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Abstract

Video content is routinely captured and distributed in digital world. It is then

common to encode video content multiple times for several purposes. Indeed,

typically, a sequence is firstly encoded directly on the capturing device. Then

it is re-encoded after any editing step. Moreover, an additional coding step

may be applied when a sequence is uploaded on a sharing website. Identifying

the used codec is a topic of interest for a forensic analyst. Indeed, it can be a

useful hint to detect the device used to generate the content. In this thesis,

we focus on the situation of video encoded twice, e.g., where the first coding

step is applied by the generating device, and the second one by a sharing

website. In this scenario we propose a codec identification method that aims

to identify the codec used in the first coding step, by analyzing footprints left

by this codec. The analysis is performed re-encoding the sequence with an

additional coding step controlled by the analyst. By studying the correlation

obtained between the input and the output of this additional coding step,

we can infer with high accuracy which was the first codec used.
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Chapter 1

Introduction

1.1 Problem Definition

Developing technology made digital contents to be used in every field of

life. Smart-phones, tablets, video cameras etc. have started to become more

and more inexpensive in recent years. Moreover, editing, copying and sharing

the original audiovisual content has become less and less difficult though the

help of improved network infrastructure and enhanced applications. There-

fore, reliability in the digital world has decreased due to the ease with which

people are able to alter original content. This has created distrust and, as a

result of this distrust, digital videos and photographs are no longer assumed

to be proof of evidence. In addition to this, difficulties in the detection of

copyright infringements have arisen.

When the amount of academic research that addresses this issue is con-

sidered, one can see a significant increment in the amount of literature that

is available. Furthermore, it is clear that a large part of existing research

focuses on still images. There are some particular topics that academic liter-

ature intensely worked on still images, such as the possibility of validation,

detection of alterations and recovery of the chain of processing steps. As

a result, successful methods have been proposed as solutions for the afore

mentioned problems. These solutions depend on the fact that most of the

processing operations are irreversible. Therefore, these operations leave some



traces in the output. These are referred to as footprints or fingerprints.

Despite the amount of research that has been performed in image foren-

sics, academic literature pertaining to video forensics is currently not rich

enough. Video contents are generally available in compressed formats. Strong

compression rates on video content may cause a loss of existing fingerprints.

Moreover, the compression algorithms that are preformed on video content is

more sophisticated than those performed on still images. Thus, it is harder

to perform forensic analysis on video content than it is on still images.

Although, academic literature lacks research done on video codec iden-

tification, some important researches has been performed in this field. In

order to give a new impulse to academic literature, I focused on video codec

identification.

In this thesis, I aimed to propose a video codec identification method

when raw video content is coded twice. In real world circumstances, this can

be thought of as uploading a video that is captured by a camera to a video

sharing web site. The first coding may be applied by camera while capturing

the video. Second one is applied while uploading the captured video to a

web site such as YouTube. Syntax of the bitstream provides the informa-

tion about the codec used in the second coding phase. Therefore, this thesis

is concerned with the identification of the codec type used in the first cod-

ing phase.The proposed algorithm applies recompression to available video

sequence by using different types of codec and compression parameters. Fur-

thermore, it seeks similarities between the input and the output sequences

of the additional coding step. In addition to these, a proper classification

method has to be chosen in order to achieve a desirable true-positive rate.

In spite of the simplicity of the proposed method, experimental results

show that identification is performed correctly on different video sequences.

Test scenarios are executed step by step in order to determine noise toler-

ance of the proposed algorithm. Obtained results are quite promising in some

cases.
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1.2 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 provides an

overview of video coding architecture. Moreover, it presents related works in

academic literature. Chapter 3 defines the nature of the problem in detail

and provides the algorithm that solves the problem. Chapter 4 contains the

results obtained from experiments. Conclusion is done in Chapter 5. The

appendices and bibliography can be found at the end of the thesis.
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Chapter 2

State of the Art

2.1 Background

Video coding architectures inherits big part of its design from image cod-

ing architectures. The most well known image coding standard is JPEG and

video coding standards adapt many of its coding principles [1]. As first step,

JPEG starts with converting color images into a appropriate color space such

as YCbCr(See Appendix A.2 for further details). After conversion, each color

component is processed independently. The encoding process can be divided

into three main step:

1. Non-overlapping 8x8 blocks are formed. For sake of clarity, each block

is represented as X = [X(i, j)] where 0 ≤ i ≤ 7 and 0 ≤ j ≤ 7. Pixel

values of each block are transformed by using a DCT into coefficients

Y (i, j).

2. Quantization levels Yq(i, j) are obtained from DCT coefficients Y (i, j)

by applying a uniform quantization with quantization step ∆(i, j).

Quantization operation is shown in Equation 2.1.

Yq(i, j) = sign(Y (i, j))Round(
|Y (i, j)|
∆(i, j)

) (2.1)

At the decoder, the DCT coefficients are reconstructed by applying



inverse inverse quantization operation defined in Equation 2.2.

Yiq(i, j) = Yq(i, j)∆(i, j) (2.2)

3. Quantization levels Yq(i, j) are coded into a binary stream by using

Huffman coding algorithm.

Since video coding architectures build on top of image coding tools, video

coding architectures are more sophisticated than image coding architectures.

Generally, video coding architectures (e.q. MPEG-x and H.26x families) not

only use block-wise transform coding of the JPEG standards but also com-

bines it with spatial and temporal prediction, in-loop filtering, interpolation

etc.

Figure 2.1 presents simplified block diagram of a classical video coding

architecture. Three main steps of JPEG standards can be seen easily. More-

over, a video coding architecture contains a prediction step. Prediction step,

P, takes advantage of spatial or temporal correlation in the block. Predicted

block is subtracted from original block and residual is encoded in similar way

as JPEG standards apply.

Quantization, Q, is the main source of information loss. Therefore, this

Figure 2.1: Simplified block diagram of a classical video codec. P, T, Q and F stand
for prediction, orthonormal transform, quantization and in-loop filtering, respectively.

steps is non-invertible steps. Footprints left by lossy coding algorithm is

caused by quantization step.

Due to block-wise operations, block artifact concept arises. The parti-

tioning process depends on type of coding standard used. Therefore, block

artifacts give an important clue about codec type.

In short, each codec may have a different coding architecture based on

6



rate-distortion curve and computational constraints. Therefore, each codec

leaves a different footprint that can be used by forensic analyst for several

type of detection and validation purposes.

2.2 Literature Review

As stated in Chapter 1, the field of digital video forensics lacks research

that compares to that available in the still image forensic area. However,

many of the methods proposed for still images can be performed on video

signals by considering each frame as a single image. Therefore, forensic anal-

ysis on still images are considered to be a good starting point of the literature

review.

2.2.1 Image Forensics

Here, I give an overview of the existing research that has been performed

on still image forensics. Forensic studies on still images can be summarized

in three groups:

1. Camera Artifacts

2. Image Compression

3. Geometrical/Physical Inconsistencies

Camera Artifacts

Camera artifacts are formed during the acquisition process. Charged-

Coupled Device(CCD)/Complementary Metal-Oxide-Semiconductor(CMOS)

sensors create artifacts called Photo Response Non-Uniformity (PRNU) noise.

PRNU basically describes the gain or ratio between optical power on a pixel

versus the electrical signal output. Academic literature includes both digital

camera identification [2] and image integrity methods that are [3] on PRNU.

Color Filter Array(CFA) is a mosaic of tiny color filters that are placed
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over the pixel sensors of a camera to form color information. In order to

interpolate missing values, demosaicing algorithm is applied. Device pattern

identification and tampering algorithms [4] use the benefits of pattern that

are introduced in this phase.

Image Compression

Several methods are proposed based on image compression technique.

Due to lossy nature of image compression, strategies leave certain footprints

on the output signal. These footprints can be used to detect whether an im-

age has been compressed [5]. If so, detection can be expanded on detection of

encoder type [6], compression parameters [7] [8] and number of compression

steps [25].

Geometrical/Physical Inconsistencies

The last group of image forensics focuses on inconsistencies in lighting,

perspective, etc. of the image. This kind of technique presents a powerful

approach for image integrity verification. The most significant research in

this field is based on inconsistencies in scene illumination [9] and spotlight

reflection in human eyes [10].

