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Abstract

This thesis concerns the study of partial differential equations (PDE) with uncertain
input data described as random variables or random fields with known probability laws.
Such mathematical models are known as stochastic PDEs (SPDEs). The solution u of
an SPDE is itself stochastic. Given complete statistical information on the input data,
the aim of the present thesis is to infer on the statistical moments of u.

The approach proposed consists in deriving the so called moment equations, that is
the deterministic equations solved by the statistical moments of the stochastic solution
u. We consider PDEs with randomness arising either in the loading term or in the
coefficient.

Concerning the first class, the stochastic counterpart of the Hodge Laplace problem
in mixed formulation is considered, which finds applications in electrostatic/magne-
tostatic problems with uncertain current/charge, as well as in the fluid flow in porous
media with uncertain sources or sinks. The moment equations are exactly derived, and
their well-posedness is proved. The stability of both full and sparse tensor product finite
element discretizations is obtained.

We then consider the boundary value problem modeling the single phase flow (Darcy
law) in a heterogeneous porous medium, where the permeability is described as a log-
normal random field, i.e. a(!, x) = eY (!,x), Y (!, x) being a Gaussian random field.
Under the assumption of small variability of Y , we perform a perturbation analysis,
which consists in expanding the solution of the SPDE in Taylor series. We analyze
the approximation properties of the K-th order Taylor polynomial TKu, predict the di-
vergence of the Taylor series, and provide an estimate of the optimal order Kopt such
that adding new terms to the Taylor polynomial will deteriorate the accuracy instead of
improving it.

We approximate the statistical moments of the stochastic solution with the statis-
tical moments of its Taylor polynomial. We derive the recursive problem solved by
the expected value of TKu and show its well-posedness. An algorithm to solve the
first moment problem at a prescribed order K is proposed. All the computations are
performed in low-rank format, the tensor train (TT) format.

On a model problem with only few random input parameters we show that the solu-
tion obtained with our TT-algorithm compares well with the one obtained by a Stochas-
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tic Collocation method. However, our algorithm is capable of dealing also with a very
large number of random variables and even infinite-dimensional random fields, and
providing a valid solution, whereas the Stochastic Collocation method is unfeasible.

The dependence of the complexity of the algorithm on the prescribed tolerance tol
in the TT-computations is studied via numerical tests. We numerically predict the ex-
istence of an optimal tol depending both on the order of approximation K and the
standard deviation of the field Y . If the optimal tolerance is chosen, the performance
of the moment equations is far superior to a standard Monte Carlo method.

Keywords: Uncertainty Quantification, moment equations, sparse tensor product
approximations, Hodge Laplacian, Darcy law, lognormal permeability, perturbation
technique, low-rank format.
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Introduction

Motivations

Mathematical models are helpful instruments for qualitative and quantitative investi-
gation in many different disciplines. They provide an interpretation and predict the
behavior of phenomena arising in natural science, biology, engineering, economy, fi-
nance, etc. Numerical analysis develops and studies algorithms for numerically solving
problems coming from mathematical modeling.

In many applications, the parameters of the model are not precisely known. This
may be due to several factors.

• Measurement errors or errors due to the accuracy of the measuring instruments.

• Incomplete knowledge of quantities which can be measured only point-wise, like
the permeability field of a heterogenous porous medium.

• Intrinsic uncertainty of certain phenomena, like winds, earthquake sources, re-
sponses of biological tissues, . . .

Recently, many efforts have been made in trying to treat and include this uncertainty in
the model. A very convenient framework is offered by the probability theory. In par-
ticular, starting from a suitable partial differential equation (PDE) model, the uncertain
input data are described as random variables or random fields with known probability
laws. This kind of mathematical models are known as stochastic PDE (SPDE).

The solution of an SPDE is itself stochastic: it is a function of space and time as well
as the random realizations. The goal of Uncertainty Quantification is to infer on the
solution, i.e. to understand how the uncertainty in the input data of the model reflects
onto the solution. The quantities of interest may be the statistics of the solution itself,
like mean and variance, or statistics of functionals of the solution.

In this thesis we focus on second order linear PDEs with randomness arising either
in the forcing terms or in the coefficients. In the first case, the mixed formulation of
the SPDE is considered. Interesting applications may be the electrostatic/magnetostatic
problem with uncertain current/charge and the fluid flow in a heterogeneous (uncertain)
porous medium with uncertain sources or sinks.

1
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The sampling and polynomial approaches

The Monte Carlo method is the most straightforward approach to tackle the uncertainty
quantification problem. It consists in generating a sample of M independent realiza-
tions, solve the PDE corresponding to each realization, and then combine the set of
solutions to obtain an approximation of the quantity of interest. We refer to [22, 87].
Very weak assumptions on the SPDE are needed for the convergence of the Monte
Carlo method. Moreover, it features a rate of convergence independent of the dimen-
sion of the problem (i.e. number of random variables in the equation) of the order of
M�1/2. This rate of convergence is very slow and a very large sample size is usually
needed to achieve an acceptable accuracy. This represents the main limitation in the
use of Monte Carlo methods to SPDEs where each evaluation can be very costly. It
should be noted that Monte Carlo method does not exploit any possible regularity that
the solution of the SPDE might have with respect to the random parameters.

A number of improvements have been proposed in recent years. Suppose that, for
each realization of the input parameters, the solution of the SPDE belongs to a function
space V , defined on the physical domain D. If V is endowed with a hierarchic structure
V0 ⇢ V1 . . . ⇢ VL ⇢ V , {Vl}Ll=o being a set of nested finite dimensional subspaces, one
can construct an approximation of the solution on each subspace (for instance a finite
element approximation) using a certain number of realizations.

The Multilevel Monte Carlo method is based on the idea that a large number of
realizations is needed for small l, whereas only few realizations are needed for large l.
We refer to [13, 45, 46, 58, 61] for a deeper discussion on the Multilevel Monte Carlo
method, and in particular to [13, 32, 94] for the application of this idea to SPDEs.

The Monte Carlo method has been improved also in the direction of the distribution
of the sampling points. The distribution of points of an independent randomly gener-
ated sample is affected by clumping. The Quasi Monte Carlo method (see [22, 77])
exploits quasi random samples, which are deterministically generated so as to ensure
a better uniformity (low-discrepancy sequences). Application of Quasi Monte Carlo
methods to SPDEs have been proposed in [48, 68].

The solution u of an SPDE can be viewed as a mapping defined on the space of
random parameters {Y = (Y1, . . . , YN) 2 RN}, with values onto a space/time func-
tion space. A generalized Polynomial Chaos Expansion (gPC expansion) consists in
approximating the function u(Y ) by multivariate polynomials in Y . Such an approx-
imation can be obtained via a Galerkin projection, leading to the Stochastic Galerkin
method [11,40,43,47,75,91,95], or via an interpolation strategy, leading to the Stochas-
tic Collocation method [10, 42, 78, 79, 98]. The Stochastic Galerkin method entails the
solution of Nh ⇥ M coupled linear systems, where Nh is the dimension of the dis-
crete subspace in the physical space and M is the dimension of the polynomial space
in Y . On the other hand, the Stochastic Collocation method consists in collocating the
problem in a set of points {Yi}Qi=1 (sparse grid) and entails the solution of Q decoupled
linear systems, with, however, Q � M in general. On the other hand, the Stochas-
tic Collocation method is fully parallelizable and can exploit pre-existing deterministic
solvers.

A gPC technique exploits the regularity of the solution as a function of the random
parameters, and exhibits rates of convergence superior to the Monte Carlo method, at

2
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least when the dimension of the problem is not too high.

Moment equations and perturbation analysis

The Monte Carlo method requires the generation of a large number of realizations, and
the evaluation of the PDE at each realization, so that it turns to be very expensive. On
the other hand the gPC can successfully treat problems with moderately small dimen-
sion in the space of parameters, whereas, for large dimensions, it is unfeasible.

Given complete statistical information on the input data, the aim of the present thesis
is to analyze both theoretically and numerically an alternative method to both Monte
Carlo like approaches and gPC techniques, namely the so called moment equations.
The moment equations are suitable deterministic equations solved by the statistical
moments of the stochastic solution u of the SPDE. We focus, in particular, on linear
PDEs with randomness arising either in the loading terms or in the coefficients.

For what concerns the first class, a family of stochastic saddle-point problems is con-
sidered. More precisely, we study the stochastic counterpart of the mixed formulation
of the Hodge Laplace problem, where the Hodge Laplace is a second order differential
operator acting on differential forms. See [6, 7]. In this case, we derive exactly the
moment equations, and state their well-posedness.

Concerning the second class, we study the Darcy boundary value problem model-
ing the fluid flow in a heterogeneous porous medium. The uncertain permeability is
described as a lognormal random field: a(!, x) = eY (!,x), Y (!, x) being a Gaussian
random field. Under the assumption of small variability of Y , we perform a perturba-
tion analysis based on the Taylor expansion of the solution u(Y ). We refer to [9,29,33]
and to the geophysical literature [51, 52, 86, 93]. In [56] the perturbation technique has
been applied to SPDE defined on random domains.

We investigate the approximation properties of the Taylor polynomial TKu and pre-
dict the divergence of the Taylor series and the existence of an optimal order Kopt of
the Taylor polynomial such that adding new terms will deteriorate the accuracy instead
of improving it. The divergence of the Taylor series is a result limited to the lognor-
mal model. Indeed, in [9] the authors prove the convergence of the Taylor series in the
case where the permeability is described as a linear combination of bounded random
variables.

In the approach adopted in this thesis, the entire field and not a finite dimensional
approximation of it is considered. Hence, the Taylor polynomial involves the Gateaux
derivatives of u with respect to Y , and can not be directly computed.

Deterministic equations solved by the statistical moments of the Taylor polynomial
are derived, and the statistical moments of u are approximated by the statistical mo-
ments of TKu. We mainly focus our attention on the recursive problem solved by the
expected value of TKu, studying its structure, stating its well-posedness and proving
Hölder-type regularity results.

The moment equation approach entails the solution of high dimensional problems
defined on tensor product domains. The most straightforward discretization technique
is the full tensor product discretization (FTP), which suffers from the curse of dimen-
sionality, meaning that the number of degrees of freedom grows exponentially in the

3
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dimension d of the problem. To overcome the curse of dimensionality, we explore
either sparse tensor product discretizations (STP) or low-rank techniques.

We discretize the moment equations derived from the mixed formulation of the
stochastic Hodge Laplacian with a STP technique. If a STP is adopted, the number
of degrees of freedom is no more exponential in d, but linear up to logarithmic terms.
However, almost the same rate of accuracy as with a FTP discretization is obtained.
See [21, 97]. We show, in particular, the stability of the STP discretization and provide
a convergence result. To our knowledge this is one of the very few results available on
the stability of sparse approximations of tensorized mixed problems.

On the other hand, full tensor products finite element spaces are used to discretize
the recursive problem solved by the expected value of TKu, u being the solution of
the Darcy problem with stochastic coefficient. We tackle the curse of dimensionality
of the FTP approximation by representing the high dimensional tensors in a low-rank
or data-sparse format. Low-rank formats come from the Numerical Linear Algebra
framework, and aim at representing approximated high dimensional tensors using a
dramatically reduced number of parameters. We refer to [23, 57, 96] for a deeper in-
troduction on classical low-rank formats. In recent years, two formats both based on
the singular value decomposition have been introduced: the Hierarchical Tucker (HT)
format [49, 53, 54] and the Tensor Train (TT) format [53, 81]. A tensor in TT-format
is expressed using three dimensional tensors, called TT-cores, whose sizes are called
TT-ranks. The TT-format presents a linear structure and can be easily manipulated.
Moreover, many linear algebra operations together with the rounding operation, which
consists in approximating the original tensor with a one with lower TT-rank up to a
prescribed accuracy tol, are implemented in the Matlab TT-Toolbox available at
http://spring.inm.ras.ru/osel/?page_id=24. For these reasons we
have chosen to develop a code which employs only TT-format representations of ten-
sors.

If the random field Y is parametrized by a finite number of random variables, then
the Taylor polynomial TKu can be directly computed by solving the recursive problem
for the derivatives of u. This finite-dimensional situation can be achieved expanding the
field in series (Karhunen-Loève expansion [43, 70, 72, 73] or Fourier expansion [50])
and then truncating the series. We compare the complexity of this method with our
TT-algorithm, and highlight the superiority of the latter.

Performing the computations in TT-format allows us to handle the entire field Y .
Precisely, we take into account the complete Karhunen-Loève expansion of Y (up
to machine precision). We compare the expected value of u computed via our TT-
algorithm with a stochastic collocation solution, and highlights that the same level of
accuracy can be obtained. On the other hand, when a stochastic collocation method
is unfeasible, i.e. when Y is parametrized by a large number of random variables, the
TT-algorithm still provides a valid solution.

A fundamental question we have tried to answer is how the complexity of the TT-
algorithm depends on the precision tol achieved in the TT-computations. We have
performed some numerical tests which point out the existence of an optimal tol de-
pending both on the order of approximation, (the order K of the Taylor polynomial),
and the standard deviation of Y . If the optimal tolerance is chosen, the performance of
the moment equations is far superior to a standard Monte Carlo method. The question

4
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of how to determine a priori the optimal tolerance is still open and under investigation.
The main limitations of our TT-algorithm come from the storage point of view, and

prevent us to grow significantly in K (order of Taylor approximation). We believe that
a great improvement will follow from the implementation of sparse tensors toolboxes,
which are still missing in Matlab (or other programming languages).

Outline

The outline of the thesis is the following.

Chapter 1 contains the overview of the thesis, focusing on the main results obtained
and pointing to the corresponding chapters for a deeper discussion.

Chapter 2 studies a saddle-point problem with stochastic loading terms, namely the
mixed form of the stochastic Hodge Laplacian, where the Hodge Laplace op-
erator is a second order differential operator acting on differential forms. The
moment equations are derived, and their well-posedness is proved. Both full and
sparse tensor product finite element discretizations are provided and analyzed. In
particular we prove the stability of both discretizations, and show that a sparse
approximation provides almost the same rate of accuracy as a full approximation,
with a drastic reduction in the number of degrees of freedom.

Chapter 3 focuses on the Darcy problem modeling the fluid flow in a heterogeneous
porous medium. The permeability of the physical domain is described as a log-
normal random field. Under the assumption of small variability of the field, a
perturbation analysis based on the Taylor expansion of the solution is performed.
The approximation properties of the Taylor polynomial are explored, and the di-
vergence of the Taylor series is predicted. We also predict the existence of an
optimal degree Kopt of the Taylor polynomial and provide an a priori estimate for
it.

Chapter 4 is dedicated to the derivation of the moment equations for the stochastic
Darcy problem with lognormal permeability introduced in Chapter 3. The recur-
sive structure of the first moment problem is highlighted, and its well-posedness
is proved. Hölder-type regularity results are also obtained.

Chapter 5 proposes an algorithm to numerically solve the recursive first moment prob-
lem derived in Chapter 4. All the correlations involved are represented in a low-
rank format (Tensor Train format). The complexity of the algorithm is studied and
some numerical tests in the one dimensional setting are performed.

Parts of the material contained in this thesis have been already submitted for publi-
cation or are ready to be submitted. In particular

Chapter 2 is based on: F. Bonizzoni, A. Buffa, F. Nobile, Moment equations for the
mixed formulation of the Hodge Laplacian with stochastic data, available as MOX
Report 31/2012 - Department of Mathematics, Politecnico di Milano.

Chapter 3 is based on a paper in preparation: F. Bonizzoni, F. Nobile, Perturbation
analysis for the Darcy problem with lognormal permeability. A short version
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can be found in F. Bonizzoni, F. Nobile, Perturbation analysis for the stochastic
Darcy problem. Proceeding in the European Congress on Computational Methods
in Applied Sciences and Engineering (ECCOMAS 2012).

The material in Chapters 4 and 5 is instead still unpublished.

The work of this thesis has been carried out for one half at MOX laboratory, Depart-
ment of Mathematics, Politecnico di Milano, and for the other half at CSQI - MATH-
ICSE, École Polythecnique Fédérale de Lausanne.

This work has been supported by the italian grant Fondo per gli Investimenti della
Ricerca di Base FIRB-IDEAS (Project n. RBID08223Z) “Advanced numerical tech-
niques for uncertainty quantification in engineering and life science problems”.
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CHAPTER1
Thesis overview

This chapter briefly introduces the main results obtained in this thesis and highlights
the crucial points of each chapter, pointing to it for a deeper discussion.

1.1 Problem setting and notations

Let D be a bounded domain in Rn for n � 1, and (⌦,F ,P) be a probability space,
that is ⌦ is the set of outcomes, F is the �-algebra of events and P : ⌦ ! [0, 1] is the
probability measure. In this thesis we deal with boundary value problems of the form

T (a(!, x))u(!, x) = f(!, x), a.e. in D, a.s. in ⌦ (1.1)

where T is a partial differential operator linear with respect to u, and invertible from
V to V 0 for any fixed ! 2 ⌦, V being a suitable Hilbert space. In problem (1.1),
the uncertainty affects either the forcing term f(!, x) or the coefficient a(!, x) of the
differential operator T (a). As soon as the input parameters randomly vary, so does the
solution. We model both the uncertain input data and the solution u as random variables
or random fields.

A random variable Y is a measurable mapping defined on the probability space
(⌦,F ,P) with values onto (R,B(R)), where B(R) is the Borel �-algebra of R. We
define the expected value E [Y ] as

E [Y ] :=

Z
⌦

Y (!)dP(!)

The space of random variables with finite expected value is denoted as L1
(⌦,P). Sim-

ilarly, for any positive integer k, Lk
(⌦,P) denotes the space of random variables with

7
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Chapter 1. Thesis overview

finite k-th statistical moment

E
⇥
Y k
⇤
:=

Z
⌦

Y k
(!)dP(!).

The space Lk
(⌦,P) is a Banach space and, for k = 2, it is a Hilbert space with the

natural inner product

(X, Y ) :=

Z
⌦

X(!)Y (!)dP(!).

All the previous definitions generalize to the case of a random field Y : ⌦ ! V ,
where V is a Hilbert or Banach space of functions defined on the physical domain
D. See [1, 16, 50] for more on random fields and stochastic processes. In this setting,
Lk

(⌦;V ) denotes the Bochner space of random fields such that

kY kLk(⌦;V ) :=

✓Z
⌦

kY (!)kkV dP(!)
◆1/k

< +1.

We introduce the k-points correlation function of Y

E
⇥
Y ⌦k

⇤
(x1, . . . , xk) := E [Y (!, x1)⌦ · · ·⌦ Y (!, xk)] .

If Y (!, x) is a random field with values into the functional space V , then

E
⇥
Y ⌦k

⇤ 2 V ⌦k
:= V ⌦ · · ·⌦ V| {z }

k times

.

Note that, if V is a Hilbert space, the definition of the tensor product space V ⌦ V
is quite natural since it exploits the scalar product in V . (See e.g. [85]). On the other
hand, in the case V Banach space, V ⌦V can be endowed with different non-equivalent
norms. (See e.g. [53,88]). In Chapter 2, V will be a Sobolev space of differential forms,
and, in Chapters 3, 4 and 5, the classical Sobolev space H1

(D).
The aim of the work is to develop suitable techniques to approximate the statistical

moments of u(!, x), the stochastic solution of problem (1.1). In particular, we derive
the deterministic equations solved by the statistical moments of u(!, x), known as mo-
ment equations. If the uncertainty concerns only the loading term f(!, x), the k-th
moment equation is obtained tensorizing the stochastic problem with itself k times, and
then taking the expectation. On the other hand, if the uncertainty affects the coefficient
a(!, x) of the differential operator, we adopt a perturbation approach, develop u in Tay-
lor series and approximate the statistical moments of u using the statistical moments
of its Taylor polynomial. In both cases, the solution of high dimensional problems is
needed. High dimensional problems are affected by the curse of dimensionality, that is
the exponential growth of the problem complexity in its dimension. To overcome this
obstacle, we propose to use either sparse discretizations or low-rank techniques.

1.2 Results on linear problems in mixed formulation with stochastic
forcing term

Given a bounded domain D ⇢ Rn, n � 1, in Chapter 2 we consider a problem of the
form 

T11 T12

T21 T22

� 
u(!, x)

p(!, x)

�
=


f1(!, x)

f2(!, x)

�
, a.e. in D, a.s. in ⌦ (1.2)

8
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Table 1.1: Proxy fields correspondences in the case n = 3.

k d H⇤

k

(D)

0 r H1
(D)

1 curl H(curl, D)

2 div H(div, D)

3 0 L2
(D)

where the uncertainty affects only the loading terms f1(!, x), f2(!, x), whereas T =
T11 T12

T21 T22

�
is a deterministic partial differential operator. Problems of this type arise

when mixed formulations of elliptic problems are considered. Note that elliptic prob-
lems (not in mixed form) with uncertain loading terms are well studied in literature.
See [28, 91, 92, 97].

In Chapter 2, T is the mixed form of the Hodge Laplace operator, which is a second
order differential operator acting on differential forms. The finite element exterior cal-
culus is a theoretical approach aimed at better understanding finite element schemes,
and possibly developing new ones with desirable properties. See [5–7]. To explain the
results obtained, we first briefly recall the problem setting and main notations.

1.2.1 Introduction on finite element exterior calculus

A differential k-form on a domain D ⇢ Rn is a map u which associates to each x 2 D
an alternating k-form on Rn, ux 2 AltkRn. The space of all smooth differential k-
forms is denoted with ⇤

k
(D). The exterior derivative d maps ⇤k

(D) into ⇤

k+1
(D) for

each k � 0 and is defined as

dux(v1, . . . , vk+1) =

k+1X
j=1

(�1)

j+1@v
j

ux(v1, . . . , v̂j, . . . , vk+1), u 2 ⇤

k
(D),

v1, . . . , vk+1 2 Rn, where the hat is used to indicate a suppressed argument. The
coderivative operator �, which maps ⇤

k
(D) onto ⇤

k�1
(D), is the formal adjoint of

d. The space of all square integrable differential forms L2
⇤

k
(D) is the completition of

⇤

k
(D) with respect to the norm induced by the inner product

(u, w)L2⇤k(D) :=

Z
D

(ux, wx)AltkRn

vol, (1.3)

where vol is the volume form in ⇤

n
(D). Finally, the space of differential forms in

L2
⇤

k
(D) with exterior derivative in L2

⇤

k+1
(D) is denoted with H⇤

k
(D). The space

H⇤

k
(D) can be naturally endowed with boundary conditions.

Since Alt0Rn
= R, AltnRn

= R and both Alt1Rn and Altn�1Rn can be identified
with Rn, it is natural to establish correspondences between the exterior derivative and
the classical differential operators, and between H⇤

k
(D) and classical Hilbert function

spaces. These correspondences, known as proxy fields, are summarized in Table 1.1 for
n = 3.

A feature of the exterior calculus is the rearrangement of the spaces H⇤

k
(D) in

9
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cochain complexes, known as de Rham complexes:

0 ! H⇤

0
(D)

d�! H⇤

1
(D)

d�! · · ·H⇤

n
(D)

d�! 0 (1.4)

The cochain (1.4) is indeed a complex since the exterior derivative satisfies the impor-
tant property d � d = 0. In terms of proxy fields, this means that curl � r = 0 and
div � curl = 0.

1.2.2 The stochastic Hodge Laplacian
The Hodge Laplacian is the differential operator �d + d�, mapping k-forms into k-
forms, and the Hodge Laplace problem is the boundary value problem for the Hodge
Laplacian. It unifies some problems important in applications, such as the Darcy prob-
lem, modeling the fluid flow in porous media, and the magnetostatic/electrostatic prob-
lem.

Let us introduce the following bilinear operators

A : H⇤

k
(D) ! (H⇤

k
(D))

0 , B : H⇤

k
(D) ! (H⇤

k�1
(D))

0

hAv,wi := (dv, dw) hBv, qi := (v, dq)

Given ↵ � 0, the weak mixed form of the Hodge Laplacian is

T :=


A B⇤

B �↵Id
�
: Vk ! V 0

k ,

where B⇤ is the adjoint of B, Vk :=


H⇤

k
(D)

H⇤

k�1
(D)

�
, and V 0

k is the dual of Vk. The

stochastic Hodge Laplacian problem is the boundary value problem associated with the

deterministic differential operator T and stochastic forcing term

F1

F2

�
2 Lm

(⌦;V 0
k),

m � 1 integer: find

u

p

�
2 Lm

(⌦;Vk) s.t.

T


u(!)

p(!)

�
=


F1(!)

F2(!)

�
a.s. in V 0

k . (1.5)

An easy extension of the well-posedness result for the deterministic problem gives the
well-posedness of problem (1.5), as it will be shown in Chapter 2.

For simplicity, here we have considered homogeneous Neumann boundary condi-
tions on the entire boundary @D, whereas, in Chapter 2, we have imposed homoge-
neous Dirichlet boundary conditions on �D, and homogeneous Neumann boundary
conditions on �N , where {�D,�N} is a partition of @D. It seems not straightforward to
extend the results stated in Chapter 2 to non-homogeneous boundary conditions. The
main difficulty is the characterization of the space Tr

�
H⇤

k
(D)

�
, where Tr is the trace

operator.

1.2.3 Moment equations for the stochastic Hodge Laplacian
To derive the equation for the first statistical moment we start from the stochastic prob-
lem (1.5) and take the expectation on both sides of the equation. Using the linearity of

10
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the Hodge Laplace operator, we end up with the following deterministic saddle-point
problem: find Es 2 Vk s.t.

T (Es) = E

F1

F2

�
in V 0

k .

This problem is well-posed provided that

F1

F2

�
2 L1

(⌦;V 0
k), and its unique solution

is given by the expected value of

u

p

�
.

To obtain the m-th moment equation (m positive integer), we tensorize the stochastic
problem with itself m times and then take the expectation. Hence, it has the form: find
M⌦m

s 2 V ⌦m
k s.t.

T⌦mM⌦m
s = Mm


F1

F2

�
in (V 0

k)
⌦m (1.6)

where Mm


F1

F2

�
:= E

"✓
F1

F2

◆⌦m
#

. Similarly to what observed for the first statis-

tical moment problem, the m-th moment problem is well-posed provided that

F1

F2

�
2

Lm
(⌦;V 0

k), and its unique solution is given by the m-th statistical moment of

u

p

�
,

Mm


u

p

�
.

In Chapter 2 we prove the well-posedness of problem (1.6) with two different ap-
proaches.

• The deterministic Hodge Laplacian is well-posed, so that the inverse operator T�1

exists and is bounded. From a tensor product argument, it follows that (T�1
)

⌦m

is bounded, and is the inverse of T⌦m.

• The m-th moment problem is composed of m nested saddle-point problems. As
alternative proof, we show a tensorial inf-sup condition for the tensor product
space V ⌦m

k .

The proof of the tensorial inf-sup condition is an original and relevant contribution of
this thesis. The main difficulty comes from the fact that a tensor product of an inf-
sup operator is not straightforwardly an inf-sup operator. A big effort was done in
the construction of the minimal inf-sup operator P for the deterministic mixed Hodge
Laplacian operator T such that P⌦m is an inf-sup operator for T⌦m.

The tensorial inf-sup operator becomes crucial in the discrete setting. Indeed, when
considering a finite dimensional subspace Vk,h ⇢ Vk, the tensor product argument ap-
plies only if the finite dimensional subspace of V ⌦m

k is the full tensor product V ⌦m
k,h .

If a sparse tensor product discretization is considered instead, an inf-sup condition is
needed to prove the stability of the discretization.

11
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1.2.4 Full and sparse finite element discretizations
The most straightforward finite element discretization of problem (1.6) is obtained con-
sidering the tensor product space V ⌦m

k,h := Vk,h ⌦ · · ·⌦ Vk,h| {z }
m times

, where Vk,h is a finite ele-

ment discretization of Vk. Being Nh = dim(Vk,h), then dim

�
V ⌦m
k,h

�
= Nm

h , which is
impractical for m moderately large. This exponential growth in the dimensionality of
the problem is known as curse of dimensionality. To overcome this problem, we pro-
pose the following sparse tensor product discretization. Let

�
Vk,l

j

 
j�1

be a sequence
of nested finite dimensional subspaces of Vk whose limit for j ! +1 is dense in Vk.
We define the sparse tensor product subspace of V ⌦m

k as

V (m)
k,L :=

M
|l|L

Zk,l1 ⌦ · · ·⌦ Zk,l
m

, (1.7)

where Zk,l
j

is the orthogonal complement of Vk,l
j�1 in Vk,l

j

. See [21] and the references
therein for more on sparse discretizations.

The sparse tensor product finite element (STP-FE) discretization of problem (1.6)
has the form: find M (m)

s,L 2 V (m)
k,L such that

T⌦mM (m)
s,L = Mm


F1

F2

�
in
⇣
V (m)
k,L

⌘0
(1.8)

The following stability result is the main result obtained in Chapter 2.

Theorem 1.2.1 (Stability of the STP-FE discretization). For every ↵ � 0 there exists
¯h0 > 0 such that for all h0  ¯h0 problem (1.8) is a stable discretization for the m-th
moment problem (1.6). In particular, for every M (m)

s,L 2 V (m)
k,L , there exists a test function

M (m)
t,L 2 V (m)

k,L and positive constants Cm,disc, C 0
m,disc s.t.D

T⌦mM (m)
s,L ,M (m)

t,L

E
⇣
V

(m)
k,L

⌘0
,V

(m)
k,L

� Cm,disckM (m)
s,L k2

V ⌦m

k

, (1.9)

kM (m)
t,L kV ⌦m

k

 C 0
m,disckM (m)

s,L kV ⌦m

k

.

To prove the inf-sup condition (1.9), for each fixed trial function M (m)
s,L 2 V (m)

k,L , we

choose the corresponding test function as M (m)
t,L = ⇧

(m)
L

⇣
P⌦mM (m)

s,L

⌘
, where ⇧

(m)
L :

V ⌦m
k ! V (m)

k,L is a projection and P⌦m is the tensorial inf-sup operator constructed
earlier. We then observe thatD

T⌦mM (m)
s,L ,M (m)

t,L

E
=

D
T⌦mM (m)

s,L ,⇧(m)
L P⌦m M (m)

s,L

E
=

D
T⌦mM (m)

s,L , P⌦mM (m)
s,L

E
�
D
T⌦mM (m)

s,L ,
⇣
Id

⌦m � ⇧

(m)
L

⌘
P⌦m M (m)

s,L

E
.

Now, the main ingredients are:

• the continuous tensorial inf-sup condition, proved in Chapter 2, Section 2.4.4

12
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• a sparse tensor product version of the GAP property (see [20]), which, roughly
speaking, gives a measure of the distance between the spaces V ⌦m

k and V (m)
k,L .

Finally, in Chapter 2 we derive an error estimate for the approximated solution of
(1.8), inspired by the arguments in [21].
Theorem 1.2.2 (Order of convergence of the STP-FE discretization).����Mm


u

p

�
�M (m)

s,L

����
V ⌦m

k

= O(hr(1��)
L ),

0 < � < 1, provided that
u

p

�
2 Lm

✓
⌦;


Hr

⇤

k
(D) \H�

D

⇤

k
(D)

Hr
⇤

k�1
(D) \H�

D

⇤

k�1
(D)

�◆

du

dp

�
2 Lm

✓
⌦;


Hr

⇤

k+1
(D) \H�

D

⇤

k+1
(D)

Hr
⇤

k
(D) \H�

D

⇤

k
(D)

�◆
.

We believe that this contribution is highly original, and one of the few proofs of
stability of sparse approximations of tensorized mixed problems. Only after finishing
and submitting the work [17], we became aware of the work [60], which treats the
electromagnetic problem using very similar techniques.

1.3 Results on the perturbation approach for the Darcy problem with
lognormal permeability tensor

Chapters 3, 4 and 5 focus on three aspects of the same problem: the stochastic Darcy
equation with permeability coefficient described as a lognormal random field. In Chap-
ter 3 we introduce the perturbation technique and study its effectiveness. In Chapter 4
we derive and analyze the moment equations for the stochastic Darcy problem. Finally,
in Chapter 5 we propose a low-rank algorithm to solve them.

1.3.1 Problem setting

Let D be a bounded domain in Rd (d = 2, 3) and f 2 L2
(D). We are interested in the

following stochastic linear elliptic boundary value problem, that is the stochastic Darcy
problem: find a random field u : ⌦⇥ ¯D ! R such that8><>:

�divx (a(!, x)rxu(!, x)) = f(x) x 2 D, ! 2 ⌦

u(!, x) = g(x) x 2 �D, ! 2 ⌦

a(!, x)rxu(!, x) · n = 0 x 2 �N , ! 2 ⌦

(1.10)

Problem (1.10) models the single-phase fluid flow in a heterogeneous porous medium,
whose permeability is described by the random field a(!, x).

The weak formulation is: find u 2 Lp
(⌦;H1

(D)) (p > 0) such that u|�
D

= g a.s.,
andZ

D

a(!, x)rxu(!, x) ·rxv(x) dx =

Z
D

f(x)v(x) dx 8v 2 H1
�
D

(D), a.s. in ⌦.

(1.11)
We make the following assumptions:

13
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A1 : The permeability field a 2 Lp
�
⌦;C0

(

¯D)

�
for every p 2 (0,1).

Then the quantities

amin(!) := min

x2D̄
a(!, x), amax(!) := max

x2D̄
a(!, x)

are well-defined, and amax 2 Lp
(⌦) for every p 2 (0,1).

A2 : amin(!) > 0 a.s.,
1

amin(!)
2 Lp

(⌦) for every p 2 (0,1).

These assumptions guarantee the well-posedness of problem (1.11), which follows
by applying the Lax-Milgram lemma for any fixed ! 2 ⌦, and then taking the Lp

(⌦,P)-
norm.

A frequently used model in geophysical applications describes the permeability as a
lognormal random field: a(!, x) = eY (!,x), where Y (!, x) is a Gaussian random field.
See [14,36,51,52,93]. In recent years, the lognormal model has appeared and has been
analyzed also in the mathematical literature: see [24, 25, 41, 47].

The lognormal model is adopted in Chapters 3, 4, 5. We assume Y (!, x) centered to

lighten the notations, and introduce �2
=

1

|D|
Z
D

Var [Y ] dx. If Y (!, x) is a stationary

random field, then its variance is independent of x 2 D and coincides with �2. By a
little abuse of notation, we refer to � as the standard deviation of Y also in the case of a
non-stationary random field. By an application of the Kolmogorov continuity theorem,
in Chapter 3 we show that if the covariance function CovY of the Gaussian field Y (!, x)
is Hölder regular with exponent 0 < t  1, then there exists a version of Y (!, x) Hölder
continuous with exponent 0 < ↵ < t/2, which we still denote with Y (!, x). Hence
kY kL1(D), amax and amin are well-defined random variables. Moreover, assumptions
A1, A2 turn to be fulfilled, so that problem (1.11) is well-posed.

The first result we have in Chapter 3 concerns a bound on kY kL1(D) as a function
of �, obtained exploiting two different techniques. The obtained estimates hold un-
der different assumptions, however they are quite similar and predict almost the same
behavior for E

h
kY kkL1(D)

i
, that is

E
h
kY kkL1(D)

i
 C �k

(k � 1)!!, (1.12)

with C > 0.

1.3.2 Perturbation analysis in the infinite dimensional setting

Thanks to the Doob-Dynkin lemma, the unique solution of problem (1.11) is a function
of the random field Y : u = u(Y, x). Under the assumption of small variability, that is
0 < � < 1, the aim of Chapter 3 is to perform a perturbation analysis based on the
Taylor expansion of the solution u in a neighborhood of 0, and study the approximation
properties of the Taylor polynomial. The work presented in Chapter 3 can be seen as
both an extension and theoretical analysis of [51, 52, 93, 99], and an extension of [33]
to the case of a lognormal permeability field. The perturbation technique has also been
applied to the case of randomly varying domains in [56].
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The K-th order Taylor polynomial is

TKu(Y, x) :=
KX
k=0

Dku(0)[Y ]

k

k!
,

where Dku(0)[Y ]

k is the k-th Gateaux derivative of u in 0 evaluated along the vec-
tor (Y, . . . , Y )| {z }

k times

, and D0u(0)[Y ]

0
:= u0

(x) is independent of the random field Y . u0

solves the deterministic Laplace equation with loading term f and boundary condi-
tions as in (1.10), whereas Dku(0)[Y ]

k is the solution of the following problem: given
Dlu(0)[Y ]

l 2 Lp
�
⌦;H1

�
D

(D)

�
for all l < k, find Dku(0)[Y ]

k 2 Lp
�
⌦;H1

�
D

(D)

�
such

thatZ
D

rxD
ku(0)[Y ]

k ·rxv dx = �
kX

l=1

✓
k

l

◆Z
D

Y lrxD
k�lu(0)[Y ]

k�l ·rxv dx

(1.13)
8 v 2 H1

�
D

(D), a.s. in ⌦. By the Lax Milgram lemma, and a recursion argument, in
Chapter 3 we prove the following theorem.

Theorem 1.3.3. Problem (1.13) is well-posed, that is it admits a unique solution that
depends continuously on the data. Moreover, it holds

kDku(0)[Y ]

kkH1(D)  C

✓kY kL1

log 2

◆k

k! < +1, 8k � 1 a.s. in ⌦ (1.14)

where C = C(CP , ku0kH1(D)), CP being the Poincaré constant. Moreover, Dku(0)[Y ]

k

2 Lp
�
⌦;H1

�
D

(D)

�
for any p > 0.

From estimate (1.14) (and a similar one for kDku(tY )[Y ]

kkH1(D), 0  t  1), we
are able to derive an upper bound on the norm of the Taylor polynomial as well as the
residual

RKu(Y, x) :=
1

K!

Z 1

0

(1� t)KDK+1u(tY )[Y ]

K+1dt.

Theorem 1.3.4. If the upper bound (1.12) holds, then

��TKu
��
L1(⌦;H1(D))


KX
k=0

C1

✓
�

log 2

◆k

(k � 1)!! (1.15)

��RKu
��
L1(⌦;H1(D))

 (K + 1)!

(log 2)

K+1

+1X
j=K+1

C2
�j

j!!
. (1.16)

with C1, C2 > 0.

The upper bounds on the L1
(⌦;H1

(D))-norm of the Taylor polynomial and Taylor
residual are the original contributions of Chapter 3. They lead us to predict the diver-
gence of the Taylor series for every positive �. See Figure 1.1, where the upper bounds
(1.15) and (1.16) are plotted as a function of K, for different values of �.
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We also predict the existence of an optimal order K�
opt depending on � such that

adding new terms to the Taylor polynomial will deteriorate the accuracy instead of
improving it. In Chapter 3 we provide an explicit estimate ¯K� for K�

opt:

¯K�
=

�✓
log 2

�

◆2 ⌫
� 4.

From the practical point of view, the algorithm proposed in Chapter 5 to approxi-
mate the expected value E [u] entails the computation of the k-th order correction
E
⇥
Dku(0)[Y ]

k
⇤
, for each k = 0, . . . , ¯K�.
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Figure 1.1: 1.1(a): Semilogarithmic plot of the upper bound (1.15) on the L1
�
⌦;H1

(D)

�
-norm of

TKu for different values of the standard deviation �. 1.1(b): Semilogarithmic plot of the upper
bound (1.16) on the L1

�
⌦;H1

(D)

�
-norm of RKu for different values of the standard deviation �.

1.3.3 Finite number of independent Gaussian random variables
If the uncertainty is modeled as a vector of i.i.d centered Gaussian random variables
Y = (Y1(!), . . . , YN(!)), the Taylor polynomial can be explicitly computed. In Chap-
ter 3 we realize some numerical tests in the simple case N = 1 which confirm the
divergence of the Taylor series. We compute the error

��uh � TKuh

��
L1(⌦;L2(D))

by
linear FEM in space and high order Hermite quadrature formula. Figure 1.2(a) com-
pares the error

��uh � TKuh

��
L1(⌦;L2(D))

with the upper bound (1.16). Figure 1.2(b)
represents the semilogarithmic plot of the computed error

��uh � TKuh

��
L1(⌦;L2(D))

for different values of the standard deviation �. Figure 1.3 is the logarithmic plot
of the computed error

��E [uh]� E
⇥
TKuh

⇤��
L2(D)

as a function of �: the behavior��E [uh]� E
⇥
TKuh

⇤��
L2(D)

= O(�K+1
) is numerically observed.

1.3.4 Finite number of independent bounded random variables
A completely different result is obtained if the permeability field is described as linear
combination of bounded random variables:

a(!, x) = E[a](x) +
NX

n=1

�n(x)Yn(!),

16
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Figure 1.2: 1.2(a): Comparison between the computed error
��u

h

� TKu
h

��
L

1(⌦;L2(D))
and its upper

bound (1.16). 1.2(b): Semilogarithmic plot of the computed error
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L
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Chapter 1. Thesis overview

where Yn(⌦) ⇢ [��n, �n], 0 < �n < +1 8n. Indeed, under the assumption of
small variability, in [9] the authors prove the convergence of the Taylor series. Our
conclusions are therefore specific to the case of a lognormal model for the coefficient
a(!, x).

1.4 Results on the derivation and analysis of the moment equations

Chapter 4 still focuses on problem (1.11) with lognormal permeability field a(!, x) =
eY (!,x), Y (!, x) being a centered Gaussian random field with small standard deviation
0 < � < 1. We want to infer on the stochastic solution u using its Taylor polynomial
TKu.

If the random field Y (!, x) is parametrized by a finite number of random variables
Y = (Y1(!), . . . , YN(!)), then TKu can be explicitly computed. This situation can be
achieved using a truncated spectral decomposition of Y (!) (Karhunen-Loève expan-
sion, see [50] or Fourier expansion, see [43, 70, 72, 73]). In the approach adopted in
Chapter 4 the entire field Y (!, x) is considered, and it is not approximated in a finite
dimensional probability space. In this case, the Taylor polynomial is not directly com-
putable, but deterministic equations solved by its statistical moments can be derived.

The major part of the chapter is dedicated to the approximation of the first statistical
moment:

E [u(Y, x)] ⇡ E
⇥
TKu(Y, x)

⇤
=

KX
k=0

E
⇥
uk
⇤

k!
,

where uk is a compact notation to denote the k-th Gateaux derivative Dku(0)[Y ]

k.

1.4.1 The structure of the problem

Given a function v(x1, . . . , xs, . . . , xn) : D⇥n ! R, 1  s  n integers, we introduce
the following notation to denote the evaluation of v on diag(D⇥s

)⇥D⇥(n�s):

Tr|1:sv(x1, xs+1, . . . , xn) := v(x1, . . . , x1| {z }
s times

, xs+1, . . . , xn).

To obtain the K-th order approximation E
⇥
TKu

⇤
we need the k-th order correction

E
⇥
uk
⇤
, for k = 0, . . . , K. E

⇥
uk
⇤

solves the following problem:

Z
D

rE
⇥
uk
⇤
(x)·rv(x) dx = �

kX
l=1

✓
k

l

◆Z
D

Tr|1:l+1
E
⇥ruk�l ⌦ Y ⌦l

⇤
(x)·rv(x) dx,

(1.17)
8v 2 H1

�
D

(D). Each element of the loading term Tr|1:l+1
E
⇥ruk�l ⌦ Y ⌦l

⇤
can be

computed only after solving the following problem for the (l + 1)-points correlation
E
⇥
uk�l ⌦ Y ⌦l

⇤
: given all the lower order terms E

⇥
uk�l�s ⌦ Y ⌦(s+l)

⇤ 2 H1
�
D

(D) ⌦
18
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Table 1.2: Recursive structure of the K-th approximation problem of the mean.

