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Abstract

WE propose an innovative method for the accurate estimation of surfaces and
spatial fields when a prior knowledge on the phenomenon under study is
available. The prior knowledge included in the model derives from physics,

physiology or mechanics of the problem at hand, and is formalized in terms of a partial
differential equation governing the phenomenon behavior, as well as conditions that the
phenomenon has to satisfy at the boundary of the problem domain. The proposed mod-
els exploit advanced scientific computing techniques and specifically make use of the
Finite Element method. The estimators have a typical penalized regression form and the
usual inferential tools are derived. Both the pointwise and the areal data frameworks
are considered. The method is also extended to model dynamic surfaces evolving in
time. The driving application concerns the estimation of the blood-flow velocity field
in a section of a carotid artery, using data provided by echo-color doppler; this applied
problem arises within a research project that aims at studying atherosclerosis pathogen-
esis.
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Introduction

In this thesis we propose a novel non-parametric regression technique for surfaces and
spatial fields estimation, able to include a prior knowledge on the shape of the surface
or field and to comply with complex conditions at the boundary of the problem do-
main. The proposed technique is particularly well suited for applications in physics,
engineering, biomedicine, etc., where a prior knowledge on the bidimensional or three-
dimensional field might be available from physical principles and should be taken into
account in the field estimation or smoothing process. We consider in particular phenom-
ena where the field can be described by a partial differential equation (PDE) and has
to satisfy some known boundary conditions. Specifically we focus on phenomena that
are well described by linear second order elliptic PDEs, typically transport-reaction-
diffusion problems.

Spatial Regression with PDE penalization (SR-PDE) uses a functional data analysis
approach (see, e.g., [30] and [13]) and generalizes classical spatial smoothing tech-
niques, such as thin-plate splines. We propose, in fact, to estimate the surface or the
field minimizing a penalized least square functional, with the roughness penalty in-
volving the PDE governing the phenomenon. The proposed methodology allows for
important modeling flexibility, accounting for space anisotropy and non-stationarity in
a straightforward way, as well as unidirectional smoothing effects. SR-PDE has very
broad applicability since PDEs are commonly used to describe phenomena behavior
in many fields of physics, mechanics, biology and engineering. In particular the mo-
tivating applied problem concerns the estimation of the blood-flow velocity field on
a cross-section of an artery, using data provided by echo-color doppler acquisitions.
This study is carried out within the project MAthematichs for CARotid ENdarterectomy
@ MOX (MACAREN@MOX), which involves clinicians from Ca’ Granda Ospedale
Maggiore Policlinico in Milano, statisticians, numerical analysis and image processing
scientists from MOX Laboratory for Modeling and Scientific Computing, Politecnico
di Milano, and numerical analysis scientists from Università degli studi di Bergamo and
École Polytechnique Fédérale de Lausanne. Principal Investigator of the project is Dr.
Christian Vergara.

Many methods for surface estimation define the estimate as the minimizer of a pe-
nalized sum-of-square-error functional, with the penalty term involving a simple partial

1
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Introduction

differential operator. Thin-plate spline smoothing, for example, penalizes an energy
functional in R2 that involves second order derivatives, i.e.,∫

R2

(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

. (1)

The minimizer of this functional belongs to the linear space generated by the Green’s
functions associated to the bilaplacian (see [36] for details). Thin-plate spline smooth-
ing has been first extended to the case of bounded domains in [33], where the thin-plate
energy (1) is computed only over the bounded domain of interest. Since the minimizer
cannot be directly characterized, it is approximated by a surface in the space of tensor
product B-splines.
Recently, more complex smoothing methods have been developed, dealing with gen-
eral bounded domains in R2 and general boundary conditions. Some examples are the
spatial functional regression models introduced in [17], Soap-Film Smoothing (SOAP),
described in [38] and extended to the time dimension in [1, 24], and the Spatial Spline
Regression models (SSR) described in [32], which generalize the Finite Element L-
splines introduced in [31]. All these methods estimate bidimensional surfaces on com-
plex bounded domains penalizing a simple differential operator. The spatial models
proposed in [17], in particular, consider a regularizing term that involves a linear com-
bination of all the partial derivatives up to a chosen order r. These models employ bi-
variate splines over triangulations (see, e.g., [21]), which provide a basis for piecewise-
polynomial surfaces, to solve the estimation problem.
On the other hand both soap-film smoothing and spatial spline regression models es-
timate bidimensional surfaces penalizing, on the domain of interest Ω, the Laplace
operator of the surface as a measure of the local curvature, i.e.,∫

Ω

(
∂2f

∂x2
+
∂2f

∂y2

)2

.

Soap-film smoothing approximates the minimizer of the penalized least square func-
tional with a linear combination of Green’s functions of the bilaplacian on the domain
of interest, centered on the vertices of a lattice. Finite Element L-splines and spatial
spline regression models solve instead directly the PDE associated to the penalized
least square functional by means of the Finite Element method, which provides a basis
for piecewise polynomial surfaces.
Finally, SR-PDE have also strong connections with the method proposed in [22] where
Gaussian fields and Gaussian Markov random fields are linked via a stochastic partial
differential equation that induces a Matérn covariance. This method resort to the Finite
Element method to solve partial differential equations over irregular grids of points.

Following the approach presented in [31] and [32], we propose to estimate the field
minimizing a least square functional penalized with a roughness term that involves,
instead of the simple Laplacian, a more general PDE modeling the phenomenon Lf =
u, i.e., ∫

Ω

(Lf − u)2 .

This approach is similar to the one used in control theory when a distributed control is
considered; see for example [23].

2
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Likewise in [31] and [32], SR-PDE exploits advanced numerical analysis techniques
and, specifically, it makes use of the Finite Element method. In particular for the dis-
cretization of the estimation problem we resort to a mixed equal order Finite Element
method, similar to classical mixed methods for the discretization of fourth order prob-
lems (see, e.g., [6]). The proposed mixed method provides a good approximation of the
field but also of its first and second order derivatives that can be useful in order to com-
pute physical quantities of interest. The resulting estimators have a typical penalized re-
gression form, they are linear in the observed data values and classical inferential tools
can be derived. SR-PDE is currently implemented in R [28] and in FreeFem++ [26].

The smoothing technique is also extended to the case of areal data, i.e., data that
represent quantities computed on some subdomains, particularly interesting in many
applications and specifically in the velocity field estimation problem from echo-doppler
acquisitions. The data represent, in fact, the mean velocity of blood computed on some
subdomains located on the considered artery section.

Finally the time dependence could also be introduced in SR-PDE models, in order
to deal with data depending both on space and time. This extension allows to estimate
time evolving surfaces, particularly interesting in the velocity field application in order
to study how the velocity field evolves during a heartbeat. To estimate dynamic surfaces
we propose to minimize a least square functional penalized with the misfit of a time
dependent PDE that models the phenomenon of interest.

In Chapter 1 the motivating problem leading the study is detailed and SR-PDE is de-
scribed. The model for pointwise and areal data is derived and the surface estimator is
obtained in both the frameworks. The discretization of the surface estimator by means
of the mixed Finite Element method is introduced and, thanks to its linearity, the distri-
butional properties of the estimator are derived. SR-PDE is then compared to standard
SSR and SOAP in different simulation settings with data distributed uniformly on the
domain or only on some subregions. The simulation studies show that the inclusion
of the prior knowledge on the shape of the surface improves significantly its estimate.
Finally the results obtained in the velocity field estimation using SR-PDE smoothing
are shown.

In Chapter 2 the technical assumptions made in SR-PDE models and the proofs
of the existence and uniqueness of the surface estimator are detailed. The mixed Fi-
nite Element method for the discretization of the estimation problem is derived and its
well posedness is proved. The mean of the Finite Element estimator is proved to be
convergent, with an optimal convergence rate, to the true underlying surface when the
characteristic size associated to the Finite Element basis goes to zero. The theoretical
results are confirmed by numerical experiments. The properties of the estimator in the
areal setting are obtained along the same line followed in the pointwise framework.

In Chapter 3 SR-PDE models are extended in order to deal with data dependent
on space and time. The results of existence and uniqueness of the surface estimator,
presented in Chapters 1 and 2, are extended to the case of time dependent PDEs. The
discretization of the dynamic surface estimator by means of the Finite Element method
and the Finite Difference method is derived. Finally the results obtained in a toy exam-
ple and in the velocity field estimation using time-dependent SR-PDE are shown.

In Chapter 3.7 future research directions are presented.

3
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CHAPTER1
Spatial regression with PDE penalization

1.1 Introduction

In this chapter we describe Spatial Regression with PDE penalization (SR-PDE) that is
a non-parametric regression technique for surface estimation on bounded and complex
domains. This method includes a prior knowledge on the shape of the surface described
in terms of a PDE governing the phenomenon under study.

This technique has been developed within the project MACAREN@MOX in order
to estimate, from echo-color doppler acquisitions, the velocity field of the blood on a
cross-section of the common carotid artery. The anatomy of the carotid artery is shown
in Figure 1.1. The MACAREN@MOX project gathers researchers from different math-
ematical fields and medical doctors in cardiac surgery with the aim of investigating the
pathogenesis of atherosclerosis in human carotids. The project intends specifically to

Figure 1.1: Anatomy of the carotid artery.

5
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Chapter 1. Spatial regression with PDE penalization

study the role of blood fluid-dynamics and vessel morphology on the formation process
and histological properties of atherosclerotic plaques. Interactions between the hemo-
dynamics and atherosclerotic plaques have been highlighted for instance in [25] via
numerical simulations of the blood flow on real patient-specific vessel morphologies.

Figure 1.2: High grade stenosis (>70%) in the internal carotid artery.

The data collected within the project include: Echo-Color Doppler (ECD) measure-
ments of blood flow at a cross-section of the common carotid artery (CCA), 2 cm before
the carotid bifurcation, for patients affected by high grade stenosis (>70%) in the in-
ternal carotid artery (ICA), as shown in Figure 1.2; the reconstruction of the shape of
this cross-section obtained via segmentation of Magnetic Resonance Imaging (MRI)
data. The first phase of the project requires the estimation, starting from these data,
of the blood-flow velocity fields in the considered carotid section. These estimates are
first of all of interest to the medical doctors, as they highlight relevant features of the
blood flow, such as the eccentricity and the asymmetry of the flow or the reversion of
the fluxes, which could have an impact on the pathology. Moreover, they will enable
a population study that explores quantitatively the relationship between the blood-flow
and the atherosclerosis. Finally, the estimated blood velocity fields will also be used
as patient-specific and physiological inflow conditions for hemodynamics simulations,
that in turns aim at further enhancing the knowledge on this relationship.

Figure 1.3: Carotid echo-color doppler scan.

6
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1.1. Introduction

Figure 1.4: Echo-color doppler image corresponding to the central point of the carotid section located
2 cm before the carotid bifurcation.

Carotid Echo-Color Doppler is a medical imaging procedure, shown in Figure 1.3,
that uses reflected ultrasound waves to create images of an artery and to measure the
velocity of blood cells in some locations within the artery. This technique does not re-
quire the use of contrast media or ionizing radiation and has relative low costs. Thanks
to this complete non-invasivity and also to the short acquisition time required, ECD
scans are largely used in clinics, even though they provide a less rich and noisier in-
formation than other diagnostic devices, such as phase contrast magnetic resonance
imaging. Figure 1.4 shows one of the ECD images used in the study. The ultrasounds
image in the upper part of the figure represents the longitudinal section of the vessel.
It also shows by a small gray box the position of the beam where blood particle ve-
locities, in the longitudinal direction of the vessel, are measured; the dimension of the

Figure 1.5: Graphical display of the echo doppler signal.

7
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Chapter 1. Spatial regression with PDE penalization

box relates to the dimension of the beam. In the case considered in this picture, the
acquisition beam is located in the center of the considered cross-section of the artery.
The lower part of the ECD image is a graphical display of the acquired velocity signal
during the time lapse of about four heart beats. This signal represents the histogram of
the measured velocities, evolving in time. More precisely, as shown in Figure 1.5, the
x-axis represents time and the y-axis represents velocity classes; for any fixed time, the
gray-scaled intensity of pixels is proportional to the number of blood-cells in the beam
moving at a certain velocity. For the purpose of this thesis, we shall consider a fixed
time instant corresponding to the systolic peak, which is of crucial clinical interest.
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Figure 1.6: MRI reconstruction of the cross-section of the carotid artery located 2 cm before the bifur-
cation; cross-shaped pattern of observations with each beam colored according to the mean blood-
velocity measured on the beam at systolic peak time.

Figure 1.6 shows the reconstruction from MRI data of the considered cross-section
of the carotid artery; it also displays the spatial location of the beams inspected in
the ECD scan. In particular, during the ECD scan 7 beams are considered, located
in a cross-shaped pattern; this unusual pattern is a compromise decided together with
clinicians in order to obtain as many observations as possible in the short time dedicated
to the acquisition. In the figure each beam is colored according to the value of the mean
velocity registered within the beam at the fixed time instant considered, the systolic
peak.

In this applied problem we have a prior knowledge on the phenomenon under study
that could be exploited to derive accurate physiological estimates. There is in fact a
vast literature devoted to the study of fluid dynamics and hemodynamics, see for ex-
ample [14] and references therein. Firstly, the physics of the problem implies that the
blood-flow velocity is zero at the arterial wall, due to the friction between blood cells
and the arterial wall; these conditions, called no-slip boundary conditions, have to be
imposed in the surface estimation in order to obtain physiological results. For what
concerns the shape of the surface, it suffices to know that the theoretical solution of
a stationary velocity field in a straight pipe with circular section has a parabolic pro-
file. In our application, during the systolic phase, we hence expect to obtain a velocity

8
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1.2. Spatial Regression with PDE penalization for pointwise data

field similar in shape to a parabolic profile, with isolines resembling circles. Notice
that the real blood velocity field is not perfectly parabolic due to the curvature of the
artery, the non-stationarity of the blood flow and the imperfect circularity of the artery
section. For this reason, imposing a parametric model that forces a parabolic estimate
would not be appropriate; such model would for instance completely miss asymme-
tries and eccentricities of the flow. Nevertheless, this prior information concerning the
shape of the field, which can be conveniently translated into a Partial Differential Equa-
tion (PDE), could be incorporated in a non-parametric model, along with the desired
boundary conditions.

Classical non-parametric methods for surface estimation as thin-plate splines, tensor
product splines, kernel smoothing, wavelet-based smoothing and kriging, do not natu-
rally include information on the shape of the domain and on the value of the surface
at the boundary, although it is possible to enforce such boundary conditions for exam-
ple with binning. Recently, some methods have been proposed where the shape of the
domain and the boundary conditions are instead directly specified in the model. For
instance, Finite Element L-splines described in [31] account explicitly for the shape
of the domain, efficiently dealing with irregular shaped domains; soap-film smoothing
(SOAP), described in [38], considers both the shape of the domain and some com-
mon types of boundary conditions; Spatial Spline Regression (SSR), presented in [32],
extends [31] and includes general boundary conditions. The methods in [31], [38]
and [32] are penalized regression methods with a roughness term involving the Lapla-
cian of the field, the Laplacian being a simple form of partial differential operator that
provides a measure of the local curvature of the field. Although being able to account
for the shape of the domain and to comply with the required boundary conditions,
these methods do not provide physiological estimates of the velocity field. For this rea-
son, extending [31] and [32], we develop a non-parametric method that includes in the
model the prior information on the phenomenon under study, formalized in terms of a
governing PDE. Specifically, SR-PDE features a roughness term that involves, instead
of the simple Laplacian, a more general PDE modeling the phenomenon.

The chapter is organized as follows. Section 1.2 introduces SR-PDE for pointwise
observations. Section 1.3 extends the models to the case of areal data, which is of in-
terest in the analysis of ECD measurements here considered. Section 1.4 describes the
Finite Element solution to the estimation problem and derives the inferential properties
of the estimators. Section 1.5 deals with general boundary conditions. Section 1.6 com-
pares SR-PDE to standard SSR and to SOAP in different simulation settings, with data
distributed uniformly on the domain or only on some subregions, showing that the in-
clusion of the prior knowledge on the phenomenon behavior improves significantly the
estimates. Section 1.7 presents the application within the MACAREN@MOX project:
details on the ECD acquisitions are given and the results obtained with SR-PDE are
shown.

1.2 Spatial Regression with PDE penalization for pointwise data

Consider a bounded and regular domain Ω ⊂ R2, whose boundary ∂Ω is a curve of
class C2, and n observations zi, for i = 1, . . . , n, located at points pi = (xi, yi) ∈ Ω.
Assume the model

zi = f0(pi) + εi (1.1)

9
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Chapter 1. Spatial regression with PDE penalization

where εi, i = 1, . . . , n, are independent errors with zero mean and constant variance
σ2, and f0 : Ω→ R is the surface or spatial field to be estimated. In our application, Ω
will be the carotid cross-section of interest, the observations zi will represent the blood
particles velocities measured by ECD in the longitudinal direction of the artery (i.e., in
the orthogonal direction to Ω) and the surface f0 will represent the longitudinal velocity
field on the carotid cross-section.

Assume that a problem specific prior information is available, that can be described
in terms of a PDE, Lf0 = u, modeling to some extent the phenomenon under study;
moreover, the prior knowledge could also concern possible conditions that f0 has to
satisfy at the boundary ∂Ω of the problem domain. Generalizing the models in [31]
and [32], we propose to estimate f0 by minimizing the penalized sum-of-square-error
functional

J(f) =
n∑
i=1

(f(pi)− zi)2 + λ

∫
Ω

(
Lf(p)− u(x)

)2
dx (1.2)

with respect to f ∈ V , where V is the space of functions in L2 (Ω) with first and second
derivatives in L2 (Ω), that satisfy the required boundary conditions (b.c.). The penal-
ized error functional hence trades off a data fitting criterion, the sum-of-square-error,
and a model fitting criterion, that penalizes departures from a PDE problem-specific de-
scription of the phenomenon. In particular, we consider here phenomena that are well
described in terms of linear second order elliptic operators L (with smooth and bounded
parameters) and forcing term u ∈ L2(Ω) that can be either u = 0, homogeneous case,
or u 6= 0, non-homogeneous case. The operator L can include second order differential
operators as the divergence of the gradient (div∇f ), first order differential operators as
the gradient (∇f ) and also the identity (f ); the general form that we consider is

Lf = −div(K∇f) + b · ∇f + cf (1.3)

where the symmetric and positive definite matrix K ∈ R2×2 is the diffusion tensor,
b ∈ R2 is the transport vector and c ≥ 0 is the reaction term. Setting K = I, b = 0,
c = 0 and u = 0 we obtain the special case described in [31] and [32], where the
Laplacian ∆f is penalized, thus controlling the local curvature of f .

The three terms that compose the general second order operator (1.3) provide dif-
ferent smoothing effects. The diffusion term −div(K∇f) induces a smoothing in all
the directions; if the diffusion matrix K is a multiple of the identity the diffusion term
has an isotropic smoothing effect, otherwise it implies an anisotropic smoothing with a
preferential direction that corresponds to the first eigenvector of the diffusion tensor K.
The degree of anisotropy induced by the diffusion tensor K is controlled by the ratio
between its first and second eigenvalue. It’s possible to visualize the diffusion term as
the quadratic form in R2 induced by the tensor K−1. On the contrary the transport term
b · ∇f induces a smoothing only in the direction specified by the transport vector b.
Finally, the reaction term cf has instead a shrinkage effect, since penalization of the L2

norm of f induces a shrinkage of the surface to zero.
The parameters of the PDE can be space-varying on Ω; i.e., K = K(x, y), b =

b(x, y) and c = c(x, y). This feature is fundamental to translate the a priori information
on the phenomenon. For instance, in the blood flow velocity application, the problem
specific prior information can be described via a differential operator that includes: a

10
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1.2. Spatial Regression with PDE penalization for pointwise data
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Figure 1.7: Left: diffusion tensor field K, used in the velocity field application, that smooths the obser-
vations in the tangential direction of concentric circles. Right: transport field b, used in the velocity
field application, that smooths the observations in the radial direction, from the center of the section
to the boundary.

space varying anisotropic diffusion tensor that smooths the observations in the tangen-
tial direction of concentric circles (see Figure 1.7 Left); a transport field that smooths
the observations in the radial direction, from the center of the section to the boundary
(see Figure 1.7 Right). The reaction term is instead not required in this application.
Notice that the space-varying parameters need to satisfy some regularity conditions to
ensure that the estimation problem is well-posed, see [12] for details. The functional
J(f) is in fact well defined if f ∈ V since V ⊂ H2(Ω) ⊂ C(Ω̄) if Ω ⊂ R2 and the
misfit of the PDE is square integrable.