2.2.2 Video Forensics

2.2.2.1 Video Acquisition Analysis

The analysis of image acquisition device is one of the first problems in

multimedia forensic studies. The basic goal is to provide information about

the very first steps of the multimedia content. Several methods are proposed

from different standpoints. Some of these approaches constructed a basis for

video forensics. Studies that address video acquisition analysis can generally

be divided in two groups:

1. Identification of Acquisition Device
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2. Detection of Reproduction

Identification of Acquisition Device

In the first group, studies are focused on the identification of the device

that captured the video content. Much of the research in this area involved

the development of technology that can identify, whether a video is recorded

by a camcorder or a modern mobile phone. Kurusowa et al. [11] were the

first research group to propose a method that is based on camcorder foot-

prints. They observed a fixed pattern noise of CCD chips and worked on this

information.However, a small amount of academic literature research offered

methods based on PRNU. In the beginning, it seemed that PRNU estimation

of a camcorder is easier due to the large amount of frames. However, this

is wrong in practice. First of all, the spatial resolution of a video content is

not as high as that of a still image. The second problem is associated with

video compression techniques. Frames are exposed to strong quantization

and coding phases that causes more information loss than JPEG compres-

sion. The first body of work that relied on PRNU was presented by Chen et

al. [12]. One challenging problem associated with video source identification

concerns low resolution video contents. Van Houten et al. [13] [14] [15] pro-

posed methods that investigates the nature of the problem in detail.

Detection of Reproduction

The second group is concerned with the copyright protection. We can

sum up studies in this field under two topics. The first one is detection of

re-acquisition. Methods that rely on active watermarking [16] [17] exist in

academic literature for detecting a-d/d-a conversion and locating pirate po-

sition in cinema. Second topic can be considered as detection of copying.

Bayrem et al. [18] considered the case of two similar video signatures which

are not copies of each other.They proposed source device characteristics that

were extracted from videos to construct copy detection technique.
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2.2.2.2 Video Compression Forensics

This part of the academic literature survey played an important role in

this thesis. Therefore, studies in this field are examined more precisely. I

presented a peaky attitude about studies rely on double compression and

codec identification. I examined research that had been performed in this

field in three groups:

1. Video Coding Parameter Identification

2. Video Re-encoding

3. Network Footprints Identification

Video Coding Parameter Identification

A conventional video compression architecture has several parameters.

This means increased number of degree of freedom. Therefore, methods

proposed in literature are focused on estimating different coding parameters

and syntax elements.

Some works have identified block size in a compressed video sequence [19].

By improving technology, it is possible to apply a de-blocking filter to reduce

blocking artifacts. Therefore, traditional block detection algorithms fail.

As mentioned in 2.1, quantization is a non-invertible operation that leaves

footprints. A histogram of transform coefficients has an obvious footprint.

Instead of uniform distribution, histogram of transform coefficients has a

comb-like distribution. The distribution can be expressed as:

p(Yiq; ∆) =
∑
k

ωkδ(Yiq − k∆) (2.3)

Some methods focused on an estimation of the JPEG quality fac-

tor [20] [21], while another piece of research proposes the estimation of the

whole quantization table[22]. Separate histograms are build from each DCT

coefficient subband. Research indicates that it is possible to extract quanti-

zation steps by analyzing the power spectrum of every subband. Moreover,

academic literature contains works that consider the case of MPEG-2 and
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H.264/AVC coded video, respectively [23] [24]. In this case, histogram of

DCT coefficients of prediction residuals are examined.

Video Re-encoding

Double compressed videos are passed through the quantization step twice.

The histogram of DCT coefficients is affected by second quantization that

has a different quantization step from the first one. Therefore, most of the

methods are based on histogram of DCT coefficient.

One of the first pieces of research in this area was performed by Jan Lukǎs

and Jessica Fridrich [25]. They tried to estimate primary quantization matrix

in a double compressed image. Using this approach, they compressed one

JPEG image twice with quantization matrices Q1 and Q2. They also stated

that a DC coefficient is double compressed if, and only if, Q1 6= Q2.

This research was primarily concerned with behavior of DCT coefficients.

If DCT coefficients are quantized with quantization matrix Q1, the value of

the coefficient Dij is expected to be a multiple of Q1
ij, where i and j rep-

resents the index values in 8x8 block in the image. After compression, the

image is decompressed. Due to decompression, pixel values are rounden and

truncated to 8-bit pixel values. As a result of this truncation, DCT coeffi-

cients are no longer multiples of Q1 anymore. After second compression, a

histogram is built for DCT coefficients and this histogram is examined fur-

ther.

The researchers highlight two tasks, which are double compression detec-

tion and estimation of primary quantization matrix. They proposed a com-

patibility test ,which was mentioned in [26] and [27]. However, the method

based on the compatibility test was computationally expensive and ineffi-

cient. Therefore, the authors proposed a new method that took advantage

of Neural Networks (NN). The pseudo-code of the estimation is given below:

1. Extract the quantization matrix Q2.

2. Get the histogram h0 of absolute values of quantized DCT coefficient

Dq
ij.

11



3. Remove the values h0(0) and h0(1), and normalize it.

4. Load the neural network corresponding to value of Q2
ij.

5. Provide the normalized histogram h0 as input to the neural network.

6. Output of neural network gives the estimated primary quantization

step for Dij.

An interesting piece of research that used double compression on video

content, was based on block artifacts [28]. In the proposed method, they fo-

cused on 8x8 block artifacts that were caused by MPEG compression. How-

ever, artifacts in P and B frames are more complicated due to motion com-

pensation. The measurement of Block Artifact Strength (BAS) is influenced

by by JPEG block artifact detection [21]. BAS of a frame is defined as a

percentage of blocks that staisfy |E + H − F −G| > |A + D − B − C| (See

Figure 2.2). The researchers observed that I and P frames have higher BAS

than B frames.

GOP was chosen as 12 and the number of B frames between I-P and

Figure 2.2: Block order for BAS calculation

P-P frame pairs was selected as 2 (m = 12 and n = 3. This created a GOP

sequence of IBBPBBPBBPBB. Recompression was performed by erasing one

to eleven frames from the MPEG compressed video. Frame removal and dou-

ble compression are illustrated in Figure 2.3.

12



Figure 2.3: (a) Compression of original content with given GOP. (b) First frame of
the result is removed and compressed with given GOP one more time. (b) First two
frames of the result is removed and compressed with given GOP one more time.

Three groups were created from these eleven double MPEG compressed

videos depending on their BAS. These three groups were used as features of

the research. Two tampering methods were examined:

• Removal of video frames

• Use of different GOPs between the first and the second compression.

They obtained a periodic feature curves in the first case. It is observed that

deleting x frames are similar to deleting y frames, when m ≡ n (mod3).

Moreover, results of the second case were promising. They found same in-

consistencies in different test cases.

Wang and Farid [29] worked on detecting tampering in video by using

double quantization.

Equation 2.4 represents quantization of DCT coefficient x in first com-

pression phase. It should be noted that result of the operation is rounded.

x = [
u

q1
] (2.4)

Before compressing second time, the quantized DCT coefficients goes through

de-quantization that is represented in Equation 2.5. It should be noted that

result is multiple of q1.

y = x ∗ q1 (2.5)

In the last step, DCT coefficients are quantized one more time with a different

quantization step.

z = [
y

q2
] (2.6)
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In the lights of these three equations, Wang and Farid tried to model single

compressed DCT coefficients by using Gaussian distribution.

Pq1(y|x) =
1

σ
√

2π
e−

(y−xq1)
2

2σ2 (2.7)

where xq1 and σ are mean and standard deviation, respectively. Then, the

observed marginal distribution of double compressed coefficients z is defined

as in Equation 2.8.

Pq1(z) =
∑
x

Pq1(x)Pq1(z|x) (2.8)

However, marginal probability of Pq1(c), used in Equation 2.8, is still

unknown. Therefore, Expectation Maximization [30] algorithm to calculate

Pq1(c). In detection mechanism, they used an Euclidean Distance based

metric to find distance between expected coefficient and obtained coefficient.

Obtained results were quite promising for the future researches.

Another double compression detection method is proposed by D. Liao et.

al. [31] They worked on doubly compressed video format such as H.264/AVC

and examined nonzero AC coefficients of DCT. The research is based on

scalar quantization assumption of AVC(See Appendix). In the first step,

video content is encoded with quantization step Q1. Then, output is de-

coded with same quantization step. These operations are repeated one more

time with a different quantization step, Q2. However, compression is done

without GOP. Therefore, compressed video has only I frames. In the classi-

fication phase, Support Vector Machine (SVM) with Radial Basis Function

(RBF) is used as classifier. Features are probabilities of 20 AC coefficients

of DCT, range from 10 to −10 excluding 0. The process of detection works

as following:

1. Get total nonzero quantized coefficient by performing entropy decoding

on I frames

2. Compute all the coefficients that stays in the range.

3. Calculate the probability of every obtained coefficient.

14



4. Give these 20 probability values to SVM.

There also exists an approach to identify codec by applying double com-

pression [32]. This research built a basis for my thesis. In brief, the approach

determines the codec by compressing the output video one more time. The

proposed algorithm depends on the fact that quantization is an idempotent

operation. In the other words, if we apply quantization to a value already

quantized value, the output will be correlated with the input. As a matter

of fact, it is possible to identify the adopted codec and its configuration by

re-encoding the analyzed sequence a third time, with different codecs and

parameter settings. Whenever the output sequence presents the highest cor-

relation with the input video, it is possible to infer that the adopted coding

set-up corresponds to that of the first compression

Network Footprints Identification

Video transmission over network is done on noisy channels in general.

