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Summary

THIS work presents two distinct applications of statistical modeling and estima-
tion in problems related to health care: Chapter 1 is dedicated to the statistical
modeling of hospital admission data and its use for predictive purposes in the

analysis of a particular modern care strategy, the home telemonitoring for heart failure;
Chapters 2 and 3 instead present various statistical methods for the estimation of dif-
fusion parameters in Magnetic Resonance Imaging (MRI) data, taking into account the
distributional properties of the observed signals.

More in detail, Chapter 1 presents briefly the health care practice of home telemon-
itoring for subjects affected by heart failure, and proposes a framework for analyzing
its outcome (completion or early interruption). The prediction of the telemonitoring
period’s outcome is important for the management of the care program, in particular
for deciding patient allocation and for evaluating costs and benefits. The analysis is
carried out thanks to the integration of the Public Health Database, which allows to
gain information on the clinical history of a subject, and of home telemonitoring sur-
vey data. In particular, hospital admissions are modeled as points of a counting process
in which the hazard is time-varying and dependent on some covariates. This approach
is by itself informative on the characteristics of heart failure patients, but can also be
used as a way of summarizing the state of severity of the disease: the time-dependent
hazard functions are used as functional covariates, to enrich the predictive model for
telemonitoring outcome. A case study is presented, showing the advantages of this
approach with respect to other classic models.

Chapter 2 introduces some basics of diffusion estimation in Diffusion-Weighted
Imaging, starting with the estimation of Apparent Diffusion Coefficient (ADC) fields
in isotropic tissues. The importance of taking into account a reliable model for noise,
instead of a Gaussian approximation, is discussed, and some methods for pointwise es-
timation of Rician distirbution parameters are presented and compared. In this frame-
work, we introduce maximum likelihood estimation of ADC fields coupled with an
experimental design for the choice of b-values, aimed at increasing the estimation ac-
curacy in interesting areas, and analyze the results of design optimization on both sim-
ulated and real data.

III
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Chapter 3 considers data acquired by MRI scanners with multiple coils, generalizing
the estimation framework to noncentral chi-distributed signals and to the Diffusion Ten-
sor Imaging model. The distributional assumptions on the observed signal are exploited
to set up a hypothesis test that aims at discriminating the background, pure noise area
with the signal area on an MR volume (with a particular focus on brain imaging). More-
over, a likelihood maximization algorithm is presented within the noncentral chi/DTI
framework, and its performances are investigated by a simulation study.

IV
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CHAPTER1
Counting process modeling for health care data -

an application to heart failure telemonitoring

1.1 Introduction

Heart failure is a degenerative disease known worldwide as one of the most frequent
causes of hospitalization among the eldest in the population. Since the frequency of
crises undergone by a given patient increases along time, a growing employment of
health care resources in terms of money, structures and personnel is needed. The ne-
cessity of a cost-effective solution for the care of this and other chronic pathologies has
led to the experimentation of telemedicine as a possibly convenient strategy ( [13], [24]
and [47]).

The basic idea of telemonitoring is to keep the patient at home and to instruct
her/him about the use of monitoring instruments, which send registered information
(ECG, body weight, heart frequency, etc.) to the health institution by a network con-
nection. The physician in charge evaluates received data to properly manage the home
care program, for example by modifying drug doses and by scheduling visits.

Telemonitoring databases contain information mostly regarding the telemonitoring
period itself, such as duration of the period, number of ECGs transmitted to the hospi-
tal, clinical parameters at starting and ending times, the NYHA1 severity class of the
patient’s pathology, some features regarding the last hospitalization and others. The
telemonitoring outcome, i.e. the conclusion of the planned period (usually 180 days,
for what concerns the programs considered in this work) without interruption by ad-
verse events, should be related to the patients’ clinical history to get better insight into
the effectiveness and applicability of this strategy. To this aim, in this study we consider

1The New York Heart Association classification divides in four classes the extent of heart failure: 1 is the less severe, 4 the
most.

1
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Chapter 1. Counting process modeling for health care data - an application to heart
failure telemonitoring

Hospital Dimission Forms (Schede di Dimissione Ospedaliera, briefly SDO) extracted
from the Italian administrative Public Health Database (PHD), which gathers detailed
information about hospitalization periods. The use of information about hospitaliza-
tions to study telemonitoring outcome is an innovative approach, since no standard
methodology exists to exploit this kind of data. Moreover, data conveyed by adminis-
trative databases are used for clinical purposes, to the best of our knowledge, for the
first time in Italy and in the field of telemonitoring.

Since heart failure is a pathology that alternates phases of stability to sudden wors-
enings of the patient’s condition, it is not possible to assume a stationary pattern for
critical events. When dealing with time dependent observations of localized events, a
natural modeling approach, yet new in the field of telemonitoring, is to consider each
patient’s hospitalizations as points of a non stationary, doubly stochastic counting pro-
cess. The model we consider is a Cox-type one, a specification of the general class
of models introduced in [40] and applied in [27] to the study of intervention effects
after cancer relapse. This class of models allows to take into account many aspects that
influence hospitalization risk and to compute the realized trajectories of the cumula-
tive hazard process underlying the hospitalizations counting process; these longitudinal
data reduce complex characteristics of the patient’s clinical history to a single curve
that represents each patient’s instantaneous risk of hospitalization. Cumulative hazard
processes are then studied in the light of functional data analysis techniques (see [44]
for a general presentation of the subject) to identify their main features, and used to
construct a generalized linear model with functional covariates for predicting telemon-
itoring outcome.

The methodology proposed in this work can be divided in two distinct phases, bas-
ing on the sources of data involved. First, hospital admission historical data from the
PHD are used to fit a counting process model, since we reasonably assume that hos-
pitalizations reflect the aggravation of the patient’s condition. Hence, data gathered in
the PHD are involved in the construction of hazard functions, longitudinal data that
reflect the evolution of rehospitalization risk before the application of the treatment (in
our case, telemonitoring). The second phase is motivated by the main objective of this
work, which is to predict the outcome of a treatment (in our case, the regular conclu-
sion of a telemonitoring period) basing on available data. In this part of the analysis
the data collected in the clinical registry are enriched with information gained from the
preceding clinical history of the patient, represented by the longitudinal data estimated
in the first phase. The two parts of the analysis could be performed also as stand-alone,
the first analyzing the risk of hospital readmission for a given time period and class
of hospitalization causes (e.g. cardiovascular), the second being a supervised classifi-
cation method independent from the first. Nonetheless, a problem driven interaction
between the two sources of information can bring great improvements in the prediction
of the outcome of interest.

The chapter is structured as follows. Section 1.2 describes the theoretical and method-
ological framework. For what concerns the extraction of pre-telemonitoring longitudi-
nal information, the model for recurrent events is first introduced. Then the smoothing
of cumulative hazard functions obtained by realized trajectories of the recurrent event
processes is detailed, and the dimensional reduction via functional principal compo-
nents is described. Generalized linear models with functional covariates are also pre-

2
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1.2. Theoretical framework

sented, as they will be used for the prediction of the telemonitoring outcome. Section
1.3 presents in detail the motivating application, practical issues and results. Finally,
section 1.4 contains some concluding remarks and a discussion of possible extensions
of this work.

Part of the work described in this Chapter has been published in [7]. The framework
for the analysis of telemonitoring clinical registries has been applied in [25] to the
Nuove Reti Sanitarie database.

1.2 Theoretical framework

1.2.1 Model for recurrent events

First of all, we introduce the counting process model that describes the patient-specific
progression of hospital readmission risk in time.

Let (Ft)t∈I be a filtration associated to the probability space (Ω,F ,P), with I =
[0, τ ]. We define the counting process (N(t))t∈I adapted to (Ft)t∈I as follows:

N(t) =
∞∑
j=0

I{Sj ≤ min(t, τ)}, (1.1)

where Sj represents the calendar time of the j-th occurrence of the observed event and
τ represents a random censoring time for the process.

Under the standard assumption that N is a submartingale such that the class of ran-
dom variables N(T ), with T an arbitrary stopping time, is uniformly integrable, the
Doob-Meyer decomposition theorem states that there exists a unique predictable, non
decreasing, cadlag (right-continuous with left limits) and integrable compensator (or
cumulative hazard) process (Λ(t))t∈I such that

M = N − Λ (1.2)

is a zero-mean, uniformly integrable martingale (see for example [4]). Hence the dis-
tribution of event times is completely characterized by the knowledge of process Λ, on
which modeling efforts should then be focused. We will assume that

Λ(t) =

∫ t

0

C(s)λ(s)ds, (1.3)

where C(s) = I{s ≤ τ} is the at-risk process, and (λ(s))s∈I is called hazard function,
or intensity process.

A wide variety of models for the intensity process can be found in counting pro-
cesses literature, ranging from simple Poisson processes to multiplicative hazard mod-
els [17], additive models, frailty and dynamic models (see for instance [4] and [1] for
presentations and discussions on various possibilities). Our choice for the target prob-
lem is the following Cox-type model: for i = 1, . . . , n, the ith subject has covariate
vectorX i(t) = (Xi1(t), . . . , Xiq(t))

T (eventually time dependent) and the intensity is

λ(t|X i) = λ0(t)αNi(t
−)eβ

TXi(t), (1.4)

where λ0(t) is an unknown baseline hazard function, α is a real parameter and β =
(β1, . . . , βq)

T a q-dimensional vector of real coefficients.

3
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We choose to account for unobserved heterogeneity by using the dynamic compo-
nent αNi(t−) instead of a frailty variable, i.e. a multiplicative random effect. Dynamic
and frailty modeling can be seen as two related methods for describing subject hetero-
geneity, but the former is more general and flexible (see [1] for a discussion on these
two approaches); however, results obtained in the two cases are compared in section
1.3.2. The dependence of intensity on process state is modeled by the term αNi(t

−)

because of its clear interpretation: values of α higher than 1 indicate that a new event
implies a worsening of the patient’s condition, increasing future rehospitalization risk,
vice versa for α values lower than 1. We also assume the baseline intensity λ0 to be
a function of the total time t, but a wide range of choices is valid within the same
framework; see for example the concept of effective age introduced in [40].

Adding a censoring variable to account for different observation intervals, the model
for cumulative hazard can be written as follows, for patients i = 1, . . . , n:

Λi(t|X i) =

∫ t

0

Ci(s)λ0(s)αNi(s
−) exp[βTX i(s)]ds, (1.5)

where Ci(s) = I{s ≤ τi}, i.e. subjects have different, mutually independent censoring
times τi. Independent censorship as defined in [31] can be assumed for the considered
problem, as will be clear from the application described in section 1.3.

1.2.2 Cumulative hazard smoothing and reconstruction

Semiparametric estimation of cumulative hazard, as proposed in [41], produces a step
function estimate Λ̂0 of the cumulative baseline hazard function Λ0(t) =

∫ t
0
λ0(s)ds

that has the following expression: defining tj as the j-th observed jump time of the
aggregated process N(t) =

∑n
i=1 Ni(t) and τ = max

i=1,...,n
τi, then

Λ̂0(t) =
∑
tj≤t

1∑n
i=1 Ci(tj)α̂

Ni(t
−
j )eβ̂

T
Xi(tj)

, t ∈ (0, τ ],

where α̂ and β̂ are maximum likelihood estimates of α and β.
Assuming the true underlying Λ0 function to be absolutely continuous, we deal with

the issue of smoothing its estimate Λ̂0 before moving to the reconstruction of cumu-
lative hazard process realizations for each patient. The function Λ0(t) has two fea-
tures that we want to be preserved by the smoothing procedure: increasing mono-
tonicity and Λ0(0) = 0. A fast method for smoothing functional data while en-
forcing desired constraints has been proposed in [30] and consists in a minimum ab-
solute deviation estimate of coefficients for a B-spline basis expansion: given a set
of observations {(xj, yj)}j=1,...,m from a function y = f(x) to be smoothed, a set
of knots {u0 = 0, u1, . . . , uK−1, uK = τ} and a fixed polynomial degree d, find
a∗ = (a∗0, . . . , a

∗
K+d−1)T such that

a∗ = argmin
a∈Rk+d

m∑
j=1

∣∣∣∣∣yj −
K+d−1∑
k=0

akB
(d)
k (xi)

∣∣∣∣∣ , (1.6)

B
(d)
0 (x), . . . , B

(d)
K+d−1(x) being the B-spline basis of degree d on the chosen set of

knots. In our case x1, x2, x3, . . . = 0, t1, t2, . . ., the global jump times, f = Λ̂0 and

4
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1.2. Theoretical framework

yj = Λ̃0(tj). If basis functions of polynomial degree d = 1, 2 are used, then mono-
tonicity, convexity and pointwise constraints can be written as linear constraints. Since
the quantity to be minimized can also be written as a linear objective function, the prob-
lem can be solved with linear programming techniques, whose efficiency and reliability
are ascertained.

We then reconstruct the realizations of processes Λi(t) for i = 1, . . . , n under the
chosen model, since we intend to use them as patient-specific functional data. As shown
in Appendix A, it is possible to rewrite the model for intensity in a form that allows to
plug in Λ̃0 instead of an estimate of λ0.