We can impose different types of boundary conditions, homogeneous or not, that
involve the evaluation of the function and/or its first derivative at the boundary, allow-
ing for a complex modeling of the behavior of the surface at the boundary ∂Ω of the
domain. For ease of notation we consider in the following the simple case of homoge-
neous Dirichlet b.c., which involve the value of the function at the boundary, clamping
it to zero, i.e., f |∂Ω = 0. These boundary conditions correspond to the physiologi-
cal no-slip conditions needed in the ECD application; the blood cells have in fact zero
longitudinal velocity near the arterial wall due to friction between the particles and the
arterial wall. In Section 1.5 we extend all the results presented in this section to the
case of more general non-homogeneous boundary conditions that can also involve first
derivatives. In this thesis the boundary conditions are directly included in the space V ;
in the case of Dirichlet homogeneous b.c., V is the space of functions in L2 (Ω) with
first and second derivatives in L2 (Ω) and zero value at the boundary ∂Ω.

To lighten the notation, surface integrals will be written without the integration vari-
able x; unless differently specified, the integrals are computed with respect of the
Lebesgue measure, i.e.,

∫
D
q =

∫
D
q(x)dx, for any D ⊆ R and integrable function

q.
All the results presented can also be extended to include space-varying covariate

information, following the semi-parametric approach described in [32].

11
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Chapter 1. Spatial regression with PDE penalization

1.2.1 Solution to the estimation problem

The estimation problem can be formulated as follows.

Problem 1. Find f̂ ∈ V such that

f̂ = argmin
f∈V

J(f).

Existence and uniqueness of the surface estimator f̂ are established in the following
proposition.

Proposition 1. Under suitable regularity conditions for L, the solution of Problem 1
exists and is unique. The surface estimator f̂ is obtained by solving:{

Lf̂ = u+ ĝ in Ω

f̂ = 0 on ∂Ω

{
L∗ĝ = − 1

λ

∑n
i=1(f̂ − zi)δpi

in Ω

ĝ = 0 on ∂Ω
(1.4)

where ĝ ∈ L2 (Ω) represents the misfit of the penalized PDE, i.e., ĝ = Lf̂ −u, L∗ is the
adjoint operator of L, i.e., is such that

∫
Ω
Lϕψ =

∫
Ω
ϕL∗ψ ∀ϕ, ψ ∈ V , and is defined

as
L∗ĝ = −div(K∇ĝ)− b · ∇ĝ + (c− div(b))ĝ. (1.5)

The proof of Proposition 1 is based on PDE optimal control theory (see, e.g., [23])
and is detailed in Chapter 2, where the regularity conditions required on the parame-
ters of the PDE are also specified; the proof takes into account also the more general
boundary conditions described in Section 1.5.

1.3 Spatial Regression with PDE penalization for areal data

We here extend the surface smoothing method presented in the previous Section to the
case of areal data, a setting common in many applications, including the one driving
our study.

Let Di ⊂ Ω, for i = 1, . . . , N , be some subdomains where we have observations
and zij , for j = 1, . . . , ni, be the observations located at point pij ∈ Di. For the
observations zij , we consider the pointwise model (1.1), i.e.,

zij = f0(pij) + εij (1.6)

where εij , for i = 1, . . . , N and j = 1, . . . , ni, are independent errors with zero mean
and constant variance σ2.

In the blood flow velocity application, the location points pij are unknown, the only
available information being that pij ∈ Di, where Di is the i-th ECD acquisition beam.
We may assume that the location points pij are distributed over the subdomains accord-
ing to a global uniform distribution over Ω and that the subdomains are not overlapping.
For each beam Di, the ECD signal (Figure 1.4) provides, at a fixed time, a histogram of
the measured blood particle velocities. We summarize the information carried by the
histogram by its mean value. Specifically, let z̄i be the mean value of the observations

12
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1.3. Spatial Regression with PDE penalization for areal data

on the subdomain Di, for i = 1, . . . , N . From (1.6), we can derive the following model
for this variable:

z̄i =
1

ni

ni∑
j=1

f0(pij) +
1

ni

ni∑
j=1

εij

where ζi =
∑ni

j=1 εij/ni, i = 1, . . . , N , are errors with zero mean and variance σ2/ni.
The quantity

∑ni

j=1 f0(pij)/ni is the Monte Carlo approximation of E [f0(P )|P ∈
Di] and the latter is in turn equal to the spatial average of the surface on the subdomain
Di, under the assumption of uniformly distributed observation points, i.e.,

1

ni

ni∑
j=1

f0(pij) ≈ E [f0(P )|P ∈ Di] =
1

|Di|

∫
Di

f0.

We may thus consider the following model:

z̄i =
1

|Di|

∫
Di

f0 + ηi (1.7)

where the error terms ηi have zero mean and variances σ̄2
i inversely proportional to

the dimension of the beams Di; this assumption on the variances is coherent with the
assumption on location points being distributed on the subdomains according to a uni-
form distribution (so that in fact the average number of observations on each subdomain
is proportional to the dimension of the subdomain). If the subdomains have the same
dimension, as it is in fact the case in our application, this simplifies to variances all
equal to σ̄2.

In order to estimate the surface we hence propose to minimize the penalized sum-
of-square-error functional

J̄(f) =
N∑
i=1

1

|Di|

(∫
Di

(f − z̄i)
)2

+ λ

∫
Ω

(Lf − u)2 (1.8)

with respect to f ∈ V . The first term is now a weighted least-square-error functional
for areal data on the subdomains Di, where the weights are in fact equal to the inverse
of the variances σ̄2

i , being σ̄2
i ∝ 1/ |Di|. Notice that the functional (1.8) mixes two

different kinds of information: the data provide information only on the areal means
of the surface f over the subdomains, while the roughness penalty translates the prior
knowledge directly on the shape of f .

1.3.1 Solution to the estimation problem

The estimation problem can be formulated as follows.

Problem 2. Find f̂ ∈ V such that

f̂ = argmin
f∈V

J̄(f).

Existence and uniqueness of the surface estimator f̂ are provided by the following
proposition.

13
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Chapter 1. Spatial regression with PDE penalization

Proposition 2. Under suitable regularity conditions for L, the solution of Problem
2 exists and is unique. The surface estimator f̂ is obtained by solving the following
system:{

Lf̂ = u+ ĝ in Ω

f̂ = 0 on ∂Ω

{
L∗ĝ = − 1

λ

∑N
i=1

1
|Di|IDi

∫
Di

(f̂ − z̄i) in Ω

ĝ = 0 on ∂Ω
(1.9)

where ĝ ∈ L2 (Ω) represents the misfit of the PDE penalized, i.e., ĝ = Lf̂ − u, and L∗

is the adjoint operator of L.

The proof is similar to the one of Proposition 1 and is detailed in Chapter 2.

Remark 1. All the results presented in this section can be extended to the case of
location points distributed on the subdomains according to a general known global
distribution µ over Ω, P ∼ µ. The quantity

∑ni

j=1 f0(pij)/ni is in fact, also in this
case, the Monte Carlo approximation of E [f0(P )|P ∈ Di]:

1

ni

ni∑
j=1

f0(pij) ≈ E [f0(P )|P ∈ Di] =
1

µ(Di)

∫
Di

f0(x)µ(dx).

Therefore the model for the areal mean on the subdomains becomes:

z̄i =
1

µ(Di)

∫
Di

f0(x)µ(dx) + ηi.

Under the assumption of non overlapping subdomains, the errors ηi have zero mean
and variances inversely proportional to µ(Di), which is the probability of sampling a
point in the subdomain Di. The surface estimator f̂ can be obtained minimizing the
weighted least square functional

J̄µ(f) =
N∑
i=1

1

µ(Di)

(∫
Di

(f(x)− z̄i)µ(dx)

)2

+ λ

∫
Ω

(Lf − u)2

with respect to f ∈ V . The weights in the least square term are proportional to the
inverse of Var(z̄i), being Var(z̄i) ∝ 1/µ(Di).

1.4 Finite Element estimator and its distributional properties

The surface estimation problems in the pointwise and areal data frameworks presented
respectively in Sections 1.2 and 1.3 are infinite dimensional problems and cannot be
solved analytically. PDEs are usually solved in a so-called weak sense and, under the
regularity conditions required in Propositions 1 and 2, the weak solution is indeed a
classical one. This weak problem (or variational problem) is naturally formulated in
the space H1

0 (Ω), which is the space of functions in L2(Ω) with first derivatives in
L2(Ω) and with f |∂Ω = 0. The weak problem is than usually discretized by means
of the Finite Element method, a standard technique used in engineering applications
to approximate PDEs (see, e.g., [27]), that provides a basis for piecewise continuous
polynomial surfaces over a triangulation of the domain of interest. The discretization

14
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of a surface by means of Finite Elements is similar to the discretization of a curve
by means of univariate splines, the latter providing a basis for piecewise polynomial
curves.

Let Th be a triangulation of the domain, where h denotes the characteristic mesh size.
Figure 1.8 Left shows the triangulation considered in the velocity field application. We
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Figure 1.8: Left: triangulation of the carotid cross-section of interest in the velocity field application.
Right: a linear Finite Element basis function on a triangulation.

consider the space V r
h of piecewise continuous polynomial functions of order r ≥ 1

over the triangulation:

V r
h =

{
v ∈ C0(Ω̄) : v|K ∈ Pr(K) ∀K ∈ Th

}
. (1.10)

Let Nh = dim(V r
h ) and denote by ψ1, . . . , ψNh

the Finite Element basis functions and
by ξ1, . . . , ξNh

the nodes associated to the Nh basis functions. Notice that the mesh
can be defined independently of the location points p1, · · · ,pn. The nodes ξ1, . . . , ξNh

correspond to the vertices of the triangulation Th, if the basis is piecewise linear, and
are a superset of the vertices when the degree of the polynomial basis is higher than
one. Figure 1.8 Right shows for example a linear Finite Element basis function on a
regular triangulation. The basis functions ψ1, . . . , ψNh

are Lagrangian, meaning that
ψk(ξl) = δξl ∀k = 1, . . . , Nh. Hence a surface f ∈ V r

h is uniquely determined by its
values at the nodes:

f(x, y) =

Nh∑
k=1

f(ξk)ψk(x, y) = ψ(x, y)T f

where
f = (f(ξ1), . . . , f(ξNh

))T

and
ψ = (ψ1, . . . , ψNh

)T .

In the following we consider only homogeneous Dirichlet b.c., for which the value
of the function at the boundary is fixed to 0. In this case we consider the Finite Element

15
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Chapter 1. Spatial regression with PDE penalization

space
V r
h,0 =

{
v ∈ C0(Ω̄) : v|∂Ω = 0 and v|K ∈ Pr(K)∀K ∈ Th

}
(1.11)

of dimensionNh,0, which only necessitates of the internal nodes of the triangulation and
the associated basis functions, whilst all boundary nodes can be discarded. In Section
1.5 we extend the results presented in this section to the case of more general boundary
conditions.

1.4.1 Pointwise estimator

In order to define the weak problem associated to the system of PDEs (1.4) we introduce
the bilinear form a(·, ·) associated to the operator L, defined as

a(f̂ , ψ) =

∫
Ω

(
K∇f̂ · ∇ψ + b · ∇f̂ψ + cf̂ψ

)
. (1.12)

The discrete version of the weak (or variational) problem is thus given by{
a(f̂h, ψh)−

∫
Ω
ĝhψh =

∫
Ω
uψh

λa(ϕh, ĝh) +
∑n

i=1 f̂h(pi)ϕh(pi) =
∑n

i=1 ziϕh(pi)
(1.13)

for all ψh, ϕh ∈ V r
h,0, where f̂h, ĝh ∈ V r

h,0. This approach allows us to write the es-

timation problem as a linear system. Define ψx =
(
∂ψ1/∂x, . . . , ∂ψNh,0

/∂x
)T and

ψy = (∂ψ1/∂y, . . . , ∂ψNh,0
/∂y)T and the matrices

R(c) =
∫

Ω
cψψT , Rx(b) =

∫
Ω

b1ψψ
T
x , Ry(b) =

∫
Ω

b2ψψ
T
y , (1.14)

Rxx(K) =
∫

Ω
K11ψxψ

T
x , Ryy(K) =

∫
Ω

K22ψyψ
T
y , (1.15)

Rxy(K) =
∫

Ω
K12(ψxψ

T
y +ψyψ

T
x ), (1.16)

where Kij and bj are the elements of the diffusion tensor matrix K and of the transport
vector b. Using this notation, the Finite Element matrix associated to the bilinear form
a(·, ·) in (1.12) is given by

A(K,b, c) = Rxx(K) + Rxy(K) + Ryy(K) + Rx(b) + Ry(b) + R(c). (1.17)

Moreover, define the vectors z = (z1, . . . , zn)T , u =
∫

Ω
uψ and the matrices

R = R(1) =

∫
Ω

ψψT (1.18)

and

Ψ =

 ψ
T (p1)

...
ψT (pn)

 (1.19)

where Ψ is the matrix of basis evaluations at the n data locations p1, · · · ,pn. The
discrete surface estimator is thus provided by the following Proposition.
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1.4. Finite Element estimator and its distributional properties

Proposition 3. The Finite Element solution f̂h of the discrete counterpart (1.13) of the
estimation Problem 1 exists, is unique and is given by f̂h = ψT f̂ where f̂ is the solution
of the linear system [

ΨTΨ λAT

A −R

][
f̂

ĝ

]
=

[
ΨTz

u

]
. (1.20)

The proof of well-posedness of the discrete problem is given in Chapter 2.

Properties of the estimator

The estimator f̂h is a linear function of the observed data values. The fitted values
ẑ = Ψf̂ can be represented as

ẑ = Sz + r (1.21)

where the smoothing matrix S ∈ Rn×n and the vector r ∈ Rn are obtained as

S = Ψ
(
ΨTΨ + λP

)−1
ΨT , (1.22)

r = Ψ
(
ΨTΨ + λP

)−1
λPA−1u. (1.23)

with P denoting the penalty matrix

P = P(K,b, c) = AT (R)−1 A. (1.24)

The smoothing matrix S has the typical form obtained in a penalized regression prob-
lem. In particular, the positive definite penalty matrix P represents the discretization of
the penalty term in (1.2). Notice that, thanks to the weak formulation of the estimation
problem, this penalty matrix does not involve the computation of second order deriva-
tives. We can show that, on the Finite Element space used to discretize the problem,
P is analogue to the penalty matrix P̃ that would be obtained as direct discretization
of the penalty term in (1.2), involving the computation of second order derivatives. Fi-
nally, the vector r is equal to zero when the penalized PDE is homogeneous (u = 0);
notice that when no specific information on the forcing term is available, it is indeed
preferable to consider homogeneous PDEs.

Remark 2. Assume for the moment that ψj are smooth functions and neglect the forcing
term u. The penalty matrix P in (1.24) can be written as

P =

∫
Ω

∫
Ω

Lψ(s)ψT (s)

[∫
Ω

ψψT

]−1

ψ(t)LψT (t)dsdt

where Lψ =
(
Lψ1, . . . , LψNh,0

)T , since Aij = a(ψj, ψi) =
∫

Ω
ψiLψj . The matrix

P̃ =
∫

Ω
LψLψT , which may instead be obtained as direct discretization of the penalty

term in (1.2), can be represented as

P̃ =

∫
Ω

∫
Ω

Lψ(s)δ(s, t)LψT (t)dsdt

using the kernel operator associated with the L2 space, δ(s, t), defined as∫
Ω

δ(s, t)q(t)dt = q(s) ∀q ∈ L2(Ω) ∩ C(Ω). (1.25)
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Chapter 1. Spatial regression with PDE penalization

From the above equations we see that P is an approximation in a weak sense of P̃. In
fact, the operator δ(s, t) is approximated, in the mixed Finite Element approach here
considered, with the projection operator

ψT (s)

[∫
Ω

ψψT

]−1

ψ(t)

that projects functions on span{ψ1, . . . , ψNh,0
}. This operator satisfies the property

(1.25) in span{ψ1, . . . , ψNh
}; in fact, if q(t) =

∑K
k=1 qkψk(t), then∫

Ω

ψT (s)

[∫
Ω

ψψT

]−1

ψ(t)q(t)dt =
K∑
k=1

qkψk(s) = q(s)

while if q /∈ span{ψ1, . . . , ψNh,0
} this operator projects the function q on span{ψ1, . . . ,

ψNh,0
}.

Thanks to the linearity of the estimator ẑ in the observations we can easily derive
its properties and obtain classical inferential tools as pointwise confidence bands and
prediction intervals (see also [32]). Let z0 = (f0(p1), . . . , f0(pn))T be the column
vector of evaluations of the true function f0 at the n data locations. Recalling that
E[z] = z0 and Cov(z) = σ2I in our model definition, we can compute the expected
value and the variance of the estimator ẑ:

E[ẑ] = Sf0 + b and Cov(ẑ) = σ2SST .

Since we are dealing with linear estimators, we can use tr(S) as a measure of the
equivalent degrees of freedom for linear estimators (see, e.g., [5, 19]). Hence we can
estimate σ2 as

σ̂2 =
1

n− tr(S)
(ẑ− z)T (ẑ− z) .

The smoothing parameter λ may be selected via Generalized Cross-Validation mini-
mizing the index

GCV (λ) =
1

n (1− tr(S)/n)2 (ẑ− z)T (ẑ− z) .

1.4.2 Areal estimator

Analogously to the case of pointwise observations, also with areal observations we can
introduce an equivalent variational formulation of the estimation problem. Specifically,
the variational problem associated to the system of PDEs (1.9) can be discretized as{

a(f̂h, ψh)−
∫

Ω
ĝhψh =

∫
Ω
uψh

λa(ϕh, ĝh) +
∑N

i=1
1
|Di|

∫
Di
f̂h
∫
Di
ϕh =

∑N
i=1 z̄i

∫
Di
ϕh

(1.26)

for all ψh, ϕh ∈ V r
h,0, where f̂h, ĝh ∈ V r

h,0 and a(·, ·) is the bilinear form defined in
(1.12).
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Let z̄ = (z̄1, . . . , z̄N)T be the vector of mean values on subdomains Di, . . . , DN ,
and

Ψ̄ =


1
|D1|

∫
D1
ψT

...
1
|DN |

∫
DN
ψT


be the matrix of spatial means of the basis functions on the subdomains. Moreover, in-
troduce the weight matrix W = diag(|D1| , . . . , |DN |), recalling that σ̄2

i ∝ 1/ |Di|. The
existence and the uniqueness of the discrete surface estimator is stated by the following
Proposition.

Proposition 4. The Finite Element solution f̂h of the discrete counterpart of the esti-
mation Problem 2 exists, is unique and is given by f̂h = ψT f̂ where f̂ is the solution of
the linear system [

Ψ̄TWΨ̄ λAT

A −R

][
f̂

ĝ

]
=

[
Ψ̄TWz̄

u

]
. (1.27)

The proof of the proposition is detailed in Chapter 2.
Notice that even if the method provides a pointwise surface estimator f̂h, in the

areal data framework we are instead interested in the estimator of the spatial mean of
the surface on a subdomain D:

ˆ̄f (D) =
1

|D|

∫
D

f̂

The Finite Element counterpart of this estimator is defined as

ˆ̄fh (D) =
1

|D|

∫
D

f̂h = ψ̄T
D f̂

where ψ̄D = (1/ |D|
∫
D
ψ1, . . . , 1/ |D|

∫
D
ψNh,0

)T .