This causes loss of information on reconstructed video content. Therefore,

some error neglecting algorithms proposed to overcome this problem. How-

ever, these methods leave a footprint on reconstructed content.

Some of the proposed methods works on transmission statistics. Trans-

mission statistics are used to estimate channel distortion on the reconstructed

content. An algorithm is presented relies on estimation of the packet loss im-

pairment in the reconstructed content [33]. The problem in this approach

is adaption of full-quality metrics. This means requirement of the original

uncompressed video. Same authors also proposed another algorithm that

focuses on effects of channel distortion on received video content[34]. They

worked on three strategies. The first one makes a calculation of received

video quality from network statistics. The second one analyzes the packet

loss statistics to find the impacts in the spatial and temporal domain of the

received video sequence. The third strategy evaluates effects of error propa-

gation on the sequence.

Another approach proposed assumes there is no access to original video

content. It evaluates effects of temporal and spatial error concealment [35].

This approach presents a good correlation with Mean Opinion Score (MOS).

15



A second class of strategies assumes that the transmitted video sequence

has been decoded and that only the reconstructed pixels are available. There

exists an approach which is build on top of [35]. The proposed solution only

works on pixel values and identifies which slices of the video are lost[36]. Pro-

duced output is a value that presents a good quality with the Mean Square

Error (MSE).
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Chapter 3

Algorithm

3.1 Problem Formulation

In academic literature, video codec identification methods of research are

really rare. Codecs leave a footprint on the resulting video as a result of

their lossy coding nature. Nevertheless, characterizing the footprints of the

codecs is not an easy task. First of all, several parameters are involved in the

video coding process and this creates a large degree of freedoms. Another

problem concerns the selection of the proper feature: the selected feature has

to represent all codecs uniquely.

During the video coding process, important parameters can be listed as:

• Rate Control vs. Fixed Quantization Step: If rate control is selected,

a bitrate has to be defined. Otherwise, the quantization step has to be

defined.

• GOP: If GOP is defined as 0, the output video sequence consists of I

frames. Another GOP value greater than 0 means that output video

sequence contains I, P and B frames.

Changing these parameters affects the footprint left on the output sequence.

Hence, there are several cases to be examined. At the end of the examination,

the proposed classifier should present the desirable true-positive rate.



The feature selection problem is another important problem. The selected

feature is supposed to represent every codec uniquely. Since sample video

sequences are limited, feature space should not consist of many dimensions;

otherwise, a problem that is referred to as Curse of Dimensionality arises.

Therefore, the number of samples have to span feature space. On the other

hand, small feature space may cause overlaps between two different codecs,

which results in poor performance.

3.2 Idempotency Principle

In mathematics and computer science, idempotence is defined as a prop-

erty of operations that does not change the initial result when applied mul-

tiple times. The concept of idempotency play an important role in closure

operators in abstract algebra and functional programming. The term was

first introduced by Benjamin Peirce as a concept in algebra.

A function is said to be idempotent depending on the concept:

1. A unary function is idempotent if f(x) = f(f(x)). Absolute value

function can be given as an example of idempotent unary function.

2. A binary function is idempotent if it gives the same result when it is

applied more than once. As an example, min(x, x) = min(min(x, x), x).

3. Given a binary operation, there may exist an idempotent element that

does not change the result when it is used. For addition, the idempotent

element is 0.

In video coding, idempotency arises when a video sequence is encoded

several times using the same codec. Due to nature of lossy coding, the

footprint of the codec is left on the resulting video. When the resulting video

sequence is encoded one more time using the same codec, the same type of

footprints are left one more time. Therefore, the difference between once and

twice encoded video sequences is small. As a result, one can expect to obtain

high PSNR values when these two video sequences are taken into account.

he idempotency principle is the reference point of this thesis. When a
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video sequence that is encoded with codec c1 is encoded with the same codec

one more time, the PSNR values tend to cluster around one point. This

would give us a clue about the codec used during the first encoding step.

3.3 Proposed Method

I proposed a solution to this problem based on idempotency principle.

The simplified flow of double compression is represented in Figure 3.1. The

Figure 3.1: Simplified Block Diagram of Double Compression

original raw video X(i, j) is encoded with codec c1 where c1∈ {MPEG2,

MPEG4, H.264/AVC, DIRAC} and output of the operation is represented

as Xe1(i, j). As stated in Equation 2.4, quantization operation leaves trace.

Due to rounding operation, decoding operation cannot reconstruct the orig-

inal video without information loss. Therefore, Xd1(i, j) contains footprints

of c1. The proposed method identifies c1 only having Xd1(i, j) as input.

In order to identify c1, proposed algorithm encodes Xd1(i, j) one more

time with c2 where c2 ∈ {MPEG2,MPEG4, H.264/AV C,DIRAC} as well.

c1 may or may not be equal to c2. Output of the second encoding opera-

tion, Xe2(i, j) is decoded and the resulting video sequence is represented as

Xd2(i, j).

Thus, two video sequences are obtained to analyze:

1. Xd1(i, j) is the input video sequence.

2. Xd2(i, j) is the output of the second compression step.

Now, the problem arisen is choosing the correct feature for further steps.

PSNR (See Appendix C.3) is the ratio between maximum possible power of

a signal and the power of the corrupting noise. Therefore, PSNR is used as

quality metric of reconstruction of lossy codec. PSNR calculation is done as
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follows:

PSNR = 20 log(MAXI)− 10 log(MSE) (3.1)

where MAXI and MSE are maximum possible pixel value in the original

image and result of MSE (See Appendix C.1) calculation between original

image and reconstructed image, respectively. Generally, possible maximum

value in an 8-bit image is 255. If the original and the reconstructed images are

totally same, result of MSE becomes 0. Therefore, logarithm operation tends

to minus infinity. Consequently, PSNR value tends to infinity. Lower PSNR

value means more difference between the original and the reconstructed im-

age.

As mentioned in Section 3.2, encoding the original content with same

codec has an idempotent effect. Hence, when c1 = c2, it is expected to

obtain PSNR higher values whereas when c1 6= c2, the expected PSNR val-

ues should be lower than values obtained in the first case. Consequently,

PSNR is selected to create feature space. In order to create 2-dimensional

feature space, two different PSNR calculations are needed. Thus, Xd1(i, j) is

subjected to two different second encoding phases with codecs c2 and c3. Re-

sults of the second encoding phases are represented as Xd2(i, j) and Xd3(i, j),

respectively. Axises of 2-dimensional feature space are selected as results of

PSNR calculations between Xd1(i, j)-Xd2(i, j) and Xd1(i, j)-Xd3(i, j), respec-

tively.

The proposed algorithm consists of two phases:

1. Clustering

2. Classification

As stated above, it is tried to form clusters in 2-dimensional feature space.

There are several parameters to be considered in order to obtain better clus-

tering results. GOP is one of the most important ones. Since coding of I,

P and B frames use different algorithms from each other, it is normal to

have different PSNR values depending on type of frame. Variation of PSNR

values creates a big problem in clustering phase. Besides, using either rate

control or fixed quantization step is another point to be decided. Depending
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on decision, selected values effect the result of clustering. Another thing that

effects clustering is selected type of codecs for second compression phase.

Combination of these parameters create various possibilities to be tested.

In the classification phase, I used Bayesian Classifier. Let {ω1, ..., ωc} be

finite set of c categories and let {α1, ..., αc} be finite set of possible outputs.

The loss function λ(αi|ωj) describes the loss incurred for taking output αi

when the category is ωj. Let the feature vector x be a d-component vector

valued and let p(x|ωj) the state conditional probability density function for

x. P (ωj) describes the prior probabilty that the category is ωj. Then, the

posterior probability P (ωj|x) can be computed from by Bayes formula:

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)
(3.2)

where the evidence is now

p(x) =
c∑

j=1

p(x|ωj)P (ωj) (3.3)

Target of Bayes decision rule to minimize the overall risk, compute the con-

ditional risk:

R(αi|x) =
c∑

j=1

λ(αi|ωj)P (ωj|x) (3.4)

for i = 1, ..., α and then select the output αi for which R(αi|x) is minimum.
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Chapter 4

Experimental Results

I tested the performance of the proposed algorithm on a dataset that

consists of six video sequences at CIF (See Appendix A.3 for more informa-

tion) resolution (352x288). Each of the original sequence was encoded with

either MPEG-2, MPEG-4, AVC or DIRAC. As for the second coding pass,

encoded sequences are re-encoded also with either MPEG-2, MPEG-4, AVC

or DIRAC. This scenario is repeated with different encoding parameters.