E
⇥
u0
⇤
= u0 E

⇥
u1
⇤
= 0 E

⇥
u2
⇤

E
⇥
u3
⇤
= 0

. .
.

E
⇥
u0 ⌦ Y

⇤
= u0 ⌦ E [Y ] = 0 E

⇥
u1 ⌦ Y

⇤
E
⇥
u2 ⌦ Y

⇤
= 0

. .
.

. .
.

E
⇥
u0 ⌦ Y ⌦2

⇤
= u0 ⌦ E

⇥
Y ⌦2

⇤
E
⇥
u1 ⌦ Y ⌦2

⇤
= 0

. .
.

. .
.

. .
.

E
⇥
u0 ⌦ Y ⌦3

⇤
= u0 ⌦ E

⇥
Y ⌦3

⇤
= 0

. .
.

. .
.

. .
.

. .
.

(L2
(D))

⌦(s+l), find E
⇥
uk�l ⌦ Y ⌦l

⇤ 2 H1
�
D

(D)⌦ (L2
(D))

⌦l such thatZ
D⇥(l+1)

�r⌦ Id

⌦l
�
E
⇥
uk�l ⌦ Y ⌦l

⇤ · �r⌦ Id

⌦l
�
v dx1 . . . dxl+1

= �
k�lX
s=1

✓
k � l

s

◆
Z
D⇥(l+1)

Tr|1:s+1E
⇥ruk�l�s ⌦ Y ⌦(s+l)

⇤ · �r⌦ Id

⌦l
�
v dx1 . . . dxl+1

(1.18)

8 v 2 H1
�
D

(D)⌦ (L2
(D))

⌦l. Problem (1.17) is a particular case of problem (1.18) with
l = 0.

Table 1.2 summarizes the recursive structure of the first moment problem. The
first column contains the input terms of the recursion, whereas the first row contains
the increasing order corrections of the mean, that is the output terms of the recursion.
Each non-zero term E

⇥
uk�l ⌦ Y ⌦l

⇤
, can be obtained only once we have computed

all the previous terms in the k-th diagonal, that is E
⇥
u0 ⌦ Y ⌦k

⇤
, E
⇥
u1 ⌦ Y ⌦(k�1)

⇤
,

. . ., E
⇥
uk�l�1 ⌦ Y ⌦(l+1)

⇤
. To compute E

⇥
TKu(Y, x)

⇤
, we need all the elements in

the upper triangular part of the table, that is all the elements in the k-th diagonals
with k = 0, . . . , K. Since we assumed E [Y ] (x) = 0 w.l.o.g., all the (2k + 1)-points
correlations of Y vanish. As a consequence, all the terms in the odd diagonals vanish.

Thanks to the Lax Milgram lemma, in Chapter 4 we prove the following theorem.

Theorem 1.4.5. Let Y be a centered Gaussian random field with covariance function
CovY 2 C0,t

(D ⇥D), 0 < t  1. For every k � 0 and l = 0, . . . , k � 1 integers,
problem (1.18) is well-posed.

1.4.2 Regularity results

We end Chapter 4 with some regularity results on the correlations involved in the
recursion described in Table 1.2. If the covariance function CovY 2 C0,t

(D ⇥D)

0 < t  1, we prove that the k-points correlation E
⇥
Y ⌦k

⇤
has a mixed Hölder reg-

ularity of exponent t/2, that is E
⇥
Y ⌦k

⇤
is t/2 Hölder continuous separately in each

variable x1, . . . , xk 2 D. This regularity is preserved in all the steps of the recur-
sive first moment problem, and ensures, together with an elliptic regularity result, that
E
⇥
TKu

⇤ 2 C1,t/2
(

¯D).
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Theorem 1.4.6. Let Y be a centered Gaussian random field with covariance function
CovY 2 C0,t

(D ⇥D), 0 < t  1. Moreover, suppose that the domain is convex and
C1,t/2, and u0 2 C1,t/2

(

¯D). Then, for every positive integers k and s,

E
⇥
uk ⌦ Y ⌦s

⇤ 2 C0,t/2,mix
�
¯D⇥s

; C1,t/2
(

¯D)

�
.

This result can be generalized to more regular covariances CovY as follows. Sup-
pose u0 2 Cr1,t/2

(

¯D). Y 2 Lp
�
⌦; Cr2,t/2

(

¯D)

�
, r1, r2 � 0, 8 p, and D in Cr+1,t/2.

Then
E
⇥
uk ⌦ Y ⌦s

⇤ 2 Cr2,t/2,mix
�
¯D⇥s

; Cr+1,t/2
(

¯D)

�
,

where r := min{r1 � 1, r2}.

1.5 Low rank approximation of the moment equations

Chapter 5 concerns the numerical solution of the first moment problem and the recur-
sion (1.18).

1.5.1 Finite element discretization of the first moment equation

Given a triangulation of the domain D, let us introduce the Lagrangian piecewise linear
(or polynomial) FE basis, as well as the piecewise constant basis

Vh = span {�n}Nv

n=1 ⇢ H1
�
D

(D)

Wh = span { i}Ne

i=1 ⇢ L2
(D)

where Nv and Ne are the number of vertices and elements of the triangulation respec-
tively. In Chapter 5 we discretize problem (1.18) adopting a full tensor product ap-
proach, so that the finite element approximation of H1

�
D

(D)⌦ (L2
(D))

⌦l is given by

Vh ⌦ (Wh)
⌦l

= span {�n ⌦  i1 ⌦ . . .⌦  i
l

, n = 1, . . . , Nv, i1, . . . , il = 1, . . . , Ne} .
In this setting, each (l+1)-points correlation E

⇥
uk�l ⌦ Y ⌦l

⇤
is represented by a tensor

denoted as Cuk�l⌦Y ⌦l of order (l + 1) and size Nv ⇥Ne ⇥ . . .⇥Ne| {z }
l times

.

Let us introduce the following notation. Given two tensors Y and X of order d and
r + 1 respectively and an integer s such that d � s + r, then Z := X ⇥s,r Y denotes
the tensor of order d� r + 1 with entries:

Z(k1, . . . , ks�1, j, ks+r, . . . , kd)

=

X
i
s

. . .
X

i
s+r�1

X (is, . . . , is+r�1, j)Y(k1, . . . , ks�1, is, . . . , is+r�1, ks+r, . . . , kd).

In Chapter 5 we derive the full tensor product finite element formulation of problem
(1.18) that reads

A⇥1,1 Cuk�l⌦Y ⌦l = �
k�lX
s=1

✓
k � l

s

◆
Bs ⇥1,s+1 Cuk�l�s⌦Y ⌦(s+l) (1.19)
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1.5. Low rank approximation of the moment equations

where A denotes the stiffness matrix with respect to the Lagrangian piecewise linear
basis. For each s, Bs is a sparse tensor of order s+2 and size Nv⇥Ne ⇥ . . .⇥Ne| {z }

s times

⇥Nv

defined as

Bs
(n, i1, . . . , is,m) :=

Z
D

 i1(x) . . . i
s

(x) r�n(x) ·r�m(x) dx.

With the aim of developing a black-box solver for the k-th order problem, we would
need as input for the algorithm the stiffness matrix and the tensors Bs.

1.5.2 Tensor Train format

Problem (1.19) involves high dimensional tensors. Since the number of entries of a
tensor grows exponentially in its order d (curse of dimensionality), it is possible to
explicitly store only tensors of small order d. For large d it is necessary to use data-
sparse or low-rank formats. Between the classical low-rank formats, we mention the
Canonical Polyadic (CP) and the Tucker format. We refer to the Matlab Tensor Toolbox
[12] for a Matlab implementation of tensors in CP and Tucker format. We refer to
[23, 57] and [96] for a deeper introduction on CP and Tucker formats respectively.

The research in the field of low-rank approximations is very active and in recent
years various formats have been proposed ( [49, 53, 66]). Among them, a new format
based on the singular value decomposition (SVD) has been introduced: the Tensor-
Train format. Given a d dimensional tensor X 2 Rn1⇥...⇥n

d , its tensor train (TT) repre-
sentation is given by

X (i1, . . . , id) =
r1X

↵1=1

. . .

r
d�1X

↵
d�1=1

G1(i1,↵1)G2(↵1, i2,↵2) . . . Gd(↵d�1, id),

where Gj 2 Rr
j�1⇥n

j

⇥r
j , j = 1, . . . , d, are three dimensional arrays called cores

of the TT-decomposition (r0 = rd = 1), and the set (r1, . . . , rd�1) is known as TT-
rank. The storage complexity is O ((d� 2)nr2 + 2rn) where n = max{n1, . . . , nd},
r = max{r1, . . . , rd}, so that the curse of dimensionality is broken (provided that r
does not increase with d). It presents a linear structure (see Figure 1.4), which makes the
TT-format easy to handle with, from the algorithmic point of view. We refer to [81,82]
and to the Matlab TT-Toolbox available at
http://spring.inm.ras.ru/osel/?page_id=24, where the main algebraic
operations between TT-tensors are implemented, together with compression algorithms.
For these reasons, we have decided to develop a code where all the tensors are repre-
sented in TT-format.

Figure 1.4: Representation of the TT-format of a tensor.
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1.5.3 The recursive algorithm

The main achievement of Chapter 5 is the algorithm we have developed to solve prob-
lem (1.19) for k = 0, . . . , K and l = 0, . . . , k, that is to compute all the correlations in
Table 1.2. This algorithm employs only TT-format representations of tensors.

The inputs of the algorithm are the order of approximation K we aim to compute,
the number of elements in the triangulation of D, the covariance function CovY and the
load function f , whereas the output is the K-th order approximation of E [u].

The first tool consists in the computation in TT-format of E
⇥
Y ⌦k

⇤
for k = 0, . . . , K,

that is the first column in Table 1.2. We refer to [67], where the authors propose an al-
gorithm which, starting from the Karhunen-Loève (KL) expansion of the Gaussian field
Y (!, x), computes an approximation of E

⇥
Y ⌦k

⇤
denoted with CTT

Y ⌦k

, with a prescribed
accuracy tol. For more on the KL-expansion, see e.g. [43, 70, 72, 73]. CTT

Y ⌦k

is con-
structed in such a way to preserve the following symmetry of E

⇥
Y ⌦k

⇤
:

E
⇥
Y ⌦k

⇤
(x1, . . . , xk) = E

⇥
Y ⌦k

⇤
(xk, . . . , x1).

As a consequence, its TT-rank (r1, . . . , rk�1) satisfies rp = rk�p for p = 1, . . . , k/2.
The algorithm to solve problem (1.19) has a recursive structure which reflects the

structure of the first moment problem:

for k = 0, . . . , K

for l = k � 1, k � 2, . . . , 0
Solve the boundary value problem (1.19) in TT-format to compute the (l+1)-
points correlation function CTT

uk�l⌦Y ⌦l

end

The solution CTT

uk

for l = 0 represents the k-th correction to the mean E [u]

end

1.5.4 The storage requirements of the algorithm

In Chapter 5 we investigate the storage requirements of both the TT-format correlations
CTT

Y ⌦k

, that is the input of the algorithm, and the TT-correlations involved in the recur-
sion. The storage requirements of a tensor in TT-format highly depends on its TT-rank.
The storage requirements is a limiting aspect of our algorithm since it prevents us to
grows significantly in the order of the Taylor polynomial K. We believe that a great
improvement will follow from the implementation of sparse tensor toolboxes, which
are missing in Matlab.

In [67] the authors show that the TT-ranks of the exact TT-representation of E
⇥
Y ⌦k

⇤
satisfy:

rp =

✓
N + p� 1

p

◆
(1.20)

for p = 1, . . . , k/2, where N is the number of independent random variables which
parametrize the random field Y (!, x). Hence, (1.20) is an upper bound for each ap-
proximated CTT

Y ⌦k

computed with a prescribed accuracy tol. See Figure 1.5, obtained in
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Figure 1.5: Semilogarithmic plot of the upper bound for the TT-ranks in (1.20) (black line) compared
with the TT-ranks of the approximated CTT

Y

⌦4 computed for different tolerances tol.

the case of a Gaussian covariance function CovY (x1, x2) = e�
kx1�x2k

2

L

2 with correlation
length L = 0.2. As expected, the smaller tol is, the higher the TT-ranks.

We numerically verify that the upper bound (1.20) is satisfied also by all the corre-
lations in Table 1.2. See Figure 1.6.

The TT-ranks strongly affect also the computational cost of the recursive algorithm.
Indeed, they correspond to the number of linear systems to be solved to compute the
K-th order approximation of E [u]. In Chapter 5 we show that the computational cost
of the TT-algorithm can be considered proportional to

M 0
2 =

X
n=2:2:K

n�1X
p=0

rp, (1.21)

under the assumption that the dominant cost is the one of solving a “deterministic prob-
lem”, where (r1, . . . , rn�1) are the TT-ranks of the n-points correlation CTT

Y ⌦n

. By a
comparison between computational costs, we state that the moment equations is conve-
nient with respect to the direct computation of the multivariate Taylor polynomial from
a truncated KL-expansion.

1.5.5 Numerical results
In Chapter 5 we perform some numerical tests and solve the stochastic Darcy problem
with deterministic loading term f(x) = x in the one dimensional domain D = [0, 1],
both for a Gaussian and exponential covariance function of the Gaussian random field
Y (!, x).

Given a “reference” solution denoted with E [u], the error
��E [u]� E

⇥
TKu

⇤��
L2(D)

comes from different contributions: the truncation of the KL-expansion, the TT ap-
proximation, the truncation of the Taylor series and the FEM approximation. In our
numerical tests we compute a “reference” solution on the same grid as the moment
equations, so that we don’t see the FEM contribution to the error.
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Figure 1.6: Semilogarithmic plot of the TT-ranks of the correlations needed to solve the K-th order
problem, for K = 2, 4, 6.

Truncated KL

Let Y (!, x) be a stationary Gaussian random field with Gaussian covariance func-
tion

CovY (x1, x2) = �2e�
kx1�x2k

2

(0.2)2 , 0 < � < 1.

Let us take a uniform discretization of the spatial domain D = [0, 1] in Nh = 100

intervals (h = 1/Nh). The first numerical experiments in Chapter 5 are realized starting
from the same truncated KL-expansion both to compute the reference solution, that is
the collocation solution (see Figure 1.7), and the TT solution. In particular, N = 11

random variables are considered, which capture the 99% of variance of the field. The
TT computations are done at machine precision. Hence, we observe only the error due
to the truncation of the Taylor series.

In Figure 1.8(a) we plot in logarithmic scale the error
��E [u]� E

⇥
TKu

⇤��
L2(D)

as
a function of �: we numerically observe the behavior

��E [u]� E
⇥
TKu

⇤��
L2(D)

=

O(�K+1
) predicted in Chapter 3. Figure 1.8(b) represents the computed error as a

function of K (at least up to K = 6) for different values of �. It turns out that for � < 1

it is always useful to take into account higher order corrections.
Considering the case of Y (!, x) conditioned to Noss available point-wise obser-

vations is very relevant in applications. Indeed, from the practical point of view it
is possible to measure the permeability of a heterogeneous porous medium only in a
small number of fixed points, so that the natural model considered in the geophysi-
cal literature describes the permeability as a conditioned lognormal random field. See
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Figure 1.7: Reference solution E [u] computed via the collocation method, for different values of �.
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Figure 1.8: 1.8(a) Logarithmic plot of the computed error
��E [u]� E

⇥
TKu

⇤��
L

2(D)
as a function of �.

1.8(b) Semilogarithmic plot of the computed error
��E [u]� E

⇥
TKu

⇤��
L

2(D)
as a function of K for

different �.

e.g. [51, 52, 86]. The more observations are available, the smaller the total variance of
the field will be. This, actually, favors the use of perturbation methods.

The conditioned covariance function CovY is non-stationary, but still Hölder contin-
uous, so that it is included in the setting described in Chapter 3 and 4. In Chapter 5 we
perform some numerical tests and conclude that the error

��E [u]� E
⇥
TKu

⇤��
L2(D)

is
about 1 order of magnitude smaller for Noss = 3 (compared to Noss = 0) and 2 orders
of magnitude smaller for Noss = 5.

Complete KL

We study the case where Y (!, x) is a stationary centered Gaussian random field
with exponential covariance function

CovY (x1, x2) = �2 e�
kx1�x2k

0.2 , 0 < � < 1.

The truncated KL-expansion is computed and N = Nh = 100 random variables are
considered, so that the 100% of variance of the field is captured. Since N = 100, a col-
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location method becomes unfeasible. By a qualitative comparison with E [u] computed
via the Monte Carlo method with M = 10000 samples, we show that our algorithm
is effective and provides a valid solution also in this framework. In Figure 1.9, the
TT-solution is always contained in the confidence interval of the Monte Carlo solution.
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Figure 1.9: Comparison between the second order correction computed via our TT-code, and E [u]
computed via the Monte Carlo method (M = 10000 samples) for � = 0.05 (left) and � = 0.65
(right).

Let us now consider a stationary Gaussian random field Y (!, x) with Gaussian
covariance function of correlation length L = 0.2, and its complete KL-expansion
(N = 26 random variables have to be taken to capture the 100% of variance).

We run our TT-code imposing different tolerances in the computation of the TT-
correlations CTT

u0⌦Y ⌦k

. In Figure 1.10 we plot the error as a function of K, for different
tolerances, with � = 0.05 (left) and � = 0.55 (right).

We investigate the dependence of the error
��E [u]� E

⇥
TKu

⇤��
L2(D)

on the com-
plexity of the code under the assumption that the complexity of the recursive algorithm
is mainly due to the number of linear systems we have to solve in the recursion, that is
M 0

2 in (1.21). Figure 1.11 represents the logarithmic plot of the error as a function of
M 0

2 for different tolerances, with � = 0.05, 0.25, 0.85. We compare it with the quantity
�MCp
M 0

2

(black line), which gives an idea of the behavior a the Monte Carlo estimate,

where �MC is the estimated standard deviation of the Monte Carlo estimator. Note that,
for small � (e.g. � = 0.05), the smaller the tolerance imposed is, the higher the accu-
racy reached. This is not the case if we let � grow. Indeed, the TT-error is no more the
most influencing component of the error, which is dominated, instead, by the truncation
error. For a fixed truncation level, there is therefore an optimal choice of the tolerance
tolopt. Figure 1.11 shows that, if the optimal tolerance is chosen, the performance of
the moment equations is far superior to a standard Monte Carlo method. The question
of how to determine a priori the optimal tolerance as a function of K and � is still open
and under investigation.

In conclusions, the moment equation method coupled with a TT-approximation is a
competitive method. It reaches the same level of accuracy as a collocation method and
provides a valid solution also in the case where the collocation method is unfeasible.
Moreover, for a given computational cost, the error committed by our approach is much
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Figure 1.11: Logarithmic plot of the computed error
��E ⇥u(Y, x)� TKu(Y, x)

⇤��
L

2(D)
versus its com-

putational cost M 0
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smaller than the one of the Monte Carlo method.
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CHAPTER2
Moment equations for the mixed formulation of the

Hodge Laplacian with stochastic data

This chapter consists of the paper F. Bonizzoni, A. Buffa, F. Nobile, “Moment equations
for the mixed formulation of the Hodge Laplacian with stochastic data”, available as
MOX Report 31/2012 - Department of Mathematics, Politecnico di Milano.

2.1 Introduction

Many engineering applications are affected by uncertainty. This uncertainty may be
due to the incomplete knowledge on the input data or some intrinsic variability of them.
For example, if we model the two-phase flow in a porous medium, randomness arises
in the permeability tensor, due to impossibility of a full characterization of conductivity
properties of subsurface media, but also in the source term, typically pressure gradients
or impervious boundaries. See for example [10, 39, 51, 52, 86, 93, 99, 100]. Similar
situations appear in many other applications, such as combustion flows, earthquake en-
gineering, biomedical engineering and finance. Probability theory provides an effective
tool to include uncertainty in the model. We refer to [1,16,69] for probability measures
on Banach spaces, and to [37,62,63,83] and the references therein for stochastic partial
differential equations. We notice that the SPDEs that we consider in this work differ
from those in [37, 62, 63, 83] since we are taking Lm-intregrable processes.

In this work we focus on the linear Hodge-Laplace problem in mixed formulation,
with stochastic forcing term and homogeneous boundary conditions. This problem
includes the magnetostatic and electrostatic equations as well as the Darcy problem for
mono-phase flows in saturated media.

The exterior calculus is a theoretical approach that, using tools from differential
geometry, allows to simultaneously treat many different problems. In particular, the
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

Hodge Laplacian d� + �d, where � is the formal adjoint of the exterior derivative d,
maps differential k-forms to differential k-forms, and unifies some important second-
order differential operators, such as the Laplacian and curl � curl problems arising in
electromagnetics. For more details, see [6, 7, 30].

The solution of the mixed formulation of the stochastic Hodge-Laplace problem is
a couple (u, p) of random fields taking values in a suitable space of differential forms.
The description of these random fields requires the knowledge of their moments. A
possible approach is to compute the moments by the Monte-Carlo method in which,
after sampling the probability space, the deterministic PDE is solved for each sample
and the results are combined to obtain statistical information about the random field.
This is a widely used technique, but it features a very slow convergence rate. Improve-
ments can be achieved by several techniques. We mention for instance the Multilevel
Monte-Carlo method appeared in recent years in literature, and applied to both stochas-
tic ODEs and PDEs: see [13, 26, 45, 58, 61] and the references therein.

An alternative strategy is to directly calculate the moments of interest of the stochas-
tic solution without doing any sampling. Indeed, the aim of the present work is to derive
the moment equations, that is the deterministic equations solved by the m-points cor-
relation function of the stochastic solution, show their well-posedness and propose a
stable sparse finite element approximation. The stochastic problem has the form

T


u

p

�
=


f1
f2

�
a.e. in D,

where T is a second order linear differential operator, D is a domain in Rn, and the
forcing terms f1(!, x), f2(!, x) are random fields, with x 2 D, ! 2 ⌦ and ⌦ indicating
the set of possible outcomes. The m-th moment equation involves the tensor product
operator T⌦m

:= T ⌦ · · ·⌦ T| {z }
m times

and the forcing term is given by the m-points correlation

function of the couple

f1
f2

�
.

We start proving the well-posedness of the m-th moment equation. Although this
comes easily from a tensorial argument, we also present a direct proof of the inf-sup
condition for the tensor operator T⌦m. This proof will be a key tool to show the stability
of a sparse finite element approximation.

Concerning the numerical approximation of the m-th moment equation, a tensorized
FE approach for the numerical approximation of the moment equations is viable only
for small m, as the number of degrees of freedom increases exponentially in m. For
large m one should consider instead sparse approximations (see e.g. [21, 78, 79, 91, 92]
and the references therein). We consider both full tensor product and sparse tensor
product finite element approximations, and prove their stability using the tools from
the finite element exterior calculus. See [5–7, 31]. In particular, the stability of a full
tensor product approximation is a simple consequence of a tensor product argument.
On the contrary, a tensor product argument does not apply if sparse tensor product
approximations are considered and a direct proof of the inf-sup condition is needed, and
will be proved in Section 2.6. We also provide optimal order of convergence estimates
both for the full and the sparse approximations.

The analysis on well-posedness and stable discretization for the m-points correlation
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problem developed in this work will be necessary to analyze more complex situations
with randomness appearing in the operator itself instead of simply in the right hand
side. This case can be treated for small randomness by a perturbation approach (Taylor
or Neumann expansions, see e.g. [9, 51, 93] and the references therein) and is currently
under investigation.

The outline of the paper is the following: in Section 2.2 after recalling the defi-
nitions of the classical Sobolev spaces, we generalize them to the Sobolev spaces of
differential forms. We then recall the main results on the mixed formulation of the
Hodge-Laplace problem in the deterministic setting, stating the well-posedness of the
problem and translating it to the language of partial differential equations using the
proxy fields. In Section 2.3 we consider the stochastic counterpart of the mixed Hodge
Laplacian problem, and we prove the well-posedness of its weak formulation. Section
2.4 is dedicated to the analysis of the moment equations. In particular, we provide the
constructive proof of the inf-sup condition for the tensor product operator T⌦m. In
Section 2.5 we focus on two problems of particular interest from the point of view of
applications: the stochastic magnetostatic equations and the stochastic Darcy problem.
Finally, in Section 2.6, we provide both full and sparse finite element discretizations
for the deterministic m-th moment problem, we prove their stability and optimal order
of convergence estimates.

2.2 Sobolev spaces of differential forms and the deterministic Hodge-
Laplace problem

In this section we first recall the main concepts and definitions concerning the finite
element exterior calculus and the Sobolev spaces of differential forms, which generalize
the classical Sobolev spaces. We prove the inf-sup condition for the mixed formulation
of the Hodge-Laplace problem providing a choice of test functions different from the
classical one proposed in [6]. This will be needed later on to prove the equivalent inf-
sup condition for the m-points correlation problem. Finally, we use the proxy fields
correspondences to translate the Hodge-Laplace problem in the three dimensional case
to the language of partial differential equations with the aim of showing that this general
setting includes some important problems of practical interest. For more details we
refer to [6, 7, 30].

2.2.1 Classical Sobolev spaces
Let D ⇢ Rn be a domain in Rn. We denote with Lm

(D) the Lebesgue space of index
m with 1  m < 1. Lm

(D) is a Banach space endowed with the standard norm

kfkLm(D) :=

✓Z
D

|f(x)|mdx
◆1/m

. (2.1)

When p = 2 we obtain the only Hilbert space of this class, with inner product given by

(f, g)L2(D) :=

Z
D

f(x)g(x)dx, f, g 2 L2
(D).

We denote with Hs
(D) the Sobolev space defined as:

Hs
(D) :=

�
f 2 L2

(D)|D↵f 2 L2
(D) for all |↵|  s

 
. (2.2)
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Hs
(D) is a Hilbert space with the natural inner product

(f, g)Hs(D) :=

X
|↵|s

hD↵f,D↵giL2(D), for f, g 2 Hs
(D).

For more on the Lebesgue spaces Lm
(D) and the Sobolev spaces Hs

(D) see for ex-
ample [64]. As it will be useful later on, we also recall the following Sobolev spaces
constrained by boundary conditions on �D ⇢ @D:

H1
�
D

(D) =

�
v 2 L2

(D) | rv 2 L2
(D), v|�

D

= 0

 
,

H�
D

(curl, D) =

�
v 2 (L2

(D))

n | curlv 2 (L2
(D))

n, v ⇥ ⌫|�
D

= 0

 
,

H�
D

(div, D) =

�
v 2 (L2

(D))

n | divv 2 L2
(D), v · ⌫|�

D

= 0

 
,

where ⌫ is the outer-pointing normal versor. These spaces are Hilbert spaces with
respect to the graph norm.

Considering now a probability space (⌦, dP), the definition of Lm generalizes im-
mediately. In this case we will use the notation

�
Lm

(⌦, dP), k · kLm(⌦,dP)
�

to denote
the Banach space of real random variables on ⌦ with finite m-th moment. If m = 2,�
L2

(⌦, dP), k · kL2(⌦,dP)
�

is the Hilbert space of all real random variables on ⌦ with
finite second moment, equipped with the usual inner product

(f(!), g(!))L2(⌦,dP) :=

Z
⌦

f(!)g(!)dP(!), for f, g 2 L2
(⌦, dP).

2.2.2 Sobolev spaces of differential forms

In order to generalize the definitions of the Sobolev spaces Hs
(D) to differential forms,

we need to briefly recall the basic objects and results of exterior algebra and exterior
calculus, inspired by [6]. The natural setting is a sufficiently smooth finite dimensional
manifold D with or without boundary. For our purposes, we can restrict ourselves to the
particular case of a n-dimensional bounded domain D ⇢ Rn with boundary denoted by
@D ⇢ Rn�1. In this way, at each point x 2 D the tangent space is naturally identified
with Rn and we make this assumption throughout the paper. We denote by AltkRn,
0  k  n, the space of alternating k-linear maps on Rn. Clearly, Alt0Rn

= R
and AltnRn

= R, and the unique element in AltnRn is a volume form voln. We
recall the wedge product ^ : AltkRn ⇥ AltlRn ! Altk+lRn and the inner product
(·, ·)AltkRn

: AltkRn⇥AltkRn ! R for k+ l  n. Starting from this inner product, the
Hodge star operator ? : AltkRn ! Altn�kRn is defined: u ^ ?w = (u, w)AltkRn

voln
(see e.g. [6]).

A differential k-form on D is a map u which associates to each x 2 D an element
ux 2 AltkRn. We denote by ⇤

k
(D) the space of all smooth differential k-forms on

D. The wedge product of alternating k-forms may be applied point-wise to define the
wedge product of differential forms: (u ^ w)x = ux ^ wx. The exterior derivative d

k

maps ⇤k
(D) into ⇤

k+1
(D) for each k � 0 and is defined as

d

kux(v1, . . . , vk+1) =

k+1X
j=1

(�1)

j+1@v
j

ux(v1, . . . , v̂j, . . . , vk+1), u 2 ⇤

k
(D),
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v1, . . . , vk+1 2 Rn, where the hat is used to indicate a suppressed argument. The
exterior derivative satisfies the key property d

k+1 � d

k
= 0, 8 k. The coderivative

operator �k : ⇤

k
(D) ! ⇤

k�1
(D) is the formal adjoint of the exterior derivative and it

is defined by
? �ku = (�1)

k
d

n�k ? u, u 2 ⇤

k
(D). (2.3)

To lighten the notation, in the following we omit the apex k when no ambiguity arises.
The trace operator Tr : ⇤k

(D) ! ⇤

k
(@D) is defined as the pullback of the inclusion

@D ,! D. We denote with vol the unique volume form in ⇤

n
(D) such that at each

x 2 D, voln is the unique form associated with AltnRn. Given two differential k-forms
on D it is possible to define their L2-inner product as the integral of their point-wise
inner product in AltkRn:

(u, w) :=

Z
D

(ux, wx)AltkRn

vol =

Z
D

u ^ ?w, u, w 2 ⇤

k
(D). (2.4)

In the following we will denote with k · k the norm induced by the L2-inner product
(·, ·). The following integration by parts formula holds:

(du, v) = (u, �v) +

Z
@D

Tr(u) ^ Tr(?v), u 2 ⇤

k
(D), v 2 ⇤

k+1
(D). (2.5)

The completion of ⇤k
(D) in the norm induced by the scalar product (2.4) defines

the Hilbert space L2
⇤

k
(D). The Sobolev space of square integrable k-forms whose

exterior derivative is also square integrable is given by

H⇤

k
(D) =

�
u 2 L2

⇤

k
(D)| du 2 L2

⇤

k+1
(D)

 
. (2.6)

It is a Hilbert space equipped with the inner product

(u, w)H⇤k

:= (u, w) + (du, dw) .

In analogy with H⇤

k
(D), it is possible to define the Hilbert space

H⇤
⇤

k
(D) :=

�
u 2 L2

⇤

k
(D)| �u 2 L2

⇤

k�1
(D)

 
. (2.7)

Let @D =

¯

�D [ ¯

�N , �D \ �N = ;. As it is standard ( [6]), the spaces (2.6) and (2.7)
can be endowed with boundary conditions:

H�
D

⇤

k
(D) :=

�
u 2 H⇤

k
(D)| Tr(u)|�

D

= 0

 
. (2.8)

H⇤
�
N

⇤

k
(D) :=

�
u 2 H⇤

⇤

k
(D)| Tr(?u)|�

N

= 0

 
.

With the spaces defined in (2.8) and the exterior derivative operator, we can construct
the L2 de Rham complex:

0 ! H�
D

⇤

0
(D)

d�! . . .
d�! H�

D

⇤

n
(D) �! 0. (2.9)

Since d � d = 0, we have
Bk ✓ Zk, (2.10)

where Bk is the image of d in H�
D

⇤

k
(D) while Zk is the kernel of d in H�

D

⇤

k
(D).
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

The following orthogonal decomposition of L2
⇤

k
(D), known as Hodge decompo-

sition, holds:

L2
⇤

k
(D) = Bk �B?

k (2.11)

where B?
k is the L2-complement of Bk.

We define two projection operators ⇡? and ⇡� as follows:

⇡?
: Bk �B?

k ! B?
k (2.12)

v = dv� + v? 7! v?

⇡�
: Bk �B?

k ! B?
k�1 (2.13)

v = dv� + v? 7! v�.

Hence, given v 2 L2
⇤

k
(D), it can be uniquely expressed as v = d⇡� v + ⇡? v. We

recall a classical result in the theory of Sobolev spaces:

Lemma 2.2.1 (Poincaré inequality). There exists a positive constant CP that depends
only on the domain D such that

kvk  CPkdvk 8v 2 Z?
k (2.14)

where Z?
k is the orthogonal complement of Zk in H�

D

⇤

k
(D).

For the sake of simplicity, we consider only the case of geometries which are triv-
ial from the topological point of view. More precisely, from now on, we make the
following

Assumption A1. The domain D ⇢ Rn is bounded, Lipschitz and contractible. Its
boundary @D is given by the disjoint union of two open sets �D and �N , with �D,�N 6=
;, �D contractible as well and with boundary sufficiently regular (at least piecewise
C1).

Under Assumption A1, B?
k = B⇤

k, where B⇤
k is the image of � in H⇤

�
N

⇤

k
(D).

This relation is proved in the three dimensional case in [38], and generalizes to the n
dimensional case (see e.g. [74]).

From now on we make the following regularity assumption on the domain D, which
will be needed to prove the stability of the numerical schemes we propose in this paper.

Assumption A2. For every 0  k  n, there exists 0 < s  1 such that

H�
D

⇤

k
(D) \H⇤

�
N

⇤

k
(D) ✓ Hs

⇤

k
(D). (2.15)

Inclusion (2.15) is verified for an s-regular domain s.t. �D = @D and �N = ;.
In particular, if @D is smooth, then D is 1-regular, and if @D is Lipschitz, then D is
1/2-regular. See [6] and the references therein. We assume the second inclusion to be
verified in our more general setting where �N 6= ; and �D ( @D.

Remark 2.2.2. The case of non-trivial topology can likely be treated following [7], but
it would make the exposition of our results much more difficult.
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2.2. Sobolev spaces of differential forms and the deterministic Hodge-Laplace problem

Remark 2.2.3. We assume �D,�N 6= ;, but the two limit cases treated in [6] can be
considered with suitable modifications of our argument.

We end the section by introducing the following notations for two Hilbert spaces we
will use later on:

Wk :=


L2

⇤

k
(D)

L2
⇤

k�1
(D)

�
, Vk :=


H�

D

⇤

k
(D)

H�
D

⇤

k�1
(D)

�
, (2.16)

with the inner products (·, ·)W
k

, (·, ·)V
k

, and the norms k · kW
k

, k · kV
k

.

2.2.3 Mixed formulation of the Hodge-Laplace problem
The Hodge Laplacian is the differential operator �d+d� mapping k-forms into k-forms,
and the Hodge-Laplace problem is the boundary value problem for the Hodge Lapla-
cian. We consider a particular case of the mixed formulation of the Hodge-Laplace
problem with variable coefficients described in [6, 7, 30], which allows to include the
Darcy problem (see Section 2.2.3). Given a non negative coefficient ↵ 2 R+ and source

terms

f1
f2

�
2 Wk, find


u

p

�
such that8>>><>>>:

�du+ dp = f1 in D

�u� ↵p = f2 in D⇢
Tr(u) = 0 on �D

Tr(p) = 0 on �D

⇢
Tr(?u) = 0 on �N

Tr(?du) = 0 on �N

(2.17)

We introduce T : Vk ! V 0
k , the linear operator of order two represented by the matrix:

T :=


�d d

� �↵Id
�
=


A B⇤

B �↵Id
�
, (2.18)

where V 0
k =


(H�

D

⇤

k
(D))

0

(H�
D

⇤

k�1
(D))

0

�
is the dual space of Vk defined in (2.16), the operators

A and B are defined as:

A : H�
D

⇤

k
(D) ! (H�

D

⇤

k
(D))

0 (2.19)
hAv,wi := (dv, dw)

B : H�
D

⇤

k
(D) ! (H�

D

⇤

k�1
(D))

0 (2.20)
hBv, qi := (v, dq)

and B⇤ is the adjoint of B. Moreover we introduce the linear operators

F1 2 (H�
D

⇤

k
(D))

0, F2 2 (H�
D

⇤

k�1
(D))

0

defined as:

F1 : H�
D

⇤

k
(D) ! R (2.21)

F1(v) := (f1, v)
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

F2 : H�
D

⇤

k�1
(D) ! R (2.22)

F2(q) := (f2, q)

The weak formulation of the deterministic mixed Hodge Laplacian with homogeneous
essential boundary conditions on �D and homogeneous natural boundary conditions on
�N is

Deterministic Problem:

Given

F1

F2

�
2 V 0

k , find

u

p

�
2 Vk s.t.

T


u

p

�
=


F1

F2

�
in V 0

k ,

(2.23)

Theorem 2.2.4. For every ↵ > 0, problem (2.23) is well-posed, so that there exists a
unique solution that depends continuously on the data. In particular, there exist positive
constants C1, C 0

1 that depend only on the Poincaré constant CP and on the parameter

↵, such that for any

u

p

�
2 Vk there exists


v

q

�
2 Vk with

⌧
T


u

p

�
,


v

q

��
V 0
k

,V
k

� C1

���� u

p

�����2
V
k

= C1

⇣
kuk2H⇤k

+ kpk2H⇤k�1

⌘
, (2.24)���� v

q

�����
V
k

 C 0
1

���� u

p

�����
V
k

. (2.25)

The same result holds with ↵ = 0 provided that F2 corresponds to f2 2 �H�
D

⇤

k
(D).

The well-posedness of problem (2.23) is proved in [6] by showing the equivalent
inf-sup condition for the bounded bilinear and symmetric form hT ·, ·i : Vk ⇥ Vk ! R
(2.24), (2.25) (see [8, 19]). However, we report it entirely (with a slightly different
choice of test functions) as a preparatory step for the proofs we will propose later on.

Proof. We need to show (2.24) and (2.25). Let us start considering ↵ > 0. For a given
u

p

�
we use the Hodge decomposition (2.11):


u

p

�
=


du�

+ u?

dp� + p?

�
, (2.26)

with du� 2 Bk, dp� 2 Bk�1, u? 2 B?
k and p? 2 B?

k�1. We choose as test functions
v

q

�
=


u?

+ dp?

�u� � dp�

�
, (2.27)

where � is a positive parameter to be set later. Relation (2.27) can also be written in a
compact form as 

v

q

�
= P


u

p

�
, (2.28)
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2.2. Sobolev spaces of differential forms and the deterministic Hodge-Laplace problem

where

P =


⇡?

d⇡?

�⇡� �d⇡�

�
(2.29)

and the operators ⇡?, ⇡� are defined in (2.12) and (2.13) respectively. Substituting
(2.27) into (2.24), using the property d � d = 0, the Hodge decomposition (2.11) and
the Poincaré inequality (2.14) we find⌧

T


u

p

�
,


v

q

��
V 0
k

,V
k

= (du, dv) + (v, dp) + (u, dq)� ↵ (p, q)

= kdu?k2 + kdp?k2 + �kdu�k2 + ↵kdp�k2 � ↵�
�
p?, u��

� kdu?k2 + kdp?k2 + �kdu�k2 + ↵kdp�k2

� ↵�1/2

2

�
C2

Pkdp?k2 + �C2
Pkdu�k2�

� kdu?k2 +
⇣
1� ↵

2

�1/2C2
P

⌘
kdp?k2+

�

✓
1� ↵�1/2C2

P

2

◆
kdu�k2 + ↵kdp�k2.

It is possible to choose � in order to make (2.24) true with C1 = C1(CP ,↵). The
inequality (2.25) with C1 = C 0

1(CP ,↵) follows from the Hodge decomposition (2.11)
and Poincaré inequality (2.14).

The proof in the case ↵ = 0 is very similar. Suppose f2 2 �H�
D

⇤

k
(D). In order

to have a unique solution, we need to look for p 2 B?
k�1. Fixed u = du�

+ u? 2
H�

D

⇤

k
(D) we again choose the test functions as in (2.28): v = dp+ u? 2 H�

D

⇤

k
(D)

and q = u� 2 B?
k�1. Using the Poincaré inequality (2.14) and the orthogonal decom-

position (2.11) we are able to prove the relations (2.24) and (2.25).

A simple consequence of Theorem 2.2.4 (see [19]) is that there exists a positive
constant K = K(CP ,↵) such that���� u

p

�����
V
k

 K

���� F1

F2

�����
V 0
k

. (2.30)

Another way to express the result given in Theorem 2.2.4 is: 8

u

p

�
2 Vk it holds

⌧
T


u

p

�
, P


u

p

��
V 0
k

,V
k

� C1

���� u

p

�����2
V
k

(2.31)

kPkL(V
k

,V
k

)  C 0
1. (2.32)

Translation to the language of partial differential equations

Let us consider the case D ⇢ R3, naturally identifying the tangent space at each point
x 2 D with R3. Thanks to the identification of Alt0R3 and Alt3R3 with R, and of
Alt1R3 and Alt2R3 with R3, we can establish correspondences between the spaces of
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

H�D
⇤

k

(D) d Tr|�Du

k = 0 H1
�D

(D) r u|�D

k = 1 H�D (curl, D) curl u⇥ n|�D

k = 2 H�D (div, D) div u · n|�D

k = 3 L2
(D) 0 0

Table 2.1: Correspondences in terms of proxy fields between the space of differential forms H�D
⇤

k

(D)

and the classical spaces of functions and vector fields, in the case n = 3.

differential forms and scalar or vector fields. These fields are called proxy fields. In
particular, we can identify each 0-form and 3-form with a scalar-valued function, and
each 1-form and 2-form with a vector-valued function. Table 2.1 summarizes the cor-
respondences in terms of proxy fields for the spaces of differential forms H�

D

⇤

k
(D),

the exterior derivative operators and the trace operators. Based on the identifications in
Table 2.1 we can reinterpret the de Rham complex (2.9) as follows:

0 �! H1
�
D

(D)

r�! H�
D

(curl, D)

curl��! H�
D

(div, D)

div�! L2
(D) �! 0 (2.33)

In this section we will use the symbol (·, ·) to denote the inner product in L2
(D), that

corresponds by proxy identifications to the inner product in L2
⇤

k
(D).

• Let us start with k = 0. In this case H�
D

⇤

�1
(D) = 0, so p = 0. Then u 2

H1
�
D

(D) satisfies

(ru,rv) = (f1, v) 8v 2 H1
�
D

(D). (2.34)

We obtain the usual weak formulation of the Poisson equation equipped with
homogeneous Dirichlet boundary conditions on �D and homogeneous Neumann
boundary conditions on �N .

• For k = 1 and ↵ = 0, the linear operator T of order two defined in (2.18) is
represented by the matrix

T =


curl2 r
�div 0

�
. (2.35)

Problem (2.23) is the weak formulation of the magnetostatic/electrostatic equa-

tions (see for example [18,59,76]). Indeed, V1 =


H�

D

(curl, D)

H1
�
D

(D)

�
and


u

p

�
2

V1 satisfies ⇢
(curlu, curlv) + (rp, v) = (f1, v)

(u,rq) = (f2, q) .
8

v

q

�
2 V1. (2.36)

• When k = 2,

T =

 �rdiv curl
curl �↵Id

�
.