Properties of the estimator

The discrete surface estimator f̂h and the estimator of the spatial average on the subdo-
mains ˆ̄fh are linear in the observed data values z̄. The fitted values of the spatial aver-
age on the subdmains D1, . . . , DN are defined as ˆ̄z = Ψ̄f̂ = ( ˆ̄fh (D1) , . . . , ˆ̄fh (DN))T .
They can be represented as

ˆ̄z = S̄z̄ + r̄ (1.28)

where S̄ ∈ RN×N and r̄ ∈ RN are defined as

S̄ = Ψ̄
(
Ψ̄TWΨ̄ + λP

)−1
Ψ̄TW, (1.29)

b = Ψ̄
(
Ψ̄TWΨ̄ + λP

)−1
λPA−1u. (1.30)

From the definition of model (1.7) and the linearity of the estimator we can derive the
mean of the estimator

E
[
ˆ̄z
]

= S̄z̄0 + b̄, (1.31)
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Chapter 1. Spatial regression with PDE penalization

where [z̄0]i = 1/ |Di|
∫
Di
f0, and its covariance

Cov(ˆ̄z) = S̄ diag(σ̄2
1, . . . , σ̄

2
N) S̄T . (1.32)

It should be noticed that in the areal data framework the expected value (1.31) and the
variance (1.32) refer to the estimator of the spatial mean on a subdomain. In fact, even
though we can obtain a pointwise estimator for the surface f̂h as described in Propo-
sition 4, we cannot provide an accurate uncertainty quantification for this estimate,
because model (1.7) provides information only on the areal errors ηi. In particular, in
the considered areal framework, the variance

Cov(f̂) = ΨΨ̄−1S̄ diag(σ̄2
1, . . . , σ̄

2
N) S̄T Ψ̄−TΨT

would underestimate the real variance of f̂ .

1.5 General boundary conditions

All the results presented in Sections 1.2, 1.3 and 1.4 can be extended to the case of gen-
eral homogeneous and non-homogeneous boundary conditions involving the value of
the surface or of its first derivatives at the boundary ∂Ω, allowing for a complex mod-
eling of the phenomenon behavior at the boundary of the domain. The three classic
boundary conditions for second order PDEs are Dirichlet, Neumann and Robin con-
ditions. The Dirichlet condition controls the value of the function at the boundary,
i.e., f |∂Ω = hD, the Neumann condition concerns the value of the normal deriva-
tive of the function at the boundary, i.e., K∇f · ν|∂Ω = hN , where ν is the out-
ward unit normal vector to ∂Ω, while the Robin condition involves the value of a lin-
ear combination of first derivative and the value of the function at the boundary, i.e.,
K∇f · ν + γf |∂Ω = hR. We can also impose different boundary conditions on differ-
ent portions of the boundary that form a partition of ∂Ω. All the admissible boundary
conditions can be summarized as

f = hD on ΓD

K∇f · ν = hN on ΓN

K∇f · ν + γf = hR on ΓR

(1.33)

where hD, hN and hR have to satisfy some regularity conditions in order to obtain a
well defined functional J(f) (see, e.g., [12]).
Under (1.33), the solution of the estimation problem and of its discrete counterpart also
involve boundary terms. The space V is now the space of functions in L2(Ω) with first
and second derivatives in L2(Ω) that satisfy (1.33).
Starting with the pointwise data framework, the estimation problem with general b.c.
(1.33) is analogous to Problem 1. The unique solution of the problem, f̂ ∈ V , is
obtained by solving{

Lf̂ = u+ ĝ in Ω

+ b.c. on ∂Ω

{
L∗ĝ = − 1

λ

∑n
i=1(f̂ − zi)δpi

in Ω

+ b.c.∗ on ∂Ω
(1.34)
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1.5. General boundary conditions

where ĝ ∈ L2 (Ω) represents the misfit of the penalized PDE, L∗ is the adjoint operator
of L and b.c.∗ are the boundary conditions associated to the adjoint problem, i.e.,

g = 0 on ΓD

K∇g · ν + b · νg = 0 on ΓN

K∇g · ν + (b · ν + γ)g = 0 on ΓR.

(1.35)

Notice that these conditions are always homogeneous.
We define now the space V r

h,ΓD
of piecewise continuous polynomial functions of

degree r ≥ 1 on the domain triangulation, that vanish on ΓD, the part of the boundary
∂Ω with Dirichlet b.c. (if ΓD is not empty):

V r
h,ΓD

=
{
v ∈ C0(Ω̄) : v|ΓD

= 0 and v|τ ∈ Pr(τ ) ∀τ ∈ Th
}
.

We denote by ψ1, . . . , ψNh,ΓD
, where Nh,ΓD

= dim(V r
h,ΓD

), the Finite Element basis
functions of this space, and by ξ1, . . . , ξNh,ΓD

the associated nodes; note that the nodes
now include the internal nodes and the nodes on ΓN and ΓR. Correspondingly the
basis vector ψ = (ψ1, . . . , ψNh,ΓD

)T will now also include basis functions associated to
nodes on ΓN and ΓR.

System (1.34) is solved in a different way if the Dirichlet b.c. are homogeneous
(hD = 0) or not (hD 6= 0).

If the Dirichlet b.c. are homogeneous or there are no Dirichlet b.c. (i.e., ΓD is
empty), the discretization of the variational formulation associated to the system of
PDEs (1.34) is{

a(f̂h, ψh)−
∫

Ω
ĝhψh =

∫
Ω
uψh +

∫
ΓN
hNψh +

∫
ΓR
hRψh

λa(ϕh, ĝh) +
∑n

i=1 f̂h(pi)ϕh(pi) =
∑n

i=1 ziϕh(pi)
(1.36)

for all ψh, ϕh ∈ V r
h,ΓD

, where the bilinear form a(·, ·) is now defined as

a(f̂ , ψ) =

∫
Ω

(
K∇f̂ · ∇ψ + b · ∇f̂ψ + cf̂ψ

)
+

∫
ΓR

γf̂ψ. (1.37)

Consider the matrices (1.14)-(1.16) and the matrix Ψ of basis evaluations (1.19), with
now ψ = (ψ1, . . . , ψNh,ΓD

)T , and define the matrix

BR(γ) =

∫
ΓR

γψψT (1.38)

that represents the Robin b.c.. Using this notation, the Finite Element matrix associated
to the bilinear form a(·, ·) in (1.37) is given by

A(K,b, c) = Rxx(K)+Rxy(K)+Ryy(K)+Rx(b)+Ry(b)+R(c)+BR(γ). (1.39)

We moreover define the vectors

(hN)j =

∫
ΓN

hNψj, (hR)j =

∫
ΓR

hRψj. (1.40)
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Chapter 1. Spatial regression with PDE penalization

Proposition 5. The Finite Element solution f̂h, when the Dirichlet b.c. are homoge-
neous or when there are no Dirichlet b.c., exists, is unique and is given by f̂h = ψT f̂
where f̂ is the solution of the linear system[

ΨTΨ λAT

A −R

][
f̂

ĝ

]
=

[
ΨTz

u + hN + hR

]
(1.41)

The proof of the proposition is detailed in Chapter 2.
It should be noticed that the bilinear form in (1.37) differs from the one in (1.12)

only for the term corresponding to Robin b.c., and the same of course holds for the
Finite Element matrix (1.39) vs (1.17). All the non-homogeneous b.c. are instead in-
cluded in the forcing term of the linear system. For this reason the smoothing matrix S
depends only on the Robin b.c., while the vector r depends on all the non-homogeneous
conditions.

If there are instead non-homogeneous Dirichlet conditions (ΓD is non-empty and
hD 6= 0) we need to define a so-called lifting of the boundary conditions. We consider
in this case the space V r

h in (1.10) and denote by ψD1 , . . . , ψ
D
ND

h
the basis functions asso-

ciated to the nodes ξD1 , . . . ξ
D
ND

h
on ΓD. The problem is treated in this case by splitting

the discrete surface estimator in two parts fD,h and ŝh, with f̂h = fD,h + ŝh. The first
part fD,h ∈ span{ψD1 , . . . , ψDND

h
} satisfies the non-homogeneous Dirichlet conditions

on ΓD, i.e., fD,h(ξDi ) = hD(ξDi ) for i = 1, . . . , ND
h . The second part ŝh ∈ V r

h,ΓD
is

instead the solution, with homogeneous Dirichlet b.c., of the variational problem:{
a(ŝh, ψh)−

∫
Ω
r̂hψh =

∫
Ω
uψh +

∫
ΓN
hNψh +

∫
ΓR
hRψh − a(fD,h, ψh)

λa(ϕh, r̂h) +
∑n

i=1 ŝh(pi)ϕh(pi) =
∑n

i=1(zi − fD,h(pi))ϕh(pi)

for all ψh, ϕh ∈ V r
h,ΓD

, where r̂h is the adjoint variable associated to ŝh. This system
has an extra forcing term, with respect to system (1.36), that implicitly involves the
Dirichlet b.c. hD through the quantity fD,h.

Finally, we can analogously proceed in the areal data framework. See Chapter 2 for
details.

1.6 Simulation studies

In this Section we study the performances of the SR-PDE, comparing it to standard
SSR and to SOAP in simple simulation studies that mimic our application setting. The
domain Ω is quasi circular; the true surface f0, represented in Figure 1.9, is obtained as
a deformation of a parabolic profile using landmark registration and is equal to zero at
the boundary of the domain. Likewise for our application, we assume to have a priori
information about the shape of the field, that is known to have a quasi parabolic profile,
with almost circular isolines, and to be zero at the boundary.

Since SOAP is not currently devised to deal with areal data, we consider here point-
wise observations, with location points sampled on the whole or only on subregions of
the domain. Specifically, we consider three cases:

A. n=100 observation points p1, . . . ,pn uniformly sampled on the entire domain;

B. n=100 observation points uniformly sampled only on the first and third quadrants;
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Figure 1.9: True surface f0, with almost circular isolines and zero value at the boundary of the domain,
used for the simulation studies; the image displays the isolines (0, 0.1, . . . , 0.9, 1).

C. n=100 observation points sampled in a cross-shape pattern.

The experiment is replicated 50 times. For each study case, A, B, and C, and each
replicate: we sample the location points, p1, . . . ,pn; we sample independent errors,
ε1, . . . , εn, from a Gaussian distribution with mean 0 and standard deviation σ = 0.1;
we thus obtain observations z1, . . . , zn from model (1.1) with the true function f0 dis-
played in Figure 1.10.

The surface f̂ is estimated using three methods:

1. SR-PDE smoothing (anisotropic smoothing);

2. standard SSR (isotropic smoothing);

3. SOAP (isotropic smoothing).

For all the three methods, we impose homogeneous Dirichlet b.c., f |∂Ω = 0; for each
simulation study, each replicate and each method, the value of the smoothing parameter
λ is chosen via GCV.

The triangulation used for the SR-PDE and standard SSR estimation is a uniform
mesh on the domain, represented in Figure 1.10 Left, with approximately 100 vertices.
Both for SR-PDE and SSR we use a linear Finite Element space for the discretization
of the surface estimator.

Using SR-PDE it is possible to incorporate the prior knowledge on the shape of the
surface, that should have almost circular isolines. We can achieve this by penalizing
a PDE that smooths the surface along concentric circles; specifically we consider the
anisotropic diffusion tensor

K(x, y) =

[
y2 + κ1x

2 (κ1 − 1)xy

(κ1 − 1)xy x2 + κ1y
2

]
+ κ2

(
R2 − x2 − y2

)
I2, (1.42)

where R denotes the largest radius in this almost circular domain (in these simulations,
R = 1) and we set κ1 = 0.01, κ2 = 0.1; this diffusion tensor is shown in the right panel

23



i
i

“thesis” — 2013/5/2 — 15:54 — page 24 — #32 i
i

i
i

i
i

Chapter 1. Spatial regression with PDE penalization

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Figure 1.10: Left: triangulation of the domain Ω used in the simulation studies for SSR and SR-PDE.
Right: diffusion tensor field K used in the simulation studies for SR-PDE.

of Figure 1.10. The first hyperparameter represents the ratio between the diffusion
in the radial and in the circular direction. The anisotropic part of the diffusion field,
which corresponds to the first term of the right-hand side of (1.42), is stronger near the
boundary and completely vanishes in the center of the carotid; instead the isotropic part,
which corresponds to the second term of the right-hand side of (1.42), vanishes near the
boundary. The relative strength of the anisotropic and isotropic part is controlled via
κ2. The transport field, the reaction term and the forcing term are set equal to zero, i.e.,
b = 0, c = 0 and u = 0.

Standard SSR instead is not able to take advantage of the specific prior knowledge
of the shape of the surface, and enforces an isotropic smoothing, corresponding to SR-
PDE with K = I, b = 0, c = 0 and u = 0.

Also SOAP produces an isotropic smoothing; this technique is implemented using
the function gam, in the R package mgcv 1.7-22, see [37], using 49 interior knots on a
lattice.

Figures 1.11-1.13 show the results obtained using the different methods in the three
considered scenarios, cases A, B and C. The upper left panel of the figures shows
location points sampled in the first replicate in each of the three different scenarios. The
top right, bottom left, bottom right panels of these Figures display the surface estimates
obtained using respectively SR-PDE, SSR and SOAP. In particular, the images display
the isolines (0, 0.1, . . . , 0.9, 1) of the surface estimates obtained in the 50 simulation
replicates; the isolines are colored using the same color scale used for the isolines of
the true function f0 in Figure 1.10.

Comparing the results obtained with the three methods we can notice that the inclu-
sion of the prior knowledge improves the estimate, especially when data are distributed
only on subregions of the domain. We can in fact see that in the three case studies
the surfaces estimated with SR-PDE smoothing have circular isolines similar to those
of the true surface f0. Instead, when the prior knowledge is not included in the model,
i.e., for standard SSR and SOAP, the surface estimates tend to depend on the design
of the experiments. We notice in fact that the isolines of SSR and SOAP estimates are
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Figure 1.11: Top left: location points sampled in the first replicate for case A. Top right, bottom left,
bottom right: surface estimates obtained using respectively SR-PDE, SSR and SOAP; the images dis-
play the isolines (0, 0.1, . . . , 0.9, 1) of the surface estimates obtained in the 50 simulation replicates;
the isolines are colored using the same color scale used for the isolines of the true function f0 in
Figure 1.10.
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Figure 1.12: Top left: location points sampled in the first replicate for case B. Top right, bottom left,
bottom right: surface estimates obtained using respectively SR-PDE, SSR and SOAP; the images dis-
play the isolines (0, 0.1, . . . , 0.9, 1) of the surface estimates obtained in the 50 simulation replicates;
the isolines are colored using the same color scale used for the isolines of the true function f0 in
Figure 1.10.
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Figure 1.13: Top left: location points sampled in the first replicate for case C. Top right, bottom left,
bottom right: surface estimates obtained using respectively SR-PDE, SSR and SOAP; the images dis-
play the isolines (0, 0.1, . . . , 0.9, 1) of the surface estimates obtained in the 50 simulation replicates;
the isolines are colored using the same color scale used for the isolines of the true function f0 in
Figure 1.10.
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Chapter 1. Spatial regression with PDE penalization

similar to ellipses in case B and to rhomboids in case C, instead of circles. This is due
to the fact that both methods tend to fit planes in those areas where no observations
are available. This phenomenon is more apparent with SSR than with SOAP because
SOAP estimates have an higher variability.

Figure 1.14 shows the comparison of the three methods in terms of root mean square
error (RMSE) of the corresponding estimators, with the RMSE evaluated on a fine
lattice of step 0.01 over the domain Ω. The boxplots highlight that incorporation of
the prior knowledge on the shape of the surface leads to a large improvement in the
estimation. SR-PDE smoothing provides in fact significantly better estimates of f0 than
the other two methods. The boxplots also show that SR-PDE estimates display lower

S
R

−
P

D
E

S
S

R

S
O

A
P

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

CASE A

R
M

S
E

S
R

−
P

D
E

S
S

R

S
O

A
P

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

CASE B

R
M

S
E

S
R

−
P

D
E

S
S

R

S
O

A
P

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

CASE C

R
M

S
E

Figure 1.14: Boxplot of RMSE (evaluated on a fine lattice of step 0.01 over the domain Ω) for SR-PDE,
SSR and SOAP estimators, in case studies A, B and C (left, central and right panel, respectively).

variability than SSR and SOAP estimates. This phenomenon is also visible from the
isolines of the estimated surfaces with SR-PDE, SSR and SOAP represented in Figures
1.11-1.13.

1.7 Application to the blood-flow velocity field estimation

Carotid ECD is usually the first imaging procedure used to diagnose carotid artery dis-
eases, such as ischemic stroke, caused by the presence of an atherosclerotic plaque.
ECD data in our study have been collected using a Diagnostic Ultrasound System
Philips iU22 (Philips Ultrasound, Bothell, U.S.A.) with a L12-5 probe. The septum
that divides the carotid bifurcation is localized and marked as a reference point. With
the help of an electronic rule, we localize the other points of acquisition of the blood
velocity; specifically, in our protocol the blood flow velocity is measured in standard
locations points, according to the cross-shaped design represented in Figure 1.6, on the
carotid cross-section located 2 cm before the reference point indicated above.

In order to estimate the systolic velocity field on this cross-section of the carotid
we minimize the functional J̄(f) defined in (1.8). As mentioned in the Section 1.1 we
know that a physiological velocity profile has smooth and almost circular isolines. For
this reason we choose to penalize a PDE that includes the space varying anisotropic
diffusion tensor shown in the left panel of Figure 1.7 and described in equation (1.42)
(where the largest section radius is R = 2.8 and we set κ1 = 0.1, κ2 = 0.2), that
smooths the observations in the tangential direction of concentric circles. Moreover,
we also know that, due to viscosity of the blood, a physiological velocity field is rather
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Figure 1.15: Estimate of the blood-flow velocity field in the carotid section with standard SSR (left) and
SR-PDE (right).

flat on the central part of the artery lumen. For this reason, we also include in the
PDE model the space varying transport field shown in the right panel of Figure 1.7,
which smooths the observations in the radial direction, from the center of the cross-
section to the boundary: b(x, y) = (βx, βy)T , where the hyperparameter β represents
the intensity of the transport field (here we set β = 0.5). This transport term in fact
penalizes high first derivatives in the radial direction, providing velocity profiles that
tend to flatten in the central part of the artery lumen. The reaction parameter and the
forcing term are not needed in this application, hence we set c = 0 and u = 0. Finally,
we know that blood flow velocity is zero at the arterial wall, due to friction between the
blood particles and the vessel wall (the above mentioned no-slip conditions) and hence
we impose homogeneous Dirichlet b.c.: f |∂Ω = 0. The problem is then discretized by
means of linear Finite Elements defined on the mesh represented in the left panel of
Figure 1.8.

Figure 1.15 displays the velocity field estimated using standard SSR (Left) and SR-
PDE (Right) smoothing. The standard SSR estimate is obtained making collapse each
beam in its central point, assuming that the ECD data are pointwise data and minimiz-
ing the functional J(f) penalized with the Laplace operator. The surface estimator is
then discretized by means of linear Finite Elements defined on the same mesh used in
the SR-PDE estimate. A visual comparison of the surface estimate obtained with the
two methods immediately highlights the advantages of the proposed technique. The
standard SSR estimate is, in fact, strongly influenced by the cross-shaped pattern of
the observations and displays strongly rhomboidal isolines, which are certainly non-
physiological; the penalization of a measure of the local curvature of the field over-
smooths and flattens the field toward a plane in those regions of the domain where no
observations are available. The SR-PDE, instead, efficiently uses the a priori infor-
mation on the phenomenon under study and returns a realistic estimate of the blood
flow, which is not affected by the cross-shaped pattern of the observations and displays
physiological almost circular isolines.