Feature space has two dimensions. Second coding pass done twice with

two different codecs. Thus, two PSNR values are obtained which represented

as values on two axises of the feature space. For instance, original encoded

video is re-encoded with AVC and MPEG-2 codecs. Two double encoded

videos are obtained and PSNR calculation is done between the single en-

coded video and the double encoded videos. One axis of the feature space

represents PSNR values associated AVC re-encoding whereas other axis rep-

resents PSNR values associated MPEG-2 re-encoding phase.

Performance of the proposed algorithm is presented in two sections. In

the first section, clustering results with different parameters are presented.

Each video sequence consists of 300 frames. Therefore, clustering is done

based on 1800 encoded frames. In the second section, one video is selected

as a test video and classification is done.



4.1 Clustering

There are two main scenarios are considered. The first one uses different

quantization parameters (QP) without introducing GOP. In this case, en-

coded video consists of only I frames. Since coding of P and B uses motion

vectors and prediction, these frames are expected to effect result of cluster-

ing. Therefore, I excluded these frames in the first scenario. In the second

scenario, I introduced also GOP in coding phases.

4.1.1 Fixed Quantization Parameter Without GOP

In the first scenario, fixed QP is considered without introducing GOP. As

a start point, PSNR values between original raw video and single encoded

video are examined. Three QPs are chosen which gives PSNR values between

30-40. These QPs are 7, 14 and 28 for MPEG-2 and MPEG4. QP of AVC is

decided by Equation 4.1.

QPAV C = 6 log2(QPMPEG) + 12 (4.1)

Due to quantization algorithm of MPEG standards, increasing QP means de-

creasing PSNR. In contrast, DIRAC quantization algorithm works reverse.

Consequently, QP of DIRAC is selected as 5, 3 and 1, respectively. Selected

QPs produce similar PSNR results at the end of the first coding pass. In the

second encoding phase, encoded video is re-encoded with one of these QPs

and a codec stated above. Clustering result can be seen at Figure 4.1 when

QP is selected as 14 for both encoding passes.
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(a) AVC - DIRAC (b) AVC - MPEG-2

(c) AVC - MPEG-4 (d) MPEG-2 - DIRAC

(e) MPEG-2 - MPEG-4 (f) DIRAC - MPEG-4

Figure 4.1: Clustering results when quantization parameter is selected 14 at both
encoding passes

In Figure 4.1, axises of the plots represents the codec used in second

encoding pass. Each color represents the type of codec used in the first

encoding pass. For instance, AVC axis of each blue dot in Figure 4.1(a)

represent PSNR value that is calculated by using single AVC encoded and

double AVC encoded videos. Due to idempotency principle, it is expected to

obtain high PSNR values when same codec used in second coding pass. All
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the plots in Figure 4.1 confirms the behavior of the idempotency principle.

There are two more cases to be considered in this scenario. The question

these cases is ”What would happen if I used a greater/less quantization pa-

rameter in the second encoding pass?”. Since lower QP means better quality

in MPEG standards, it is expected to have similar results in MPEG family

when QP in the second pass is less. It is totally vice versa in the second

question. Since DIRAC has different quantization parameter than MPEG

standards, behavior of DIRAC is different. Due this fact, DIRAC is not used

in classification phase. Figure 4.2 and Figure 4.3 shows clustering results in

these two cases.
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(a) AVC - DIRAC (b) AVC - MPEG-2

(c) AVC - MPEG-4 (d) MPEG-2 - DIRAC

(e) MPEG-2 - MPEG-4 (f) DIRAC - MPEG-4

Figure 4.2: Clustering results when quantization parameter is selected 14 at the first
encoding pass and 7 at the second encoding pass
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(a) AVC - DIRAC (b) AVC - MPEG-2

(c) AVC - MPEG-4 (d) MPEG-2 - DIRAC

(e) MPEG-2 - MPEG-4 (f) DIRAC - MPEG-4

Figure 4.3: Clustering results when quantization parameter is selected 14 at the first
encoding pass and 28 at the second encoding pass

4.1.2 Fixed Quantization Parameter With GOP

When GOP is introduced, MPEG family uses P and B frames in encoding

phase. Their size is lower than I frames and they contain less information.

Especially, information they carry depends on motion in the video sequence.

If there is no motion in the video sequence, information carried by P and

B frames is almost nothing. This affects PSNR results. Hence, clusters are
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propagated into larger fields. Moreover, overlaps occur more often comparing

to first case.

Same cases are tested by adding GOP parameter as 15. 15 is the value

that Mencoder allows on videos for 25fps. The rest of the parameters used in

the previous section remains same. The results are presented in Figure 4.4,

Figure 4.5 and Figure 4.6.

(a) AVC - DIRAC (b) AVC - MPEG-2

(c) AVC - MPEG-4 (d) MPEG-2 - DIRAC

(e) MPEG-2 - MPEG-4 (f) DIRAC - MPEG-4

Figure 4.4: Clustering results when quantization parameter is selected 14 at both
encoding passes
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(a) AVC - DIRAC (b) AVC - MPEG-2

(c) AVC - MPEG-4 (d) MPEG-2 - DIRAC

(e) MPEG-2 - MPEG-4 (f) DIRAC - MPEG-4

Figure 4.5: Clustering results when GOP is 15 and quantization parameter is selected
14 at the first encoding pass and 7 at the second encoding pass
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(a) AVC - DIRAC (b) AVC - MPEG-2

(c) AVC - MPEG-4 (d) MPEG-2 - DIRAC

(e) MPEG-2 - MPEG-4 (f) DIRAC - MPEG-4

Figure 4.6: Clustering results when GOP is 15 and quantization parameter is selected
14 at the first encoding pass and 28 at the second encoding pass

The obtained results were not promising. Moreover, trying different GOP

values on each encoding pass causes inconsistent PSNR values. In the other

words, PSNR calculation between I and P frame is totally meaningless, since

I frame is encoded based on actual frame whereas P frame is encoded pre-

dictively. As a consequence, it is really difficult get clustered PSNR values.
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4.2 Classification

The main concern of this thesis is detection of codec used in encoding

phase of the video. Consequently, classification results are the main target

of the study. As mentioned in the previous parts, it is really difficult to de-

sign that handles all degrees of freedom in the video coding. It is not only

a smarter decision to focus on specific type of encoding process but also a

realistic approach. As I presented in Section 4.1, focusing on encoding step

with a GOP parameter defined as 0 is much more promising rather than

encoding pass that defines a GOP.

Naive Bayesian Classifier is used as classification algorithm. As it can be

seen from clustering results, clusters have an uniform distribution in a good

clustered case such as QP is set as 14 in both coding passes. Naive Bayesian

Classifier proposes good performance when data has a Gaussian Distribution.

Therefore, Naive Bayesian Classifier is selected for the classification.

However, the designed classifier has to be tested on the sequences which

are encoded by using different QP values. In this way, proposed algorithm

can provide a benchmark. Test cases are gathered in two groups. The first

group includes video sequences which are exposed double encoding. This

group is named as Noiseless Classification. In the second group, output of

the first encoding step pass through another coding step that causes noise

in the input. This double encoded video sequence is encoded one more time

to identify the codec used in the first encoding pass. This group is named

as Noisy Classification. In this way, I can propose a benchmark about noise

tolerance of the proposed algorithm.

4.2.1 Noiseless Classification

In this section, I present classification results of the classifier. Results are

presented as confusion matrix. As a test case, classifier is selected as double

encoded sequences which have QP value as 14 in both passes. Since it is

assumed that parameters of the first coding pass are unknown, input video

sequence is coded for the second time using the same parameters with the
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training phase. In order to propose a benchmark, various QP values are used

in the first coding pass. Figure 4.7 shows the classification results when same

parameters are used both for clustering and classification phases.