Problem (2.23) is the mixed formulation of the vectorial Poisson equation: find
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
u

p

�
2 V2 =


H�

D

(div, D)

H�
D

(curl, D)

�
s.t.

⇢
(divu, divv) + (curlp, v) = (f1, v)

(u, curlq)� ↵ (p, q) = (f2, q)
8

v

q

�
2 V2. (2.37)

• Finally, for k = 3, problem (2.23) models the fluid flow in porous media. We can
reinterpret the linear tensor operator of order two T as

T =


0 div

�r �↵Id
�
, (2.38)

where ↵ > 0 is linked to the inverse of the permeability. Hence, (2.23) is the

Darcy problem: find

u

p

�
2 V3 =


L2

(D)

H�
D

(div, D)

�
s.t.

⇢
(divp, v) = (f1, v)

(u, divq)� ↵ (p, q) = 0

8

v

q

�
2 V3. (2.39)

2.3 Stochastic Sobolev spaces of differential forms and stochastic
Hodge Laplacian

2.3.1 Stochastic Sobolev spaces of differential forms
Let v1 2 V1 and v2 2 V2, where V1, V2 are Hilbert spaces. Let v1 ⌦ v2 : V1 ⇥ V2 ! R
denote the symmetric bilinear form which acts on each couple (w1, w2) 2 V1 ⇥ V2 by

v1 ⌦ v2(w1, w2) = (v1, w1)V1
(v2, w2)V2

,

where (·, ·)V1
denotes the inner product in V1 and (·, ·)V2

the inner product in V2. Let us
define an inner product (·, ·)V1⌦V2

on the set of such symmetric bilinear forms as

(v1 ⌦ v2, v
0
1 ⌦ v02)V1⌦V2

= (v1, v
0
1)V1

(v2, v
0
2)V2

, (2.40)

and extend it by linearity to the set

span {v1 ⌦ v2 : v1 2 V1, v2 2 V2} (2.41)

composed of finite linear combinations of such symmetric bilinear forms.

Definition 2.3.5. Given V1 and V2 Hilbert spaces, the tensor product V1 ⌦ V2 is the
Hilbert space defined as the completition of the set (2.41) under the inner product
(·, ·)V1⌦V2

in (2.40).

In the following we will denote with k·kV1⌦V2 the norm induced by the inner product
(·, ·)V1⌦V2

. Definition 2.3.5 naturally generalizes to the tensor product of m Hilbert
spaces, with m � 2 integer. For more details on tensor product spaces and on norms
on tensor product spaces see for example [71, 85] and the references therein.

Let (⌦,A,P) be a complete probability space and V a separable Hilbert space.
The stochastic counterpart of V is the Hilbert space given by the tensor product V ⌦
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

L2
(⌦, dP), where L2

(⌦, dP) is the Hilbert space defined in Section 2.2.1. Let L2
(⌦;V )

be the Bochner space composed of functions u such that ! 7! ku(!)k2V is measurable
and integrable, so that

kukL2(⌦;V ) :=

✓Z
⌦

ku(!)k2V dP(!)
◆1/2

is finite. We observe that there is a unique isomorphism from V ⌦ L2
(⌦, dP) to

L2
(⌦;V ) which maps  ⌦ µ 2 V ⌦ L2

(⌦, dP) onto the function ! 7! µ(!) 2 V .
The definition of the Hilbert space L2

(⌦;V ) easily generalizes to the space Lm
(⌦;V )

with m � 1 integer. We say that a random field u : ⌦ ! V is in the Bochner space
Lm

(⌦;V ) if ! 7! ku(!)kmV is measurable and integrable, so that

kukLm(⌦;V ) :=

✓Z
⌦

ku(!)kmV dP(!)
◆1/m

is finite.
In the following we focus on two stochastic Sobolev spaces of differential forms,

namely Lm
(⌦;Wk) and Lm

(⌦;Vk) with m � 1 integer, where Wk and Vk are the
Sobolev spaces of differential forms defined in (2.16).

2.3.2 Stochastic mixed Hodge-Laplace problem

Let be given

F1

F2

�
2 Lm

(⌦;V 0
k), with m � 1, defined as the stochastic version of

(2.21) and (2.22):

F1(!) : H�
D

⇤

k
(D) ! R

F1(!)(v) := (f1(!), v)

F2(!) : H�
D

⇤

k�1
(D) ! R

F2(!)(q) := (f2(!), q)

where

f1
f2

�
2 Lm

(⌦;Vk) is given. The stochastic counterpart of problem (2.23) is:

Stochastic Problem:

Given m � 1 and

F1

F2

�
2 Lm

(⌦;V 0
k) , find


u

p

�
2 Lm

(⌦;Vk) s.t.

T


u(!)

p(!)

�
=


F1(!)

F2(!)

�
in V 0

k , a.e. in ⌦.

(2.42)

Theorem 2.3.6 (Well-posedness of the stochastic Hodge Laplacian). For every ↵ > 0

problem (2.42) is well-posed, so that there exists a unique solution that depends con-
tinuously on the data. The same result holds with ↵ = 0 provided that F2 corresponds
to f2 2 Lm

�
⌦; �H�

D

⇤

k
(D)

�
.
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Proof. Thanks to Theorem 2.2.4, for almost all ! 2 ⌦, problem (2.42) admits a unique

solution

u(!)

p(!)

�
2 Vk, the mapping ! 7!


u(!)

p(!)

�
is measurable and we have:���� u(!)

p(!)

�����
V
k

 K

���� F1(!)

F2(!)

�����
V 0
k

a.e. in ⌦ (2.43)

with K = K(CP ,↵) independent of ! (see (2.30)). For any m � 1, 
E
"���� u(!)

p(!)

�����m
V
k

#!1/m

 K

 
E
"���� F1(!)

F2(!)

�����m
V 0
k

#!1/m

.

By hypothesis

F1

F2

�
2 Lm

(⌦;V 0
k), hence we conclude that


u

p

�
2 Lm

(⌦;Vk).

2.4 Deterministic problems for the statistics of u and p

We are interested in the statistical moments of the unique stochastic solution

u

p

�
of

the stochastic problem (2.42). We exploit the linearity of the system T


u(!)

p(!)

�
=

F1(!)

F2(!)

�
to derive the moment equations, that is the deterministic equations solved

by the statistical moments of the unique stochastic solution

u

p

�
. At the beginning

we focus on the first moment equation. Then, after recalling the definition of the m-th
statistical moment (m � 2 integer) and the main concepts about the tensor product
of operators defined on Hilbert spaces, we establish the well-posedness of the m-th
moment problem. The main achievement is the constructive proof of the inf-sup condi-
tion for the tensor product operator T⌦m stated in Theorem 2.4.13. Indeed, this proof
extends to the case of sparse tensor product approximations (see Section 2.6.4).

2.4.1 Equation for the mean
Following [92, 97], we provide a way to compute the first statistical moment of the
unique stochastic solution of the stochastic Hodge Laplace problem (2.42).

Given a random field v 2 L1
(⌦;V ), where V in a Hilbert space, its first statistical

moment E [v] 2 V is well defined, and is given by:

E [v] (x) :=

Z
⌦

v(!, x)dP, x 2 D. (2.44)

Definition (2.44) easily applies to the vector case (V = Vk, V = Wk).

Suppose that

F1

F2

�
2 L1

(⌦;V 0
k), so that the unique solution of the stochastic prob-

lem is such that

u

p

�
2 L1

(⌦;Vk). To derive the first moment equation we simply
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

apply the mean operator to the stochastic problem (2.42). We exploit the commutativity

between the operators T defined in (2.18) and E defined in (2.44), so that E

u

p

�
is a

solution of:

Mean Problem

Given

F1

F2

�
2 L1

(⌦;V 0
k) , find Es 2 Vk s.t.

T (Es) = E

F1

F2

�
in V 0

k ,

(2.45)

where E

F1

F2

�
2 V 0

k is defined as:

E

F1

F2

�✓
v

q

�◆
:=

✓
E

f1
f2

�
,


v

q

�◆
W

k

8

v

q

�
2 Vk.

Theorem 2.2.4 states the well-posedness of problem (2.45), hence E

u

p

�
is its unique

solution. We notice that problem (2.45) has exactly the same structure as problem
(2.42) with loading term given by the mean of the loading term in (2.42).

2.4.2 Statistical moments of a random function

Let u 2 Lm
(⌦;V ), where V is a Hilbert space and Lm

(⌦;V ) is defined as in Section
2.3.1. Then u⌦m

:= u⌦ · · ·⌦ u| {z }
m times

2 L1
(⌦, V ⌦m

), where from now on V ⌦m denotes the

tensor product space V ⌦ · · ·⌦ V| {z }
m times

. Hence we can give the following definition:

Definition 2.4.7. Given u 2 Lm
(⌦;V ), m � 2 integer, the m-th moment of u(!) is

defined by

Mm
[u] := E [u⌦ · · ·⌦ u] =

Z
⌦

u(!)⌦ · · ·⌦ u(!)dP(!) 2 V ⌦m. (2.46)

It clearly holds kMm
[u] kV ⌦m  kukmLm(⌦;V ). Definition 2.4.7 with m = 1 is (2.44).

Moreover, Definition 2.4.7 easily generalizes to the vector case.

2.4.3 Tensor product of operators on Hilbert spaces

We will see that the deterministic equation for the m-th moment involves the tensor
product of the operator T . Hence, we need to describe some aspects of the theory of
tensor product operators on Hilbert spaces. For more details see for example [85] and
the references therein.
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2.4. Deterministic problems for the statistics of u and p

Suppose that T1 : V1 ! V 0
1 , T2 : V2 ! V 0

2 are continuous operators on the Hilbert
spaces V1 and V2 respectively. T1 ⌦ T2 is defined on functions of the type � ⌦  , with
� 2 V1,  2 V2 as:

(T1 ⌦ T2) (�⌦  ) = T1�⌦ T2 2 V 0
1 ⌦ V 0

2 .

This definition extends to V1 ⌦ V2 by linearity and density. The tensor product of
two bounded operators on Hilbert space is still a bounded operator, as stated by the
following

Proposition 2.4.8. Let T1 : V1 ! V 0
1 , T2 : V2 ! V 0

2 be bounded operators on Hilbert
spaces V1 and V2 respectively. Then

kT1 ⌦ T2kL(V1⌦V2,V 0
1⌦V 0

2)
= kT1kL(V1,V 0

1)
kT2kL(V2,V 0

2)
.

Proof. See [85].

The definition of the tensor product of two operators on Hilbert spaces and Propo-
sition 2.4.8 generalize to tensor product of any finite number of operators defined on
Hilbert spaces.

We detail now the vector case, since it will be useful in the next section. Let V1 =

V2 = Vk, where Vk is defined in (2.16), and T1 = T2 = T , where T = (T )i,j=1,2 : Vk !
V 0
k is the linear operator of order two defined in (2.18). The tensor product operator

T⌦m
:= T ⌦ · · ·⌦ T| {z }

m

, (m � 1 integer), is the operator of order 2m that maps tensors

in V ⌦m
k to tensors in (V 0

k)
⌦m defined as

(T⌦m
)i1...i2m = Ti1i2 ⌦ · · ·⌦ Ti2m�1i2m . (2.47)

Given X 2 V ⌦m
k , T⌦mX is a tensor of order m in (V 0

k)
⌦m given by

(T⌦mX)i1...im =

2X
j1,...,jm=1

(Ti1j1 ⌦ · · ·⌦ Ti
m

j
m

)Xj1...jm , i1, . . . , im = 1, 2. (2.48)

Definition 2.4.9. Let T and Vk be as before and let X 2 V ⌦m
k and Y 2 V ⌦m

k . We
define

⌦
T⌦mX, Y

↵
=

2X
i1,...,im=1

2X
j1,...,jm=1

hTi1,j1 · · ·Ti
m

,j
m

Xj1,...,jm , Yi1,...,imi . (2.49)

2.4.4 Equation for the m-th moment

Following [97], we analyze the m-th moment equation for m � 2. Suppose

F1

F2

�
2

Lm
(⌦;V 0

k) so that

u

p

�
2 Lm

(⌦;Vk). To derive the deterministic m-th moment

problem we tensorize the stochastic problem (2.42) with itself m times:

T ⌦ . . .⌦ T| {z }
m times


u(!)

p(!)

�⌦m

=


F1(!)

F2(!)

�⌦m

in (V 0
k)

⌦m, for a.e. ! 2 ⌦.
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

We take the expectation on both sides and we exploit the commutativity between the

operators T and E. By definition, E

u

p

�⌦m

= Mm


u

p

�
. Thus, Mm


u

p

�
is a

solution of

m-Points Correlation Problem:

Given m � 2 integer and

F1

F2

�
2 Lm

(⌦;V 0
k) , find M⌦m

s 2 V ⌦m
k s.t.

T⌦mM⌦m
s = Mm


F1

F2

�
in (V 0

k)
⌦m,

(2.50)

where Mm


F1

F2

�
2 (V 0

k)
⌦m is defined as:

Mm


F1

F2

�✓
v

q

�◆
:=

✓
Mm


f1
f2

�
,


v

q

�◆
W⌦m

k

8

v

q

�
2 V ⌦m

k .

We notice that in the right-hand side of (2.50) we have the m-points correlation of the
loading terms of problem (2.42).

Remark 2.4.10. Note that problem (2.45) is a saddle-point problem, and (2.50) is
composed of m ”nested” saddle-point problems. Indeed, if for example m = 2, T ⌦ T
can be represented by the matrix

T ⌦ T =

26664
�d⌦ �d �d⌦ d d⌦ �d d⌦ d

�d⌦ � �d⌦�↵Id d⌦ � d⌦�↵Id
� ⌦ �d � ⌦ d �↵Id⌦ �d �↵Id⌦ d

� ⌦ � � ⌦�↵Id �↵Id⌦ � �↵Id⌦�↵Id

37775 . (2.51)

Theorem 2.4.11 (Well-posedness of the m-th problem). For every ↵ > 0, problem
(2.50) is well-posed, so that there exists a unique solution that depends continuously
on the data. The same result holds with ↵ = 0 provided that F2 corresponds to f2 2
Lm
�
⌦; �H�

D

⇤

k
(D)

�
.

Proof. Theorem 2.4.11 can be proved by a simple tensor product argument, as follows.
Since problem (2.23) is well-posed, the inverse operator T�1 exists and is linear and
bounded. Now we take into account the tensor operator (T�1

)

⌦m
= T�1 ⌦ . . .⌦ T�1| {z }

m times

.

It is the inverse operator of T⌦m. Moreover, it is linear and bounded (Proposition 2.4.8).
Hence we can immediately conclude the well-posedness of problem (2.50).

Remark 2.4.12. The approach presented in the proof is not completely satisfactory
in view of a finite dimensional approximation. Indeed, when considering a finite di-
mensional version of the operator, Th := T |V

k,h

: Vk,h ! V 0
k,h, where Vk,h is a finite

dimensional subspace of Vk, and aiming at proving the well-posedness of the tensor
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operator (Th)
⌦m

= Th ⌦ . . .⌦ Th| {z }
m times

, this tensor product argument applies only if the

finite dimensional subspace of V ⌦m
k is a tensor product space V ⌦m

k,h . It will not apply
straightforwardly if sparse tensor product spaces are considered instead.

Constructive proof of inf-sup condition for the tensorized problem

Here we propose an alternative proof of Theorem 2.4.11 that consists in showing the
inf-sup condition for T⌦m. This proof will be used later on to prove the stability of
a sparse tensor product finite element discretization, which is of practical interest for
moderately large m as it reduces considerably the curse of dimensionality with respect
to a full tensor product approximation.
A result equivalent to Theorem 2.4.11 is the following

Theorem 2.4.13 (Tensorial inf-sup condition). For every M⌦m
s 2 V ⌦m

k , there exist a
test function M⌦m

t 2 V ⌦m
k and positive constants

Cm = Cm(↵, CP,1, kTkL(V
k

,V 0
k

), kPkL(V
k

,V
k

)),

C 0
m = C 0

m(↵, CP,1, kTkL(V
k

,V 0
k

), kPkL(V
k

,V
k

)))

s.t. ⌦
T⌦mM⌦m

s ,M⌦m
t

↵
(V 0

k

)⌦m,V ⌦m

k

� CmkM⌦m
s k2

V ⌦m

k

, (2.52)

kM⌦m
t kV ⌦m

k

 C 0
mkM⌦m

s kV ⌦m

k

, (2.53)

where CP,1 will be introduced in (2.60) and P is defined in (2.29).

Before presenting the proof we state the tensorized versions of the Hodge decom-
position and the Poincaré inequality, which are two keys ingredients in the proof of the
inf-sup condition for the deterministic problem (2.23).

Let us write the space V ⌦m
k as

V ⌦m
k = Vk ⌦ V ⌦(m�1)

k =


H�

D

⇤

k
(D)

H�
D

⇤

k�1
(D)

�
⌦ V ⌦(m�1)

k =


Um
k

Um
k�1

�
(2.54)

where we defined

Um
k := H�

D

⇤

k
(D)⌦ V ⌦(m�1)

k , (2.55)

Um
k�1 := H�

D

⇤

k�1
(D)⌦ V ⌦(m�1)

k . (2.56)

We obtain the tensorial Hodge decomposition following the idea of the one dimensional
Hodge decomposition (2.11). Indeed, for every integer m � 2, we split Um

k (Um
k�1 is

analogous) as:

Tensorial Hodge Decomposition:
Um
k = Bm

k �Bm,?
k (2.57)

where

Bm
k := d⌦ Id

⌦(m�1) Um
k�1 = Bk ⌦ V ⌦(m�1)

k

Bm,?
k := B?

k ⌦ V ⌦(m�1)
k
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

and Bk, B?
k are defined in Section 2.2. The tensor operators ⇡? ⌦ Id

⌦(m�1) and ⇡� ⌦
Id

⌦(m�1), where ⇡? and ⇡� are defined in (2.12) and (2.13) respectively, act on Um
k

(Um
k�1 is analogous) as:

⇡? ⌦ Id

⌦(m�1)
: Um

k = Bm
k �Bm,?

k ! Bm,?
k (2.58)

v = d⌦ Id

⌦(m�1)v� + v? 7! v?

⇡� ⌦ Id

⌦(m�1)
: Um

k = Bm
k �Bm,?

k ! Bm,?
k�1 (2.59)

v = d⌦ Id

⌦(m�1)v� + v? 7! v�.

The tensorial Poincaré inequality is proved in the following lemma.

Lemma 2.4.14 (Tensorial Poincaré inequality). For every integer m � 2, there exists a
positive constant CP,1 such that

kvk(L2⇤k)⌦m  CP,1kId⌦ . . .⌦ d|{z}
i

⌦ . . .⌦ Id vkL2⇤k⌦...⌦L

2⇤k+1

| {z }
i

⌦...⌦L2⇤k

, (2.60)

8v 2 L2
⇤

k
(D)⌦ . . .⌦ (Z?

k )|{z}
i

⌦ . . .⌦ L2
⇤

k
(D), where Z?

k is defined in Section 2.2.2.

Proof. We know that H⇤

k
(D) is a Hilbert space with the inner product (u, v)H⇤k

and
(u, u)H⇤k

= kuk2
H⇤k

. Besides, we know that Z?
k is a Hilbert space with the equivalent

inner product (du, dv) and norm kduk =

p
(du, du). A consequence of the Open

Mapping Theorem states that given m Hilbert spaces H1, . . . , Hm, the topology of H1⌦
. . . ⌦Hm depends only on the topology and not on the choice of the inner products of
H1, . . . , Hm. If we apply this statement with Hi = Z?

k and Hj = H⇤

k
(D), i 6= j, we

can conclude the inequality (2.60).

A simple consequence of the previous lemma is:

kvk(L2⇤k)⌦m  CP,mkd⌦mvk(L2⇤k+1)⌦m 8v 2 �Z?
k

�⌦m
, (2.61)

where CP,m > 0 depends only on the domain D and on m.

Proof of Theorem 2.4.13. As shown before, Mm


u

p

�
is a solution of (2.50). The

uniqueness of the solution of problem (2.50) is related to the global inf-sup condition
(2.52), (2.53) (see [8, 19]). Suppose ↵ > 0 (the case ↵ = 0 is analogous). To lighten
the notations, in the proof we use the brackets h·, ·i without specifying the spaces we
consider, when no ambiguity arises. We use the tensorial Hodge decomposition (2.57)
and the tensorial Poicaré inequality (Lemma 2.4.14). We prove (2.52) by induction.
In Theorem 2.2.4 we already proved the inf-sup condition with m = 1. Now suppose

m = 2. We fix M⌦2
s =


(M⌦2

s )1:

(M⌦2
s )2:

�
where (M⌦2

s )1: ((M⌦2
s )2: respectively) means that

in the tensor of order two M⌦2
s = (M⌦2

s )ij=1,2 we fix i = 1 (i = 2 respectively) and let
j vary. Using (2.54) and (2.57) with m = 2 we decompose

M⌦2
s =


d⌦ Id(M�

s )1: + (M?
s )1:

d⌦ Id(M�
s )2: + (M?

s )2:

�
2


U2
k

U2
k�1

�
,
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where

(M?
s )1: = ⇡? ⌦ Id(M⌦2

s )1: 2 B2,?
k

(M?
s )2: = ⇡? ⌦ Id(M⌦2

s )2: 2 B2,?
k�1

(M�
s )1: = ⇡� ⌦ Id(M⌦2

s )1: 2 B2,?
k�1

(M�
s )2: = ⇡� ⌦ Id(M⌦2

s )2: 2 B2,?
k�2.

We choose M⌦2
t = P ⌦ PM⌦2

s , where P is defined in (2.29), so that:⌦
T ⌦ TM⌦2

s ,M⌦2
t

↵
=

⌦
T ⌦ TM⌦2

s , P ⌦ PM⌦2
s

↵
=

2X
i,j=1

⌦
Tij ⌦ T (M⌦2

s )j:, (P ⌦ PM⌦2
s )i:

↵
. (2.62)

Let hTij ⌦ T (M⌦2
s )j:, (P ⌦ PM⌦2

s )i:i = Iij . We will bound each term Iij for i, j =

1, 2.
Using (2.48) we explicit the term (P ⌦ PM⌦2

s )i::

(P ⌦ PM⌦2
s )i: = Pi1 ⌦ P (M⌦2

s )1: + Pi2 ⌦ P (M⌦2
s )2:. (2.63)

Let us start from the case i = j = 1.

I11 =
⌦
A⌦ T (M⌦2

s )1:, (⇡
? ⌦ P (M⌦2

s )1: + d⇡? ⌦ P (M⌦2
s )2:)

↵
. (2.64)

Since d�d = 0,
⌦
A⌦ T (M⌦2

s )1:, d⇡? ⌦ P (M⌦2
s )2:)

↵
= 0 and A⌦T (d⌦IdM�

s )1: ⌘ 0.
Hence,

I11 =
⌦
A⌦ T (M?

s )1:, Id⌦ P (M?
s )1:

↵
=

⌦
d⌦ T (M?

s )1:, d⌦ P (M?
s )1:

↵
� C1kd⌦ Id(M?

s )1:k2L2⇤k+1⌦V
k

.

The last step follows from (2.31). If i = 1 and j = 2 we find

I12 =
⌦
B⇤ ⌦ T (M⌦2

s )2:, ⇡
? ⌦ P (M⌦2

s )1: + d⇡? ⌦ P (M⌦2
s )2:

↵
. (2.65)

Since ⇡? ⌦ P (M⌦2
s )1: 2 B2,?

k ,
⌦
B⇤ ⌦ T (M⌦2

s )2:, ⇡? ⌦ P (M⌦2
s )1:

↵
= 0. Hence,

I12 =
⌦
B⇤ ⌦ T (M?

s )2:, d⌦ P (M?
s )2:

↵
=

⌦
d⌦ T (M?

s )2:, d⌦ P (M?
s )2:

↵
� C1kd⌦ Id(M?

s )2:k2L2⇤k⌦V
k

.

If i = 2 and j = 1 we find

I21 =
⌦
B ⌦ T (M⌦2

s )1:, �⇡
� ⌦ P (M⌦2

s )1: � d⇡� ⌦ P (M⌦2
s )2:

↵
. (2.66)

Since hB ⌦ T (M⌦2
s )1:, d⇡� ⌦ P (M⌦2

s )2:i = 0, and
⌦
B ⌦ T (M?

s )1:, Id⌦ P (M�
s )1:

↵
=

0, we have:

I21 = � hB ⌦ T (d⌦ Id(M�
s )1:), Id⌦ P (M�

s )1:i
= � hd⌦ T (M�

s )1:, d⌦ P (M�
s )1:i

� �C1kd⌦ Id(M�
s )1:k2L2⇤k⌦V

k

.
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If i = j = 2

I22 = �↵ ⌦Id⌦ T (M⌦2
s )2:, �⇡

� ⌦ P (M⌦2
s )1: � d⇡� ⌦ P (M⌦2

s )2:

↵
= ↵

⌦
Id⌦ T (M⌦2

s )2:, d⇡
� ⌦ P (M⌦2

s )2:

↵
(2.67)

� ↵
⌦
Id⌦ T (M⌦2

s )2:, �⇡
� ⌦ P (M⌦2

s )1:

↵
. (2.68)

Since
⌦
Id⌦ T (M?

s )2:, d⇡
� ⌦ P (M⌦2

s )2:

↵
= 0, we find

(2.67) = ↵ hd⌦ T (M�
s )2:, d⌦ P (M�

s )2:i
� ↵C1kd⌦ Id(M�

s )2:k2L2⇤k�1⌦V
k

.

Moreover, since hId⌦ T (d⇡� ⌦ Id(M⌦2
s )2:), ⇡� ⌦ P (M⌦2

s )1:i = 0, we find

(2.68) = �↵� ⌦Id⌦ T (M?
s )2:, Id⌦ P (M�

s )1:

↵
� �↵

2

�1/2
⇣
kId⌦ T (M?

s )k2L2⇤k�1⌦V 0
k

+ �kId⌦ P (M�
s )1:k2L2⇤k�1⌦V

k

⌘
� �↵

2

�1/2
⇣
C2

P,1kTk2L(V
k

,V 0
k

)kd⌦ Id(M?
s )2:k2L2⇤k⌦V

k

+�C2
P,1kPk2L(V

k

,V
k

)kd⌦ Id(M�
s )1:k2L2⇤k⌦V

k

�
,

where we used Proposition 2.4.8 and Lemma 2.4.14. Using the lower bounds on I11,
I12, I21 and I22, we can now conclude that:

(2.62) � C1kd⌦ Id(M?
s )1:k2L2⇤k+1⌦V

k

+

⇣
C1 � ↵

2

�1/2C2
P,1kTk2L(V

k

,V 0
k

)

⌘
kd⌦ Id(M?

s )2:k2L2⇤k⌦V
k

+ �
⇣
C1 � ↵

2

�1/2C2
P,1kPk2L(V

k

,V
k

)

⌘
kd⌦ Id(M�

s )1:k2L2⇤k⌦V
k

+ ↵C1kd⌦ Id(M�
s )2:k2L2⇤k�1⌦V

k

.

Hence, if we choose � sufficiently small, condition (2.52) is satisfied for m = 2. Now
suppose that the problem for the (m�1)-th moment is well-posed, and in particular that
the inf-sup condition is verified with the test function M⌦(m�1)

t = P⌦(m�1)M⌦(m�1)
s :⌦

T⌦(m�1)M⌦(m�1)
s , P⌦(m�1)M⌦(m�1)

s

↵ � Cm�1kM⌦(m�1)
s k2

V
⌦(m�1)
k

, (2.69)

where Cm�1 = Cm�1(CP,1,↵, kTkL(V
k

,V 0
k

), kPkL(V
k

,V
k

)) > 0. We want to prove (2.52).

As before, we fix M⌦m
s =


(M⌦m

s )1:

(M⌦m
s )2:

�
where (M⌦m

s )1: ((M⌦m
s )2: respectively)

means that in the tensor of order m, M⌦m
s = (M⌦m

s )i1...im=1,2, we fix i1 = 1 (i1 = 2

respectively) and let i2, . . . , im vary. Using (2.54) and (2.57) we decompose

M⌦m
s =

"
(M?

s )1: + d⌦ Id

⌦(m�1)
(M�

s )1:

(M?
s )2: + d⌦ Id

⌦(m�1)
(M�

s )2:

#
2


Um
k

Um
k�1

�
,

where now

(M?
s )1: = ⇡? ⌦ Id

⌦(m�1)
(M⌦m

s )1: 2 Bm,?
k

(M?
s )2: = ⇡? ⌦ Id

⌦(m�1)
(M⌦m

s )1: 2 Bm,?
k�1

(M�
s )1: = ⇡� ⌦ Id

⌦(m�1)
(M⌦m

s )1: 2 Bm,?
k�1

(M�
s )2: = ⇡� ⌦ Id

⌦(m�1)
(M⌦m

s )1: 2 Bm,?
k�2 .
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We choose M⌦m
t = P⌦mM⌦m

s , so that:⌦
T⌦mM⌦m

s ,M⌦m
t

↵
=

⌦
T⌦mM⌦m

s , P⌦mM⌦m
s

↵
=

2X
i,j=1

⌦
Ti,j ⌦ Tm�1

(M⌦m
s )j:, (P

⌦mM⌦m
s )i:

↵
. (2.70)

Let Jij = hTi,j ⌦ Tm�1
(M⌦m

s )j:, (P⌦mM⌦m
s )i:i. We follow a completely similar rea-

soning as before, and we apply (2.69). If i = j = 1,

J11 =
⌦
A⌦ T⌦(m�1)

(M⌦m
s )1:, (P ⌦ P⌦(m�1)M⌦m

s )1:

↵
� Cm�1kd⌦ Id

⌦(m�1)
(M?

s )1:k2L2⇤k+1⌦V
⌦(m�1)
k

.

If i = 1 and j = 2,

J12 =
⌦
B⇤ ⌦ T⌦(m�1)

(M⌦m
s )2:, (P ⌦ P⌦(m�1)M⌦m

s )1:

↵
� Cm�1kd⌦ Id

⌦(m�1)
(M?

s )2:k2L2⇤k⌦V
⌦(m�1)
k

.

If i = 2 and j = 1,

J21 =
⌦
B ⌦ T⌦(m�1)

(M⌦m
s )1:, (P ⌦ P⌦(m�1)M⌦m

s )2:

↵
� �Cm�1kd⌦ Id

⌦(m�1)
(M�

s )1:k2L2⇤k⌦V
⌦(m�1)
k

.

If i = j = 2,

J22 = �↵ ⌦Id⌦ T⌦(m�1)
(M⌦m

s )2:, (P ⌦ P⌦(m�1)M⌦m
s )2:

↵
� ↵Cm�1kd⌦ Id

⌦(m�1)
(M�

s )2:k2L2⇤k�1⌦V
⌦(m�1)
k

+

� ↵

2

�1/2
⇣
C2

P,1kTk2(m�1)
L(V

k

,V 0
k

)kd⌦ Id

⌦(m�1)
(M?

s )2:k2L2⇤k⌦V
⌦(m�1)
k

+

+�C2
P,1kPk2(m�1)

L(V
k

,V
k

)kd⌦ Id

⌦(m�1)
(M�

s )1:k2L2⇤k⌦V
⌦(m�1)
k

⌘
.

Hence, if we choose � sufficiently small, condition (2.52) is satisfied. Relation (2.53)
follows from the orthogonal decomposition (2.57) and the tensorial Poincaré inequality
in Lemma 2.4.14.

Another way to express the result given in Theorem 2.4.13 is the following: 8M⌦m
s

it holds ⌦
T⌦mM⌦m

s , P⌦mM⌦m
s

↵
(V 0

k

)⌦m,V ⌦m

k

� Cm

��M⌦m
s

��2
V ⌦m

k

.

As a simple consequence of Proposition 2.4.8 we have also the bound on P⌦m.

Remark 2.4.15. We underline that the operator P is not the classical one presented
in [6] to prove the well-posedness of the deterministic Hodge-Laplace problem. Indeed
it is the minimal one such that the inf-sup condition for hT⌦m·, ·i : V ⌦m

k ⇥ V ⌦m
k ! R

(for every finite m � 1) is satisfied. With the classical operator, the inf-sup condition
for m � 2 is not automatically satisfied.
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

2.5 Some three-dimensional problems important in applications

In Section 2.2.3 we have reinterpreted the deterministic Hodge-Laplace problem in
n = 3 dimensions in terms of PDEs. Here we translate in terms of partial differen-
tial equations the stochastic Hodge-Laplace problem. In particular, we focus on the
two problems obtained for k = 1 and k = 3: the stochastic magnetostatic/electro-
static equations and the stochastic Darcy equations, and we explicitly write the systems
solved by the mean and the two-points correlation of the unique stochastic solution of
the stochastic problem.

2.5.1 The stochastic magnetostatic/electrostatic equations
Take k = 1 and ↵ = 0. Let f1 2 Lm

(⌦;L2
⇤

1
(D)), f2 2 Lm

(⌦;L2
⇤

0
(D)) be stochas-

tic functions, m � 1 integer, representing an uncertain current and an uncertain charge
respectively. The stochastic magnetostatic/electrostatic problem is the stochastic coun-
terpart of problem (2.36). Thanks to Theorem 2.3.6, the stochastic magnetostatic/elec-
trostatic problem admits a unique stochastic solution that depends continuously on the

data. If m � 1, the first statistical moment M1


u

p

�
= E


u

p

�
is well-defined, and

is the unique solution of (see (2.45)): find Es =


Es,1

Es,2

�
2 V1 such that⇢

(curlEs,1, curlv) + (rEs,2, v) = (E [f1] , v)

(Es,1,rq) = (E [f2] , q) .
8

v

q

�
2 V1, (2.71)

where the parenthesis in (2.71) mean the L2-inner product. In the case m � 2, the

second statistical moment M2


u

p

�
is well-defined, and is the unique solution of (see

(2.50) with m = 2): find

M⌦2
s 2 V1 ⌦ V1 =


H�

D

(curl, D)⌦H�
D

(curl, D) H�
D

(curl, D)⌦H1
�
D

(D)

H1
�
D

(D)⌦H�
D

(curl, D) H1
�
D

(D)⌦H1
�
D

(D)

�
such that8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

�
curl ⌦ curl(M⌦2

s )11, curl ⌦ curl(M⌦2
t )11

�
+

�
curl ⌦r(M⌦2

s )12, curl ⌦ Id(M⌦2
t )11

�
+

�r⌦ curl(M⌦2
s )21, Id⌦ curl(M⌦2

t )11

�
+

�r⌦r(M⌦2
s )22, (M

⌦2
t )11

�
=

�M2
[f1] , (M

⌦2
t )11

�
� �curl ⌦ Id(M⌦2

s )11, curl ⌦r(M⌦2
t )12

�� �r⌦ Id(M⌦2
s )12, Id⌦r(M⌦2

t )12

�
=

�
E [f1f2] , (M

⌦2
t )12

�
� �Id⌦ curl(M⌦2

s )12,r⌦ curl(M⌦2
t )21

�� �Id⌦rM⌦2
s )21,r⌦ Id(M⌦2

t )21

�
=

�
E [f2f1] , (M

⌦2
t )21

�
�
(M⌦2

s )11,r⌦r(M⌦2
t )22

�
=

�M2
[f2] , (M

⌦2
t )22

�
(2.72)
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2.6. Finite element discretization of the moment equations

8M⌦2
t 2 V1 ⌦ V1, where the parenthesis in (2.72) have to be intended as inner product

in (L2
(D))

3 ⌦ (L2
(D))

3.

2.5.2 The stochastic Darcy problem

Let k = 3, f2 ⌘ 0 and f1 2 Lm
(⌦;L2

⇤

3
(D)), m � 1 integer, representing an

uncertain source in porous media flow. The stochastic Darcy problem is the stochastic
counterpart of problem (2.39). Thanks to Theorem 2.3.6, the stochastic Darcy problem
admits a unique stochastic solution that depends continuously on the data. If m � 1,

the first statistical moment M1


u

p

�
= E


u

p

�
is well-defined, and is the unique

solution of (see (2.45)): find Es =


Es,1

Es,2

�
2 V3 such that

⇢
(divEs,2, v) = (E [f1] , v)

(Es,1, divq)� ↵ (Es,2, q) = 0

8

v

q

�
2 V3. (2.73)

where the parenthesis in (2.73) mean the L2-inner product. In the case m � 2, the

second statistical moment M2


u

p

�
is well-defined, and is the unique solution of (see

(2.50) with m = 2): find

M⌦2
s 2 V3 ⌦ V3 =


L2

(D)⌦ L2
(D) L2

(D)⌦H�
D

(div, D)

H�
D

(div, D)⌦ L2
(D) H�

D

(div;D)⌦H�
D

(div;D)

�
such that8>>>>>>>>>>>><>>>>>>>>>>>>:

(div ⌦ div(M⌦2
s )22, (Mt)11) = (M2

[f1] , (Mt)11)

�
div ⌦ Id(M⌦2

s )21, Id⌦ div(M⌦2
t )12

�� ↵
�
div ⌦ Id(M⌦2

s )22, (M
⌦2
t )12

�
= 0

�
Id⌦ div(M⌦2

s )12, div ⌦ Id(M⌦2
t )21

�� ↵
�
Id⌦ div(M⌦2

s )22, (M
⌦2
t )21

�
= 0

�
(M⌦2

s )11, div ⌦ div(M⌦2
t )22

�� ↵
�
(M⌦2

s )12, div ⌦ Id(M⌦2
t )22

�
�↵ �(M⌦2

s )21, Id⌦ div(M⌦2
t )22

�
+ ↵2

�
(M⌦2

s )22, (M
⌦2
t )22

�
= 0

(2.74)
8M⌦2

t 2 V3 ⌦ V3, where the parenthesis in (2.72) have to be intended as inner product
in L2

(D)⌦ L2
(D).

2.6 Finite element discretization of the moment equations

In this section we aim at deriving a stable discretization for the moment equations,
i.e. the deterministic problems solved by the statistics of the unique stochastic solu-

tion

u

p

�
. First we recall the main concepts concerning the finite element differential

forms and the existence of a stable finite element discretization for the mean problem
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

k = 0 P�
r

⇤

0
(T

h

) Lagrangian elements of degree  r
k = 1 P�

r

⇤

1
(T

h

) Nédélec 1-nd kind H(curl) elements of order r � 1

k = 2 P�
r

⇤

2
(T

h

) Nédélec 1-nd kind H(div) elements of order r � 1

k = 3 P�
r

⇤

3
(T

h

) Discontinuous elements of degree  r � 1

Table 2.2: Proxy fields correspondences between finite element differential forms P�
r

⇤

k

(T
h

) and the
classical finite element spaces for n = 3.

(2.45). Then we construct both full and sparse tensor product finite element discretiza-
tions for the m-th problem, with m � 2 integer, we prove their stability and provide
optimal order of convergence estimates.

2.6.1 Finite element differential forms

Following [6], throughout this section we assume that the domain D ⇢ Rn is a poly-
hedral domain in Rn partitioned into a finite set of n-simplices. These simplices are
such that their union is the closure of D and the intersection of any two of them, if
non-empty, is a common sub simplex. We denote the partition with Th and the dis-
cretization parameter with h. To discretize the moment equations we use the finite
element differential forms

P�
r ⇤

k
(Th) =

�
v 2 H⇤

k
(D)| v|T 2 P�

r ⇤
k
(T ) 8 T 2 Th

 
, (2.75)

where the space P�
r ⇤

k
(T ) and the de Rham subcomplex

0 �! P�
r ⇤

0
(Th)

d�! · · · d�! P�
r ⇤

n
(Th) �! 0

are treated in [6, 59]. Since we are particularly interested in the n = 3 case, we re-
sume in Table 2.2 the correspondences between the finite element differential forms
(2.75) and the classical finite element spaces of scalar and vector functions. The spaces
P�

r ⇤
k
(Th) are not the only possible choice. Indeed, in [6, 7, 30, 59] the authors present

other finite element differential forms to discretize the deterministic Hodge Laplacian.
In [7] the authors propose the construction of a projector

⇧k,h : H⇤

k
(D) ! P�

r ⇤
k
(Th)

which is a cochain map, that is it commutes with the exterior derivative, and such that
the following approximation property holds:

kv � ⇧k,hvkL2⇤k  ChskvkHs⇤k , 8 v 2 Hs
⇤

k
(D), 0  s  r, (2.76)

where Hs
⇤

k
(D) is the space of differential k-forms with square integrable partial

derivatives of order at most s, and C is independent of h. Note that the inequality
(2.76) for s = 0 implies the stability of the projector in L2. Moreover, from (2.76)
it follows the boundedness of the projector ⇧k,h in the H⇤

k
(D)-norm. Since we are

dealing with Dirichlet boundary conditions on �D, we need the existence of cochain
projectors which also respect the boundary conditions. To this aim, we make the fol-
lowing assumption:
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Assumption A3. There exists a bounded cochain projector, that by abuse of notation
we denote still by ⇧k,h,

⇧k,h : H�
D

⇤

k
(D) ! P�

r,�
D

⇤

k
(Th) := P�

r ⇤
k
(Th) \H�

D

⇤

k
(D), (2.77)

such that (2.76) is satisfied for every v 2 Hs
⇤

k
(D) \H�

D

⇤

k
(D), 0  s  r.

Assumption A3 is satisfied in the two and three dimensional case: see [90]. The
n dimensional case is still a topic of current research, whereas if natural boundary
conditions are imposed on @D, the existence of such an operator is proved in [6], and
if essential boundary conditions are imposed on @D, the existence of such an operator
is proved in [31].

2.6.2 Discrete mean problem
The problem solved by the mean of the unique stochastic solution of the stochastic
Hodge Laplacian turns out to be the deterministic Hodge Laplacian. In [6] the authors
study the finite element formulation of the deterministic Hodge Laplacian with natural
boundary conditions on @D (�D = ;). In [7] all the results obtained in [6] for �D = ;
are extended to include the case of essential boundary conditions on @D (�N = ;).
Under Assumption A3, all the results in [6, 7] apply to the general case �D, �N 6= ;.

Let
�P�

r,�
D

⇤

k
(Th), d

�
be the finite element de Rham subcomplex, h the discretiza-

tion parameter, and Vk,h =

 P�
r,�

D

⇤

k
(Th)

P�
r,�

D

⇤

k�1
(Th)

�
. The finite element formulation of

problem (2.45) is:

Mean Problem - FE Formulation

Given


F1

F2

�
2 L1

(⌦;V 0
k) , find Es,h 2 Vk,h s.t.

T (Es,h) = E

F1

F2

�
in V 0

k,h.

(2.78)

In [6] the authors show the stability of (2.78) by proving the inf-sup condition for the
bounded bilinear and symmetric form hT ·, ·i restricted to the finite element spaces.
Moreover, using a quasi-optimal error estimate and the interpolation property (2.76),
the authors deduce the following order of convergence estimate:����E  u

p

�
� Es,h

����
V
k

= O(hr
) (2.79)

for

E

u

p

�
2


Hr
⇤

k
(D) \H�

D

⇤

k
(D)

Hr
⇤

k�1
(D) \H�

D

⇤

k�1
(D)

�
such that

dE

u

p

�
2

Hr

⇤

k+1
(D) \H�

D

⇤

k+1
(D)

Hr
⇤

k
(D) \H�

D

⇤

k
(D)

�
,
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Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

where E

u

p

�
and Es,h are the unique solutions of problems (2.45) and (2.78) respec-

tively.