Notice that the SR-PDE estimate captures an asymmetry in the data, resulting in
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an eccentric estimate of the blood flow: the velocity peak is in fact not in the center
of the cross-section but in the lower part where higher velocities are measured. This
feature of the blood flow is indeed justified by the curvature of the carotid artery and by
the non-stationarity of the blood flow. SR-PDE estimates in fact accurately highlight
important features of the blood flow, such as eccentricity, asymmetry and reversion
of the fluxes, that are of interest to the medical doctors, in order to understand how
the local hemodynamics influences atherosclerosis pathogenesis. As mentioned in the
Introduction, MACAREN@MOX project aims in fact at exploring this relationship,
investigating how different hemodynamical patterns affect the plaque formation pro-
cess. For this reason, obtaining accurate physiological estimates of blood flow velocity
fields is a first crucial goal of the project. Indeed, the SR-PDE estimates will then be
used in populations studies that compare the blood flow velocity field in patients vs
healthy subjects, and that compare the velocity field in patients before and after the
removal of the carotid plaque via thromboendarterectomy. Notice that such population
studies involve the comparisons of estimates referred to different domains, since the
cross-sections of the carotids have of course patient-specific shapes; to face this issue
we are currently developing an appropriate registration method and these analysis will
be the object of a following dedicated work. The estimated velocity fields will also
be used as inflow conditions for the hemodynamics simulations performed using the
patient-specific carotid morphology. The prescription of suitable inflow conditions in
computational fluid-dynamics is in fact a major issue; see, e.g., [35]. Moreover, the
computation of the variance of the surface estimator will also be used to investigate
the sensitivity of these simulations to the specified inflow conditions and will provide
some understanding on how their misspecification affects the results. These numerical
simulations will in turn offer enhanced data that give a richer information on hemo-
dynamical regimes in the carotid bifurcation, further allowing the study of its impact
on atherosclerosis. Computational fluid-dynamic simulations are also of great interest
because they allow to synthetically verify the impact of different surgical interventions,
evaluating which one is more prone to the reformation of the plaque or to other compli-
cations. In the future, this could become an important tool for comparing beforehand
the effects of different interventions for a given patient, with respect to the geometry of
the patient carotid and to the properties of the atherosclerotic plaque, giving important
suggestions to clinicians on the surgical operation to choose in different situations.
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CHAPTER2
Mixed Finite Elements for spatial regression with

PDE penalization

2.1 Introduction

In this chapter we study the properties of Spatial Regression with PDE penalization
(SR-PDE) and its mixed Finite Element discretization. We recall that SR-PDE esti-
mates bidimensional or three dimensional fields minimizing a least square functional
penalized with the L2-norm over the domain of interest of the misfit of a second order
PDE, Lf = u, modeling the phenomenon under study. All the parameters appearing
in the operator L and the boundary conditions are known while the forcing term in the
PDE is not completely determined. This approach is similar to the one used in control
theory when a distributed control is considered, see for example [23]. The main differ-
ence from classical results in control theory is that the observations are pointwise and
affected by noise. For this reason it is necessary to require higher regularity to the field
to ensure that the penalized least square functional is well defined.

The penalized least square functional has a unique minimum in the Sobolev space
H2 and the minimum is the solution of a fourth order problem. In order to prove
the existence and the uniqueness of the estimator we resort to a mixed approach for
fourth order problems, since the penalized error functional is not necessarily convex
in H2. Accordingly, a mixed equal order Finite Element method, similar to classical
mixed methods described for example in [6], is used for discretizing the estimation
problem. Other classical conforming and nonconforming methods (see [6] and refer-
ences therein) or more recent discontinuous Galerkin methods (see, e.g., [3, 16, 34])
can be used for the discretization of the fourth order problem. However, in the specific
case here considered the mixed Finite Element method is a convenient choice since the
problem in exam can be written as a system of second order PDEs. Moreover the mixed
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approach provides also a good approximation of second order derivatives of the field
that can be useful in order to compute physical quantities of interest.

The proposed mixed equal order Finite Elements discretization is known to have
sub-optimal convergence rate when applied to fourth order problems with arbitrary
boundary conditions and, in particular, the first order approximation might not con-
verge to the exact solution (see, e.g., [4, 6]). However we are able to prove the optimal
convergence of the proposed discretization method for the specific set of boundary con-
ditions that are naturally associated to the smoothing problem, whenever the true un-
derlying field satisfies exactly those conditions. The theoretical results are confirmed
by numerical experiments.

The inspected convergence concerns the study of the bias of the estimator, while
the study of the variance of the estimator and the convergence when the number of
observations goes to infinity will be the subject of a future work. These topics are
studied in the classical setting of smoothing splines (see, e.g., [7]), thin-plate splines
or multidimensional smoothing splines (see, e.g., [8, 9, 18] and references therein) but
they cannot be directly generalized to SR-PDE models.

The chapter is organized as follows. Section 2.2 recalls SR-PDE model used for
pointwise observations. Section 2.3 proves the well-posedness of the estimation prob-
lem and Section 2.4 obtains a bound for the bias of the estimator. Section 2.5 describes
the mixed Finite Element method used for the discretization of the estimation problem
and proves the well-posedness of the discrete problem. Section 2.6 proves the conver-
gence of the proposed mixed Finite Element method and provides a bound for the bias
of the Finite Element estimator. Section 2.7 presents the numerical experiments sup-
porting the theoretical results. Section 2.8 extends the models to the case of areal data
and presents the asymptotic results in this setting.

2.2 Surface estimator for pointwise data

We generalize to dimension d ≤ 3 the SR-PDE models presented in Chapter 1. Sim-
ilarly to Section 1.2, we introduce the model for pointwise data in Rd with d ≤ 3.
Consider a bounded, regular, open domain Ω ⊂ Rd with d ≤ 3, whose boundary ∂Ω is
a curve of class C2, and a regular function f0 : Ω → R to be estimated from noisy ob-
servations. Let zi, for i = 1, . . . , n, be n observations that represent noisy evaluations
of the field f0 at points pi ∈ Ω. The error model that we consider for the observations
is a classical additive model:

zi = f0(pi) + εi (2.1)

where εi, i = 1, . . . , n, are independent errors with zero mean and constant variance
σ2.
We suppose to have, in addition to the observations zi, a physical knowledge of the
phenomenon under study and that this prior knowledge can be described by means of a
differential operator. Specifically, we can formalize this as a PDE that f0 satisfies:{

Lf0 = ũ in Ω

Bcf0 = h on ∂Ω
(2.2)

where the operator L and the boundary conditions are completely determined and fixed,
while the forcing term ũ = u + g0 ∈ L2(Ω) is composed by a known and fixed part
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2.2. Surface estimator for pointwise data

u and an unknown term, called g0, that will be estimated from data. The parameters
of the PDE and the boundary conditions could be as well considered partly unknown
and estimated from data, but in this thesis we assume them to be known and fixed. We
focus on second order elliptic operators, in particular L is a diffusion-transport-reaction
operator

Lf0 = −div(K∇f0) + b · ∇f0 + cf0 (2.3)

with smooth and bounded parameters. The matrix K ∈ Rd×d is a symmetric and
positive definite diffusion tensor, b ∈ Rd is the transport vector and c ≥ 0 is the reaction
term. These parameters can be spatially varying in Ω; i.e., K = K(x), b = b(x) and
c = c(x), with x ∈ Ω. The boundary conditions of the PDE are homogeneous or non-
homogeneous Dirichlet, Neumann, Robin (or mixed) conditions. All the admissible
boundary conditions are summarized in

Bcf0 =


f0 on ΓD

K∇f0 · ν on ΓN

K∇f0 · ν + γf0 on ΓR

h =


hD on ΓD

hN on ΓN

hR on ΓR

(2.4)

where ν is the outward unit normal vector to ∂Ω, γ ∈ R is a positive constant and
∂Ω = Γ̄D ∪ Γ̄N ∪ Γ̄R, with ΓD,ΓN ,ΓR not overlapping.
In what follows, we make the following assumption.

Assumption 1. ΓD 6= ∅, so that a Poincaré inequality holds, i.e.,

‖v‖L2(Ω) ≤ CP ‖∇v‖L2(Ω) . (2.5)

Similarly to Chapter 1, in order to estimate the field f0 we minimize the penalized
sum-of-square-error functional

J(f) =
1

n

n∑
i=1

(f(pi)− zi)2 + λ

∫
Ω

(Lf − u)2 (2.6)

over the set of functions V = {v ∈ H2(Ω) : Bcv = h} where H2(Ω) is the Sobolev
space of functions in L2(Ω) with first and second derivatives in L2(Ω); notice that the
boundary conditions (2.4) are imposed directly in V . Even if in this case we are con-
sidering fixed and deterministic boundary conditions, when data on the boundary are
available it is possible to include the uncertainty on the boundary conditions in the
model by means of a dedicated regularizing term in the least square functional.
Notice that the functional J is slightly different from the functional used in Chapter 1.
Specifically, the least square term in this case is divided by n, for convenience in the
numerical proofs. This corresponds to multiplying n to the roughness parameter λ in
the functional (1.2).
The functional J is still composed by a data fitting criterion, consisting in classical
least square errors, and a model fitting criterion, formalized as a roughness term that
penalizes the misfit of the PDE governing the phenomenon. Notice that by minimizing
the misfit of the PDE Lf0 − u, where u is the known part of the forcing term, we are
actually minimizing the contribution of the unknown forcing term g0. The contribution
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Chapter 2. Mixed Finite Elements for spatial regression with PDE penalization

of the data fitting criterion and of the model fitting criterion is tuned by means of the
parameter λ. A large literature is devoted to the optimal choice of this parameter; see,
e.g., [20, 30] and references therein; classical methods are for example the Akaike’s
Information Criterion (AIC), the Bayesian Information Criterion (BIC) and the Gener-
alized Cross-Validation (GCV) criterion.

The functional J(f) is well defined if f ∈ H2(Ω) thanks to the embeddingH2(Ω) ⊂
C(Ω̄) if Ω ⊂ Rd with d ≤ 3. For data in Rd with d > 3 one has to require more
regularity in order to obtain f ∈ C(Ω); in particular one needs f ∈ Hs(Ω) with s >
d/2; see, e.g., [12].
The estimation problem is formulated as follows.

Problem 3. Find f̂ ∈ V such that

f̂ = argmin
f∈V

J(f).

As it will be shown in the next section, this problem is well posed if we assume
some regularity on the parameters of the PDE and on the domain Ω. In particular, in
the case d ≤ 3, we make the following assumption.

Assumption 2. The parameters of the PDE are such that ∀ũ ∈ L2(Ω) there exists a
unique solution f0 of the PDE (2.2), which moreover satisfies f0 ∈ H2(Ω).

The Lax-Milgram theorem guarantees the existence and the uniqueness of the so-
lution of the PDE (2.2) in H1(Ω) when the parameters of the PDE K, b and c satisfy
some classical requests, for example Kij, bj, c ∈ L∞(Ω), K is symmetric and uni-
formly elliptic, i.e., ξTK(x)ξ ≥ αK ∀x ∈ Ω and ∀ξ ∈ Rd, b · ν ≥ 0 on ΓN ∪ ΓR,
−1/2div(b(x)) + c(x) ≥ −αK/CP , where αK is the ellipticity constant and CP is
the Poincaré constant, γ ∈ L∞(∂Ω), γ ≥ 0 and hD ∈ H1/2(∂Ω), hN ∈ H−1/2(∂Ω),
hR ∈ H−1/2(∂Ω).
To guarantee that the solution of the PDE is in H2(Ω) we need to make further assump-
tions on the parameters of the PDE and on the boundary conditions requiring extra regu-
larity: Kij is Lipschitz continuous, hD ∈ H3/2(∂Ω), hN ∈ H1/2(∂Ω), hR ∈ H1/2(∂Ω).
If the boundary conditions imposed are mixed, they have to satisfy some joint condi-
tions in order not to reduce the regularity of the solution; see [12] for more details.

2.3 Well posedness analysis

To analyze the well-posedness of Problem 3 we introduce a new quantity g ∈ G =
L2(Ω) that represents the misfit of the PDE in the penalizing term. This new quantity,
g ∈ G, is defined as g = Lf − u, where L is the second order elliptic operator (2.3),
and is the classical control term in PDE optimal control theory.
It is useful to introduce also the space V0 = {v ∈ V : Bcv = 0}, which represents
the space of functions in V with homogeneous boundary conditions, and the operator
B : L2(Ω)→ V0 such thatBũ is the unique solution of the PDE (2.2) with forcing term
ũ and homogeneous boundary conditions, i.e., L(Bũ) = ũ in Ω and Bc(Bũ) = 0 on
∂Ω. Under Assumptions 1 and 2, thanks to the well-posedness and theH2-regularity of
the PDE (2.2), the operator B is an isomorphism between the spaces L2 and V0 and the
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2.3. Well posedness analysis

H2-norm ofBu is equivalent to the L2-norm of u, i.e., there exist two positive constants
C1 and C2 such that

C1 ‖u‖L2(Ω) ≤ ‖Bu‖H2(Ω) ≤ C2 ‖u‖L2(Ω) . (2.7)

The solution of the PDE (2.2) can thus be written as f = fb + Bũ, where fb is the
solution of the PDE with homogeneous forcing term and non-homogeneous boundary
conditions.
Existence and uniqueness of the estimator f̂ is obtained thanks to classical results of
calculus of variations. We recall here the result stated, e.g., in [23].

Theorem 1. If the functional J(g) has the form

J(g) = A(g, g) + Lg + c (2.8)

where A : G × G → R is a continuous, coercive and symmetric bilinear form in G,
L : G → R is a linear operator, c is a constant and G is a Hilbert space, then ∃! ĝ ∈ G
such that J(ĝ) = infG J(g).
Moreover ĝ satisfies the following Euler-Lagrange equation:

(J ′(ĝ), ϕ) = 2A(ĝ, ϕ) + Lϕ = 0 ∀ϕ ∈ G. (2.9)

The existence and uniqueness of the estimator is stated in the following theorem.

Theorem 2. Under Assumptions 1 and 2, the solution of Problem 3 exists and is unique.

Proof. Thanks to the definition of g we can write f as an affine transformation of g,
i.e., f = fb +B(u+ g), and the functional (2.6) as

Jg(g) = J(fb +B(u+ g)) =
1

n

n∑
i=1

(B(u+ g)(pi) + fb(pi)− zi)2 + λ ‖g‖2
L2(Ω) .

(2.10)
This reformulation of the functional J is very useful since we can now write Jg in the
quadratic form (2.8) where

A(g, ϕ) =
1

n

n∑
i=1

Bg(pi)Bϕ(pi) + λ

∫
Ω

gϕ

Lϕ =
2

n

n∑
i=1

Bϕ(pi)(Bu(pi) + fb(pi)− zi)

c =
1

n

n∑
i=1

(Bu(pi) + fb(pi)− zi)2.

Clearly A(g, ϕ) is a bilinear form, since both B and the pointwise evaluation of a
function are linear operators. Moreover, it is continuous in G; indeed, thanks to the
embedding H2(Ω) ⊂ C(Ω̄) if Ω ⊂ Rd with d ≤ 3 and thanks to (2.7) we have that

|Bg(pi)| ≤ ‖Bg‖C(Ω̄) ≤ C ‖Bg‖H2(Ω) ≤ C ‖g‖L2(Ω) .
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Chapter 2. Mixed Finite Elements for spatial regression with PDE penalization

We thus obtain that A(g, ϕ) ≤ (C2 + λ) ‖g‖L2(Ω) ‖ϕ‖L2(Ω).
Finally, the operator A(g, ϕ) is coercive in L2(Ω), since

A(g, g) =
1

n

n∑
i=1

|Bg(pi)|2 + λ

∫
Ω

g2 ≥ λ

∫
Ω

g2 = λ ‖g‖2
L2(Ω) .

Due to the fact that the bilinear form A(·, ·) is continuous and coercive in G =
L2(Ω), that the operator L is linear and that c is a constant, Theorem 1 states the
existence and the uniqueness of ĝ = argming∈G Jg(g). From the bijectivity of B :

L2(Ω) → V0 we deduce the existence and uniqueness of f̂ = fb + B(ĝ + u) =
argminf∈V J(f).

The estimator f̂ is obtained by solving:{
Lf̂ = u+ ĝ in Ω

Bcf̂ = h on ∂Ω.
(2.11)

We now show that if ĝ is smooth enough, e.g., ĝ ∈ H2(Ω), then ĝ solves the PDE{
L∗ĝ = − 1

nλ

∑n
i=1(f̂ − zi)δpi

in Ω

Bc∗ĝ = 0 on ∂Ω
(2.12)

where δpi
is the Dirach mass located in pi, L∗ is the adjoint operator of L

L∗g = −div(K∇g)− b · ∇g + (c− div(b))g (2.13)

and the “adjoint” boundary conditions are

Bc∗g =


g on ΓD

K∇g · ν + b · νg on ΓN

K∇g · ν + (b · ν + γ)g on ΓR.

(2.14)

Indeed, if we associate to any ϕ ∈ G the function v ∈ V0 such that v = Bϕ (or
equivalently Lv = ϕ with homogeneous boundary conditions), we have that

1

2

(
J ′g(ĝ), ϕ

)
=

∫
Ω

1

n

n∑
i=1

(
f̂ − zi

)
vδpi

+ λ

∫
Ω

ĝLv

=

∫
Ω

1

n

n∑
i=1

(
f̂ − zi

)
vδpi

+ λ

∫
Ω

L∗ĝv +

∫
∂Ω

ĝBcv +

∫
∂Ω

Bc∗ĝv

=

∫
Ω

[
1

n

n∑
i=1

(
f̂ − zi

)
δpi

+ λL∗ĝ

]
Bϕ+

∫
∂Ω

Bc∗ĝBϕ = 0 ∀ϕ ∈ G.

Since B is a bijection between L2(Ω) and V0 the latter is equivalent to∫
Ω

[
1

n

n∑
i=1

(
f̂ − zi

)
δpi

+ λL∗ĝ

]
v +

∫
∂Ω

Bc∗ĝv = 0 ∀v ∈ V0. (2.15)
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2.4. Bias of the estimator

Choosing v ∈ C∞ with compact support in Ω, equation (2.15) implies that ĝ is the
solution in the sense of distributions of

L∗ĝ = − 1

nλ

n∑
i=1

(f̂ − zi)δpi
.

Choosing v ∈ C∞(Ω̄) with support not including any of the location points pi, we
obtain from equation (2.15) the boundary conditions for ĝ that are Bc∗ĝ = 0 where Bc∗
is defined in equation (2.14).
In this case, the estimator f̂ is obtained by solving the coupled system of PDEs{

Lf̂ = u+ ĝ in Ω

Bcf̂ = h on ∂Ω

{
L∗ĝ = − 1

nλ

∑n
i=1(f̂ − zi)δpi

in Ω

Bc∗ĝ = 0 on ∂Ω.
(2.16)

2.4 Bias of the estimator

The penalty term in the functional J(f) induces a bias in the estimator f̂ unless the
unknown part of the forcing term g0 = 0 and the true underlying field f0 satisfies
exactly the penalized PDE Lf0 = u; we want now to quantify this bias.
The estimator f̂ is obtained as the unique minimum of the functional J(f), solving the
Euler-Lagrange equation (2.9). Thanks to the linearity of equation (2.9), we can write

f̂ = argmin
f∈V

[
1

n

n∑
i=1

(f(pi)− f0(pi))
2 + λ

∫
Ω

(Lf − u)2

]

+ argmin
w∈V0

[
1

n

n∑
i=1

(w(pi)− εi)2 + λ

∫
Ω

(Lw)2

]

where f0(pi) is the mean value of the observation zi located in pi, i.e., E[zi] = f0(pi).
The first term is the deterministic part of f̂ , while the second term

ŵ = argmin
w∈V0

[
1

n

n∑
i=1

(w(pi)− εi)2 + λ

∫
Ω

(Lw)2

]
(2.17)

is related to the observation noise: ŵ is in fact the minimizer of the functional when
data are pure noise and the penalized PDE is homogeneous (both the forcing term and
the boundary conditions are homogeneous). Notice that ŵ is a linear function of the
errors εi and for this reason it has zero mean. Indeed, ŵ is obtained as the solution of
the PDE {

Lŵ = ĝw in Ω

Bc∗ŵ = 0 on ∂Ω
(2.18)

where ĝw satisfies {
L∗ĝw = − 1

nλ

∑n
i=1(ŵ − εi)δpi

in Ω

Bc∗ĝw = 0 on ∂Ω.
(2.19)
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Moreover, thanks to the PDE (2.18) we know that E[ŵ] = BE[ĝw], while from the PDE
(2.19) we obtain that

L∗E[ĝw] +
1

nλ

n∑
i=1

BE[ĝw(pi)]δpi
=

1

nλ

n∑
i=1

E[εi]δpi
= 0.