As a qualitative validation of the fitted model, we can compare the averages of count-
ing and cumulative hazard processes: taking conditional expectations in (1.2) we have
E[Λi(t)|Xi(t)] = E[Ni(t)|Xi(t)] for i = 1, . . . , n. The comparison is not straightfor-
ward when curves have different censoring times, in particular if faster growing curves
have higher probability of earlier censoring (this is common for risk curves, as frailer
patients die earlier). Let (f(t))t∈I be a stochastic process and let τ be a stopping time
for this process; then if f = (f1, . . . , fn)T is a set of trajectories of the process f ,
and {τ1, . . . , τn} a set of realizations of τ , we can define the pointwise sample mean
function as

µn[f ](t) =
1

n(t)

n∑
i=1

fi(t)Ci(t), ∀t ∈ [0, τ ], (1.7)

where n(t) =
∑n

i=1Ci(t), letting Ci(t) = I(t ≤ τi) be the censoring process for
subject i and τ = max

i=1,...,n
τi. In our application this estimator is not monotone and

underestimates expected values for large times. As an alternative, we use the following

µ̃n[f ](xk) =
k∑
j=1

n∑
i=1

Ci(xj)

n(xj)

[
fi(xj)− fi(xj−1)

]
, k = 1, . . . ,m, (1.8)

with {x0, . . . , xm} an overset of {τ1, . . . , τn} and µ̃n[f ](x0) =
∑n

i=1 fi(x0)Ci(x0) =∑n
i=1 fi(x0). Applying this estimator to {Λ̃i}i=1,...,n and {Ni}i=1,...,n enforces mono-

tonicity by definition when all sample curves are monotone. As pointed out in [18], this
estimator is unbiased and consistent, and in the case of positively correlated increments
it is likely that Var{µ̃n[f ](t)} < Var{µn[f ](t)}.

Although we specified the counting process model as above, it is important to un-
derline that the methodology presented in the following can be applied to any kind of
model that allows for a patient-specific reconstruction of time-dependent hazard.

1.2.3 Functional principal component analysis

From this point, the reconstructed realizations Λ̃i(t) are considered as functional data,
and will be later included as covariates in a generalized linear model for telemonitor-
ing outcome prediction. Since these data are high-dimensional, a common strategy is
to perform a suitable dimensional reduction, choosing only relevant components of a
proper basis expansion. This approach is similar to the one proposed in [29], where
survival functions of cohorts of medflies are regarded as functional data.

Consider the functional ANOVA decomposition of data, as suggested in [37],

Λ̃i(t) = µ(t) +Di(t) + εi(t), i = 1, . . . , n (1.9)

5
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where µ(t) is the population mean function, Di(t) is the residual for subject i and
εi(t) the noise term. One of the possibilities for representing Λ̃i(t) is to use functional
principal component analysis (FPCA), i.e. the Karhunen-Loève decomposition (see for
example [20] for some theoretical results and [44] for practical details). At this point we
assume that functional data are known on a common domain T , thus allowing to esti-
mate a common Karhunen-Loève basis. Once eigenfunctions {ψk}k∈N and eigenvalues
{νk}k∈N of the covariance operator for Λ̃ have been found, we express the functional
ANOVA decomposition (1.9) in the following form

Λ̃i(t) = µ(t) +
∞∑
k=1

ξikψk(t) + εi(t), i = 1, . . . , n,

where ξik =
∫
T
Di(s)ψk(s)ds is the k-th score for subject i. Eigenfunction-eigenvalue

couples {(ψk, νk)}k∈N completely explain modes of variation of data, in the sense that
eigenfunctions ordered with respect to the associated eigenvalues represent orthonor-
mal directions of decreasing residual variability. It is thus possible to represent data
using just the most relevant modes of variation, represented by the first K elements of
{ψk}k∈N. A natural criterion for choosing the number K of components to be included
in the truncated representation is the following: fix a threshold c for the proportion of
variance they should globally describe, which is based on eigenvalues, and choose the
minimum K such that: ∑K

k=1 νk∑m
k=1 νk

≥ c,

wherem is the number of abscissa values on which functional data are known. We then
use the approximation

Λ̃K
i (t) = µ(t) +

K∑
k=1

ξikψk(t) + εi(t), i = 1, . . . , n.

For the sake of simplicity, from now on we will write Λ̃i(t) even when its truncated
basis expansion Λ̃K

i (t) is used.

1.2.4 Generalized linear models with functional covariates

While the methodological elements presented up to this point regarded the extraction of
longitudinal pre-telemonitoring information, the present section involves the analysis
of data from clinical registries, eventually enriched with information obtained from
estimated cumulative hazard trajectories.

Let us consider a response variable Y such that Yi ∼ EF (θi, η), i.e. Yi for i ∈
1, . . . , n belongs to the exponential family

fYi(y|θi, η) = exp

(
yθi − b(θi)

η
+ c(y, η)

)
E[Yi] = b′(θi)

Var[Yi] = ηb′′(θi)

6
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with b and c given functions; the link function g is s.t. E[Yi] = g−1(θi) (i.e. g−1 = b′),
while θi is a linear function of covariates related to subject i. This set of covariates is
composed by data from the clinical registry, i.e. information recorded at the beginning
of the telemonitoring period; we augment this dataset adding the functions Di(t), i =
1, . . . , n introduced in section 1.2.3, so that θi, i = 1, . . . , n, assumes the (truncated)
form

θi =

∫
T

Di(t)δ(t)dt+ wT
i γ ≈

∫
T

δ(t)
K∑
k=1

ζikψk(t)dt+ wT
i γ,

where δ : T 7→ R is a functional parameter, γ ∈ Rp is a vector of parameters to
be estimated and wi ∈ Rp, for i = 1, . . . , n, is a vector of covariates available from
the clinical survey. Notice that we used the K most relevant principal components to
represent Di(t). If also δ(·) is represented using the principal components basis, i.e.
δ(t) =

∑K
j=1 δjψj(t), for the orthonormality of {ψk}k∈N we obtain

θi =
K∑
k=1

ζikδk + wT
i γ, i = 1, . . . , n.

In the end, the model is reduced to a classical generalized linear model, in which the
unknowns are represented by the parameter vector (δ1, . . . , δK , γ1, . . . , γp). In our ap-
plication we will consider a logistic regression model, where the response variable is
Yi ∼ B(pi) for i ∈ 1, . . . , n and θi = log (pi/(1− pi)).

1.3 Application to telemonitoring data analysis and results

In Lombardia region an experimentation of heart failure telemonitoring started in 2003,
involving 34 health care institutions (see [14] for an overview of program and proto-
cols). Four studies (Criteria, Piano Urbano, Nuove Reti Sanitarie and Telemaco) were
devoted to collect, under prior informed consent, information about telemonitoring pe-
riods, then gathered in a comprehensive database. Each record of this database refers to
a single telemonitoring period, and contains anagraphical data of the involved patient,
number of transmitted electrocardiograms, diagnosis and disease etiology at the last
hospital admission and other relevant clinical quantities.

The enrollment protocol adopted during the period 2004–2008 includes adult citi-
zens of Lombardia with a NYHA class (describing the severity of heart disease) of III
or IV who experienced at least one hospitalization for heart failure during the 6 months
before the beginning of telemonitoring. The telemonitoring period is planned for a
180-day duration, with possible re-enrollment under particular conditions. The period
may be interrupted, by protocol, if a hospitalization lasting more than 8 days occurs or
because of surgical intervention; we considered these two cases and decease as “neg-
ative” conclusions of the treatment, while other types of “external" events that forced
interruption, such as a change of dwelling or the decision by the patient herself/himself
to stop the therapy, have been considered as drop-outs.

Since data regarding telemonitoring periods have a limited scope, we requested
an interrogation of the regional administrative PHD, to obtain hospital discharge data
(SDOs) stored during the five years of interest. Each one of these records contains
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extensive information about a single hospitalization, such as date, duration, drugs re-
ceived, DRG (Diagnosis Related Group, a classification code for patients discharged
from hospital, based on the type of resources used during the stay) and other data of
clinical interest. This information is used to estimate pre-telemonitoring hazard func-
tions, so the subset of records regarding just pre-telemonitoring hospital admissions for
each patient has been extracted from the full database. Each one of the available sub-
jects is identified by a unique code, derived from an anonymizing procedure applied
to her/his identity number, and used to retrieve from the SDO database her/his hospi-
talization history in the period 2004–2008. The linkage and matching of information
between these two databases resulted in the constitution of an initial sample of 1081
patients, anyway a further reduction was operated in the second part of the analysis, to
include only subjects whose telemonitoring period started at least in 2006; in this way,
a 2-year time window before telemonitoring is available for all of them, ensuring better
background for predictive tasks.

The risk of hospital readmission is obviously zero during each hospital stay, which
typically lasts some days (mean duration = 17.18 ± 28.03 days). We deal with this
issue by removing the hospital stay period from the process time count and by counting
just once consecutive hospitalization periods that were eventually registered as multiple
in the database because of a patient’s transfer to a different structure or for any other
reason. The time variable is expressed in days passed from 1st January 2004.

The following analyses have been carried out using the statistical software R [43].
For hazard estimation packages gcmrec [26] and frailtypack [28] have been
used, while package cobs [38] has been used for constrained smoothing.

1.3.1 Hazard estimation and dimensional reduction

The first step of the analysis consists in the estimation of model (1.5) for cumulative
hazard functions, using the procedure explained in section 1.2.2.

The beginning of telemonitoring is introduced as a censoring time τi, i = 1, . . . , n,
for the hospitalization counting processes, assuming that this event does not influence
preceding hospitalizations; this assumption seems reasonable, on the basis of the en-
rollment protocol.

Following medical advice, subject age is included as covariate Xi(s) in (1.5), pro-
viding the following model for patients i = 1, . . . , n

Λi(t|X i) =

∫ t

0

Ci(s)λ0(s)αNi(s
−) exp[βXi(s)]ds,

with Ci(s) = I{s ≤ τi}. Including age at t = 0 as a time-independent covariate would
yield similar results in the following, anyway we include it as a continuous variable,
coherently with the fact that hospital admissions occur for each patients at different
distances from the beginning of observation time. Moreover, this choice is coherent
with the assumption that the influence of a covariate on hazard does not depend on the
particular time instant when we start observing the subject.

Estimated baseline cumulative hazard Λ̂0(t) is represented in Figure 1.1 (dashed
line), while parameter estimates are shown in Table 1.1. We notice that parameter α,
describing the effect of a new event on the risk of future hospitalizations, is signifi-
cantly higher than 1, according to a one-sided hypothesis test; this means that a new
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event represents an increase in rehospitalization risk. Parameter β, related to the age
covariate, is surprisingly negative, indicating that the risk of rehospitalization is slightly
lower for older patients; this could be explained by the fact that in the old population
considered (the mean age is 67.82 ± 11.19) subjects who survived up to a higher age
are the less frail ones.

estimate std. dev. p-value
α 1.21 0.00887 < 2 · 10−16∗
β -0.00336 0.00172 0.051

Table 1.1: Results of hazard parameters estimation. p-value ∗ refers to a test with null hypothesis α ≤ 1.
Both tests are carried out with a normal approximation for maximum likelihood estimators.

Since the nonparametric estimator used for Λ0(t) produces a step function, we per-
form a smoothing of this estimate with the method proposed in section 1.2.2; for the
B-Spline basis, we choose polynomial order 2 and 20 equally spaced knots. A compar-
ison between the nonparametric estimate and the B-spline smoothed estimate is shown
in Figure 1.1. In this picture we also notice that the cumulative baseline hazard function
Λ̂0(t) has a convex behavior, describing a gradual increase of instantaneous risk due to
the disease, common to the whole population.

Once Λ̃0 has been computed, we can reconstruct individual cumulative hazard pro-
cesses by the plug-in estimator proposed in Appendix A, obtaining the functional dataset
shown in Figure 1.2a. To verify that the condition E[Λi(t)|Xi(t)] = E[Ni(t)|Xi(t)]
holds, it is possible to visualize the mean functions of point processes and of cumu-
lative hazard processes, computed using the cumulative mean increment estimator µ̃n
suggested in section 1.2.2. To address the problem of computing this conditional ex-
pectation, we can split the sample in classes Ac1 , Ac2 , . . . of similar initial age and
average on these classes to approximate E[Λi(t)|Xi(t)] and E[Ni(t)|Xi(t)]. For exam-
ple, the martingale residual trajectories and their average for subjects belonging to the
age class A60 = {i : ai ∈ (55, 65]} are shown in Figure 1.2b; we can see that residuals
M̂i(t) = Ni(t)− Λ̃i(t), i ∈ A60, seem to have the expected behavior. Figure 1.3 shows
a comparison between average curves computed using pointwise estimator µn 1.7 and
estimator µ̃n 1.7 respectively; in the left panel we notice that average curves estimated
with µn are non monotone and heavily biased because of right censoring, while average
curves estimated with µ̃n, depicted in the right panel, suffer from censoring only at the
very right end of the domain.

A dimensional reduction of the functional dataset of cumulative hazard functions is
operated via principal component analysis, so that FPC scores can be used as indicators
of pre-telemonitoring risk status and be added to other variables retrieved from the tele-
monitoring survey in the subsequent logistic regression model. To avoid the problem
of censoring, as previously mentioned, we choose patients for which at least 2 years of
clinical history before telemonitoring are available in our records, and restrict the time
window for our analyses to exactly the 2 years preceding telemonitoring. Doing so, we
obtain a dataset of n = 747 curves, evaluated on a grid of length m = 730 (hazard
functions were computed on a uniform time grid with daily spacing).

Before proceeding to principal component analysis, curves are centered by subtract-
ing their mean function µn(t) (which coincides with estimator µ̃n(t) on the chosen

9
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Figure 1.1: Results of baseline cumulative hazard function estimation: Λ̂0 (dashed line) and its
smoothed version Λ̃0 (solid line).

subset of data); moreover, the noise term εi(t) is discarded, since curves have already
been estimated with smoothness.

We shall now select the components to be considered in the subsequent analysis. A
simple and effective criterion consists in choosing the first K components, such that
their associated eigenvalues explain a proportion of variance c > 95%. This criterion
leads to the choice of the first K = 2 components, as detailed in Table 1.2.

ν1 ν2
value 777.04 45.64
% variance 94.08 5.53
cum. % variance 94.08 99.60

Table 1.2: First K = 2 eigenvalues obtained with FPCA.

