C2 driver (PFpin3 & 4), the thread shows

on the terminal every 50 ms the yaw, pitch and roll rates.

Figure 4.8: I²C Driver SVC Flowchart

After having extensively tested the software, the I²C operational requirement is deemed satis-

�ed.

4http://invensense.com/mems/gyro/itg3200.html April 4, 2013

57

http://invensense.com/mems/gyro/itg3200.html




5 Conclusion and Future Developments

5.1 Prototyping

Now that the hardware and software con�guration until the test demos has been fully described,

it's time to create the �rst prototype.

First, it is necessary to integrate the wiring diagrams to realize the motherboard which will

be assembled on the microcontroller and other peripheral cards including GPS module.

Considering a work team consisting of one person and a project manager, it is expected that

the hardware integration phase, including also the physical realization of the board, should last

about two months.

The second step is to write the de�nitive source code which can be then tested in its entirety,

and decide the size of the individual threads i.e. the physical division of the RAM that at

this design stage couldn't be determined. At the beginning, the task priority will be assigned

according to the rate monotonic scheduling philosophy, where basically high speed thread has

priority on low speed thread. After having extensively tested the software and according to

their results, it will be obviously clear the good task priority policy. Considering a work team

consisting of one person and a project manager, it is expected that the software integration

phase, including the debugging of the source codes, should last about two more months.

The third phase will involve the �nal integration of the system initially within �ight case and

then on board of an ULM; the occasion could probably occur during the �ight tests performed

during the course of �Sperimentazione in Volo� which is discussed in advance. Considering a work

team consisting of one person, a project manager and one aircraft's specialist, it is expected that

the �nal integration phase, until the �rst �ight test, should last about three more weeks. However,

considering strong innovation in the project, it is reasonable to expect at least a week of delay

for each phase.

5.2 Conclusion

The aim of the present work was to verify the feasibility of the project coming to the preliminary

design of both hardware and software of the new data acquisition system for �ight test of ULM.

The work started from requirements analysis, while to choose the sensors performance and

their measurement range it has been taken for granted the past experience (Mnemosine MK III).

In accordance with the mission requirements, the sensors that are currently been identi-

�ed as the best possible choice are: Olimex STM32E407 development board, Sensors Technics

HCLA0050EU and HCA0611ARH8 pressure sensors, Xsens MTi AHRS, U-Blox LEA-5T GPS

module.

59



5 Conclusion and Future Developments

In the last days before the end of the thesis, two other requirements have been added. Today

it is increasingly common to use EFIS (Electronic Flight Instrument System) specialized for

light aircraft and it is requested the ability to interface this device with Mnemosine. The second

request is the ability to record cockpit voice directly with MK IV to get a synchronous audio

track with other aircraft data.

The choice of how to arrange the boards inside the hardware case has not been decided yet.

Preserving the schematics more than one con�guration is possible and during the prototyping

phase will be identi�ed the best choice. The most suitable solution now consists of a horizontal

motherboard where the MCU is also housed horizontally, while the serial adapter boards and

the analog conditioning boards are arranged vertically hence connected by side. It is expected

that this arrangement minimizes the volume used.

Figure 5.1: Boards Arrangement

Using all Open Source SW helped to keep down the overall budget. It was possible to test all

the features of the system by purchasing only the development board and the debugger for about

a hundred euros. Currently it is expected a �nal expenditure in line with the budget estimated

in the preliminary phase for about a few thousand euros.

The strong push by the authorities for a safer aviation, will force the aviation industry to

perform more systematic �ight test campaign and we are con�dent that Mnemosine MK IV

will be the reference point for the Design and Development of each Flight Test Instrumentation

System for Light Aircraft.

60



Bibliography

[1] �MNEMOSINE: A FEDERATED FLIGHT TEST INSTRUMENTATION SYSTEM FOR

SPORT AVIATION AIRCRAFT�, C. Cardani, A. Folchini, A. Rolando 19th AIDAA Na-

tional Congress, Forlì, Italy, September 17-20, 2007

[2] R. B. GmbH, CAN Speci�cation - Version 2.b

[3] M. S. F. Systems, CANAerospace. Interface speci�cation for airborne CAN applications - V

1.7

[4] C. Technologies, AHRS400 Series User's Manual.

[5] F. Semiconductor, MPXV5004G SERIES Integrated Silicon Pressure Sensor On-Chip Signal

Conditioned, Temperature Compensated, and Calibrated - Technical data, 2007.

[6] F. Semiconductor, MPX5100/MPXV5100 SERIES Integrated Silicon Pressure Sensor On-

Chip Signal Conditioned, Temperature Compensated, and Calibrated - Technical data, 2005

[7] http://www.aero.polimi.it April 4, 2013

[8] http://www.designspark.com/ April 4, 2013

[9] Olimex ltd, STM32-E407 development board - User Manual

[10] http://www.freertos.org April 4, 2013

[11] http://www.chibios.org/dokuwiki/doku.php April 4, 2013

[12] http://gplv3.fsf.org/ April 4, 2013

[13] STMicroelectronics, STM32F407xx Reference Manual

[14] http://dunkels.com/adam/ April 4, 2013

[15] http://savannah.nongnu.org/projects/lwip/ April 4, 2013

[16] http://elm-chan.org/fsw/�/00index_e.html April 4, 2013

[17] http://www.okpedia.it/cpu-motorola-68000 April 4, 2013

[18] http://gcc.gnu.org/ April 4, 2013

[19] http://www.gnu.org/software/emacs/ April 4, 2013

[20] http://www.linux.org/ April 4, 2013

61

http://www.aero.polimi.it
http://www.designspark.com/
http://www.freertos.org
http://www.chibios.org/dokuwiki/doku.php
http://gplv3.fsf.org/
http://dunkels.com/adam/
http://savannah.nongnu.org/projects/lwip/
http://elm-chan.org/fsw/ff/00index_e.html
http://www.okpedia.it/cpu-motorola-68000
http://gcc.gnu.org/
http://www.gnu.org/software/emacs/
http://www.linux.org/


BIBLIOGRAPHY

[21] http://www.st.com/internet/com/home/home.jsp April 4, 2013

[23] http://www.arm.com/ April 4, 2013

[24] http://www.seneca.it/prodotti.php?id_c=4 April 4, 2013

[25] http://www.altheris.com/products/displacement-sensors-draw-wire-sensors.htm April 4, 2013

[26] http://www.linear.com/designtools/software/#LTspice April 4, 2013

[27] http://www.avagotech.com April 4, 2013

[28] http://en.wikipedia.org/wiki/Ultralight_aviation April 4, 2013

[29] EASA, CS-VLA amdt1

[30] http://www.chibios.org/dokuwiki/doku.php?id=chibios:documents:introduction April 4, 2013

[31] http://www.xsens.com/en/general/mti April 4, 2013

[32] http://www.u-blox.com/en/lea-5t.html April 4, 2013

[33] EASA, CS-LSA Initial Issue

[34] AGARDograph 300, volume 14 Chapter 2 � HISTORICAL PERSPECTIVE, ONE HUN-

DRED YEARS OF FLIGHT TESTING, Robert L. van der Velde

[35] MicroC/OS-II The Real-Time Kernel, second edition, Jean J. Lambrosse

62

http://www.st.com/internet/com/home/home.jsp
http://www.arm.com/
http://www.seneca.it/prodotti.php?id_c=4
http://www.altheris.com/products/displacement-sensors-draw-wire-sensors.htm
http://www.linear.com/designtools/software/#LTspice
http://www.avagotech.com
http://en.wikipedia.org/wiki/Ultralight_aviation
http://www.chibios.org/dokuwiki/doku.php?id=chibios:documents:introduction
http://www.xsens.com/en/general/mti
http://www.u-blox.com/en/lea-5t.html


Appendix A (SRS)

63



MNEMOSINE MK IV FLIGHT TEST 
ISTRUMENTATION Software Requirements 

Specification (SRS)

Document ID M_FTI_SRS rev. A

Compiled by Federico Rossi

Project Leader Alberto Rolando

Authorization -



 
 

  pag. 2/27

REVISION HISTORY 

ISSUE CHANGE DESCRIPTION ISSUE DATE 

A First Issue 13/02/2013 

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
 

  pag. 3/27

 TABLE OF CONTENTS
1  SCOPE..............................................................................................................................................5

1.1 IDENTIFICATION....................................................................................................................5
1.2 SYSTEM OVERVIEW..............................................................................................................5
1.3 DOCUMENT OVERVIEW ......................................................................................................6
1.4 OPERATIVE SOFTWARE REQUIREMENTS NOTATION...................................................6

2  CAPABILITY REQUIREMENTS ..................................................................................................7
2.1 Air data.......................................................................................................................................7
2.2 GPS data..................................................................................................................................10
2.3 Stick Force data.......................................................................................................................14
2.4 Control Surface Position data..................................................................................................18
2.5 Secure Digital..........................................................................................................................21
2.6 Engine .....................................................................................................................................24

3  ACRONYM LIST..........................................................................................................................27

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
 

  pag. 4/27

BLANK

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
 

  pag. 5/27

1 SCOPE

1.1 IDENTIFICATION

This software requirements specification applies to MNEMOSINE MK IV FLIGHT TEST 

ISTRUMENTATION, abbreviated as MFTI.

This  document details and defines the software specification of MFTI MK IV thread's.

1.2 SYSTEM OVERVIEW

The purpose of the threads are to support the following capabilities:

– Data acquisition of the following parameters:

– Air data: static pressure P_STAT, dynamic pressure P_DIN, OAT, AOA, AOS.

– GPS data: 3D ECEF position, 3D ECEF velocity.

– Stick force.

– Control Surface positions: elevator ELE_POS, rudder RUD_POS, aileron 

AIL_POS, flaps FLP_POS.

– Engine data: RPM, EGT, Fuel Flow.

– Data saving on secure digital SD.

– ETH port communication.

– CAN port communication.

– I²C   port communication.

– Software maintenance via USB port. 

– Ensure data synchronization

  

  

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
 

  pag. 6/27

1.3 DOCUMENT OVERVIEW 

This document is organized in the following chapters: 

chapter 1: defines MNEMOSINE FLIGHT TEST ISTRUMENTATION  contents and system 

summary

chapter 2: contains all the functional requirements. 

chapter 3:  contains the Acronym List .

1.4 OPERATIVE SOFTWARE REQUIREMENTS NOTATION

The following notation has been used in order to guarantee a project-unique identifier for 

each OPSW requirement: 

THD_xxx_yyy_zzz

The characters xxx denote the type the requirement belongs to, among the following: 

HAL – hardware abstraction layer 

COM – peripheral communication 

CAL – calculate/compute/do something

SAV – save 

UPT – update

EXP – export data 

 

The characters yyy denote the type the requirement belongs to, among the following: 

DEF – definition 

STP – setup structure

FUN – function 

TST – test 

and zzz denote a serial number useful for identification.  

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
 

  pag. 7/27

2 CAPABILITY REQUIREMENTS 

2.1 Air data

Thread Name air_com_thread

Thread Acronym AIR

Thread Priority NORMAL_PRIO+10

Pointer -

Input argument struct -

Output argument struct Air_Data_Struct

HAL reference I2C2

AIR_HAL_DEF_001

The OPSW shall: 

Define the following object:

systime_t WAIT_TIME 

AIR_HAL_STP_001

The OPSW shall: 

Setting up static const I2CConfig i2c_air_fg in compliance with I2C 
communication protocol of URANIA.