Finally, since L∗, B and the evaluation in a point are linear operators, we have that
both ĝw and ŵ have zero mean. It follows then that the mean value of the estimator
E[f̂ ] is the minimizer of the functional when the observations are without noise and the
PDE is not homogeneous (both the forcing term and the boundary conditions are not
homogeneous), i.e.,

E[f̂ ] = argmin
f∈V

[
1

n

n∑
i=1

(f(pi)− f0(pi))
2 + λ

∫
Ω

(Lf − u)2

]
. (2.20)

Notice that the sum of the Euler-Lagrange equations associated to the functionals (2.17)
and (2.20) corresponds to the Euler-Lagrange equation (2.9) associated to the functional
(2.6).

Since E[f̂ ] is related to the bias induced by the penalizing term, we are interested
in studying the error term E[f̂ − f0]; in particular it is natural to study it in the norm
induced by the functional J(f), i.e.,

‖f‖2
J =

1

n

n∑
i=1

f(pi)
2 + λ

∫
Ω

(Lf)2. (2.21)

Lemma 1. The norm (2.21) of the bias of f̂ is bounded by∥∥∥E[f̂ − f0]
∥∥∥2

J
≤ 4λ ‖Lf0 − u‖2

L2(Ω) . (2.22)

Proof. In order to obtain the inequality (2.22) we can use the optimality (2.20) of E[f̂ ]
in the minimization of the functional with respect to any other function in V . We have
in fact that∥∥∥E[f̂ ]− f0

∥∥∥2

J
=

1

n

n∑
i=1

(E[f̂ ](pi)− f0(pi))
2 + λ

∥∥∥L(E[f̂ ]− f0)
∥∥∥2

L2(Ω)

≤ 1

n

n∑
i=1

(E[f̂ ](pi)− f0(pi))
2 + 2λ

∥∥∥LE[f̂ ]− u
∥∥∥2

L2(Ω)
+ 2λ ‖Lf0 − u‖2

L2(Ω)

≤ 2

[
1

n

n∑
i=1

(E[f̂ ](pi)− f0(pi))
2 + λ

∥∥∥LE[f̂ ]− u
∥∥∥2

L2(Ω)

]
+ 2λ ‖Lf0 − u‖2

L2(Ω)

≤ 2λ ‖Lf0 − u‖2
L2(Ω) + 2λ ‖Lf0 − u‖2

L2(Ω) .

This result means that the estimator is asymptotically unbiased in the norm ‖·‖J ei-
ther if ‖Lf0 − u‖L2(Ω) = 0 or if λ→ 0 for n→ +∞. The condition ‖Lf0 − u‖L2(Ω) =
0 means that the real field f0 is in the kernel of the penalty term, while the condition
λ → 0 for n → +∞ means that the more observations we have, the less we penalize
the PDE misfit.
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2.5 Finite Element estimator

The estimation problem presented in Section 2.2 is infinite dimensional and cannot
be solved analytically. To reduce this infinite dimensional problem to a finite dimen-
sional one we approximate the PDE system (2.16) with the Finite Element method; this
method has already been used in this framework for example in [11,31,32]. The Finite
Element approximation of the system (2.16) can be regarded as a naive mixed Finite
Element method for the discretization of Problem 3. More complex methods for the
discretization of fourth order problems could be used: in [6], for example, some con-
forming and nonconforming methods for the discretization of fourth order problems
are introduced, while in [3, 16, 34] more recent discontinuous Galerkin methods are
described.

Let Th be a regular and quasi-uniform triangulation of the domain, that for conve-
nience we assume here to be polygonal and convex, and h = maxK∈Th diam(K) be the
characteristic mesh size (see, e.g., [2]). Notice that the mesh Th can be defined inde-
pendently of the location of the observations p1, · · · ,pn. We consider the space V r

h of
piecewise continuous polynomial functions of degree r ≥ 1 on the triangulation

V r
h =

{
v ∈ C0(Ω̄) : v|K ∈ Pr(K) ∀K ∈ Th

}
and V r

h,ΓD
= V r

h ∩H1
ΓD

(Ω) where H1
ΓD

= {v ∈ H1(Ω) : v|ΓD
= 0}.

In order to discretize the PDE system (2.16) we define the bilinear forms

r(g, v) =

∫
Ω

gv, l(f, ψ) =
1

n

n∑
i=1

f(pi)ψ(pi),

a(f, ψ) =

∫
Ω

(K∇f · ∇ψ + b · ∇fψ + cfψ) +

∫
ΓR

γfψ, (2.23)

the latter being the bilinear form associated to the operator L; we also introduce the
linear operator F (ψ) =

∫
Ω
uψ +

∫
ΓN
hNψ +

∫
ΓR
hRψ.

Let now fD,h ∈ V r
h be a lifting of the non-homogeneous Dirichlet conditions, i.e,

fD,h|ΓD
= hD,h, where hD,h is the interpolant of hD in the space of piecewise con-

tinuous polynomial functions of degree r on the Dirichlet boundary ΓD. The Finite
Element approximation of the system (2.16) becomes{

1
λ
l(f̂h, ψh) + a(ψh, ĝh) = 1

nλ

∑n
i=1 ziψh(pi) ∀ψh ∈ V r

h,ΓD

a(f̂h, vh)− r(ĝh, vh) = F (vh) ∀vh ∈ V r
h,ΓD

(2.24)

with (f̂h − fD,h, ĝh) ∈ V r
h,ΓD
× V r

h,ΓD
.

In this section and in the following one, we need a slightly stronger regularity as-
sumption on the PDE (2.2), in particular we need its solution to be in a Sobolev space
W 2,p, where W s,p(Ω) is the space of functions in Lp(Ω) with derivatives up to order s
in Lp(Ω).

Assumption 3. The parameters of the PDE are such that ∀ũ ∈ Lp(Ω) there exists a
unique solution f0 ∈ W 2,p(Ω), for some p > d.

Lemma 2. Under Assumption 3, there exists h0 > 0 s.t. ∀h ≤ h0, Problem (2.24) has
a unique solution.
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Proof. The proof mimics the strategy used to prove the existence and the uniqueness of
the estimator at the continuos level in Theorem 2.
Let B : L2(Ω) → V0 be the operator defined in Section 2.3 such that ψ = Bϕh is the
solution of

a(ψ, v) =

∫
Ω

ϕhv ∀v ∈ H1
ΓD
.

We define the operator Bh as the discretization of the operator B, i.e., ψh = Bhϕh ∈
V r
h,ΓD

is the solution of

a(ψh, vh) =

∫
Ω

ϕhvh ∀vh ∈ V r
h,ΓD

.

It is easy to show that the operator Bh is stable in the L∞-norm, i.e., ‖ψh‖L∞(Ω) ≤
C ‖ϕh‖L2(Ω). We have in fact that

‖ψh‖L∞(Ω) ≤ ‖ψ − ψh‖L∞(Ω) + ‖ψ‖L∞(Ω) .

Thanks to the H2-elliptic regularity of the PDE (2.2) (see Assumption 2) we have that

‖ψ‖L∞(Ω) ≤ C ‖ψ‖H2(Ω) ≤ C ‖ϕh‖L2(Ω)

while thanks to Assumption 3 and the Sobolev inequality (see, e.g., [2])

‖w‖L∞(Ω) ≤ C ‖w‖W 1,p(Ω) ∀w ∈ W
1,p(Ω) ∀p > d (2.25)

where W 1,p(Ω) is the space of functions in Lp(Ω) with first derivatives in Lp(Ω), we
obtain the bound for the error term in the L∞-norm

‖ψ − ψh‖L∞(Ω) ≤ C ‖ψ − ψh‖W 1,p(Ω) ≤ C inf
vh∈V r

h,ΓD

‖ψ − vh‖W 1,p(Ω)

≤ Ch |ψ|W 2,p(Ω) ≤ Ch ‖ϕh‖Lp(Ω) ≤ Ch1+min{0, d
p
− d

2} ‖ϕh‖L2(Ω) .

In the last step we have used an inverse inequality; see, e.g., [10], and taking p =
2d/(d− 2), which is larger than d for d ≤ 3, we conclude

‖ψ − ψh‖L∞(Ω) ≤ C ‖ϕh‖L2(Ω) .

We define now the operators Ah and Lh as the discretization of the operators A and L
defined in Section 2.3:

Ah(gh, ϕh) =
1

n

n∑
i=1

Bhgh(pi)Bhϕh(pi) + λ

∫
Ω

ghϕh

Lhϕh =
2

n

n∑
i=1

Bhϕh(pi)(Bhu(pi) + fb,h(pi)− zi)

where fb,h is the discretization of fb. The operator Ah is coercive in L2, in fact

Ah(gh, gh) =
1

n

n∑
i=1

(Bhgh(pi))
2 + λ

∫
Ω

g2
h ≥ λ ‖gh‖2

L2(Ω) .
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2.5. Finite Element estimator

Thanks to the stability in the L∞-norm of the operator Bh, both the operators Ah and
Lh are continuous:

Ah(gh, ϕh) ≤ C ‖Bhgh‖L∞(Ω) ‖Bhϕh‖L∞(Ω) + λ ‖gh‖L2(Ω) ‖ϕh‖L2(Ω)

≤ C ‖gh‖L2(Ω) ‖ϕh‖L2(Ω)

Lh(ϕh) ≤ C ‖Bhϕh‖L∞(Ω) ≤ C ‖ϕh‖L2(Ω) .

Thanks to the fact that Ah is continuous and coercive in L2(Ω) and Lh is continuous in
L2(Ω), the equation

2Ah(gh, ϕh) + Lh(ϕh) = 0 ∀ϕh : Bhϕh = ψh ∈ V r
h,ΓD

has a unique solution gh ∈ V r
h,ΓD

. This equation corresponds to the first equation of the
system (2.24).
Once ĝh is known, f̂h is recovered uniquely from the second equation in (2.24).

Let now {ψk}Nh

k=1 be the Lagrangian basis of the space V r
h,ΓD

of dimension Nh =
dim(V r

h,ΓD
) and let ξ1, . . . , ξNh

be the nodes associated to the Nh basis functions.
Thanks to the Lagrangian property of the basis functions we can write a function
f ∈ span{ψ1, . . . , ψNh

} as

f(x) =

Nh∑
k=1

f(ξk)ψk(x) = fTψ

where f = (f1, . . . , fNh
)T = (f(ξ1), . . . , f(ξNh

))T and ψ = (ψ1, . . . , ψNh
)T .

Analogously, we define the Lagrangian basis of the space V r
h \V r

h,ΓD
as {ψDk }

ND
h

k=1, where
ND
h = dim(V r

h \V r
h,ΓD

) and the nodes on the boundary ΓD as ξD1 , . . . , ξ
D
ND

h
. A lift-

ing fD,h can be constructed in span{ψD1 , . . . , ψDND
h
} as fD,h = fTDψ

D where fD =

(fD(ξD1 ), . . . , fD(ξD
ND

h
))T and ψD = (ψD1 , . . . , ψ

D
ND

h
)T .

The Finite Element solution f̂h of the discrete counterpart of the estimation problem
can thus be written as

f̂h = f̂Tψ + fTDψ
D

where f̂ is the solution of the linear system[
ΨTΨ/(nλ) AT

A −R

][
f̂

ĝ

]
=

[
ΨTz/(nλ)−ΨTΨDfD/(nλ)

u + hN + hR −ADfD

]
. (2.26)

Rjk =
∫

Ω
ψjψk is the mass matrix, Ψij = ψj(pi) and ΨD

ij = ψDj (pi) are the matrices
of pointwise evaluation of the basis functions, Ajk = a(ψk, ψj) and AD

jk = a(ψDk , ψj)
are the matrices associated to the bilinear form a(·, ·). The vector z = (z1, . . . , zn)
contains the observed data while the vectors uj =

∫
Ω
uψj , (hN)j =

∫
ΓN
hNψj and

(hR)j =
∫

ΓR
hRψj are related to the forcing term and the non homogeneous boundary

conditions.
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Chapter 2. Mixed Finite Elements for spatial regression with PDE penalization

2.6 Bias of the Finite Element estimator

The Finite Element estimator f̂h can be split, as its continuous counterpart f̂ , in two
different terms E[f̂h] and ŵh that are respectively the Finite Element approximation
of E[f̂ ] and ŵ. Reasoning as for the continuous problem, we can easily show that
E[ŵh] = 0. Neglecting this zero mean term, we now aim at studying the bias of the
Finite Element estimator, E[f̂h − f0], in the norm∣∣∣∣∣∣∣∣∣E[f̂h − f0]

∣∣∣∣∣∣∣∣∣2 =
∥∥∥E[f̂h − f0]

∥∥∥2

n
+ λ

[∥∥∥E[f̂h]− f0

∥∥∥2

H1(Ω)
+ ‖E[ĝh]− g0‖2

L2(Ω)

]
(2.27)

where the norm ‖·‖n is the norm induced by the bilinear operator l(·, ·), defined as∥∥∥E[f̂h − f0]
∥∥∥
n

=
1

n

n∑
i=1

(E[f̂h](pi)− f0(pi))
2.

Notice that the norm |||·||| contains both the norm ‖·‖J and the H1-norm of f̂h. We need
in fact also an explicit control on theH1-norm of f̂h to study the convergence properties
of the mixed Finite Element solution of the system (2.24).

Remark 3. One might be tempted to compare E[f̂h] to its continuous counterpart E[f̂ ].
However, due to the presence of δpi

in the forcing term of the dual equation in (2.16),
E[f̂ ] is not smooth in general. For this reason, in the error analysis proposed in this
section, we directly compare E[f̂h] with the true underlying field f0, which is assumed
to be sufficiently smooth.

The convergence of the bias term is studied when h → 0, fixing the number n of
observations and the penalty parameter λ. Since we are considering n and λ fixed we
expect to obtain an error bound that contains a term going to zero as h→ 0 and a term
that represents the bias induced by the roughness penalty, similarly to the continuous
setting in Lemma 1.

Thanks to the introduction of the adjoint variable ĝ, which represents the misfit of
the PDE, the estimation Problem 3 can be reformulated as a constrained problem that
is more convenient for the study of the convergence of the Finite Element estimator.

Problem 4. Find f̂ ∈ V , ĝ ∈ G such that

(f̂ , ĝ) = argmin
(f,g)∈W

1

n

n∑
i=1

(f(pi)− zi)2 + λ

∫
g2

whereW is the constrained space

W = {(f, g) ∈ V × G : Lf − u = g} . (2.28)

The constrained spaceW , can be discretized as

Wh = {(fh, gh) ∈ V r
h × V r

h,ΓD
: fh|ΓD

= hD,h and

a(fh, vh)− r(gh, vh) = F (vh), ∀vh ∈ V r
h,ΓD
},
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2.6. Bias of the Finite Element estimator

where a(·, ·), r(·, ·), F (·) and hD,h are defined in Section 2.5. The expected value of
the Finite Element estimator (E[f̂h],E[ĝh]) is thus the solution of the equation

l(E[f̂h], ψh) + λa(ψh,E[ĝh]) = l(f0, ψh) ∀ψh ∈ V r
h,ΓD

(2.29)

in the constrained spaceWh.
The bound for the bias of the Finite Element estimator E[f̂h − f0] is obtained thanks to
the following Lemma and Theorem.

Lemma 3. Let g0 = Lf0−u. The bias of the Finite Element estimator (E[f̂h],E[ĝh]) ∈
Wh satisfies the inequality∥∥∥f0 − E[f̂h]

∥∥∥2

n
+ λ

[∥∥∥f0 − E[f̂h]
∥∥∥2

H1(Ω)
+ ‖g0 − E[ĝh]‖2

L2(Ω)

]
≤ C

{
inf

(ϕh,ph)∈Wh

[
‖f0 − ϕh]‖2

n + λ ‖f0 − ϕh‖2
H1(Ω) + λ ‖g0 − ph‖2

L2(Ω)

]
+ λ ‖g0‖2

L2(Ω)

}
(2.30)

for some constant C > 0 independent of h.

Proof. We set f ∗h = E[f̂h] and g∗h = E[ĝh] and we recall that ‖·‖n is the norm induced
by the bilinear form l(·, ·), i.e., ‖f‖2

n = l(f, f).
In order to prove Lemma 3 we can use the theory of saddle points systems. From
equation (2.29) and the definition ofWh we have immediately

1

λ
l(f̂ ∗h − f0, ψh) + a(ψh, ĝ

∗
h) = 0 ∀ψh ∈ V r

h,ΓD

a(f̂ ∗h − ϕh, vh) = r(ĝ∗h − ph, vh) ∀vh ∈ V r
h,ΓD

, (ϕh, ph) ∈ Wh.

Choosing (ϕh, ph) ∈ Wh we thus obtain∥∥∥f̂ ∗h − ϕh∥∥∥2

n
+ λ ‖ĝ∗h − ph‖

2
L2(Ω) = l(f̂ ∗h − ϕh, f̂ ∗h − ϕh) + λr(ĝ∗h − ph, ĝ∗h − ph)

= l(f̂ ∗h − f0, f̂
∗
h − ϕh) + l(f0 − ϕh, f̂ ∗h − ϕh) + λr(ĝ∗h − ph, ĝ∗h − ph)

= −λa(f̂ ∗h − ϕh, ĝ∗h) + l(f0 − ϕh, f̂ ∗h − ϕh) + λr(ĝ∗h − ph, ĝ∗h − ph)
= l(f0 − ϕh, f̂ ∗h − ϕh)− λr(ĝ∗h − ph, ph) (2.31)

since f̂ ∗h − ϕh ∈ V r
h,ΓD

. We now bound the term f̂ ∗h − ϕh in the H1-norm using the
coercivity of the bilinear form a(·, ·) in H1(Ω):∥∥∥f̂ ∗h − ϕh∥∥∥2

H1(Ω)
≤ 1

α
a(f̂ ∗h − ϕh, f̂ ∗h − ϕh) =

1

α
r(ĝ∗h − ph, f̂ ∗h − ϕh)

≤
√

1 + C2
P

α
‖ĝ∗h − ph‖L2(Ω)

∥∥∥f̂ ∗h − ϕh∥∥∥
H1(Ω)
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Chapter 2. Mixed Finite Elements for spatial regression with PDE penalization

where α is the coercivity constant and CP is the constant in the Poincaré inequality
(2.5), which holds thanks to Assumption 1. Summing this inequality to (2.31) we
obtain∥∥∥f̂ ∗h − ϕh∥∥∥2

n
+ λ

[
α2

4(1 + C2
P )

∥∥∥f̂ ∗h − ϕh∥∥∥2

H1(Ω)
+ ‖ĝ∗h − ph‖L2(Ω)

]
≤ l(f0 − ϕh, f̂ ∗h − ϕh)− λr(ĝ∗h − ph, ph) +

λ

4
‖ĝ∗h − ph‖

2
L2(Ω)

≤ 1

2
‖f0 − ϕh‖2

n +
1

2

∥∥∥f̂ ∗h − ϕh∥∥∥2

n
+
λ

2
‖ĝ∗h − ph‖

2
L2(Ω) + 2λ ‖g0 − ph‖2

L2(Ω)

+ 2λ ‖g0‖2
L2(Ω) .

This inequality provides the bound∥∥∥f̂ ∗h − ϕh∥∥∥2

n
+ λ

[∥∥∥f̂ ∗h − ϕh∥∥∥2

H1(Ω)
+ ‖ĝ∗h − ph‖

2
L2(Ω)

]
≤ C

{
‖f0 − ϕh‖2

n + λ ‖g0 − ph‖2
L2(Ω) + λ ‖g0‖2

L2(Ω)

}
.