Figure 1.4 shows the two relevant functional principal components in the top panels
and µn(t) ± νkφk(t), k = 1, 2 in the bottom panels. The first component is monotone
increasing, and is highly dominant in the description of data curves, while the second
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(a) Reconstructed realizations of cumulative hazard processes
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(b) Trajectories of residuals M̂i(t) = Ni(t) − Λ̃i(t), i ∈
A60, and their average (thick line).

Figure 1.2: Estimated trajectories and martingale residuals.

one is decreasing, characterizing curves that do not grow very fast also on a long time
period.

1.3.2 Generalized linear model estimation

The final goal of this work is the prediction of telemonitoring outcome, defined as
a binary variable with value 1 if telemonitoring has regular conclusion and 0 if the
period is terminated by an adverse event, i.e. hospitalization, surgical intervention or
decease. The scores of principal components 1 and 2 of individual hazard functions are
considered as covariates that summarize the features of the patients’ pre-telemonitoring
clinical history, and they are used to predict telemonitoring outcome together with a
subset of the variables present in the telemonitoring database. In particular, clinicians
suggested to take into account diagnosis and etiology of the last hospitalization before
telemonitoring and sex. Variable diagnosis has 3 levels (congestive, left or unspecified
heart failure), while etiology has 5 levels (hypertensive, hyschaemic, primary, valve,
other). Following the notation introduced in section 1.2.4, the probability of normal
outcome pi takes the following form

pi =

exp

(∑2
k=1 ζikδk + wT

i γ

)

1 + exp

(∑2
k=1 ζikδk + wT

i γ

) , for i = 1, . . . , n,

where pi = E(Yi|wi, ζi1, ζi2) and wi is composed by dummy variables representing
cathegorical covariates sex, diagnosis and etiology.

The model output is reported in Table 1.3. Scores 1 and 2 are both significant,
and their signs are coherent with a possible interpretation: principal component 1 is

11
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(a) Mean curves obtained with the pointwise estimator µn.
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(b) Mean curves obtained with estimator µ̃n.

Figure 1.3: Average curves of counting process data (dashed lines) and of reconstructed cumulative
hazard functions (solid lines) for age class A60.

an increasing function, so a larger score, which represents a steeper cumulative haz-
ard process, implies a lower probability of regular conclusion; component 2, instead,
is decreasing, and its estimated coefficient has opposite sign, indicating that patients
who have lower cumulative hazard for long times have a higher probability of nor-
mal conclusion of the telemonitoring period. Also, we can notice a slight dependence
on etiology; in particular, valvular etiology seems to increase the probability of early
conclusion of telemonitoring caused by an adverse event. Instead, there is no signifi-
cant difference in the probability of adverse events among either men and women, nor
among subjects with different types of diagnoses.

Parameter Estimate Std. Error p-value
γ0 (Intercept) 14.8108 437.0832 0.9730
γ1 (Sex) 0.1557 0.2167 0.4726
γ2 (Etiology - Hypertensive) 0.0669 0.4469 0.8810
γ3 (Etiology - Hyschaemic) -0.0187 0.2506 0.9405
γ4 (Etiology - Primary) -0.0819 0.3199 0.7981
γ5 (Etiology - Valve) -0.8867 0.4673 0.0790
γ6 (Etiology - Other) -0.6599 0.3593 0.1248
γ7 (Diagnosis - Congestive) -13.8204 437.0832 0.9748
γ8 (Diagnosis - Left) -13.1587 437.0832 0.9760
γ9 (Diagnosis - Unspecified) -13.6343 437.0833 0.9751
δ1 (FPCA score 1) -0.0144 0.0039 0.0003
δ2 (FPCA score 2) 0.0567 0.020490 0.0056

Table 1.3: Estimates, standard errors and p-values for the parameters of the logistic regression with
FPCA scores.

We shall now compare the approach proposed in this work with two other methods:
a frailty model for hazard functions, in which estimated frailties are used as predictors

12
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Figure 1.4: In the upper panels, first K = 2 eigenfunctions obtained with FPCA; in the lower panels,
representation of µn(t) (solid line) and µn(t)± νkφk(t) (’+’ or ’−’ respectively), k = 1, 2.

for the logistic regression, and a functional k-means classification, using instead cluster
labels as added covariates.

The shared gamma frailty model is formulated as

λ(t|X i, Zi) = Ziλ0(t)αNi(t
−)eβ

TXi(t),

where Z1, . . . , Zn are i.i.d. from a Gamma(1/θ, 1/θ) distribution; notice that θ rep-
resents the frailty variance, so that in the limit θ → 0 the variable is constant and
equal to 1. Since we are interested in individual hazard processes, a full likelihood
approach, such as the one proposed in [45], is not viable, because random effects are
integrated out and only population parameters are estimated. Anyway, this approach
is useful to easily assess the significance of random effects, while a computationally
heavier EM algorithm can be used to estimate also individual zis. We used the R pack-
age frailtypack to check the significance of the parameters in the frailty model,
while the estimates of the zis have been obtained with package gcmrec, using the EM
algorithm presented in [41]. When the multiplicative frailty component is considered,
θ ' 0.68 with a significant difference from 0 (a Wald test gives a p-value near 0),
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while age and process state Ni(t) in this case are not significant (p-values > 10%). On
this basis, we fit the model without covariates using the EM algorithm implemented in
package gcmrec, and use the estimated frailty realizations z1, . . . , zn as predictors in
a logistic regression model; the output of this model is presented in Table 1.4.

Parameter Estimate Std. Error p-value
γ0 (Intercept) 15.2024 436.2230 0.9722
γ1 (Sex) 0.1513 0.2160 0.4833
γ2 (Etiology - Hypertensive) 0.15180 0.4460 0.7336
γ3 (Etiology - Hyschaemic) 0.1492 0.2503 0.5511
γ4 (Etiology - Primary) -0.0452 0.3084 0.8834
γ5 (Etiology - Valve) -0.9230 0.4657 0.0474
γ6 (Etiology - Other) -0.4346 0.3624 0.2305
γ7 (Diagnosis - Congestive) -13.7154 436.2230 0.9749
γ8 (Diagnosis - Left) -13.0917 436.2230 0.9761
γ9 (Diagnosis - Unspecified) -13.688 436.2230 0.9750
Z (Frailty) -0.6865 0.1769 0.0001

Table 1.4: Estimates, standard errors and p-values for the parameters of the logistic regression with
estimated frailties.

The k-means clustering for functional data is presented in [50]. Analogously to k-
means clustering for vector data, the method iteratively assigns each one of the observed
functions f1, . . . , fn ∈ H to a group k ∈ 1, . . . ,K, choosing the one having the nearest
centroid with respect to a proper distance d on H, then recomputes centroids basing
on updated group assignments. The main types of centroids used in practice are the
pointwise mean and the medoid, i.e. the member of the dataset which minimizes the
sum of squared distances in the group; the latter choice is usually more convenient when
the averaging would produce a function that falls outside the class which the data come
from. For our analysis we chose to detect groups basing on the Sobolev H1 distance

d(fi, fj)
2 =

∫
T

(fi(t)− fj(t))2dt+

∫
T

(f ′i(t)− f ′j(t))2dt,

since the rate of hazard increase is also important in characterizing a subject. Moreover,
all the curves considered are 0 at the time origin, monotone increasing and have the
same support, so it is possible to use the pointwise mean as a centroid, since it will
preserve these features. A scree plot representing within-groups variability normalized
with total variability versus the number of clusters (Figure 1.5) shows that a quantized
description of hazard does not seem to be proper for this dataset, since the described
variability decreases very gradually when increasing the number of clusters.

As a preliminary analysis, we can explore the correlation between outcome labels
and k-means labels, for K = 2 (Table 1.5). The table does not show very strong group-
ing, nonetheless group 2 includes a clearly higher percentage of positive outcomes w.r.t.
group 1, as confirmed by an exact Fisher test (p-value 0.008538).

To compare directly with the preceding models, here we present the logistic regres-
sion output only for the case K = 2 (Table 1.6), introducing the group labels resulting
from the k-means classification as a binary variable to enrich the telemonitoring dataset,
while performance indices are presented in Table for K = 2, 3, 4, 5. In all cases, only
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Figure 1.5: Scree plot of within-groups variability. On the vertical axis, within-groups variability nor-
malized with total variability. On the horizontal axis, corresponding number of clusters.

one of the K − 1 dummy variables introduced in the logistic regression model to rep-
resent group labels is significant, with the p-value increasing as K grows.

Table 1.7 shows a comparison between the logistic regression fits with FPC scores,
estimated frailty realizations and k-means clustering labels. Notice that the model with
FPC scores has lower AIC with respect to the other models, while the lower Brier score
denotes a better fit to data. Moreover, a lower leave-one-out cross-validation error,
computed using a mean square error cost function, denotes a higher predictive power
for the first model.

The fact that by using FPC scores related to dominant principal components we
potentially introduce many covariates for the logistic regression, while the frailty ap-
proach produces only one predictor, should be considered as an additional feature of
the FPC approach. Estimated frailty realizations represent just an amplification factor
for population hazard, while the functional principal component analysis is capable of
catching arbitrarily complex behaviors of intensity in time. In this case, the second
score describes a late stabilization of the patient’s health, a phenomenon that is not
captured by the frailty variable. It is also worth noticing that the estimation process for
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failure telemonitoring

Group 1 Group 2
y = 0 64 84
y = 1 171 349

Table 1.5: Contingency table of telemonitoring outcome (y = 1 regular, y = 0 early interruption) versus
k-means group labels.

Parameter Estimate Std. Error p-value
γ0 (Intercept) 15.55561 438.40026 0.9717
γ1 (Sex) 0.10531 0.21415 0.6229
γ2 (Etiology - Hypertensive) 0.19180 0.44757 0.6683
γ3 (Etiology - Hyschaemic) -0.08477 0.24442 0.7287
γ4 (Etiology - Primary) -0.20171 0.30471 0.5080
γ5 (Etiology - Valve) -0.81283 0.46640 0.0814
γ6 (Etiology - Other) -0.68874 0.35602 0.0530
γ7 (Diagnosis - Congestive) -13.93055 438.40016 0.9747
γ8 (Diagnosis - Left) -13.21030 438.40017 0.9760
γ9 (Diagnosis - Unspecified) -13.69457 438.40026 0.9751
L (Group label) -0.45040 0.19599 0.0216

Table 1.6: Estimates, standard errors and p-values for the parameters of the logistic regression with
k-means clustering labels.

the shared gamma frailty model is computationally much heavier with respect to the
estimation process for the first model, despite the FPCA step. The k-means clustering
with pointwise means as centroids is computationally cheap, but increases in complex-
ity when the number of clusters grows; moreover, the reduction of the patient’s risk
status to a discrete variable with few level implies a great loss of information, which
is reflected by the poorer performance of the method. It should be noticed that among
models with k-means labels as covariates the best performance is achieved at K = 4,
which evidently has the best tradeoff between number of groups and groups separation.

1.4 Concluding remarks

In this work a novel approach to the analysis of telemonitoring data has been proposed,
aimed at getting deeper insight on the patient’s health status using data from clinical
registries and PHD. The presented methodology, involving database integration, count-
ing process modeling of critical events and generalized linear models, can be applied to
the study of many different pathologies, thanks to its capability of dealing with complex
data.

The counting process model is a natural way of representing the occurrence of hos-
pitalizations in time, and enables us to include a large piece of information contained
in the PHD to describe the clinical history of a patient. The model used is very general
and allows to describe complex dynamics in an easily interpretable form.

Although it can seem contradictory to define functional data as “synthetic”, in the
considered application the effect of complex and heterogeneous variables is more eas-
ily and synthetically described via a single process, expressing each patient’s instanta-
neous risk of hospitalization. The obtained trajectories are thus studied as functional
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Model AIC Brier score CV error
FPCA 688.6547 0.1614153 0.1675431
Frailty 691.8656 0.1630643 0.1688114
k-means, K = 2 701.8175 0.1657858 0.1714261
k-means, K = 3 701.4385 0.164899 0.1713723
k-means, K = 4 697.9778 0.1634312 0.1695719
k-means, K = 5 699.6043 0.1634444 0.1701560

Table 1.7: Comparison between the logistic regression model with FPCA scores, estimated frailties
(θ = 0.68) and k-means labels: AIC, Brier score and cross-validation error (MSE).

covariates in the framework of generalized linear models with functional covariates,
which offer a powerful tool to analyze dependencies and to perform classification and
prediction in a wide range of applications, also in such complex practical contexts as
the considered one. Using the FPCA it is possible to perform dimensional reduction
of functional data, allowing to use well established methods for GLM estimation and
inference in a multivariate setting and borrowing strength from both techniques.

The application of the proposed methodology is a novelty in the study of home
telemonitoring, representing the first example of use of information from the PHD to
reconstruct the patient’s clinical history in a synthetic way. The obtained results could
have an impact on the planning of this care strategy and provide support to the decision
of allocating a patient to telemonitoring, basing on her/his probability of concluding
it regularly. Further development of this framework in cooperation with medical staff
could include the selection and use of various different time dependent and independent
variables to study telemonitoring effectiveness on quality of life, mortality and costs,
and could lead to the definition of a useful tool for health care assessment and treatment
planning.
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CHAPTER2
Diffusion weighted imaging: ADC estimation and

design optimization in the Rician framework

2.1 Introduction

Diffusion magnetic resonance (MR) is as an important tool in clinical research, as it
allows to characterize some key properties of biological tissues. The signal acquired by
the MR scanner is a proxy observation of the diffusion strength in the considered area,
and allows to draw important conclusions about the morphology and histology of the
examined tissue. For example, in brain imaging the the local directions of maximum
diffusion allow to detect fiber orientation. When tumor areas are analyzed using this
technique, it can be observed that the diffusion tensor, estimated from the MR mag-
nitude signal, has reduced values in lesions with respect to surrounding physiological
tissues, allowing to identify pathological areas or necrosis.