AIR_HAL_FUN_001

The OPSW shall: 

setting up i2cStart(&I2CD2, &i2c_air_fg); 

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



  pag. 8/27

AIR_COM_TST_001

The OPSW shall: 

perform a communication test with URANIA in order to ensure the effectiveness 
both in receiver and transmitter state.

AIR_COM_TST_002

The OPSW shall: 

once assured proper communication the thread must check the consistency of the 
received data.

AIR_COM_FUN_001

The OPSW shall: 

the thread enters in a wait state until it receives a start on its mailbox.
result = chMBFetch(mbox, &fileBufferP, WAIT_TIME);
result could be:
RDY_OK        if a message has been correctly fetched. 
RDY_RESET     if the mailbox has been reset while waiting. 
RDY_TIMEOUT if the operation has timed out.

AIR_COM_FUN_002

The OPSW shall: 

if result = RDY_OK the thread shall decode the message and entry in acquisition 
mode. In this mode it shall:

1. Acquire the bus i2cAcquireBus(&I2CD2)
2. Request data i2cMasterTransmitTimeout(...)
3. Receive data i2cMasterReceiveTimeout(...)
4. Release the bus i2cReleaseBus(&I2CD2)

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 9/27

AIR_CAL_FUN_001

The OPSW shall: 

Convert AIR_rxbuf in to AIR_data and check its integrity.  

AIR_EXP_FUN_001

The OPSW shall: 

Fill the AIR data AIR_Data_Struct with new AIR_data.

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
 pag.10/27

2.2 GPS data

Thread Name gps_com_thread

Thread Acronym GPS

Thread Priority NORMAL_PRIO+10

Pointer 

Input argument struct -

Output argument struct Gps_Data_Struct

HAL reference USART1

GPS_HAL_DEF_001

The OPSW shall: 

Define the following object:

GPIO_BASE_GPS                            GPIO_RX_GPS         GPIO_TX_GPS
GPIO_BASE_PIN_A_GPS                      GPIO_A
GPIO_BASE_PIN_B_GPS                      GPIO_B
GPIO_BASE_PIN_C_GPS                      GPIO_C
GPIO_BASE_PIN_D_GPS                      GPIO_D
GPIO_BASE_PIN_OUT_GPS                    GPIO_OUT
GPIO_BASE_PIN_IN_GPS                     GPIO_IN
GPS_USART_DRIVER
GPS_USART_SPEED
GPS_USART_CR1
GPS_USART_CR2
GPS_USART_CR3

systime_t WAIT_TIME

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



  pag.11/27

GPS_HAL_STP_001

The OPSW shall: 

Setting up static UARTConfig uart_cfg_GPS as follows:

Callback that is invoked when a transmission buffer has been completely
read by the driver GPS_txend1

Callback that is invoked when a transmission has physically completed GPS_txend2

Callback that is invoked when a receive buffer has been completely written 
GPS_rxend

callback is invoked when a character is received but the application was not 
ready to receive it GPS_rxchar

Callback that is invoked on a receive error, the errors mask is passed as 
parameter GPS_rxerr

GPS_USART_SPEED
GPS_USART_CR1
GPS_USART_CR2
GPS_USART_CR3

GPS_HAL_FUN_001

The OPSW shall: 

Create a static void GPS_txend1(UARTDriver *uartp)

GPS_HAL_FUN_002

The OPSW shall: 

Create a static void GPS_txend2(UARTDriver *uartp)

GPS_HAL_FUN_003

The OPSW shall: 

Create a static void GPS_rxchar(UARTDriver *uartp, uint16_t c)

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 12/27

GPS_HAL_FUN_004

The OPSW shall: 

Create a static void rxerr(UARTDriver *uartp, uartflags_t e) 

GPS_HAL_FUN_005

The OPSW shall: 

Setting up uartStart(&GPS_USART_DRIVER, &uart_cfg_GPS) 

GPS_HAL_FUN_006

The OPSW shall: 

Setting up: 

palSetPadMode(GPIO_BASE_GPS, GPIO_RX_GPS, PAL_MODE_ALTERNATE(7))

palSetPadMode(GPIO_BASE_GPS, GPIO_TX_GPS, PAL_MODE_ALTERNATE(7))

GPS_HAL_FUN_007

The OPSW shall: 

Setting up: 

palSetPadMode(GPIO_BASE_PIN_A_GPS, GPIO_A_GPS, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_B_GPS, GPIO_B_GPS, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_C_GPS, GPIO_C_GPS, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_D_GPS, GPIO_D_GPS, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_OUT_GPS, GPIO_OUT_GPS, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_IN_GPS, GPIO_IN_GPS, PAL_MODE_INPUT_PULLDOWN)

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 13/27

GPS_COM_TST_001

The OPSW shall: 

perform a communication test with GPS module in order to ensure the 
effectiveness both receiver and transmitter state.

GPS_COM_TST_002

The OPSW shall: 

once assured proper communication, the thread must check the consistency of the 
received data.

GPS_COM_FUN_001

The OPSW shall: 

the thread enters in a wait state until it receives a start on its mailbox.
result = chMBFetch(mbox, &fileBufferP, WAIT_TIME);
result could be:
RDY_OK        if a message has been correctly fetched. 
RDY_RESET     if the mailbox has been reset while waiting. 
RDY_TIMEOUT if the operation has timed out.

GPS_COM_FUN_002

The OPSW shall: 

if result = RDY_OK the thread shall decode the message and entry in acquisition 
mode. uartStartReceive(&GPS_USART_DRIVER, size_t n, void* GPS_rxbuf)

GPS_CAL_FUN_001

The OPSW shall: 

Convert GPS_rxbuf in to GPS_data and check its integrity  

GPS_EXP_FUN_001

The OPSW shall: 

Fill the GPS_Data_Struct with new GPS_data

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 14/27

2.3 Stick Force data

Thread Name sf_com_thread

Thread Acronym SF

Thread Priority NORMAL_PRIO+10

Pointer 

Input argument struct -

Output argument struct SF_Data_Struct

HAL reference USART 6

SF_HAL_DEF_001

The OPSW shall: 

Define the following object:

GPIO_BASE_SF                            GPIO_RX_SF         GPIO_TX_SF
GPIO_BASE_PIN_A_SF                      GPIO_A
GPIO_BASE_PIN_B_SF                      GPIO_B
GPIO_BASE_PIN_C_SF                      GPIO_C
GPIO_BASE_PIN_D_SF                      GPIO_D
GPIO_BASE_PIN_OUT_SF                    GPIO_OUT
GPIO_BASE_PIN_IN_SF                     GPIO_IN
SF_USART_DRIVER
SF_USART_SPEED
SF_USART_CR1
SF_USART_CR2
SF_USART_CR3

systime_t WAIT_TIME

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 15/27

SF_HAL_STP_001

The OPSW shall: 

Setting up static UARTConfig uart_cfg_SF as follows:

Callback that is invoked when a transmission buffer has been completely
read by the driver  SF_txend1

Callback that is invoked when a transmission has physically completed SF_txend2

Callback that is invoked when a receive buffer has been completely written 
SF_rxend

callback is invoked when a character is received but the application was not 
ready to receive it SF_rxchar

Callback that is invoked on a receive error, the errors mask is passed as 
parameter SF_rxerr

SF_USART_SPEED
SF_USART_CR1
SF_USART_CR2
SF_USART_CR3

SF_HAL_FUN_001

The OPSW shall: 

Create a static void SF_txend1(UARTDriver *uartp)

SF_HAL_FUN_002

The OPSW shall: 

Create a static void SF_txend2(UARTDriver *uartp)

SF_HAL_FUN_003

The OPSW shall: 

Create a static void SF_rxchar(UARTDriver *uartp, uint16_t c)

SF_HAL_FUN_004

The OPSW shall: 

Create a static void rxerr(UARTDriver *uartp, uartflags_t e) 

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 16/27

SF_HAL_FUN_005

The OPSW shall: 

Setting up uartStart(&SF_USART_DRIVER, &uart_cfg_SF) 

SF_HAL_FUN_006

The OPSW shall: 

Setting up: 

palSetPadMode(GPIO_BASE_SF, GPIO_RX_SF, PAL_MODE_ALTERNATE(7))

palSetPadMode(GPIO_BASE_SF, GPIO_TX_SF, PAL_MODE_ALTERNATE(7))

SF_HAL_FUN_007

The OPSW shall: 

Setting up: 

palSetPadMode(GPIO_BASE_PIN_A_SF, GPIO_A_SF, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_B_SF, GPIO_B_SF, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_C_SF, GPIO_C_SF, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_D_SF, GPIO_D_SF, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_OUT_SF, GPIO_OUT_SF, PAL_MODE_OUTPUT_PUSHPULL)

palSetPadMode(GPIO_BASE_PIN_IN_SF, GPIO_IN_SF, PAL_MODE_INPUT_PULLDOWN)

SF_COM_TST_001

The OPSW shall: 

perform a communication test with SF module in order to ensure the effectiveness 
both receiver and transmitter state.

SF_COM_TST_002

The OPSW shall: 

once assured proper communication, the thread must check the consistency of the 
received data.

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 17/27

SF_COM_FUN_001

The OPSW shall: 

the thread enters in a wait state until it receives a start on its mailbox.
result = chMBFetch(mbox, &fileBufferP, WAIT_TIME);
result could be:
RDY_OK        if a message has been correctly fetched. 
RDY_RESET     if the mailbox has been reset while waiting. 
RDY_TIMEOUT if the operation has timed out.

SF_COM_FUN_002

The OPSW shall: 

if result = RDY_OK the thread shall decode the message and entry in acquisition 
mode. uartStartReceive(&SF_USART_DRIVER, size_t n, void* SF_rxbuf)

SF_CAL_FUN_001

The OPSW shall: 

Convert SF_rxbuf in to SF_data and check its integrity  

SF_EXP_FUN_001

The OPSW shall: 

Fill the SF_Data_Struct with new SF_data

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 18/27

2.4 Control Surface Position data

Thread Name csp_com_thread

Thread Acronym CSP

Thread Priority NORMAL_PRIO+10

Pointer 

Input argument struct -

Output argument struct CSP_Data_Struct

HAL reference ADC3

CSP_HAL_DEF_001

The OPSW shall: 

Define the following object:

GPIO_CSP                    

ADC_CSP_GRP_BUF_DEPTH    

ADC_CSP_GRP_NUM_CHANNELS 

adcsample_t CSP_samples[ADC_CSP_GRP_NUM_CHANNELS * ADC_CSP_GRP_BUF_DEPTH] 

CSP_HAL_STP_001

The OPSW shall: 

Setting up static const ADCConversionGroup adcgrpcfg_CSP as follows:

Enables the circular buffer mode for the group.

Setting up the number of the analog channels belonging to the conversion group.

Setting up adccallback_CSP as callback function associated to the group.

Setting up adcerrcallback_CSP as error callback function associated to the

group.