The final error bound (2.30) can now be obtained by triangular inequality and exploiting
the arbitrariness of (ϕh, ph) ∈ Wh.

We want now to split the error term on the constrained space Wh in two different
errors for E[f̂h] and E[ĝh] on the space V r

h . Assuming moreover that f0 and g0 are in
proper Sobolev spaces W s,p(Ω) we obtain the following result.

Theorem 3. Using Finite Elements of degree r, if f0 ∈ W r+1,p(Ω) with f0|ΓD
= hD

and g0 ∈ W r,p(Ω) with g0|ΓD
= 0 for p > d then, under Assumption 3, there exists

h0 > 0 s.t. ∀h ≤ h0∥∥∥f0 − E[f̂h]
∥∥∥2

n
+ λ

[∥∥∥f0 − E[f̂h]
∥∥∥2

H1(Ω)
+ ‖g0 − E[ĝh]‖2

L2(Ω)

]
≤ C

[
h2r
(
|f0|2W r+1,p(Ω) + λ |g0|2W r,p(Ω)

)
+ λ ‖g0‖2

L2(Ω)

]
. (2.32)

Proof. In order to prove the result we need to split in two parts the constrained error
term

inf
(ϕh,ph)∈Wh

[
‖f0 − ϕh‖2

n + λ ‖f0 − ϕh‖2
H1(Ω) + λ ‖g0 − ph‖2

L2(Ω)

]
in inequality (2.30).
We fix in the following ph ∈ V r

h,ΓD
and we chose ϕh ∈ V r

h that satisfies a(ϕh, vh) =
r(ph, vh) + F (vh) and ϕh|ΓD

= hD,h, so that (ϕh, ph) ∈ Wh. Thanks to this choice we
obtain the following bound

‖f0 − ϕh‖2
H1(Ω) ≤ C

[
‖f0 − zh‖2

H1(Ω) + ‖g0 − ph‖2
L2(Ω)

]
(2.33)

where zh is an arbitrary function in V r
h such that zh|ΓD

= hD,h. This inequality is
obtained thanks to the fact that

‖f0 − ϕh‖2
H1(Ω) ≤ 2 ‖f0 − zh‖2

H1(Ω) + 2 ‖zh − ϕh‖2
H1(Ω)
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and that

α ‖zh − ϕh‖2
H1(Ω) ≤ a(zh − ϕh, zh − ϕh) = a(f0 − ϕh, zh − ϕh) + a(zh − f0, zh − ϕh)

= r(g0 − ph, zh − ϕh) + a(zh − f0, zh − ϕh)
≤ ‖g0 − ph‖L2(Ω) ‖zh − ϕh‖L2(Ω) + ‖zh − f0‖H1(Ω) ‖zh − ϕh‖H1(Ω)

≤ C
[
‖g0 − ph‖L2(Ω) + ‖zh − f0‖H1(Ω)

]
‖zh − ϕh‖H1(Ω) .

The term ‖f0 − ϕh‖2
n can be bounded with the W 1,p-norm (p > d) of the same

quantity, i.e.,
‖f0 − ϕh‖n ≤ C ‖f0 − ϕh‖W 1,p(Ω) . (2.34)

We have in fact that

1

n

n∑
i=1

(f0(pi)− ϕh(pi))2 ≤ max
pi

(f0(pi)− ϕh(pi))2 ≤ ‖f0 − ϕh‖2
L∞

and thanks to the Sobolev inequality (2.25) we obtain the upper bound (2.34).
We define now f0h ∈ V r

h such that a(f0h, ψh) − r(g0, ψh) = F (ψh) ∀ψh ∈ V r
h,ΓD

; the
error term can be split in two parts

‖f0 − ϕh‖W 1,p(Ω) ≤ ‖f0 − f0h‖W 1,p(Ω) + ‖f0h − ϕh‖W 1,p(Ω) .

The first term on the right-hand side of the inequality represents the W 1,p-norm of the
Finite Element error of the elliptic equation. The quantity f0h can in fact be seen as the
Finite Element approximation of the exact solution f0 and for this reason (see, e.g., [2])

‖f0 − f0h‖W 1,p(Ω) ≤ C inf
zh∈V r

h
zh|ΓD

=hD,h

‖f0 − zh‖W 1,p(Ω) .

The second term of the right-hand side of the inequality can be bounded by

‖f0h − ϕh‖W 1,p(Ω) ≤ C ‖g0 − ph‖Lp(Ω)

where p > d. This bound is obtained thanks to the Lp-stability of the problem

a(f0,h − ϕh, vh) = r(g0 − ph, vh) ∀vh ∈ V r
h,ΓD

,

see, e.g., [2]. Therefore

‖f0 − ϕh‖n ≤ C

 inf
zh∈V r

h
zh|ΓD

=hD,h

‖f0 − zh‖W 1,p(Ω) + ‖g0 − ph‖Lp(Ω)

 . (2.35)

Collecting the bounds (2.33) and (2.35), since Lp(Ω) ⊆ L2(Ω) for p ≥ 2 and Ω is
bounded, we obtain for p > d, d = 2, 3 the unconstrained upper bound∥∥∥f0 − f̂ ∗h

∥∥∥2

n
+ λ

[∥∥∥f0 − f̂ ∗h
∥∥∥2

H1(Ω)
+ ‖g0 − ĝ∗h‖

2
L2(Ω)

]
≤ (2.36)

C

{
inf

zh∈V r
h

zh|ΓD
=hD,h

‖f0 − zh‖2
W 1,p(Ω) + λ inf

ph∈V r
h,ΓD

‖g0 − ph‖2
Lp(Ω) + λ ‖g0‖2

L2(Ω)

}
.
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Chapter 2. Mixed Finite Elements for spatial regression with PDE penalization

The classic error bound for the interpolant Πr
hv ∈ V r

h of v ∈ W r+1,p(Ω) with p > 1:

‖v − Πr
hv‖Wk,p(Ω) ≤ Chr+1−k |v|W r+1,p(Ω) , (2.37)

provides
inf

zh∈V r
h

zh|ΓD
=hD,h

‖f0 − zh‖W 1,p(Ω) ≤ Chr |f0|W r+1,p(Ω)

inf
ph∈V r

h,ΓD

‖g0 − ph‖Lp(Ω) ≤ Chr |g0|W r,p(Ω) .

Notice that the inequality (2.32) can be split in two terms, the first term of the right-
hand side goes to zero for h→ 0 while the second term ‖g0‖2

L2(Ω) is the same bias term
obtained in the error splitting (2.22) and goes to zero when λ→ 0.

Remark 4. In this thesis we propose an equal order Finite Element approximation for
f̂ and ĝ. Equal order Finite Elements are known to lead to sub-optimal convergence
rates for the fourth order biharmonic problem (see, e.g., [4, 6]). However, here we
are able to recover the optimal convergence rate thanks to the fact that the boundary
conditions that are naturally associated to the smoothing problem are the same for f̂
and ĝ. It should be noticed that the optimal convergence rate is recovered only if g0

satisfies exactly the homogeneous Dirichlet boundary conditions on ΓD, which might
be a restrictive hypothesis. If g0 does not satisfy the Dirichlet boundary conditions we
should expect a “boundary term” decaying as h1/2 both in two and three dimensions.
Observe however that the approximation term λ infph∈V r

h,ΓD
‖g0 − ph‖2

Lp(Ω) is always

smaller than λ ‖g0‖2
Lp(Ω) and for this reason the “boundary term” effect will be hidden

by the bias term.

2.7 Numerical simulations

2.7.1 Test 1

We propose to verify in a simple setting the convergence results shown in Section 2.6.
We consider the bidimensional domain Ω = [0, 1] × [0, 1] and we assume that the true
underlying surface f0 satisfies the following PDE{

∆f0 = 2 [x(x− 1) + y(y − 1)] in Ω

f0 = 0 on ∂Ω
(2.38)

whose solution, f0 = xy(x − 1)(y − 1), is represented in Figure 2.1, Left. We con-
sider the n = 200 observation points p1, . . . ,pn represented in Figure 2.1, Right,
and we want to test the convergence of |||E[f̂h − f0]||| when h → 0. For this rea-
son we solve the estimation problem on different uniform structured meshes with size
h = 1/2, 1/4, . . . , 1/29.
We will consider different settings.

A. The observations are without noise, i.e., zi = f0(pi), and the functional J(f)
penalizes the misfit of the governing PDE (2.38), i.e., L = ∆ and u = 2[x(x−1)+
y(y − 1)].
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Figure 2.1: Left: true surface f0 used for the simulation studies of Test 1; the image displays the isolines
(0, 0.005, 0.01, . . . , 0.06). Right: location points sampled uniformly on the domain for Test 1 and 2.

B. The observations are without noise, i.e., zi = f0(pi), but the functional J(f) pe-
nalizes the misfit of a PDE different from the governing PDE (2.38). In particular
L = ∆ but u 6= 2 [x(x− 1) + y(y − 1)]:

1. the penalized forcing term u is such that g0 = Lf0−u satisfies homogeneous
Dirichlet boundary conditions on ∂Ω: u = 2(x(x−1)+y(y−1))(1+(x(x−
1)y(y − 1)));

2. different penalized forcing terms u are considered, such that g0 = Lf0 − u
does not satisfies homogeneous Dirichlet boundary conditions on ∂Ω:
(a) u = (x(x − 1) + y(y − 1)), which corresponds to the knowledge of the

real forcing term up to a multiplying constant factor;
(b) u = 2x(x− 1), which corresponds to the knowledge of only a part of the

real forcing term;
(c) u = 2(x(x − 1) + y(y − 1)) + (x10 + y10 + (x − 1)10 + (y − 1)10),

which forces g0 to be equal to -1 on the boundary, with a relatively large
boundary layer.

C. The observations are with noise, i.e., zi = f0(pi) + εi, where εi ∼ N (0, σ2), and
the functional J(f) penalizes the misfit of the governing PDE (2.38), i.e., L = ∆
and u = 2 [x(x− 1) + y(y − 1)].

Case A (no bias, no noise) We solve the estimation problem both with linear and quadratic
Finite Elements fixing the roughness parameter λ = 1. We recall that we are us-
ing the same order of approximation for f̂h and ĝh. The results of the linear and the
quadratic mixed Finite Element approximation are shown respectively in the left and
right panel of Figure 2.2. In particular we show the convergence of the error |||f̂h − f0|||
as well as the convergence of each individual term of the norm |||·|||, namely ‖f̂h − f0‖n,
‖f̂h − f0‖H1(Ω) and ‖ĝh − g0‖L2(Ω). Since we are considering the case of observations
without noise, E[f̂h − f0] = f̂h − f0 and E[ĝh − g0] = ĝh − g0. We notice that both
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Figure 2.2: Test 1, case A: convergence rates of the bias of the estimator in the norms |||f̂h − f0|||,
‖f̂h − f0‖n, ‖f̂h − f0‖H1(Ω) and ‖ĝh − g0‖L2(Ω) with λ = 1. Left: linear mixed Finite Element
approximation. Right: quadratic mixed Finite Element approximation.

with the linear and the quadratic approximation we obtain a rate of convergence equal
to or higher than the expected rate for all the error terms. In particular, the H1-norm of
the error is the dominating term both in the linear and the quadratic approximation and
decays as h in the case of linear Finite Elements and as h2 in the case of quadratic Finite
Elements. All the other terms are negligible. As expected, the norm ‖·‖n of f̂h−f0 and
the L2-norm of ĝh − g0 decay as h2 in the case of linear Finite Elements and at least as
h3 in the case of quadratic Finite Elements.

Case B1 (bias with exact b.c., no noise) We solve the estimation problem with linear Finite
Elements and we study the convergence for different values of the roughness parameter
λ. Recall that, in this case, g0 = ∆f0 − u 6= 0 satisfies the homogeneous Dirichlet
boundary conditions. Figure 2.3 shows the rate of convergence of the error in different
norms, when λ = 0.05, 0.1, 0.2, 0.4. As in case A, since the observations are without
noise, E[f̂h−f0] = f̂h−f0 and E[ĝh−g0] = ĝh−g0. Notice that when the mesh is fine
the approximation error in the norm |||·||| asymptotically approaches a value proportional
to
√
λ, as expected from Theorem 3; this behavior is caused by the presence of the bias

term in the error bound (2.32). The dominant term is in this case the L2-norm of ĝh−g0.
This term has a different behavior for different values of λ: if λ is sufficiently small,
it decays as h2 before approaching the asymptote, otherwise it decays as h. It is thus
necessary to use small values of λ in order to recover the expected convergence rate
h2 but even when using a large value of λ the rate of convergence of |||f̂h − f0||| is at
least linear before reaching the saturation level caused by the bias term. The other two
terms instead decay with the expected convergence rate for all the values of λ, before
approaching the asymptote.

Case B2 (bias with wrong b.c., no noise) We consider three different forcing terms u such
that g0 = ∆f0−u 6= 0 does not satisfy the homogeneous Dirichlet boundary conditions.
In this case we study the error in the norm |||·||| over the whole domain Ω, which will
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Figure 2.3: Test 1, case B1: convergence rates of the bias of the estimator obtained with linear Finite
Elements, when λ = 0.05, 0.1, 0.2, 0.4. Top left: |||f̂h − f0|||, top right: ‖f̂h − f0‖n, bottom left:
‖f̂h − f0‖H1(Ω), bottom right: ‖ĝh − g0‖L2(Ω).
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Figure 2.4: Test 1, case B2: convergence rates of |||f̂h − f0|||Ω and |||f̂h − f0|||Ωint using linear Finite
Elements with λ = 10−5. Left: case a), center: case b), right: c).

be denoted by |||f̂h − f0|||Ω, as well as over the subdomain Ωint = [0.1, 0.9]× [0.1, 0.9],
denoted by |||f̂h − f0|||Ωint . As highlighted in Remark 4, the former error should be
affected by a “boundary term” decaying as h1/2, while the latter does not include the
error at the boundary. As in case A and B1, since the observations are without noise,
E[f̂h − f0] = f̂h − f0 and E[ĝh − g0] = ĝh − g0. The results obtained with the three
forcing terms are represented respectively in the left, center and right panels of Figure
2.4. In theory we would expect a different rate of convergence for the two errors, which
should be more clearly visible when the mesh is fine. On the other hand the numerical
simulations do not display any significant difference between the convergence rates
of the two errors in all the three cases; this is due to the presence of the bias, which is
asymptotically approached by both the error terms, that hides the expected convergence
rate. Thus, using a forcing term such that g0 does not satisfy the homogeneous Dirichlet
boundary conditions, does not affect too much the surface estimation.

Case C (no bias, with noise) We add some noise to the pointwise evaluations f0(pi) of
the surface: for each location point we sample independent errors, ε1, . . . , εn, from
a zero mean Gaussian distribution N (0, σ2), with different standard deviations σ =
0.005, 0.01, 0.02. The first value of σ corresponds to a rather high signal to noise ratio,
since the value of the true surface varies from 0 to 0.062, while the last corresponds
to a very low signal to noise ratio with errors of the same order of magnitude as the
variation of f0. The values zi, obtained from model (2.1), are shown in Figure 2.5.
We can notice that the observations with small additive noise, represented in the left
panel of Figure 2.5, are similar to the evaluation of f0 in the sampling points, while the
observations with large errors, represented in the right panel of the same figure, are far
from the true underlying surface. The results obtained solving the estimation problem
with linear Finite Elements, fixed roughness parameter λ = 0.01 and the exact PDE
penalized are shown in Figure 2.6. The represented results concern a single replicate
of the experiment and show a typical behavior of the error convergence in different
norms. Notice that in Figure 2.6 the represented errors include both the approxima-
tion error and the error associated to the noisy observations. Due to the presence of
noise, both |||f̂h − f0||| and ‖f̂h − f0‖n reach quite soon a saturation limit proportional
to the standard deviation of the noise σ. Refining further the mesh still provides better
approximation of the first derivatives as shown by the convergence of ‖f̂h − f0‖H1(Ω).
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Figure 2.5: Test 1, case C: value of the observations z1, . . . , zn obtained from model (2.1) adding noise
with different values of standard deviation σ, superimposed to the true underlying surface f0 (the
image displays the isolines (0, 0.005, 0.01, . . . , 0.06)). Left: σ = 0.005, center: σ = 0.01, right:
σ = 0.02.
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Figure 2.6: Test 1, case C: convergence rates of the bias of the estimator obtained with linear Finite
Elements and λ = 1, when the error in the observations is generated form a Gaussian distribution
with different standard deviations σ = 0.005, 0.01, 0.02. Top left: |||f̂h − f0|||, top right: ‖f̂h − f0‖n,
bottom left: ‖f̂h − f0‖H1(Ω), bottom right: ‖ĝh − g0‖L2(Ω).
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Chapter 2. Mixed Finite Elements for spatial regression with PDE penalization

2.7.2 Test 2

We test the convergence also in a different simulation study concerning a diffusion-
transport-reaction (DTR) PDE. We consider the domain Ω = [0, 1] × [0, 1] and we
assume that the true underlying field f0 satisfies the following PDE{

Lf0 = −1 in Ω

f0 = 0 on ∂Ω
(2.39)

where the operator L is the diffusion-transport-reaction operator defined in (2.3) with
parameters K11 = 4, K22 = 1, K12 = K21 = 0, b1 = 2, b2 = 1 and c = 1, Kij and
bi being respectively the element (i, j) of the diffusion tensor K and the i-th element
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Figure 2.7: True surface f0 used for the simulation study of Test 2; the image displays the isolines
(0, 0.0025, 0.005, . . . , 0.03).
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Figure 2.8: Test 2: convergence rates of the bias of the estimator in the norms |||f̂h − f0|||, ‖f̂h − f0‖n,
‖f̂h − f0‖H1(Ω) and ‖ĝh − g0‖L2(Ω) with λ = 1. Left: linear mixed Finite Element approximation.
Right: quadratic mixed Finite Element approximation.
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2.7. Numerical simulations

of the transport vector b. The solution of the PDE (2.39) is represented in Figure
2.7. We consider the n = 200 observation points p1, . . . ,pn represented in Figure
2.1, Right. In this case we only show the convergence of |||E[f̂h − f0]||| = |||f̂h − f0|||
when the observations are without noise and the functional J(f) penalizes the misfit of
the governing PDE (2.39). The results obtained solving the estimation problem with
linear and quadratic Finite Elements and λ = 1 are shown in Figure 2.8. We can
notice that also in the DTR case we obtain a rate of convergence equal to or higher
than the expected rate for all the error terms both with the linear and the quadratic
approximation. The H1-norm is still the dominating term while all the other terms are
negligible. As in the Laplacian case, the error terms ‖f̂h − f0‖n and ‖ĝh − g0‖L2(Ω)

decay as h2 for linear Finite Elements and at least as h3 for quadratic Finite Elements.

2.7.3 Test 3

In the last simulation study we test the error convergence in a setting similar to the
velocity field estimation problem and the simulation studies presented in Chapter 1. We
consider in particular a circular domain centered in zero, with unitary radius, Ω = B1,
which is similar to the almost circular artery cross-section used in the blood velocity
field estimation problem presented in Chapter 1. We assume that the true underlying
field f0 satisfies the following PDE{

∆f0 = y in Ω

f0 = 0 on ∂Ω
(2.40)

whose solution f0 = y/8(1−x2+y2) is represented in Figure 2.9, Left. We consider the
n = 200 observation points p1, . . . ,pn, represented in Figure 2.9, Right, on the circular
domain. As in the previous simulation study, in this case we only show the convergence
when the observations are without noise and the operator penalized in the functional
J(f) is the governing PDE (2.40). The results obtained solving the estimation problem
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Figure 2.9: Left: true surface f0 used for the simulation study of Test 3; the image displays the isolines
(−0.055,−0.045,−0.035, . . . , 0.055). Right: location points sampled uniformly on the domain for
Test 3.
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Figure 2.10: Test 3: convergence rates of the bias of the estimator in the norms |||f̂h − f0|||, ‖f̂h − f0‖n,
‖f̂h − f0‖H1(Ω) and ‖ĝh − g0‖L2(Ω) with λ = 1 and linear mixed Finite Element approximation.

with linear Finite Elements and λ = 1 on 6 different uniform unstructured meshes are
shown in Figure 2.10. As expected, the rate of convergence of the error |||E[f̂h − f0]||| =
|||f̂h − f0||| is h, since ‖f̂h − f0‖H1(Ω) is the dominating term, while ‖f̂h − f0‖n and
‖ĝh − g0‖L2(Ω) decay as h2. We thus obtain an optimal convergence rate of the error
also in the case of a circular domain.