When the region of interest can be considered as isotropic, the Apparent Diffusion
Coefficient (ADC) is sufficient to characterize the diffusion properties of the tissue,
and it is usually estimated as the exponential decay rate of the signal with respect to
the b-value, one of the main MR acquisition parameters. The assumption of isotropy
is common and reasonable in various cases, like breast and prostate cancer (see for
example [53] and [46]). The generalization to anisotropic diffusion will be treated in
Chapter 3, presenting a more general framework both for the diffusion model and for
the random signal distribution.

In many practical situations it may not be possible to collect more than few measures
at different b-values, thus limiting the accuracy of the estimation. A reduction in the
total number of measures necessary to achieve a certain accuracy is convenient in term
of costs, and allows to keep the patient involved in the MR procedure for a shorter
amount of time, as the experience may be unpleasant for patients suffering for the
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Rician framework

constrained posture or the closed environment. In this chapter, different frequentist and
Bayesian approaches for the estimation of the ADC are compared, underlining their
statistical properties and computational issues, and an effective experimental design for
data acquisition is proposed, with the aim of maximizing accuracy within a limited
amount of acquisitions.

2.2 Rice distribution: definition and general properties

The magnitude/intensity signal available from diffusion MR images is the result of a
Fourier-transformed frequency signal. The Rice distribution, which is our focus for this
chapter, arises from taking the modulus of the transformed complex signal, so first of
all it is important to understand some details of this probability distribution.

A Rice or (or Rician) distributed random variable, denoted M ∼ Rice(ν, σ), has
probability density function

fM(m) =
m

σ2
e−

m2+ν2

2σ2 I0

(mν
σ2

)
I(0,+∞)(m), (2.1)

where I0 is the zeroth-order modified Bessel function of the first kind. This special
function admits the following power series representation (see [2]):

Iα(x) =
∞∑
m=0

1

m!Γ(m+ α + 1)

(x
2

)2m+α

.

Expected value and variance of the Rice distribution are

E[M ] = σ

√
π

2
L1/2

(
− ν2

2σ2

)
,

Var(M) = 2σ2 + ν2 − πσ2

2
L2

1/2

(
− ν2

2σ2

)
,

where

L1/2(x) = e
x
2

[
(1− x)I0

(
−x
2

)
− xI1

(
−x
2

)]
,

a Laguerre polinomial. Notice that these two central moments, as all the higher order
ones, do not have a simple relation with the distribution parameters, and no location-
scale formulation of the density seems to be obtainable. Nonetheless, as will be clear
in the following, ν can be easily interpreted as a location parameter, while σ2 as a
dispersion parameter, although their interplay in determining location and dispersion of
the distribution is not trivial. Remarkably, the second raw moment of the distribution
is E[M2] = ν2 + 2σ2. The Rice distribution is unimodal and has support on the whole
positive real axis; as a result, this random variable is right-skewed and its asymmetry
depends on the Signal-to-Noise Ratio (SNR) ν/σ. In particular, high SNR values make
the law of this random variable similar to a Gaussian r.v. with mean ν and variance σ2,
while the special case ν = 0 gives a Rayleigh random variable. Figures 2.1a and 2.1b
display different density functions at varying ν and SNR values.

A Rician variable M of parameters ν and σ2 can be obtained as the Euclidean dis-
tance from the origin of a point generated by a spherical bivariate Gaussian random,
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Figure 2.1: Rician probability density functions for different ν and SNR values.

variable, i.e. (Z) = (X, Y ) ∼ N2(µ, σ2I), with µ = (µ1, µ2) and being I the
2 × 2 identity matrix. In the case of diffusion MRI data, (X, Y ) represents the vec-
tor having as component X the real part and as component Y the imaginary part of
the Fourier-transformed frequency signal. The noise variables that corrupt both the
components of this signal can be reasonably considered as Gaussian and uncorrelated,
thus providing a covariance matrix multiple of the identity. In the following we shall
see then how the Rice distribution arises from this bivariate random variable. Operat-
ing a change of variables to polar coordinates (X, Y ) → (M,Ψ) and reparametrizing
(µ1, µ2) = (νcos(ϕ), νsin(ϕ)), the Gaussian density reads

f(m,ψ|ν, ϕ, σ2) =
m

2πσ2
e−

1
2σ2
{m2+ν2−2mν cos(ψ−ϕ)}I(m)(0,+∞)I(ψ)[0,2π).

Marginalizing with respect to ψ and using the integral representation

I0(x) =

∫ π

0

ex cos θdθ

we obtain exactly the p.d.f. (2.1).

Notice that the distribution of M =
√
X2 + Y 2 is independent of ϕ. Moreover, by

the characterization as modulus of a bivariate spherical normal distribution it is easy to
verify the following property: M ∼ Rice(ν, σ2) implies M/η ∼ Rice(ν/η, σ2/η2).

A Rician r.v. can be obtained also as M = σ
√
X , where X is a mixture of χ2

2P+2

distributions with P ∼ Poisson(ν2/2σ2). The relevance of this fact will be evident in
Section 2.5.
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2.3 Maximum likelihood estimation for the Rician parameters

The log-likelihood function for a sample of magnitudes Mi, i = 1, . . . , n, reads

l(ν, σ2|m) = −n ν
2

2σ2
−
∑n

i=1m
2
i

2σ2
+

n∑
i=1

log
(mi

σ2
I0

(miν

σ2

))
.

The ML estimators for ν and σ2 (the angle parameter ϕ disappears) obtained by the
maximum likelihood criterion are the ones presented below; their computation will be
presented in a more general framework in Section 2.4.

ν̂M =
1

n

n∑
i=1

mi

I1

(
miν̂
σ̂2

)
I0

(
miν̂
σ̂2

) , (2.2)

σ̂2
M =

∑n
i=1m

2
i

2n
− ν̂2

2
. (2.3)

Notice that the first equation is implicit in ν̂ and that both equations involve both the
parameters, so the MLE must be solved by a non linear optimization algorithm. The
marginalization removes explicit information on observation angles, thus causing an
important loss of information. In particular, it is not possible to obtain an explicit form
for the maximum likelihood estimator, since the Rician distribution is not an exponen-
tial family (see for example [36]). This comes as a consequence of the Fisher-Darmois-
Koopman-Pitman theorem [8], which states that, in parametric families of distributions
with parameter-free support and suitable regularity assumptions, the fact of being an
exponential family is equivalent to the existence of a vector of sufficient statistics with
dimension not increasing with sample size. The MLE is always a function of the suf-
ficient statistics, and in our case the Rician class of distributions is not an exponential
family, as proved in Appendix B.3. As a consequence, it is not possible to give an
explicit form for the MLE in the Rician (and in the more general noncentral chi) case.

2.4 Isotropic Stejskal-Tanner model and Rice exponential regression

Diffusion MR works thanks to the relation between the physiological and magnetic
properties of biological tissues. The description of how the MR scan works and the
modeling of the relation between magnetic pulse sequence and intensity response is
behind the scope of this work (see [33] for some reviews of various topics in diffusion
MR); in this chapter we concentrate on an isotropic framework, suitable for example
for the detection and analysis of breast and prostate cancer, and consider a special case
of the popular Stejskal-Tanner model (see for example [51], [9])

νi = ν0 exp(−αbi), i = 1, . . . , n, (2.4)

where α is the Apparent Diffusion Coefficient (ADC), the isotropic diffusion parameter
(its common unit of measure in biological tissues is mm2/s), bi is the b-value at ac-
quisition i, a combination of parameters of the MR scan, νi is the intensity signal and
ν0 is simply the signal at b = 0. In this section we first introduce the likelihood of
Rice-distributed data with location parameter ν following a general exponential model,
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then we concentrate on estimation in the special case of the isotropic model (2.4), pre-
senting a simulation study of the proposed estimators. In Chapter 3 the full anisotropic
Stejskal-Tanner model is considered, anyway even this case falls in the more general
class of exponential models presented in the following.

We name Rice exponential regression an estimation problem where {(Mi,xi)}i=1,...,n

are observed and Mi|xi ∼ Rice(νi, σ), with

νi = exp(θTxi), i = 1, . . . , n (2.5)

and where θ is a q-dimensional vector of unknown parameters. The likelihood for such
a random sample of independent observations is

L(θ, σ|m,x) =
n∏
i=1

mi

σ2
exp

(
−m

2
i + e2θTxi

2σ2

)
I0

(
mie

θTxi

σ2

)
.

The log-likelihood is then

logL(θ, σ|m, X) =
n∑
i=1

log(mi)− n log(σ2)− 1

2σ2

n∑
i=1

m2
i −

1

2σ2

n∑
i=1

e2θTxi

+
n∑
i=1

log

[
I0

(
mie

θTxi

σ2

)]
.

From now on we consider the parameter σ as known, so the whole vector of parameters
for the Rice exponential regression likelihood is just θ.

In the case of known σ2, to maximize the log-likelihood we have to solve the score
equations

∂

∂θj
L(θ|σ,m, X) = − 1

2σ2

n∑
i=1

e2θTxi2xij +
n∑
i=1

I1(mie
θT xi

σ2 )

I0(mie
θT xi

σ2 )

mie
θTxi

σ2
xij

for j = 1, . . . , q; this expression is obtained using the fact that I ′0(x) = I1(x).

2.5 Bayesian modeling

A Bayesian approach to Rician exponential regression may also be adopted. In this
case the dispersion parameter σ2 could also be considered as unknown; notice that
if the noise parameter is uniform over an MR image, the estimate of σ2 can borrow
information from all the pixels, so introducing this unknown parameter should not raise
identifiability issues.

To specify the Bayesian formulation, first of all we have to remind that, if M is a
Rician variable, M2/σ2 can be sampled by a mixture of χ2(2P + 2) distributions, with
P ∼ P(ν2/2σ2). Using this fact as it is would require to know the value of σ2, but we
can express the distribution of R = M2 in a different way to overcome this problem.
First of all, R has density

fR(r|ν, σ2) =
e−

r+ν2

2σ2

2σ2
I0

(√
rν

σ2

)
I(r)(0,+∞) (2.6)
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(a noncentral chi-squared multiplied by σ2). We adopt the following reparametrization:
η = ν2/2σ2 and τ = 1/2σ2. Expanding the modified Bessel function I0, we obtain:

fR(r|η, τ) = τe−rτe−η
∞∑
k=0

1

k!k!
(rητ)kI(r)(0,+∞)

=
∞∑
k=0

τ k+1rke−rτ

k!
I(r)(0,+∞) ·

e−ηηk

k!
,

which is a mixture of Gamma(K + 1, τ) distributions with K ∼ P(η).
Plugging in the Stejskal-Tanner model, for observations i = 1, . . . , n on pixels j =

1, . . . , np, with νij = ν0je
−αjbi we have the following likelihood

L(ν0,α, σ
2|m,b) =

n∏
i=1

np∏
j=1

mij

σ2
exp

(
−
m2
ij + ν2

0je
−2αjbi

2σ2

)
I0

(
mijν0je

−αjbi

σ2

)
,

where m = {mij}i=1,...n;j=1,...,np and b = (b1, . . . , bn)T . With the reparametrization,
setting ηij = η0je

−2αjbi , we have

L(η0,α, τ |r,b) =
n∏
i=1

np∏
j=1

∞∑
kij=0

τ kij+1r
kij
ij e

−rijτ

kij!
· e
−η0je−2αjbi

(η0je
−2αjbi)kij

kij!
.

This formulation allows to easily implement the Bayesian model for example on BUGS
[23], using random number generators for classical distributions. The extension to a
general Rice exponential regression model is straightforward.

2.6 Comparison of pointwise estimation methods

In this Section we present different methods for the estimation of α, the unknown pa-
rameter of interest. We consider a sample of signal intensities on a single pixel Mi ∼
Rice(ν0e

−αbi , σ2), i = 1, . . . , n, and their respective realizations m = m1, . . . ,mn at
b-values b = b1, . . . , bn.

The dispersion parameter σ2 is usually measured over regions where almost pure
noise is observed, and used as a known parameter in the subsequent estimates. This
estimate of σ2 is considered as reliable, since it can be based on a very large number of
pixels, so we will consider the case of known dispersion parameter.

We consider nonlinear least squares, maximum likelihood and three bayesian point
estimators. In the case of a simple Rice(ν, σ2) random variable an iterative method of
moments estimator has been proposed in [32], but this technique has no straightfor-
ward extension to the case of covariate-dependent ν, while moment equations would
be difficult to invert in the considered case. Moreover, under the model assumptions
presented in Section 2.2 a decoupling of noise and signal in the fashion of Signal De-
tection Theory could not be pursued (see [35] for a brief presentation and a Bayesian
implementation of the SDT classical scheme).

The different estimation methods for the couple (ν0, α) presented here will be tested
under different Signal-to-Noise Ratios (SNRs) ν/σ in Section 2.6.4 .
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2.6. Comparison of pointwise estimation methods

2.6.1 Nonlinear regression

A standard approach for the estimation of ν0 and α is to solve a nonlinear least squares
problem, which is equivalent to approximatingMi ≈ ν0exp(−αbi)+εi for i = 1, . . . , n,
where εi are iid, zero mean, gaussian noise terms. The estimators ν̂LS0 and α̂LS are
defined as

(ν̂LS0 , α̂LS) = argmin
(ν0,α)

n∑
i=1

(mi − ν0e
−αbi)2,

for ν0, α > 0, which is equivalent to the solution of the following equations{
ν0

∑n
i=1 e

−2αbi =
∑n

i=1mie
−αbi ,

ν0

∑n
i=1 bie

−2αbi =
∑n

i=1mibie
−αbi .