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 19/27

CSP_HAL_FUN_001

The OPSW shall: 

Create a static void adccallback_CSP (ADCDriver *adcp, adcsample_t *buffer, 
size_t n)

CSP_HAL_FUN_002

The OPSW shall: 

Create a static void adcerrcallback_CSP (ADCDriver *adcp, adcerror_t err)

and post a error message to error thread

CSP_HAL_FUN_004

The OPSW shall: 

Setting up: static const ADCConversionGroup adcgrpcfg = { 

  TRUE, 

  ADC_GRP_NUM_CHANNELS, 

  adccallback, 

  adcerrorcallback, 

  0,                        /* CR1 */ 

  ADC_CR2_SWSTART,          /* CR2 */ 

  ADC_SMPR2_SMP_AN9(ADC_SAMPLE_56)  | ADC_SMPR1_SMP_AN14(ADC_SAMPLE_56)| 

  ADC_SMPR1_SMP_AN15(ADC_SAMPLE_56) | ADC_SMPR2_SMP_AN4(ADC_SAMPLE_56) | 

  ADC_SMPR2_SMP_AN5(ADC_SAMPLE_56)  | ADC_SMPR2_SMP_AN6(ADC_SAMPLE_56) | 

  ADC_SMPR2_SMP_AN7(ADC_SAMPLE_56)  | ADC_SMPR2_SMP_AN8(ADC_SAMPLE_56), 

  0,                        /* SMPR2 */ 

  ADC_SQR1_NUM_CH(ADC_GRP_NUM_CHANNELS), 

  ADC_SQR2_SQ8_N(ADC_CHANNEL_IN8) | ADC_SQR2_SQ7_N(ADC_CHANNEL_IN7), 

  ADC_SQR3_SQ6_N(ADC_CHANNEL_IN6)    | ADC_SQR3_SQ5_N(ADC_CHANNEL_IN5) | 

  ADC_SQR3_SQ4_N(ADC_CHANNEL_IN4)    | ADC_SQR3_SQ3_N(ADC_CHANNEL_IN15) | 

  ADC_SQR3_SQ2_N(ADC_CHANNEL_IN14)   | ADC_SQR3_SQ1_N(ADC_CHANNEL_IN9) 

}; 

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
 pag. 20/27

CSP_HAL_FUN_004

The OPSW shall: 

Setting up:   palSetGroupMode(GPIOF, PAL_PORT_BIT(3) | PAL_PORT_BIT(4) | 

                 PAL_PORT_BIT(5) | PAL_PORT_BIT(6) | 

                 PAL_PORT_BIT(7) | PAL_PORT_BIT(8) | 

                 PAL_PORT_BIT(9) | PAL_PORT_BIT(10), 0, 
PAL_MODE_INPUT_ANALOG);

CSP_HAL_FUN_004

The OPSW shall: 

Setting up ADC driver:  adcStart(&ADCD1, NULL);

CSP_COM_FUN_001

The OPSW shall: 

the thread enters in a wait state until it receives a start on its mailbox.
result = chMBFetch(mbox, &fileBufferP, WAIT_TIME);
result could be:
RDY_OK        if a message has been correctly fetched. 
RDY_RESET     if the mailbox has been reset while waiting. 
RDY_TIMEOUT if the operation has timed out.

CSP_COM_FUN_002

The OPSW shall: 

if result = RDY_OK the thread shall decode the message and entry in acquisition 
mode. adcStartConversion(&ADCD1, &adcgrpcfg_CSP, CSP_samples, 
ADC_CSP_GRP_BUF_DEPTH);

CSP_EXP_FUN_001

The OPSW shall: 

Fill the CSP_data_struct with new CSP_samples 

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 21/27

2.5 Secure Digital

Thread Name sd_save_thread

Thread Acronym SD

Thread Priority NORMAL_PRIO+10

Pointer 

Input argument struct -

Output argument struct SD_Data_Struct

HAL reference MMC_SDIO

SD_HAL_DEF_001

The OPSW shall: 

Define the following object:

static FATFS SDC_FS                    uint32_t clusters

static bool_t fs_ready

FRESULT err,rc 

FATFS *fsp

FIL Fil

UINT bw

char fold[]

SD_HAL_FUN_001

The OPSW shall: 

setting up: sdcStart(&SDCD1, NULL);

    

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 22/27

SD_COM_TST_001

The OPSW shall: 

perform a communication test with SD card in order to ensure the effectiveness 
both receiver and transmitter state.

SD_COM_TST_002

The OPSW shall: 

once assured proper communication, the thread must check the card:

f_getfree("/", &clusters, &fsp);

free clusters = clusters
sectors per cluster = (uint32_t)SDC_FS.csize
bytes free = clusters * (uint32_t)SDC_FS.csize * (uint32_t) MMCSD_BLOCK_SIZE

SD_CAL_FUN_001

The OPSW shall: 

Create a new mission folder with sequential identification number.

Copy the path to the new folder into fold[] variable. 

SD_COM_FUN_001

The OPSW shall: 

the thread enters in a wait state until it receives a start on its mailbox.
result = chMBFetch(mbox, &fileBufferP, WAIT_TIME);
result could be:
RDY_OK        if a message has been correctly fetched. 
RDY_RESET     if the mailbox has been reset while waiting. 
RDY_TIMEOUT if the operation has timed out.

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 23/27

SD_CAL_FUN_002

The OPSW shall: 

if result = RDY_OK the thread shall decode the message and entry in acquisition 
mode. In this mode the thread collects and writes all the data struct in a new 
file every seconds.

SD_CAL_FUN_003

The OPSW shall: 

keep track of byte written and update the mission record file where all error 
messages are stored.

SD_COM_FUN_002

The OPSW shall: 

if the thread receive a FALLING message it must perform the following 
instruction:

f_mount(0, NULL)       // unmount file system

sdcDisconnect(&SDCD1)  // disconnect SDC driver

in order to not corrupt the file system.

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 24/27

2.6 Engine 

Thread Name Eng_com_thread

Thread Acronym ENG

Thread Priority NORMAL_PRIO+10

Pointer 

Input argument struct -

Output argument struct ENG_Data_Struct

HAL reference TIM4 ETR CH2

ENG_HAL_DEF_001

The OPSW shall: 

Define the following object:

uint8_t  last_overflow
icucnt_t last_width, last_period

ENG_HAL_FUN_001

The OPSW shall: 

setting up: static void icuwidthcb(ICUDriver *icup);

ENG_HAL_FUN_002

The OPSW shall: 

setting up: static void icuperiodcb(ICUDriver *icup);

ENG_HAL_FUN_003

The OPSW shall: 

setting up: static void icuoverflowcb(ICUDriver *icup);

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 25/27

ENG_HAL_FUN_004

The OPSW shall: 

setting up: static ICUConfig icucfg = { ICU_INPUT_ACTIVE_HIGH, 

  100000,                   /* 100kHz ICU clock frequency x10usec !!! */ 

  icuwidthcb, icuperiodcb, icuoverflowcb, ICU_CHANNEL_2 };

ENG_HAL_FUN_005

The OPSW shall: 

setting up:  palSetPadMode(GPIOE, 0, PAL_MODE_ALTERNATE(1)); 

             icuStart(&ICUD4, &icucfg); 

             palSetPadMode(GPIOD, 13, PAL_MODE_ALTERNATE(2)); 
           
            

ENG_COM_FUN_001

The OPSW shall: 

the thread enters in a wait state until it receives a start on its mailbox.
result = chMBFetch(mbox, &fileBufferP, WAIT_TIME);
result could be:
RDY_OK        if a message has been correctly fetched. 
RDY_RESET     if the mailbox has been reset while waiting. 
RDY_TIMEOUT if the operation has timed out.

ENG_COM_FUN_002

The OPSW shall: 

if result = RDY_OK the thread entry in acquisition mode.
icuEnable(&ICUD4);  

ENG_EXP_FUN_001

The OPSW shall: 

Fill the ENG_data_struct with new last_period & last_overflow 

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 
  pag. 26/27

BLANK

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



 

 
  pag. 27/27

3 ACRONYM LIST

GPS                          Global Positioning System

OAT                          Outer Air Temperature           

AOA                          Angle Of Attack

AOS                          Angle Of Side-sleep

ECEF                         Earth Centered Earth Fixed

RPM                          Rotation Per Minute

EGT                          Exhaust Gas Temperature

SD                           Secure Digital Card

ETH                          Ethernet

CAN                          Controller Area Network

I²C                          Inter-Integrated Circuit

USB                          Universal Serial Bus

RDY                          Ready

MNEMOSINE MKIV FLIGHT TEST 
ISTRUMENTATION 

Software Requirements Specification (SRS)

M_FTI_SRS  rev. A



Appendix B (SVC)

Serial Driver source code

1 #inc lude "ch . h"

2 #inc lude " hal . h"

3

4

5 /* Appl i ca t ion entry po int . */

6 i n t main( void ) {

7

8 halInit ( ) ;

9 chSysInit ( ) ;

10

11 /*

12 * Act ivate s the s e r i a l d r i v e r 3 us ing the d r i v e r d e f au l t c on f i g u r a t i on .

13 * PD8(TX) and PD9(RX) are routed to USART3.

14 */

15

16 sdStart(&SD3 , NULL ) ;

17 palSetPadMode( GPIOD , 8 , PAL_MODE_ALTERNATE (7 ) ) ;

18 palSetPadMode( GPIOD , 9 , PAL_MODE_ALTERNATE (7 ) ) ;

19

20 whi l e ( TRUE ) {

21 sdWrite(&SD3 , " h e l l o world ! ! ! \ r \n" , s i z e o f ( " h e l l o world ! ! ! \ r \n" ) ) ;

22 palTogglePad ( GPIOC , GPIOC_LED ) ;

23 chThdSleepMilliseconds (1000) ;

24 }

25 }

91



Appendix B (SVC)

USART/UART Driver source code

1 #inc lude "ch . h"

2 #inc lude " hal . h"

3

4 s t a t i c VirtualTimer vt1 , vt2 ;

5

6 s t a t i c void restart ( void *p ) {

7

8 ( void ) p ;

9 chSysLockFromIsr ( ) ;

10 uartStartSendI(&UARTD3 , 14 , "He l lo World ! \ r \n" ) ;

11 chSysUnlockFromIsr ( ) ;

12 }

13

14 s t a t i c void ledoff ( void *p ) {

15

16 ( void ) p ;

17 palClearPad ( GPIOC , GPIOC_LED ) ;

18 }

19

20 /*

21 * This c a l l b a ck i s invoked when a t ransmi s s i on bu f f e r has been complete ly

22 * read by the d r i v e r .

23 */

24 s t a t i c void txend1 ( UARTDriver *uartp ) {

25

26 ( void ) uartp ;

27 palSetPad ( GPIOC , GPIOC_LED ) ;

28 }

29

30 /* This c a l l b a ck i s invoked when a t ransmi s s i on has phy s i c a l l y completed . */

31 s t a t i c void txend2 ( UARTDriver *uartp ) {

32

33 ( void ) uartp ;

34 palClearPad ( GPIOC , GPIOC_LED ) ;

35 chSysLockFromIsr ( ) ;

36 i f ( chVTIsArmedI(&vt1 ) )

37 chVTResetI(&vt1 ) ;

38 chVTSetI(&vt1 , MS2ST (5000) , restart , NULL ) ;

39 chSysUnlockFromIsr ( ) ;

40 }

41

42 /*

43 * This c a l l b a ck i s invoked on a r e c e i v e e r ror , the e r r o r s mask i s passed

44 * as parameter .