2.6.3 Discrete m-th moment problem: full tensor product approximation

The full tensor product finite element formulation (FTP-FE) of problem (2.50) is:

m-Points Correlation Problem (FTP-FE):

Given m � 2 integer and

F1

F2

�
2 Lm

(⌦;V 0
k) , find M⌦m

s,h 2 V ⌦m
k,h s.t.

T⌦mM⌦m
s,h = Mm


F1

F2

�
in (V 0

k,h)
⌦m

(2.80)

Theorem 2.4.11 applies to problem (2.80), as a consequence of a tensor product
structure (see Remark 2.4.12). We conclude therefore the stability of the full tensor
product finite element discretization V ⌦m

k,h .

Let M⌦m
s = Mm


u

p

�
be the unique solution of problem (2.50) and M⌦m

s,h be

the unique solution of problem (2.80). Exploiting the Galerkin orthogonality and the
stability of the discretization, we can obtain the following quasi-optimal convergence
estimate:����Mm


u

p

�
�M⌦m

s,h

����
V ⌦m

k

 C inf

M⌦m

h

2V ⌦m

k,h

����Mm


u

p

�
�M⌦m

h

����
V ⌦m

k

. (2.81)

To study the approximation properties of the space V ⌦m
k,h we construct the tensorial

projection operator ⇧⌦m
k,h as follows.

Definition 2.6.16. Let ⇧k,h : H�
D

⇤

k
(D) ! P�

r,�
D

⇤

k
(Th) be a bounded cochain pro-

jector satisfying Assumption A3. Given m � 2 integer, we define

⇧

⌦m
k,h := ⇧k,h ⌦ . . .⌦ ⇧k,h| {z }

m times

:

�
H�

D

⇤

k
(D)

�⌦m ! �P�
r,�

D

⇤

k
(Th)

�⌦m
. (2.82)

Since ⇧k,h is bounded in H⇤

k-norm by a constant which we denote as C⇡, ⇧⌦m
k,h

is bounded in (H⇤

k
)

⌦m-norm by (C⇡)
m (Proposition 2.4.8). Moreover, since it is

the tensor product of cochain projectors, it is itself a cochain projector. We state the
approximation properties of ⇧⌦m

k,h in the following

Proposition 2.6.17. The projector ⇧⌦m
k,h introduced in Definition 2.6.16 is such that

kv � ⇧

⌦m
k,h vk(L2⇤k)⌦m  Chskvk(Hs⇤k)⌦m (2.83)

v 2 (Hs
⇤

k
(D) \H�

D

⇤

k
(D))

⌦m, 0  s  r, where C is independent of h.
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Proof. We already know the result for m = 1 (see (2.76)). Let m = 2. By triangle
inequality,

kv � ⇧

⌦2
k,hvkL2⇤k⌦L2⇤k

 kv � ⇧k,h ⌦ Id vkL2⇤k⌦L2⇤k + k⇧k,h ⌦ (Id� ⇧k,h) vkL2⇤k⌦L2⇤k

 ChskvkHs⇤k⌦L2⇤k + C⇡kv � Id⌦ ⇧k,hvkL2⇤k⌦L2⇤k

 ChskvkHs⇤k⌦L2⇤k + C C⇡h
skvkL2⇤k⌦Hs⇤k

 Chs
(1 + C⇡)kvkHs⇤k⌦Hs⇤k ,

where we used (2.76). By induction on m, we conclude (2.83).

From the approximation properties of the projector ⇧⌦m
k,h (2.83), it follows

Theorem 2.6.18 (Order of convergence of the FTP-FE discretization).����Mm


u

p

�
�M⌦m

s,h

����
V ⌦m

k

= O(hr
), (2.84)

provided that 
u

p

�
2 Lm

✓
⌦;


Hr

⇤

k
(D) \H�

D

⇤

k
(D)

Hr
⇤

k�1
(D) \H�

D

⇤

k�1
(D)

�◆

du

dp

�
2 Lm

✓
⌦;


Hr

⇤

k+1
(D) \H�

D

⇤

k+1
(D)

Hr
⇤

k
(D) \H�

D

⇤

k
(D)

�◆
.

2.6.4 Discrete m-th moment problem: sparse tensor product approximation

In Section 2.6.3 we proved the stability of the full tensor product finite element dis-
cretization V ⌦m

k,h = Vk,h ⌦ . . .⌦ Vk,h| {z }
m times

. The main problem of this approach is that it is

strongly affected by the curse of dimensionality. Indeed, if dim(Vk,h) = Nh, the space
V ⌦m
k,h has dimension (Nh)

m which is impractical for m moderately large. A reduction
in the dimensionality of the problem is possible if we consider a sparse tensor prod-
uct finite element (STP-FE) approximation instead (see e.g. [21, 56, 91, 92, 97] and the
references therein).

Let T0 be a regular mesh of the physical domain D ⇢ Rn, and {Tl}1l=0 be a sequence
of partitions obtained by uniform mesh refinement, that is hl = hl�1/2, where hl is the
discretization parameter of Tl. We have a sequence

�P�
r ⇤

k
(Tl)
 1
l=0

of finite dimen-
sional subspaces of the space Vk, which are nested and dense in Vk. Let us define the
orthogonal complement of P�

r ⇤
k
(Tl�1) in P�

r ⇤
k
(Tl): Sk,l = P�

r ⇤
k
(Tl) \ P�

r ⇤
k
(Tl�1),

and set Zk,l =


Sk,l

Sk�1,l

�
. For every integer m � 2, we define the sparse tensor product

finite element space of level L > 0, V (m)
k,L , as:

V (m)
k,L :=

M
|l|L

(Zk,l1 ⌦ . . .⌦ Zk,l
m

) , (2.85)
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where l is a multi index in Nm
0 and |l| is its length l1 + . . .+ lm. At the numerical level

it may not be needed to explicitly build a basis for Zk,l. In [55] the authors propose to
use a redundant basis for the space (2.85) and an algorithm to solve the m-th moment
problem in the sparse tensor product framework.

The sparse tensor product finite element (STP-FE) approximation of problem (2.50)
is:

m-Points Correlation Problem (STP-FE):

Given m � 2 integer and

F1

F2

�
2 Lm

(⌦;V 0
k) , find M (m)

s,L 2 V (m)
k,L s.t.

T⌦mM (m)
s,L = Mm


F1

F2

�
in
⇣
V (m)
k,L

⌘0 (2.86)

To prove the stability of (2.86) we can not use a tensor product argument as we did to
prove the stability of the FTP-FE discretization. We need to explicitly prove the inf-sup
condition for the tensor product operator T⌦m restricted to the STP-FE space V (m)

k,L . The
proof of this sparse inf-sup condition rests on two key ingredients. On one hand, we
make use of the continuous inf-sup operator P⌦m introduced in the proof of Theorem
2.4.13. On the other hand, we use a reasoning similar to the one proposed in [20] which
defines and uses the so-called GAP property: we seek for its analogue in the case of
STP-FE space, which will be called in what follows STP-GAP property. The main
ingredient of the STP-GAP property is the sparse tensorial projection operator ⇧(m)

kL .

Definition 2.6.19. Let ⇧k,h : H�
D

⇤

k
(D) ! P�

r,�
D

⇤

k
(Th) be a bounded cochain pro-

jector satisfying Assumption A3. Given m � 2 integer, we define

⇧

(m)
k,L :=

X
|l|L

⌦�k
j

,l
j

, (2.87)

where �k,l := ⇧k,h
l

� ⇧k,h
l�1

and k = (k1, . . . , km).

It is easy to verify that ⇧(m)
k,L is a bounded cochain projector. Moreover,

⇧

(m)
k,L

�
H�

D

⇤

k
(D)

�⌦m
=

M
|l|L

(Sk,l1 ⌦ . . .⌦ Sk,l
m

) , k = (k, . . . , k).

To lighten the notation, in what follows ⇧(m)
kL is denoted with ⇧

(m)
L when no ambiguity

arises.
We state the STP-GAP property for m = 2, but its generalization to m � 2 is

straightforward.

Lemma 2.6.20 (STP-GAP property). For every vh 2 ⇧

(2)
L

�
H�

D

⇤

k
(D)⌦H�

D

⇤

k
(D)

�
there exist 0 < s  1 and positive constants C(1), C(2), C(3), C(4) independent of h0
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such that���d⇡� ⌦ d⇡�vh � ⇧

(2)
L (d⇡� ⌦ d⇡�vh)

���
H⇤k⌦H⇤k

 C(1)hs
0 kvhkH⇤k⌦H⇤k

, (2.88)���d⇡� ⌦ ⇡?vh � ⇧

(2)
L

�
d⇡� ⌦ ⇡?vh

����
H⇤k⌦H⇤k

 C(2)hs
0 kvhkH⇤k⌦H⇤ , (2.89)���⇡? ⌦ d⇡�vh � ⇧

(2)
L

�
⇡? ⌦ d⇡�vh

����
H⇤k⌦H⇤k

 C(3)hs
0 kvhkH⇤k⌦H⇤k

, (2.90)���⇡? ⌦ ⇡?vh � ⇧

(2)
L

�
⇡? ⌦ ⇡?vh

����
H⇤k⌦H⇤k

 C(4)hs
0 kvhkH⇤k⌦H⇤k

, (2.91)

where ⇡?, ⇡� are defined in (2.12) and (2.13), respectively. Note that vh is uniquely
expressed as vh = d⇡� ⌦ d⇡�vh + d⇡� ⌦ ⇡?vh + ⇡? ⌦ d⇡�vh + ⇡? ⌦ ⇡?vh thanks to
the continuous Hodge decomposition (2.57).

Proof. Let vh 2 ⇧

(2)
L

�
H�

D

⇤

k
(D)⌦H�

D

⇤

k
(D)

�
, so that ⇧(2)

L vh = vh. Since ⇧

(2)
L is a

cochain map, it holds:

d⌦ d vh = d⌦ d⇧

(2)
L vh = ⇧

(2)
L d⌦ d vh, (2.92)

d⌦ Id vh = d⌦ Id⇧

(2)
L vh = ⇧

(2)
L d⌦ Id vh, (2.93)

Id⌦ d vh = Id⌦ d⇧

(2)
L vh = ⇧

(2)
L Id⌦ d vh. (2.94)

By definition of B?
k and Assumption A1, B?

k ⇢ H�
D

⇤

k \ H⇤
�
N

⇤

k, so that, thanks to
Assumption A2,

k�k,lwkL2⇤k

 C hs
l�1 kwkHs⇤k

 ˜C hs
l�1 kwkH⇤k

8w 2 B?
k . (2.95)

• Let us start proving inequality (2.91). To this end, we need to bound four quanti-
ties: ���⇡? ⌦ ⇡?vh � ⇧

(2)
L

�
⇡? ⌦ ⇡?vh

����
L2⇤k⌦L2⇤k

, (2.96)���d⇡? ⌦ ⇡?vh � ⇧

(2)
L

�
d⇡? ⌦ ⇡?vh

����
L2⇤k+1⌦L2⇤k

, (2.97)���⇡? ⌦ d⇡?vh � ⇧

(2)
L

�
⇡? ⌦ d⇡?vh

����
L2⇤k⌦L2⇤k+1

, (2.98)���d⇡? ⌦ d⇡?vh � ⇧

(2)
L

�
d⇡? ⌦ d⇡?vh

����
L2⇤k+1⌦L2⇤k+1

. (2.99)

Using that vh =

P+1
L=0

P
|l|=L �k,l1⌦�k,l2vh, the triangular inequality and (2.95),

(2.96) 
X
|l|>L

��
(�k,l1 ⌦�k,l2)

�
⇡? ⌦ ⇡?� vh��L2⇤k⌦L2⇤k

=

X
|l|>L

���
�k,l1⇡

? ⌦ Id

� �
Id⌦�k,l2⇡

?� vh��L2⇤k⌦L2⇤k


X
|l|>L

C hs
l1�1

���
Id⌦�k,l2⇡

?� vh��H⇤k⌦L2⇤k


X
|l|>L

C hs
l1�1 hs

l2�1 kvhkH⇤k⌦H⇤k

(2.100)
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where C > 0 is independent on hl 8l. Observing that

(d⌦ Id)

�
⇡? ⌦ ⇡?vh

�
= d⌦ ⇡?vh 2 ⇧k,L

�
H�

D

⇤

k
(D)

�⌦B?
k

so that (�k+1,l1 ⌦ Id)

�
d⌦ ⇡?vh

�
= 0 if l1 > L, we can bound (2.97):

(2.97) =
���d⌦ ⇡?vh � ⇧

(2)
L

�
d⌦ ⇡?vh

����
L2⇤k⌦L2⇤k


LX

l1=0

+1X
l2=L�l1+1

��
(�k+1,l1 ⌦�k,l2)

�
d⌦ ⇡?� vh��L2⇤k+1⌦L2⇤k


LX

l1=0

+1X
l2=L�l1+1

k�k+1,l1kL(L2⇤k+1,L2⇤k+1)

��
(Id⌦�k,l2)

�
d⌦ ⇡?� vh��L2⇤k+1⌦L2⇤k

 C
LX

l1=0

+1X
l2=L�l1+1

hs
l2�1 kd⌦ Id vhkL2⇤k+1⌦H⇤k

 C(L+ 1)

+1X
l2=1

hs
l2�1 kvhkH⇤k⌦H⇤k

 Chs
0 kvhkH⇤k⌦H⇤k

(2.101)

where we have used that k�k+1,l1kL(L2⇤k+1,L2⇤k+1) is bounded by a constant inde-
pendent of hl1 . By symmetry, we can obtain that

(2.98)  Chs
0 kvhkH⇤k⌦H⇤k

. (2.102)

Finally, using (2.92), we have

(d⌦ d)

�
⇡? ⌦ ⇡?� vh = d⌦d vh = d⌦d⇧

(2)
L vh = ⇧

(2)
L (d⌦ d)

�
⇡? ⌦ ⇡?� vh,

so that the quantity in (2.99) vanishes. Thus, putting together (2.100), (2.101),
(2.102), we conclude (2.91).

• Let us prove inequality (2.90). We need to bound two quantities:

���⇡? ⌦ d⇡� vh � ⇧

(2)
L

�
⇡? ⌦ d⇡�vh

����
L2⇤k⌦L2⇤k

, (2.103)���d⇡? ⌦ d⇡� vh � ⇧

(2)
L

�
d⇡? ⌦ d⇡�vh

����
L2⇤k+1⌦L2⇤k

. (2.104)

Since ⇡? ⌦ d⇡� vh = ⇡? ⌦ Id vh � ⇡? ⌦ ⇡? vh and ⇡? ⌦ Id vh 2 B?
k ⌦
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⇧k,L(H�
D

⇤

k
(D)), and using (2.91),

(2.103) 
���⇡? ⌦ Id vh � ⇧

(2)
L ⇡? ⌦ Id vh

���
L2⇤k⌦L2⇤k

+

���⇡? ⌦ ⇡? vh � ⇧

(2)
L ⇡? ⌦ ⇡? vh

���
L2⇤k⌦L2⇤k


LX

l2=0

+1X
l1=L+1�l2

��
(�k,l1 ⌦�k,l2)

�
⇡? ⌦ Id

�
vh
��
L2⇤k⌦L2⇤k

+ C hs
0 kvhkH⇤k⌦H⇤k


LX

l2=0

+1X
l1=L+1�l2

k�k,l2kL(L2⇤k,L2⇤k) hs
l1�1 kvhkH⇤k⌦H⇤k

+ C hs
0 kvhkH⇤k⌦H⇤k

 C hs
0 kvhkH⇤k⌦H⇤k

. (2.105)

Moreover, using (2.91)

(2.104) 
���d⇡? ⌦ Id vh � ⇧

(2)
L d⇡? ⌦ Id vh

���
L2⇤k+1⌦L2⇤k

+

���d⇡? ⌦ ⇡? vh � ⇧

(2)
L d⇡? ⌦ ⇡? vh

���
L2⇤k+1⌦L2⇤k

 C hs
0 kvhkH⇤k⌦H⇤k

. (2.106)

In the last inequality we exploited (2.93), which implies that d⇡? ⌦ Id vh =

d⌦ Id vh = d⌦ Id ⇧

(2)
L vh = ⇧

(2)
L d⇡? ⌦ Id vh, so that���d⇡? ⌦ Id vh � ⇧

(2)
L d⇡? ⌦ Id vh

���
L2⇤k+1⌦L2⇤k

= 0.

Using (2.105) and (2.106) we conclude (2.90).

• To show (2.89), we write vh as vh = Id⌦ d⇡� vh + Id⌦ ⇡? vh and proceed as in
the proof of (2.90).

• To show (2.88) we observe that���d⇡� ⌦ d⇡�vh � ⇧

(2)
L (d⇡� ⌦ d⇡�vh)

���
H⇤k⌦H⇤k

=

���⇣Id⌦ Id� ⇧

(2)
L

⌘�
Id⌦ Id� d⇡� ⌦ ⇡? � ⇡? ⌦ d⇡� � ⇡? ⌦ ⇡?� vh���

H⇤k⌦H⇤k


���vh � ⇧

(2)
L vh

���
H⇤k⌦H⇤k

+

���d⇡� ⌦ ⇡? vh � ⇧

(2)
L d⇡� ⌦ ⇡? vh

���
H⇤k⌦H⇤k

+

���⇡? ⌦ d⇡� vh � ⇧

(2)
L ⇡? ⌦ d⇡� vh

���
H⇤k⌦H⇤k

+

���⇡? ⌦ ⇡? vh � ⇧

(2)
L ⇡? ⌦ ⇡? vh

���
H⇤k⌦H⇤k

and we conclude (2.88) using that vh = ⇧

(2)
L vh, and (2.89), (2.90), (2.91).

We are now ready to prove the main result of this section. It deals with vector
quantities in Vk. In this context, ⇧(m)

L denotes the projector from V ⌦m
k onto V (m)

k,L .
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Theorem 2.6.21 (Stability of the STP-FE discretization). For every ↵ � 0 there exists
¯h0 > 0 such that for all h0  ¯h0 problem (2.86) is a stable discretization for the
m-th moment problem (2.50). In particular, for every M (m)

s,L 2 V (m)
k,L , there exists a test

function M (m)
t,L 2 V (m)

k,L and positive constants Cm,disc = Cm,disc (Cm) (Cm is introduced

in (2.52)), C 0
m,disc = C 0

m,disc

✓
↵, kPkL(V

k

,V
k

) ,
���⇧(m)

L

���
L(V ⌦m

k

,V
(m)
k,L

)
, kTkL(V

k

,V 0
k

)

◆
s.t.

D
T⌦mM (m)

s,L ,M (m)
t,L

E
⇣
V

(m)
k,L

⌘0
,V

(m)
k,L

� Cm,disckM (m)
s,L k2

V ⌦m

k

, (2.107)

kM (m)
t,L kV ⌦m

k

 C 0
m,disckM (m)

s,L kV ⌦m

k

. (2.108)

Proof. Suppose ↵ > 0 (the case ↵ = 0 is analogous). We fix M (m)
s,L 2 V (m)

k,L and look
for a sparse test function M (m)

t,L 2 V (m)
k,L such that (2.107) and (2.108) are satisfied. We

choose M (m)
t,L = ⇧

(m)
L P⌦m M (m)

s,L . Thanks to Proposition 2.4.8 and the boundness of the
operators P and ⇧

(m)
L , we immediately conclude (2.108). In the proof of (2.107), we

use brackets h·, ·i without specifying the spaces taken into account, when no ambiguity
arises.D

T⌦mM (m)
s,L ,M (m)

t,L

E
=

D
T⌦mM (m)

s,L ,⇧(m)
L P⌦m M (m)

s,L

E
=

D
T⌦mM (m)

s,L , P⌦mM (m)
s,L

E
�
D
T⌦mM (m)

s,L ,
⇣
Id

⌦m � ⇧

(m)
L

⌘
P⌦m M (m)

s,L

E
.

We observe that, thanks to the continuous inf-sup condition (2.52),D
T⌦mM (m)

s,L , P⌦mM (m)
s,L

E
� Cm

���M (m)
s,L

���2
V ⌦m

k

, (2.109)

and, from Lemma 2.6.20,D
T⌦mM (m)

s,L ,
⇣
Id

⌦m � ⇧

(m)
L

⌘
P⌦m M (m)

s,L

E
 kTkmL(V

k

,V 0
k

)

���M (m)
s,L

���
V ⌦m

k

���⇣Id⌦m � ⇧

(m)
L

⌘
P⌦m M (m)

s,L

���
V ⌦m

k

 C hs
0 kTkmL(V

k

,V 0
k

)

���M (m)
s,L

���2
V ⌦m

k

.

Therefore, for h0 sufficiently small, (2.107) follows.

Another way to express the result given in Theorem 2.6.21 is the following: 8M (m)
s,L

it holds D
T⌦mM (m)

s,L ,⇧(m)
L P⌦mM (m)

s,L

E
⇣
V

(m)
k,L

⌘0
,V

(m)
k,L

� Cm,disc

���M (m)
s,L

���2
V ⌦m

k

.

Remark 2.6.22. Note that the choice of the set of multi-indexes I := {l 2 Nm
: |l|  L}

is not the only possible in (2.85). Indeed, with the same technique showed in the proof
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of Theorem 2.6.21 it is possible to prove the stability of any

V (m)
k,L :=

M
l2⇤(L)

Zk,l1 ⌦ · · ·⌦ Zk,l
m

,

provided that V (m)
k,L contains V ⌦m

k,l0
for a sufficiently small hl0 . However, since the m-

th moment problem has a tensor product structure, we believe that the set I is the
recommended one.

Let Mm


u

p

�
be the unique solution of problem (2.50) and M (m)

s,L be the unique

solution of problem (2.86). Exploiting the Galerkin orthogonality and the stability of
the discretization, we can obtain the following quasi-optimal convergence estimate:����Mm


u

p

�
�M (m)

s,L

����
V ⌦m

k

 C inf

M
(m)
t,L

2V (m)
k,L

����Mm


u

p

�
�M (m)

t,L

����
V ⌦m

k

. (2.110)

To state the approximation properties of the sparse projector ⇧(m)
L and, as a conse-

quence, of the sparse space V (m)
k,L we need the following technical lemma. See Appendix

for the proof.

Lemma 2.6.23. It holds:

X
|l|>L

2

��|l|
=

m�1X
i=0

✓
1

2

� � 1

◆m�i✓ L+m

i

◆
2

��L 
✓

1

1� 2

���

◆m

2

�L�(1��)

(2.111)
for every real � > 0 and integer L > 0, with 0 < � < 1.

Proposition 2.6.24. The projector ⇧(m)
L introduced in Definition 2.6.19 is such that

kv � ⇧

(m)
L vk(L2⇤k)⌦m  Chs(1��)

L kvk(Hs⇤k)⌦m , (2.112)

0 < � < 1, for all v 2 (Hs
�
D

⇤

k
(D))

⌦m, 0 < s  r, where C = C(m,�, s) is
independent of hL.

Proof. Following [21], we proceed in three steps. We start considering the approxima-
tion properties of �k,l. Using the triangular inequality and (2.76) we have:����k,l ⌦ Id

⌦(m�1)v
���
(L2⇤k)⌦m

 Chs
l�1 kvkHs⇤k⌦(L2⇤k)⌦(m�1) ,

for every 0 < s  r. Now, we consider the tensor product ⌦m
j=1�k,l

j

. By recursion,��⌦m
j=1�k,l

j

v
��
(L2⇤k)⌦m

 Chs
l�1 kvk(Hs⇤k)⌦m

,

61



i
i

“Bonizzoni_thesis” — 2013/5/3 — 8:25 — page 62 — #72 i
i

i
i

i
i

Chapter 2. Moment equations for the mixed stochastic Hodge Laplacian

where hs
l�1 = hs

l1�1 . . . h
s
l
m

�1. Finally, using (2.6.23):

���v � ⇧

(m)
L v

���
(L2⇤k)⌦m

=

������
X
|l|>L

⌦m
j=1�k,l

j

v

������
(L2⇤k)⌦m


X
|l|>L

��⌦m
j=1�k,l

j

v
��
(L2⇤k)⌦m


X
|l|>L

Chs
l�1 kvk(Hs⇤k)⌦m

= C kvk(Hs⇤k)⌦m

hsm
0

X
|l|>L

2

�s|l�1|

= C kvk(Hs⇤k)⌦m

hsm
0 2

sm
X
|l|>L

2

�s|l|

 C kvk(Hs⇤k)⌦m

hsm
0 2

sm
2

�Ls(1��)

✓
1

1� 2

�s�

◆m

= C kvk(Hs⇤k)⌦m

✓
2

shs
0

1� 2

�s�

◆m

2

�Ls(1��)

for every 0 < s  r.

It follows

Theorem 2.6.25 (Order of convergence of the STP-FE discretization).����Mm


u

p

�
�M (m)

s,L

����
V ⌦m

k

= O(hr(1��)
L ), (2.113)

0 < � < 1, provided that
u

p

�
2 Lm

✓
⌦;


Hr

⇤

k
(D) \H�

D

⇤

k
(D)

Hr
⇤

k�1
(D) \H�

D

⇤

k�1
(D)

�◆

du

dp

�
2 Lm

✓
⌦;


Hr

⇤

k+1
(D) \H�

D

⇤

k+1
(D)

Hr
⇤

k
(D) \H�

D

⇤

k
(D)

�◆
.

The previous theorem states that the STP - FE approximation has almost the same
rate of convergence as the FTP - FE. On the other hand, the great advantage of the
sparse approximation with respect to the full one is represented by a drastic reduction
of the dimensionality of the sparse finite element space.

2.7 Conclusions

The present work addresses the mixed formulation of the Hodge Laplacian defined on
a n-dimensional domain D ✓ Rn, (n � 1), with stochastic forcing terms. The well-
posedness of this problem is equivalent to the inf-sup condition of a suitable bounded
bilinear and symmetric form hT ·, ·i coming from the weak formulation of the mixed
Hodge Laplacian.

We have studied the moment equations, i.e. the deterministic equations solved by
the statistical moments of the unique stochastic solution. In particular, if T is the (de-
terministic) operator that defines the starting problem, we show that the m-th moment
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2.7. Conclusions

equation involves the tensor product operator T⌦m
:= T ⌦ · · ·⌦ T| {z }

m times

. The main achieve-

ment of the paper has been to characterize an operator P and its tensorial version P⌦m

that allows us to construct suitable test functions to prove the inf-sup condition for
the tensor problem hT⌦m·, ·i both at the continuous level and at the discrete level with
full or sparse FE discretizations. By this tool we have been able to show that known
stable FE approximations for the deterministic problem are also stable and optimally
convergent for the tensorial problem both in the full and sparse versions.

Appendix

Proof of Lemma 2.6.23. To prove the equality, we observe thatX
|l|>L

2

��|l|
=

1X
j=L+1

X
|l|=j

2

��j
=

1X
j=L+1

✓
j +m� 1

m� 1

◆
2

��j.

It is sufficient to show that
1X

j=L+1

✓
j +K � 1

m� 1

◆
2

��j
=

m�1X
i=0

✓
1

2

� � 1

◆m�i✓ L+K

i

◆
2

��L. (2.114)

for every integer K. We prove (2.114) by induction on m. If m = 1,
1X

j=L+1

✓
j +K � 1

0

◆
2

��j
=

2

��(L+1)

1� 2

��
=

1

2

� � 1

2

��L.

Let us assume the result true for m� 1. Then
1X
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✓
j +K � 1

m� 1

◆
2

��j
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2
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2

��j

=

1
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✓
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◆�
2
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��j
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1
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✓
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��i �
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��L
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��L
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Applying recursively the previous equality we get:
1X

j=L+1

✓
j +K � 1

m� 1

◆
2

��j
=

m�1X
i=0

✓
1

2

� � 1
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◆
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��L.
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Let us now show the inequality. Let 0 < � < 1.

m�1X
i=0

✓
1

2

� � 1

◆m�i✓ L+m

i

◆
2

��L 
m�1X
i=0

✓
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2
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i

◆
2

��L

=

2

��L

(2

�� � 1)

m

m�1X
i=0

(2

�� � 1)

i
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L+m

i

◆
 2

��L

(2

�� � 1)

m

�
2

��
�L+m

=

✓
1

1� 2

���

◆m

2

�L�(1��).
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CHAPTER3
Perturbation analysis for the Darcy problem with

lognormal permeability tensor

This chapter is based on a paper in preparation: F. Bonizzoni, F. Nobile, Perturba-
tion analysis for the Darcy problem with lognormal permeability. A short version can
be found in F. Bonizzoni, F. Nobile, Perturbation analysis for the stochastic Darcy
problem. Proceeding in the European Congress on Computational Methods in Applied
Sciences and Engineering (ECCOMAS 2012).

3.1 Introduction

The situation we are interested in is the steady single-phase flow of a fluid in a randomly
heterogeneous saturated porous medium. Here randomness typically arises in the forc-
ing terms, as for instance pressure gradients, as well as in the permeability tensor, due
to the impossibility of a full characterization of conductivity properties of subsurface
media. See for example [14,36,51,52,93,99,100]. The case of stochastic forcing term
has been treated in Chapter 2, whereas in this chapter we focus on the following linear
elliptic SPDE

� divx(a(!, x)rxu(!, x)) = f(x), (3.1)

where the forcing term is deterministic and the permeability tensor is modeled as a
lognormal random field, i.e. a(!, x) = eY (!,x) with Y (!, x) a Gaussian random field.
We treat this problem for small randomness by a perturbation approach, expanding the
solution in Taylor series. The goal of the work is to infer on the solution of the Darcy
problem (3.1) using its Taylor polynomial.

The Taylor polynomial is directly computable if the permeability field is parametrized
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Chapter 3. Perturbation analysis for the stochastic Darcy problem

by a finite number of independent random variables, i.e.

a(!, x) = a(Y1(!), . . . , YN(!), x).

See for example [9], where the permeability tensor is described as a linear combination
of bounded random variables. On the other hand, if the permeability field is an infinite-
dimensional random field, it becomes necessary to derive the equations solved by the
moments of the k-th derivative of the stochastic solution with respect to the Gaussian
field Y . See [56], where the authors consider a domain with random boundary pertur-
bations, [51,52,93,99] from the engineering literature, where a lognormal permeability
field is considered, and [33], where the permeability field is a linear combination of
countably many bounded random variables.

In the literature, when an infinite-dimensional random field is taken into account,
the majority of the authors computes only a second order correction. The aim of the
present work is both to understand if it is useful to compute higher order corrections
and to determine the appropriate order of the Taylor polynomial to achieve a prescribed
accuracy. This work can been seen on the one hand as an extension and theoretical
analysis of [51,52,93,99], and, on the other hand, as an extension of [33] to the case of
a lognormal random field. In particular, we predict the divergence of the Taylor series
in the case of lognormal permeability.

The outline of the chapter is the following. In order to understand how the Taylor
series of an illustrative analytic function u : R ! R of a Gaussian random variable
behaves, in Section 3.2 we present two examples. Section 3.3 introduces the problem
at hand and states some results on the statistical moments of the extrema of a Gaussian
random field. In Section 3.4 we expand the stochastic solution in Taylor series, provide
bounds on the L1

(⌦;H1
(D)) and L2

(⌦;H1
(D)) norms of the Taylor polynomial and

predict the divergence of the Taylor series. Moreover, we state the existence and provide
a formula to compute the optimal order of the Taylor polynomial such that, adding new
terms to the Taylor polynomial will deteriorate the accuracy instead of improving it.
Section 3.5 is dedicated to the case of a finite-dimensional permeability field. Finally, in
Section 3.6 we perform some numerical tests in a one-dimensional case which confirm
the divergence of the Taylor series predicted in Section 3.4.

3.2 Taylor expansion: preliminary examples

Let us consider problem (3.1), where the permeability is modeled as a lognormal
random field, i.e. a(!, x) = eY (!,x), with Y (!, x) a centered Gaussian random field.
Thanks to the Doob-Dynkin Lemma (see e.g. [84]), u(!, x) = u(Y (!, x), x). The aim
of the chapter is to understand the approximation properties of the Taylor polynomial
of u centered in Y = 0 with respect to the L1

(⌦;H1
(D)) and L2

(⌦;H1
(D)) norms.

We start with an illustrative section in which Y is a random variable and u : R ! R
is an analytic function of y = Y (!) and is independent of the spatial variable x. The
Taylor series of u centered in y0 = 0 converges in I ✓ R. Considering a centered
Gaussian measure on R, if I = R, we do expect that the expected value of the K-th
order Taylor polynomial converges to the expected value of u as K ! +1. This
fact is illustrated in the first example, which can be obtained from problem (3.1) with
a(y) = e�y. The second example shows that this result doesn’t hold anymore if I ⇢ R.
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3.2. Taylor expansion: preliminary examples

3.2.1 Exponential function
Let us denote with L1

⇢(R) the space of integrable functions with respect to the centered

Gaussian measure with standard deviation � > 0, ⇢(y) =
1p
2⇡�

e�
y

2

2�2 , that is, the

space of functions v with finite expected value

E [v] :=

Z +1

�1
v(y) d⇢(y) =

1p
2⇡�

Z +1

�1
v(y) e�

y

2

2�2 dy < +1.

Let u(y) = ey. The K-th order Taylor polynomial of u centered in y0 = 0 is:

TKu(y) :=
KX
k=0

u(k)
(0)

k!
yk =

KX
k=0

yk

k!
8y 2 R.

It is easy to verify that the Taylor series is absolutely convergent everywhere in R and
converges exactly to the function u:

u(y) = lim

K!+1
TKu(y) =

+1X
k=0

yk

k!
8y 2 R.

The expected value of u is:

E [u] =
1p
2⇡�

Z +1

�1
ey e�

y

2

2�2
= e

�

2

2 < +1,

so that u 2 L1
⇢(R). Since

��TKu(y)
��  KX

k=0

|y|k
k!

 e|y| 2 L1
⇢(R), thanks to the domi-

nated convergence theorem we conclude that, for every � > 0,

E [u] = lim

K!1
E
⇥
TKu

⇤
. (3.2)

For completeness, we present also the direct computation. We recall that the moments
of a Gaussian distribution are

E
⇥
yk
⇤
=

1p
2⇡�

Z +1

�1
yk e�

y

2

2�2 dy =

⇢
0 if k is odd,
�k

(k � 1)!! if k is even, k � 1.

Hence,

lim

K!+1
E
⇥
TKu(y)

⇤
= lim

K!+1

[K/2]X
l=0

E
⇥
y2l
⇤

(2l)!
= lim

K!+1

[K/2]X
l=0

�2l
(2l � 1)!!

(2l)!

= lim

K!+1

[K/2]X
l=0

�2l

2

l
(l)!

= e
�

2

2 ,

where we denoted with

K

2

�
the integer part of

K

2

, and we used the convention

(�1)!! = 1. We conclude that (3.2) is verified for every � > 0.

67



i
i

“Bonizzoni_thesis” — 2013/5/3 — 8:25 — page 68 — #78 i
i

i
i

i
i
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3.2.2 Rational function

Let u(y) =
1

1 + y2
. The K-th order Taylor polynomial of u in y0 = 0 is:

TKu(y) =
KX
k=0

(�1)

ky2k.

It is easy to verify that the Taylor series is point-wise convergent to u in the open
interval I = (�1, 1), that is:

u(y) = lim

K!+1
TKu(y) =

+1X
k=0

(�1)

ky2k 8 y 2 I.

As before, we want to study the behavior of the expected value of the Taylor poly-

nomial with respect to the Gaussian measure ⇢(y) =
1p
2⇡�

e�
y

2

2�2 , with � > 0. The

expected value of u is:

E [u] =
1p
2⇡�

Z +1

�1

1

1 + y2
e�

y

2

2�2  1p
2⇡�

Z +1

�1
e�

y

2

2�2
= 1 < +1,

so that u 2 L1
⇢(R). The expected value of the Taylor polynomial is

E
⇥
TKu(y)

⇤
=

KX
k=0

E
⇥
(�1)

k y2k
⇤
=

KX
k=0

(�1)

kE
⇥
y2k
⇤
=

KX
k=0

(�1)

k�2k
(2k � 1)!!.

Observe that

KX
k=1

(�1)

k�2k
(2k � 1)!! =

[K/2]X
l=1

�
�4l

(4l � 1)!!� �4l�2
(4l � 3)!!

�
=

[K/2]X
l=1

�
�2
(4l � 1)� 1

�
�4l�2

(4l � 3)!!,

where �2
(4l � 1)� 1 > 0 iff l >

1

4

✓
1

�2
+ 1

◆
. Using Stirling’s formula:

�4l�2
(4l � 3)!! = �4l�2 (4l � 2)!

2

2l�1
(2l � 1)!

⇠
p
2

✓
2�2

(2l � 1)

e

◆2l�1

�! +1,

so that E
⇥
TKu(y)

⇤ �! +1.
In Figure 3.1(a) we plot in semilogarithmic scale the sequence

{sk}k :=
�
�2k

(2k � 1)!!

 
k
.

We notice that there exists k� depending on � such that, for k  k� the behavior of the
sequence is dominated by the exponential factor �2k and the sequence in decreasing,
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Figure 3.1: 3.1(a): First 100 elements of the sequence
�
�2k

(2k � 1)!!

 
as a function of k in semilog-

arithmic scale for different values of the standard deviation �. 3.1(b): First 100 elements of the
sequence

n���PK

k=1(�1)

k�2k
(2k � 1)!!

���o as a function of the order of the Taylor polynomial K for
different value of �.

whereas, for k > k�, the bifactorial term prevails and the sequence starts increasing.
This fact reflects on the behavior of the sequence

{SK}K :=

(�����
KX
k=1

(�1)

k�2k
(2k � 1)!!

�����
)

K

which starts diverging for K such that sK � 1 (see Figure 3.1(b)).

3.3 Problem setting

3.3.1 Well-posedness of the stochastic Darcy problem
Let (⌦,F ,P) be a complete probability space, where ⌦ is the set of outcomes, F the �-
algebra of events and P : ⌦ ! [0, 1] a probability measure. Let D be an open bounded
domain in Rd (d = 2, 3) and f : D ! R be a square integrable function defined on
D. We are interested in the following stochastic linear elliptic boundary value problem,
that is the stochastic Darcy problem: find a random field u : ⌦⇥ ¯D ! R such that8><>:

�divx (a(!, x)rxu(!, x)) = f(x) x 2 D, ! 2 ⌦

u(!, x) = g(x) x 2 �D, ! 2 ⌦

a(!, x)rxu(!, x) · n = 0 x 2 �N , ! 2 ⌦

(3.3)

where {�D, �N} is a partition of the boundary of the domain @D, divx, rx are differ-
ential operators with respect to the spatial variable x and n is the outward normal unit
vector to @⌦. We require equation (3.3) to be satisfied P-almost everywhere in ⌦ or,
in other words, almost surely (a.s.). Here a : ⌦ ⇥ ¯D ! R is a random field which
represents the uncertain permeability in the heterogeneous porous medium D, u repre-
sents the hydraulic head, v = �aru the velocity field and �N an impervious boundary.
We look for the solution in the Bochner space Lp

(⌦;H1
(D)), p > 0, that is the space
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of functions v(!, x) such that kvkLp(⌦;H1) :=

✓Z
⌦

kv(!)kpH1 dP(!)
◆1/p

< 1. See

e.g. [35]. If p = 2, this space is a Hilbert space with the natural inner product

(v(!, x), w(!, x))L2(⌦;H1(D))

:=

Z
⌦

✓Z
D

v(!, x)w(!, x) dx

◆
dP(!) +

Z
⌦

✓Z
D

rxv(!, x) ·rxw(!, x) dx

◆
dP(!),

and is canonically isomorphic to the tensor product space L2
(⌦,P) ⌦ H1

(D). (See
e.g. [85]).

The weak formulation of (3.3) is:

Stochastic Darcy problem - weak formulation
Given f 2 L2

(D) and g 2 H1/2
(�D),

find u 2 Lp
(⌦;H1

(D)) s.t. u|�
D

= g a.s., and

Z
D

a(!, x)rxu(!, x) ·rxv(x) dx =

Z
D

f(x)v(x) dx

8v 2 H1
�
D

(D), a.s. in ⌦.

(3.4)

We denoted with H1
�
D

(D) the subspace of H1
(D) of functions whose trace vanishes on

�D. Let us assume

A1 : The permeability field a 2 Lp
�
⌦;C0

(

¯D)

�
for every p 2 (0,1).

Then, the quantities

amin(!) := min

x2D̄
a(!, x) (3.5)

amax(!) := max

x2D̄
a(!, x) (3.6)

are well defined, and amax 2 Lp
(⌦) for every p 2 (0,+1). Moreover, we assume

A2 : amin(!) > 0 a.s.,
1

amin(!)
2 Lp

(⌦) for every p 2 (0,1).

We recall here the well posedness result of problem (3.4), based on the Lax Milgram
Lemma. See [24, 41, 47].

Theorem 3.3.1. If the permeability field a(!, x) satisfies A1, A2, then problem (3.4)
is well-posed for every p 2 (0,1), that is it admits a unique solution that depends
continuously on the data.

Proof. By an application of the Lax Milgram Lemma, for every fixed ! 2 ⌦ we con-
clude the existence of a unique u(!, ·) 2 H1

�
D

(D) a.s. such that

ku(!, ·)kH1(D) 
p

C2
P + 1

amin(!)
kfkL2(D),
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where CP is the Poincaré constant. By applying the Lp-norm in probability and using
A2, we conclude

E
h
kukpH1(D)

i1/p

q

C2
P + 1 E


1

(amin(!))
p

�1/p
kfkL2(D) < 1.

3.3.2 The lognormal model

A frequently used model in geophysical applications describes the permeability field
a(!, x) as a lognormal random field, that is a(!, x) = eY (!,x), where Y : ⌦ ⇥ ¯D ! R
is a Gaussian random field. See for example [14, 36, 51, 52, 93, 99, 100]. Let us define
the mean-free Gaussian random field Y 0

(!, x) := Y (!, x)�E [Y ] (x), and assume that
its covariance kernel, CovY 0

: D ⇥ D ! R, is Hölder continuous with exponent t for
some 0 < t  1. Then, the following result holds, which extends the result in [24]
obtained only for centered stationary second order random fields Y with covariance
function:

CovY (x1, x2) = ⌫(kx1 � x2k)
for some ⌫ 2 C0,1

(R+
).

Proposition 3.3.2. Let Y : ⌦ ⇥D ! R be a Gaussian random field, and Y 0
(!, x) :=

Y (!, x)� E [Y ] (x) with covariance function CovY 0 2 C0,t
(D ⇥D) for some 0 < t 

1. Suppose E [Y ] 2 C0,t/2
(

¯D). Then it holds

sup

x1,x2

E
"
|Y 0

(!, x1)� Y 0
(!, x2)|2p

kx1 � x2ktp
#1/2p

< +1, 8p > 0. (3.7)

Moreover, there exists a version of Y whose trajectories belong to C0,↵
(

¯D) a.s. for
0 < ↵ < t/2.