AVC DIRAC MPEG-2 MPEG4
AVC 1800 (100%) 0 0 0

DIRAC 0 1153 (64%) 300 (16%) 347 (20%)
MPEG-2 0 0 1800(100%) 0
MPEG-4 0 600(34%) 300(16%) 900(50%)

(a) AVC - MPEG-2

AVC DIRAC MPEG-2 MPEG4
AVC 1798(99.9%) 0 0 2(0.1%)

DIRAC 0 1179(66%) 321(18%) 300(16%)
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 0 0 1800(100%)

(b) AVC - MPEG-4

AVC DIRAC MPEG-2 MPEG4
AVC 0 1799(99.9%) 1(0.1%) 0

DIRAC 1800(100%) 0 0 0
MPEG-2 0 0 1800(100%) 0
MPEG-4 0 0 0 1800(100%)

(c) MPEG-2 - MPEG-4

Figure 4.7: Results of the classifier created by using 14 as QP value in both coding
passes. Test sequences also have same configuration. Descriptive codecs represents
the codecs used in the second coding pass.

As it can be seen from Figure 4.7, the best classification result is obtained

when AVC and MPEG-4 is used for the second coding pass. As a result of

this, these codecs are used for further tests.

The base of the thesis assumes that we don’t know anything about first

coding step. Type of codec is identified by applying second coding steps. In

order to present more reliable results, first step is repeated with different QP

values. Since classifier is trained by using 14 as QP in the second coding

step, input is exposed to second coding step with QP of 14. In Figure 4.8

shows the classification results when QP of the first coding step is set to 7

and 28, respectively.
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AVC DIRAC MPEG-2 MPEG4
AVC 0 1734(96%) 66(4%) 0

DIRAC 0 1719(96%) 81(4%) 0
MPEG-2 0 1486(82%) 314(18%) 0
MPEG-4 0 1475(82%) 325(18%) 0

(a) QP of the first coding step is set to 7.

AVC DIRAC MPEG-2 MPEG4
AVC 1631(90%) 169(10%) 0 0

DIRAC 0 1450(80%) 350(20%) 0
MPEG-2 0 0 1468(81%) 332(19%)
MPEG-4 0 0 1465(81%) 333(19%)

(b) QP of the first coding step is set to 28.

Figure 4.8: Results of the classifier when QP value used in the first coding pass is
different than the second pass. In the second coding pass, QP is set to 14.

When QP of the first coding step is lower than the second one, the clas-

sification results are totally meaningless as expected. Due to higher QP

values in the second coding step, footprints left from the first coding step are

masked. Solution of this problem is using a lower QP value in the second

coding pass. Figure 4.9 shows the results when 7 is selected as QP value

in both coding steps. On the other hand, when the situation is vice versa,

meaningful results are obtained.

AVC DIRAC MPEG-2 MPEG4
AVC 1800(100%) 0 0 0

DIRAC 0 1204(67%) 296(16%) 300(17%)
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 0 0 1800(100%)

Figure 4.9: Results of the classifier created by using 7 as QP value in both coding
passes.

4.2.2 Noisy Classification

In this scenario, it is assumed that input video is exposed to noise. In

order to create noise on input video, an indermediate coding step is applied.

For instance, the video sequence that is encoded with AVC codec, is encoded
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with another codec one more time. Therefore, the footprints left from AVC

codec are affected by the footprints left from intermediate codec. Classifica-

tion is performed after this intermediate coding step. Consequently, a fall in

the detection performance is expected. As a start point, the first test is done

by using same QP in the all coding steps. Figure 4.10 shows classification

results when QP is set as 14 in all coding steps. Axises of the feature space

is selected as AVC and MPEG-4.

AVC DIRAC MPEG-2 MPEG4
AVC 1726(96%) 0 0 74(4%)

DIRAC 1800(100%) 0 0 0
MPEG-2 1800(100%) 0 0 0
MPEG-4 1800(100%) 0 0 0

(a) Input video sequence is encoded with AVC in order to create noise.

AVC DIRAC MPEG-2 MPEG4
AVC 1800(100%) 0 0 0

DIRAC 0 1482(83%) 318(17%) 0
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 0 0 1800(100%)
(b) Input video sequence is encoded with DIRAC in order to create noise.

AVC DIRAC MPEG-2 MPEG4
AVC 0 300(16%) 1500(84%) 0

DIRAC 300(16%) 1500(84%) 0 0
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 299(16%) 1300(73%) 201(11%)

(c) Input video sequence is encoded with MPEG-2 in order to create noise.

AVC DIRAC MPEG-2 MPEG4
AVC 0 0 0 1800(100%)

DIRAC 0 0 0 1800(100%)
MPEG-2 0 0 0 1800(100%)
MPEG-4 0 0 0 1800(100%)

(d) Input video sequence is encoded with MPEG-4 in order to
create noise.

Figure 4.10: Classification results when noisy video sequences are used as input. QP
value is set to 14 in all coding steps.

As it can be seen from Figure 4.10, intermediate coding step erase most of

the footprints left from original codec. Therefore, classification performance
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decreases dramatically. Since coding algorithm of DIRAC is different than

MPEG family, results are not affected.

The main reason of this dramatic decrease is using same QP value while

creating the noise. In order to measure noise tolerance of the classifier,

intermediate coding step is repeated with lower QP values. Figure 4.11 and

Figure 4.12 show classification results when QP of intermediate coding step

is set to 7 and 1, respectively.

AVC DIRAC MPEG-2 MPEG4
AVC 1442(83%) 358(17%) 0 0

DIRAC 0 1480(83%) 320(17%) 0
MPEG-2 0 680(38%) 1120(62%) 0
MPEG-4 0 300(16%) 1500(84%) 0

(a) Input video sequence is encoded with AVC in order to create noise.

AVC DIRAC MPEG-2 MPEG4
AVC 1800(100%) 0 0 0

DIRAC 0 1482(82%) 318(18%) 0
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 0 0 1800(100%)
(b) Input video sequence is encoded with DIRAC in order to create noise.

AVC DIRAC MPEG-2 MPEG4
AVC 0 1468(81%) 332(19%) 0

DIRAC 0 1469(81%) 331(19%) 0
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 263(15%) 414(23%) 1123(62%)

(c) Input video sequence is encoded with MPEG-2 in order to create
noise.

AVC DIRAC MPEG-2 MPEG4
AVC 0 1207(67%) 593(33%) 0

DIRAC 0 1277(71%) 523(29%) 0
MPEG-2 0 0 1625(90%) 175(10%)
MPEG-4 0 0 600(33%) 1200(67%)

(d) Input video sequence is encoded with MPEG-4 in order to create
noise.

Figure 4.11: Classification results when noisy video sequences are used as input. QP
value is set to 14 in the first and third coding steps. In intermediate (noise) step, QP
is selected as 7.
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AVC DIRAC MPEG-2 MPEG4
AVC 1800(100%) 0 0 0

DIRAC 0 1481(82%) 319(18%) 0
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 0 0 1800(100%)

(a) Input video sequence is encoded with AVC in order to create noise.

AVC DIRAC MPEG-2 MPEG4
AVC 1800(100%) 0 0 0

DIRAC 0 1482(82%) 318(18%) 0
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 0 0 1800(100%)
(b) Input video sequence is encoded with DIRAC in order to create noise.

AVC DIRAC MPEG-2 MPEG4
AVC 1796(99.9%) 4(0.1%) 0 0

DIRAC 0 1476(82%) 324(18%) 0
MPEG-2 0 300(16%) 1500(84%) 0
MPEG-4 0 0 0 1800(100%)
(c) Input video sequence is encoded with MPEG-2 in order to create noise.

AVC DIRAC MPEG-2 MPEG4
AVC 1800(100%) 0 0 0

DIRAC 0 1482(82%) 318(18%) 0
MPEG-2 0 250(14%) 1550(86%) 0
MPEG-4 0 0 0 1800(100%)

(d) Input video sequence is encoded with MPEG-4 in order to create noise.

Figure 4.12: Classification results when noisy video sequences are used as input. QP
value is set to 14 in the first and third coding steps. In intermediate (noise) step, QP
is selected as 1.

While decreasing QP value for intermediate step, performance of the clas-

sifier is increasing as expected. As mentioned before, DIRAC codec does not

cause any noise because of its coding algorithm.
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Chapter 5

Conclusion

The presented thesis proposes a novel algorithm for identification of video

coding standards. This method has firstly been analyzed considering se-

quences encoded once but available only as decoded sequences (i.e., the bit-

stream was unknown). Then it has been tested on the more interesting

scenario of sequences double encoded, where the first codec is to be detected,

and the second one acts as a masking codec (i.e., noise). The proposed

method relies on the fact that an analyst can re-encode with several codecs

a sequence previously encoded with a given unknown codec. In doing so, he

can compute the input-output correlation (as PSNR between the sequences)

that is characteristic of the first used codec.