45 */

46 s t a t i c void rxerr ( UARTDriver *uartp , uartflags_t e ) {

47

48 ( void ) uartp ;

49 ( void ) e ;

50 }

51

52 /*

53 * This c a l l b a ck i s invoked when a charac t e r i s r e c e i v ed but the app l i c a t i on

54 * was not ready to r e c e i v e i t , the cha rac t e r i s passed as parameter .

55 */

56 s t a t i c void rxchar ( UARTDriver *uartp , uint16_t c ) {

92



USART/UART Driver source code

57

58 ( void ) uartp ;

59 ( void ) c ;

60 /* Flash ing the LED each time a charac t e r i s r e c e i v ed . */

61 palSetPad ( GPIOC , GPIOC_LED ) ;

62 chSysLockFromIsr ( ) ;

63 i f ( chVTIsArmedI(&vt2 ) )

64 chVTResetI(&vt2 ) ;

65 chVTSetI(&vt2 , MS2ST (200) , ledoff , NULL ) ;

66 chSysUnlockFromIsr ( ) ;

67 }

68

69 /* This c a l l b a ck i s invoked when a r e c e i v e bu f f e r has been complete ly wr i t t en . */

70 s t a t i c void rxend ( UARTDriver *uartp ) {

71

72 ( void ) uartp ;

73 }

74

75 /* UART dr i v e r c on f i g u r a t i on s t r u c tu r e . */

76 s t a t i c UARTConfig uart_cfg_3 = {

77 txend1 ,

78 txend2 ,

79 rxend ,

80 rxchar ,

81 rxerr ,

82 38400 ,

83 0 ,

84 USART_CR2_LINEN ,

85 0

86 } ;

87

88 /* Appl i ca t ion entry po int . */

89 i n t main( void ) {

90

91 halInit ( ) ;

92 chSysInit ( ) ;

93

94 /* Act ivate s the UART dr i v e r 3 , PD8(TX) and PD9(RX) are routed to USART3. */

95

96 uartStart(&UARTD3 , &uart_cfg_3 ) ;

97 palSetPadMode( GPIOD , 8 , PAL_MODE_ALTERNATE (7 ) ) ;

98 palSetPadMode( GPIOD , 9 , PAL_MODE_ALTERNATE (7 ) ) ;

99

100 /* Sta r t s the t ransmis s ion , i t w i l l be handled e n t i r e l y in background . */

101 uartStartSend(&UARTD3 , s i z e o f ( " S ta r t i ng . . . \ r \n" ) , " S ta r t i ng . . . \ r \n" ) ;

102

103 whi l e ( TRUE ) {

104 chThdSleepMilliseconds (500) ;

105 }

106 }

93



Appendix B (SVC)

ADC Driver source code

1 #inc lude "ch . h"

2 #inc lude " hal . h"

3

4 #de f i n e COUNT2VOLT 0.000805861 // 3v3V : 4095 count

5

6 #de f i n e ADC_GRP_NUM_CHANNELS 8

7 #de f i n e ADC_GRP_BUF_DEPTH 2

8

9 s t a t i c adcsample_t samples [ ADC_GRP_NUM_CHANNELS * ADC_GRP_BUF_DEPTH ] ;

10

11 /* ADC streaming ca l l b a ck . do nothing ! */

12 s t a t i c void adccallback ( ADCDriver *adcp , adcsample_t *buffer , size_t n ) {

13 ( void ) adcp ;

14

15 }

16 /* ADC e r r o r c a l l b a ck . do nothing ! */

17 s t a t i c void adcerrorcallback ( ADCDriver *adcp , adcerror_t err ) {

18 ( void ) adcp ;

19 ( void ) err ;

20 }

21

22 /* ADC conver s i on group .

23 * Mode : Continuous , 16 samples o f 8 channels , SW t r i g g e r e d .

24 * Channels : IN9 , IN14 , IN15 , IN4 , IN5 , IN6 , IN7 , IN8 .

25 * ADC3_IN9 = PF3 ADC3_IN14 = PF4

26 * ADC3_IN15 = PF5 ADC3_IN4 = PF6

27 * ADC3_IN5 = PF7 ADC3_IN6 = PF8

28 * ADC3_IN7 = PF9 ADC3_IN8 = PF10*/

29 s t a t i c const ADCConversionGroup adcgrpcfg = {

30 TRUE ,

31 ADC_GRP_NUM_CHANNELS ,

32 adccallback ,

33 adcerrorcallback ,

34 0 , /* CR1 */

35 ADC_CR2_SWSTART , /* CR2 */

36 ADC_SMPR2_SMP_AN9 ( ADC_SAMPLE_56 ) | ADC_SMPR1_SMP_AN14 ( ADC_SAMPLE_56 ) |

37 ADC_SMPR1_SMP_AN15 ( ADC_SAMPLE_56 ) | ADC_SMPR2_SMP_AN4 ( ADC_SAMPLE_56 ) |

38 ADC_SMPR2_SMP_AN5 ( ADC_SAMPLE_56 ) | ADC_SMPR2_SMP_AN6 ( ADC_SAMPLE_56 ) |

39 ADC_SMPR2_SMP_AN7 ( ADC_SAMPLE_56 ) | ADC_SMPR2_SMP_AN8 ( ADC_SAMPLE_56 ) ,

40 0 , /* SMPR2 */

41 ADC_SQR1_NUM_CH ( ADC_GRP_NUM_CHANNELS ) ,

42 ADC_SQR2_SQ8_N ( ADC_CHANNEL_IN8 ) | ADC_SQR2_SQ7_N ( ADC_CHANNEL_IN7 ) ,

43 ADC_SQR3_SQ6_N ( ADC_CHANNEL_IN6 ) | ADC_SQR3_SQ5_N ( ADC_CHANNEL_IN5 ) |

44 ADC_SQR3_SQ4_N ( ADC_CHANNEL_IN4 ) | ADC_SQR3_SQ3_N ( ADC_CHANNEL_IN15 ) |

45 ADC_SQR3_SQ2_N ( ADC_CHANNEL_IN14 ) | ADC_SQR3_SQ1_N ( ADC_CHANNEL_IN9 )

46 } ;

47

48

49 /* Appl i ca t ion entry po int . */

50 i n t main( void ) {

51

52 halInit ( ) ;

53 chSysInit ( ) ;

54

55 /* Act ivate s the s e r i a l d r i v e r 3 us ing the d r i v e r d e f au l t c on f i g u r a t i on .

56 * PD8(TX) and PD9(RX) are routed to USART3. */

94



ADC Driver source code

57

58 sdStart(&SD3 , NULL ) ;

59 palSetPadMode( GPIOD , 8 , PAL_MODE_ALTERNATE (7 ) ) ;

60 palSetPadMode( GPIOD , 9 , PAL_MODE_ALTERNATE (7 ) ) ;

61

62 /* Se t t i ng up analog inputs used by the demo . */

63 palSetGroupMode( GPIOF , PAL_PORT_BIT (3 ) | PAL_PORT_BIT (4 ) |

64 PAL_PORT_BIT (5 ) | PAL_PORT_BIT (6 ) |

65 PAL_PORT_BIT (7 ) | PAL_PORT_BIT (8 ) |

66 PAL_PORT_BIT (9 ) | PAL_PORT_BIT (10) , 0 , PAL_MODE_INPUT_ANALOG ) ;

67 /* Act ivate s the ADC3 dr i v e r and the thermal s enso r . */

68 adcStart(&ADCD3 , NULL ) ;

69 /* Sta r t s an ADC cont inuous conver s i on . */

70 adcStartConversion(&ADCD3 , &adcgrpcfg , samples , ADC_GRP_BUF_DEPTH ) ;

71

72 whi l e ( TRUE ) {

73 uint8_t i , j ;

74 char val [ 7 ] ;

75

76 f o r ( i=0; i<16 ; i++){

77 f o r ( j=0; j<s i z e o f ( val ) ; j++) val [ j ]= ' ' ;

78 chsprintf(&val [ 0 ] , "%d " , samples [ i ] ) ;

79 sdWrite(&SD3 , val , s i z e o f ( val ) ) ;

80 }

81 sdWrite(&SD3 , "\ r \n" , 2) ;

82 palTogglePad ( GPIOC , GPIOC_LED ) ;

83 chThdSleepMilliseconds (1000) ;

84 }

85 }

95



Appendix B (SVC)

SDIO Driver source code

1 #inc lude "ch . h"

2 #inc lude " hal . h"

3 #inc lude " chp r i n t f . h"

4 #inc lude " f f . h"

5

6 /*===========================================================================*/

7 /* FatFs r e l a t e d . */

8 /*===========================================================================*/

9

10 /* @br ie f FS ob j e c t . */

11 s t a t i c FATFS SDC_FS ;

12 /* FS mounted and ready . */

13 s t a t i c bool_t fs_ready = FALSE ;

14 /* Generic l a r g e bu f f e r . */

15 s t a t i c uint8_t fbuff [ 1 0 2 4 ] ;

16

17 FRESULT err , rc ;

18 uint32_t clusters ;

19 FATFS *fsp ;

20 FIL Fil ;

21 char fold [ ] = "MISSION00" ;

22 char path [ ] = "MISSION00\\LOG00 . dat" ;

23 UINT bw ;

24

25 /* Appl i ca t ion entry po int . */

26 i n t main( void ) {

27 BaseSequentialStream *chp ;

28 uint8_t j ;

29

30 halInit ( ) ;

31 chSysInit ( ) ;

32

33 /*Act ivate s the s e r i a l d r i v e r 3 */

34 sdStart(&SD3 , NULL ) ;

35 palSetPadMode( GPIOD , 8 , PAL_MODE_ALTERNATE (7 ) ) ;

36 palSetPadMode( GPIOD , 9 , PAL_MODE_ALTERNATE (7 ) ) ;

37 chp=&SD3 ;

38

39 /*and SDC dr i v e r 1 us ing d e f au l t c on f i gu r a t i on . */

40 sdcStart(&SDCD1 , NULL ) ;

41

42 whi l e ( TRUE ) {

43 palTogglePad ( GPIOC , GPIOC_LED ) ;

44 chThdSleepMilliseconds (500) ;

45

46 /* SDIO TEST */

47 i f ( palReadPad ( GPIOA , GPIOA_BUTTON_WKUP ) ) {

48 // mount f i l e s y s t em

49 sdcConnect(&SDCD1 ) ;

50 f_mount (0 , &SDC_FS ) ;

51

52 // i n f o about SDC

53 err = f_getfree ( "/" , &clusters , &fsp ) ;

54 i f ( err != FR_OK ) {

55 chprintf ( chp , "FS : f_ge t f r e e ( ) f a i l e d \ r \n" ) ;

56 re turn 0 ;

96



SDIO Driver source code

57 }

58 chprintf ( chp ,

59 "FS : %lu f r e e c l u s t e r s , %lu s e c t o r s per c l u s t e r , %lu bytes f r e e \ r \n" ,