Proof. We have:

E
h
|Y 0

(!, x1)� Y 0
(!, x2)|2

i
= E

⇥
(Y 0

)

2
(!, x1)

⇤
+ E

⇥
(Y 0

)

2
(!, x2)

⇤� 2E [Y 0
(!, x1)Y

0
(!, x2)]

= CovY 0
(x1, x1) + CovY 0

(x2, x2)� 2CovY 0
(x1, x2)

=

CovY 0
(x1, x1)� CovY 0

(x1, x2)

k(x1, x1)� (x1, x2)kt
k(x1, x1)� (x1, x2)kt

+

CovY 0
(x2, x2)� CovY 0

(x1, x2)

k(x2, x2)� (x1, x2)kt
k(x2, x2)� (x1, x2)kt

 2 CH kx1 � x2kt

where CH is the Hölder continuity constant of CovY 0 . Since Y 0
(!, x1)� Y 0

(!, x2) is a
mean free Gaussian random variable,

E
h
|Y 0

(!, x1)� Y 0
(!, x2)|2p

i
 Cp E

h
|Y 0

(!, x1)� Y 0
(!, x2)|2

ip
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Chapter 3. Perturbation analysis for the stochastic Darcy problem

for every positive integer p, where Cp = (2p� 1)!!. Hence,

E
h
|Y 0

(!, x1)� Y 0
(!, x2)|2p

i
 Cp(2 CH)

p kx1 � x2ktp ,

so that (3.7) is verified. Using the Kolmogorov continuity theorem, we deduce the
existence of a version of Y Hölder continuous with exponent ↵ < (tp� d)/2p. Letting
p ! +1, we obtain ↵ < t/2.

In what follows, we identify the Hölder regular version of the field with Y (!, x), so
that kY (!)kL1(D), amin(!) and amax(!) are well-defined random variables. Using the
Fernique’s theorem (see e.g. [34]), in [24] the author shows that

1

amin(!)
2 Lp

(⌦,P) 8 p > 0, amax(!) 2 Lp
(⌦,P) 8 p > 0.

Hence, A1 and A2 are satisfied, and problem (3.4) is well posed. In the rest of the
chapter we assume the permeability field of the heterogeneous porous medium D to be
lognormal random field as described before.

3.3.3 Conditioned Gaussian fields

From the point of view of applications it is very interesting to study also the case of a
random field conditioned to available observations. Take for example the fluid flow in a
heterogeneous porous medium: the permeability varies randomly, and can be measured
only in a certain number of spatial points. Assuming that Noss point-wise measurements
of the permeability have been collected (e.g. by exploratory wells), one can construct
a conditioned random field Y whose covariance function is non-stationary, but still
Hölder continuous.

To define a conditioned field, we start from the following classical result of multi-
variate statistical analysis. See e.g. [4].

Proposition 3.3.3. Let X(!) = (X1(!), . . . , XN(!)) be a random vector composed of
two sub vectors X(1)

= (X(1)
1 , . . . , X(1)

N1
), X(2)

= (X(2)
1 , . . . , X(2)

N2
), with N2 = N�N1.

Suppose that X ⇠ N (µ,⌃), where

µ =

"
µ(1)

µ(2)

#
, ⌃ =


⌃11 ⌃12

⌃21 ⌃22

�
,

µ(i) being the mean of X(i), i = 1, 2, and ⌃i,j being the covariance matrix of X(i)

and X

(j), i, j = 1, 2. Then, the conditioned random vector Xcond, defined as X

(1)

given X

(2)
= x

(2), is Gaussian with mean µcond and covariance matrix ⌃cond given
respectively by

µcond = µ(1)
+ ⌃12⌃

�1
22 (x

(2) � µ(2)
) (3.8)

⌃cond = ⌃11 � ⌃12⌃
�1
22 ⌃21. (3.9)

Suppose, for simplicity, the Gaussian random field Y (!, x) to be stationary, with
expected value µ and covariance function CovY . Let Noss be the number of point-wise
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available measurements whose coordinates and values are {xo
i}Noss

i=1 and {yo}Noss

i=1 re-
spectively, and define the Gaussian random vector X(2)

:= (Y (!, xo
1), . . . , Y (!, xo

N
oss

)).
Proposition 3.3.3 states that

Ycond(!, x) :=
�
Y (!, x)| X(2)

(!) = (yo1, . . . , y
o
N

oss

)

�
is a Gaussian random field with

E [Ycond] (x) = µ+

X
i,j

(⌃

�1
)i,j(y

o
j � µ)CovY (x, x

o
i ), (3.10)

CovY
cond

(x1, x2) = CovY (x1, x2)�
X
i,j

(⌃

�1
)i,jCovY (x1, x

o
i )CovY (x

o
j , x2), (3.11)

where ⌃ is the covariance matrix of X(2). Therefore, if CovY 2 C0,t
(D ⇥D), then

E [Ycond] 2 C0,t
(

¯D) and CovY
cond

2 C0,t
(D ⇥D), so that Proposition 3.3.2 holds.

3.3.4 Upper bounds for the statistical moments of kY 0kL1(D)

We derive two upper bounds for the statistical moments of the well-defined random
variable kY 0kL1(D). The first estimate is inspired from [24] and is obtained by per-
forming a spectral decomposition of the non-stationary random field Y . On the other
hand, the second one holds only for smooth fields and exploits the Euler characteris-
tic heuristic method, which consists in the approximation of the upper tail probability
of the maximum of a random field using the Euler characteristic of the excursion set
(see [1]).

We denote with �2
:=

1

|D|
Z
D

Var [Y (!, x)] dx. If Y (!, x) is a stationary field,

then its variance is independent of x 2 D and coincides with �2. By a little abuse of
notation, in what follows we will refer to � as the standard deviation of Y also in the
case of a non-stationary random field.

We start recalling the well known Karhunen-Loève expansion of a random field.
[43, 70, 72, 73].

Proposition 3.3.4 (Karhunen-Loève expansion). Let Y (!, x) be a random field, with
continuous covariance function CovY (x1, x2). Let T be the linear, symmetric and com-
pact operator defined as

T : L2
(D) ! L2

(D),

� 7!
Z
D

CovY (x1, x2)�(x2) dx2.

Then,

Y (!, x) = E [Y ] (x) +
+1X
j=1

p
�j �j(x) ⇠j(!), (!, x) 2 ⌦⇥D, (3.12)

where {�j}j�1 is the decreasing sequence of non-negative eigenvalues of T , {�j(x)}j�1

are the corresponding eigenfunctions, which form an orthonormal basis for L2
(D), and
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Chapter 3. Perturbation analysis for the stochastic Darcy problem

{⇠j(!)}j�1 are the centered uncorrelated random variables with unit variance defined
as

⇠j(!) =
1p
�j

Z
D

(Y (!, x)� E [Y ] (x))�j(x) dx.

Moreover, it holds Z
D

Var [Y (·, x)] dx =

+1X
j=1

�j. (3.13)

Recall that we assumed Y (!, x) to be a Gaussian random field. Hence, ⇠j(!) =

1p
�j

Z
D

Y 0
(!, x) �j(x) dx is a Gaussian random variable for every j � 1, {⇠j}j�1 are

independent and �j are proportional to �2: �j = �2e�j 8 j � 1.
We make the following

Assumption A1.

1. �j is Hölder continuous with exponent 0 < �  1 for every j � 1.

2. R� :=

+1X
j=1

e�j k�jk2C0,�(D̄) < +1.

Assumption A1 is fulfilled in many practical models such as an exponential or Gaus-
sian covariance function. Following [24], it is possible to show that, for any � as in
Assumption A1 and any � < �,

kY 0kLk

(

⌦;C0,�(D̄)
)

 C1/k
p

R� � ((k � 1)!!)

1/k , 8k > 0

where C is a positive constant independent of k and �. In particular,

E
h
kY 0kkL1(D)

i
 C Rk/2

� �k
(k � 1)!!, 8k > 0. (3.14)

An estimate of the type (3.14) can also be obtained with a different approach which,
however, is valid only for smooth fields. In [1] the authors propose to approximate the
upper tail probability of the maximum of a smooth random field using the Euler char-
acteristic of the excursion set. This method is known as Euler characteristic heuristic.

Assumption A2. The domain is a d-dimensional rectangle D = [0, T ]d. The centered
Gaussian field Y 0

(!, x) is stationary and satisfies the following regularity assumptions:

• Y 0 is C2 on an open neighborhood of D.

• Y 0 does not present degenerate critical points on the n-th dimensional boundary
@nD of D, for each n = 0, . . . , d.

• Y 0|@
n

D does not present critical points on [n�1
j=0@j�iD for each n = 0, . . . , d.

Lemma 3.3.5. Suppose that the physical domain D and the random field Y satisfy
Assumption A2. Then,

E
h
kY 0kkL1(D)

i
 C �k�2 k (k � 1)!!, 8k (3.15)
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where C = C(D, |⇤|), ⇤ being the variance matrix of rY

⇤i,j = E

@Y

@xi

(!, x)
@Y

@xj

(!, x)

�
.

Proof. See Section 3.8.

Lemma 3.3.5 is based on the following result, proved in [1]:

|P {supY 0
(x,!) � y}� E {' (Ay (Y

0, D))}| < O

✓
e

��y

2

2�2

◆
, (3.16)

where � > 1, ' is the Euler characteristic and Ay (Y 0, D) := {x 2 D| Y 0
(!, x) � y} is

the excursion set of Y 0 over D. It holds under weaker assumptions than in Assumption
A2 both on the domain D and the Gaussian field Y 0, so that a generalized version of
Lemma 3.3.5 may be deduced. However, Y 0 has to be smooth with constant variance.
In [27] the authors obtain the same type of result as (3.16) under the weaker assumption
of Y 0 Gaussian random field with stationary increments.

The bound (3.15) is weaker than (3.14) as it predicts a scaling �k�2 instead of �k

for the k-th moment of the random variable kY 0kL1(D). On the other hand, the bound
(3.14) involves the exponential term Rk/2

� where R� depends on the covariance function
of the random field. In what follows we will choose either bound depending on the
context and the application.

For simplicity, in the rest of the chapter, we assume the Gaussian random field
Y (!, x) to be centered.

3.4 Perturbation analysis in the infinite dimensional case

Thanks to the Doob-Dynkin Lemma [84], the solution u of problem (3.4) is a function
of Y : u = u(Y, x). In this section, under the assumption of small standard devia-
tion of Y , we perform a perturbation analysis based on the Taylor expansion of the
solution u in a neighborhood of the zero-mean of Y and we study the approximation
properties of the Taylor polynomial of u. We exhibit upper bounds for the norms of
the Taylor polynomial

��TKu(Y, x)
��
L1(⌦;H1(D))

,
��TKu(Y, x)

��
L2(⌦;H1(D))

, and for the
errors

��u� TKu
��
L1(⌦;H1(D))

,
��u� TKu

��
L2(⌦;H1(D))

. We predict the existence of an
optimal order of the Taylor polynomial ¯K� depending on � after which the error starts
increasing and eventually diverges to infinity. Finally, we provide a formula to compute
both ¯K� and the minimum error achievable with a perturbation technique based on a
¯K�-th order Taylor polynomial.

3.4.1 Taylor expansion

Let 0 < � < 1 be the standard deviation of the centered Gaussian random field Y (!, x).
Given a function u(Y ) : L1

(D) ! H1
(D) which is (K + 1)-times Gateaux differen-

tiable, we denote its k-th (0  k  K+1) Gateaux derivative in ¯Y 2 L1
(D) evaluated

in the vector (Y, . . . , Y )| {z }
k times

as Dku( ¯Y )[Y ]

k. The K-th order (K � 1) Taylor polynomial
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Chapter 3. Perturbation analysis for the stochastic Darcy problem

of u centered in 0 is:

TKu(Y, x) :=
KX
k=0

Dku(0)[Y ]

k

k!
, (3.17)

where D0u(0)[Y ]

0
:= u0

(x) is independent of the random field Y . The K-th order
residual of the Taylor expansion RKu(Y, x) := u(Y, x)� TKu(Y, x) can be expressed
as

RKu(Y, x) :=
1

K!

Z 1

0

(1� t)KDK+1u(tY )[Y ]

K+1dt. (3.18)

See for example [2, 3].
Since the solution u of the stochastic Darcy problem is infinitely many times differ-

entiable, its Taylor polynomial can then be used to approximate the statistical moments

of u, e.g. E[u](x) t
KX
k=0

1

k!
E
⇥
Dku(0)[Y ]

k
⇤
, leading to the so called “moment equa-

tions”. (see e.g. [9,51,56,86,92,93,97,100]). We don’t detail here with the derivation
and algorithmic implementation of the moment equations, which will be the topic of
Chapters 4 and 5. Rather, we investigate the accuracy of the Taylor expansion for the
problem at hand.

3.4.2 Upper bound on the norm of the Taylor polynomial

The problem solved by u0 is the deterministic Laplacian problem: given f 2 L2
(D)

and g 2 H1/2
(�D), find u0 2 H1

(D) such that u|�
D

= g andZ
D

ru0
(x) ·rv(x) dx =

Z
D

f(x)v(x) dx 8v 2 H1
�
D

(D). (3.19)

The problem solved by the k-th Gateaux derivative of u, Dku(0)[Y ]

k (k � 1) is (see
e.g. [10, 51, 93])

k-th derivative problem - lognormal random field
Given f 2 L2

(D), g 2 H1/2
(�D), and all lower order derivatives

Dlu(0)[Y ]

l 2 Lp
�
⌦;H1

�
D

(D)

�
, l < k,

find Dku(0)[Y ]

k 2 Lp
�
⌦;H1

�
D

(D)

�
s.t.

Z
D

rxD
ku(0)[Y ]

k ·rxv dx = �
kX

l=1

✓
k

l

◆Z
D

Y lrxD
k�lu(0)[Y ]

k�l ·rxv dx

8 v 2 H1
�
D

(D), a.s. in ⌦.

(3.20)

By the Lax Milgram lemma, the boundness of kY kL1(D) and a recursion argument, we
can state the following result.
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Theorem 3.4.6. Problem (3.20) is well-posed, that is it admits a unique solution that
depends continuously on the data. Moreover, it holds

kDku(0)[Y ]

kkH1(D)  C

✓kY kL1

log 2

◆k

k! < +1, 8k � 1 a.s. in ⌦ (3.21)

where C = C(CP , ku0kH1(D)), CP being the Poincaré constant. Moreover, Dku(0)[Y ]

k

2 Lp
�
⌦;H1

�
D

(D)

�
for any p > 0.

Proof. For every fixed ! 2 ⌦, problem (3.20) is of the form: find w 2 H1
�
D

(D) such
that

A (w, v) = L (v) 8v 2 H1
�
D

(D),

where the bilinear form A and the linear form L are respectively defined as

A : H1
�
D

(D)⇥H1
�
D

(D) ! R

(w, v) 7!
Z
D

rw(x) ·rv(x) dx

L : H1
�
D

(D) ! R

v 7! �
kX

l=1

✓
k

l

◆Z
D

Y lrxD
k�lu(0)[Y ]

k�l ·rxv dx.

It is easy to verify that A is continuous and coercive. Moreover, L is continuous:

|L (v)| 
kX

l=1

✓
k

l

◆ ����Z
D

Y lrxD
k�lu(0)[Y ]

k�l ·rxv dx

����


kX
l=1

✓
k

l

◆
kY (!)klL1(D)

��Dk�lu(0)[Y ]

k�l
��
H1 kvkH1 .

Thanks to the Lax Milgram Lemma we conclude the well-posedness of problem (3.20)
for every fixed ! 2 ⌦. To prove (3.21), we follow [10]. Let us take v = Dku(0)[Y ]

k in
(3.20). By the Cauchy-Schwarz inequalityZ
D

��rDku(0)[Y ]

k
��2 dx 

kX
l=1

✓
k

l

◆ ����Z
D

Y lrDk�lu(0)[Y ]

k�l ·rDku(0)[Y ]

kdx
����


kX

l=1

✓
k

l

◆
kY klL1

��rDk�lu(0)[Y ]

k�l
��
L2

��rDku(0)[Y ]

k
��
L2

By defining Sk :=
1

k!

��rDku(0)[Y ]

k
��
L2 , we have:

Sk 
kX

l=1

kY klL1

l!
Sk�l. (3.22)
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We prove by induction that
Sk  Ck kY kkL1 S0, (3.23)

where {Ck}k�1 are defined by the recursion as(
C0 = 1

Ck =
Pk

l=1
1
l!Ck�l.

(3.24)

If k = 1, (3.23) easily follows from (3.22). Now, let us suppose that (3.23) is verified
for every Sj with j = 1, . . . , k � 1. Then, using (3.22), the inductive hypothesis and
the definition of the coefficients Ck in (3.24),

Sk 
kX

l=1

kY klL1

l!
Sk�l =

k�1X
l=1

kY klL1

l!
Sk�l +

kY kkL1

k!
S0


k�1X
l=1

kY klL1

l!
Ck�l kY kk�l

L1 S0 +
kY kkL1

k!
S0

= kY kkL1

 
k�1X
l=1

Ck�l

l!
+

1

k!

!
S0 = kY kkL1 Ck S0,

so that (3.23) is verified. In [15], the authors show by induction that Ck 
✓

1

log 2

◆k

8 k � 0. Hence,

Sk 
✓kY kL1

log 2

◆k

S0.

In conclusion,

��Dku(0)[Y ]

k
��
H1 

q
C2

P + 1

��rDku(0)[Y ]

k
��
L2 

q
C2

P + 1 S0

✓kY kL1

log 2

◆k

k!


✓q

C2
P + 1 CP

��u0
��
H1(D)

◆✓kY kL1

log 2

◆k

k!,

so that (3.21) is proved with C =

p
C2

P + 1 CP ku0kH1(D). Moreover, since kY kL1(D)

2 Lq
(⌦,P) for any q > 0, we conclude that Dku(0)[Y ]

k 2 Lp
�
⌦;H1

�
D

(D)

�
for any

p > 0.

In Figure 3.2 we plot in semilogarithmic scale the coefficients Ck defined in (3.24)
and we point out their exponential growth by comparing them with the sequence�
(log 2)

�k
 
k�0

. Figure 3.2(b) shows that
n
Ck (log 2)

k
o

k
stabilizes on the constant 0.5.

Combining (3.21) and (3.15) we give an estimate for the L1
(⌦;H1

(D)) and
L2

(⌦;H1
(D)) norm of the Taylor polynomial TKu.
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Figure 3.2: 3.2(a): Comparison between the computed coefficients {C
k

}
k

(3.24) and the upper bound�
(log 2)

�k

 
k

plotted in semilogarithmic scale. 3.2(b): Plot of
n
C

k

(log 2)

k

o
k

as a function of k.

Theorem 3.4.7. Suppose that Assumption A2 is fulfilled. Then

��TKu
��
L1(⌦;H1(D))

 C1

KX
k=0

1

�2

✓
�

log 2

◆k

k (k � 1)!!, (3.25)

��TKu
��
L2(⌦;H1(D))

 C2

KX
k=0

1

�

✓
�

log 2

◆kp
2k (2k � 1)!!, (3.26)

where C1 = C1(D, ku0kH1(D)), C2 = C2(D, ku0kH1(D)).

Proof. Applying the L1-norm in probability to both sides of (3.21) and using (3.15),

��TKu
��
L1(⌦;H1(D))


KX
k=0

1

k!

��Dku(0)[Y ]

k
��
L1(⌦;H1(D))

 C
KX
k=0

1

k!

✓
1

log 2

◆k

k! E kY kkL1

 C1

KX
k=0

✓
1

log 2

◆k

�k�2 k (k � 1)!!,

so that (3.25) is verified. We prove (3.26) analogously.

The behavior of both the upper bounds (3.25) and (3.26) is given by the product
of an exponential term and a bifactorial term. Figure 3.3(a) shows that there ex-
ists k� depending on � such that, for k  k� the behavior of the sequence {sk} =n
(log 2

�1�)k (k � 1)!!

o
is dominated by the exponential term and the sequence is de-

creasing, whereas, for k > k�, the bifactorial term prevails and the sequence starts
increasing. This fact reflects on the behavior of the upper bound (3.25) which starts
diverging for K� such that sK

�

� 1 (see Figure 3.3(b)). Figures 3.4(a) and 3.4(b) con-
firm that the asymptotic behavior depends on the bifactorial. Moreover, we note that
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K1
� ' 2K2

�, where K1
� and K2

� refer to (3.25) and (3.26) respectively. Recall that we
already observed this behavior in Section 3.2.2.
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Figure 3.3: 3.3(a): Sequence
n
��2

�
log 2

�1�
�
k

k (k � 1)!!

o
as a function of k in semilogarithmic

scale for different values of the standard deviation of the random field Y . 3.3(a): Upper bound
(3.25) as a function of the order of the Taylor polynomial K for different value of �.

It is easy to deduce a result also for the Lp
(⌦;H1

(D))-norm of the Taylor polyno-
mial. In view of Chapter 4, where we approximate the mean and the two-points correla-
tion of u using its Taylor polynomial, we focus on the L1

(⌦;H1
(D)) and L2

(⌦;H1
(D))

norms.
Under Assumption A1 and exploiting the upper bound (3.14) instead of (3.15), we

obtain similar results as in Theorem 3.4.7, where a behavior �k is predicted, but the
constant R� depending on the covariance function of Y is involved:

��TKu
��
L1(⌦;H1(D))

 C1

KX
k=0

⇣p
R�

⌘k ✓ �

log 2

◆k

(k � 1)!!, (3.27)

��TKu
��
L2(⌦;H1(D))

 C2

KX
k=0

⇣p
R�

⌘k ✓ �

log 2

◆kp
(2k � 1)!!. (3.28)

3.4.3 Upper bound on the norm of the Taylor residual

The problem solved by DKu(tY )[Y ]

K , t 2 (0, 1), is: given f 2 L2
(D) and all lower

order derivatives Dju(tY )[Y ]

j 2 Lp
�
⌦;H1

�
D

(D)

�
, j < K, find DKu(tY )[Y ]

K 2
Lp
�
⌦;H1

�
D

(D)

�
s.t.Z

D

etYrxD
Ku(tY )[Y ]

K ·rxv dx = (3.29)

�
KX
l=1

✓
K

l

◆Z
D

Y letYrxD
K�lu(tY )[Y ]

K�l ·rxv dx
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Figure 3.4: 3.4(a): Upper bound (3.25) for thee values of �. 3.4(b): Upper bound (3.26) for thee values
of �.

8 v 2 H1
�
D

(D), a.s. in ⌦. Following an analogous reasoning as in Theorem 3.4.7, we
find that problem (3.29) is well-posed and

kDKu(tY )[Y ]

KkH1(D)  C etkY k
L

1

✓kY kL1

log 2

◆K

K! < +1, 8K � 1 (3.30)

where C = C(CP , ku0kH1(D)).

Theorem 3.4.8. Under Assumption A2 it holds

��RKu
��
L1(⌦;H1(D))

 C (K + 1)!

✓
1

log 2

◆K+1 +1X
j=K+1

�j�2

(j � 2)!!

(3.31)

where C = C
⇣
D, ku0kH1(D)

⌘
.

Proof. Using (3.30), we find

��RKu
��
H1(D)

 1

K!

Z 1

0

(1� t)K
��DK+1u(tY )[Y ]

K+1
��
H1(D)

dt

 C (K + 1)

✓kY kL1

log 2

◆K+1 Z 1

0

(1� t)KetkY k
L

1dt.

Let

IK :=

Z 1

0

(1� t)KetkY k
L

1dt. (3.32)

By induction, we show that

IK =

K!

kY kK+1
L1

+1X
j=K+1

kY kjL1

j!
. (3.33)
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Chapter 3. Perturbation analysis for the stochastic Darcy problem

Indeed, for K = 0, using the integration by parts formula we find:

I0 =

Z 1

0

etkY k
L

1dt =

�
ekY k

L

1 � 1

�
kY kL1

=

1

kY kL1

+1X
j=1

kY kjL1

j!
.

Suppose now that relation (3.33) holds for K � 1. Then, integrating by parts,

IK =


(1� t)K

etkY k
L

1

kY kL1

�1
0

+

K

kY kL1

Z 1

0

(1� t)K�1etkY k
L

1dt

= � 1

kY kL1
+

K

kY kL1
IK�1

= � 1

kY kL1
+

K

kY kL1

(K � 1)!

kY kKL1

+1X
j=K

kY kjL1

j!

=

K!

kY kK+1
L1

+1X
j=K+1

kY kjL1

j!
.

Hence,

��RKu(Y, x)
��
H1(D)

 C (K + 1)!

✓
1

log 2

◆K+1 +1X
j=K+1

kY kjL1

j!
, .

Observe that, since
+1X

j=K+1

kY kjL1

j!
 ekY k

L

1 and E
⇥
ekY k

L

1
⇤
< +1, the dominated

convergence theorem states that

E
"

+1X
j=K+1

kY kjL1

j!

#
=

+1X
j=K+1

E
h
kY kjL1

i
j!

.

Using (3.15), we conclude

��RKu(Y, x)
��
L1(⌦;H1(D))

 C (K + 1)!

✓
1

log 2

◆K+1 +1X
j=K+1

E
h
kY kjL1

i
j!

 C (K + 1)!

✓
1

log 2

◆K+1 +1X
j=K+1

�j�2

(j � 2)!!

.

The direct computation of IK allows the simplification of the term kY kK+1
L1 . On the

other hand, it obliges us to handle with the term
+1X

j=K+1

kY kjL1

j!
, and it is not immediate

to show the boundness of its statistical moments except for the expected value. A less

sharp estimate than (3.31) can be obtained noticing that IK  ekY k
L

1

K + 1

. In this case
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3.4. Perturbation analysis in the infinite dimensional case

the term kY kK+1
L1 does not simplify and we have to bound the statistical moments of

kY kK+1
L1 ekY k

L

1 . The advantage is that, using the Cauchy-Schwarz inequality and the
Fernique’s theorem, we can prove upper bounds for the Lp

(⌦;H1
(D))-norm of the

residual, for every p > 0. We state here only the result for the first two statistical
moments of RKu:��RKu

��
L1(⌦;H1(D))

 C

✓
1

log 2

◆K+1

�K
p

(2K + 2)(2K + 1)!!, (3.34)

��RKu
��
L2(⌦;H1(D))

 C

✓
1

log 2

◆K+1

�K+1/2
(4(K + 1)(4K + 3)!!)

1/4 . (3.35)

Under Assumption A1, using (3.14) instead of (3.15), both with the exact compu-
tation of IK and with its estimate, we predict that the L1

(⌦;H1
(D))-norm of RKu

behaves as �K+1 and, more generally, the Lp
(⌦;H1

(D))-norm of RKu behaves as
�K+1 as a function of �. The following bound is obtained with the exact computation
of IK ��RKu

��
L1(⌦;H1(D))

 C (K + 1)!

✓
1

log 2

◆K+1 +1X
j=K+1

�p
R� �

�j
j!!

, (3.36)

whereas, with the estimate for the integral IK , we obtain:��RKu
��
L1(⌦;H1(D))

 C
⇣p

R�

⌘K+1
✓

�

log 2

◆K+1p
(2K + 1)!!, (3.37)

��RKu
��
L2(⌦;H1(D))

 C
⇣p

R�

⌘K+1
✓

�

log 2

◆K+1p
(4K + 3)!!. (3.38)
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Figure 3.5: Estimate (3.31) as a function of K, for different values of the standard deviation �.

In Figure 3.5 we plot in semilogarithmic scale the estimate (3.31) as a function of the
order of the residual K. We observe the same behavior as in the Figure 3.3(a), where a
sequence given by the product of an exponential term and a bifactorial term is plotted.
We highlight that we simply predicted and did not actually prove the divergence of the
Taylor series. To do that, it is necessary to show the divergence of a lower bound for
the norm of the residual RKu. Nevertheless, in Section 3.6.1 we focus on the simple
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Chapter 3. Perturbation analysis for the stochastic Darcy problem

case of a single random variable and we perform numerical tests which confirm the
divergence of the Taylor series.

3.4.4 Optimal K and minimal error

In the previous section we established theoretical estimates on the norm of the Taylor
residual, which are divergent for every � > 0. Since our results are upper bounds, we
did not actually prove the divergence of the Taylor series, but we simply predicted it.
Nevertheless, the numerical experiments in Section 3.6 confirm the divergence of the
Taylor series. We observed that, for K small enough (3.31) is decreasing as a function
of K, whereas for big K (3.31) starts increasing and eventually goes to infinity (see
Figure 3.5). Hence, there exists an optimal value of K depending on �, K�

opt, which can
be estimated as the argmin of the right-hand side in (3.31), and beyond which adding
new terms to the Taylor expansion will deteriorate the accuracy instead of improving
it. The estimate (3.31) states that, for every � > 0 fixed, the minimal error err�min we
can commit using a perturbation approach is bounded by the right-hand side of (3.31)
evaluated in K�

opt. Here, we provide an approximation for both K�
opt and err�min.

Proposition 3.4.9. Let 0 < �  log

2
2

5

. Then, the optimal order of the Taylor expan-
sion can be estimated as

¯K�
:=

�
1

↵2

⌫
� 4, (3.39)

where ↵ :=

�

log 2

.

We derive an estimate on the minimal error err�min as

err�min  b( ¯K�
) (3.40)

where b(K) is the right-hand side in (3.31).
To prove Proposition 3.4.9 we need the following lemma.

Lemma 3.4.10. Let 0 < � < 1 real. Then, for every integer N � 1,X
n�N

�n

n!!
 1

1� �

�N

N !!

. (3.41)

Proof. Using that
⇢
�n

n!!

�
is a decreasing sequence and 0 < � < 1, we easily conclude:

X
n�N

�n

n!!
 1

N !!

X
n�N

�n =

1

N !!

�N

1� �
.

Proof of Proposition 3.4.9. The first step of the proof consists in showing that��RKu
��
L1(⌦;H1(D))

 C
1

(log 2)

2
(1� �)

v(K), (3.42)
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where v(K) = ↵K�1
(K + 2)!!, ↵ =

�

log 2

and C independent of K. Starting from

(3.31) and using Lemma 3.4.10 we find:��RKu
��
L1(⌦;H1(D))

 C
1

1� �

✓
1

log 2

◆K+1

(K + 1)!

�K�1

(K � 1)!!

= C
1

1� �

✓
1

log 2

◆K+1

�K�1
(K + 1)K

(K � 1)!

(K � 1)!!

= C
1

1� �

✓
1

log 2

◆K+1

�K�1
(K + 1)K(K � 2)!!

 C
1

1� �

✓
1

log 2

◆K+1

�K�1
(K + 2)!!,

so that (3.42) is proved. To find the argmin of v(K), we consider log(v(K)):

log(v(K)) =

⇢
(2n� 3) log↵ + log(2n)!!, if K = 2n� 2,

(2n� 4) log↵ + log(2n� 1)!!, if K = 2n� 3.

We analyze the two cases K odd or even separately. Firstly, suppose K = 2n � 2.
Using that (2n)!! = 2

nn! and e
⇣n

e

⌘n
 n!  e n

⇣n
e

⌘n
, we find

log(v(n)) = (2n� 3) log↵ + n log 2 + log(n!)

 (2n� 3) log↵ + n log 2 + log

⇣
en
⇣n

e

⌘n⌘
= (2n� 3) log↵ + n log 2 + log n+ n log n� n+ 1.

On the other hand, if K = 2n� 3, we use that (2n� 1)!! =

(2n)!

2

nn!
:

log(v(n)) = (2n� 4) log↵ + log(2n!)� n log 2� log(n!)

 (2n� 4) log↵ + log(2en
✓
2n

e

◆2n

)� n log 2� log(e
⇣n

e

⌘n
)

= (2n� 4) log↵ + n log 2 + log n+ n log n� n+ log 2.

We observe that, for both K odd and even,

log(v(n))  w(n) + ¯C

where
w(n) := 2n log↵ + n log 2 + (n+ 1) log(n+ 1)� n (3.43)

and ¯C is the positive constant

¯C =

⇢ �3 log↵ + 1, if K = 2n� 2,

�4 log↵ + log 2, if K = 2n� 3.
(3.44)

Note that we have bounded (n + 1) log n with (n + 1) log(n + 1) in view of having a

simpler derivative
d

dn
w(n). We look for the argmin(w(n)) by imposing

d

dn
w(n) = 0,

that is
2 log↵ + log 2 + log(n+ 1) + 1� 1 = 0,

85



i
i

“Bonizzoni_thesis” — 2013/5/3 — 8:25 — page 86 — #96 i
i

i
i

i
i

Chapter 3. Perturbation analysis for the stochastic Darcy problem

Table 3.1: This Table contains the optimal K�

opt

as argmin of the right-hand side of (3.31), its estimate
¯K� (3.39) and the estimate of err�

min

.

� K�

opt

¯K� b( ¯K�

)

0.10 45 44 2.7131e-09
0.15 19 17 9.9610e-04
0.18 11 11 1.8118e-02
0.20 9 8 5.1292e-02

which implies n =

�
1

2↵2

⌫
� 1, so that we can choose ¯K�

=

�
1

↵2

⌫
� 4.
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Figure 3.6: Semilogarithmic plot of the right-hand side of (3.31) b(K) (continuous line) and of the
points

�
¯K�, b( ¯K�

)

�
(black dot) for different values of �.

In Table 3.1 we report the optimal K�
opt as argmin of the right-hand side in (3.31), its

estimate ¯K� (3.39), and the estimate of minimal error in L1
(⌦;H1

)-norm (right-hand
side of (3.40)) for different values of �. Figure 3.6 represents b(K) (continuous line)
and the points

�
¯K�, b( ¯K�

)

�
(black dot) for different values of �. We take the values

b( ¯K�
) as an estimate of the minimal error we can commit by performing a perturbation

approach as in the previous section.
As Table 3.1 and Figure 3.6 suggest, the estimate of the optimal K (3.39) is quite sharp.
Moreover, the smaller is �, the bigger is K�

opt and the smaller is the minimal error we
commit.

3.5 Finite number of independent random variables

In Section 3.4 we analyzed the Darcy problem where the permeability is described as
an infinite-dimensional random field with lognormal distribution: a(!, x) = eY (!,x),
Y (!, x) centered Gaussian random field. We performed a perturbation analysis around
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3.5. Finite number of independent random variables

the zero mean of the Gaussian field Y and we studied the approximation properties of
the Taylor polynomial. In this setting, the Taylor polynomial is not computable, since it
involves the Gateaux derivatives of the stochastic solution u with respect to Y . Here we
consider a simpler framework, in which the permeability field is modeled using a finite
number of independent random variables. This situation can be achieved for example
by approximating the Gaussian field Y (!, x) by a N -terms Karhunen-Loève expansion
(see Proposition 3.3.4). In this case the Taylor polynomial is explicitly computable.

3.5.1 Gaussian random vector

In this section we consider a permeability tensor a(!, x) satisfying the following as-
sumption:

Assumption A3. The permeability tensor is modeled as a(!, x) = eY (!,x), with Y (!, x)
centered, given by

Y (!, x) = �
NX

n=1

q
˜�nYn(!)�n(x) (3.45)

where 0 < � < 1, �(x) = (�1(x), . . . ,�N(x)) 2 (L1
(D))

N is a vector of L2-
orthonormal functions, and Y = (Y1, . . . , YN) is a vector of N independent standard
Gaussian random variables.

In view of the Doob-Dynkin lemma [84], the solution u can be written as u(!, x) =
u(Y(!), x), where Y(!) = (Y1(!), . . . , YN(!)). We define the space Lp

⇢

�
RN

;H1
(D)

�
as the space of functions v : RN ⇥D ! R such that

kvkLp

⇢

(RN ;H1(D)) :=

✓Z
RN

kv(Y, ·)kpH1d⇢

◆1/p

< 1,

where ⇢n is the standard Gaussian probability density 8 n, and ⇢ =
QN

n=1 ⇢n is the joint
probability density of the vector Y. Lp

⇢

�
RN

;H1
(D)

�
is a Banach space, and for p = 2

it is a Hilbert space.
Then, problem (3.4) becomes:

Darcy problem - independent random variables
Given f 2 L2

(D), find u 2 Lp
⇢

�
RN

;H1
(D)

�
s.t. u|�

D

= g and

Z
D

e�
P

N

n=1

p
�̃
n

Y
n

�
n

(x)ru(Y, x) ·rv(x) dx =

Z
D

f(x)v(x) dx

8v 2 H1
�
D

(D), ⇢� a.s. in RN .

(3.46)

Let us denote with @k
Y

u(Y, x) the k-th order partial derivative of the infinitely many
times differentiable solution u : RN ! H1

(D) evaluated in (Y, x),

@k
Y

u(Y, x) =
@k1+...+k

Nu(Y1, . . . , YN , x)

(@Y1)
k1 . . . (@YN)

k
N

. (3.47)
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Chapter 3. Perturbation analysis for the stochastic Darcy problem

The multivariate Taylor polynomial of u of degree K in a neighborhood of 0 is given
by:

TKu(Y, x) =
X
|k|K

@k
Y

u(0, x)

k!

Y

k, (3.48)

where k = (k1, . . . , kN) 2 NN is a multi index of length N , k! :=
QN

n=1 kn!, |k| :=PN
n=1 kn and Y

k

:=

QN
n=1 Y

k
n

n . The integral expression of the K-th order residual
RKu(Y, x) = u(Y, x)� TKu(Y, x) is

RKu(Y, x) :=
X

|k|=K+1

K + 1

k!

Y

k

Z 1

0

(1� t)K@k
Y

u(tY, x)dt. (3.49)

In what follows we apply the results of Sections 3.4.2 and 3.4.3 to obtain upper
bounds for the norms of the Taylor polynomial and Taylor residual. In this finite di-
mensional setting, the Gateaux derivative DKu(0)[Y ]

K simplifies:

DKu(0)[Y ]

K
=

X
|k|=K

@k
Y

u(0, x)Yk

Provided that �n is Hölder continuous with exponent 0 < �  1 for every n, the
theoretical estimate (3.14) applies, leading to the following upper bound

E
h
kY kkL1

i
 C �k

(R�,N)
k/2

(k � 1)!!. (3.50)

where R�,N :=

NX
n=1

˜�n k�nk2C0,� , and C is a positive constant independent of k and �.

Moreover, the theoretical estimates on the norm of the Taylor polynomial (3.27), (3.28)
and Taylor residual (3.36), (3.37) and (3.38) still hold with R�,N instead of R� .

Note that, letting N ! +1, we recover the estimates given in the infinite dimen-
sional setting (Y (!, x) random field), provided that Assumption A1 is satisfied.

3.5.2 Bounded random vector
Whether the permeability tensor is modeled as a lognormal random field or is described
using a finite number of independent Gaussian random variables, in both cases we pre-
dicted the divergence of the Taylor series of the stochastic solution u. The common
characteristic of the lognormal infinite and finite dimensional setting is that the ran-
dom field/vector is unbounded, that is, it can assume every real positive value. On the
contrary, in the case of independent bounded random variables, the convergence of the
Taylor series to u has been proved in [9]. (See also [33]). In particular, the authors
study the Darcy problem (3.4) where a(!, x) is given by

a(!, x) = E[a](x) +
NX

n=1

�n(x)Yn(!), (3.51)

with Yn(⌦) ⇢ [��n, �n], 0 < �n < +1 8n, and �n 2 L1
(D) 8n. If there exist two

constants ↵1,↵2 such that 0 < ↵1  a(!, x)  ↵2 < 1 a.s. in ⌦, then the stochastic
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Darcy problem is well-posed. Moreover, if

⇠ :=

�����
PN

n=1 |�n(x)|�n
E[a](x)

�����
L1

< 1, (3.52)

then, for every p > 0,

��TKu
��
Lp(⌦;H1)

 C1

KX
k=0

⇠k = C1
1� ⇠K+1

1� ⇠
, (3.53)

��u� TKu
��
Lp(⌦;H1)

=

��RKu
��
Lp(⌦;H1)

 C2

1X
k=K+1

⇠k = C2
1

1� ⇠
⇠K+1, (3.54)

where C1 = C1(↵1, CP , f), C2 = C2(↵1, CP , f).
The parameter ⇠ describes the variability of the bounded permeability field (3.51).

In the bounded setting, we conclude that, if the variability of a(!, x) is small enough,
that is if ⇠ is small enough, the Taylor series is convergent.

3.6 Single random variable - Numerical results

In the previous sections, we predicted the divergence of the Taylor series of the stochas-
tic solution u in the case where the permeability field a(!, x) is described as a log-
normal random field or vector. Recall that the Taylor polynomial is directly com-
putable only in the finite-dimensional setting. Here we consider a simple case, where
a(!, x) = e�(x)Y (!), with Y ' N (0, �2

). We compute the Taylor polynomial of u
and perform some numerical tests, which confirm the divergence of the Taylor series
8 � > 0. We also consider the case of a bounded random variable Y 2 [�, �] and show
that the Taylor series is indeed convergent in this case, as recalled in Section 3.5.2.

3.6.1 Gaussian setting

Let us suppose N = 1, Y ⇠ N (0, �2
), with 0 < � < 1 and � 2 L1

(D). Theorem 3.4.6
states that the boundary value problem solved by the k-th derivative of u, @kY u(0, x) is
well-posed, and ��@kY u(0, x)��H1(D)

 C

✓k�kL1

log 2

◆k

k!, (3.55)

where C = C(CP , f). In the same way, (3.30) implies

��@kY u(tY, x)��H1(D)
 C et|Y |k�k

L

1

✓k�kL1

log 2

◆k

k!. (3.56)

Using the upper bound (3.55) and the value of the statistical moments of |Y |

E [|Y |p] = C �p
(p� 1)!!, C =

(
1 if p is evenq

2
⇡

if p is odd
(3.57)
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we deduce ��TKu
��
Lp

⇢

(R;H1(D))
 C

KX
k=0

✓k�kL1 �

log 2

◆k

((pk � 1)!!)

1/p (3.58)

where TKu(Y, x) :=
KX
k=0

@kY u(0, x)

k!
Y k is the K-th order Taylor polynomial and C =

C
⇣
CP , kfkL2(D)

⌘
. Similarly, using (3.56), we derive the following estimate, analo-

gous to (3.31):��RKu
��
L1
⇢

(R;H1(D))
 C (K + 1)!

✓
1

log 2

◆K+1 +1X
j=K+1

(k�kL1 �)j

j!!
, (3.59)

where RKu(Y, x) :=
1

K!

Z 1

0

(1 � t)K@K+1
Y u(tY, x)Y K+1dt is the K-th order integral

residual and C = C(D, kfkL2(D)). Note that the theoretical estimate (3.59) is obtained

by direct computation of the integral IK =

Z 1

0

(1� t)Ket|Y |k�k
L

1 :

IK =

K!

(|Y | k�kL1)

K+1

+1X
j=K+1

(|Y | k�kL1)

j

j!

(see (3.32) and (3.33)). As observed in the infinite dimensional setting, the integral IK

can be bounded by IK  e|Y |k�k
L

1

K + 1

. In this way, using the Cauchy-Schwarz inequal-

ity for E
h
|Y |p(K+1) ep|Y |k�k

L

1
i
, an upper bound for the Lp

⇢ (R;H1
(D))-norm of the

residual can be deduced:��RKu
��
Lp

⇢

(R;H1(D))
 C

✓k�kL1 �

log 2

◆K+1

((2p(K + 1)� 1)!!)

1/2p , (3.60)

where C = C(D, kfkL2(D)).
We develop some numerical computations in a 1D case, with D = [0, 1], ho-

mogeneous Dirichlet boundary conditions imposed on �D = {0, 1}, f(x) = x and
�(x) = cos(⇡x). The problems solved by u0

(x) and @kY u(0, x) respectively are:Z 1

0

(u0
(x))0v0(x)dx =

Z 1

0

f(x)v(x)dx, (3.61)

8v 2 H1
0 ([0, 1]), andZ 1

0

(@kY u(0, x))
0v0(x)dx = �

kX
l=1

✓
k

l

◆Z 1

0

�(x)l(@k�l
Y u(0, x))0v0(x)dx, (3.62)

8v 2 H1
0 ([0, 1]), 8k � 1. Let {'i}Ni=1 be the piecewise linear finite element basis.