2.8 Surface estimator for areal data

The field smoothing method presented in Section 2.2 can be extended to the case of
areal data that represent quantities computed on some subregions. This is useful in
many applications of interest and it is for instance the case of the estimation of blood
velocity field from Echo-Doppler data presented in Chapter 1; the Echo-Doppler data
represent in fact the mean velocity of the blood cells on a subdomain within an artery
and cannot be approximated with pointwise observations.
Let Di ⊂ Ω, for i = 1, . . . , N , be some subdomains and z̄i, for i = 1, . . . , N , the mean
value of a quantity of interest on the subdomains. We consider the following model for
the observations z̄i:

z̄i =
1

|Di|

∫
Di

f0 + ηi. (2.41)

The error terms ηi have zero mean and variances σ̄2
i . The variances σ̄2

i depend inversely
on the dimension of the beamsDi under the assumption that the number of observations
in a subdomain is proportional to its dimension. As, we have seen in Chapter 1, this
model can be derived starting from the model for pointwise observations.
Similarly to Chapter 1, in order to estimate the field we minimize the penalized sum-
of-square-error functional

J̄(f) =
1

N

N∑
i=1

1

|Di|

(∫
Di

(f − z̄i) dp
)2

+ λ

∫
Ω

(Lf − u)2 (2.42)

54



i
i

“thesis” — 2013/5/2 — 15:54 — page 55 — #63 i
i

i
i

i
i

2.8. Surface estimator for areal data

over the space V , defined in Section 2.2. The first term is a weighted least-square-error
functional for areal data over subdomains Di, weighted with the inverse of the vari-
ances σ̄2

i , under the assumption that σ̄2
i ∝ 1/ |Di|.

As in the pointwise data framework, the functional J̄ is slightly different from the func-
tional used in Chapter 1 for areal data. Specifically, the least square term is divided by
N , which corresponds to multiplying N to the roughness parameter λ in the functional
(1.8).

Existence and uniqueness of the estimator f̂ = argminf∈V J̄(f) is provided by the
following theorem.

Theorem 4. The estimator f̂ exists, is unique and is obtained solving the system of
PDEs:{

Lf̂ = u+ ĝ in Ω

Bcf̂ = h on ∂Ω

{
L∗ĝ = − 1

Nλ

∑N
i=1

1
|Di|IDi

∫
Di

(f̂ − z̄i) in Ω

Bc∗ĝ = 0 on ∂Ω
(2.43)

where ĝ ∈ G represents the misfit of the penalized PDE, L∗ is the adjoint operator
of L, described by equation (2.13), and Bc∗ is the operator that defines the boundary
conditions of the adjoint problem, summarized in (2.14).

The proof is analogous to the proof of Theorem 2. The existence and uniqueness of
the estimator is in fact obtained, thanks to Theorem 1, writing the functional J̄(f) as
the quadratic form (2.8). The proof of the well posedness of the problem in the areal
case is easier than the one presented in Section 2.3 and it is similar to classical results
in control theory. Data are in fact distributed and it’s not necessary to require more
regularity as in the case of punctual observations.

The estimator is then discretized by means of the mixed Finite Element method
described in Section 2.5. The Finite Element estimator f̂h can be written as f̂h =
f̂Tψ + f̂TDψ

D where f̂ is the solution of the linear system[
Ψ̄TWΨ̄/(Nλ) AT

A −R

][
f̂

ĝ

]
=

[
Ψ̄TWz̄/(Nλ)− Ψ̄T Ψ̄DfD/(Nλ)

u + hN + hR −ADfD

]
. (2.44)

where Ψ̄ik = 1/ |Di|
∫
Di
ψk and Ψ̄D

ik = 1/ |Di|
∫
Di
ψDk represents the spatial average

of the basis functions on the subdomains Di, W = diag(|D1| , . . . , |DN |) is the weight
matrix and z̄ = (z̄1, . . . , z̄N)T is the vector of mean values on subdomains.

As in the case of pointwise observations we can obtain a bound for the bias of
the estimator f̂ that corresponds exactly to the bound (2.22). We can use the results
obtained in the pointwise case also for the study of the convergence of the bias of the
Finite Element estimator to the true underlying surface f0. In the areal data case we can
also relax the hypothesis on f0 and g0 in Theorem 3.

Theorem 5. Using Finite Elements of degree r, if f0 ∈ Hr+1(Ω) with f0|ΓD
= hD and

g0 ∈ Hr(Ω) with g0|ΓD
= 0, we obtain, under Assumption 1,

1

N

N∑
i=1

1

|Di|

∫
Di

(f0 − E[f̂ ∗])2 + λ

[∥∥∥f0 − E[f̂h]
∥∥∥2

H1(Ω)
+ ‖g0 − E[ĝh]‖2

L2(Ω)

]
≤ C

[
h2r
(
|f0|2Hr+1(Ω) + |g0|2Hr(Ω)

)
+ λ ‖g0‖2

L2(Ω)

]
. (2.45)
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Proof. If we define f̂ ∗h = E[f̂h], ĝ∗h = E[ĝh] and the bilinear form l(·, ·) as

l(f, ψ) =
1

N

N∑
i=1

1

|Di|

∫
Di

fψ

we can easily obtain the bound (2.30) for the norm of the bias defined as:∣∣∣∣∣∣∣∣∣f̂ ∗h − f0

∣∣∣∣∣∣∣∣∣ =
1

N

N∑
i=1

1

|Di|

∫
Di

(f̂ ∗h − f0)2 + λ

[∥∥∥f̂ ∗h − f0

∥∥∥2

H1(Ω)
+ ‖ĝ∗h − g0‖2

L2(Ω)

]
.

Since the norm associated to the bilinear form l(·, ·) is bounded by the H1-norm we
have that

1

N

N∑
i=1

1

|Di|

∫
Di

(f0 − f̂ ∗h)2 + λ

[∥∥∥f0 − f̂ ∗h
∥∥∥2

H1(Ω)
+ ‖g0 − ĝ∗h‖

2
L2(Ω)

]

≤ C

{
inf

(ϕh,ph)∈Wh

[
‖f0 − ϕh‖2

H1(Ω) + λ ‖g0 − ph‖2
L2(Ω)

]
+ λ ‖g0‖2

L2(Ω)

}
.

The inequality (2.33) still holds for (ϕh, ph) ∈ Wh and zh ∈ V r
h and we obtain

1

N

N∑
i=1

1

|Di|

∫
Di

(f0 − f̂ ∗h)2 + λ

[∥∥∥f0 − f̂ ∗h
∥∥∥2

H1(Ω)
+ ‖g0 − ĝ∗h‖

2
L2(Ω)

]
≤

C

{
inf

zh∈V r
h

zh|ΓD
=hD,h

‖f0 − zh‖2
H1(Ω) + λ inf

ph∈V r
h,ΓD

‖g0 − ph‖2
L2(Ω) + λ ‖g0‖2

L2(Ω)

}

Using the classic error bound (2.37) we obtain the desired result.
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CHAPTER3
A first approach to time-dependent Spatial

Regression with PDE penalization

3.1 Introduction

In this chapter we extend Spatial Regression with PDE penalization (SR-PDE) in order
to model surfaces evolving in time. Such extension is particularly interesting for the
velocity field estimation problem presented in Chapter 1. In fact, starting from spatially
located echo doppler signals, this extension allows to study how the blood-velocity field
varies during the time of the heartbeat. As explained in Chapter 1, the echo doppler
scan provides a time-dependent signal that represents an histogram of the measured
velocities, evolving in time. Figure 3.1 shows part of the ECD signal registered in the

Figure 3.1: Part of the echo doppler signal with superimposed the estimated time-dependent mean
velocity registered within the corresponding beam.
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Chapter 3. A first approach to time-dependent Spatial Regression with PDE
penalization

central beam of the carotid cross-section located 2 cm before the bifurcation and, in
red, the corresponding time-dependent mean velocity on the beam, estimated from the
entire ECD signal by means of a Fourier smoothing.

Following the approach presented in the previous chapters, we propose to estimate
time evolving surfaces minimizing a penalized sum-of-square-error functional, with
the penalty term involving a time-dependent partial differential operator. A similar
approach for space-time smoothing has been recently developed in [1] and [24]. The
method proposed in these two works generalizes soap-film smoothing by means of a
tensor product smoothing of soap-film smoothing basis in space and univariate splines
in time. This approach corresponds to the penalization of the two marginal roughness
terms, which involve the Laplace operator in space and the second derivative in time.

Instead of using a tensor product approach, we propose to penalize the misfit of a
time-dependent PDE modeling the phenomenon under study, ḟ0 + Lf0 = u, where ḟ0

is the time derivative of f0 and L is a differential operator in space. We consider square
integrable observations in time and both the case of pointwise and areal data in space.
The estimation problems are well posed and can be discretized in space by means of
the Finite Element method, similarly to SR-PDE described in Chapter 1, and in time by
means of the Finite Difference method.

The chapter is organized as follows. Section 3.2 extends SR-PDE to the case of
dynamic surfaces when the observations are pointwise in space and functional in time.
Section 3.3 proves the well-posedness of the estimation problem. Section 3.4 describes
the discretization of the estimation problem by means of the Finite Element method in
space and the Finite Difference method in time. Section 3.5 extends the models to the
case of areal data in space, particularly interesting for the analysis of ECD measure-
ments. Section 3.6 shows a simple simulation study for the estimation of a dynamic
surface starting from pointwise data in space and functional data in time. Section 3.7
presents the results obtained with time-dependent SR-PDE in the blood velocity field
estimation within the MACAREN@MOX project.

3.2 Model for pointwise data

Consider a bounded and regular domain Ω ⊂ R2 whose boundary ∂Ω is a curve of
class C2 and n time-dependent observations zi(t), for i = 1, . . . , n, located at points
pi = (xi, yi) ∈ Ω with t ∈ [0, T ]. We assume that the observations zi(t) are square
integrable random processes with mean

E [zi(t)] = f0(pi, t) (3.1)

where f0 : Ω × [0, T ] → R is the surface that we want to estimate. In our application
Ω will be the carotid cross-section, zi(t) will represent the velocity measured in the
longitudinal direction of the artery during the heartbeat of period T and the surface f0

will represent the velocity field varying in time.
We assume to have a prior knowledge on the phenomenon under study that can be

described in terms of a time-dependent Partial Differential Equation (PDE), ḟ0 +Lf0 =
u, where ḟ0 is the time derivative of f0. Moreover, we assume that f0 has to satisfy some
boundary conditions on ∂Ω and an initial condition at time t = 0. As explained in the
previous chapters we want to take advantage of the prior knowledge on the phenomenon
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in the surface estimation. To this end, we generalize SR-PDE presented in Chapter
1 so that the roughness penalty may include the misfit of the time-dependent partial
differential operator known to model the phenomenon under study. In particular, we
propose to estimate the surface f0 by minimizing the penalized sum-of-square-error
functional

JT (f) =
n∑
i=1

∫ T

0

(f(pi, t)− zi(t))2 + λ

∫ T

0

∫
Ω

(
∂f

∂t
+ Lf − u

)2

(3.2)

with respect to f ∈ VT , where VT is the space of functions f ∈ L2(0, T ;H2(Ω)) with
first derivative in time ḟ ∈ L2(0, T ;L2(Ω)) that moreover satisfy the imposed boundary
conditions on ∂Ω and the initial condition at time t = 0. The space L2(0, T ;H) is
defined as the space of functions such that∫ T

0

‖f(t)‖2
H dt < +∞.

The space VT contains thus the functions such that∫ T

0

‖f(t)‖2
H2(Ω) dt+

∫ T

0

∥∥∥ḟ(t)
∥∥∥2

L2(Ω)
dt < +∞.

As in SR-PDE models described in Chapter 1, the functional JT is composed by a
data fitting criterion, consisting in the sum of square errors now integrated in time, and
a model fitting criterion, formalized as a penalizing term. The PDE penalized in the
roughness term is a parabolic PDE supposed to model the phenomenon under study:

∂f0

∂t
+ Lf0 = ũ in Ω× (0, T )

f0(x, 0) = s(x) in Ω

Bcf0 = h on ∂Ω× (0, T ]

(3.3)

where the operator L, defined in equation (1.3), is the same elliptic operator that is
penalized in Chapter 1. The parameters of the PDE can be space-varying on Ω but not
time varying; i.e., K = K(x), b = b(x) and c = c(x). We do not consider the case of
time-varying parameters since they would reduce the regularity of the solution.
The forcing term ũ = u + g0 ∈ L2(0, T ;L2(Ω)) is composed by a known and fixed
part u and an unknown term, called g0, that will be estimated from data. The initial
value s ∈ H1(Ω) and ũ have to satisfy some joint conditions in order not to reduce the
regularity of the solution.
The boundary conditions of the PDE are homogeneous or non-homogeneous Dirichlet,
Neumann, Robin (or mixed) conditions, and they are summarized in

Bcf0 =


f0 on ΓD × (0, T ]

K∇f0 · ν on ΓN × (0, T ]

K∇f0 · ν + γf0 on ΓR × (0, T ]

h =


hD on ΓD × (0, T ]

hN on ΓN × (0, T ]

hR on ΓR × (0, T ]

(3.4)

where ν is the outward unit normal vector to ∂Ω, γ ∈ R is a positive constant and
∂Ω = Γ̄D ∪ Γ̄N ∪ Γ̄R, with ΓD,ΓN ,ΓR not overlapping. In the following we suppose
also that Assumption 1 holds.
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penalization

The functional JT (f) is well defined if f ∈ VT since this space contains functions
continuous in space and square integrable in time, such that∫ T

0

(
sup
x∈Ω̄

f(x, t)

)2

dt <∞

thanks to the embedding H2(Ω) ⊂ C(Ω̄) if Ω ⊂ Rd with d ≤ 3. Both the penalty term
and the least square term are thus well defined for functions in VT . For data in Rd with
d > 3 one has to require more regularity in order to obtain f ∈ L2(0, T ;C(Ω̄)); in
particular one needs f ∈ L2(0, T ;Hs(Ω)) with s > d/2; see, e.g., [12].

The estimation problem is formulated as follows.

Problem 5. Find f̂ ∈ VT such that

f̂ = argmin
f∈VT

JT (f).

The estimation problem is well posed if we assume some regularity on the param-
eters of the PDE and on the domain Ω. In particular, in the case d ≤ 3, we make the
following assumption.

Assumption 4. The parameters of the PDE are such that ∀ũ ∈ L2(0, T ;L2(Ω)) there
exists a unique solution f0 of the PDE (3.3), which moreover satisfies f0 ∈ L2(0, T ;

H2(Ω)) ∩ L∞(0, T ;H1
ΓD

(Ω)) and ḟ0 ∈ L2(0, T ;L2(Ω)).

3.3 Estimation problem

To analyze the existence and the uniqueness of the solution of Problem 5, we introduce
a new quantity g ∈ GT = L2(0, T ;L2(Ω)), which is defined as g = ḟ + Lf − u, where
L is the second order elliptic operator (1.3)
We also introduce the space VT,0 = {v ∈ VT : Bcv = 0 and v(x, 0) = 0}, which
represents the space of functions in VT with homogeneous boundary conditions and ho-
mogeneous initial value, and the operator BT : L2(0, T ;L2(Ω))→ VT,0, such that BT ũ
is the unique solution of the PDE (3.3) with forcing term ũ and homogeneous boundary
conditions, i.e., L(BT ũ) = ũ in Ω × (0, T ), BT ũ(x, 0) = 0 in Ω and Bc(BT ũ) = 0 on
∂Ω× (0, T ]. Under Assumptions 1 and 4, thanks to the well-posedness and the regular-
ity of the PDE (3.3), the operator BT is an isomorphism between L2(0, T ;L2(Ω)) and
VT,0, and the following inequality holds∫ T

0

‖BT ũ(t)‖2
H2(Ω) ≤ C

∫ T

0

‖ũ(t)‖2
L2(Ω) . (3.5)

The solution of the PDE (3.3) can thus be written as f = fb + BT ũ where fb is the
solution of the PDE with homogeneous forcing term, non-homogeneous initial value
and non-homogeneous boundary conditions.

The existence and uniqueness of the estimator is stated in the following theorem.

Theorem 6. Under Assumptions 1 and 4, the solution of Problem 5 exists and is unique.
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3.3. Estimation problem

Proof. Thanks to the definition of g we can write f as an affine transformation of g,
i.e., f = fb +BT (u+ g), and the functional (3.2) as

JT,g(g) = JT (fb +BT (u+ g)) =
n∑
i=1

∫ T

0

(BT (u+ g)(pi, t) + fb(pi, t)− zi(t))2

+ λ

∫ T

0

‖g(t)‖2
L2(Ω) . (3.6)

This reformulation of the functional JT is very useful since we can now write JT,g in
the quadratic form (2.8) of Theorem 1 where

A(g, ϕ) =
n∑
i=1

∫ T

0

BTg(pi, t)BTϕ(pi, t) + λ

∫ T

0

∫
Ω

gϕ

Lϕ =
n∑
i=1

BTϕ(pi, t)(BTu(pi, t) + fb(pi, t)− zi(t))

c =
n∑
i=1

(BTu(pi, t) + fb(pi, t)− zi(t))2.

ClearlyA(g, ϕ) is a bilinear form, since BT , the pointwise evaluation of a function and
the integration on an interval are linear operators. Moreover, it is continuous in GT ;
indeed, thanks to the embedding H2(Ω) ⊂ C(Ω̄) if Ω ⊂ Rd with d ≤ 3 and thanks to
(3.5) we have that∫ T

0

|BTg(pi, t)|2 ≤
∫ T

0

‖BTg(t)‖2
C(Ω̄) ≤ C

∫ T

0

‖BTg(t)‖2
H2(Ω) ≤ C

∫ T

0

‖g(t)‖2
L2(Ω) .

We thus obtain that A(g, ϕ) ≤ (C2 + λ)
∫ T

0
‖g(t)‖L2(Ω)

∫ T
0
‖ϕ(t)‖L2(Ω).

Finally, the operator A(g, ϕ) is coercive in GT , since

A(g, g) =
n∑
i=1

∫ T

0

|BTg(pi, t)|2 + λ

∫ T

0

‖g(t)‖2
L2(Ω) ≥ λ

∫ T

0

‖g(t)‖2
L2(Ω) .

Due to the fact that the bilinear form A(·, ·) is continuous and coercive in GT =
L2(0, T ;L2(Ω)), that the operator L is linear and that c is a constant, Theorem 1 states
the existence and the uniqueness of ĝ = argming∈GT JT,g(g). From the bijectivity
of BT : L2(0, T ;L2(Ω)) → VT,0 we deduce the existence and uniqueness of f̂ =
fb +BT (ĝ + u) = argminf∈VT JT (f).

Similarly to Chapter 1, the solution of Problem 5 is obtained by solving:
∂f̂
∂t

+ Lf̂ = u+ ĝ

f̂(x, 0) = s(x)

Bcf̂ = h

in Ω× (0, T )

in Ω

on ∂Ω× (0, T ]
−∂ĝ

∂t
+ L∗ĝ = − 1

λ

∑n
i=1(f̂ − zi)δpi

ĝ(x, T ) = 0

Bc∗ĝ = 0

in Ω× (0, T )

in Ω

on ∂Ω× (0, T ]

(3.7)
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where δpi
is the Dirach mass located in pi, L∗ is the adjoint operator of L defined in

(1.5) andBc∗ is the operator that defines the boundary conditions of the adjoint problem.
Notice that the dual problem of the parabolic PDE (3.3) is a backward parabolic PDE.