60 clusters , ( uint32_t ) SDC_FS . csize ,

61 clusters * ( uint32_t ) SDC_FS . csize * ( uint32_t ) MMCSD_BLOCK_SIZE ) ;

62

63 // Create a new f o l d e r

64 f o r ( j = 0 ; j < 100 ; j++) {

65 fold [ 7 ] = j/10 + ' 0 ' ;

66 fold [ 8 ] = j%10 + ' 0 ' ;

67 rc=f_mkdir ( fold ) ;

68 i f ( rc == FR_OK ) {

69 path [ 7 ] = j/10 + ' 0 ' ;

70 path [ 8 ] = j%10 + ' 0 ' ;

71 break ;

72 }

73 }

74

75 // wr i t e data

76 rc=f_open(&Fil , path , FA_OPEN_ALWAYS | FA_WRITE ) ;

77 rc=f_write(&Fil , "FTI data\ r \n" , s i z e o f ( "FTI data\ r \n" ) , &bw ) ;

78 rc=f_close(&Fil ) ;

79

80 // unmount f i l e s y s t em

81 f_mount (0 , NULL ) ;

82 sdcDisconnect(&SDCD1 ) ;

83 }

84 }

85 }

97



Appendix B (SVC)

Time Scheduler source code

1 /* main . c */

2 #inc lude "ch . h"

3 #inc lude " hal . h"

4 #inc lude " g l oba l . h"

5

6 Mailbox mbox_AHRS ;

7 msg_t mbox_buf_AHRS [ 1 ] ;

8 Mailbox mbox_CSP ;

9 msg_t mbox_buf_CSP [ 1 ] ;

10 Mailbox mbox_AIR ;

11 msg_t mbox_buf_AIR [ 1 ] ;

12 Mailbox mbox_SF ;

13 msg_t mbox_buf_SF [ 1 ] ;

14 Mailbox mbox_GPS ;

15 msg_t mbox_buf_GPS [ 1 ] ;

16 Mailbox mbox_CDU ;

17 msg_t mbox_buf_CDU [ 1 ] ;

18 Mailbox mbox_SD ;

19 msg_t mbox_buf_SD [ 1 ] ;

20 // Global Object

21 int16_t count ;

22 output_t out ;

23

24 msg_t time_dispenser ( void ) ;

25

26 /* Triggered when the WakeUP button i s pre s s ed */

27 s t a t i c void extcb1 ( EXTDriver *extp , expchannel_t channel ) {

28 ( void ) extp ;

29 ( void ) channel ;

30 count=0;

31 gptStartOneShotI(&GPTD2 , TIMER_PRE ) ;

32 time_dispenser ( ) ;

33 }

34

35 s t a t i c const EXTConfig extcfg = {

36 {

37 {EXT_CH_MODE_RISING_EDGE | EXT_CH_MODE_AUTOSTART | EXT_MODE_GPIOA , extcb1 } ,

38 {EXT_CH_MODE_DISABLED , NULL } ,

39 {EXT_CH_MODE_DISABLED , NULL } ,

40 {EXT_CH_MODE_DISABLED , NULL } ,

41 {EXT_CH_MODE_DISABLED , NULL } ,

42 {EXT_CH_MODE_DISABLED , NULL } ,

43 {EXT_CH_MODE_DISABLED , NULL } ,

44 {EXT_CH_MODE_DISABLED , NULL } ,

45 {EXT_CH_MODE_DISABLED , NULL } ,

46 {EXT_CH_MODE_DISABLED , NULL } ,

47 {EXT_CH_MODE_DISABLED , NULL } ,

48 {EXT_CH_MODE_DISABLED , NULL } ,

49 {EXT_CH_MODE_DISABLED , NULL } ,

50 {EXT_CH_MODE_DISABLED , NULL } ,

51 {EXT_CH_MODE_DISABLED , NULL } ,

52 {EXT_CH_MODE_DISABLED , NULL } ,

53 {EXT_CH_MODE_DISABLED , NULL } ,

54 {EXT_CH_MODE_DISABLED , NULL } ,

55 {EXT_CH_MODE_DISABLED , NULL } ,

56 {EXT_CH_MODE_DISABLED , NULL } ,

98



Time Scheduler source code

57 {EXT_CH_MODE_DISABLED , NULL } ,

58 {EXT_CH_MODE_DISABLED , NULL } ,

59 {EXT_CH_MODE_DISABLED , NULL}

60 }

61 } ;

62

63 /* GPT2 ca l l b a ck . */

64 s t a t i c void gpt2cb ( GPTDriver *gptp ) {

65 ( void ) gptp ;

66 i f ( count<99){

67 count++;

68 gptStartOneShotI(&GPTD2 , TIMER_PRE ) ;

69 time_dispenser ( ) ;

70 }

71 }

72

73 /* GPT2 con f i gu r a t i on . */

74 s t a t i c const GPTConfig gpt2cfg = {

75 TIMER_FREQ ,

76 gpt2cb /* Timer ca l l b a ck . */

77 } ;

78

79 msg_t time_dispenser ( void ) {

80

81 filebuffer_t FileBuffer ;

82 filebuffer_t *FileBufferP ;

83 FileBufferP=&FileBuffer ;

84

85 i f (0==(count%AHRS_COUNT_FREQ ) ) {

86 FileBufferP−>t . flag=FLAG_AHRS ;

87 chMBPost(&mbox_AHRS , ( msg_t ) FileBufferP , TIME_IMMEDIATE ) ;

88 }

89 i f (0==(count%CSP_COUNT_FREQ ) ) {

90 FileBufferP−>t . flag=FLAG_CSP ;

91 chMBPost(&mbox_CSP , ( msg_t ) FileBufferP , TIME_IMMEDIATE ) ;

92 }

93 i f (0==(count%AIR_COUNT_FREQ ) ) {

94 FileBufferP−>t . flag=FLAG_AIR ;

95 chMBPost(&mbox_AIR , ( msg_t ) FileBufferP , TIME_IMMEDIATE ) ;

96 }

97 i f (0==(count%SF_COUNT_FREQ ) ) {

98 FileBufferP−>t . flag=FLAG_SF ;

99 chMBPost(&mbox_SF , ( msg_t ) FileBufferP , TIME_IMMEDIATE ) ;

100 }

101 i f (0==(count%GPS_COUNT_FREQ ) ) {

102 FileBufferP−>t . flag=FLAG_GPS ;

103 chMBPost(&mbox_GPS , ( msg_t ) FileBufferP , TIME_IMMEDIATE ) ;

104 }

105 i f (0==(count%CDU_COUNT_FREQ ) ) {

106 FileBufferP−>t . flag=FLAG_CDU ;

107 chMBPost(&mbox_CDU , ( msg_t ) FileBufferP , TIME_IMMEDIATE ) ;

108 }

109 i f ( 98 == count ) {

110 FileBufferP−>t . flag=FLAG_SD ;

111 chMBPost(&mbox_SD , ( msg_t ) FileBufferP , TIME_IMMEDIATE ) ;

112 }

113

114 FileBufferP−>t . flag=0; // i d l e s t a t e

115 re turn 0 ;

116 }// end t ime_dispenser

117

99



Appendix B (SVC)

118

119 i n t main( void ) {

120

121 uint8_t i ;

122

123 f o r ( i=0; i<101; i++){

124 out . ahrs [ i ]= '_ ' ;

125 out . air [ i ]= '_ ' ;

126 out . cdu [ i ]= '_ ' ;

127 out . csp [ i ]= '_ ' ;

128 out . gps [ i ]= '_ ' ;

129 out . sf [ i ]= '_ ' ;

130 }

131

132 /* I n i t Mailboxes */

133 chMBInit(&mbox_AHRS , mbox_buf_AHRS , 1) ;

134 chMBInit(&mbox_CSP , mbox_buf_CSP , 1) ;

135 chMBInit(&mbox_AIR , mbox_buf_AIR , 1) ;

136 chMBInit(&mbox_SF , mbox_buf_SF , 1) ;

137 chMBInit(&mbox_GPS , mbox_buf_GPS , 1) ;

138 chMBInit(&mbox_CDU , mbox_buf_CDU , 1) ;

139 chMBInit(&mbox_SD , mbox_buf_SD , 1) ;

140

141 halInit ( ) ;

142 chSysInit ( ) ;

143

144 /* I n i t Threads */

145 chThdCreateStatic ( wa_ahrs , s i z e o f ( wa_ahrs ) , AHRS_PRIO , ahrs_com_thread , ( void *)&←↩
mbox_AHRS ) ;

146 chThdCreateStatic ( wa_csp , s i z e o f ( wa_csp ) , CSP_PRIO , csp_adc_thread , ( void *)&←↩
mbox_CSP ) ;

147 chThdCreateStatic ( wa_air , s i z e o f ( wa_air ) , AIR_PRIO , air_com_thread , ( void *)&←↩
mbox_AIR ) ;

148 chThdCreateStatic ( wa_sf , s i z e o f ( wa_sf ) , SF_PRIO , sf_com_thread , ( void *)&←↩
mbox_SF ) ;

149 chThdCreateStatic ( wa_gps , s i z e o f ( wa_gps ) , GPS_PRIO , gps_com_thread , ( void *)&←↩
mbox_GPS ) ;

150 chThdCreateStatic ( wa_cdu , s i z e o f ( wa_cdu ) , CDU_PRIO , cdu_com_thread , ( void *)&←↩
mbox_CDU ) ;

151 chThdCreateStatic ( wa_sd , s i z e o f ( wa_sd ) , SD_PRIO , sd_save_thread , ( void *)&←↩
mbox_SD ) ;

152

153 /* Act ivate s the s e r i a l d r i v e r 3 us ing the d r i v e r d e f au l t c on f i g u r a t i on .