Applying the linear finite element method (FEM) to problem (3.61), we end up with
the following system:

AU0
= F 0, (3.63)
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where the stiffness matrix is tridiagonal, symmetric and its generic element is given

by Aij =

Z 1

0

'0
i(x)'

0
j(x)dx, the right-hand side is a vector whose j-th element is

F 0
j =

Z 1

0

f(x)'j(x)dx, and U0 is the unknown vector. Applying the linear FEM to the

k-th problem (3.62), we end up with the following system:

AUk
= �

kX
l=1

✓
k

l

◆
F lUk�l, (3.64)

where the stiffness matrix is the same as in (3.63) and the right-hand side contains the
solutions U0, . . . , Uk�1 of the l-th problem for l = 0, . . . , k � 1, and the matrices F l,

l = 1, . . . , k, where F l
ij =

Z 1

0

(�(x))l'0
j(x)'

0
i(x)dx.
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Figure 3.7: Error
��u

h

� TKu
h

��
L

p
⇢(R;L2(D))

computed by linear FEM in space and high order Hermite
quadrature formula, for p = 1 (left) and p = 2 (right).

Let Y =

¯Y be fixed and let us denote with uh(
¯Y , x) the linear FEM solution of the

Darcy problem (3.46) collocated in Y =

¯Y , so that

TKuh(
¯Y , x) =

KX
k=0

NX
i=1

Uk
i

k!
'i(x) ¯Y

k.

In Figure 3.7 we plot in semilogarithmic scale the errors
��uh � TKuh

��
Lp

⇢

(R;L2(D))
(p =

1, 2) computed by linear FEM in space and high order Hermite quadrature formula, for
different values of the standard deviation 0 < � < 1. Note that we have chosen the
same spatial discretization both for uh and TKuh, so that we observe only the truncation
error of the Taylor series. This figure numerically confirm both the divergence of the
Taylor series 8 �, and the existence of an optimal order of the Taylor polynomial K�

opt

depending on � (see Section 3.4.4 ). Moreover, the higher is p, the worse is the behavior
of the norm of the residual, since it starts diverging for a smaller K.

Figure 3.8 compares the computed error
��uh � TKuh

��
L1
⇢

(R;L2(D))
with the theoreti-

cal estimate for the L1
⇢ (R;H1

(D)) norm of the residual (3.59). Figure 3.9 compares the
theoretical upper bound for the L1

⇢ (R;H1
(D)) and L2

⇢ (R;H1
(D)) norms of the Taylor

polynomial (see (3.58)) with the same quantities computed by linear FEM in space and
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a high order Hermite quadrature formula. Both the estimates for the Taylor polynomial
(3.58) and the Taylor residual (3.59) are quite pessimistic. This is a consequence of the
estimate on

��@kY u(0, x)��H1(D)
, which is itself very pessimistic.

With the aim of improving the theoretical bounds on the norm of the Taylor polyno-
mial and residual, we assume that the growth of the derivatives follows the ansatz:��@kY u(0, x)��L2(D)

⇠
✓
� k�kL1

log 2

◆k

k! (3.65)

for a suitable value of �. Then we try to fit the value of � starting from the numerical

results obtained. In this specific example, the fitting procedure gives � =

1

3.5
. Never-

theless, we highlight that the choice of � strongly depends on �(x), whereas it seems
not to depend on the loading term f(x). In Figure 3.10 we plot in semilogarithmic scale
the quantity

��@kY u(0, x)��L2(D)
computed by linear FEM, compared with the theoretical

estimate (3.55) and the fitted one (3.65) with � =

1
3.5 . The agreement of the computed

norm
��@kY u(0, x)��L2(D)

with the fitted estimate (3.65) is remarkable, which strongly
indicates that the ansatz (3.65) is appropriate.

We then use the fitted value � =

1

3.5
in the estimate (3.58) of the norm of the Taylor
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Figure 3.11: Comparison between the computed quantity
��TKu

h
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L

p
⇢(R;L2(D))

and its theoretical esti-

mate (3.66) with the fitted value � =

1

3.5
, for p = 1 (left) and p = 2 (right).

polynomial

��TKu
��
Lp

⇢

(R;H1(D))
 C

KX
k=0

✓
� � k�kL1

log 2

◆k

((pk � 1)!!)

1/p (3.66)

as well as on the norm of the residual (3.59)��RKu
��
L1
⇢

(R;H1(D))
 C (K + 1)!

✓
1

log 2

◆K+1 +1X
j=K+1

(k�kL1 � �)j

j!!
. (3.67)

Figures 3.11 and 3.12 compare the computed quantities
���TKuh

��
Lp

⇢

(R;H1(D))
for p =

1, 2 and
��RKuh

��
L1
⇢

(R;H1(D))
respectively

�
with the fitted bounds (3.66) and (3.67) re-

spectively. We underline that, with the ansatz (3.65) on the growth of the derivatives
we are able to sharply predict the optimal order of the Taylor polynomial K�

opt.
Finally, we analyze the behavior of the error

��E [uh]� E
⇥
TKuh

⇤��
L2(D)

as a func-
tion of �. Figure 3.13 shows this error in semilogarithmic scale. Observe that the
exponential behavior �K+1 predicted in (3.37), is confirmed.
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3.6.2 Uniform setting
Let Y be a uniform random variable Y ⇠ U([��, �]), ⇢ the uniform density function
and � 2 L1

(D). Let us suppose that the permeability coefficient a(!, x) = E [a] (x)+
�(x)Y (!) satisfies 0 < ↵1  a(!, x)  ↵2 < 1 a.s. in ⌦, so that the stochastic Darcy
problem is well-posed.

The upper bounds on
��TKu

��
Lp

⇢

(R;H1(D))
(3.53) and

��u� TKu
��
Lp

⇢

(R;H1(D))
(3.54)

can be achieved starting from the following estimate on the norm of the k-th derivative
of u: ��@kY u(0, x)��H1(D)

 C

���� �(x)

E [a] (x)

����k
L1(D)

k!, (3.68)

where C = C(CP , f,↵1). This theoretical bound (3.68) is obtained using a recursive
argument similar to that in the proof of Theorem 3.4.6.

Here we present some numerical examples which confirm the convergence of the
Taylor series, provided that the variability of the field is small enough (see condition
(3.52)). Let D = [0, 1], �(x) = (x2

+ 1), E [a] (x) = 10(x2
+ 1), and suppose that

homogeneous Dirichlet boundary conditions are imposed on �D = {0, 1}. Instead
of using the upper bound (3.68), we compute

��@kY u(0, x)��L2(D)
by linear FEM. The

problem solved by @kY u(0, x) is:Z 1

0

(E [a] (x)@kY u(0, x))
0v0(x)dx = �k

Z 1

0

�(x)(@k�1
Y u(0, x))0v0(x)dx, (3.69)

8 v 2 H1
0 ([0, 1]), k � 1, and its discretization is

AUk
= �k

�
FUk�1

�
, (3.70)

where both the matrices A and F are tridiagonal and symmetric, and their generic
elements respectively are

Aij =

Z 1

0

E [a] (x)'0
i(x)'

0
j(x)dx

and

Fjl =

Z 1

0

�(x)'0
l(x)'

0
j(x)dx,

where {'i}Ni=1 is the linear FEM basis. Note that the right-hand side of (3.70) contains
only Uk�1, contrary to the case of a lognormal variable, which contains U0, . . . , Uk�1

instead.
Let Y =

¯Y be fixed, uh(
¯Y , x) be the linear FEM solution of the Darcy problem

(3.46) collocated in Y =

¯Y , and

TKuh(
¯Y , x) =

KX
k=0

NX
i=1

Uk
i

k!
'i(x) ¯Y

k.

In Figure 3.14 we show in semilogarithmic scale the norm
��TKuh

��
L1
⇢

(R;L2(D))
com-

puted by linear FEM in space and a high order Legendre quadrature formula compared
with its theoretical estimate (3.53). Figure 3.15 compares the error��uh � TKuh

��
Lp

⇢

(R;L2(D))
, p = 1, 2
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Figure 3.15: Comparison between the error
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computed by linear FEM and
a high order Legendre quadrature formula, and its theoretical estimate (3.54), for p = 1 (left) and
p = 2 (right).

computed by linear FEM in space and a high order Legendre quadrature formula with
its theoretical estimate (3.54). Note that we have chosen the same spatial discretization
both for uh and TKuh, so that we observe only the truncation error of the Taylor series.
We conclude that the theoretical estimates for both the norm of the Taylor polynomial
(3.53) and the norm of the Taylor residual (3.54) are quite pessimistic. As in the Gaus-
sian setting, we identify the cause in the pessimistic estimate of the

��@kY u(0, x)��H1(D)

(3.68). Figure 3.16(a) compares the norm
��@kY u(0, x)��L2(D)

computed by linear FEM
with its theoretical upper bound (3.68), and in Figure 3.16(b) we plot in semilogarith-
mic scale the ratio between the theoretical upper bound and the computed norm. We
believe that, by a fitting procedure on the estimate of

��@kY u(0, x)��L2(D)
, better a priori/a

posteriori upper bounds for the norm of the Taylor polynomial and the Taylor residual
can be provided, as done in the Gaussian setting.

3.7 Conclusions

The present work addresses the Darcy problem describing the single-phase flow in a
bounded randomly heterogeneous porous medium occupying the domain D ⇢ Rd,
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Figure 3.16: 3.16(a): Comparison between the norm
��@k

Y

u(0, x)
��
L

2(D)
computed by linear FEM and

its theoretical upper bound (3.68). 3.16(b): Ratio between the upper bound of
��@k

Y

u(0, x)
��
L

2(D)

(3.68) and the computed norm
��@k

Y

u(0, x)
��
L

2(D)
.

d = 2, 3, where the permeability tensor is modeled as a lognormal random field:
a(!, x) = eY (!,x). Under the assumption of small variability of the field Y , we per-
form a perturbation analysis and we study the approximation properties of the Taylor
polynomial of order K. We predict the divergence of the Taylor series, and we confirm
it by numerical examples with just one random variable. We state the existence of an
optimal order of the Taylor polynomial and provide a way to compute it. Finally, we
compare our results to the results obtained in [9], where the authors model the perme-
ability tensor as a linear combination of bounded random variables.

3.8 Appendix

Proof of Lemma 3.3.5. For simplicity, let us suppose the field Y centered and isotropic,

so that ⇤ = �2I , where I is the identity matrix and �2 the variance of
@Y

@xi

independent

of i. The proof can be extended to the case of non-isotropic fields. With the aim of
using (3.16), we explicit the expected value of the Euler characteristic ':

E ['(Au)] = e�
u

2

2�2

dX
k=1

✓
d

k

◆
T k�k/22

(2⇡)(k+1)/2�k
Hk�1

⇣u
�

⌘
+  

⇣u
�

⌘
, (3.71)

where �2 is the variance of
@Y

@xi

(independent on i thanks to the isotropy assumption),

 (x) is the tail probability function of a standard Gaussian random variable, given by

 (x) =
1p
2⇡

Z +1

x

e�
t

2

2 dt, (3.72)

and Hk is the k-th Hermite polynomial, defined as

Hk(x) = k!
[k/2]X
j=0

(�1)

jxk�2j

j!(k � 2j)!2j
, k � 0. (3.73)
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Chapter 3. Perturbation analysis for the stochastic Darcy problem

In particular, if d = 2,

E ['(Au)] = e�
u

2

2�2

✓
2T

p
�2

2⇡�
+

T 2�2
(2⇡)3/2�2

u

�

◆
+  

⇣u
�

⌘
, (3.74)

and, if d = 3,

E ['(Au)] = e�
u

2

2�2

 
3T

p
�2

2⇡�
+

3T 2�2
(2⇡)3/2�2

u

�
+

T 3�3/22

(2⇡)2�3

✓
u2

�2
� 1

◆!
+  

⇣u
�

⌘
.

(3.75)
We want to compute the statistical moments of kY kL1(D):

E
h
kY kkL1(D)

i
= E


| sup

x
Y (x)|k

�
= k

Z +1

0

uk�1P
⇢
| sup

x
Y (x)| > u

�
du. (3.76)

We observe that

P
⇢
| sup

x
Y (x)| > u

�
= P

⇢
sup

x
Y (x) > u [ sup

x
Y (x) < �u

�
= P

⇢
sup

x
Y (x) > u

�
+ P

⇢
sup

x
Y (x) < �u

�
 P

⇢
sup

x
Y (x) � u

�
+ 1� P

⇢
sup

x
Y (x) � �u

�
 E ['(Au)] + 1� E ['(A�u)] + o

✓
e�

↵u

2

2�2

◆
,

where ↵ is a constant bigger than 1 (see [1]). In particular, if d = 2 and if we neglect

the term o

✓
e�

↵u

2

2�2

◆
,

P
⇢
| sup

x
Y (x)| > u

�
 2

T 2�2
(2⇡)3/2

e�
u

2

2�2
u

�3
+  

⇣u
�

⌘
�  

⇣
�u

�

⌘
+ 1

= 2

T 2�2
(2⇡)3/2

e�
u

2

2�2
u

�3
+ 2 

⇣u
�

⌘
where we used that  

⇣
�u

�

⌘
= 1� 

⇣u
�

⌘
. In the same way, if d = 3 and if we neglect

the term o

✓
e�

↵u

2

2�2

◆
,

P
⇢
| sup

x
Y (x)| > u

�
 2

3T 2�2
(2⇡)3/2

e�
u

2

2�2
u

�3
+ 2 

⇣u
�

⌘
.

With the aim of using (3.76), both in the 2D and in the 3D case, we need to compute
two integrals:

I1 :=

Z +1

0

uk e�
u

2

2�2 du,

I2 =

Z +1

0

uk�1 
⇣u
�

⌘
du.
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3.8. Appendix

Thanks to the integration by parts formula,

I1 =


��2 uk�1 e�

u

2

2�2

�+1

0

+ �2
(k � 1)

Z +1

0

uk�2 e�
u

2

2�2 du

= �2
(k � 1)

Z +1

0

uk�2 e�
u

2

2�2 du

= �4
(k � 1)(k � 3)

Z +1

0

uk�4 e�
u

2

2�2 du

=

8>><>>:
�k

(k � 1)!!

Z +1

0

e�
u

2

2�2 du =

p
2⇡

2

�k+1
(k � 1)!! if k is even

�k�1
(k � 1)!!

Z +1

0

u e�
u

2

2�2 du = �k+1
(k � 1)!! if k is odd

(3.77)

On the other hand, to compute I2 we observe that  (x) < 1
x
�(x) if x > 0, where

�(x) =
1p
2⇡

e�
x

2

2 .

I2 <
1p
2⇡

Z +1

0

uk�1�

u
�
⇣u
�

⌘
=

�

2⇡

Z +1

0

uk�2 e�
u

2

2�2 du

=

(
1

2
p
2⇡
�k

(k � 3)!! if k is even
p
2⇡
2 �k

(k � 3)!! if k is odd
(3.78)

Taking into account (3.77) and (3.78), we conclude both in the 2D and in the 3D case
that

E
h
kY kkL1(D)

i
 C

✓
k

�3
�k+1

(k � 1)!! + k�k
(k � 3)!!

◆
= C

�
�k�2k (k � 1)!! + �kk (k � 3)!!

�
 C �k�2k (k � 1)!!,

where C = C(T,�2). Hence, (3.15) is proved.
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CHAPTER4
Derivation and analysis of the moment equations

4.1 Introduction

This chapter focuses on the stochastic Darcy problem introduced and analyzed in Chap-
ter 3

� div(eY (!,x)ru(!, x)) = f(x), (4.1)

Y (!, x) being a centered Gaussian random field with small standard deviation.
In the approach adopted here, the entire field, and not a finite dimensional approx-

imation of it, is considered. As a consequence, the Taylor series is not computable,
since it involves uk

:= Dku(0)[Y ]

k, the k-th Gateaux derivative of u with respect to Y ,
for k � 0. Here we propose to approximate the statistics of u with the statistics of the

K-th order Taylor polynomial TKu =

KX
k=0

uk

k!
.

We focus our attention mainly on the expected value E [u]. In Chapter 3, Section
3.4.4, we have predicted that a good choice for the order K is K = K�

opt. We derive
the problem solved by E

⇥
uk
⇤
. Its solution requires to solve a recursive problem for

the (l + 1)-points correlations E
⇥
uk�l ⌦ Y ⌦l

⇤
, with l = k, k � 1, . . . , 1. Note that

E
⇥
uk�l ⌦ Y ⌦l

⇤
is defined on the tensor product domain D⇥(l+1), so that we have to

handle a high dimensional problem.
The outline of the chapter is the following. Section 4.2 focuses on the derivation

of the first moment equations. In particular, we highlight the recursive structure of the
problem. In Section 4.3 we state some Hölder type regularity results for the correlations
E
⇥
Y ⌦k

⇤
and E

⇥
v ⌦ Y ⌦k

⇤
, with v 2 V , V Banach space. In Section 4.4 we prove both

the well-posedness and some regularity results for the first moment problem. Finally,
Section 4.5 gives some hints on the study of the m-th moment equations, for m � 2.
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Chapter 4. Derivation and analysis of the moment equations

4.2 Derivation of the recursive equations for the first moment

Let Y (!, x) be a centered Gaussian random field. As done in Chapter 3, Section 3.3.4,

we define �2
=

1

|D|
Z
D

Var [Y (!, x)] dx. Note that if Y (!, x) is stationary, then its

variance is independent of x 2 D and coincides with �2. By a little abuse of notation,
we refer to � as the standard deviation of Y also in the case where Y is non-stationary.

Under the assumption of small standard deviation 0 < � < 1 of the Gaussian ran-
dom field Y (!, x), the idea of the perturbation technique is to approximate the statis-
tical moments of the stochastic solution using its Taylor polynomial. More concretely,
we approximate the mean of u using the expected value of the K-th order Taylor poly-
nomial

E [u(Y, x)] ⇡ E
⇥
TKu(Y, x)

⇤
=

KX
k=0

E
⇥
uk
⇤

k!
. (4.2)

We refer to E
⇥
uk
⇤

as the k-th order correction of the mean of u and to E
⇥
TKu(Y, x)

⇤
as the K-th order approximation of the mean of u.

The aim of the present section is to describe the structure of the problem solved
by the k-th order correction of the mean, assuming that every quantity is well-defined
and every problem is well-posed. We will detail these theoretical aspects in the next
sections.

The approximation of order 0, u0, is deterministic and is the unique solution of
problem (3.19). The k-th (k � 1) order correction E

⇥
uk
⇤

is well-defined since uk 2
Lp
�
⌦;H1

�
D

(D)

�
, p > 0 (Theorem 3.4.6), belongs to H1

�
D

(D), and is the unique so-
lution of the following problem, obtained applying the expected value to both sides of
problem (3.20):

k-th order correction problem - weak formulationZ
D

rE
⇥
uk
⇤
(x) ·rv(x) dx

= �
kX

l=1

✓
k

l

◆Z
D

E
⇥ruk�lY l

⇤
(x) ·rv(x) dx 8v 2 H1

�
D

(D).
(4.3)

It is not possible to directly solve (4.3) since it involves the unknown quantities

E
⇥ruk�lY l

⇤
(x), l = 1, . . . , k.

Each term E
⇥ruk�lY l

⇤
is defined as the evaluation on diag(D⇥(l+1)

), that is the diag-
onal of the tensorized domain D⇥(l+1)

:= D ⇥ . . .⇥D| {z }
l+1 times

, of

�r⌦ Id

⌦l
�
E
⇥
uk�l ⌦ Y ⌦l

⇤
,

where the (l + 1)-points correlation function E
⇥
uk�l ⌦ Y ⌦l

⇤
is defined as

E
⇥
uk�l ⌦ Y ⌦l

⇤
(x1, x2 . . . , xl+1) :=

Z
⌦

uk�l
(!, x1)⌦Y (!, x2)⌦. . .⌦Y (!, xl+1)dP(!)
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4.2. Derivation of the recursive equations for the first moment

and the tensor operator r⌦ Id

⌦l
= r⌦ Id⌦ . . .⌦ Id| {z }

l times

is the gradient operator on the

first variable x1 and the identity operator on all the other variables. Note that, if l = 0,
then E

⇥
uk�l ⌦ Y ⌦l

⇤
= E

⇥
uk
⇤
.

Given a function v(x1, . . . , xn, . . . , xn+s, . . . , xl), n + s  l positive integers, we
introduce the following notation:�

Tr|
n:s

�
v(x1, . . . , xn�1, xn, xn+s, . . . , xl)

:= v(x1, . . . , xn�1, xn, . . . , xn| {z }
s times

, xn+s, . . . , xl). (4.4)

In particular, E
⇥ruk�lY l

⇤
= Tr|1:l+1

E
⇥ruk�l ⌦ Y ⌦l

⇤
. In Lemma 4.3.3 we will show

that Tr|1:s+1E
⇥ruk�l ⌦ Y ⌦l

⇤
is square integrable over D⇥(l�s+1) for each 1  s  l.

We have observed that, to obtain the k-th order correction E
⇥
uk
⇤
, we need to de-

rive the boundary value problem solved by the (l + 1)-points correlation function
E
⇥
uk�l ⌦ Y ⌦l

⇤
for l = 1, . . . , k. To derive the equation for E

⇥
uk�l ⌦ Y ⌦l

⇤
we start

from the equation solved by uk�l (see equation (3.20)) and multiply both sides by
Y (!, x2) · · ·Y (!, xl+1):

� �div ⌦ Id

⌦l
�ruk�l

(!, x1)⌦ Y (!, x2)⌦ · · ·⌦ Y (!, xl+1)

=

k�lX
s=1

✓
k � l

s

◆�
div ⌦ Id

⌦l
� �ruk�l�sY s

�
(!, x1)⌦ Y (!, x2)⌦ · · ·⌦ Y (!, xl+1)

for a.e. (x1, . . . , xl+1) 2 D⇥(l+1), a.s. in ⌦. Taking the expectation on both sides and
using the integration by parts formula on the first variable we obtain the problem:

(l+ 1)-points correlation problem - weak formulation
Given all the lower order terms

E
⇥
uk�l�s ⌦ Y ⌦(s+l)

⇤ 2 H1
�
D

(D)⌦ (L2
(D))

⌦(s+l) for s = 1, . . . , k � l,

find E
⇥
uk�l ⌦ Y ⌦l

⇤ 2 H1
�
D

(D)⌦ (L2
(D))

⌦l s.t.

Z
D⇥(l+1)

�r⌦ Id

⌦l
�
E
⇥
uk�l ⌦ Y ⌦l

⇤ · �r⌦ Id

⌦l
�
v dx1 . . . dxl+1 =

�
k�lX
s=1

✓
k � l

s

◆Z
D⇥(l+1)

Tr|1:s+1E
⇥ruk�l�s ⌦ Y ⌦(s+l)

⇤ · �r⌦ Id

⌦l
�
v dx1 . . . dxl+1

8 v 2 H1
�
D

(D)⌦ �L2
(D)

�⌦l

(4.5)

Note that problem (4.3) is a particular case of problem (4.5) with l = 0.
To summarize, the problem we have in hand has a recursive structure. Indeed, to

obtain the K-th order approximation of E [u] (4.2), we need to accomplish the following
steps:
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Chapter 4. Derivation and analysis of the moment equations

Table 4.1: K-th order approximation of the mean. The first column contains the input terms and the first
row contains the k-th order corrections, for k = 0, . . . ,K. To compute E

⇥
TKu(Y, x)

⇤
, we need all

the elements in the upper triangular part of the table, that is all the elements in the k-th diagonals
with k = 0, . . . ,K.

E
⇥
u0
⇤
= u0 E

⇥
u1
⇤
= 0 E

⇥
u2
⇤

E
⇥
u3
⇤
= 0

. .
.

E
⇥
u0 ⌦ Y

⇤
= u0 ⌦ E [Y ] = 0 E

⇥
u1 ⌦ Y

⇤
E
⇥
u2 ⌦ Y

⇤
= 0

. .
.

. .
.

E
⇥
u0 ⌦ Y ⌦2

⇤
= u0 ⌦ E

⇥
Y ⌦2

⇤
E
⇥
u1 ⌦ Y ⌦2

⇤
= 0

. .
.

. .
.

. .
.

E
⇥
u0 ⌦ Y ⌦3

⇤
= u0 ⌦ E

⇥
Y ⌦3

⇤
= 0

. .
.

. .
.

. .
.

. .
.

for k = 0, . . . , K

Compute E
⇥
u0 ⌦ Y ⌦k

⇤
for l = k � 1, k � 2, . . . , 0

Solve the boundary value problem (4.5) to obtain the (l+1)-points correlation
function E

⇥
uk�l ⌦ Y ⌦l

⇤
end

The result for l = 0 is the k � th order correction E
⇥
uk
⇤

to the mean E [u]

end

This procedure is depicted in Table 4.1. The first column contains the input terms
of our recursion, namely the deterministic function u0 and all the statistical k-points
correlations of the Gaussian random field Y multiplied by u0. The first row contains
the increasing order correction to the mean, that is the output terms of our recursive
problem. The k-th diagonal is composed of E

⇥
uk�l ⌦ Y ⌦l

⇤
with l 2 {0, . . . , k}. So,

for example, the first diagonal contains E [u0 ⌦ Y ] and E [u1
], and the second diagonal

contains E [u0 ⌦ Y ⌦2
], E [u1 ⌦ Y ] and E [u2

]. Each non-zero term E
⇥
uk�l ⌦ Y ⌦l

⇤
,

can be obtained only if we have previously computed all the terms before in the k-
th diagonal, that is E

⇥
u0 ⌦ Y ⌦k

⇤
, E
⇥
u1 ⌦ Y ⌦(k�1)

⇤
, . . ., E

⇥
uk�l�1 ⌦ Y ⌦(l+1)

⇤
, since

these terms enter in the problem solved by E
⇥
uk�l ⌦ Y ⌦l

⇤
as right-hand side in (4.5).

Since we assumed E [Y ] (x) = 0 w.l.o.g., all the (2k + 1)-points correlations of Y
vanish. As a consequence, all the terms in the odd diagonals vanish. Finally, we observe
that this table has a triangular structure, in the sense that, to compute the K-th order
approximation of the mean, we need all the elements in the upper triangular part of the
table:

E
⇥
uk�l ⌦ Y ⌦l

⇤
, k 2 {0, . . . , K} , l 2 {0, . . . , k} .

4.3 Regularity results for the correlations E
⇥
Y ⌦k

⇤
, E
⇥
v ⌦ Y ⌦k

⇤
In this section we provide some results on the regularity of the correlations E

⇥
Y ⌦k

⇤
and E

⇥
v ⌦ Y ⌦k

⇤
with v 2 V , V being a Banach space.
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4.3. Regularity results for the correlations E
⇥
Y ⌦k

⇤
, E
⇥
v ⌦ Y ⌦k

⇤
4.3.1 Hölder spaces with mixed regularity

Let D ⇢ Rd be an open bounded domain. Given x 2 D, we denote with |x| the eu-
clidean norm of x, as well as, given (x1, . . . , xk) 2 D⇥k we denote with |(x1, . . . , xk)|
the euclidean norm of (x1, . . . , xk).

The �-Hölder space C0,�
(

¯D⇥k
) (0 < �  1) consists of all continuous functions

v :

¯D⇥k ! R with finite seminorm

|v|C0,�(D̄⇥k) := sup

x,x+h2D̄⇥k

h>0

|D�
h

v(x1, . . . , xk)| < +1,

where h = (h1, . . . , hk), x = (x1, . . . , xk), and D�
h

is the linear operator defined as

D�
h

v(x1, . . . , xk) :=
v(x1 + h1, . . . , xk + hk)� v(x1, . . . , xk)

|h| � . (4.6)

If |v|C0,1(D̄⇥k) < +1, the function v is said Lipschitz regular. The space C0,�
(

¯D⇥k
)

is a Banach space with the natural norm

kvkC0,�(D̄⇥k) := kvkC0(D̄⇥k) + |v|C0,�(D̄⇥k) .

Generalizing the spaces C0,�
(

¯D⇥k
), and Cr

(

¯D⇥k
) (r 2 N) with mixed regularity (see

e.g. [80]), we define the Hölder space with mixed regularity C0,�,mix
(

¯D⇥k
) as follows.

It is the space of all continuous functions v :

¯D⇥k ! R with finite seminorm

|v|C0,�,mix(D̄⇥k) := sup

x,x+h2D̄⇥k

h>0

��D�,mix
h

v(x1, . . . , xk)

�� < +1,

where D�,mix
h

is the mixed counterpart of (4.6):

D�,mix
h

v(x1, . . . , xk) := D�
1,h1

· · ·D�
k,h

k

v(x1, . . . , xk), (4.7)

with

D�
i,h

i

v(x1, . . . , xk) :=
v(x1, . . . , xi + hi, . . . , xk)� v(x1, . . . , xk)

|hi|� .

C0,�,mix
(

¯D⇥k
) is a Banach space with the norm

kvkC0,�,mix(D̄⇥k) := kvkC0(D̄⇥k) + |v|C0,�,mix(D̄⇥k) .

In other words, C0,�,mix
(

¯D⇥k
) is the space of functions v :

¯D⇥k ! R �-Hölder regular
in every direction separately. In the same way, given V a functional (Hilbert or Banach)
space, C0,�,mix

�
¯D⇥k

;V
�

denotes the space of functions v :

¯D⇥k ! V with �-Hölder
regularity in every direction separately. Clearly, C0,�,mix

(

¯D⇥k
) ⇢ C0,�

(

¯D⇥k
). The

following lemma states in which case the inverse inclusion holds.

Lemma 4.3.1. Let 0 < �  1. Then

C0,�
(

¯D⇥k
) ⇢ C0,�/k,mix

(

¯D⇥k
). (4.8)
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Chapter 4. Derivation and analysis of the moment equations

Proof. We prove (4.8) for k = 2. Let v 2 C0,�
(

¯D⇥2
).

|v|C0,�/2,mix(D̄⇥2)

= sup

x,h

���D�/2
1,h1

D�/2
2,h2

v(x1, x2)

��� (4.9)

= sup

x,h

|v(x1 + h1, x2 + h2)� v(x1 + h1, x2)� v(x1, x2 + h2) + v(x1, x2)|
|h1|�/2 |h2|�/2

(4.10)

Let us define w(x1, x2;h1, h2) := v(x1 + h1, x2 + h2) � v(x1 + h1, x2) � v(x1, x2 +

h2) + v(x1, x2) so that

(4.10) = sup

x,h

|w(x1, x2;h1, h2)|
|h1|�/2 |h2|�/2

 max

⇢
sup

x,|h1|<|h2|

|w(x1, x2;h1, h2)|
|h1|�/2 |h2|�/2

, sup

x,|h1|�|h2|

|w(x1, x2;h1, h2)|
|h1|�/2 |h2|�/2

�
.

We start considering

sup

x,|h1|<|h2|

|w(x1, x2;h1, h2)|
|h1|�/2 |h2|�/2

 sup

x,|h1|<|h2|

1

|h1|�/2 |h2|�/2
✓
|h1|� |v(x1 + h1, x2 + h2)� v(x1, x2 + h2)|

|h1|�

+ |h1|� |v(x1 + h1, x2)� v(x1, x2)|
|h1|�

◆
 sup

x,|h1|<|h2|

|h1|�/2
|h2|�/2

���D�
1,h1

v(x1, x2 + h2)
��
+

��D�
1,h1

v(x1, x2)
���

 2 |v|C0,�(D̄⇥2) .

Similarly,

sup

x,|h1|�|h2|

|w(x1, x2;h1, h2)|
|h1|�/2 |h2|�/2

 sup

x,|h1|�|h2|

|h2|�/2
|h1|�/2

���D�
2,h2

v(x1 + h1, x2)
��
+

��D�
2,h2

v(x1 + h1, x2)
���

 2 |v|C0,�(D̄⇥2) .

Hence, we conclude (4.8) for k = 2. In the general case, given h = (h1, . . . , hk), and
i⇤ such that |hi⇤ |  |hi| 8 i 6= i⇤, it holds

sup

x

|h
i

⇤ ||h
i

|,i 6=i⇤

|w(x1, . . . , xk;h1, . . . , hk)|Qk
i=1 |hi|�/k

 sup

x

|h
i

⇤ ||h
i

|,i 6=i⇤

|hi⇤ |�Qk
i=1 |hi|�/k

|w(x1, . . . , xk;h1, . . . , hk)|
|hi⇤ |�

 2

k�1 |v|C0,�(D̄⇥k) .

106



i
i

“Bonizzoni_thesis” — 2013/5/3 — 8:25 — page 107 — #117 i
i

i
i

i
i

4.3. Regularity results for the correlations E
⇥
Y ⌦k

⇤
, E
⇥
v ⌦ Y ⌦k

⇤

4.3.2 Hölder mixed regularity of E
⇥
Y ⌦k

⇤
and E

⇥
v ⌦ Y ⌦k

⇤
The following proposition states a Hölder mixed regularity result for the k-points cor-
relation of the Gaussian random field Y (!, x).

Proposition 4.3.2. Let Y be a centered Gaussian random field with covariance function
CovY 2 C0,t

(D ⇥D), 0 < t  1. Suppose v 2 V , V Banach space. Then, for every
positive integer k, the following properties hold:

P1 E
⇥
Y ⌦k

⇤ 2 C0,t/2,mix
(

¯D⇥k
),

P2 E
⇥
v ⌦ Y ⌦k

⇤ 2 C0,t/2,mix
�
¯D⇥k

;V
�
.

Proof. Let us start proving property P1. Using the definition of the k-points correlation
function of Y we have

Dt/2
1,h1

E
⇥
Y ⌦k

⇤
(x1, . . . , xk)

=

E
⇥
Y ⌦k

⇤
(x1 + h1, . . . , xk)� E

⇥
Y ⌦k

⇤
(x1, . . . , xk)

|h1|t/2

=

E [Y (!, x1 + h1)⌦ Y (!, x2)⌦ · · ·⌦ Y (!, xk)]

|h1|t/2

+

E [Y (!, x1)⌦ Y (!, x2)⌦ · · ·⌦ Y (!, xk)]

|h1|t/2

= E
"
Y (!, x1 + h1)� Y (!, x1)

|h1|t/2
⌦ Y (!, x2)⌦ · · ·⌦ Y (!, xk)

#
.

Repeating iteratively the same steps,

Dt/2
k,h

k

· · ·Dt/2
1,h1

E
⇥
Y ⌦k

⇤
(x1, . . . , xk) = E

"
kO

j=1

Y (!, xj + hj)� Y (!, xj)

|hj|t/2
#
.

Now, ��E ⇥Y ⌦k
⇤��

C0,t/2,mix(D̄⇥k)
= sup

x1...,x
k

h1,...,h
k

���Dt/2
k,h

k

· · ·Dt/2
1,h1

E
⇥
Y ⌦k

⇤���
= sup

x1...,x
k

h1,...,h
k

�����E
"

kO
j=1

Y (!, xj + hj)� Y (!, xj)

|hj|t/2
#�����

 sup

x1...,x
k

h1,...,h
k

E
"

kO
j=1

|Y (!, xj + hj)� Y (!, xj)|
|hj|t/2

#
.

Using the Hölder inequality, we have

E
"

kO
j=1

|Y (!, xj + hj)� Y (!, xj)|
|hj|t/2

#


kY
j=1

E
"
|Y (!, xj + hj)� Y (!, xj)|k

|hj|kt/2
#1/k

,
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Chapter 4. Derivation and analysis of the moment equations

so that

sup

x1...,x
k

h1,...,h
k

E
"

kO
j=1

|Y (!, xj + hj)� Y (!, xj)|
|hj|t/2

#


kY

j=1

sup

x
j

,h
j

E
"
|Y (!, xj + hj)� Y (!, xj)|k

|hj|kt/2
#1/k

.

We conclude using the result (3.7) in Proposition 3.3.2 for p = k/2. To prove P2 we
observe that, for every (x2, . . . , xk+1) 2 D⇥k fixed,

x1 7! v(x1)E [Y (!, x2)⌦ · · ·⌦ Y (!, xk+1)]

is a function in V parametric in (x2, . . . , xk+1). Moreover, the function

(x2, . . . , xk+1) 7! v(x1)E [Y (!, x2)⌦ · · ·⌦ Y (!, xk+1)] := '(x1, x2, . . . , xk)

is such that

|'|C0,t/2,mix

(

D̄⇥k;V
)

:= sup

x2,...,x
k+1

h2,...,h
k+1

���Dt/2,mix
(h2,...,h

k+1)
'(·, x2, . . . , xk+1)

���
V
< 1.

Note that the regularity result in P1 for k = 2 is in agreement with our assumption
CovY 2 C0,t

(D ⇥D), 0 < t  1 (see Lemma 4.3.1).

4.3.3 Trace regularity results

The following two propositions provide regularity results for the traces of functions
with Hölder regularity.

Lemma 4.3.3. Let Y be a centered Gaussian random field with covariance function
CovY 2 C0,t

(D ⇥D), 0 < t  1, and v 2 L2
(D), so that

E
⇥
v ⌦ Y ⌦k

⇤ 2 C0,t/2,mix
�
¯D⇥k

;L2
(D)

� ⇢ C0,t/2
�
¯D⇥k

;L2
(D)

�
.

Then, it holds��
Tr|1:sE

⇥
v ⌦ Y ⌦k

⇤��
L2(D⇥(k�s+2))

 C
��E ⇥v ⌦ Y ⌦k

⇤��
C0,t/2

(

D̄⇥k;L2(D)
)

, (4.11)

with C = C(D, s), for any integers 1  s  k + 1, where Tr|1:s is the trace operator
introduced in (4.4).
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4.3. Regularity results for the correlations E
⇥
Y ⌦k

⇤
, E
⇥
v ⌦ Y ⌦k

⇤
Proof. To lighten the notations, let us define ' := E

⇥
v ⌦ Y ⌦k

⇤
. We have��

Tr|1:s'(x1, . . . , xs, xs+1, . . . , xk+1)
��
L2
x1

(D)

= k'(x1, . . . , x1| {z }
s times

, xs+1, . . . , xk+1)kL2
x1

(D)

 k'(x1, . . . , x1, xs+1, . . . , xk+1)� '(x1, x2, . . . , xs, xs+1, . . . , xk+1)kL2
x1

(D)

+ k'(x1, x2, . . . , xs, xs+1, . . . , xk+1)kL2
x1

(D)

=

sZ
D

|'(x1, . . . , x1, xs+1, . . . , xk+1)� '(x1, . . . , xk+1)|2
|(x2 � x1, . . . , xs � x1)|t

|(x2 � x1, . . . , xs � x1)|t dx1

+ k'(x1, . . . , xk+1)kL2
x1

(D)

 (s� 1)

t/4diam(D)

t/2 |'|C0,t/2
(

D̄⇥k;L2(D)
)

+ k'(x1, . . . , xk+1)kL2
x1

(D)

where in the last inequality we have used that

|(x2 � x1, . . . , xs � x1)|2 =
sX

j=2

|xj � x1|2  (s� 1)diam(D)

2,

diam(D) being the diameter of the domain D. Using that

E
⇥
v ⌦ Y ⌦k

⇤ 2 C0,t/2,mix
�
¯D⇥k

;L2
(D)

� ⇢ L2
(D⇥k+1

),

we obtainZ
D⇥(k+1)

��
Tr|1:s'

��2 dx1 · · · dxk+1

 2(s� 1)

t/2diam(D)

t |D|k |'|2C0,t/2
(

D̄⇥k;L2(D)
)

+ 2 k'k2L2(D⇥(k+1))

 2

⇣
(s� 1)

t/2diam(D)

t |D|k + |D|k
⌘
k'k2C0,t/2

(

D̄⇥k;L2(D)
)

so that (4.11) is verified with C =

q
2 |D|k ((s� 1)

t/2diam(D)

t
+ 1).

Lemma 4.3.4. Let ' 2 C0,�
(

¯D⇥k
), 0 < �  1, and k positive integer. Then Tr|1:k' 2

C0,�
(

¯D) and ��
Tr|1:k'

��
C0,�(D̄)

 k�/2 |'|C0,�(D̄⇥k) . (4.12)

Proof. Let ' 2 C0,�
(

¯D⇥k
). Using that |(x, . . . , x)� (y, . . . , y)|2 = k |x� y|2 for every

(x, . . . , x), (y, . . . , y) 2 D⇥k, we have��
Tr|1:k'(x)� Tr|1:k'(y)

��
|x� y| � =

|'(x, . . . , x)� '(y, . . . , y)|
|x� y| �

= k�/2 |'(x, . . . , x)� '(y, . . . , y)|
|(x, . . . , x)� (y, . . . , y)|�

 k�/2 |'|C0,�(D̄⇥k) .
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Chapter 4. Derivation and analysis of the moment equations

4.4 Well-posedness and regularity results for the equations for the first
moment

Here we prove the well-posedness result for problem (4.5), which also implies the well-
posedness of the k-th correction problem (4.3).

Theorem 4.4.5. Let Y be a centered Gaussian random field with covariance function
CovY 2 C0,t

(D ⇥D), 0 < t  1. Then, problem (4.5) is well-posed for every k � 0

and l = 0, . . . , k � 1 integers.

Proof. Problem (4.5) is of the form: find w 2 V := H1
�
D

(D)⌦ (L2
(D))

⌦l such that

A(w, v) = L(v) 8 v 2 V ,
where A : V ⇥ V ! R is the bilinear form

A(w, v) :=

Z
D⇥(l+1)

r⌦ Id

⌦lw(x1, . . . , xl+1) ·r⌦ Id

⌦lw(x1, . . . , xl+1) dx1 . . . dxl+1,

and L : V ! R is the linear form

L(v) := �
k�lX
s=1

✓
k � l

s

◆Z
D⇥(l+1)

Tr|1:s+1E
⇥ruk�l�s ⌦ Y ⌦(s+l)

⇤·r⌦Id

⌦lv dx1 . . . dxl+1.

It is easy to verify that A is continuous and coercive. Moreover, using Lemma 4.3.3
with v = ruk�l�s we obtain immediately the continuity of L, so that we conclude the
existence of a unique solution thanks to the Lax Milgram lemma.

Moreover, it holds the following regularity result.

Theorem 4.4.6. Let Y be a centered Gaussian random field with covariance function
CovY 2 C0,t

(D ⇥D), 0 < t  1. Moreover, suppose that the domain is convex C1,t/2,
and u0 2 C1,t/2

(

¯D). Then, for every positive integers k and s,

E
⇥
uk ⌦ Y ⌦s

⇤ 2 C0,t/2,mix
�
¯D⇥s

; C1,t/2
(

¯D)

�
.