The detector is based on a Bayesian classifier that works on these PSNR

values. As a first step, it is trained on the input-output PSNR values ob-

tained from a training dataset. Then it is used to detect the codec of test

sequences. Depending on the codecs used in the analysis step by the analyst,

results may change. For this reason, we performed an analysis to let the

analyst chose beforehand the best analysis codec set.

Experimental results showed that when QP parameter of the analyst cod-

ing pass is greater than the first pass, identification rates are quite promising.

However, when the situation is vice versa, the analyst codec masks the foot-

prints of the first coding step. As it regards the masking codec, experimental

results showed that when its QP value is equal or greater than that of the



first coding step, classification results are negatively affected. Otherwise, ob-

tained results were quite accurate.

The proposed algorithm focuses on video sequences that include only I

frames. Since P and B frames are coded predictively, clustering results are

affected negatively by these kind of frames. However, the knowledge of which

frames are I frames is not a strict hypothesis, since it is possible to detect

them using state of the art techniques. GOP parameter might be introduced

as a next step.

As a last remark, it is worth to notice that even if classification is done

using MPEG-family codec (DCT-based) as analysis codecs, also sequences

encoded with DIRAC (wavelet-based) are correctly identified.
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S. Aksoy, eds., vol. 6388. Springer, 2010, 22-28.

[14] Van Houten, W.; Geradts, Z. J. M. H.: Using sensor noise to identify low

resolution compressed videos from youtube, in IWCF, Lecture Notes in

Computer Science, Z. J. M. H. Geradts, K. Franke, and C. J. Veenman,

eds., vol. 5718. Springer, 2009, 104-115.

[15] van Houten, W.; Geradts, Z. J. M. H.: Source video camera identifi-

cation for multiply compressed videos originating from youtube. Digital

Investigation, 6(1-2) (2009), 48-60.

42



[16] Lee, M.-J.; Kim, K.-S.; Lee, H.-Y.; Oh, T.-W.; Suh, Y.-H.; Lee, H.-K.:

Robust watermark detection against d-a/a-d conversion for digital cinema

using local auto-correlation function, in ICIP, IEEE, 2008, 425-428.

[17] Lee, M.-J.; Kim, K.-S.; Lee, H.-K.: Digital cinema watermarking for es-

timating the position of the pirate. IEEE Trans. Multimed., 12(7) (2010),

605-621.

[18] Bayram, S.; Sencar, H. T.; Memon, N. D.: Video copy detection based

on source device characteristics: a complementary approach to content-

based methods, in Proc. 1st ACM SIGMM Int. Conf. on Multimedia

Information Retrieval, MIR 2008, Vancouver, British Columbia, Canada,

October 30-31, 2008, M. S. Lew, A. D. Bimbo, and E. M. Bakker, eds.

ACM, 2008, 435-442.

[19] Li, H.; Forchhammer, S.: MPEG2 video parameter and no reference

PSNR estimation, in Picture Coding Symp., 2009. PCS 2009, May 2009,

1-4.

[20] Fan, Z.; de Queiroz, R. L.: Maximum likelihood estimation of JPEG

quantization table in the identification of bitmap compression history, in

ICIP, 2000.

[21] Fan, Z.; de Queiroz, R. L.: Identification of bitmap compression his-

tory: JPEG detection and quantizer estimation, IEEE Trans. Image Pro-

cess.,12(2) (2003), 230-235.

[22] Ye, S.; Sun, Q.; Chang, E.-C.: Detecting digital image forgeries by

measuring inconsistencies of blocking artifact, in ICME, IEEE, 2007, 12-

15.

[23] Chen, Y.; Challapali, K. S.; Balakrishnan, M.: Extracting coding pa-

rameters from pre-coded MPEG-2 video, in ICIP (2), 1998, 360-364.

[24] Tagliasacchi, M.; Tubaro, S.: Blind estimation of the QP parameter in

H.264/AVC decoded video, in 2010 11th Int. Workshop on Image Analysis

for Multimedia Interactive Services (WIAMIS), April 2010, 1-4.

43
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Appendix A

Video Formation

Digital video may be considered as consisting of a series of still image

frames. Each frame has spatio-temporal element (pixel) which is represented

as a number or set of numbers. Value or values in pixels describe the bright-

ness and color. Frames consist of two dimensional projection of three dimen-

sional world. Therefore, each frame is represented as two dimensional array

and every element of this array represents one pixel in the frame.

A.1 Sampling

There are two main sampling process in formation of the video. First one

is spatial sampling which describes number of pixels in a frame. Choosing a

coarse spatial sampling grid causes a low resolution image. In the lights of

these information, spatial information is given by the relationship between

neighboring pixels.

A video is captured by taking snapshots of the signal at periodic time

intervals. Playing these captured signals back to back constructs motion.

Therefore, higher sampling rate in temporal domain provides a smoother

motion in the video. Temporal sampling rate in the video is called as frame

rate of the video. Sampling between 25 or 30 frames per second is standart

for television.
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A.2 Color Formation

Colors in the images are represented by a number or a set of numbers. In

a monochrome image, there is only one number per pixel which represents

brightness or luminance. In order to display color images accurately, one of

the color space models has to be applied.

The most well known color space model is RGB. Each pixel is represented

by a vector keeps three numbers. Each value in this vector represents pro-

portions of red, green and blue color components of the pixel. Therefore,

every image can be considered as consisting of three different planes (red,

green and blue planes). Color information in the image obtained by adding

up these three color components. This is why RGB Color Space is called

additive color space. Since human visual system works in a similar way to

RGB Color Space, it is mostly used in computer graphics and digital video

formation. Geometric interpretation of the RGB color space can be seen in

Figure A.1.

RGBA Color Space is derived from RGB. Generally, RGBA is inter-

Figure A.1: Geometric Interpretation of RGB Color Space

preted as usage of RGB with extra information. The last component of
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RGBA stands for alpha channel of the color space. When this component is

0, color becomes totally transparent.

YCbCr Model is another important color space used in video formation.

As in RGB, YCbCr color space keeps a vector for each pixel consisting of

three values. Y component stands for luminance. Cb and Cr represent

blue-difference and red-difference of chrominance component. Idea behind

the YCBCR model is representing a color image more efficiently by seper-

ating luminance information from color information. YUV color space is a

variation of YCbCr. YCbCr model is mostly used in digital photography.

Geometric interpretation of YCbCr color space can be seen in Figure A.2.

Color spaces explained above are the most important ones used in digi-

Figure A.2: Geometric Interpretation of YCbCr Color Space

tal video formation. RGB color space is used in this thesis. There are more

color spaces which are designed for different purposes. CMYK is a subtrac-

tive color model that is generally used in color priting and also describes the
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process. HSV (or HSI ) color space is often used by artists.

A.3 Video Formats

Two video formats are used while working on tests. First one is Common

Intermediate Format (CIF). CIF is a format to standardize vertical and

horizontal resolutions in pxels of YCbCr sequences. In this thesis, 288x352

resolution is used for CIF standart.

Second one is 4CIF. The only difference between them is resolution by

convention. The resolution that is used to standardize in this case is 576x704

which is simply four times bigger than CIF.
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CODECS

A codec is a device or computer program capable of encoding or decoding

a digital data stream or signal. CODEC word stands for COder-DECoder

or, less commonly, COmpressor-DECompressor. Task of a codec is encoding

a data stream or signal for transmission, storage or encryption, or decoding

it for playback or editing. Codecs plays an important role on real time

applications such as videoconferencing and streaming media. Moreover, some

other applications like video editing applications take benefits of codec.

In digital videos, two type of codecs are used. First type is video codec

which encodes and decodes video data stream. Other type is audio codec that

works on audio stream. This thesis focuses on video codec identification. In

digital video processing, the codec represents original video sequence by a

model (an efficient coded representation that can be used to reconstruct an

approximation of the video data). At the same time, ideally, the model has

to represent the sequence using as few bits as possible. These two goals

(compression efficiency and high quality) create a trade-off between each

other[37].

A video encoder basically consists of three main functional units:

• Temporal Model: Attempts to reduce redundancy using time informa-

tion by exploitingthe similarities between neighboring video frames.

• Spatial Model: Attempts to reduce redundancy by making use of sim-

ilarities between neighbouring samples in the frame.
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• Entropy Encoder: Attempts to reduce statistical redundancy and pro-

duce a compressed bit stream.

Five types of codecs used in this thesis. Two of them belong to MPEG

ISO [38] standarts. First one is MPEG-2 that suits for standards for digital

television. Second codec belongs to MPEG ISO standarts is MPEG-4 that

suits of standarts for multimedia for the fixed and mobile web. Another

codec is MP4M which is described as different implementation of MPEG-4.