154 * PD8(TX) and PD9(RX) are routed to USART3. */

155 sdStart(&SD3 , NULL ) ;

156 palSetPadMode( GPIOD , 8 , PAL_MODE_ALTERNATE (7 ) ) ;

157 palSetPadMode( GPIOD , 9 , PAL_MODE_ALTERNATE (7 ) ) ;

158

159 /* I n i t i a l i z e s the GPT d r i v e r s 2 */

160 gptStart(&GPTD2 , &gpt2cfg ) ;

161

162 /* Act ivate s the EXT dr i v e r 1 */

163 extStart(&EXTD1 , &extcfg ) ;

164 extChannelEnable(&EXTD1 , 1) ;

165

166 whi l e ( TRUE ) {

167 chThdSleepMilliseconds (5000) ;

168 }// end i n f i n i t e loop

169 } // end main

100



Time Scheduler source code

1 /* g l oba l . h */

2 #i f n d e f GLOBAL_H_

3 #de f i n e GLOBAL_H_

4

5 #de f i n e MAX_PRIO 30

6 #de f i n e AHRS_PRIO MAX_PRIO

7 #de f i n e CSP_PRIO MAX_PRIO−1
8 #de f i n e AIR_PRIO MAX_PRIO−2
9 #de f i n e SF_PRIO MAX_PRIO−3
10 #de f i n e GPS_PRIO MAX_PRIO−4
11 #de f i n e CDU_PRIO MAX_PRIO−5
12 #de f i n e SD_PRIO MAX_PRIO−6
13

14 #de f i n e TIMER_FREQ 10000 /* 10kHz timer c l o ck −> 100 ns */

15 #de f i n e TIMER_PRE 100 // TIMER_FREQ/TIMER_PRE Hz 100hz

16

17 #de f i n e AHRS_COUNT_FREQ ((TIMER_FREQ/TIMER_PRE) /50)

18 #de f i n e CSP_COUNT_FREQ ((TIMER_FREQ/TIMER_PRE) /20)

19 #de f i n e AIR_COUNT_FREQ ((TIMER_FREQ/TIMER_PRE) /10)

20 #de f i n e SF_COUNT_FREQ ((TIMER_FREQ/TIMER_PRE) /10)

21 #de f i n e GPS_COUNT_FREQ ((TIMER_FREQ/TIMER_PRE) /5)

22 #de f i n e CDU_COUNT_FREQ ((TIMER_FREQ/TIMER_PRE) /4)

23

24 #de f i n e FLAG_AHRS 1

25 #de f i n e FLAG_CSP 2

26 #de f i n e FLAG_AIR 3

27 #de f i n e FLAG_SF 4

28 #de f i n e FLAG_GPS 5

29 #de f i n e FLAG_CDU 6

30 #de f i n e FLAG_SD 7

31

32 #de f i n e BYTE_NUMBER 32

33 typede f s t r u c t {

34 uint32_t flag ;

35 uint32_t message [ BYTE_NUMBER / 4 ] ;

36 }test_t ;

37

38 typede f union {

39 test_t t ;

40 char c [ s i z e o f ( test_t ) ] ;

41 } filebuffer_t ;

42

43 typede f s t r u c t {

44 uint8_t ahrs [ 1 0 2 ] ;

45 uint8_t csp [ 1 0 2 ] ;

46 uint8_t air [ 1 0 2 ] ;

47 uint8_t sf [ 1 0 2 ] ;

48 uint8_t gps [ 1 0 2 ] ;

49 uint8_t cdu [ 1 0 2 ] ;

50 }output_t ;

51

52

53 extern int16_t count ;

54 extern output_t out ;

55

56 extern WORKING_AREA ( wa_gps , 128) ;

57 msg_t gps_com_thread ( void *arg ) ;

58

59 extern WORKING_AREA ( wa_air , 128) ;

60 msg_t air_com_thread ( void *arg ) ;

101



Appendix B (SVC)

61

62 extern WORKING_AREA ( wa_sf , 128) ;

63 msg_t sf_com_thread ( void *arg ) ;

64

65 extern WORKING_AREA ( wa_csp , 128) ;

66 msg_t csp_adc_thread ( void *arg ) ;

67

68 extern WORKING_AREA ( wa_ahrs , 128) ;

69 msg_t ahrs_com_thread ( void *arg ) ;

70

71 extern WORKING_AREA ( wa_cdu , 128) ;

72 msg_t cdu_com_thread ( void *arg ) ;

73

74 extern WORKING_AREA ( wa_sd , 128) ;

75 msg_t sd_save_thread ( void *arg ) ;

76

77 #end i f /* GLOBAL_H_ */

1 /* g l oba l . c */

2 #inc lude "ch . h"

3 #inc lude " hal . h"

4 #inc lude " g l oba l . h"

5 #inc lude " c h s p r i n t f . h"

6

7

8

9 // ============================ GPS THREAD =============================

10 WORKING_AREA ( wa_gps , 128) ;

11 msg_t gps_com_thread ( void * arg ) {

12

13 // GLOBAL OBJECT

14 Mailbox* mbox = ( Mailbox *) arg ;

15 msg_t result ;

16 filebuffer_t *fileBufferP ;

17

18 // LOCAL OBJECT

19

20 // INIT

21 chRegSetThreadName( "GPS" ) ;

22 chThdSleepMilliseconds ( FLAG_GPS *10) ;

23 sdWrite(&SD3 , "GPS THREAD!\ r \n" , s i z e o f ( "GPS THREAD!\ r \n" ) ) ;

24

25 // INFINITE LOOP

26 whi l e ( TRUE ) {

27 result = chMBFetch ( mbox , &fileBufferP , TIME_INFINITE ) ;

28 i f ( fileBufferP−>t . flag == FLAG_GPS ) out . gps [ count ]= 'G ' ;

29 } // end i n f i n i t e loop

30 re turn 0 ;

31 } // end thread

32

33

34

35 // =========================== AIR THREAD =============================

36 WORKING_AREA ( wa_air , 128) ;

37 msg_t air_com_thread ( void * arg ) {

38

39 // GLOBAL OBJECT

40 Mailbox* mbox = ( Mailbox *) arg ;

41 msg_t result ;

102



Time Scheduler source code

42 filebuffer_t *fileBufferP ;

43

44 // LOCAL OBJECT

45

46 // INIT

47 chRegSetThreadName( "AIR" ) ;

48 chThdSleepMilliseconds ( FLAG_AIR *10) ;

49 sdWrite(&SD3 , "AIR THREAD!\ r \n" , s i z e o f ( "AIR THREAD!\ r \n" ) ) ;

50

51 // INFINITE LOOP

52 whi l e ( TRUE ) {

53 result = chMBFetch ( mbox , &fileBufferP , TIME_INFINITE ) ;

54 i f ( fileBufferP−>t . flag == FLAG_AIR ) out . air [ count ]= 'R ' ;

55 } // end i n f i n i t e loop

56 re turn 0 ;

57 } // end thread

58

59

60

61 // ============================ SF THREAD ==============================

62 WORKING_AREA ( wa_sf , 128) ;

63 msg_t sf_com_thread ( void * arg ) {

64

65

66 // GLOBAL OBJECT

67 Mailbox* mbox = ( Mailbox *) arg ;

68 msg_t result ;

69 filebuffer_t *fileBufferP ;

70

71 // LOCAL OBJECT

72

73 // INIT

74 chRegSetThreadName( "SF" ) ;

75 chThdSleepMilliseconds ( FLAG_SF *10) ;

76 sdWrite(&SD3 , "SF THREAD!\ r \n" , s i z e o f ( "SF THREAD!\ r \n" ) ) ;

77

78 // INFINITE LOOP

79 whi l e ( TRUE ) {

80 result = chMBFetch ( mbox , &fileBufferP , TIME_INFINITE ) ;

81 i f ( fileBufferP−>t . flag == FLAG_SF ) out . sf [ count ]= 'S ' ;

82 } // end i n f i n i t e loop

83 re turn 0 ;

84 } // end thread

85

86

87

88 // ============================ CSP THREAD ==============================

89 WORKING_AREA ( wa_csp , 128) ;

90 msg_t csp_adc_thread ( void * arg ) {

91

92 // GLOBAL OBJECT

93 Mailbox* mbox = ( Mailbox *) arg ;

94 msg_t result ;

95 filebuffer_t *fileBufferP ;

96

97 // LOCAL OBJECT

98

99 // INIT

100 chRegSetThreadName( "CSP" ) ;

101 chThdSleepMilliseconds ( FLAG_CSP *10) ;

102 sdWrite(&SD3 , "CSP THREAD!\ r \n" , s i z e o f ( "CSP THREAD!\ r \n" ) ) ;

103



Appendix B (SVC)

103

104 // INFINITE LOOP

105 whi l e ( TRUE ) {

106 result = chMBFetch ( mbox , &fileBufferP , TIME_INFINITE ) ;

107 i f ( fileBufferP−>t . flag == FLAG_CSP ) out . csp [ count ]= 'C ' ;

108 } // end i n f i n i t e loop

109 re turn 0 ;

110 } // end thread

111

112

113

114 // ============================ AHRS THREAD ==============================

115 WORKING_AREA ( wa_ahrs , 128) ;

116 msg_t ahrs_com_thread ( void * arg ) {

117

118 // GLOBAL OBJECT

119 Mailbox* mbox = ( Mailbox *) arg ;

120 msg_t result ;

121 filebuffer_t *fileBufferP ;

122

123 // LOCAL OBJECT

124

125 // INIT

126 chRegSetThreadName( "AHRS" ) ;

127 chThdSleepMilliseconds ( FLAG_AHRS *10) ;

128 sdWrite(&SD3 , "AHRS THREAD!\ r \n" , s i z e o f ( "AHRS THREAD!\ r \n" ) ) ;

129

130 // INFINITE LOOP

131 whi l e ( TRUE ) {

132 result = chMBFetch ( mbox , &fileBufferP , TIME_INFINITE ) ;

133 i f ( fileBufferP−>t . flag == FLAG_AHRS ) out . ahrs [ count ]= 'A ' ;

134 } // end i n f i n i t e loop

135 re turn 0 ;

136 } // end thread

137

138

139

140 // ============================ CDU THREAD ==============================

141 WORKING_AREA ( wa_cdu , 128) ;

142 msg_t cdu_com_thread ( void * arg ) {

143

144 // GLOBAL OBJECT

145 Mailbox* mbox = ( Mailbox *) arg ;

146 msg_t result ;

147 filebuffer_t *fileBufferP ;

148

149 // LOCAL OBJECT

150

151 // INIT

152 chRegSetThreadName( "CDU" ) ;

153 chThdSleepMilliseconds ( FLAG_CDU *10) ;

154 sdWrite(&SD3 , "CDU THREAD!\ r \n" , s i z e o f ( "CDU THREAD!\ r \n" ) ) ;

155

156 // INFINITE LOOP

157 whi l e ( TRUE ) {

158 result = chMBFetch ( mbox , &fileBufferP , TIME_INFINITE ) ;

159 i f ( fileBufferP−>t . flag == FLAG_CDU ) out . cdu [ count ]= 'U ' ;

160 } // end i n f i n i t e loop

161 re turn 0 ;

162 } // end thread

163

104



Time Scheduler source code

164

165

166 // =========================== SD THREAD ==============================

167 WORKING_AREA ( wa_sd , 128) ;

168 msg_t sd_save_thread ( void * arg ) {

169

170 // GLOBAL OBJECT

171 Mailbox* mbox = ( Mailbox *) arg ;

172 msg_t result ;

173 filebuffer_t *fileBufferP ;

174

175 // LOCAL OBJECT

176 uint8_t i ;

177

178 // SETUP

179 chRegSetThreadName( "SD" ) ;

180 chThdSleepMilliseconds ( FLAG_SD *10) ;

181 sdWrite(&SD3 , "SD THREAD!\ r \n" , s i z e o f ( "SD THREAD!\ r \n" ) ) ;

182

183

184 // INFINITE LOOP

185 whi l e ( TRUE ) {

186 result = chMBFetch ( mbox , &fileBufferP , TIME_INFINITE ) ;

187 i f ( fileBufferP−>t . flag == FLAG_SD ) {

188 sdWrite(&SD3 , "\ r \nAHRS " , s i z e o f ( "\ r \nAHRS " ) ) ;

189 sdWrite(&SD3 , out . ahrs , s i z e o f ( out . ahrs ) ) ;

190 sdWrite(&SD3 , "\ r \nCSP " , s i z e o f ( "\ r \nCSP " ) ) ;

191 sdWrite(&SD3 , out . csp , s i z e o f ( out . csp ) ) ;