Proof. We prove the theorem by induction on k. If k = 0, we know that E [u0 ⌦ Y ⌦s
] 2

C0,t/2,mix
�
¯D⇥s

; C1,t/2
(

¯D)

� 8s, thanks to property P2 in Proposition 4.3.2 with V =

C1,t/2
(

¯D). Now, suppose by induction that E
⇥
ul ⌦ Y ⌦s

⇤ 2 C0,t/2,mix
�
¯D⇥s

; C1,t/2
(

¯D)

�
for every s and l = 1, . . . , k � 1. The problem solved by E

⇥
uk ⌦ Y ⌦s

⇤
isZ

D⇥(s+1)

r⌦ Id

⌦sE
⇥
uk ⌦ Y ⌦s

⇤ ·r⌦ Id

⌦sv dx1 . . . dxs+1

= �
kX

j=1

✓
k

j

◆Z
D⇥(s+1)

Tr|1:j+1E
⇥ruk�j ⌦ Y ⌦(s+j)

⇤ ·r⌦ Id

⌦sv dx1 . . . dxs+1

8 v 2 H1
�
D

(D)⌦ (L2
(D))

⌦s (see (4.5)). By induction, we know that

E
⇥ruk�j ⌦ Y ⌦(j+s)

⇤ 2 C0,t/2,mix
(

¯D⇥(j+s+1)
).
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4.5. Moment equations for the two-points correlation of u

We parametrize E
⇥ruk�j ⌦ Y ⌦(j+s)

⇤
with respect to the last s variables, and for every

fixed (x̄j+2, . . . , x̄j+s+1) 2 D⇥s we define

v(x1, . . . , xj+1) := E
h
ruk�j ⌦ Y ⌦(j+s)

i
(x1, . . . , xj+1, x̄j+2, . . . , x̄j+s+1)

2 C0,t/2,mix
(

¯D⇥(j+1)
).

Lemma 4.3.4 states that Tr|1:j+1(v) 2 C0,t/2
(

¯D), so that

Tr|1:j+1E
⇥ruk�j ⌦ Y ⌦(s+j)

⇤ 2 C0,t/2,mix
(

¯D⇥(s+1)
).

Using a shift theorem for the Hölder regularity (see [44]), we conclude that

E
⇥
uk ⌦ Y ⌦s

⇤ 2 C0,t/2,mix
�
¯D⇥s

; C1,t/2
(

¯D)

�
.

Remark 4.4.7. In general, if u0 2 Cr1,t/2
(

¯D) and Y 2 Lp
�
⌦; Cr2,t/2

(

¯D)

�
, r1, r2 � 0,

8 p, then Propositions 4.3.2 and 4.3.4 easily generalize. Define r := min{r1 � 1, r2}.
If the domain D is Cr+1,t/2, Theorem 4.4.6 generalizes so that

E
⇥
uk ⌦ Y ⌦s

⇤ 2 Cr2,t/2,mix
�
¯D⇥s

; Cr+1,t/2
(

¯D)

�
.

4.5 Moment equations for the two-points correlation of u

In Sections 4.2 and 4.4 we have analyzed the recursive problem for the K-th order
approximation of the expected value of u. Here we give some details on how these
results generalize if the two-points correlation of u is taken into account.

Under the assumption of small standard deviation 0 < � < 1, the K-th order (K � 0

integer) approximation of the two points correlation of u is:

E [u⌦ u] ⇡
X

k1+k2K

E
⇥
uk1 ⌦ uk2

⇤
k1! k2!

. (4.13)

We refer to E
⇥
uk1 ⌦ uk2

⇤
as the correction of order (k1, k2) of E [u⌦ u].

The correction of order (0, 0) is the tensor product u0⌦u0, where u0 is deterministic
and is the unique solution of problem (3.19). E

⇥
uk1 ⌦ uk2

⇤ 2 H1
�
D

(D) ⌦ H1
�
D

(D) is
the unique solution of the following problem:

(k

1

,k
2

)-th order correction problem - weak formulationZ
D⇥2

(r⌦r)E
⇥
uk1 ⌦ uk2

⇤ · (r⌦r) v dx1 dx2

=

k1X
l1=1

k2X
l2=1

✓
k1
l1

◆✓
k2
l2

◆
Z
D⇥2

Tr|1:l1+1
Tr|

l1+2:l1+l2+2
E
⇥ruk1�l1 ⌦ Y ⌦l1 ⌦ruk2�l2 ⌦ Y ⌦l2

⇤·(r⌦r) v dx1 dx2

8v 2 H1
�
D

(D)⌦H1
�
D

(D).

(4.14)
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Chapter 4. Derivation and analysis of the moment equations

Problem (4.14) is obtained tensorizing the problems solved by uk1 and uk2 (3.20)
and then taking the expected value. As in the case of problem (4.3), before solving
(4.14) we need to compute all the terms

Tr|1:l1+1
Tr|

l1+2:l1+l2+2
E
⇥ruk1�l1 ⌦ Y ⌦l1 ⌦ruk2�l2 ⌦ Y ⌦l2

⇤
,

so that a recursion on the (l1 + l2 + 2)-points correlations

E
⇥
uk1�l1 ⌦ Y ⌦l1 ⌦ uk2�l2 ⌦ Y ⌦l2

⇤
(4.15)

is needed. Note that, if l1 = l2 = 0, the problem solved by the correlation (4.15)
coincides with problem (4.14). Lemma 4.3.3 generalizes so that the well-posedness of
problem solved by the correlation (4.15) can be deduced.

Note that the recursive procedure which ends up with the approximation of the
two-points correlation function can be repeated with suitable modifications, in order
to achieve an approximation of the m-th moment problem, with m � 3 integer. In
the next chapter we will describe an algorithm able to solve the first moment problem.
By suitable modifications of the code, it will also be able to solve the m-th moment
problem.

4.6 Conclusions

This chapter addresses the deterministic equations solved by the statistical moments of
the unique solution of the stochastic Darcy problem with deterministic loading term
and lognormal permeability coefficient. We mainly focus our attention on the first

statistical moment, which we approximate using E
⇥
TKu

⇤
=

KX
k=0

E
⇥
uk
⇤

k!
. We study

the structure of the problem we have to solve to compute E
⇥
TKu

⇤
. In particular, for

each k = 0, . . . , K fixed, a recursion on the (l + 1)-points correlation E
⇥
uk�l ⌦ Y ⌦l

⇤
,

l = 1, . . . , k, is needed. We first state a well-posedness result for this recursive prob-
lem. Then, using a shift theorem for elliptic problems, we provide a Hölder-type
regularity result: under the assumptions u0 2 C0,t/2

(D) and D C1,t/2, we prove that
E
⇥
uk�l ⌦ Y ⌦l

⇤ 2 C0,t/2,mix
�
¯D⇥l

; C1,t/2
(

¯D)

�
. We end the chapter giving some details

on the structure of the higher order moment equations.
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CHAPTER5
Low-rank approximation of the moment equations

5.1 Introduction

In Chapter 4 we have studied the structure and well posedness of the first moment
problem. Given a centered Gaussian random field Y with covariance function CovY 2
C0,t

(D ⇥D), we have shown that, for any k � 0 and 0  l  k integers, there exists
a unique (l + 1)-points correlation function E

⇥
uk�l ⌦ Y ⌦l

⇤ 2 H1
�
D

(D) ⌦ (L2
(D))

⌦l

solution of problem (4.5). Moreover, under additional regularity assumptions on the
domain D and u0, we have proved that E

⇥
uk�l ⌦ Y ⌦l

⇤ 2 C0,t/2,mix
�
¯D⇥l

; C1,t/2
(

¯D)

�
.

Here, we discretize problem (4.5) with full tensor product finite elements, using
piecewise linear and piecewise constant finite elements to approximate H1

�
D

(D) and
L2

(D) respectively. In this way, each (l + 1)-points correlation E
⇥
uk�l ⌦ Y ⌦l

⇤ 2
H1

�
D

(D)⌦ (L2
(D))

⌦l is represented as a tensor of order l+1, and the discrete formula-
tion of problem (4.5) is a linear system involving high order tensors. Since the number
of entries of a tensor is exponential in its order, it is possible to explicitly store only
tensors with small order. For this reason, we exploit a data-sparse or low-rank format
(TT-format) to represent and make computations between high order tensors.

Alternatively, a sparse tensor product finite element discretization may be pursued.
See e.g. [21] for an exhaustive presentation, as well as [28,56,91,97] for an application
to the moment equations. We will not investigate this approach here, however.

Instead of taking into account the entire field Y , it can be approximated using a
finite number of independent random variables, by performing a truncated Fourier or
KL expansion. In this case, the Taylor polynomial can be explicitly computed. In
Section 5.7.3 we compare the numerical complexity of this method with that of the
TT-algorithm we propose.

The outline of the chapter is the following. Section 5.2 fixes the notations for the
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Chapter 5. Low-rank approximation of the moment equations

tensor calculus. In Section 5.3 we derive the finite element formulation of problem
(4.5). Section 5.4 gives a brief overview on the most used low-rank techniques to
represent or approximate a high order tensor. Of particular interest is the TT-format,
the data-sparse technique used for our computations. Sections 5.5 and 5.6 are devoted
to the description of the algorithms used to compute the k-points correlation function
E
⇥
Y ⌦k

⇤
and the solution of problem (4.5) respectively. We end the chapter with some

numerical tests and comments on the complexity of our algorithm.

5.2 Notations for tensor calculus

Let d � 1 integer. A tensor of order d is a d-dimensional array, that is an element of the
tensor product of d vector spaces. We focus on real tensors X 2 Rn1⇥...⇥n

d with entries
X (i1, . . . , id) 2 R. In particular, a tensor of order one is a vector and a tensor of order
two is a matrix.

Definition 5.2.1. Let X 2 Rn1⇥...⇥n
d be a tensor of order d and U 2 Rm⇥n

µ be a
matrix (µ 2 {1, . . . , d}). The µ-th mode product of the tensor X with the matrix U is
denoted by X ⇥µ U , is an element of Rn1⇥...⇥n

µ�1⇥m⇥n
µ+1⇥...⇥n

d , and is given by

(X ⇥µ U) (i1, . . . , iµ�1, j, iµ+1, . . . , id) =

n
µX

i
µ

=1

X (i1, . . . , iµ, . . . , , id)U(j, iµ). (5.1)

The notation introduced in Definition 5.2.1 is standard: see e.g. [65] and the refer-
ences therein. On the other hand, to our knowledge, there is no standard notation for
the generalization of formula (5.1) acting on two tensors.

Definition 5.2.2. Let

Y 2 Rm1⇥...⇥m
s�1⇥n

s

⇥...⇥n
s+r�1⇥m

s+r

⇥...⇥m
d

X 2 Rn
s

⇥...⇥n
s+r�1⇥h

be tensors of order d and r + 1 respectively, with entries

Y(k1, . . . , ks�1, is, . . . , is+r�1, ks+r, . . . , kd), X (is, . . . , is+r�1, j),

with s, r � 1 and d � s+ r. We define the tensor of order d� r + 1

Z := X ⇥s,r Y 2 Rm1⇥...⇥m
s�1⇥h⇥m

s+r

⇥...⇥m
d

as the saturation of the first r indices of X with the r indices of Y from position s to
s+ r � 1:

Z(k1, . . . , ks�1, j, ks+r, . . . , kd) (5.2)

=

n
sX

i
s

=1

. . .
n
s+r�1X

i
s+r�1=1

X (is, . . . , is+r�1, j)Y(k1, . . . , ks�1, is, . . . , is+r�1, ks+r, . . . , kd).

The operation in Definition 5.2.2 satisfies the following property:

X ⇥s,r (Y ⇥p,q Z) =

⇢ Y ⇥p�r+1,q (X ⇥s,r Z) if p � r + s,

Y ⇥p,q (X ⇥s+q�1,r Z) if s > p.
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Notice, in particular, that

X ⇥s,1 (Y ⇥p,1 Z) = Y ⇥p,1 (X ⇥s,1 Z) 8 s 6= p.

Note that, if X (j, iµ) is a matrix and Y(i1, . . . , iµ. . . . , id) is a tensor of order d, then

Y ⇥µ X = X T ⇥µ,1 Y
for any µ = 1, . . . , d, so that Definition 5.2.2 generalizes the µ-th mode product.

Moreover, in the particular case where X (i, j) and Y(i, k) are both matrices, the
saturation (5.2) is nothing else than the classical matrix-matrix multiplication:

X ⇥1,1 Y = X TY ,

X ⇥2,1 Y = YX .

We end the section introducing a standard operation between matrices, the Kro-
necker product (see e.g. [53, 65]).

Definition 5.2.3. Let X 2 Rn1⇥n2 and Y 2 Rm1⇥m2 be matrices. The Kronecker
product X ⌦ Y is a tensor of order four, size (n1,m1, n2,m2) and entries:

(X ⌦ Y) (i1, i2, j1, j2) = X (i1, j1)Y(i2, j2). (5.3)

Definition 5.2.3 easily generalizes to tensors X , Y of the same order.

5.3 FE discretization of the first moment equation

To lighten the presentation, from now on we suppose g = 0, that is homogeneous
Dirichlet boundary conditions are imposed on �D in the stochastic Darcy problem. Let
Th be a regular partition of the domain D ✓ R2 (D ✓ R3 respectively) into triangles
(tetrahedrons respectively) such that the union of all the elements of the partition is
the closure of the domain and the intersection of any two of them is empty or is a
common edge or vertex (face or edge or vertex respectively). Let us denote with h the
discretization parameter, i.e. the maximum diameter of the triangles/tetrahedrons in
Th. To discretize the Hilbert spaces H1

�
D

(D) and L2
(D) we use piecewise linear and

piecewise constant finite elements respectively:

Vh = span {�n}Nv

n=1 ⇢ H1
�
D

(D) (5.4)

Wh = span { i}Ne

i=1 ⇢ L2
(D) (5.5)

where {�n}n is the Lagrangian P1 basis, { i}i is the piecewise constant basis, Nv is
the number of vertices excluding those on �D, and Ne is the number of elements of
the triangulation. Having the two bases {�n}n and { i}i, for every integer l � 1, we
can construct a basis for the tensor product space H1

�
D

(D) ⌦ (L2
(D))

⌦l (see problem
(4.5)):

Vh ⌦ (Wh)
⌦l

= span {�n ⌦  i1 ⌦ . . .⌦  i
l

, n = 1, . . . , Nv, i1, . . . , il = 1, . . . , Ne} .
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Chapter 5. Low-rank approximation of the moment equations

5.3.1 0-th order problem: FEM formulation

The 0-th order problem is the deterministic Laplacian problem: given f 2 L2
(D), find

u0
(x) 2 H1

�
D

(D) such thatZ
D

ru0
(x) ·rv(x) dx =

Z
D

f(x)v(x) dx 8v 2 H1
�
D

(D).

See equation (3.19).

Its finite element formulation is: find u0
(x) =

N
vX

n=1

u0
(n)�n(x) such that

N
vX

n=1

u0
(n)

Z
D

r�n(x) ·r�m(x) dx| {z }
A(m,n)

=

Z
D

f(x)�m(x) dx| {z }
F (m)

8 m = 1, . . . , Nv. (5.6)

where A is the stiffness matrix for the P1 basis. The linear system (5.6) can be com-
pactly written as

A U0
= F, (5.7)

where U0
= {u0

(n)}Nv

n=1.

5.3.2 2-nd order problem: FEM formulation

Given the 3-points correlation function E [u0 ⌦ Y ⌦2
], to derive the second order cor-

rection E [u2
] we need to solve the problem for the 2-points correlation E [u1 ⌦ Y ] first

(see Table 4.1).

Problem for E [u1 ⌦ Y ]: FEM formulation

Recall the equation for E [u1 ⌦ Y ] (see problem (4.5) with l = 1 and k = 2): given
E [u0 ⌦ Y ⌦2

] 2 H1
�
D

(D)⌦ (L2
(D))

⌦2, find E [u1 ⌦ Y ] 2 H1
�
D

(D)⌦ L2
(D) such thatZ

D

Z
D

(r⌦ Id)E
⇥
u1 ⌦ Y

⇤
(x1, x2) · (r⌦ Id) v(x1, x2) dx1 dx2

= �
Z
D

Z
D

Tr|1:2E
⇥ru0 ⌦ Y ⌦2

⇤
(x1, x2) · (r⌦ Id) v(x1, x2) dx1 dx2

for every v 2 H1
�
D

(D)⌦ L2
(D), where the trace operator Tr|1:s has been introduced in

Chapter 4, equation (4.4).
Its finite element formulation is: given

Tr|1:2E
⇥ru0 ⌦ Y 2

⇤
(x1, x2)

=

N
vX

n=1

N
eX

i1=1

N
eX

i2=1

Cu0⌦Y 2
(n, i1, i2)r�n(x1)⌦  i1(x1)⌦  i2(x2),

116



i
i

“Bonizzoni_thesis” — 2013/5/3 — 8:25 — page 117 — #127 i
i

i
i

i
i

5.3. FE discretization of the first moment equation

find E
⇥
u1 ⌦ Y

⇤
(x1, x2) =

N
vX

n=1

N
eX

i=1

Cu1⌦Y (n, i) �n(x1)⌦  i(x2) such that

X
n,i

Cu1⌦Y (n, i)

Z
D

Z
D

(r�n(x1)⌦  i(x2)) · (r�m(x1)⌦  j(x2)) dx1 dx2

= �
X
n,i1,i2

Cu0⌦Y ⌦2
(n, i1, i2)Z

D

Z
D

(r�n(x1)⌦  i1(x1)⌦  i2(x2)) · (r�m(x1)⌦  j(x2)) dx1 dx2 (5.8)

8 �m ⌦  j 2 Vh ⌦Wh. We split the integral in the left-hand side of (5.8) asZ
D

Z
D

(r�n(x1)⌦  i(x2)) · (r�m(x1)⌦  j(x2)) dx1 dx2

=

✓Z
D

r�n(x1) ·r�m(x1) dx1

◆
| {z }

A(n,m)

✓Z
D

 i(x2)  j(x2) dx2

◆
| {z }

M(i,j)

where A is the stiffness matrix for the P1 basis, and M is the mass matrix for the P0

basis. In the same way, we split the integral in the right-hand side of (5.8) asZ
D

Z
D

(r�n(x1)⌦  i1(x1)⌦  i2(x2)) · (r�m(x1)⌦  j(x2)) dx1 dx2

=

✓Z
D

 i1(x1) r�n(x1) ·r�m(x1) dx1

◆
| {z }

B1(n,i1,m)

✓Z
D

 i2(x2) j(x2) dx2

◆
| {z }

M(i2,j)

.

Note that the tensor of order three B1 2 RN
v

⇥N
e

⇥N
v is a weighted stiffness matrix and

represents the discrete analogous of the trace operator Tr|1:2 .
The linear system solved by Cu1⌦Y can be written in a compact form using the nota-

tion introduced in Section 5.2:

M ⇥2,1 (A⇥1,1 Cu1⌦Y ) = �M ⇥2,1

�B1 ⇥1,2 Cu0⌦Y ⌦2

�
,

which is equivalent to

A⇥1,1 Cu1⌦Y = �B1 ⇥1,2 Cu0⌦Y ⌦2 (5.9)

Problem for E [u2
]: FEM formulation

Recall the equation for E [u2
]: given E [u0 ⌦ Y ⌦2

] 2 H1
�
D

(D)⌦ (L2
(D))

⌦2 and
E [u1 ⌦ Y ] 2 H1

�
D

(D)⌦ L2
(D), find E [u2

] 2 H1
�
D

(D) such thatZ
D

rE
⇥
u2
⇤
(x) ·rv(x) dx =

�2

Z
D

Tr|1:3E
⇥ru0 ⌦ Y ⌦2

⇤
(x) ·rv(x) dx�

Z
D

Tr|1:2E
⇥ru1 ⌦ Y

⇤
(x) ·rv(x) dx
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Chapter 5. Low-rank approximation of the moment equations

for every v 2 H1
�
D

(D). See problem (4.5) with l = 0 and k = 2.
Its finite element formulation is: given

Tr|1:2E
⇥ru1 ⌦ Y

⇤
(x) =

N
vX

n=1

N
eX

i=1

Cu1⌦Y (n, i)r�n(x) i(x),

Tr|1:3E
⇥ru0 ⌦ Y ⌦2

⇤
(x) =

N
vX

n=1

N
eX

i1=1

N
eX

i2=1

Cu0⌦Y ⌦2
(n, i1, i2)r�n(x) i1(x) i2(x),

find E
⇥
u2
⇤
(x) =

N
vX

n=1

Cu2
(n) �n(x) such that

X
n

Cu2
(n)

Z
D

r�n(x) ·r�m(x) dx

= �2

X
n,i

Cu1⌦Y (n, i)

Z
D

 i(x)r�n(x) ·r�m(x) dx

�
X
n,i1,i2

Cu0⌦Y ⌦2
(n, i1, i2)

Z
D

 i1(x) i2(x)r�n(x) ·r�m(x) dx (5.10)

8 �m 2 Vh. We define the tensor of order four B2 2 RN
v

⇥N
e

⇥N
e

⇥N
v as

B2
(n, i1, i2,m) :=

Z
D

 i1(x)  i2(x) r�n(x) ·r�m(x) dx. (5.11)

Since { j} is the piecewise constant finite element basis for L2
(D), we observe that

B2
(n, i1, i2,m) = �i1,i2B1

(n, i1,m) =

⇢
0, if i1 6= i2
B1

(n, i1,m), if i1 = i2

where �i1,i2 is the Kronecker delta, so that B2 is the discrete counterpart of the continu-
ous operator Tr|1:3 . Splitting the integrals in (5.10) as done for the equation for Cu1⌦Y ,
we derive the compact expression for the finite element discretization of the equation
for Cu2 :

A Cu2
= �2B1 ⇥1,2 Cu1⌦Y � B2 ⇥1,3 Cu0⌦Y 2 (5.12)

5.3.3 k-th order problem: FEM formulation

Here we derive the finite element formulation for the k-th order problem generalizing
the results obtained with k = 2.

Recall the recursive k-th order problem: given all the lower order terms

E
⇥
uk�l�s ⌦ Y ⌦(s+l)

⇤ 2 H1
�
D

(D)⌦ �L2
(D)

�⌦(s+l)
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for s = 1, . . . , k � l, find E
⇥
uk�l ⌦ Y ⌦l

⇤ 2 H1
�
D

(D)⌦ (L2
(D))

⌦l such thatZ
D⇥(l+1)

�r⌦ Id

⌦l
�
E
⇥
uk�l ⌦ Y ⌦l

⇤ · �r⌦ Id

⌦l
�
v dx1 . . . dxl+1 =

�
k�lX
s=1

✓
k � l

s

◆Z
D⇥(l+1)

Tr|1:s+1E
⇥ruk�l�s ⌦ Y ⌦(s+l)

⇤ · �r⌦ Id

⌦l
�
v dx1 . . . dxl+1

8 v 2 H1
�
D

(D)⌦ (L2
(D))

⌦l.
The finite element discretizations of the known term Tr|1:s+1E

⇥ruk�l�s ⌦ Y ⌦(s+l)
⇤

and the unknown E
⇥
uk�l ⌦ Y ⌦l

⇤
are respectively:

Tr|1:s+1E
⇥ruk�l�s ⌦ Y ⌦(s+l)

⇤
(x1, . . . , xl+1)

=

X
n,i1,...,i

s+l

Cuk�l�s⌦Y ⌦(s+l)(n, i1, . . . , is+l)

r�n(x1) i1(x1) · · · i
s

(x1)⌦  i
s+1(x2)⌦ · · ·⌦  i

s+l

(xl+1),

E
⇥
uk�l ⌦ Y ⌦l

⇤
(x1, . . . , xl+1)

=

X
n,i1,...,i

l

Cuk�l⌦Y ⌦l(n, i1, . . . , il)�n(x1)⌦  i1(x2)⌦ · · ·⌦  i
l

(xl+1).

Generalizing the definitions of B1 2 RN
v

⇥N
e

⇥N
v and B2 2 RN

v

⇥N
e

⇥N
e

⇥N
v , we

introduce the tensor of order s+ 2, Bs 2 RN
v

⇥N
e

⇥...⇥N
e

⇥N
v , as

Bs
(n, i1, . . . , is,m) :=

Z
D

 i1(x) . . . i
s

(x) r�n(x) ·r�m(x) dx. (5.13)

Since we discretize the space L2
(D) with piecewise constants, we have

Bs
(n, i1, . . . , is,m) = �i

s�1,isBs�1
(n, i1, . . . , is�1,m) = . . . = �i1,...,isB1

(n, i1,m),

so that Bs is a highly sparse tensor.
Repeating the same steps done in the case k = 2, we obtain the compact form of the

recursive k-th order problem:

A⇥1,1 Cuk�l⌦Y ⌦l = �
k�lX
s=1

✓
k � l

s

◆
Bs ⇥1,s+1 Cuk�l�s⌦Y ⌦(s+l) (5.14)

Observe that the linear system (5.14) coincides with (5.9) for k = 2 and l = 1, and with
(5.12) for k = 2 and l = 0.

Remark 5.3.4. In general, the structure of the tensor Bs strongly depends on the choice
of the basis functions. With the aim of developing a black-box solver for the k-th order
problem, we would need as input for the algorithm the stiffness matrix A and the tensors
Bs.

5.4 Low-rank formats

The finite element discretization of the k-th order problem (5.14) involves high order
tensors. The number of entries of a tensor grows exponentially in its order, so that it is
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Chapter 5. Low-rank approximation of the moment equations

possible to explicitly store only tensors of small order d. This phenomenon is known
as curse of dimensionality. For large d it is necessary to use data-sparse or low-rank
formats. We refer to [65] and the references therein for an introduction on the argument.
In what follows, we give a brief overview on the most used techniques to represent or
approximate a high order tensor (d � 3).

5.4.1 Classical formats
Let X 2 Rn1⇥...⇥n

d be a tensor of order d. The Canonical Polyadic (CP) format of the
tensor X is given by a linear combination of rank one tensors:

X (i1, . . . , id) =
rX

↵=1

U1(i1,↵) · · ·Ud(id,↵), 8ij = 1, . . . , nj, j = 1, . . . , d,

where r is a positive integer called canonical rank and Uj = Uj(ij,↵), j = 1, . . . , d,
are nj ⇥ r matrices known as canonical factors. The storage of a tensor in CP format
requires little memory if r is small enough. The major difficulties with respect to the
CP format come from the numerical point of view. Indeed, on the one hand, the com-
putation of the canonical rank is an NP (non polynomial) hard problem. On the other
hand, there are no robust algorithms to compute the canonical representation of a given
tensor with a fixed accuracy.

Remark 5.4.5. Suppose D⇥d ⇢ Rd and u 2 V ⌦d defined on D⇥d, V Hilbert space.
Given a multivariate Lagrangian basis �

i

, i = (i1 . . . , id), associated to the grid
{(xi1 , . . . , xi

d

)}, ij = 1, . . . , nj 8 j, the function u can be approximated as

u(x1, . . . , xd) =

n1X
i1=1

· · ·
n
dX

i
d

=1

Xu(i1, . . . , id)�i1(x1) · · ·�i
d

(xd), (5.15)

Xu being a tensor of order d and size n1 ⇥ . . .⇥ nd.

Remark 5.4.6. In the same setting as remark 5.4.5, let V0 ⇢ V1 ⇢ . . . ⇢ VL ⇢ . . . ⇢ V
be a sequence of dense and nested finite dimensional subspaces of V , and Wj := V ?

j�1

in Vj , i.e. the orthogonal complement of Vj�1 in Vj . Define the sparse tensor product
approximation of V ⌦d as

V (d)
L :=

X
|l|L

Wl1 ⌦ . . .⌦Wl
d

.

If we denote with { l,i}i=1,...,n
l

a basis of Wl, and with ⇤(L) = {l : |l|  L} the set of
multi indices with absolute value less or equal to L, then

V (d)
L = span

�
 l1,i1 ⌦ . . .⌦  l

d

,i
d

, l 2 ⇤(L), ij = 1, . . . , nl
j

 
.

Each element u 2 V (d)
L can be represented as

u(x1, . . . , xd) =

X
l2⇤(L)

X
i1···i

d

↵
l

 l1,i1(x1)⌦ . . .⌦  l
d

,i
d

(xd). (5.16)

Formula (5.16) gives a CP representation of X u with rank r = #⇤(L), where X u is
introduced in (5.15). Hence, a sparse grid representation can be seen as a particular
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case of low-rank representation where the basis is fixed. Whereas, when a low-rank
representation of a tensor is looked for, the basis is not a priori fixed.

The Tucker format of X is defined as the multiplication of a tensor C and matrices
U1, . . . , Ud

X = C ⇥1 U1 ⇥2 U2 . . .⇥d Ud, (5.17)

where C 2 Rr1⇥...⇥r
d is called core tensor, (r1, . . . , rd) is a tuple of positive integers

called Tucker rank and Uj = Uj(ij,↵j), j = 1, . . . , d, are nj ⇥ rj matrices known as
mode frames for the Tucker tensor representation. Elementwise, (5.17) becomes:

X (i1, . . . , id) =
r1X

↵1=1

. . .
r
dX

↵
d

=1

C(↵1, . . . ,↵d)U1(i1,↵1)U2(i2,↵2) . . . Ud(id,↵d),

for every ij = 1, . . . , nj , j = 1, . . . , d. The CP format can be seen as a particular case
of the Tucker format, with r1 = . . . = rd = r and C(↵1, . . . ,↵d) = �↵1,...,↵

d

, where
�↵1,...,↵

d

is the usual Kronecker delta.
We refer to the Matlab Tensor Toolbox [12] for a Matlab implementation of tensors

in CP and Tucker format. We refer to [23,57] and [96] for a deeper introduction on CP
and Tucker formats respectively.

The major problem of the Tucker format relies in the storage of the core tensor,
which still suffers from the curse of dimensionality. To overcome this problem, two
different approaches have been proposed in recent years: the hierarchical Tucker (HT)
decomposition and the Tensor Train (TT) decomposition. They are both based on the
singular value decomposition (SVD) and require the storage of some auxiliary three
dimensional arrays instead of a d dimensional tensor.

5.4.2 Hierarchical Tucker format

Before defining the Hierarchical Tucker (HT) format we need to introduce some pre-
liminary concepts.

Definition 5.4.7 (Dimension tree). Let d be a positive integer. A dimension tree for d is
a binary tree such that:

• the root is {1, . . . , d};

• each leaf node is a singleton t = {µ}, µ 2 {1, . . . , d};

• each parent node t = {µ1, . . . , µq} is the disjoint union of two successors:

t = s1 [ s2, s1 = {µ1, . . . , µr}, s2 = {µr+1, . . . , µq}.

Given a dimension tree T , we denote with L(T ) the set of leaves and with I(T ) =

T \ L(T ) the set of non-leaf nodes. A dimension tree is called canonical dimension
tree if the separation index of every two successors is r = [q/2], the integer part of q/2.
See Figure 5.1 for an example of canonical dimension tree for d = 5.

For every node t in a dimension tree it is possible to define its complementary t0 :=
{1, . . . , d} \ t.
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Chapter 5. Low-rank approximation of the moment equations

Figure 5.1: Canonical dimensional tree for d = 5 with root {1, 2, 3, 4, 5} and leaves {1}, {2}, {3}, {4}
and {5}.

Definition 5.4.8. Let t = {µ1, . . . , µq} 2 T be a node in a dimension tree for d and
X 2 Rn1⇥...⇥n

d . We define the t-matricization of X by merging all the indices in t into
one row index, and all the indices in t0 into one column index:

X (t) 2 RN
t

⇥N
t

0 ,

X (t)
((iµ)µ2t, (i⌫)⌫2t0) = X (i1, . . . , id),

where Nt :=
Q

µ2t nµ and Nt0 :=
Q

⌫2t0 n⌫ .

The HT decomposition of a tensor X 2 Rn1⇥...⇥n
d is realized by performing a SVD

decomposition of the matricization X (t) for each interior node t 2 I(T ), T being
a dimensional tree for d. The reason why this works is explained in the following
proposition.

Proposition 5.4.9 (Nestedness of matricization). Let X 2 Rn1⇥...⇥n
d and t = s1 [ s2

be a non-leaf node in T , a dimension tree for d. Then

span
�X (t)

 ⇢ span
�X (s1) ⌦ X (s2)

 
,

where X (j) denotes the vector subspace image of X (t) for j = t, s1, s2.

Let Ul = {(Ul)i}rli=1 2 RN
l

⇥r
l be a basis of the image of X (l) with rl = rank(X (l)

),
for l = t, s1, s2. Proposition 5.4.9 states the existence of a so called transfer array
Bt 2 Rr

s1⇥r
s2⇥r

t such that

(Ut)i =

r
s1X

k1=1

r
s2X

k2=1

Bt(k1, k2, i)(Us1)k1 ⌦ (Us2)k2 .

for every i = 1, . . . , rt.
The recursive application of Proposition 5.4.9 guarantees that to represent a tensor

into the HT-format, it is sufficient to store the matrix Ut for each leaf node t 2 L(T ),
and the transfer array Bt for each non-leaf node t 2 I(T ):�

(Ut)t2L(T ), (Bt)t2I(T )

�
.
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5.4. Low-rank formats

The set of non-negative integers (rt)t2T is called hierarchical rank.
Since the cardinality of I(T ) is d� 1, the storage complexity of X in HT-format is

bounded by

(d� 1)r3 + r
dX

µ=1

nµ, (5.18)

where r := max{rt : t 2 T }. Note that the storage complexity is linear in d (provided
that r does not explode in d), so that the curse of dimensionality is overpassed. We refer
to the Matlab Toolbox [66] for the implementation of the HT-format and to [49,54] and
the references therein for a more exhaustive dissertation.

5.4.3 Tensor Train format
Let X 2 Rn1⇥...⇥n

d be a d dimensional tensor. Its tensor train (TT) representation is
given by

X (i1, . . . , id) =
r1X

↵1=1

. . .

r
d�1X

↵
d�1=1

G1(i1,↵1)G2(↵1, i2,↵2) . . . Gd(↵d�1, id), (5.19)

where Gj 2 Rr
j�1⇥n

j

⇥r
j , j = 1, . . . , d, are tree dimensional arrays called cores of

the TT-decomposition (r0 = rd = 1), and the set (r1, . . . , rd�1) is known as TT-rank.
The storage complexity is O ((d� 2)nr2 + 2rn) where n = max{n1, . . . , nd}, r =

max{r1, . . . , rd}.

Figure 5.2: Representation of the TT-format of a tensor (see formula (5.19)).

Figure 5.2 depicts the TT-format of the tensor X in (5.19) and highlights its linear
structure. There are two kinds of indices: the auxiliary indices ↵1, . . . ,↵d�1, contained
in the circles, and the physical indices i1, . . . , id, contained in the rectangles. The ar-
rows represent a linear relation. As a curiosity we specify that the name tensor train
decomposition comes from the fact that Figure 5.2 actually looks like a train.

Thanks to its linear structure, the TT-format can be seen as a generalization of the
CP format. The main advantage with respect to the CP format is that in [81] the author
provides an algorithm to compute in an efficient way the TT-decomposition of a given
tensor and, consequently, the TT-ranks. This algorithm, called TT-SVD algorithm, is
based on a recursive application of the SVD.

Note that the TT-format is a particular case of the HT-format, with dimension tree
T of the form represented in Figure 5.3, that is for each non-leaf node t 2 I(T ),
t = s1 [ s2 where either s1 or s2 is a leaf. The HT-format implies the use of recursive
algorithms which may cause more difficulties in the implementation. On the other hand,
the TT-format, thanks to its linear structure, is much more easy to handle with. For this
reason, we chose to develop a code which employs only TT-format representations of
tensors (see Sections 5.5 and 5.6).
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Chapter 5. Low-rank approximation of the moment equations

Figure 5.3: Dimension tree T for d = 5. Given a tensor of order d, its HT representation with respect
to T is equal to its TT representation.

Many linear algebra operations (like addition, scalar product, µ-th mode product,
etc), together with the rounding operation, that consists in reducing the TT-ranks while
maintaining the accuracy, are implemented in the Matlab TT-Toolbox available at
http://spring.inm.ras.ru/osel/?page_id=24.

5.5 Computation of the correlations of Y in TT-format

In Section 5.3 we have discretized the first moment equation. In the next section we
describe a recursive algorithm developed in TT-format, able to solve the first moment
equation. The input terms are the k-points correlations

E
⇥
Y ⌦k

⇤
(x1, . . . , xk) :=

Z
⌦

Y (!, x1)⌦ · · ·⌦ Y (!, xk) dP. (5.20)

Here we provide a way to compute these correlations in TT-format, recalling the main
results obtained in [67].

Let us start with the following proposition.

Proposition 5.5.10. Let Y (!, x) be a centered second order Gaussian random field
and

YN(!, x) = �
NX
j=1

q
˜�j �j(x) ⇠j(!) (5.21)

its truncated Karhunen-Loève expansion (see Proposition 3.3.4) with a prescribed tol-
erance tol > 0, where {⇠j} are independent mean-free Gaussian random variables,

{�j} is a orthonormal basis for L2
(D) and �2

=

1

|D|
Z
D

Var [YN(!, x)] dx. Then, for
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5.5. Computation of the correlations of Y in TT-format

every positive integer k, the k-points correlation function of YN is such that

E
⇥
Y ⌦k
N

⇤
=

8>>>><>>>>:
0, if k odd

�k

NX
j1, . . . , jk/2 = 1

j1  . . .  jk/2

NY
l=1

˜�
mj(l)
l (2m

j

(l)� 1)!!

0@X
i2Pj

kO
µ=1

�i
µ

1A , if k even

(5.22)
where m

i

(l) is the multiplicity of l in the multi-index i = (i1, . . . , ik)

m
i

(l) := # {n : in = l} (5.23)

and P
j

is the set of all unique permutations of the multi-index (j1, j1, j2, j2, . . . , jk/2, jk/2).

Proof. For completeness, we report here the proof, which can also be found in [67].
For convenience in the presentation, let � = 1. Using the truncated KL expansion of
Y (5.21) in the definition of the k-points correlation (5.20), and exploiting the indepen-
dence of the random variables {⇠j},

E
⇥
Y ⌦k
N

⇤
(x1, . . . , xk) =

NX
i1=1

. . .
NX

i
k

=1

E
"

kY
µ=1

q
˜�i

µ

⇠i
µ

(!)

#
kO

µ=1

�i
µ

=

NX
i1=1

. . .
NX

i
k

=1

NY
l=1

˜�mi(l)/2
l E

⇥
⇠l(!)

mi(l)
⇤

| {z }
C
k

(i1,...,i
k

)

kO
µ=1

�i
µ

, (5.24)

where m
i

(l) is the multiplicity of l in the multi-index i = (i1, . . . , ik), defined in (5.23).
Observe that, for every multi-index i 2 {1, . . . , N}k and every integer l 2 {1, . . . , N},
E
⇥
⇠l(!)mi(l)

⇤ 6= 0 only if m
i

(l) is even, so that E
⇥
Y ⌦k

⇤
(x1, . . . , xk) 6= 0 only if k

is even. Let us now suppose k and all the multiplicities mi(l) even, so that the multi-
index (i1, . . . , ik) is a permutation of the multi-index j = (j1, j1, j2, j2, . . . , jk/2, jk/2),
for j1, . . . , jk/2 2 {1, . . . , N}. Then, the k-points correlation function E

⇥
Y ⌦k
N

⇤
is given

by

E
⇥
Y ⌦k
N

⇤
=

NX
i1=1

. . .
NX

i
k

=1

NY
l=1

˜�mi(l)/2
l (m

i

(l)� 1)!!

kO
µ=1

�i
µ

=

NX
j1, . . . , jk/2 = 1

j1  . . .  jk/2

NY
l=1

˜�
mj(l)
l (2m

j

(l)� 1)!!

0@X
i2Pj

kO
µ=1

�i
µ

1A , (5.25)

where P
j

is the set of all unique permutations of (j1, j1, j2, j2, . . . , jk/2, jk/2).

Let k be even. The technique used to compute the TT-format of the k-points corre-
lation E

⇥
Y ⌦k
N

⇤
is composed of three steps.

Step 1 According to Proposition 5.5.10, first of all we compute the KL-expansion of
the field Y (!, x), that is the set of decreasing non-negative eigenvalues {˜�j}Nj=1

and the eigenvector matrix � = (�1, . . . ,�N). At this step, we compute a suffi-
ciently high number N of modes.
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Chapter 5. Low-rank approximation of the moment equations

Step 2 Given the order k and the vector of decreasing non-negative eigenvalues {˜�j}Nj=1,
we aim at computing the TT-format of the the core tensor Ck defined in (5.24).
Since the storage of the exact TT representation of tensor Ck becomes expensive
for k moderately large, an approximation ˜Ck of Ck satisfying���Ck � ˜Ck

���
F
 tol,

is computed via the Matlab function constr_tt, tol being a prescribed tolerance
and k·kF denoting the Frobenius norm. We refer to [67] for a description of this
Matlab function. Note that, since the basis {�j}j is orthonormal in L2

(D), then��E ⇥Y ⌦k
N

⇤��
(L2(D))⌦k

= �k kCkkF .

Step 3 After having further approximated the TT-tensor ˜Ck using the sub-routine
tt_round from the TT-toolbox, we multiply ˜Ck for the eigenvector matrix � =

(�1, . . . ,�N) using the sub- routine ttm from the TT-toolbox. Multiplying for �k,
we finally obtain the TT-format of E

⇥
Y ⌦k
N

⇤
, denoted as CTT

Y ⌦k

.
Algorithm 1 summarizes steps 2 and 3, and can be applied to a d-dimensional do-

main D. On the other hand, we have implemented the KL-expansion only in the case
D ⇢ R. Once the KL-expansion is available for D ⇢ Rd, the entire computation of
E
⇥
Y ⌦k
N

⇤
may be performed in precisely the same way as with D ⇢ R. Observe that

the cost of computing CTT

Y ⌦k

and its storage is independent of the number of degrees of
freedom Nh and depends only on the decay of the eigenvalues {˜�j} or equivalently, the
truncation level N needed to achieve a prescribed tolerance.

Algorithm 1 Function compute_moment_Y, which computes the even k-points correlations of a cen-
tered Gaussian random field.
Require: order of the correlation k, eigenvector matrix � = (�1, . . . ,�N

), eigenvalues ˜� =

(

˜�1, . . . , ˜�N

) and tolerances tol1, tol2
Ensure: TT-tensor CTT

Y

⌦k

˜C
k

=constr_tt(k, ˜�, tol1)
CTT

Y

⌦k=tt_round( ˜C
k

, tol2)
for j = 1 : k do

CTT

Y

⌦k=ttm(CTT

Y

⌦k , j,�
T

)

end for
CTT

Y

⌦k = �kCTT

Y

⌦k

Remark 5.5.11. Note that the tensor E
⇥
Y ⌦k
N

⇤
is supersymmetric, i.e. it is invariant

under any permutation of its entries. The TT-tensor CTT

Y ⌦k

is constructed in such a way
that the following symmetries are preserved:

CTT

Y ⌦k

(i1, . . . , ik/2, ik/2+1, . . . , ik) = CTT

Y ⌦k

(ik, . . . , ik/2+1, ik/2, . . . , i1),

CTT

Y ⌦k

(. . . , in, . . . , im, . . .) = CTT

Y ⌦k

(. . . , im, . . . , in, . . .),

8 n,m  k/2, or 8 n,m > k/2.

5.6 Computation of the first moment approximation in TT-format

In the previous section we have explained how to compute the correlations of Y (!, x)
in TT-format. These are the input data of the recursive first moment problem described
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5.6. Computation of the first moment approximation in TT-format

in Table 4.1. Here we illustrate how to solve in TT-format the linear system (5.14)
for k = 2, . . . , K and l = k � 1, k � 2, . . . , 0, where K is the prescribed order of
approximation for the computation of the mean. Recall that, for any k, if l = 0, the
solution of problem (5.14) is the finite element discretization of k-th order correction
E
⇥
uk
⇤
.