(2.7)

The approximation to a nonlinear regression model is inconsistent with the phenomenon
under study, most evidently for the fact that in this case the noise term is symmetric and
it can assume real values. This inconsistency is negligible for high SNR values, since
a Rice(ν, σ2) distribution in this case approaches a N (ν0, σ

2), but becomes important
with medium and low SNRs. In [51], the behavior of the Rice distribution with fixing
σ = 1 and varying ν is examined, observing that normality can be considered a good
approximation at about ν/σ > 2.64, but the sample variance approaches σ2 only for
SNR values greater than 5.19. Even for pixels with high SNRs at b = 0, for large
b-values the real signal could reach the same order of magnitude of noise, depending
on the unknown value of α, and this could lead to very biased estimates. However, the
least squares approach is computationally simpler and quicker to carry out, since it can
be seen from (2.7) that ν0 can be expressed as a function of α, thus requiring just a
one-dimensional optimization to compute the estimates.

2.6.2 Maximum likelihood

The maximum likelihood approach allows to take into account the asymmetry of the
signal distribution, always providing admissible values of the parameters. The objective
function is the log-likelihood

l(ν0, α|m,b, σ2) = logL(ν0, α|m,b, σ2) =
n∑
i=1

log fMi
(mi|ν0e

−αbi , σ2)

∝ − 1

2σ2

n∑
i=1

ν2
0e
−2αbi +

n∑
i=1

log

[
I0

(
miν0e

−αbi

σ2

)]
,

where fMi
is the Rician density (2.1), for i = 1, . . . , n. The ML estimator is then

(ν̂ML
0 , α̂ML) = argmax

(ν0,α)

l(ν0, α|m,b, σ2),

for ν0, α > 0.
Looking for stationary points of l and using the fact that I ′0(x) = I1(x), we obtain
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the following score equations
ν0

∑n
i=1 e

−2αbi =
∑n

i=1

I1(
miν0e

−αbi
σ2

)mi

I0(
miν0e

−αbi
σ2

)
e−αbi ,

ν0

∑n
i=1 bie

−2αbi =
∑n

i=1

I1(
miν0e

−αbi
σ2

)mi

I0(
miν0e

−αbi
σ2

)
bie
−αbi .

Notice that these equations differ from (2.7) only for the Bessel functions ratio I1/I0,
which multiplies observations mi. In particular, this factor decreases the values of
observations, since 0 < I1(x)/I0(x) < 1 for x > 0, and increases asymptotically to 1
for large SNRs, so that the score equations tend to (2.7).

As shown in [48], the maximum likelihood estimator for ν obtained from an iid
sample M1, . . . ,Mn ∼ Rice(ν, σ2) and known σ2 becomes exactly 0 when the moment
estimator for E[M2] = ν2 +2σ2 becomes inadmissible, i.e. when

∑n
i=1M

2
i /n−2σ2 ≤

0, even if the real value of ν is larger than 0. The case of Rice exponential regression
suffers of a similar problem in a non trivial way, and would require σ2 to be estimated
with the other parameters to keep parameter values coherent with the model. This
issue is addressed in this Chapter 3, where a method for the joint estimation of all the
parameters is proposed.

2.6.3 Bayesian approaches

We consider also three different estimators based on a Bayesian posterior distribution:
its mean, median and mode. To allow an easy implementation using BUGS code, we
introduce a slightly different formulation of the model.

If M ∼ Rice(ν, σ2), then R = M2/σ2 has noncentral χ2 distribution with 2 degrees
of freedom and noncentrality parameter λ = ν2/(2σ2). Be nowR1, . . . , Rn the random
sample considered, with Ri = M2

i /σ
2 and Mi ∼ Rice(ν0e

−αbi , σ2) for i = 1, . . . , n,
and let r = (r1, . . . , rn) be the observations from this sample. Let π(ν0) and π(α) be
the prior distributions of the two unknown parameters respectively, while the density
of each Ri will be denoted as fRi(ri), with parameter λi = ν2

0e
−2αbi/2σ2. The joint

posterior distribution of ν0 and α is then

p(ν0, α|r,b, σ2) ∝
n∏
i=1

fRi(ri|λi)π(ν0)π(α)

As anticipated in Section 2.2, a noncentral χ2 distribution of noncentrality λ can
be sampled as a mixture of χ2(2P + 2) with P ∼ P(λ). This allows an easy BUGS
implementation of these estimators.

2.6.4 Simulation study

We compared 5 estimators for α - least squares (LS), maximum likelihood (ML) and
posterior mean (PMe), median (PMd) and mode (PMo) - in terms of mean and mean
square error. For the two frequentist approaches, ranges for the possible parameter
values have been chosen, considering ν0 ∈ [0.1, 10] and α ∈ [0.1, 5], while the fixed
parameter σ2 has been taken always equal to 1. For the Bayesian point estimators we
chose uninformative, uniform priors, with the same support as the ranges chosen for
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LS and ML. The first two estimators have been computed with R 2.12.2 (see [43]), us-
ing built-in optimization functions: optimize for the one-dimensional minimization
required in LS and optim, using the L-BFGS-B method, for the likelihood maximiza-
tion, with startup values (ν0start, αstart) = (1, 1). Bayesian posterior distributions have
been computed using a Gibbs sampler implemented in JAGS (see [42]). In particular,
the following model code (valid for any program supporting BUGS-type language) was
used:
model {

f o r ( i i n 1 : n ) {
lambda [ i ]<−(nu0∗nu0 ) ∗exp (−2∗ a l p h a ∗b [ i ] ) / ( 2∗ s igma∗ s igma )
p [ i ]~ d p o i s ( lambda [ i ] )
k [ i ]<−2∗p [ i ]+2
M[ i ]~ d c h i s q r ( k [ i ] )

}
a l p h a ~ d u n i f ( 0 . 1 , 5 )
nu0~ d u n i f ( 0 . 1 , 1 0 )

}

As it can be seen from the model code, uniform prior distributions have been chosen,
with supports equal to the search ranges for LS and ML. 10000 Gibbs sampling iter-
ations have been run for each different sample, with a thinning of 10, and standard
diagnostics revealed a good behavior of the generated chains.

We chose b-values in a typical range for diffusion MR machine settings, i.e. from 0
to 1000s/mm2, on equally spaced grids of n = 5, 10, 15, 20, 25, 30 points. Different
simulations have been run with parameter values ν0 = 2, 4, 8, which represent a low,
an intermediate and a high SNR, and α = 0.7, 1, 3, typical low, intermediate and high
physiological values of ADC.

It must be reported that the ML estimator, in cases of low SNR, reached the bound-
aries of the optimization region in various simulations. In the combination n = 5,
ν0 = 2, α = 3 only 45% of the simulations gave ML estimates that converged to a
value inside the predefined ranges of parameters search, while in the other cases this
number oscillated around 70% when α = 1 or 100% when α = 0.7. These degenerate
results have been removed for the computation of bias and variance.

Figure 2.2 displays the decaying exponential curves we aim to estimate in the 9
different combinations of ν0 and α, along with a horizontal line at level σ, to represent
the order of magnitude of noise with respect to the signal. The quality of estimates
depends both on the SNR at b = 0 and on the ADC, as will be clear from simulations.

Figure 2.3 shows the behavior of bias for the estimators of α with different sample
sizes n. For what concerns the frequentist estimators (LS and ML), there is no uniform
ordering through the considered values of n when the signal decays slowly (α = 0.7),
but in the other cases, when noise is stronger along the curve, the maximum likeli-
hood estimate is always less biased than the least squares one; notice also that the least
squares estimates do not seem to have a decreasing bias when n increases among the
considered values. Concerning the 3 Bayesian estimators, no striking differences arise
among them, while with respect to the frequentist estimators in many cases they have
comparable or higher bias, with the exception of the “worst case” ν0 = 2, α = 3, where
they are uniformly more accurate.

From what concerns variance, analyzed in Figure 2.4, the LS estimator shows almost
always the best performance, excepted for low sample sizes when α = 3. The other es-
timators have similar performances and behaviors at different sample sizes n, with ML
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Figure 2.2: Stejskal-Tanner model in simulation parameter combinations. b-values are expressed in
1000s/mm2.

and PMe having strikingly higher variance in some noisy cases. As expected, variance
notably decreases for all estimators at increasing n in most combinations of parame-
ters, but with very low SNR (ν0 = 2) the only one showing empirical convergence of
variance to 0 is LS.

An overall index of estimator performance can be evaluated by the mean square error
(MSE). Since the MSE is the sum of square bias and variance, the orders of magnitude
of these two characteristics assume an important role. As it can be seen from Figure
2.5, the LS estimator has the lowest MSE when α = 0.7, 1, but exhibits the worst
performances in the critical cases of high ADC, where Bayesian estimators seem to
work better.

Results for ν0 are not detailed here, but it is worth mentioning that, since it is nec-
essary to estimate the two parameters jointly, the precisions and accuracies of their
estimators are mutually influenced. Anyway, estimators for ν0 show a more classical
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Figure 2.3: Bias of estimators for α. Bold lines: solid=LS, dashed=ML; slim lines: solid=PMe,
dashed=PMd, dotted=PMo.

behavior: the LS estimator is in all cases less accurate but more precise (high bias and
low variance), and the consistency of all estimators is evident when increasing n. The
summary plots for the MSE of the estimators for ν0 can be seen in Figure 2.6.

2.7 Experimental design

Experimental design optimization is another strategy for achieving higher accuracy in
estimation. In this section we couple maximum likelihood estimation of the Rician
model with a criterion of accuracy that derives naturally from the framework of the
likelihood principle: the Fisher Information Matrix (briefly FIM). Since the inverse of
the FIM I−1(θ|σ2,b) for large samples approaches the covariance matrix of a vector
of ML estimators θ̂ = (θ̂1, . . . , θ̂k) [12], samplings can be designed so that a proper
functional of this matrix is optimized.
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Figure 2.4: Variance of estimators for α. Bold lines: solid=LS, dashed=ML; slim lines: solid=PMe,
dashed=PMd, dotted=PMo.

The FIM is the matrix of elements

[I(θ)]jk = E
[(

∂

∂θj
logL(θ|σ,m,x)

)(
∂

∂θk
logL(θ|σ,m,x)

)]
, for i, j = 1, . . . , q,

where L represents the likelihood function. Alternatively, if some regularity conditions
are satisfied, this is also equal to

[I(θ)]jk = −E
[

∂2

∂θj∂θk
logL(θ|σ,M,x)

]
.

Using the likelihood of the Rice exponential regression model we obtain the following
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Figure 2.5: MSE of estimators for α. Bold lines: solid=LS, dashed=ML; slim lines: solid=PMe,
dashed=PMd, dotted=PMo.

expression for the FIM element (j, k) (see Appendix B.1):

[I(θ)]jk = − 1

σ4

n∑
i=1

e2θTxixijxik

e2θTxi − E

M2
i

I2
1 ( e

θT xiMi

σ2 )

I2
0 ( e

θT xiMi

σ2 )

 .

Let us remind the notation νi = exp(θTxi). Equation (2.7) requires to integrate on R+

the function

g(m|νi, σ) = m2 I
2
1 (νim

σ2 )

I2
0 (νim

σ2 )
fM(m|νi, σ). (2.8)

An approach for carrying out this task is described in Appendix B.2.
The parameter σ2 is commonly estimated separately before the estimation of other

parameters, considering areas of tissue where the measured signal is believed to be al-
most pure noise. It is possible also to estimate σ2 jointly with the other parameters:
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Figure 2.6: MSE of estimators for ν0. Bold lines: solid=LS, dashed=ML; slim lines: solid=PMe,
dashed=PMd, dotted=PMo.

considering a joint likelihood for the whole MR image, if σ2 can be considered approx-
imately uniform on the MR volume then it can also be estimated using an alternated
maximization approach: fixing the vectors ν0 and α of parameter values on different
pixels, σ2 is estimated by ML, then σ2 is fixed to its updated estimate and ν̂0 and α̂ are
obtained separately on each pixel. If the number of acquisitions is large enough, it is
possible also to estimate pixelwise the dispersion parameter, using the full likelihood.
This method will not be applied in this chapter, but it will be deepened in Chapter 3.

2.7.1 Adaptive algorithm

We propose an experimental design performed by choosing a convenient b-value for a
new measurement, basing on estimates obtained in previous measurements. A conve-
nient functional of the FIM is iteratively optimized with respect to b = (b1, . . . , bn) for
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a fixed sample size n. The pointwise likelihood estimation is carried out following the
framework described in Section 2.6, i.e. using the likelihood function

L(ν0, α, σ
2|m,b) =

n∏
i=1

mi

σ2
e−

m2
i+ν

2
0e

−2αbi

2σ2 I0

(
miν0e

−αbi

σ2

)
I(0,+∞)(mi). (2.9)

The optimal values of ν0 and α for equation (2.9) cannot be obtained explicitly, so a
numerical optimization method is required to obtain estimates ν̂0 and α̂. In this work
we use the L-BFGS method (see [39]) with interval constraints, implemented in the R
function optim [43].

The FIM depends on the values of the unknown parameters ν0 and α in a non trivial
way, so we perform the optimization fixing their values and assuming that they are
near to the real ones. We propose an adaptive greedy optimization, that alternates the
following steps:

1. Compute estimates ν̂(h)
0 and α̂(h) of ν0 and α using measurements performed on

b∗1, . . . , b
∗
h.

2. Fixing (b1, . . . , bh) = (b∗1, . . . , b
∗
h) and (ν, α) = (ν̂

(h)
0 , α̂(h)), find

b∗h+1 = arg minbF
[
I(ν̂(h), α̂(h)|σ2, b∗1, . . . , b

∗
h, b)

]
,

being F a suitable functional of the FIM, then perform a new measurement mh+1

at point b∗h+1 and increment h by 1.

Various choices are possible for F [I(ν̂0, α̂|σ2, b∗1, . . . , b
∗
n)]. Some examples are I−1

22 ,
the asymptotic variance of the ML estimator α̂, or the determinant and the trace of I−1,
which take into account the variability of all the estimates.