Fourth codec is H.264/AVC. DIRAC is the fifth codec. These codecs are

explained in the below:

B.1 MPEG

MPEG is an acronym that stands for Moving Pictures Experts Group.

MPEG was formed by Inetrnational Standards Organization (ISO) in order

to specify standards for audio and video compression and transmission.

As stated above, a codec consists of two parts which are encoder and de-

coder. In some codecs, encoder is more complex than decoder which makes

system asymmetrical. In asymmetrical coding, encoder has to be algorith-

mic whereas decoder just performs some fixed instructions. This approach

presents a huge benefit in applications such as broadcasting. In broadcasting

applications, there are small number of expensive encoders whereas number

of cheap decoders are much more. It is obvious that benefits of asymmetrical

coding is not great in point-to-point applications.

ISO standardized MPEG in a peculiar way. Instead of standardizing

encoder, ISO applied this process to decoder. This means decoder shall

interpret bitstream. A decoder that does an successfull interpretation of bit-

stream is called compliant. Every allowable bitstream has to be correctly

interpreted by a compliant decoder. On the other hand, encoder produces a

restricted subset of the possible codes.

Interesting part of MPEG is competition between encoders. In the fact

that the bitstream is comliant, any coder design has to meet the standart.
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However, some coder consturctions give better results than others. There-

fore, different algorithms in encoder design provides diversity and competi-

tion. Since coders present different levels of and complexity, the user will

have more options.

First standart released for audio and video compression was MPEG-1.

MPEG-1 was designed to encode data into the bit rate of audio Compact

Disc (CD). MPEG-1 applied a heavy downsampling on the images as well as

considering picture rates of only 24-30Hz in order to deal with low bit rate.

Quality of results was reasonable.

Next released standard was MPEG-2. Since MPEG-2 has been selected

as the compression scheme for both Digital Video Broadcasting (DVB) and

Digital Video/Versatile Disc (DVD), it has become important. Develop-

ments in scalability and multi-resolutional compression were ready by the

time MPEG-2 was ready. Therefore, there have never been MPEG-3 release.

In order to achieve higher compression factors, MPEG-4 was designed.

MPEG -4 uses more complex coding tools and than MPEG-2. Moreover, de-

sign of MPEG-4 is closer to computer graphics applications. It was expected

for MPEG-4 to play an important role in internet and wireless delivery.

In 2001, International Telecommunication Union (ITU) Video Coding

Experts Group(VCEG) joined with ISO MPEG to form Joint Video Team

(JVT). This new team released a new stardant known as Advanced Video

Coding (AVC), H.264 or MPEG-4 Part 10. AVC provided further refine-

ments on MPEG-4 standarts.

B.1.1 MPEG-2

MPEG-2 is upgraded version of MPEG-1 by adding interlace capability,

expanded range of picture sizes and bit rates. Since MPEG-2 is considered

as an extension of MPEG-1, MPEG-2 decoders can handle MPEG-1 data

easily. MPEG-1 bitstream can be thought as a subset of MPEG-2 bitstream.

Therefore, MPEG-1 bitstream can be understood by MPEG-2 decoders.

MPEG-2 tries to solve too many applications with a single standard.
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Consequently, MPEG-2 divided into Profiles and Levels. A Profile repre-

sents degree of complexity. On the other hand, a Level represents frame size

or resolution. Not all levels are compatible with all Profiles. Although there

is supposed to be 24 Profile-Level combination, some of them are not defined.

Table B.1 shows Profile-Level pairs.

Bidirectional coding is not supported by Simple Profile. Consequently,

Simple Main 4:2:2 SNR Spatial High

High

4:2:0
1920x1152
90Mb/S

4:2:0 or
4:2:2
1920x1152
100 Mb/S

High
1440

4:2:0
1440x1152
60Mb/S

4:2:0
1440x1152
60Mb/S

4:2:0 or
4:2:2
1440x1152
60Mb/S

Main

4:2:0
720x576
15Mb/S
NO B

4:2:0
720x576
15Mb/S

4:2:2
720x608
50Mb/S

4:2:0
720x576
15Mb/S

4:2:0 or
4:2:2
720x576
20Mb/S

Low

4:2:0
352x288
4Mb/S

4:2:0
352x288
4Mb/S

Table B.1: Profiles and Levels in MPEG-2

output only contains I and P frames. This provides faster coding and decod-

ing phase and works on simpler hardware.

The most important level of MPEG-2 is Main Profile. This level covers

large proportion of uses. Low Level is designed for low resolution inputs

which contains 352 pixels per line. Most of broadcast applications use Main

Profile at Main Level. Main Profile at Main Level subset supports Standard

Definition Television (SDTV). High Level maintains resolution with 16 : 9

format.

B.1.2 MPEG-4

MPEG-4 improves coding adding more functionalities to MPEG-2. MPEG-

1 and MPEG-2 are focused to coding video frames. MPEG-4 also considers

how shooting scene is created.
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In MPEG-2, macroblocks used in motion compensation are regular fixed

size. This brings some inefficiency in case of real moving objects. On the

other hand, MPEG-4 codes moving objects as arbitrary shapes. This ap-

proach helps to code background independently from the objects on the fore-

ground. Thus, motion information is stored in much reduced residual data.

The frame coding of MPEG-4 is known as texture coding. Texture coding

approach loses less information coding of pixels, coefficients and vectors.

While an object moving, it changes its perspective. MPEG-4 defines this

behavior by using a technique called mesh coding. The reconstruction of cur-

rent frame is improved by warping another frame. Besides, MPEG-4 codes

still frames using DCT or wavelets.

MPEG-4 adds up temporal scalability to spatial and noise scalability.

This allows MPEG-4 quite forward from frame rates of film and television

format. In addition, MPEG-4 still remains backward compatible. MPEG-4

also provides best frame quality for the available bit rate in network.

Another powerful feature of MPEG-4 is face and body animation. An

image of a face (optionally body) can be animated to exhibit gestures to

accompany speech in low bit rates by helps of special vectors.

Spatial compression is implemented based on DCT as in previous MPEG

standards. Wavelet coding of stationary objects is newly introduced feature

in MPEG-4, though. Since wavelet transformation decomposes an image

into various resolutions, MPEG-4 becomes more advantageous in scalable

systems.

B.1.3 AVC

Advanced Video Coding (AVC), or H.264, targets to compress moving

frames in a form of 8-bit 4:2:0 coded pixel arrays. This approach brings

more complexity with itself. On the other hand, AVC provides between two

and two and a half times the compression factor of MPEG-2[39].

Macroblocks were transmitted only in a raster scan. This approach is

fine when transmission is done on reliable channel. AVC is designed to work

on imperfect channels. One of the most well known mechanisms is known
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Figure B.1: (a) Chequerboarded Macroblocks (b) Important frame content is placed
in one slice whereas background is in another.

as Flexible Macroblock Ordering (FMO). FMO divides frame into different

regions along horizontal and vertical macroblock boundaries. Figure B.1(a)

shows chequerboarded macroblocks. If the shaded macroblocks are trans-

mitted in a different packet to unshaded ones, the loss of a packet causes

a degraded frame instead of no frame. Figure B.1(b) presents another ap-

proach. In this approach, the important elements of the frame are located in

one region whereas less important elements in another.

FMO contains slice groups that contain integer numbers of slices. Mac-

roblocks inside the slice groups are transmitted in raster scan fashion. Loca-

tion every macroblock in the correct place is task of decoder.

The bitstream of AVC is designed to be transmitted or recorded in vari-

ous ways. This is another important advantage of AVC. Video Coding Layer

(VCL) in a Network Application Layer (NAL) formats the date in a proper

manner. This kind of output can be converted by AVC.
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B.2 DIRAC

DIRAC is a video compression format developed by BBC Research team

at the BBC. It is mainly developed for internet streaming to HDTV and elec-

tronic cinema. DIRAC supports both constant and variable bit rate opera-

tions. It also supports lossless and lossy coding. DIRAC uses Wavelet Trans-

formation whereas MPEG family employs DCT. Architecture of wavelet co-

efficient coding can be seen in Figure B.2.

Figure B.2: Architecture of Wavelet Coding

As it can be seen from the Figure B.2, each wavelet subband is coded

in turn. Both Rate Distortion Quantization (RDO) quantization and entropy

coding of each band can depend on the coding of previously coded bands.