Let k, l be fixed. The main ingredients needed to numerically solve problem (5.14)
are the construction in TT-format of the tensor Bs for s = 1, . . . , k � l, denoted with
BTT,s, and the implementation of the saturation ⇥r,s between two TT-tensors 8 r, s (see
definition 5.2.2).

Tensor Bs in TT-format: BTT,s

First of all, we explicitly construct B1 and convert it in TT-format using the sub-routine
tt_tensor from the TT-toolbox, obtaining BTT,1. Recall that the tensor Bs satisfies the
following relation

Bs
(n, i1, . . . , is,m) = �i1,...,isB1

(n, i1,m).

We have implemented the function add_modes, which receives as inputs a pos-
itive integer s and a TT-tensor X 1 2 Rn1⇥...⇥n

d , and returns a TT-tensor X s+1 2
Rn1⇥...⇥n1⇥n2...⇥n

d defined adding s modes to X 1 as follows:

X s+1
(i1, . . . , is, is+1, . . . , is+d) = �i1,...,is+1X 1

(is+1, . . . , is+d). (5.26)

Note that, after reordering the entries of BTT,1 as BTT,1
(i1, n,m), then

BTT,s

= add_modes(BTT,1, s� 1).

To realize the operation (5.26), we apply the function extract_cell which, given a
TT-tensor X 1, returns a cell array X 1

cell containing the reordered cores G1, . . . , Gd of
X 1:

X 1
cell{j}(l, i1, i2) = Gj(i1, l, i2), X 1

cell{j} 2 Rn
j

⇥r
j�1⇥r

j 8 j,

with r0 = rd = 1.
We construct X s+1

cell , the cell array containing the cores of X s+1 as follows.

• X s+1
cell {1} is the identity matrix of size (n1 ⇥ n1).

• X s+1
cell {j} is the identity tensor I of size (n1 ⇥ n1 ⇥ n1) for j = 2, . . . , s.

• X s+1
cell {s+1} is the saturation of the first index of I with the first index of the matrix

X 1
cell{1}. To compute this saturation, we use the sub-routine ttt of HT-Toolbox.

• X s+1
cell {j} = X 1

cell{j � s} for j = s+ 2, . . . , s+ d.

Finally, we convert X s+1
cell in TT-format using the sub-routine tt_tensor. See Algorithm

2.
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Chapter 5. Low-rank approximation of the moment equations

Algorithm 2 Function addmodes, which adds modes to the left of a given TT-tensor.

Require: TT-tensor X 1
(i1, . . . , id) and a positive integer s.

Ensure: TT-tensor X s+1
(i1, . . . , is, is+1, . . . , is+d

) as in (5.26).

X 1
cell

= extract_cell(X 1
)

Set n1 = size(X 1
cell

{1}, 1), d=order of the TT-tensor X 1

Initialize X s+1
cell

as a cell array of dimension s+ d
Set X s+1

cell

{1} = eye(n1, n1)

for j = 2 : s do
Set X s+1

cell

{j} = eye(n1, n1, n1)

end for
Set X s+1

cell

{s+ 1} = ttt(X 1
cell

{1}, eye(n1, n1, n1), 1, 1)
for j = s+ 2 : s+ d do

Set X s+1
cell

{j} = X 1
cell

{j � s}
end for
Set X s+1=tt_tensor(X s+1

cell

)

Saturation ⇥s,r between two TT-tensors

Given two TT-tensors X 2 Rn
s

⇥...⇥n
s+r�1⇥h, Y 2 Rm1⇥...⇥m

s�1⇥n
s

⇥...⇥n
s+r�1⇥m

s+r

⇥...⇥m
d ,

the function apply performs the multiplication between X and Y along prescribed
nodes. In particular, the call Z = apply(Y ,X , s, r) realizes Z = X ⇥s,r Y , that is

Z(k1, . . . , ks�1, j, ks+r, . . . , kd)

=

n
sX

i
s

=1

. . .
n
s+r�1X

i
s+r�1=1

X (is, . . . , is+r�1, j)Y(k1, . . . , ks�1, is, . . . , is+r�1, ks+r, . . . , kd),

where Z 2 Rm1⇥...⇥m
s�1⇥h⇥m

s+r

⇥...⇥m
d is a d�r+1 order tensor. See Definition 5.2.2.

The implementation of this operation makes use of the function extract_cell. Let
Xcell and Ycell be cell arrays containing the cores of X and Y respectively. Then Zcell

is constructed as follows.

• Compute the tensor of order 3 temp1 as the saturation of the first index of Ycell{s}
with the first index of the matrix Xcell{1}. This saturation is realized with the sub-
routine ttt of HT-Toolbox.

• Matricize temp1 using the sub-routine matricize of the HT-Toolbox.

• Perform a loop on k = 2, . . . , r, and at each step of the loop:

Compute the tensor of order 4 temp2 as the saturation of the first index of
Ycell{s+ k � 1} with the first index of Xcell{k}

Reshape and matricize temp2, where reshape is a Matlab sub-routine
Compute the matrix - matrix product temp1 = temp1 ⇤ temp2

• Set Zcell = [Ycell(1 : s� 1); temp1;Ycell(s+ r : d)].

See Algorithm 3.

128



i
i

“Bonizzoni_thesis” — 2013/5/3 — 8:25 — page 129 — #139 i
i

i
i

i
i

5.6. Computation of the first moment approximation in TT-format

Algorithm 3 Function apply, which performs the saturation of two TT-tensors along prescribed nodes.

Require: TT-tensors X 2 Rns⇥...⇥ns+r�1⇥h, Y 2 Rm1⇥...⇥ms�1⇥ns⇥...⇥ns+r�1⇥ms+r⇥...⇥md and
positive integers s, r.

Ensure: TT-tensor Z 2 Rm1⇥...⇥ms�1⇥h⇥ms+r⇥...⇥md obtained as Z = X ⇥
s,r

Y
X

cell

= extract_cell(X ), Y
cell

= extract_cell(Y)

Set temp1 = ttt(Y
cell

{s},X T

cell

{1}, 1, 1)
Set temp1 = matricize(temp1, 2, [3 1])
for k = 2 : r do

Set sz_y = size(Y
cell

{s+ k � 1}), sz_x = size(X
cell

{k})
Set temp2 = ttt(Y

cell

{s+ k � 1},X
cell

{k}, 1, 1)
Set temp2 = reshape(temp2, [sz_y(2 : 3), sz_x(2 : 3)])

Set temp2 = matricize(temp2, [1 3], [2 4])

Set temp1 = temp1 ⇤ temp2
end for
Set sz_temp1 = [size(X

cell

{r}, 3), size(Y
cell

{s}, 2), size(Y
cell

{s+ r � 1}, 3)]
Set temp1 = dematricize(temp1, sz_temp1, 2, [31])
Set temp1 = ttm(temp1,X

c

ell{r + 1}, 1)
Set Z

cell

= [Y
cell

(1 : s� 1); temp1;Y
cell

(s+ r : d)]
Set Z=tt_tensor(Z

cell

)

Recursive first moment problem in TT-format

We are now ready to describe the code developed to solve the recursive K-th order
approximation problem. This code computes all the terms in Table 4.1. The inputs are
the order K of the approximation E

⇥
TKu

⇤
of E [u] we want to achieve and the number

of elements Nh of the partition of D.
After solving the 0-th order approximation problem, we compute the third order

tensor B1 as well as the tensors BTT,k 8 k = 2, . . . , K using the function addmodes
(see Algorithm 2), and store them into the structure SB. Moreover, we compute the
input terms in the recursion, that is CTT

Y ⌦k

8 k = 2, . . . , K even, with the function
compute_moment_Y (see Algorithm 1), and CTT

u0⌦Y ⌦k

with the sub-routine of the TT-
toolbox kron, which implements the Kronecker products between TT-tensors. We store
CTT

u0⌦Y ⌦k

into the structure SY .
Then, we initialize a structure STab in which we are going to store all the corre-

lations of Table 4.1. We start storing in STab all the correlations CTT

u0⌦Y ⌦k

for k =

0, . . . , K. We make two nested loops on the columns c = 2, . . . , K + 1 and rows
r = 1, . . . , K + 2 � c of Table 4.1, so that we identify the term we are going to com-
pute, that is CTT

uc�1⌦Y ⌦r�1 = CTT

uk�l⌦Y ⌦l

with l = r � 1 and k = c + r � 2. We extract
from STab the elements in the k-th diagonal of the table, that is CTT

uk�l�s⌦Y ⌦(s+l) for
s = 1, . . . , k � l. To solve the linear system (5.14) we proceed in two steps: we com-
pute the loading term �Pk�l

s=1 BTT,s ⇥1,s+1 CTT

uk�l�s⌦Y ⌦(s+l) using the function apply,
and then we multiply the loading term for the inverse of the stiffness matrix A�1 along
the first direction, using the sub-routine ttm. For a large problem, it is not feasible to
compute A�1. In general, one should modify the code implementing a function that,
given a matrix B and a TT-tensor v solve B�1v, without explicitly constructing B�1.

Finally, the K-th order correction is obtained summing the elements of the first row
of Table 4.1 for k = 0 : 2 : K, divided by the factorial term k!. See Algorithm 4.
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Chapter 5. Low-rank approximation of the moment equations

Algorithm 4 Implementation of the recursion in Table 4.1.
Require: Order of the approximation K, number of elements of the mesh N

h

, standard deviation �,
covariance function Cov

Y

of 1
�

Y , tolerances tol1, tol2, tol3, load function f

Ensure: K-th order approximation of E [u] in TT-format, that is
P

K

k=0
1
k!Cuk

Solve the deterministic problem for C
u

0 , set CTT

u

0 =tt_tensor(C
u

0
) and save it in a structure SY (1) =

CTT

u

0

Construct B1, set BTT,1
=tt_tensor(B1

) and save it in a structure SB(1) = BTT,1

Compute the KL-expansion of Y with a prescribed tolerance tol1, and derive N , � = {�
j

}N
j=1,

˜� = {˜�
j

}N
j=1

for k=2:K do
Construct BTT,k=addmodes(BTT,1, k � 1) and set SB(k) = BTT,k

Construct CTT

Y

⌦k = compute_moment_Y(k,�, ˜�, tol2, tol3)
Compute CTT

u

0⌦Y

⌦k =kron(CTT

u

0 , CTT

Y

⌦k) and set SY (k) = CTT

u

0⌦Y

⌦k

end for
Initialize the structure STab and store CTT

u

0⌦Y

⌦k for every k
for c=2:K+1 do

for r=1:K+2-c do
extract from STab the correlations CTT

u

k�l�s⌦Y

⌦(s+l) for s = 1, . . . , k � l, where k =

r + c� 2 and l = r � 1

Compute temp = �Pk�l

s=1 BTT,s ⇥1,s+1 CTT

u

k�l�s⌦Y

⌦(s+l)

Compute CTT

u

k�l⌦Y

⌦l = ttm(temp, 1, A�1
) and store it in STab

end for
end for
Compute

P
K

k=0
Cuk

k!

Remark 5.6.12. The computation of the stiffness matrix A and of the tensor B1 is
performed in the one dimensional case D = [0, 1], with piecewise linear and constant
finite elements to discretize H1

�
D

(D) and L2
(D) respectively. In general, we can see

our algorithm as a black-box method which needs as inputs the stiffness matrix A and
the tensor B1, and returns the K-th order approximation of the expected value of the
stochastic solution.

5.7 Storage requirements of the TT-algorithm

The storage complexity of a tensor of order k in TT-format highly depends on the TT-
rank (r1, . . . , rk�1). See Section 5.4.3. In the first part of this section we numerically
study the storage complexity of the input data of our algorithm, that is the k-points
correlations of Y in TT-format CTT

Y ⌦k

, for k = 0, . . . , K even. In the second part we
aim at understanding how this complexity spreads throughout the recursive problem
described in Table 4.1. All our computations are performed in the one dimensional
case D = [0, 1].

The storage requirement is a limiting aspect of our implementation, and prevents us
to grow significantly in K. We identify the problem in the lack of the implementation
of sparse tensors in Matlab, and hence of sparse tensors in TT-format.

The TT-ranks strongly affect also the computational cost of the recursive algorithm.
Indeed, they correspond to the number of linear systems to be solved. In Section 5.7.3
we investigate the computational cost of the TT-algorithm, and compare it to the com-
putational cost of the direct computation of the truncated Taylor polynomial.
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5.7. Storage requirements of the TT-algorithm

5.7.1 Storage requirements of the correlations of Y
As described in Section 5.5, to compute the k-points correlation of Y in TT-format
CTT

Y ⌦k

, for k  K even, we firstly have to perform the truncated KL-expansion of Y with
a prescribed accuracy tol (see formula (5.21)). In all this section we take tol = 10

�16,
so that the complete KL-expansion corresponding to the discretized field Yh piecewise
constant on the mesh Th is considered.

Let N be the number of random variables which parametrize the field Yh. Then
N  Nh, where Nh is the dimension of the finite element subspace Vh used to discretize
the deterministic problem. In [67] the authors show that, if CTT

Y ⌦k

is computed exactly,
then its TT-rank satisfies:

rp =

✓
N + p� 1

p

◆
(5.27)

for p = 1, . . . , k/2. For the symmetry in the construction of CTT

Y ⌦k

(see Remark 5.5.11),
rp = rk�p for p = 1, . . . , k/2. The storage of the exactly computed TT-tensor CTT

Y ⌦k

becomes costly for k moderately large. Using Algorithm 1, we construct an approx-
imation of this TT-tensor, which we still denote with CTT

Y ⌦k

. The output of the call
compute_moment_Y(k,�,˜�,tol1,tol2) is a TT-tensor whose TT-ranks are bound-
ed by (5.27).

As an example, let us consider a one dimensional domain D = [0, 1] discretized
with Nh = 200 subintervals of length h = 1/Nh, and the Gaussian covariance function

CovY (x1, x2) = e�
kx1�x2k

2

L

2 , (x1, x2) 2 D ⇥D (5.28)

with correlation length L = 0.2. The field is parametrized by N = 27 random variables.
In Figure 5.4 we compare the upper bound in (5.27) (black line) with the TT-ranks
of the approximated CTT

Y ⌦4 = compute_moment_Y(k,�,˜�,tol,tol) computed for
different tolerances tol. The smaller is the tolerance, the higher are the TT-ranks. In
Figure 5.5 (left) the same type of plot is done for k = 2, 4, 6, 8, 10.

Figure 5.5 (right) is obtained with Nh = 200 and the exponential covariance function

CovY (x1, x2) = e�
kx1�x2k

L , (x1, x2) 2 D ⇥D (5.29)

with correlation length L = 0.2. N = 200 random variables are considered. In the
exponential case, the TT-ranks grow faster than in the Gaussian setting.

For each k, the TT-rank of CTT

Y ⌦k

is a vector of length k � 1 with maximum r(k)max =

max{rp| p = 1, . . . , k � 1} in position k/2. Here we want to study the growth of r(k)max

as a function of the tolerance tol imposed in the Matlab function compute_moment_Y
(tol1 = tol2 = tol) both for the Gaussian and the exponential covariance function.

Note that, given a TT-tensor X , the sub-routine tt_round of the TT-Toolbox is an
SVD-based algorithm which approximates X with a prescribed accuracy tol according
to the following criterionsX

j�J

⇣
⌫(p)j

⌘2

sX

j�1

⇣
⌫(p)j

⌘2 tolp
k � 1

, (5.30)

where ⌫(p)j are the singular values of the p-th matricization of the TT-tensor, for p =

1, . . . , k � 1.
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Chapter 5. Low-rank approximation of the moment equations
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Figure 5.4: Semilogarithmic plot of the upper bound for the TT-ranks in (5.27) (black line) compared
with the TT-ranks of the approximated CTT

Y

⌦4 computed for different tolerances tol.
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Figure 5.5: Semilogarithmic plot of the upper bound for the TT-ranks in (5.27) (black line) compared
with the TT-ranks of the approximated CTT

Y

⌦k computed for different tolerances. On the left, k =

2, 4, 6, 8, 10 and Cov
Y

Gaussian, on the right, k = 2, 4, 6 and Cov
Y

exponential.

Let us start with the Gaussian covariance function (5.28) with correlation length
L = 0.2. Let Nh = 1000 and N = 27. The eigenvalues of a Gaussian covariance
function are such that ˜�j ⇠ e�↵j2 , with ↵ positive constant depending on L. See Figure
5.6. If k = 2, then ⌫(1)j =

˜�j ⇠ e�↵j2 , so that (5.30) becomes:X
j�J

e�2↵j2  tol2

k � 1

s,

where s =
P

j�1 e�2↵j2 < 1. Since e�2↵J2 Pj�J e�2↵j2 , it follows

J �
r

1

↵
log

1

tol
� 1

2↵
log

s

k � 1

,

so that

r(2)max ⇠
r

1

↵
log

1

tol
� 1

2↵
log

s

k � 1

.
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5.7. Storage requirements of the TT-algorithm

If the singular values of all matricizations of the TT-tensor X behave in the same way,
⌫(p)j ⇠ e�↵j2 , we would infer

r(k)max ⇠
r

1

↵
log

1

tol
� 1

2↵
log

s

k � 1

. (5.31)

In Figure 5.7 we compare the behavior of r(k)max as a function of tol (k = 2, 4, 6, 8, 10)
with the ansatz (5.31). The behavior is correctly predicted for k = 2, but for k � 4 a
dimensionality effect occurs, so that the bigger is k, the faster r(k)max grows.
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Figure 5.6: Behavior of the eigenvalues of the Gaussian covariance function (5.28), with L = 0.2,
N

h

= 1000 and N = 27.
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Figure 5.7: Plot of r(k)
max

as a function of tol, for a Gaussian covariance function.

Now, let us take the exponential covariance function (5.29) with correlation length

L = 0.2, Nh = N = 1000. The eigenvalues are such that ˜�j ⇠ 1

j2
(see Figure 5.8), so

that inequality (5.30) for k = 2 becomes:

X
j�J

1

j4
 tol2

k � 1

s,
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Chapter 5. Low-rank approximation of the moment equations

where s =
X
j�1

1

j4
< 1. Using that

1

3(J + 1)

3

X
j�J

1

j4
, we obtain

J � 1

tol2/3

✓
k � 1

3s

◆1/3

� 1. (5.32)

As in the Gaussian case, r(2)max behaves as a function of tol as the right-hand side in
(5.32), but for k � 4 a dimensionality effect occurs. See Figure 5.9.

Remark 5.7.13. In Chapter 4 we have studied the Hölder mixed regularity of the k-
points correlation function E

⇥
Y ⌦k

⇤
. If the covariance function CovY 2 C0,t

(D ⇥D),
then E

⇥
Y ⌦k

⇤ 2 C0,t/2,mix
(

¯D⇥k
) (Proposition 4.3.2). The exponential covariance func-

tion (5.29) is Hölder continuous with exponent t = 1, i.e. it is Lipschitz, so that
E
⇥
Y ⌦k

⇤ 2 C0,1/2,mix
(

¯D⇥k
). This is in agreement with the bound r(k)max  tol�2 ob-

served in Figure 5.9.

Remark 5.7.14. Given a d-variate, 2⇡-periodic function f with mixed Sobolev regular-
ity s, in [89] the authors show that the storage complexity for achieving accuracy tol by
representing f in HT-format satisfies worse rates than those obtained with sparse grids.
Actually, sparse grids are expressly constructed to approximate multivariate functions
with mixed Sobolev regularity.
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Figure 5.8: Behavior of the eigenvalues of the exponential covariance function (5.29), with L = 0.2,
N

h

= 1000 and N = 1000.

5.7.2 Storage requirements of the recursion
We perform some numerical tests to study the storage complexity of the correlations
involved in K-th order problem, that is the elements of Table 4.1. In all the plots
presented here, we have reordered the indices in the TT-correlation CTT

uk�l⌦Y ⌦l

so that
the index relative to uk�l is the last one.

Let us take Nh = 100 and the Gaussian covariance function of Y of the form (5.28)
with L = 0.2. As in the previous section, a complete KL-expansion is performed,
which can be truncated at N = 26 with machine precision.

In Figure 5.10 we plot the TT-ranks of the correlations needed to solve the K-th
order problem, for K = 2, 4, 6. For example, in the picture with K = 2 we plot the
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Figure 5.9: Plot of r(k)
max

as a function of tol, for an exponential covariance function, with N
h

= N =

1000.

TT-ranks of CTT

u0⌦Y ⌦2 (blue line), CTT

u1⌦Y (red line) and CTT

u2 (green line). The black line
is the upper bound in (5.27). Note that the blue and the red lines coincide, since to
obtain CTT

u1⌦Y we simply saturate two indices of CTT

u0⌦Y ⌦2 with the TT-tensor BTT,1 and
then multiply for the inverse of the stiffness matrix A. On the other hand, when the
right-hand side of problem (5.14) is given by the summation of more than one term,
the tt_round (with tol = 10

�14) is applied to this summation in order to avoid the
growth of the TT-ranks. From Figure 5.10 we deduce that the storage requirement is
decreasing along each diagonal of Table 4.1, and the largest memory is needed to store
the input term CTT

u0⌦Y ⌦K

. To obtain Figure 5.10 we have used tolerances tol1 = tol2 =

tol = 10

�10 in the function compute_moment_Y. Figure 5.11 represents the TT-ranks
of the correlations needed to solve the 6-th order problem, where different tolerances
tol1 = tol2 = tol are used in compute_moment_Y. As expected, the smaller tol is, the
higher the TT-ranks are.

5.7.3 Comparison with the computation of the truncated Taylor series

Let N be the number of random variables we take into account in the KL-expansion, so
that the random field Y is parametrized by the Gaussian random vector Y = (Y1 . . . , YN).
In the approach we propose, the first moment problem is derived and solved in TT-
format. The most natural alternative is to directly compute the Taylor polynomial, and
use it to approximate E [u]. Here we compare these two methods.

Computation of TKu

The K-th order Taylor polynomial is

TKu(Y, x) =
KX

n=0

X
|k|=n

@k
Y

u(0, x)

k!

Y

k.

The number of partial derivatives of order n computable for a function of N variables

is
✓

N + n� 1

n

◆
. As a consequence, to compute TKu(Y, x), we have to solve M1
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Figure 5.10: Semilogarithmic plot of the TT-ranks of the correlations needed to solve the K-th order
problem, for K = 2, 4, 6.

linear problems, where

M1 =

KX
n=0

✓
N + n� 1

n

◆
=

✓
N +K

K

◆
(5.33)

where the last equality follows by induction.

Moment equations

The K-th order approximation of E [u] is

E
⇥
TKu(Y, x)

⇤
=

X
n=0:2:K

E [un
]

n!
=

X
n=0:2:K

1

n!
E

24X
|k|=n

@k
Y

u(0, x)Yk

35 .

Suppose that each correlation E
⇥
Y ⌦k

⇤
is constructed without exploiting any symmetry.

Let us take for example n = 4. Starting from CTT

u0⌦Y ⌦4 , to derive CTT

u4 we have to perform
the following saturations:

BTT,1 ⇥1,2 CTT

u0⌦Y ⌦4 , BTT,2 ⇥1,3 CTT

u0⌦Y ⌦4 , BTT,3 ⇥1,4 CTT

u0⌦Y ⌦4 , BTT,4 ⇥1,5 CTT

u0⌦Y ⌦4 ,

and then multiply each of them for the inverse of the stiffness matrix A (i.e. solv-
ing a linear system) in the suitable direction. Let (1, 1, r1, r2, r3, 1) be the TT-rank of
CTT

u0⌦Y ⌦4 . Recalling the equality (5.27), we deduce that the maximum number of linear
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Figure 5.11: Semilogarithmic plot of the TT-ranks of the correlations needed to solve the 6-th order
problem, where different tolerances tol1 = tol2 = tol are used in compute_moment_Y

systems we have to solve, if no compression by tt_round is performed, is

1 + r1 + r2 + r3 = 1 +

✓
N

1

◆
+

✓
N + 1

2

◆
+

✓
N + 2

3

◆
=

3X
p=0

✓
N + p� 1

p

◆
=

✓
N + 3

3

◆
.

In general, to compute the K-th order approximation E
⇥
uK
⇤
, we have to solve M2

linear systems, where

M2 =

X
n=2:2:K

n�1X
p=0

✓
N + p� 1

p

◆
+ 1 =

X
n=2:2:K

✓
N + n� 1

n� 1

◆
+ 1

=

X
n=2:2:K

✓
(N + 1) + (n� 1)� 1

n� 1

◆
+ 1

=

X
m=1:2:K�1

✓
(N + 1) +m� 1

m

◆
+ 1


K�1X
m=0

✓
(N + 1) +m� 1

m

◆
=

✓
N +K

K � 1

◆
(5.34)

We conclude that the cost of the moment equations is smaller than the cost of the direct
computation of TKu.

We can improve both M1 and M2. In the direct computation of the Taylor poly-
nomial, we can exploit that E

⇥
Y

k

⇤ 6= 0 iff ki is even for each i = 1, . . . , N . It is not
difficult to see that, to compute TKu(Y, x) we need all the partial derivatives @k

Y

u(0, x)
for |k|  K/2, and only some of the partial derivatives @k

Y

u(0, x) for |k| > K/2. We
consider the reduced complexity

M 0
1 =

K/2X
n=0

✓
N + n� 1

n

◆
=

✓
N +K/2

K/2

◆
(5.35)
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On the other hand, the complexity M2 can be improved using the symmetry of the
TT-ranks, that is rp = rn�p for p = 1, . . . , n/2 � 1. (See Remark 5.5.11 and Figure
5.4).

M2,sym =

X
n=2:2:K

0@
2

n/2�1X
p=0

✓
N + p� 1

p

◆
+

✓
N + n/2� 1

n/2

◆
� 1

1A
+ 1

=

X
n=2:2:K

✓
2

✓
N + n/2� 1

n/2� 1

◆
+

✓
N + n/2� 1

n/2

◆
� 1

◆
+ 1

=

X
n=2:2:K

✓✓
N + n/2� 1

n/2� 1

◆
N + n

n/2
� 1

◆
+ 1


K/2X
m=0

✓
N +m

m

◆
(N + 2) = (N + 2)

✓
N +K/2

K/2� 1

◆
⌧
✓

N +K

K � 1

◆
.

Moreover, the TT-format offers the possibility to dramatically reduce the computational
cost thanks to the sub-routine tt_round. In Figure 5.12 we compare the two reduced
complexities M 0

1 in (5.35) and

M 0
2 =

X
n=2:2:K

n�1X
p=0

rp + 1 (5.36)

where the TT-ranks of CTT

Y ⌦k

are symmetric and computed using different tolerances in
the function compute_moment_Y. A Gaussian covariance function with L = 0.2, and
a number of intervals Nh = 200 are considered. From this comparison, we deduce
that the moment equation approach is convenient from the point of view of the com-
putational cost. However, note that this is not a completely fair comparison, since an
anisotropic Taylor polynomial can be computed, evaluating only the most important
derivatives, up to a prescribed tolerance. How an optimally truncated Taylor expansion
compares with our moment equations approach with compressed TT-format is still an
open question.

5.8 Numerical tests

In this section we perform some numerical tests and solve the stochastic Darcy problem
with deterministic loading term f(x) = x in the one dimensional domain D = [0, 1],
both for a Gaussian and exponential covariance function. Homogeneous Dirichlet
boundary conditions are imposed on �D = {0, 1}.

Truncated KL - Gaussian covariance function

Let Y (!, x) be a stationary centered Gaussian random field with Gaussian covariance
function

CovY (x1, x2) = �2 e�
kx1�x2k

2

L

2 , (x1, x2) 2 D ⇥D
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Figure 5.12: Semilogarithmic plot of M 0
1 (5.35) and M 0

2 (5.36), where {r
p

}
p

is the TT-rank of the
CTT

u

0⌦Y

⌦n computed by compute_moment_Y with different tolerances imposed. A Gaussian covari-
ance function with L = 0.2, and a number of intervals N

h

= 200 are considered.

where 0 < � < 1 and L = 0.2 are the standard deviation and the correlation length,
respectively, of Y (!, x). Let us take a uniform discretization of the spatial domain
D = [0, 1] in Nh = 100 intervals (h = 1/Nh). As first step, we perform the truncated
KL-expansion of Y (!, x) with a tolerance tol = 10

�4, so that N = 11 random variables
are considered and the 99% of variance of the field is captured.

Using the function compute_moment_Y and Algorithm 4 with tolerance in the TT-
computations given by 10

�16, we compute the 6-th order approximation of E [u], that
is, we solve the recursive problem (5.14) for k = 0, . . . , 6. As reference solution we
consider the mean of u computed via the collocation method on a Smolyak sparse grid
with 12453 collocation points, on the same spatial discretization (Nh = 100). See
Figure 5.13.

Note that the error comes from different contributions: the truncation of the KL-
expansion, the TT approximation, the truncation of the Taylor series and the FEM ap-
proximation.

Here, we start from the same truncated KL-expansion both to compute the colloca-
tion solution and the TT solution, use the same FE grid, and the TT computations are
done at machine precision, that is with tolerance 10

�16. Hence, we observe only the
error due to the truncation of the Taylor series.
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Figure 5.13: E [u] computed via the collocation method, for different values of �.
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Chapter 5. Low-rank approximation of the moment equations

Table 5.1: Numerically observed order of
��E ⇥u� TKu

⇤��
L

2(D)
as a function of �.

K = 0 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6��E ⇥u� TKu
⇤��

L

2(D)
2 2 4 4 6 6 8

In Chapter 3 we have shown that
��E [u]� E

⇥
TKu

⇤��
L2(D)

= O(�K+1
). Moreover,

since Y (!, x) is centered, then CY ⌦(2k+1) = 0 (see proposition 5.5.10), so that��E ⇥u� TKu
⇤��

L2(D)
=

⇢
O(�K+2

) if K is even,
O(�K+1

) if K is odd.
(5.37)

In Table 5.1 we summarize the numerically observed orders of the computed error��E ⇥u� TKu
⇤��

L2(D)
, and in Figure 5.14(a) we plot in logarithmic scale the error as a

function of �. The behavior predicted in (5.37) is confirmed. Figure 5.14(b) represents
the computed error

��E ⇥u� TKu
⇤��

L2(D)
as a function of K (at least up to K = 6) for

different values of �. It turns out that for � < 1 it is always useful to take into account
higher order corrections. As we can see in Figure 5.14 (blue lines), the maximum
precision that the method can reach is 10

�12. We believe that this can be due to the
precision in the computation of the reference solution.
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Figure 5.14: 5.14(a) Logarithmic plot of the computed error
��E ⇥u� TKu

⇤��
L

2(D)
as a function of �.

5.14(b) Semilogarithmic plot of the computed error
��E ⇥u� TKu

⇤��
L

2(D)
as a function of K for

different �.

Truncated KL - Gaussian covariance function - Conditioned expected value

Suppose that Y (!, x) is a conditioned field to Noss available point wise observations.
As observed in Chapter 3, Section 3.3.3, the covariance function CovY is non-stationary,
but still Hölder continuous, so that we can conclude the well-posedness of the stochastic
Darcy problem. All the results in Chapter 3 apply to Y 0

(!, x) := Y (!, x)� E [Y ] (x),
where E [Y ] (x) is the conditioned expected value of Y . Following the same steps done
in Chapter 4 we can deduce the recursive first moment problem, which now involves
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5.8. Numerical tests

the (l + 1)-points correlations E
⇥
uk�l ⌦ (Y 0

)

⌦l
⇤
, where uk�l

:= Dk�lu(E [Y ])[Y 0
]

k�l

is the Gateaux derivative of u in E [Y ] evaluated along the vector (Y 0, . . . , Y 0
)| {z }

k�l times

.

Considering the case of Y (!, x) conditioned to available observations is very rele-
vant in applications. Indeed, suppose the domain D contains an heterogeneous porous
medium. Although it is not possible to know its permeability everywhere, from the
practical point of view it is possible to measure it in a certain number of fixed points.
Hence, the natural model considered in the geophysical literature describes the per-
meability as a conditioned lognormal random field. See e.g. [51, 52, 86]. The more
observations are available, the smaller the total variance of the field will be. This, actu-
ally, favors the use of perturbation methods.

As in the previous numerical test, let Nh = 100 be the number of subintervals
of D, and tol = 10

�4 the tolerance imposed in the truncation of the KL-expansion.
The Noss observations available are evenly distributed in D = [0, 1]. To capture the
99% of variability of the field, N = 9 and N = 8 random variables are needed in
the cases Noss = 3 and Noss = 5 respectively. Note that, the highest is the number
of observations, the smaller is the number of random variables needed to reach the
same level of accuracy in the KL-expasion. The reference solution is computed via the
collocation method (Smolyak grid with 5965 and 3905 collocation points for Noss = 3

and Noss = 5 respectively). See Figure 5.15.
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Figure 5.15: E [u] computed via the collocation method, with N
oss

= 3 (left) and N
oss

= 5 (right).

Figure 5.16 represents the behavior of the error
��E ⇥u� TKu

⇤��
L2(D)

as a function
of �, with Noss = 3 (left) and Noss = 5 (right). The same rate as for Noss = 0 (see
(5.37)) is observed. In Figure 5.17 we plot the error as a function of K. The error is
about 1 order of magnitude smaller for Noss = 3 (compared to Noss = 0) and 2 orders
of magnitude smaller for Noss = 5.

Complete KL - Exponential covariance function

Let Y (!, x) be a stationary centered Gaussian random field with exponential covariance
function

CovY (x1, x2) = �2 e�
kx1�x2k

L , (x1, x2) 2 D ⇥D
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Figure 5.16: Logarithmic plot of the computed error
��E ⇥u� TKu

⇤��
L

2(D)
as a function of �, with

N
oss

= 3 (left) and N
oss

= 5 (right).
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Figure 5.17: Semilogarithmic plot of the computed error
��E ⇥u� TKu

⇤��
L

2(D)
as a function of K, with

N
oss

= 3 (left) and N
oss

= 5 (right).

with 0 < � < 1 and L = 0.2. Let Nh = 100. We compute the KL-expansion with
tolerance tol = 10

�4, so that N = 100 random variables are considered and the 100%

of variance of the field is captured. Then, we compute the second order correction of
E [u] with our TT code. Since N = 100, a collocation method becomes unfeasible. By
a qualitative comparison with E [u] computed via the Monte Carlo method with M =

10000 samples, we show that our algorithm is effective and provides a valid solution
also in this framework. See Figure 5.18, where the second order correction is compared
with the Monte Carlo method for � = 0.05 (left) and � = 0.65 (right). In plotting the
Monte Carlo solution, we have also added error bars representing ±�MC , where �MC

is the estimated standard deviation of the Monte Carlo estimator. We observe that the
TT-solution is always contained in the confidence interval of the Monte Carlo solution.

Complete KL - Gaussian covariance function

Let us consider a stationary Gaussian random field Y (!, x) with Gaussian covariance
function of correlation length L = 0.2. Let Nh = 100. Instead of truncating the
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Figure 5.18: Comparison between the second order correction computed via our TT-code, and E [u]
computed via the Monte Carlo method (M = 10000 samples) for � = 0.05 (left) and � = 0.65
(right).

KL-expansion as done before, we consider the complete KL, that is we compute the
expansion with the accuracy 10

�16. N = 26 random variables have to be considered
to capture the 100% of variance of Y (!, x) (up to machine precision). We run our TT-
code imposing different tolerances in the function compute_moment_Y. In this way,
we can observe how the error

��E ⇥u� TKu
⇤��

L2(D)
depends on the TT-approximation.

Figure 5.19 represents the computed error
��E ⇥u� TKu

⇤��
L2(D)

as a function of the
standard deviation �, for different tolerances, with K = 2, 4, 6. The tolerance 10

�1

(blue line) is such that the predicted behavior (5.37) is not observed, even for K = 2.
Whereas, the tolerance 10

�8 (magenta line) guarantees the predicted behavior both for
K = 2, K = 4 and K = 6.

In Figure 5.20 we plot the error as a function of K, for different tolerances, with
� = 0.05 (left) and � = 0.55 (right). The total error is the sum of two contributions: the
truncation of the Taylor expansion and the tolerance used in TT-computations, which
should ideally be balanced. In Figure 5.20 we see that, the larger � is, the smaller the
tolerance in the TT-computations has to be to equilibrate the truncation error.

We finally attempt to investigate how the total error depends on the complexity of
the algorithm. In particular, we numerically study the dependance of the error on the
complexity under the assumption that the complexity of the recursive algorithm is dom-
inated by the number of linear systems we have to solve in the recursion, that is M 0

2 in
(5.36). Figure 5.21 represents the logarithmic plot of the error

��E ⇥u� TKu
⇤��

L2(D)

as a function of M 0
2 for different tolerances in the function compute_moment_Y, with

� = 0.05, 0.25, 0.85. We compare it with the quantity
�MCp
M 0

2

(black line), which gives

an idea of the behavior of a the Monte Carlo estimate. Note that, for small � (e.g.
� = 0.05), the smaller the tolerance imposed is, the higher the accuracy reached. This
is not the case if we let � grow. Indeed, the TT-error is no more the most influencing
component of the error, which is dominated, instead, by the truncation error.

For a fixed truncation level, there is therefore an optimal choice of the tolerance
tolopt. Figure 5.21 shows that, if the optimal tolerance is chosen, the performance of

143



i
i

“Bonizzoni_thesis” — 2013/5/3 — 8:25 — page 144 — #154 i
i

i
i

i
i
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Figure 5.19: Logarithmic plot of the computed error
��E ⇥u� TKu

⇤��
L

2(D)
as a function of the standard

deviation �, for different tolerances.
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Figure 5.21: Logarithmic plot of the computed error
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different tolerances in the TT-computations. The black line gives an idea of the behavior a the Monte
Carlo estimate.
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Chapter 5. Low-rank approximation of the moment equations

the moment equations is far superior to a standard Monte Carlo method. The question
of how to determine a priori the optimal tolerance as a function of K and � is still open
and under investigation.

5.9 Conclusions

We have derived the full tensor product finite element formulation of the recursive
problem solved by the (l+ 1)-points correlation functions Cuk�l⌦Y ⌦l , for k = 0, . . . , K
and l = 0, . . . , k. Since the number of entries of a tensor is exponential in its order,
we have introduced a data-sparse format (the TT-format) to store the tensors and make
computations. We have developed an algorithm in TT-format, able to compute the K-th
order approximation E

⇥
TKu

⇤
.

We have studied the storage requirements of the algorithm we propose. The parame-
ter we have taken into account is the TT-rank. We have performed some numerical tests
to understand how the TT-rank of the input correlations CTT

Y ⌦k

(k = 0, . . . , K) depends
on k. Moreover, we have shown the evolution of the TT-rank along each diagonal of
Table 4.1.

We have run our code both in the case of an a-priori truncated KL-expansion and
a “complete” (untruncated) KL-expansion. If a truncated KL-expansion is performed,
we have compared the solution provided by our recursive TT-code with a reference
solution obtained by stochastic collocation. We have numerically observed the be-
havior of the error

��E [u]� E
⇥
TKu

⇤��
L2(D)

as a function of � predicted in Chap-
ter 3, that is

��E [u]� E
⇥
TKu

⇤��
L2(D)

= O(�K+1
). We have also studied the error��E [u]� E

⇥
TKu

⇤��
L2(D)

as function of K.
More relevant results are obtained when the complete KL-expansion is considered.

We have numerically investigated the dependence of the error
��E [u]� E

⇥
TKu

⇤��
L2(D)

on the tolerance imposed in the function compute_moment_Y. From the numerical
tests, we deduce that the convenient tolerance to consider depends both on K and �.

The method we propose here is able to reach the same accuracy as a collocation
method. Moreover, in the case where the collocation method in unfeasible, it still pro-
vides a valid solution, and turns out to be much more performing than the Monte Carlo
method. Thanks to the TT-approximations, we can treat also the case where Y (!, x) is
not approximated, but its complete KL-expansion is considered (up to machine preci-
sion).

The limiting aspect of our method are the storage requirements, which prevent us to
grows significantly in the order of the Taylor polynomial K. We believe that a great
improvement will follow from the implementation of sparse tensors toolboxes, which
are still missing in Matlab.
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Conclusions and future work

In this thesis we have considered linear PDEs with randomness arising either in the
forcing term or in the coefficient. We have modeled uncertain input terms as random
variables or random fields with known probability laws. Given complete knowledge on
the input terms, we have studied the moment equations, i.e. the deterministic equations
solved by the statistical moments of the stochastic solution of the SPDE, and solved
them to make inference on the stochastic solution of the PDE.

In the case of randomness arising in the loading term, the stochastic counterpart of
the Hodge Laplace problem in mixed form has been analyzed. The moment equations
are derived exactly, and their well-posedness is proved via a tensorial inf-sup condi-
tion. Both full and sparse tensor product finite element discretizations are analyzed.
We have proved the stability of both the discretizations, and have shown that a sparse
approximation provides almost the same rate of accuracy as a full approximation, with
a drastic reduction in the number of degrees of freedom.

We have studied the Darcy boundary value problem modeling the fluid flow in a
heterogeneous porous medium, where the permeability is described as a lognormal
random field: a(!, x) = eY (!,x), Y (!, x) being a Gaussian random field. Under the
assumption of small variability of Y , we have performed a perturbation analysis. We
have explored the approximation properties of the K-th Taylor polynomial, predicted
the divergence of the Taylor series, and provided an estimate of the optimal order of the
Taylor polynomial.

The expected value of the solution has been approximated by the expected value of
its Taylor polynomial, which in turn solves a recursive deterministic problem. We have
stated the well-posedness of this problem, and obtained Hölder-type regularity results.

We have proposed an algorithm in TT-format able to solve the first moment problem
at a prescribed order K (the degree of the Taylor polynomial). The numerical tests
performed highlight that the same level of accuracy as a stochastic collocation method
can be obtained with our algorithm in cases with only few random variables. However,
our approach does not need an a priori truncation of the random field and still provides
valid solutions in cases where the stochastic collocation method is unfeasible.

We have studied how the complexity of the algorithm depends on the precision tol
achieved in the TT-computations. We have numerically predicted the existence of an
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Chapter 5. Low-rank approximation of the moment equations

optimal tol depending both on the order of approximation K and the standard devia-
tion of the field Y . If the optimal tolerance is chosen, the performance of the moment
equations is far superior to a standard Monte Carlo method.

Summarizing, we have applied the perturbation technique to the Darcy problem
with lognormal permeability tensor, derived the moment equations and solved them
with a recursive algorithm in TT-format. We conclude the superiority of this technique
with respect to both a gPC expansion and Monte Carlo methods. Indeed, our TT-
code is able to handle high dimensional problems in the probability space and even
infinite dimensional random fields. On the other hand, if the optimal tolerance in TT-
computations is chosen, our TT-code is much more performing than a standard Monte
Carlo method.

However, we underline that there are still open questions to be investigated. The
numerical tests we have performed highlight the importance of the correct choice of
the tolerance in the TT-computations. Yet, we do not provide any a priori strategy to
determine the optimal tolerance. This topic is still open and under current investigation.

On the other hand, our algorithm does not allow a significative growth in the order
K of the correction (degree of the Taylor polynomial). This is due to the storage re-
quirements of the TT-tensors involved in the recursion, which strongly depend on the
TT-ranks. The dependence of the TT-ranks on the dimension of the tensor is an inter-
esting topic we are working on. We believe that a great improvement will follow from
the implementation of sparse tensors toolboxes, which are still missing in Matlab or
other programming languages.
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