The method described above refers to a single pixel of a MR image, but in applica-
tions it is necessary to improve some index of global precision on the whole image. This
can be achieved, for example, by minimizing the sum of variances of ADC estimators
on all pixels of the image.

The experimental design can be validated using measures performed on a dummy
with known diffusion properties, collected on a fine grid of b-values. A subset of the
available b-values and related measures can be used as fixed design observations, while
the adaptive design can be approximated by choosing adaptively the available b-value
nearest to the computed optimum. Estimates obtained in both cases can then be com-
pared with documented physical values, at different sample sizes. Simulation studies
have underlined the potential efficacy of the adaptive approach based on the sum of
asymptotic variances with respect to a fixed design [6].

2.7.2 Simulation study

We tested our algorithm simulating signals from an ADC field over a 16×16 grid, which
represents the considered area of tissue. The pattern chosen for the ADC distribution
on the grid is formed by a central part, where the ADC α is fixed at 1.2× 10−3mm2/s,
an intermediate region where α = 1 × 10−3mm2/s and an external region where α =
0.7× 10−3mm2/s, as we can see in Figure 2.7. ν0 = 1 and SNR0 = ν0/σ = 7 for all
the cells of the grid.
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Figure 2.7: Simulation ADC pattern. Reported values are ADC×103, in expressed in mm2/s.

Two cases are compared: ADC estimates performed using signals sampled with an
equally spaced grid of n = 4, 6, 10 and 20 b-values ranging from 0 to 1000 s/mm2,
and ADC estimates performed using signals sampled with n b-values obtained from
the adaptive design algorithm. The estimated ADC field with the two methods is rep-
resented in Figure 2.8.

Comparing the adaptive method (right panels) with the regular grid method (left
panels), from Figure 2.8 we notice a slightly more defined mass in the central part
and less noise over the whole image in the adaptive case. White pixels correspond to
ADC estimates that hit the search domain (0, 5). The difference is more evident in a
comparison of mean squared errors on the whole image, represented in Figure 2.9: with
all sample sizes, the MSE obtained by the adaptive grid is about half the MSE obtained
with the fixed design.

2.7.3 Validation with phantom data

To test the adaptive design of experiment, various estimates were performed using
MRI images of a container of distilled water immersed into a larger container of ice.
This phantom is similar to the one used in [15], here taken as a reference for what
concerns the ADC in water at almost 0◦C. To simulate an adaptive experimental de-
sign, acquisitions at many different b-values were performed, so that estimates ob-
tained using observations obtained on a fixed, regularly-spaced grid could be compared
with estimates performed on observations obtained with b-values selected by the algo-
rithm. Due to machine constraints, 16 b-values were used: 0, 50, 100, . . . , 450, 500 and
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Figure 2.8: ADC field estimates obtained using a uniform grid of b-values (left panels) and an adaptive
sequence (right panels) with n = 4, 6, 10, 20 observations.

600, 700, . . . , 1000. The method presented in Section 2.7.1 could be applied by choos-
ing the best next b-value among the available ones, basing on the sum of a given target
functional over the pixels of a region of interest (ROI). The chosen functional was the
determinant of the FIM on a pixel, to be maximized (remind that the inverse FIM is
related to the asymptotic MLEs covariance matrix).

The ROI was chosen by hand so that it contained only pixels of distilled water,
avoiding areas disturbed by artifacts or where the discrimination between water and
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Figure 2.9: Global mean square errors of fixed (circles and solid line) and adaptive (triangles and
dashed line) design estimators.

the wall of the test tube was unclear. Figure 2.10 shows the slices from the b = 0
acquisition that contain the ROI (in red). Estimates were performed only on the ROI, a
subset of 2624 pixels of the original 132× 132× 25 volume.

The noise parameter σ2 was considered as uniform on the whole volume, and esti-
mated in advance with the following method: pixels with observation at b = 0 lower
than 50 were considered as background ones (setN ), and used to compute the estimate
σ̂2 =

∑
j∈N m

2
j/(2|N |). Several other methods for estimating the background noise

dispersion parameter are present in literature, see [3] for a review of other possibilities.
Our choice seemed compatible with the very high SNR observed in signal pixels (an
example is displayed in Figure 2.11): we obtained σ̂2 = 11.754, while the minimum
magnitude value in the ROI at b = 1000 is 269. This fact, together with the relatively
low ADC of distilled water that keeps the magnitude signal well away from the noise
floor, would give estimates of high quality even with classical methods; anyway, testing
on a substance with well documented properties allows to validate the performance of
the method. Moreover, a small but constant advantage of the adaptive design in terms
of estimates accuracy is evident from Table 2.1.

Observations at b = 0 were always included as starting points, as it is very common
to perform an acquisition with the highest possible SNR. The mean values across pixels
of the ROI is compatible with the literature, while the empirical standard deviation
of the estimates is almost always slightly lower with the adaptive method. The only
exceptions are given by regular grids including b = 1000 observations: when the most

36



i
i

“thesis” — 2013/5/2 — 22:09 — page 37 — #45 i
i

i
i

i
i

2.7. Experimental design

Figure 2.10: Slices 11 to 16 of the MR acquisition at b = 0. The ROI is highlighted in yellow.

“useful” points (b = 0 and b = 1000) in terms of accuracy are taken into account,
the adaptation can fail in predicting the best solution at the next few steps. In general,
since the SNR observed in these experiment is very high, the adaptive method chooses
extremal points as the ones that maximize accuracy, as expected. This was not the case
in the simulation study, in which the noise dispersion was large enough to provide non
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Figure 2.11: Plot of b-values vs observed intensities in a pixel of the ROI.

trivial choices for the best points to select.

2.8 Concluding remarks

In the first part of this chapter we presented different methods for estimating pixelwise
the ADC from diffusion MR signals, following the Rice noise model and the isotropic
Stejskal-Tanner equation for magnitude decay. The presented estimators exhibit differ-
ent features that should be taken into account when approaching real data.

The least squares approach is the fastest and has low variance, but becomes less
accurate when the conditional signal distribution at different b-values is more distant
from normality.

The maximum likelihood estimator is slightly slower, requiring a nonlinear maxi-
mization on 2 variables instead of 1, and has the lowest bias in many cases, but, as
pointed out before, it has a certain probability of providing invalid estimates with sam-
ples from noisy signals. This problem disappears when estimating jointly diffusion
parameters and noise dispersion, as the MLE in this case never collapses or diverges.
In Chapter 3 an implementation of this kind of estimation is proposed, showing some
bias in the estimate of σ2 but good convergence properties.

Bayesian estimators are the most expensive in terms of computational costs, and
may require further tuning for improving their performances; they are the best in terms
of mean square error at the high ADCs here tested, and offer the advantage of providing
the whole posterior distribution for inferential purposes, while inferential tools regard-
ing LS and ML should rely, at present time, on normal approximations, which may not
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fixed grid adaptive grid mean (fixed) sd (fixed) mean (adaptive) sd (adaptive) sd difference
0, 500,1000 50 1.0844 0.0365 1.0844 0.0366 -0.0000
0, 450,900 1000 1.0807 0.0390 1.0806 0.0389 0.0001
0, 400,800 1000 1.0782 0.0444 1.0782 0.0443 0.0001
0, 350,700 1000 1.0758 0.0502 1.0757 0.0500 0.0002
0, 300,600 1000 1.0763 0.0582 1.0763 0.0580 0.0003
0, 250,500 1000 1.0786 0.0655 1.0787 0.0651 0.0004
0, 200,400 1000 1.0800 0.0715 1.0801 0.0710 0.0005
0, 150,300 1000 1.0747 0.0801 1.0749 0.0793 0.0007
0, 100,200 1000 1.0587 0.0987 1.0590 0.0976 0.0011
0, 50,100 1000 1.0124 0.1593 1.0134 0.1576 0.0017
0, 300, 700,1000 50, 900 1.0844 0.0365 1.0844 0.0366 -0.0000
0, 300, 600,900 1000, 50 1.0807 0.0391 1.0807 0.0390 0.0000
0, 300, 500,800 1000, 50 1.0783 0.0444 1.0783 0.0443 0.0001
0, 200, 500,700 1000, 50 1.0758 0.0502 1.0758 0.0501 0.0002
0, 300, 700,1000 1000, 50 1.0758 0.0501 1.0758 0.0501 0.0001
0, 200, 400,600 1000, 50 1.0764 0.0583 1.0764 0.0580 0.0002
0, 300, 600,900 1000, 50 1.0764 0.0581 1.0764 0.0580 0.0001
0, 150, 350,500 1000, 50 1.0786 0.0655 1.0787 0.0652 0.0004
0, 200, 500,700 1000, 50 1.0786 0.0654 1.0787 0.0652 0.0002
0, 150, 250,400 1000, 900 1.0800 0.0715 1.0802 0.0708 0.0007
0, 200, 400,600 1000, 900 1.0800 0.0714 1.0802 0.0708 0.0006
0, 150, 200,300 1000, 900 1.0747 0.0801 1.0750 0.0791 0.0010
0, 150, 300,450 1000, 900 1.0747 0.0800 1.0750 0.0791 0.0009
0, 300, 600,900 1000, 900 1.0750 0.0792 1.0750 0.0791 0.0001
0, 50, 150,200 1000, 900 1.0587 0.0987 1.0593 0.0974 0.0014
0, 100, 300,200 1000, 900 1.0587 0.0986 1.0593 0.0974 0.0013
0, 200, 400,600 1000, 900 1.0592 0.0980 1.0593 0.0974 0.0006
0, 50, 100,150 1000, 900 1.0125 0.1592 1.0139 0.1570 0.0022
0, 100, 200,300 1000, 900 1.0132 0.1585 1.0139 0.1570 0.0015

Table 2.1: Comparison between fixed and adaptive design on the ROI. The first two columns present the
b-values of the fixed grid, marking in bold the two shared with the adaptive design, and the b-values
chosen by the proposed method. Other columns present sample mean and standard deviation over
the ROI for the two methods. The last column reports the difference (sd fixed)− (sd adaptive).

be reliable with low sample sizes and SNRs. A possible way of improving the speed of
Bayesian computation could be to design an integrated nested Laplace approximations
approach for the Rician exponential regression problem, thus cutting out simulation
times for markov chain sampling.

The last part of the chapter deals with improving estimation accuracy by optimizing
the experimental design. The proposed method shows good performances in simula-
tion, when compared to a fixed design, and promising results with real data, although
the improvement is of small entity because of the build of the phantom available for
testing. The application of this approach could lead to an improvement in the quality
of diffusion MRI scans while avoiding the extension of acquisition times. The adaptive
design should be further validated by testing its performance on different kinds of tis-
sues, with stronger diffusion properties. Moreover, with biological data many possible
choices for the single-pixel functional and the multi-pixel combination function could
be tested, adopting a more goal-oriented approach to estimation improvement.
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CHAPTER3
Diffusion weighted imaging: noncentral chi

estimation in DTI

In recent years, many efforts have been done to account for the non-gaussianity of the
intensity signal in diffusion MRI. In particular, various estimation methods for the Dif-
fusion Tensor Imaging (DTI) model [10] have been extended to the Rician noise model
(see for example [34], [21] and [5], which arises from taking the modulus of a single
complex signal, assumed to be gaussian in both its real and imaginary component. The
Rician model is effective in accounting for the signal skewness at low Signal-to-Noise
Ratios (SNRs), but the assumptions for its validity are violated in presence of multi-coil
scanners (or multi-channel coils) [3]. If the signals received by the N coils are com-
bined by sum of squares, the intensity signal follows a noncentral chi distribution [16].
In this chapter we present a framework for accounting for the distribution of a multi-
coil signal under the DTI model. First, we propose a hypothesis test-based method for
discriminating background from signal voxels basing on the noise distribution, with
the possibility of accounting locally for the apparent number of coils. Moreover, we
propose a method for estimating the diffusion parameters of the DTI model in noncen-
tral chi-distributed signals. The effectiveness of the noise voxels discrimination test is
demonstrated on real DWI brain data, while a simulation study shows the properties of
the likelihood method in single-voxel estimation, compared to other classical methods.

3.1 The DTI model for noncentral chi-distributed data

If the signals registered by multiple receiver coils can be approximately considered
as independent, the sum of two squared Gaussian variables described in Section 2.2
gets generalized to a sum of 2N terms. Diffusion-weighted MR signal magnitudes
become then scaled noncentral chi-distributed random variables [16], denoted Mij ∼
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Chapter 3. Diffusion weighted imaging: noncentral chi estimation in DTI

NCχ2N(ν2
ij/σ

2
j ), i.e. for any acquisition i = 1, . . . , n the signal intensity Mij measured

on any voxel j = 1, . . . , nv of an observed volume has probability density function
defined as

fMij
(mij) =

νij
σ2

(
mij

νij

)N
e−

m2
ij+ν

2
ij

2σ2 IN−1

(mijνij
σ2

)
,

where νi is the unknown “true” signal at voxel j and mij its noisy observation, N is the
number of coils of the MR scanner, σ2 is the noise parameter (the noise variance in the
k-space) and IN−1 is the modified Bessel function of the first kind of degree N − 1. In
the DTI framework, the signal νij depends on the local diffusion tensor Dj , the b-value
bi and the applied magnetic gradient gi by the Stejskal-Tanner equation [9]

νij = ν0je
−bigTi Djgi . (3.1)

The methods proposed in this chapter make use of startup estimates, which can be
obtained through a low accuracy but fast method. The following section describes a
natural, simple way of obtaining a preliminary estimate of the diffusion tensor.