192 sdWrite(&SD3 , "\ r \nAIR " , s i z e o f ( "\ r \nAIR " ) ) ;

193 sdWrite(&SD3 , out . air , s i z e o f ( out . air ) ) ;

194 sdWrite(&SD3 , "\ r \nSF " , s i z e o f ( "\ r \nSF " ) ) ;

195 sdWrite(&SD3 , out . sf , s i z e o f ( out . sf ) ) ;

196 sdWrite(&SD3 , "\ r \nGPS " , s i z e o f ( "\ r \nGPS " ) ) ;

197 sdWrite(&SD3 , out . gps , s i z e o f ( out . gps ) ) ;

198 sdWrite(&SD3 , "\ r \nCDU " , s i z e o f ( "\ r \nCDU " ) ) ;

199 sdWrite(&SD3 , out . cdu , s i z e o f ( out . cdu ) ) ;

200 sdWrite(&SD3 , "\ r \nEND\ r \n" , s i z e o f ( "\ r \nEND\ r \n" ) ) ;

201 f o r ( i=0; i<101; i++){

202 out . ahrs [ i ]= '_ ' ;

203 out . air [ i ]= '_ ' ;

204 out . cdu [ i ]= '_ ' ;

205 out . csp [ i ]= '_ ' ;

206 out . gps [ i ]= '_ ' ;

207 out . sf [ i ]= '_ ' ;

208 }

209 }

210 } // end i n f i n i t e loop

211 re turn 0 ;

212 } // end thread

105



Appendix B (SVC)

IC Driver source code

1 #inc lude "ch . h"

2 #inc lude " hal . h"

3

4 uint8_t last_overflow=0;

5 icucnt_t last_width , last_period ;

6

7 s t a t i c void icuwidthcb ( ICUDriver *icup ) {

8 last_width = icuGetWidth ( icup ) ;

9 }

10

11 s t a t i c void icuperiodcb ( ICUDriver *icup ) {

12 last_period = icuGetPeriod ( icup ) ;

13 last_overflow = 0 ;

14 }

15

16 s t a t i c void icuoverflowcb ( ICUDriver *icup ) {

17 last_overflow = 1 ;

18 }

19

20 s t a t i c ICUConfig icucfg = {

21 ICU_INPUT_ACTIVE_HIGH ,

22 100000 , /* 100kHz ICU c lock f requency x10usec ! ! ! */

23 icuwidthcb ,

24 icuperiodcb ,

25 icuoverflowcb ,

26 ICU_CHANNEL_2

27 } ;

28

29 /* Appl i ca t ion entry po int . */

30 i n t main( void ) {

31

32 BaseSequentialStream *chp ;

33

34 halInit ( ) ;

35 chSysInit ( ) ;

36

37 /* Act ivate s the s e r i a l d r i v e r 3 us ing the d r i v e r d e f au l t c on f i g u r a t i on .

38 * PD8(TX) and PD9(RX) are routed to USART3. */

39 sdStart(&SD3 , NULL ) ;

40 palSetPadMode( GPIOD , 8 , PAL_MODE_ALTERNATE (7 ) ) ;

41 palSetPadMode( GPIOD , 9 , PAL_MODE_ALTERNATE (7 ) ) ;

42 chp=&SD3 ;

43

44 /* I n i t i a l i z e s ICU dr i v e r 4 .

45 * TIM4_ETR GPIOE0

46 * TIM4_CH2 GPIOD13 i s the ICU input ( pin D16) . */

47

48 /* Enables ICU */

49 palSetPadMode( GPIOE , 0 , PAL_MODE_ALTERNATE (1 ) ) ;

50 icuStart(&ICUD4 , &icucfg ) ;

51 palSetPadMode( GPIOD , 13 , PAL_MODE_ALTERNATE (2 ) ) ;

52 icuEnable(&ICUD4 ) ;

53

54 whi l e ( TRUE ) {

55 chprintf ( chp , " per iod=%d usec over f l ow=%d\ r \n" , last_period *10 , last_overflow ) ;

56 chThdSleepMilliseconds (200) ;

106



IC Driver source code

57 }

58 return 0 ;

59 }

107



Appendix B (SVC)

CAN Driver source code

1 #inc lude "ch . h"

2 #inc lude " hal . h"

3

4 /* I n t e r na l loopback mode , 500KBaud , automatic wakeup , automatic r e cove r

5 * from abort mode .

6 * See s e c t i o n 2 2 . 7 . 7 on the STM32 r e f e r e n c e manual . */

7 s t a t i c const CANConfig cancfg = {

8 CAN_MCR_ABOM | CAN_MCR_AWUM | CAN_MCR_TXFP ,

9 CAN_BTR_LBKM | CAN_BTR_SJW (0 ) | CAN_BTR_TS2 (1 ) |

10 CAN_BTR_TS1 (8 ) | CAN_BTR_BRP (6 ) ,

11 0 ,

12 NULL

13 } ;

14

15 /* Rece iver thread . */

16 s t a t i c WORKING_AREA ( can_rx_wa , 256) ;

17 s t a t i c msg_t can_rx ( void *p ) {

18 EventListener el ;

19 CANRxFrame rxmsg ;

20

21 ( void ) p ;

22 chRegSetThreadName( " r e c e i v e r " ) ;

23 chEvtRegister(&CAND1 . rxfull_event , &el , 0) ;

24 whi l e ( ! chThdShouldTerminate ( ) ) {

25 i f (chEvtWaitAnyTimeout( ALL_EVENTS , MS2ST (100) ) == 0)

26 cont inue ;

27 whi l e (canReceive(&CAND1 , &rxmsg , TIME_IMMEDIATE ) == RDY_OK ) {

28 /* Process message . */

29 palTogglePad ( GPIOC , GPIOC_LED ) ;

30 }

31 }

32 chEvtUnregister(&CAND1 . rxfull_event , &el ) ;

33 re turn 0 ;

34 }

35

36 /* Transmitter thread . */

37 s t a t i c WORKING_AREA ( can_tx_wa , 256) ;

38 s t a t i c msg_t can_tx ( void * p ) {

39 CANTxFrame txmsg ;

40

41 ( void ) p ;

42 chRegSetThreadName( " t r an smi t t e r " ) ;

43 txmsg . IDE = CAN_IDE_EXT ;

44 txmsg . EID = 0x01234567 ;

45 txmsg . RTR = CAN_RTR_DATA ;

46 txmsg . DLC = 8 ;

47 txmsg . data32 [ 0 ] = 0x55AA55AA ;

48 txmsg . data32 [ 1 ] = 0x00FF00FF ;

49

50 whi l e ( ! chThdShouldTerminate ( ) ) {

51 canTransmit(&CAND1 , &txmsg , MS2ST (100) ) ;

52 chThdSleepMilliseconds (500) ;

53 }

54 return 0 ;

55 }

56

108



CAN Driver source code

57 /* Appl i ca t ion entry po int . */

58 i n t main( void ) {

59

60 halInit ( ) ;

61 chSysInit ( ) ;

62

63 /* Act ivate s the CAN dr i v e r 1 . */

64 canStart(&CAND1 , &cancfg ) ;

65

66 /* Sta r t i ng the t r an smi t t e r and r e c e i v e r threads . */

67 chThdCreateStatic ( can_rx_wa , s i z e o f ( can_rx_wa ) , NORMALPRIO + 7 , can_rx , NULL ) ;

68 chThdCreateStatic ( can_tx_wa , s i z e o f ( can_tx_wa ) , NORMALPRIO + 7 , can_tx , NULL ) ;

69

70 /* Normal main ( ) thread a c t i v i t y , in t h i s demo i t does nothing . */

71 whi l e ( TRUE ) {

72 chThdSleepMilliseconds (500) ;

73 }

74 return 0 ;

75 }

109



Appendix B (SVC)

I²C Driver source code

1 #inc lude "ch . h"

2 #inc lude " hal . h"

3 #inc lude " chp r i n t f . h"

4

5 // IDG3205 3D ra t e gyro

6 #de f i n e GYRO_RX_DEPTH 6

7 #de f i n e GYRO_TX_DEPTH 2

8 #de f i n e GYRO_ON 0x53

9 #de f i n e GYRO_ZERO 0x52

10 #de f i n e GYRO_REC 0x52

11 #de f i n e steps_per_deg_slow 40

12 #de f i n e steps_per_deg_fast 4

13

14 msg_t status = RDY_OK ;

15 systime_t tmo = MS2ST (20) ;

16

17 int16_t yaw , pitch , roll ; // three axes

18 int16_t yaw0=0, pitch0=0, roll0=0; // c a l i b r a t i o n z e r o e s

19

20 void wmpOn ( void ) {

21 // send 0x04 to address 0xFE to a c t i v a t e IDG3205

22 uint8_t txbuf [ GYRO_TX_DEPTH ] ;

23 uint8_t rxbuf [ GYRO_RX_DEPTH ] ;

24 txbuf [ 0 ] = 0xFE ; /* r e g i s t e r address */

25 txbuf [ 1 ] = 0x04 ;

26 i2cAcquireBus(&I2CD2 ) ;

27 status = i2cMasterTransmitTimeout(&I2CD2 , GYRO_ON , txbuf , GYRO_TX_DEPTH , rxbuf , 0 , ←↩
tmo ) ;

28 i2cReleaseBus(&I2CD2 ) ;

29 }

30

31 void receiveData ( void ) {

32 uint8_t rxbuf [ GYRO_RX_DEPTH ] ;

33 // send zero be f o r e each reque s t

34 // reque s t the s i x bytes from IDG3205

35 i2cAcquireBus(&I2CD2 ) ;

36 status=i2cMasterTransmitTimeout(&I2CD2 , GYRO_REC , 0x00 , 1 , rxbuf , 6 , tmo ) ;

37 i2cReleaseBus(&I2CD2 ) ;

38

39 i f ( ( ( rxbuf [ 3 ] & (1<<1) )>>1) == 1) yaw=((( rxbuf [3]>>2)<<8)+rxbuf [0]− yaw0 ) /←↩
steps_per_deg_slow ;

40 e l s e yaw=((( rxbuf [3]>>2)<<8)+rxbuf [0]− yaw0 ) /steps_per_deg_fast ;

41 i f ( ( rxbuf [ 3 ] & (1<<0) ) == 1) pitch=((( rxbuf [4]>>2)<<8)+rxbuf [1]− pitch0 ) /←↩
steps_per_deg_slow ;

42 e l s e pitch=((( rxbuf [4]>>2)<<8)+rxbuf [1]− pitch0 ) /steps_per_deg_fast ;

43 i f ( ( ( rxbuf [ 4 ] & (1<<1) )>>1) == 1) roll=((( rxbuf [5]>>2)<<8)+rxbuf [2]− roll0 ) /←↩
steps_per_deg_slow ;

44 e l s e roll=((( rxbuf [5]>>2)<<8)+rxbuf [2]− roll0 ) /steps_per_deg_fast ;

45 }

46

47 void calibrateZeroes ( void ) {

48 uint8_t i ;

49 uint8_t data [ GYRO_RX_DEPTH ] ;

50

51 f o r ( i=0; i<10; i++){

52 i2cAcquireBus(&I2CD2 ) ;

110



I²C Driver source code

53 status=i2cMasterTransmitTimeout(&I2CD2 , GYRO_REC , 0x00 , 1 , data , 6 , tmo ) ;

54 i2cReleaseBus(&I2CD2 ) ;

55 yaw0+=(((data [3]>>2)<<8)+data [ 0 ] ) /10 ; // average 10 read ings f o r each zero

56 pitch0+=(((data [4]>>2)<<8)+data [ 1 ] ) /10 ;

57 roll0+=(((data [5]>>2)<<8)+data [ 2 ] ) /10 ;

58 chThdSleepMilliseconds (5 ) ;

59 }

60 }

61

62

63 s t a t i c const I2CConfig i2cfg1 = { OPMODE_I2C , 400000 , FAST_DUTY_CYCLE_2 } ;

64

65 i n t main( void ) {

66

67 BaseSequentialStream *chp ;

68

69 halInit ( ) ;

70 chSysInit ( ) ;

71

72 /* Act ivate s the s e r i a l d r i v e r 3 us ing the d r i v e r d e f au l t c on f i g u r a t i on .