3.4 Finite Element estimator

The estimation Problem 5 cannot be solved analytically and for this reason we approx-
imate the PDE system (3.7) with the Finite Difference method in time and the Finite
Element method in space.

Let Th be a triangulation of the space domain, where h denotes the characteristic
mesh size. We consider the space V r

h of piecewise continuous polynomial functions of
order r ≥ 1 over the triangulation, defined in (1.10). Let Nh = dim(V r

h ) and denote by
ψ1, . . . , ψNh

the Finite Element basis functions and by ξ1, . . . , ξNh
the nodes associated

to the Nh basis functions.
For ease of notation, in the following we consider only homogeneous Dirichlet b.c., for
which the value of the function at the boundary is fixed to 0. In this case we consider
the Finite Element space V r

h,0, defined in (1.10), which only necessitates of the internal
nodes of the triangulation and the associated basis functions, whilst all boundary nodes
can be discarded.

In order to define the weak problem associated to the system of PDEs (3.7) we
introduce the bilinear form a(·, ·) associated to the operator L, defined in (1.12), and the
interpolation sh of the initial value s in V r

h . The discrete version of the weak problem
is thus given by



∫
Ω

∂f̂h
∂t

ψh + a(f̂h, ψh)−
∫

Ω

ĝhψh =

∫
Ω

uψh t ∈ (0, T )

f̂h(x, 0) = sh(x)

−λ
∫

Ω

∂ĝh
∂t

ϕh + λa(ϕh, ĝh) +
n∑
i=1

f̂h(pi, ·)ϕh(pi) =
n∑
i=1

ziϕh(pi) t ∈ (0, T )

ĝh(x, T ) = 0
(3.8)

for all ψh, ϕh ∈ V r
h,0, where f̂h(·, t), ĝh(·, t) ∈ V r

h,0 ∀t ∈ [0, T ]. Notice that the dis-
cretization (3.8) of the system of PDEs (3.7) is only a space discretization.

In order to discretize the problem in time we use the Finite Difference method. We
considerNT uniformly spaced points in [0, T ], τ 0, . . . , τNT , such that τ 0 = 0, τ k = k·dt
and τNT = T . We define f̂kh (·) = f̂h(·, τ k), ĝkh(·) = ĝh(·, τ k), uk(·) = u(·, τ k) and
zki = zi(τ

k) and we discretize the time derivatives as

f̂kh − f̂k−1
h

dt
≈ ∂f̂h

∂t
.

The discretization in time of the system (3.8) is then obtained by means of an Implicit
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Euler scheme. The discrete variational system thus becomes:

∫
Ω

f̂kh − f̂k−1
h

dt
ψh + a(f̂kh , ψh)−

∫
Ω

ĝkhψh =

∫
Ω

ukψh, k = 1, . . . , NT

f̂ 0
h = sh

−λ
∫

Ω

ĝk+1
h − ĝkh
dt

ϕh + λa(ϕh, ĝ
k
h) +

n∑
i=1

f̂kh (pi)ϕh(pi)

=
n∑
i=1

zki ϕh(pi), k = 0, . . . , NT − 1

ĝNT
h = 0.

Defining now ψ = (ψ1, . . . , ψNh
)T , f̂k and ĝk respectively the vectors such that

f̂kh = ψT f̂k and ĝkh = ψT ĝk, we can write this system in matrix form as
(A + 1

dt
R)f̂k − 1

dt
Rf̂k−1 −Rĝk = uk, k = 1, . . . , NT

f̂0 = s

− λ
dt

Rĝk+1 + λ(AT + 1
dt

R)ĝk + ΨTΨf̂k = ΨTzk, k = 0, . . . , NT − 1

ĝNT = 0.

(3.9)

where the matrices A, R and Ψ are defined respectively in (1.17), (1.18) and (1.19), the
vectors zk =

(
zk1 , . . . , z

k
n

)T contain the value of zi at time τ k, s = (sh(p1), . . . , sh(pn))T ,
while ukj =

∫
Ω
ukψj .

Remark 5. We can write the system (3.9) as a linear system[
Ψ̃T Ψ̃ λÃ∗

Ã −R̃

][
f̂

ĝ

]
=

[
Ψ̃Tz

u

]

where f̂T = ((f̂0)T , . . . , (f̂NT )T ), ĝT = ((ĝ0)T , . . . , (ĝNT )T ), z contains the obser-
vations at different times and the matrices are defined blockwise as functions of the
matrices A, R and Ψ.

3.5 Model for areal data

The time-dependent SR-PDE method can be extended to the case of areal data.
Let Di ⊂ Ω, for i = 1, . . . , N , be some subdomains and z̄i(t), for i = 1, . . . , N , be the
mean value of a quantity of interest on the subdomain Di at time t ∈ [0, T ]. We assume
that the observations z̄i(t) are square integrable random processes with mean

E [z̄i(t)] =
1

|Di|

∫
Di

f0(p, t). (3.10)

Similarly to the SR-PDE framework for areal data presented in Chapter 1, in order to
estimate the surface we propose to minimize the penalized sum-of-square-error func-
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tional

J̄T (f) =
N∑
i=1

1

|Di|

∫ T

0

(∫
Di

(f(x, t)− z̄i(t)) dx
)2

dt+ λ

∫ T

0

∫
Ω

(
∂f

∂t
+ Lf − u

)2

(3.11)
over the space VT , defined in Section 3.2 in the case of pointwise data. The first term is
a data fitting criterion, consisting in a weighted least-square-error functional for areal
data over subdomains Di integrated in time, while the second term is the same rough-
ness penalty term used in the pointwise data framework and previously described.

The estimation problem can thus be formulated as

Problem 6. Find f̂ ∈ VT such that

f̂ = argmin
f∈VT

J̄T (f)

Existence and uniqueness of the solution of Problem 6 is provided by the following
theorem.

Theorem 7. Under Assumption 1, the solution of Problem 6 exists and is unique.

The proof is analogous to the proof of Theorem 6. The existence and uniqueness of
the estimator f̂ is in fact obtained writing the functional J̄T (f) as a quadratic form. No-
tice that we don’t need to require that Assumption 4 holds in the areal data framework,
since we don’t need pointwise evaluations of the dynamic surface.

Similarly to the case of pointwise data, the surface estimator f̂ is obtained solving
the following system:

∂f̂
∂t

+ Lf̂ = u+ ĝ

f̂(x, 0) = s(x)

Bcf̂ = h

in Ω× (0, T )

in Ω

on ∂Ω× (0, T ]
−∂ĝ

∂t
+ L∗ĝ = − 1

λ

∑N
i=1

1
|Di|IDi

∫
Di

(f̂ − z̄i)
ĝ(x, T ) = 0

Bcĝ = 0

in Ω× (0, T )

in Ω

on ∂Ω× (0, T ]

(3.12)

where ĝ ∈ GT represents the misfit of the penalized PDE, L∗ is the adjoint operator
of L, described by equation (1.5), and Bc∗ is the operator that defines the boundary
conditions of the adjoint problem.

This system of PDEs can be discretized in space by means of the Finite Element
method and in time by means of Finite Differences, along the same line followed for
pointwise observations in Section 3.4. We can thus write the discrete estimator as the
solution of a system analogous to (3.9), where the matrices involved are those defined
in Chapter 1 in the areal data framework.

3.6 Simulation study

We test the time-dependent SR-PDE method in a toy example. We consider a circular
bidimensional domain Ω = B1 and we assume that the true underlying surface f0,
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represented at time t = 0 in the top left panel of Figure 3.2, is defined by

f0(x, t) = a(t)(1− x2
1 − x2

2) (3.13)

where a(t) is a smooth function of time, represented in the top right panel of Figure
3.2. We consider the n = 100 observation points p1, . . . ,pn, represented in Figure 3.2,
bottom left.
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Figure 3.2: Top left: true surface f0 at time t = 0 used in the toy example; the image displays the
isolines (0, 0.1, . . . , 0.9, 1). Top right: time-dependent multiplicative factor a(t) in the true surface
f0. Bottom left: location points p1, . . . ,pn. Bottom right: triangulation of the domain Ω.

We discretize the estimation problem in space using linear Finite Elements defined
on the triangulation shown in Figure 3.2, bottom right. The discretization in time is
obtained by means of the Finite Difference method, with the implicit scheme described
in Section 3.4. The time discretization grid is composed by NT = 41 uniformly spaced
points in [0, 1], i.e., τ1 = 0, τ2 = 0.025, . . . , τNT

= 1. We add a Gaussian noise with
zero mean and standard deviation σ = 0.1 to the pointwise evaluation f0(pi, τ

k) of the
surface at time τ k.

The results obtained minimizing the functional JT (f), penalized with the misfit of
the parabolic equation ∂f

∂t
+ ∆f = 0 with Dirichlet b.c., f |∂Ω = 0 and initial condition
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Figure 3.3: Estimated surface at different time instants using the time-dependent SR-PDE in the toy
example.
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Figure 3.4: Comparison between the time-dependent multiplicative factor a(t) in the true surface f0

(black curve) and the maximum value of the estimated surface f̂h, called â(t) (red curve).

f(x, 0) = (1 − x2
1 − x2

2), are shown in Figure 3.3. From the comparison between
the time-dependent multiplicative factor a(t) in the true surface f0 and the maximum
value of the estimated surface f̂h, represented in Figure 3.4, we can notice that the
estimated surface evolving in time captures well the features of the true underlying
dynamic surface f0. Specifically, the estimated surface reaches the maximum peak at
time t = 0.2 and decreases at time t = 0.4 to the plateau level, analogously to the true
underlying surface f0. The maximum value reached by the surface estimator is however
lower than the maximum value of f0 due to the regularizing effect of the method. We
can also notice that the method oversmooths the solution in the last time instants; this
effect is caused by the fact that, imposing ĝ(x, T ) = 0, we are actually requiring that
the PDE (3.3) is satisfied exactly at time t = T . Since we are penalizing in the toy
example considered an homogeneous PDE, i.e., u = 0, the dynamic surface shrinks to
zero in the last time instants.

3.7 Blood velocity field estimation

We want now to apply the time-dependent SR-PDE to the estimation of the dynamic
blood velocity field on a cross-section of the common carotid artery. This problem is of
particular interest in the MACAREN@MOX project described in Chapter 1. The data
used in order to estimate the dynamic blood velocity field are represented in Figure 3.5:
the 7 curves represent the mean velocity of the blood cells measured on the 7 beams,
whose location is shown in Figure 1.6. Each mean velocity curve is estimated sepa-
rately from the others starting from the corresponding ECD signal. The period of each
signal is estimated using fast Fourier transform and the curve is obtained by means of
a Fourier smoothing. The curves are then registered with an affine warping function
in order to obtain curves with the same period, equal to the average period T = 0.92,
and aligned with respect to the systolic peak time, which is an easily detectable land-
mark. In the upper right part of the figure a stylized artery cross-section is represented
and each beam is colored according to the color of the corresponding ECD signal. We
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Figure 3.5: Mean velocity measured on the 7 beams on the artery cross-section. Each curve is colored
according to the position of the corresponding beam, represented in the upper right corner.

can notice that the ECD signals have a different shape. Specifically, the curves corre-
sponding to the central beam and to the beams in the upper part of the section have two
peaks in the systolic phase and reach higher velocities during the second peak, while
the curves corresponding to the beams in the lower and lateral part of the section have
only one peak. In the second group of curves, the ECD signals corresponding to the
beams in the lower part of the section reach higher velocities than those corresponding
to the lateral beams. The same evolution in time of the mean velocity on the 7 beams
is represented in Figure 3.6. This figure represents the observed mean velocity at some
fixed time instants. As in Figure 1.6, at each time instant each beam is colored accord-
ing to the corresponding mean velocity. The data used in Chapter 1 in order to estimate
the systolic blood velocity field corresponds to the data shown in the top right panel of
Figure 3.6, which represents the mean velocity at the systolic peak time (t = 0.23). We
can notice that, while at the systolic peak time the maximum velocity is obtained in the
lower part of the cross-section, in the following instants the maximum velocity moves
to the upper part of the cross-section, as expected from Figure 3.5.

The dynamic velocity field is estimated minimizing the functional J̄T (f) penalized
with the misfit of the parabolic PDE ḟ + λ̃Lf = 0, where the spatial operator L is the
same used in Section 1.7 for the estimation of the velocity at the systolic peak time,
i.e., the diffusion matrix K is defined in equation (1.42) with R = 2.8, κ1 = 0.1,
κ2 = 0.2, b(x, y) = (βx, βy)T with β = 0.5. The relative strength between the space
and time derivatives is controlled via the multiplying factor λ̃, which is set in this case
equal to 10 The resulting spatial differential operator has thus diffusion matrix equal to
λ̃K and transport term equal to λ̃b. We estimate the starting velocity profile h0, which
corresponds to the velocity field at the end of the diastolic phase, via the SR-PDE
method described in Chapter 1. Finally, we impose homogeneous Dirichlet boundary
conditions on the wall of the carotid cross-section, i.e., f |∂Ω = 0, as in Section 1.7.

The estimation problem is discretized in space using linear Finite Elements defined
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Figure 3.6: Time evolution of the mean velocity on the 7 beams at certain time instants. Each beam is
colored according to the mean blood-velocity measured on the beam at the considered time instant.
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Figure 3.7: Estimated blood velocity field at different time instants using the time-dependent SR-PDE.

70



i
i

“thesis” — 2013/5/2 — 15:54 — page 71 — #79 i
i

i
i

i
i

3.7. Blood velocity field estimation

Figure 3.8: Estimated blood velocity field during the systolic phase using the time-dependent SR-PDE.

on the triangulation used in the velocity field estimation in Chapter 1, which is shown
in the left panel of Figure 1.8. The discretization in time is obtained by means of the
Finite Difference method, with the implicit scheme described in Section 3.4. The time
discretization grid is composed by NT = 41 uniformly spaced points in [0, 0.92].

The estimated dynamic surface is represented in Figure 3.7 at certain time instants.
We can notice that during a heartbeat the shape of the velocity field is subject to strong
variations. During the first instants of the systolic phase (upper right panel of Figure
3.7) the velocity field has a strong asymmetry with higher values in the lower part of the
artery cross-section. In the following instants the shape of the velocity field changes,
assuming higher values in the upper right part of the cross-section (central left and
central panel of Figure 3.7). The shape variation of the estimated velocity field during
the systolic phase is represented in more detail in Figure 3.8. During the diastolic phase
the estimated velocity field is instead symmetric and flat.

In order to assess the goodness of fit we can compare the data, represented in Figure
3.5, with the mean velocity on the beams estimated via SR-PDE. We recall that the data
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Figure 3.9: Comparison between the estimated mean velocity (red curves) and the correspondent ECD
signals (black curves) on the 3 central beams.
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represent the time-varying mean velocity registered on the beams and that each curve is
estimated, separately from the others, starting from the ECD signals. Figure 3.9 shows
this comparison on the 3 central beams: the mean velocity estimated via SR-PDE is
represented in red, while the correspondent datum is represented in black. Notice that
the estimated dynamic surface captures well the main features of the ECD signals.
Moreover the estimate of the mean velocity on each beam borrows strength from the
proximity of other beams, taking into account the spatial structure of the phenomenon,
which is not considered in the estimation of the mean velocity from the ECD signals
(black curves in Figure 3.9). Penalizing a parabolic PDE that summarizes the prior
knowledge on the phenomenon allows thus to obtain a physiological estimate of the
velocity field.
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In this thesis we have introduced an innovative method for surface and spatial field es-
timation, when prior knowledge is available, concerning the physics of the problem. In
particular, this prior knowledge, conveniently described via a PDE, is used to model the
space variation of the phenomenon. Although demonstrated on the specific application
that motivated its development, the method has indeed a very broad applicability, since
PDEs are commonly used to model phenomena behavior in many fields of sciences and
engineering. The method is actually not applicable to PDEs with discontinuous param-
eters, pointwise forcing term or defined on irregular domains, due to the extra regularity
required to the parameters of the penalized PDE. This request however is not restrictive
in spatial statistics and in the smoothing framework since the field is normally assumed
to be very regular. The proposed mixed Finite Element method requires moreover g0

to satisfy the Dirichlet boundary conditions on ΓD. This hypothesis could be some-
times restrictive since it means that the second derivatives of the field at the boundary
are clumped to zero; other discretization methods for fourth order problems could be
considered in the future. However, we have observed numerically that whenever g0

does not satisfy the homogeneous Dirichlet boundary conditions on ΓD, the extra con-
sistency error is of the same order as the bias contribution and therefore does not really
compromise the optimal convergence rate of the method.

One of the most interesting developments within this line of research consists now
in the data driven estimation of the hyperparameters in the penalized PDE. In this the-
sis, these hyperparameters have in fact been considered fixed. Notice that, while a
currently crucial topic in statistics concerns the development of methods for parameter
estimations in Ordinary Differential Equation, this would instead consist in approach-
ing the remarkably more complex problem of data driven estimation of the parameters
in PDEs, a research field still largely unexplored by statisticians. To face such problem
a possible road is offered by the parameter cascading methodology proposed in [29].

As shown in Chapter 1, the proposed estimators are linear in the observed data values
and have a typical penalized regression form, so that important distributional properties
can be readily derived. The convergence studied in Chapter 2 concerns the bias of the
estimator when the characteristic mesh size h goes to zero and neglects instead the
error induced by the presence of noise in the observations. Classical results concerning
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smoothing splines and thin-plate splines (see, e.g., [7–9, 18]) show the consistency of
these estimators when the smoothing parameter λ goes to zero, as n → +∞, with a
proper rate. Unfortunately these results cannot be directly extended to SR-PDE and
a different approach needs to be developed to show the consistency of these models.
We are currently studying the (infill) asymptotic properties of the estimator when the
number of observations n goes to infinity. In particular we are studying the convergence
of the variance term ŵ, both in the continuous and the discrete setting, when n goes to
infinity and we are looking for a proper rate of λ that makes both the bias and variance
vanish.

It will be also interesting to balance the discretization error induced by the Finite
Element approximation with the bias of the estimator and the variance term related to
the noise of the observations. A possible way to solve the problem is the development
of a proper mesh adaptation technique, based on a posteriori estimates of noise, vari-
ance and bias. This technique should locally refine the mesh in order to obtain a local
discretization error of the same order or smaller than the bias and the noise standard
deviation σ.

Finally, in order to use the estimated dynamic velocity fields as inflow conditions
for the hemodynamics simulations, within the MACAREN@MOX project, it will be
necessary to extend the time-dependent SR-PDE method in order to account for the de-
formation of the artery wall during the heartbeat. Figure 3.10 shows the geometry of the
artery cross-section located 2 cm before the carotid bifurcation at different time instants
during the heartbeat. The black points represent the segmentation of the geometry ob-
tained with Magnetic Resonance Imaging (MRI) data, while the red curves represent
the estimated geometry obtained via a space-time periodic smoothing. Notice that dur-
ing the first instants of the systolic phase, represented in the first panels of Figure 3.10,
the carotid cross-section quickly dilates, while after the systolic peak time, represented
in the upper right panel of Figure 3.10, the section slowly shrinks. Moreover the shape
of the cross-section changes during the whole heartbeat. The domain considered in
the blood velocity estimation in the Chapters 1 and 3 corresponds to the carotid cross-
section at the systolic peak time that is represented in the upper right panel of Figure
3.10. Allowing for changes in the shape of the domain over time poses a problem of
registration of different domains similar to the one faced in population studies, as antic-
ipated in Section 1.7. We are currently developing an appropriate registration method
based on shape analysis techniques, landmark registration and conformal mapping to
face this issue.
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Figure 3.10: Geometry reconstruction of the carotid cross-section from MRI data during the lapse of
a heartbeat: black points represent the geometry obtained from the segmentation of MRI data while
red curve represents the estimated geometry obtained via space-time periodic smoothing.
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