3.2 Preliminary DTI estimation

Considering the full Stejskal-Tanner model, it is possible to take the logarithm on both
sides, and to approximate the problem to a regression on the log scale. Equation (3.1)
can be conveniently rewritten as

νij = ex
T
i βj , (3.2)

with

xi = −bi · (1, g2
i1, g

2
i2, g

2
i1, 2gi1gi2, 2gi1gi3, 2gi2gi3), i = 1, . . . , n

βj = (log(ν0j), d11, d22, d33, d12, d13, d33)T , j = 1, . . . , nv

being dkl elements of Dj . Taking the logarithm on both sides of the equation, least
squares estimates can be obtained by solving the regression model

log(mij) = xTi βj + εij, i = 1, . . . , n, (3.3)

where εij is a residual, zero-mean error. In analogy with classical linear regressionno-
tation, the elements of βj will be indexed as β0j, . . . , β6j , due to the clear meaning of
β0j as intercept in the log-linear model (3.3).

3.3 Individuation of pure noise voxels

The first method we propose aims at discriminating background from tissue voxels,
basing on the noise distribution with null signal. This strategy is not intended for per-
forming segmentation: the main purpose is to achieve an accurate quantification of
background noise, by computing an accurate estimate of σ2

G, the global noise parame-
ter for the background region. This is done by basing the estimate on a set N of pure
noise voxels.
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3.3. Individuation of pure noise voxels

The first step consists in obtaining a startup subset of N , individuating pixels that
can be most easily identified as background ones. See Section 3.3.1 for some ideas on
how to find a safe startup set.

A refinement of this initial setN is then performed exploiting the distribution ofMij

under the null hypothesis that νj(bi,gi) = 0 for any b-value of b and applied magnetic
gradient g. In this case, Mij follows a (central) chi distribution with 2N degrees of
freedom for each i = 1, . . . , n, implying that

σ̂2
j =

∑n
i=1 M

2
ij

2Nn
∼ σ2

2Nn
χ2(2Nn).

Consequently, the distribution of σ̂2N , a global estimator of σ2 obtained by pooling on
the set of pure noise voxels N , is the following

σ̂2
N =

∑n
i=1

∑
j∈N M

2
ij

2Nnm
∼ σ2

2Nnm
χ2(2Nnm),

where m = |N |. This allows to define, for each voxel j /∈ N , the test statistic:

Tj =
σ̂2
j

σ̂2N
∼ χ2(2Nn)/2Nn

χ2(2Nnm)/2Nnm
= F (2Nn, 2Nnm),

where F (2Nn, 2Nnm) is a Fisher distribution with 2Nn, 2Nnm degrees of freedom.
It is then finally possible to establish whether a pixel j ∈ N containins signal or not by
performing a multiple hypothesis test using the valid p-values:

pA(Tj) = [1− FF (2Nn,2Nnm)(Tj)] · A(j, nv −m),

where FF (2Nn,2Nnm) is the c.d.f. of a Fisher random variable with 2Nn, 2Nnm degrees
of freedom and A(j, nv) is an adjustment factor for test multiplicity. A good strategy
for correcting p-values is for example the one from Benjamini and Hochberg [11], that
allows to compare the adjusted p-values to α, a desired False Discovery Rate (FDR)
level to ensure. Voxels for which the null hypothesis is rejected are considered as pure
background voxels.

The test described above can be easily adjusted in case of spatially varying number
of coils: it suffices to replace the denominators σ̂2

j and σ̂2N and the associated degrees
of freedom of the Fisher distribution with 2Njn and 2n

∑
j∈N Nj , respectively, where

Nj is the apparent number of coils at voxel j.

3.3.1 Startup of set N
Initializing the set N is a task that requires some attention, since introducing heavy
selection bias could have a negative impact on the final performance of the hypothesis
test above. On one hand, simply selecting voxels with a very low sample mean value
of the observations could lead to sampling just very low quantiles of the noise distribu-
tion, thus not allowing the algorithm to move much from this set. On the other hand,
choosing arbitrarily a threshold for some voxelwise statistic could lead also to consider
as pure noise pixels some signal pixels; since the algorithm can only enlarge the set of
pure noise pixels, this would brake up the method as well. Here we propose a couple
of more elaborate criteria, although still fast to carry out.
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Chapter 3. Diffusion weighted imaging: noncentral chi estimation in DTI

Quantile method. If at least two different b-values have been used in the acqui-
sitions, an initial set of pure noise voxels can be selected by the following criterion:
let the observations m1j, . . .mnj at voxel j be sorted by increasing b-values. The me-
dian (quantile of order 0.5) of observations m2j, . . . ,mnj is computed, and compared
to m1j . If the observation that should theoretically be the highest is not highly ranked
amongst the sample, a decaying exponential model w.r.t the b-value is unlikely to hold,
indicating that the pixel should be regarded as one of pure noise. To improve the dis-
crimination of pure noise voxels from signal points with a high noise level, this criterion
is applied again, progressively halving the order of the quantile for comparison. This
is stopped when the estimated global variance computed on selected pure noise voxels
has a variation smaller than a fixed, roughly tuned tolerance.

Intercept test method. An initial set of pure noise voxels could also be selected by
performing a multiple hypothesis test on coefficients β0j . We test the null hypothesis
H0j: β0j < δ in voxel j, where δ is a threshold “small” enough to be considered non
arbitrary and to ensure that the voxel contains just pure noise and no signal. Without
loss of generality, fixing δ = 0 (which implies ν0j < 1) would give the p-values

pA(β̂0j/sj) = [1− Ft(n−7)(β̂0j/sj)] · A(j, nv),

where Ft(n−7) is the c.d.f. of a Student’s T random variable with n − 7 degrees of
freedom (n minus the number of regression parameters) and A(j, nv) is an adjustment
factor for test multiplicity.

3.3.2 Test on brain data

We tested the background discrimination method described above on brain imaging
data acquired on a healthy subject by a Siemens Magnetom Verio syngo MR B17 scan-
ner with a 32 channels coil. Here we present the results on 4 slices (20,25,30 and 35)
from the original 128× 128× 60 volume. Figure 3.1 shows on the left column the ini-
tialization obtained with the quantile method, while on the right column the final result
is shown. Figure 3.2 displays the same comparison, presenting instead the initialization
by intercept test on the left.

Comparing the two figures, it is evident that the quantile method selects a smaller set
of startup points with respect to the intercept test methods, nonetheless the two initial-
izations yield two similar results, as can be seen on right columns. The small difference
in the final set of pure noise voxels gives slightly different results: in both cases the al-
gorithm stops after 2 iterations, but in the first case (quantile method) σ̂2 = 0.531189

(based on 680410 voxels), while in the second σ̂2 = 0.273694 (660654 voxels). From
the figures we notice that the quantile method startup leads the test to select also some
pixels inside the brain region, thus providing a higher value for the noise dispersion pa-
rameter estimate. In general, on this kind of data, initializing with the quantile method
leads to the selection of more voxels as pure noise, which on one side provides a larger
sample for estimation, but on the other side chooses many “unsafe” voxels. Notice that
in both cases, as anticipated before, the result is not a segmentation of the brain, which
is not the aim of this method, but rather the definition of an area which does not contain
signal-generating tissues. The signal area is larger than the actual brain circumference,
since surrounding tissues (skin, muscles) can exhibit light diffusion properties in the
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3.4. Maximum likelihood estimation

MR scan; this tissues are correctly identified by the algorithm, with both the startups,
as signal areas.

3.4 Maximum likelihood estimation

Let us consider a sample of observationsMi, i = 1, . . . , n, following a NCχ2N(ν2
i /σ

2),
with νi = ν(β;x) dependent on a vector of parameters β and a vector of covariates x.
The log-likelihood for a sample of size n following this model is

logL(β, σ2|m,x) =
n∑
i=1

(2N−1) log(mi)−N log(σ2)−m
2
i + ν2

i

2σ2
+log

(
IN−1

(
miνi
σ2

)(
miνi
σ2

)N−1

)
.

(3.4)
Since we will always consider N as a known parameter, notice that the term (2N −
1) log(mi) does not depend on any of the unknowns, so it can be simply removed from
the likelihood for maximization purposes. The particular grouping of terms chosen in
(3.4) is useful because it allows to exploit the following property of modified Bessel
functions of the first kind: d(x−kIk(x))/dx = x−kIk+1(x). Using this fact, the partial
derivatives of logL w.r.t. parameters β0, . . . , βq assume the form

∂

∂βj
logL(β, σ2|m,x) =

n∑
i=1

[
− νi
σ2

+
IN
(
miνi
σ2

)
IN−1

(
miνi
σ2

)mi

σ2

]
∂νi
∂βj

. (3.5)

The Bessel functions ratio IN/IN−1 requires particular attention, since evaluating mod-
ified Bessel functions of the first kind individually may lead to arithmetic overflow or
underflow. We adopted the modified Bessel functions ratio approximation proposed
in [22], in particular we use Perron’s continuous fraction representation, which gave
accurate results by keeping just the first 10 terms of the representation. The method
was tested in R by comparing it to the direct evaluation of the ratio IN(x)/IN−1(x), in
the range where it was applicable, at N = 32 (over/underflow problems are more evi-
dent at high N ). Results were concordant up to the 7th decimal digit when approaching
the upper limit x = 709, and Perron’s method keeps providing valid numbers (lower
than 1) up to x = 108, and 1 for greater values. The same precision is observable up
to the lower limit of direct evaluation, about 10−8, with Perron’s method still providing
valid numbers for lower values of the argument.

The Bessel function logarithm in equation (3.4) could also have overflow or un-
derflow problems, so asymptotic expansions for large (> 600) and small values (<√

(N + 1)/100) were used, the former truncated to the second term (see [2]) and the
latter taken as x/(2N !). Approximations yielded satisfactory results also in this case.

If the diffusion model admits tractable expressions for the partial derivatives with
respect to the diffusion parameters, the optimization can be performed taking advantage
of the gradient of the target functional to be optimized. In particular, when considering
the exponential model (3.2) we have

∂νi
∂βj

= νixij,
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Chapter 3. Diffusion weighted imaging: noncentral chi estimation in DTI

Figure 3.1: Startup pure noise pixels provided by the quantile method, on the left, and final set of pure
noise pixels, on the right. Pure noise pixels are in white, superimposed to slices 20,25,30 and 35 at
b = 0.
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3.4. Maximum likelihood estimation

Figure 3.2: Startup pure noise pixels with provided by the intercept test method, on the left, and final set
of pure noise pixels, on the right. Pure noise pixels are in white, superimposed to slices 20,25,30 and
35 at b = 0.
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Chapter 3. Diffusion weighted imaging: noncentral chi estimation in DTI

where xij is the j-th element of vector x. Then we can rewrite 3.5 as

∂

∂βj
logL(β, σ2|m,x) =

n∑
i=1

[
−ν

2
i

σ2
+

IN
(
miνi
σ2

)
IN−1

(
miνi
σ2

)miνi
σ2

]
xij. (3.6)

The partial derivative w.r.t. σ2 is useful too, since we now intend to estimate this pa-
rameter locally:

∂

∂σ2
logL(β, σ2|m,x) = −nN

σ2
+

n∑
i=1

[
m2
i + ν2

i

2(σ2)2
−

IN
(
miνi
σ2

)
IN−1

(
miνi
σ2

) · miνi
(σ2)2

]
.

Parameter values are initialized with the diffusion parameters estimate described in
section 3.2 and with the local dispersion parameter estimate

σ̂2
j =

n∑
i=1

(mij − νij)2

nN
.

We propose an optimization scheme that alternates the optimization of diffusion pa-
rameters and recomputation of σ2.

During the β estimation step, the cost function to maximize in each voxel is the
likelihood function (the footer j is omitted)

logL(β) =
n∑
i=1

− ν2
i

2σ2
+ log

(
IN−1

(
miνi
σ2

)(
miνi
σ2

)N−1

)
, (3.7)

obtained removing from (3.4) terms depending only on the observations or on the local
noise parameter σ2. Partial derivatives (3.6) can be used when considering the DTI, for
example optimizing by a BFGS method with box constraints.

The estimate of σ2 is computed separately, basing on its score equation (the partial
derivative of the log-likelihood w.r.t. σ2 equated to 0). Since it is an implicit equation,
it is updated using the last estimated value of the parameter itself:

σ2
h+1 =

n∑
i=1

m2
i + ν2

i

2nN
−

IN

(
miνi
σ2
h

)
IN−1

(
miνi
σ2
h

) · miνi
nN

 .
It is reasonable to assume, and verified in practical situations, that the noise level in
regions of interest is higher than in the background, due for example to partial volume
effects and model misspecification. For this reason, the values that the local estimator of
σ2 can assume are truncated to the left at σ̂2

N , the background noise parameter estimate.
The two steps above are repeated up to the stabilization of the parameters or when a

maximum, preset number of iterations is reached.

3.5 Simulation study

We tested the proposed likelihood maximization algorithm with simulated, single-voxel
data. A number of coilsN = 8 was chosen to show the differences in estimation quality
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3.5. Simulation study

in presence of model misspecification, i.e. when using the log-linear model (3.3) or the
Rice exponential regression model, and when using the correct scaled noncentral chi
model.

Simulation studies were carried out under 4 different parameter settings, which com-
bine 2 different noise dispersion parameters and 2 diffusion matrices. ν0 has been fixed
to 1000 in all the experiments, so the SNRs at fixed b-value depend only on σ. The
values of σ used in the simulations are σ1 = 10 and σ2 = 100, while the diffusion
matrices are

D1 = 10−3

0.7 0 0

0 1.5 0

0 0 0.7

 , D2 = 10−3RT

0.7 0 0

0 2.5 0

0 0 0.7

R,
where R is a (counter-clockwise) rotation matrix of angle π/4 around the z axis. Notice
that matrix D2 has a stronger anisotropy, moreover it will have non-zero extra diagonal
terms d12, d21, do to the rotation around the z axis.

For samples of size n = 11, 31, 51, 71, 91 we present the Root Mean Square Errors
(RMSE). Individual simulations are organized in the following way: the b = 0 obser-
vation is always included (the gradient orientation does not matter in this case), while
the remaining 10, 30, 50, 70, 90 observations are performed at b = 1000 with angles
sampled uniformly on the unit sphere.