Dirac uses a parameter called QF to control the quality of the encoded

frames. QF plays an important role since it is involved in the RDO processes

of motion estimation and quantization as a Lagrangian multiplier, λ. The

relation between λ and QF is given in Equation B.1:

λ = (10(10−QF )/2.5))/16 (B.1)

Since the QF controls the quality of the encoded video sequence by

involving in the RDO processes of motion estimation mode decision and

quantization, the accuracy of the motion estimation can be greatly reduced,

especially for the lower-QF-encoding mode, which affects the subjective qual-

ity of the decoded video. So, the value of QF in Dirac should be set to at

least 5 for low-quality encoding, even though Dirac allows the value of QF

to range from 1 to 10.
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Figure B.3: Block diagram of Dirac encoder showing the proposed rate control idea
using the R-QF model in blue colour.

Dirac defines three frame types. Intra-frames (I frames) are coded inde-

pendently without reference to other frames in the sequence. Level 1 frames

(L1 frames) and level 2 frames (L2 frames) are both inter-frames, which are

coded with reference to other previously (and/or future) coded frames. The

definition of the L1 and L2 frames are the same as with P and B frames

in H.264, respectively. The encoder operates with standard GOP modes,

whereby the number of L1 frames between I frames, and the separation be-

tween L1 frames, can be specified depending on the application. The detail

explanation of the Dirac’s GOP and intra-frames prediction structure can be

found in [40]. General block diagram of dirac can be seen in Figure B.3.
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Compression Quality Metrics

As mentioned above, there is a trade-off between compression efficiency

and compression quality. This thesis focuses on fingerprints left by video

compression. Therefore, our main concern is compression quality rather than

compression efficiency. In order to define quality of the compression process,

several computations metrics are defined.

C.1 Mean Square Error

Although Mean Square Error (MSE) is a well known error estimation

method for statistics field, MSE is the root of the compression quality metrics.

MSE of an estimator (predictor) means the difference between estimated

(predicted) values and true values. Infact, MSE is a risk function that can

be formed in several ways.

If X̂ is a vector of n predictions and Y is the vector of the true values,

then the MSE of predictor is:

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2 (C.1)
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It can be easily derived that the MSE of an estimator σ̂ with respect to the

unknown parameter σ is:

MSE(σ̂) = E[(σ̂ − σ)2] (C.2)

C.2 Signal To Noise Ratio

Signal to noise ratio (SNR) is measure to compare the level of desired

signal to the level of noise. SNR is commonly quoted for electrical signals.

However, it can be applied to any form of signal such as video and audio

streams.

SNR ratio is by using power ratio. Definition is given below:

SNR =
Psignal

Pnoise

(C.3)

where P is average power. Power that is used to measure signal and noise

must be equal in the system. If measurement is done across the same

impedance, then SNR becomes:

SNR =
Psignal

Pnoise

= (
Asignal

Anoise

)2 (C.4)

where A is root mean square (RMS) amplitude. Generally, signals have a wide

dynamic range, therefore, SNR is often described using logarithmic decibel

scale.

SNRdB = 10 log10(
Psignal

Pnoise

) = Psignal,dB − PnoisedB (C.5)

which is equivalently be written as

SNRdB = 10 log10(
Asignal

Anoise

)2 = 20 log1 0(
Asignal

Anoise

) (C.6)

C.3 Peak Signal To Noise Ratio

Peak Signal to Noise Ratio (PSNR) is derived from MSE and SNR. PSNR

is the ratio between the maximum possible power of a signal and power of
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background noise. PSNR is generally used to measure of quality of codecs.

Let I be the an mxn monochrome image and Î be the reconstruction of

I. Then, MSE is:

MSE =
1

mn

m−1∑
j=0

n−1∑
j=0

[I(i, j)− Î(i, j)]2 (C.7)

Then, PSNR is:

PSNR = 10 log10(
max(I)2

MSE
) = 20 log10(

max(I)√
MSE

) (C.8)

In the final form, PSNR can be simplified to form as:

PSNR = 20 log10max(I)− 10log10(MSE) (C.9)

In this thesis, PSNR is used to measure compression quality.
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Appendix D

Platforms and Tools

In the implementation phase, several tools are used. Video compression

is done by using ffmpeg and mencoder. Chain compression test are done by

using MATLAB. PSNR calculation is done by C++ code.

D.1 FFmpeg

FFmpeg is the leading multimedia framework which is able to decode,

encode, transcode, mux, demux, stream, filter and play pretty much any-

thing that humans and machines have created. It supports the most obscure

ancient formats up to the cutting edge. No matter if they were designed

by some standards committee, the community or a corporation. It contains

libavcodec, libavutil, libavformat, libavdevice, libswscale and libswresample

which can be used by applications. As well as ffmpeg, ffserver, ffplay and

ffprobe which can be used by end users for transcoding, streaming and play-

ing.

The FFmpeg project tries to provide the best technically possible solution

for developers of applications and end users alike. To achieve this, FFmpeg

combines the best free software options available. FFmpeg keeps the depen-

dencies on other libs low and maximizes code sharing between parts of itself.

FFmpeg provides various tools:

• ffmpeg: Command line tool to convert multimedia files between for-
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mats.

• ffserver: Multimedia streaming server for live broadcasts.

• ffplay: Simple media player based on SDL and the FFmpeg libraries.

• ffprobe: Simple multimedia stream analyzer.

and developer libraries:

• libavutil: Library containing functions for simplifying programming,

including random number generators, data structures, mathematics

routines, core multimedia utilities, and much more.

• libavcodec: Library containing decoders and encoders for audio/video

codecs.

• libavformat: Library containing demuxers and muxers for multimedia

container formats.

• libavdevice: Library containing input and output devices for grab-

bing from and rendering to many common multimedia input/output

software frameworks, including Video4Linux, Video4Linux2, VfW, and

ALSA.

• libavfilter: Library containing media filters.

• libswscale: Library performing highly optimized image scaling and

color space/pixel format conversion operations.

• libswresample: Library performing highly optimized audio resampling,

rematrixing and sample format conversion operations.

D.2 MEncoder

MEncoder (MPlayer’s Movie Encoder) is a simple movie encoder, de-

signed to encode MPlayer playable movies (e.g. AVI, DVD, VCD, MPG,

MOV etc.) to other MPlayer playable formats. It can encode with various
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codecs, like MPEG-4 (DivX4) (one or two passes), libavcodec, PCM/MP3/VBR

MP3 audio.

MEncoder features

• Encoding from the wide range of file formats and decoders of MPlayer.

• Encoding to all the codecs of FFmpeg’s libavcodec.

• Video encoding from V4L compatible TV tuners.

• Encoding/multiplexing to interleaved AVI files with proper index.

• Creating files from external audio stream.

• 1, 2 or 3 pass encoding.

• VBR MP3 audio.

• PCM audio.

• Stream copying.

• Input A/V synchronizing (pts-based, can be disabled with -mc 0 op-

tion)

• Fps correction with -ofps option (useful when encoding 30000/1001 fps

VOB to 24000/1001 fps AVI)

• Using our very powerful filter system (crop, expand, flip, postprocess,

rotate, scale, RGB/YUV conversion)

• Can encode DVD/VOBsub and text subtitles into the output file.

• Can rip DVD subtitles to VOBsub format.
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D.3 MATLAB

MATLAB (MATrix LABoratory) is a high-level language and interactive

environment for numerical computation, visualization, and programming.

MATLAB is used to analyze data, develop algorithms, and create models

and applications. The language, tools, and built-in math functions enables

to explore multiple approaches and reach a solution faster than with spread-

sheets or traditional programming languages, such as C/C++ or Java.

MATLAB can be used for a range of applications, including signal pro-

cessing and communications, image and video processing, control systems,

test and measurement, computational finance, and computational biology.

More than a million engineers and scientists in industry and academia use

MATLAB, the language of technical computing.

D.4 C++

C++ is a statically typed, free-form, multi-paradigm, compiled, general-

purpose programming language.C++ is developed by Bjarne Stroustrup who

is a Danish computer scientist. Bjarne Stroustrup added object oriented

approach, such as classes, and other enhancements to the C programming

language.

C++ is used by hundreds of thousands of programmers in essentially ev-

ery application domain. This use is supported by about a dozen independent

implementations, hundreds of libraries, hundreds of textbooks, several tech-

nical journals, many conferences, and innumerable consultants. Training and

education at a variety of levels are widely available.

Early applications tended to have a strong systems programming flavor.

For example, several major operating systems have been written in C++ and

many more have key parts done in C++. It is considered uncompromising

low-level efficiency essential for C++. This allows to use C++ to write de-

vice drivers and other software that rely on direct manipulation of hardware

under real-time constraints. In such code, predictability of performance is at

least as important as raw speed. Often, so is compactness of the resulting
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system. C++ was designed so that every language feature is usable in code

under severe time and space constraints[42].