73 * PD8(TX) and PD9(RX) are routed to USART3. */

74 sdStart(&SD3 , NULL ) ;

75 palSetPadMode( GPIOD , 8 , PAL_MODE_ALTERNATE (7 ) ) ;

76 palSetPadMode( GPIOD , 9 , PAL_MODE_ALTERNATE (7 ) ) ;

77 chp=&SD3 ;

78

79 /* Sta r t s I2C2 PF0=SDA PF1=SCL */

80

81 i2cStart(&I2CD2 , &i2cfg1 ) ;

82 palSetPadMode( GPIOF , 0 , PAL_MODE_ALTERNATE (4 ) | PAL_STM32_OTYPE_OPENDRAIN ) ; /* SDA ←↩
*/

83 palSetPadMode( GPIOF , 1 , PAL_MODE_ALTERNATE (4 ) | PAL_STM32_OTYPE_OPENDRAIN ) ; /* SCL ←↩
*/

84

85 chThdSleepMilliseconds (100) ;

86 wmpOn ( ) ;

87 chThdSleepMilliseconds (2000) ;

88

89 // c a l i b r a t i o n

90 calibrateZeroes ( ) ;

91 chprintf ( chp , "\n\n\n\ r %d %d %d \ r \n" , yaw0 , pitch0 , roll0 ) ;

92

93 whi l e ( TRUE ) {

94 receiveData ( ) ;

95 chprintf ( chp , "%d %d %d\ r \n" , yaw , pitch , roll ) ;

96 chThdSleepMilliseconds (50) ;

97 }

98 return 0 ;

99 }

111





Appendix C (ChibiStudio)

ChibiStudio components are:

� Eclipse Juno 4.2 classic (http://www.eclipse.org) with the following optional components

installed:

� Eclipse CDT 8.1.0.

� C/C++ GDB Hardware Debugging 7.0.0.

� Eclipse XML Editors and Tools 3.4.0.

� Target Management Terminal 3.3.0.

� Serial Connector plugin (http://rxtx.qbang.org/eclipse).

� ChibiOS/RT debug plugin 1.0.8.

� ChibiOS/RT con�guration plugin 1.1.0.

� Embedded Systems Register View plugin 0.2.1.90 (http://sourceforge.net/projects/embsysregview/).

� GCCARM toolchain gcc-arm-none-eabi-4_6-2012q2-20120614 (https://launchpad.net/gcc-

arm-embedded).

� OpenOCD 0.6.0 (http://openocd.sourceforge.net).

� ChibiOS/RT 2.5.0.

113

http://www.eclipse.org
http://rxtx.qbang.org/eclipse
http://sourceforge.net/projects/embsysregview/
https://launchpad.net/gcc-arm-embedded
https://launchpad.net/gcc-arm-embedded
http://openocd.sourceforge.net




Appendix D (Software Upgrade Procedures)

JTAG

The �rst step towards the realization of a project involving the use of a microcontroller requires

the setup of the ToolChain and the JTAG debugger. After checking that the devices are properly

recognized by the operating system, it's possible to create a new project.

Procedure:

1. Copy an existing demo for STM32E407 to workspace and rename the folder (es. demo_0)

2. In ChibiStudio File � New � Make�le Project with Existing Code � Browse � select

demo_0 folder. Now the folder is shown in the Project Explorer.

3. Right click on the folder � Clean Project

4. Open Make�le and verify the statement �# Imported source �les and paths� CHIBIOS =

.. /.. / Chibios

5. Link ChibiOS folder to the project: File � new � folder � Advanced � Link to alternate

location (Linked Folder) Browse � ./ChibiStudio/ChibiOS/os � OK

6. Link board folder to the project: File � new � folder � Advanced � Link to alternate

location (Linked Folder) Browse � ./ChibiStudio/ChibiOS/boards � OK

7. Properly set the Eclipse indexer: Project � Properties � C/C++ Build � Discovery

Option select �Automate discovery of path and symbols�, select �GCC per project scanner

info pro�le�.

This �rst demo has the aim of verifying the hardware so a simple blinking thread is �t for

purpose.

1 #inc lude "ch . h"

2 #inc lude " hal . h"

3

4

5 /* Appl i ca t ion entry po int . */

6 i n t main( void ) {

7

8 halInit ( ) ;

9 chSysInit ( ) ;

10

11 whi l e ( TRUE ) {

12 palTogglePad ( GPIOC , GPIOC_LED ) ;

13 chThdSleepMilliseconds (1000) ;

115



Appendix D (Software Upgrade Procedures)

14 }

15 }

Press Ctrl+b to build the project, �if all has gone well� in the Console a �Done� message will

shown.

Procedure to create a new �External Toll Con�guration�:

1. Run � External Toll � External Tool Con�guration � New launch con�guration

2. In the Main window:

� Name: OpenOCD 0.6 on Olimex Arm-Usb-Tiny-H (prompts for .cfg target con�gu-

ration)

� Location: ${eclipse_home}../tools/openocd/bin/openocd

� Working Directory: ${workspace_loc:/ARMCM4-STM32F407-LWIP-FATFS-USB}

� Arguments: -c �telnet_port 4444� -f �interface/olimex-arm-usb-tiny-h.cfg� -f �${�le_prompt:Select

target con�guration �le:${workspace_loc}/../tools/openocd/openocd/scripts/target/stm32f4x.cfg}�

� Apply and Close

Procedure to create a new �Debug Con�guration�:

1. Run � Debug Con�gurations � GDB Hardware debugging � New launch con�guration

2. In the Main window:

� Name: OLIMEX-STM32E407_demo_0 (OpenOCD, Flash and Run)

� C/C++ Application: ./build/ch.elf

� Project: demo_0 (browse)

� Built con�guration: default

3. In the Debugger window:

� GDB command: arm-none-eabi-gdb

� Remote target: Use remote target, JTAG device generic TCP/IP, localhost, 3333

4. In the Startup window:

� Reset and delay second: 1

� Halt: no halt

� Script:

1 set remote timeout 20

2 monitor reset init

3 monitor sleep 200

4 monitor halt 2000

5 monitor sleep 200

6 monitor flash write_image erase ${project_loc }/build/ch . bin 0x08000000 bin

7 monitor sleep 200

8 monitor reset init

116



JTAG

� Load image: no image

� load symbols: use project binary � build/ch.elf

� Apply and Close

After setup the hardware, it's possible to switch Eclipse in Debug Mode; Run External Con�g-

uration and select OpenOCD 0.6 on Olimex Arm-Usb-Tiny-H (prompts for .cfg target con�gu-

ration); Debug and select OLIMEX-STM32E407_demo_0 (OpenOCD, Flash and Run). Now

the project is loaded in the microcontroller. This procedure is considered to be well-founded,

therefore, will be omitted from future demos.

117



Appendix D (Software Upgrade Procedures)

UART

Once Mnemosine MK IV is complete, it is necessary the capability to update the software without

accessing to the inner debugging pins. This is done by using the USART port 3 that is normally

connected to the CDU. Below is minutely described the procedure to accomplish this task.

Hardware required: OLIMEX-STM32E407, any USB-TTL cable converter

Hardware required: binary �le ( ex. ch.bin ), STMicroelecttronics Flash Loader Demonstrator
1

1. Setting up the board for system memory boot: BOOT0=1 & BOOT1=0 2 it is foreseen

that there is an explicit protected switch outside the Mnemosine's case.

2. Connect the USB-TTL converter to the computer and to the port of Mnemosine's CDU.

3. Run Flash Loader Demonstrator and follow the images.

Figure 5.2: Flash Loader Demonstrator 1

1Mirror copy available here: http://code.google.com/p/afrodevices/downloads/detail?name=stm32-
stm8_�ash_loader_demo.zip&can=2&q= April 4, 2013

2See �gure 2.1

118

http://code.google.com/p/afrodevices/downloads/detail?name=stm32-stm8_flash_loader_demo.zip&can=2&q=
http://code.google.com/p/afrodevices/downloads/detail?name=stm32-stm8_flash_loader_demo.zip&can=2&q=


UART

Figure 5.3: Flash Loader Demonstrator 2

Figure 5.4: Flash Loader Demonstrator 3

119



Appendix D (Software Upgrade Procedures)

Figure 5.5: Flash Loader Demonstrator 4

Figure 5.6: Flash Loader Demonstrator 5

120


	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	A bit of FTI history... 
	Data Acquisition Methods
	Data Processing and Analysis Methods 

	ULM Ultra Light Machine 
	EASA 
	CS-VLA
	CS-LSA

	ULM Regulation in Italy
	History of Mnemosine FTI
	Initial requirements
	Actual state: Mnemosine MK III 

	Operating limits
	Upgrade requirements

	Hardware Realization
	Development board 
	STM32F407

	Power Supply Section
	Multi-Mode Serial Peripheral Interface
	Analog Signal Conditioning Module
	Noise Filter
	Schematics of Analog Signal Conditioning Module
	PCB

	Secure Digital Card
	SPI vs SDIO

	Air Data Computer
	Engine Data
	Stick Force Data
	Inertial Data
	GPS Data
	CDU (Command and Display Unit)

	Software Realization
	Real Time Operating System
	Choosing the RTOS 

	Development Environment
	Thread definitions (High Level Software Requirements)
	Main
	Time scheduler
	SD thread
	Ethernet thread
	CAN thread
	GPS thread
	Stick force thread
	AHRS thread
	CDU thread
	Control surface position thread
	Air thread

	Software Requirements Specification (SRS)

	Hardware & Software Suitability Validation Code
	Serial Driver SVC
	USART/UART SVC
	Analog to Digital Converter SVC
	SD SDIO Mode SVC
	Time Scheduler SVC
	Input Capture SVC
	CAN SVC
	I²C SVC

	Conclusion and Future Developments
	Prototyping
	Conclusion

	Bibliography
	Appendix A (SRS)
	Appendix B (SVC)
	Serial Driver source code
	USART/UART Driver source code
	ADC Driver source code
	SDIO Driver source code
	Time Scheduler source code
	IC Driver source code
	CAN Driver source code
	I²C Driver source code

	Appendix C (ChibiStudio)
	Appendix D (Software Upgrade Procedures)
	JTAG
	UART