The log-linear model estimate is used also for the initialization of the Rician and
noncentral chi likelihood methods, based on the algorithm described in Section 3.4
with N = 1 for the Rician case and N = 8 for the noncentral chi case.

Figures 3.3 and 3.4 show the RMSEs for the diffusion parameters in D1 at σ = 10
and σ = 100 respectively. In the first case, the one with high SNR, we notice that the
three methods have almost the same performance in all cases, anyway the noncentral chi
estimation has always the lowest RMSE. In the case with lower SNR, on the contrary,
the noncentral chi estimation has remarkably poorer performances at low sample sizes,
while it becomes more accurate for n = 51, 71, 91. A further analysis shows that the
variance of this estimator is higher with respect to the others considered, while the
bias is much lower, particularly for what concerns β1, β2 and β3. The advantage of
using the correct ML approach is then found mostly when considering sample sizes
that decrease variance enough, since among possibly biased estimators it is not the one
with uniformly lowest variance.

When considering the analyses performed with D = D2, we see again a better
behavior of the noncentral chi estimator at σ = 10 (Figure 3.5), now with a remarkable
difference also on parameter β5 = d12. Figure 3.6 shows again that the noncentral
chi estimator has poorer performances at low angular resolutions, due to high variance
with low SNRs, but gains accuracy when increasing the sample size, while the other
methods have almost constant performances even at large n.

The results obtained in this simulation study are somewhat coherent with the like-
lihood framework: imposing the correct model reduces bias in estimation, nonetheless
the MLE is not necessarily the one with the smallest variance, particularly for small
sample sizes and higher SNRs.
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Figure 3.3: Root Mean Square Error for the diffusion parameters β2, . . . , β7, in the case D = D1,
σ = 10.
Circles and solid line: log linear. Triangles and dashed line: Rice. Crosses and dotted line:
noncentral chi.
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Figure 3.4: Root Mean Square Error for the diffusion parameters β2, . . . , β7, in the case D = D1,
σ = 100.
Circles and solid line: log linear. Triangles and dashed line: Rice. Crosses and dotted line:
noncentral chi.

51



i
i

“thesis” — 2013/5/2 — 22:09 — page 52 — #60 i
i

i
i

i
i

Chapter 3. Diffusion weighted imaging: noncentral chi estimation in DTI

20 40 60 80

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

0
.0

4
0

beta1=1.6, RMSE

n

20 40 60 80
0

.0
1

5
0

.0
2
5

0
.0

3
5

0
.0

4
5

beta2=1.6, RMSE

n

20 40 60 80

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5
0

.0
6

0
.0

7

beta3=0.7, RMSE

n

20 40 60 80

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

beta4=0.9, RMSE

n

20 40 60 80

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

beta5=0, RMSE

n

20 40 60 80

0
.0

1
0

0
.0

2
0

0
.0

3
0

0
.0

4
0

beta6=0, RMSE

n

Figure 3.5: Root Mean Square Error for the diffusion parameters β2, . . . , β7, in the case D = D2,
σ = 10.
Circles and solid line: log linear. Triangles and dashed line: Rice. Crosses and dotted line:
noncentral chi.
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Figure 3.6: Root Mean Square Error for the diffusion parameters β2, . . . , β7, in the case D = D2,
σ = 100.
Circles and solid line: log linear. Triangles and dashed line: Rice. Crosses and dotted line:
noncentral chi.
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3.6 Final remarks and perspectives

Considering a proper model specification, in our case for what concerns the statistical
distribution of the DWI signal, allows to set up more accurate estimation tools and to
give a deeper interpretation to the observed random variables.

As seen in Section 3.3, accounting for the correct noise model allows to derive a
rigorous hypothesis test for discriminating signal from pure noise voxels. The proposed
method can be further extended to filling in or deleting spots of isolated pixels, either
by search-and-correct or by introducing hierarchical testing methods, which borrows
strength from partial results in neighboring areas.

The maximum likelihood approach allows to estimate parameters in DTI while ac-
counting in the correct way for signal skewness. The estimation algorithm proposed
in this work overcomes some technical difficulties that kept noncentral chi estimation
away from being proposed in literature and used in clinical estimation. In particu-
lar, the formulation proposed here reduces the noncentral chi case to a straightforward
generalization of the likelihood equations of the Rician case. Other added difficulties,
mainly related to dealing with Bessel functions, are addressed here by introducing con-
sistent approximations. The simulation study anyway highlights a “caveat”, which is
that the MLE may not be the best estimator in terms of variance, in presence of rel-
atively low SNRs and and low angular resolution designs. Moreover, the proposed
algorithm should be integrated in a framework of spatial estimation with real data,
by introducing proper regularization methods for tensor data. Some successful work
in this field has been proposed for example in [21] for Rice-distributed data, and an
analogous approach could straightforwardly be applied to the single-voxel approach
proposed here. Another important issue that is not treated in this work is ensuring the
positive-definiteness of estimated tensors. Different parametrizations of the DTI model
may be easily used in the noncentral chi framework, starting back from equations (3.4)
and (3.5). Future developments of this work should then integrate spatially-regularized
tensor estimation, while considering eventually more complex diffusion models, like
multi-fiber DTI or the DDI model proposed in [49].

As anticipated in Section 3.3, the noncentral chi model could also account for a
spatially varying apparent number of coils, if considering the parameter N as free. Dif-
ferent parallel acquisition methods and different kinds of signal combination methods
can modify the nature of this signal [52], which often results as a noncentral chi vari-
able with a reduced, spatially varying number of degrees of freedom [19]. Not only this
could be considered in the noise discrimination test, but also the likelihood estimation
could be extended to consider the number of coils/channels not known a priori. Some
successful preliminary tests have already been performed, showing some potential for
this further extension.
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A.1 Plug-in estimator of individual cumulative hazard functions

Letting (t
(i)
1 , . . . , t

(i)
Ni(τi)

) be the jump times for patient i and setting t(i)0 = 0 and t(i)Ni(τi)+1 =
τi, we have

Λi(t) =

∫ t

0

λ0(s)αNi(s
−)eβ

TXi(s)ds

=

Ni(t
−)∑

k=0

ek logα

∫ t
(i)
k+1∧t

t
(i)
k

λ0(s)eβ
TXi(s)ds, i = 1, . . . , n, (A.1)

for t ∈ [0, τi). If the covariate vector XT
i is differentiable on each interval [t

(i)
k , t

(i)
k+1)

for i = 1, . . . , n and k = 1, . . . , Ni(τi), it is possible to express each Λi as a function of
Λ0, so that an estimate of λ0 will not be required: defining

PXi
(t) = Λ0(t)eβ

TXi(s) −
∫ t

0

Λ0(s)βTX ′i(s)e
βTXi(s)ds, (A.2)

where

X ′i(s) =

Ni(s
−)∑

k=0

(dXi1(s)

ds
, . . . ,

dXiq(s)

ds

)T
I

[t
(i)
k ,t

(i)
k+1)

(s),

and integrating by parts (A.1) leads to the expression

Λi(t) =

Ni(t
−)∑

k=0

ek logα
[
PXi

(t
(i)
k+1 ∧ t)− PXi

(t
(i)
k )
]
, (A.3)
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which does not involve λ0.
In the case study considered in section 1.3 we reconstruct individual cumulative

hazard processes by letting Xi(t) = Xi(t), representing the age of patient i. We can
express age as a variable explicitly dependent on time (in days) writing X i(t) = ai +
t/365, where ai represents the age of patient i at the beginning of the observation period
(1st January 2004). It is then possible to rewrite the subject-specific cumulative hazard
functions in the form given by (A.3), with

PX(t) = eβai
[
Λ0(t)e

βt
365 − β

365

∫ t

0

Λ0(s)e
βs
365ds

]
.

Plugging (Xi(t), Ni(t), Λ̃0, τi, α̂, β̂) for i = 1, . . . , n in (A.3) yields the reconstruction
of cumulative hazard processes for all the considered patients.
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B.1 Fisher information matrix for the Rice exponential regression model

Starting from the alternative definition

[I(θ)]jk = −E
[

∂2

∂θj∂θk
logL(θ|σ,M,x)

]
,

defining yi = Mie
θTxi/σ2 and using the fact that I ′1(x) = I0(x)− I1(x)/x, we find the

following expression for the second order derivatives of the log-likelihood:

∂2

∂θj∂θk
logL(θ|σ,M,xi) =

− 2

σ2

n∑
i=1

xijxike
2θTxi +

n∑
i=1

I1(yi)

I0(yi)
yixijxik +

n∑
i=1

yixij
∂

∂θk

I1(yi)

I0(yi)
=

− 2

σ2

n∑
i=1

xijxike
2θTxi +

n∑
i=1

I1(yi)

I0(yi)
yixijxik +

n∑
i=1

yixijxik

[
yi

(
1− I2

1 (yi)

I2
0 (yi)

)
− I1(yi)

I0(yi)

]
=

− 2

σ2

n∑
i=1

xijxike
2θTxi +

n∑
i=1

y2
i xijxik

[
1− I2

1 (yi)

I2
0 (yi)

]
=

− 2

σ2

n∑
i=1

xijxike
2θTxi +

1

σ4

n∑
i=1

e2θTxiM2
i xijxik

[
1− I2

1 (yi)

I2
0 (yi)

]
.
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Taking conditional expectation and inverting the sign of this expression, we obtain the
FIM element (j, k)

[I(θ)]jk = +
2

σ2

n∑
i=1

xijxike
2θTxi − 1

σ4

n∑
i=1

e2θTxixijxik

2σ2 + e2θTxi − E

M2
i

I2
1 ( e

θT xiMi

σ2 )

I2
0 ( e

θT xiMi

σ2 )


= − 1

σ4

n∑
i=1

e2θTxixijxik

e2θTxi − E

M2
i

I2
1 ( e

θT xiMi

σ2 )

I2
0 ( e

θT xiMi

σ2 )

 , (B.1)

which was obtained using the fact that E[M2
i ] = 2σ2 + ν2

i when Mi ∼ Rice(νi, σ
2).

B.2 Numerical integration of g(m|νi, σ)

This paragraph deals with the definition of a suitable interval of integration for the
function g(m|νi, σ). This function is dominated, for large values, by the “quadratic”
exponential decay of exp(−m2/(2σ2)); in fact, modified Bessel functions Ih(x) of any
order h are asymptotic, for large values of x, to ex/

√
2πx. Using this approximation in

equation (2.8) we get

g(m|νi, σ) ∼ m2 e
νim

σ2√
2π νim

σ2

m

σ2
e−

m2+ν2

2σ2 for “large” m.

We want to define an upper integration bound m̄ (the lower bound is taken as 0) such
that g(m|νi, σ) < ε on (m̄,+∞), being ε a very small value (we’ll see that it is possible
to choose ε as the machine epsilon).

Taking the logarithm on both sides of the inequality g(m|νi, σ2) < ε and using the
approximation for Bessel functions, we get

− ν2
i

2σ2
− log(σ)− 1

2
log(2πνi) +

5

2
log(m)− m2

2σ2
+
νim

σ2
< log(ε).

To simplify the notation a bit, we define the redundant parameter Ri = νi/σ and per-
form the change of variable s = mνi/σ

2, obtaining

−R
2
i

2
− log(σ)− 1

2
log(2πνi) +

5

2
log

(
sσ2

νi

)
− s2σ4

2ν2
i σ

2
+ s < log(ε)

R2
i

2
+ 4 log(σ) +

1

2
log(2π) + 3 log(νi)−

5

2
log(s) +

s2

2R2
i

− s > log

(
1

ε

)
.

To get an explicit formula for the upper bound m̄ we can bound inferiorly the term
−5 log(s)/2 with −5(s − 1)/2, so that if the resulting quadratic function exceeds
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log(1/ε) the original one will exceed it too. This way we get

R2
i

2
+ 4 log(σ) +

1

2
log(2π)− 3 log(νi)−

5

2
(s− 1) +

s2

2R2
i

− s− log

(
1

ε

)
> 0

R2
i

2
+ 4 log(σ) +

1

2
log(2π)− 3 log(νi) +

5

2
− 7

2
s+

s2

2R2
i

− log

(
1

ε

)
> 0

s2

2R2
i

− 7

2
s+

{
5

2
− log

(
1

ε

)
+
R2
i

2
− 3 log(Ri) + log(σ) +

1

2
log(2π)

}
> 0.

(B.2)

Defining as ci(ε) the part of equation (B.2) that does not depend on s, it’s clear that we
just have to find the largest root of a quadratic polynomial in s; so the bound should be

m̄ =
σ2

ν

{
7R2

i

2
+R2

√
49

4
− 2ci(ε)

R2

}
.

As anticipated, ε can be chosen, for example, as the 64-bit machine epsilon: in R we
get a .Machine$double.eps equal to 2−52, but in the final expression we have a
dependence on ε of the form log

(
1
ε

)
= log(252) = 52 log(2) ' 36, which is an “easy”

number!

B.3 Non-exponentiality of the noncentral chi family

A possible approach to prove that the noncentral chi family of distributions is not an
exponential one is to show that the class of functions {ln (I0(ηx))}η∈R+ is linearly inde-
pendent. To do this, we show that the difference between two elements with parameters
η1, η2 > 0, η1 6= η2 does not remain within the same family. If the contrary was true,
then we would have

ln (I0(η3x)) = ln (I0(η1x))− ln (I0(η2x)) ,

which would mean, exponentiating both sides of the equation, that I0(η1x) = I0(η2x)I0(η3x).
This is an equation between to power series, that must have equal coefficients for each
order to yield the same result. Comparing the coefficients of the terms of order 2 and
4, we get the system of equations

η21
4

=
η22+η23

4

η41
64

=
η42+η43+4η22η

2
3

64
,

which admit a solution only if η2 = 0 or η3 = 0. The considered family is then linearly
independent.
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