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Abstract

In our society, where the population of elderly people keeps increasing

rapidly and where medical progress leads to a considerably increased life

expectancy, age-related diseases require constant medical assistance and so-

lutions, both effective and cost aware need to be sought. In situations where

patients cannot be anymore treated only in institutional setting, individual

and personalized care in the patients’ home environments plays an important

role. Ambient assisted living solutions aim at applying ambient intelligence

technology to support independent living of people with disabilities and spe-

cial demands and to relieve the workload from family caregivers and health

providers. Since ambient intelligence is designed for real-world and physical

environments, effective use of sensors is vital. Without physical components

that allow an intelligent agent to sense and act upon the environment, we

would end up with theoretical algorithms with no practical use. With the

availability of inexpensive low-power sensors these current “smart homes”

are normally equipped with a large amount of networked devices, which col-

laboratively process the acquired data about the state of the environment

as well as the activities and behaviours of its residents, detecting changes in

their daily routines and providing proactive services. The implementation

of new technologies is normally a complex, costly and a time consuming

matter. Deploying sensors in a never before encountered world may cause

unforeseen, and possibly negative side effects. For example, lighting condi-

tions or reflective surfaces may all affect the way visual sensors operate. A

strategy of online testing can be extremely slow and tedious. Time can be

spent much more productively by testing and modifying sensors offline in

preparation for the real experiments. The offline prototyping demands for

a simulation environment and prototypes that allow us to selectively test

acceptable solutions at an early stage, to address the particular needs of the

different users. This thesis explains how to implement four ambient sensors

such as a passive infrared motion detector, an optical switch, a light sensor

and a pressure sensor, using the Robot Operating System (ROS) and its

associated 3D simulation tool, Gazebo, in the three-dimensional model of a

real testbed apartment (Ängen in Örebro, Sweden), before executing them

in real life.



Sommario

Nella società odierna, dove la popolazione di anziani è in rapido aumento

e il progresso medico porta ad un considerevole aumento della speranza di

vita, le malattie legate all’età richiedono costante assistenza medica e la

necessità di trovare soluzioni efficaci ed economiche. In situazioni dove i

pazienti non possono più essere trattati in strutture sanitarie istituzionali

in modo autonomo, l’assistenza individuale e personalizzata gioca un ruolo

fondamentale. Soluzioni di ambient assisted living mirano ad applicare le

tecnologie di intelligenza artificiale per sostenere la vita indipendente degli

anziani o delle persone disabili, con lo scopo di alleviare il carico di lavoro

da parte di familiari e operatori sanitari. L’uso efficace dei sensori è di con-

seguenza di vitale importanza. Senza componenti fisici che permettono ad

un agente intelligente di percepire l’ambiente e di agire su di esso, ci ritro-

veremmo con algoritmi teorici di nessun uso pratico. Con la disponibilità

di sensori economici e a basso consumo di potenza inoltre, queste “case

intelligenti” sono normalmente dotate di una grande quantità di dispositivi

interconnessi tra loro, che collaborativamente elaborano i dati acquisiti sullo

stato dell’ambiente, sulle attività e i comportamenti dei suoi abitanti, riv-

elando cambiamenti nella loro routine quotidiana e fornendo servizi proat-

tivi. L’implementazione di nuove tecnologie è normalmente un processo

complesso, costoso e richiede molto tempo. L’applicazione di sensori in un

mondo mai incontrato prima può causare imprevisti ed effetti collaterali

spesso negativi. Le condizioni di illuminazione o superfici riflettenti possono

per esempio influenzare il principio di funzionamento di un sensore ottico.

Una strategia di test on-line può essere estremamente lenta e noiosa. Il

tempo può essere speso in modo pi produttivo testando e modificando sen-

sori e attuatori off-line, in preparazione agli esperimenti reali. Sono tuttavia

richiesti un ambiente di simulazione e prototipi che permettano di testare se-

lettivamente soluzioni accettabili in una prima fase iniziale, per affrontare le

esigenze specifiche dei diversi utenti. Questa tesi spiega come implementare

quattro sensori ambientali, quali un rilevatore di presenza, un interruttore

ottico, un sensore di luce e un sensore di pressione, utilizzando il middleware

noto come ROS (Robot Operating System) e il suo simulatore 3D, Gazebo,

all’interno del modello tridimensionale di un vero e proprio appartamento

installato nel quartiere residenziale di Ängen, in Örebro (Svezia), prima di

essere installati nell’ambiente fisico reale.
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Chapter 1

Introduction

Traditionally, elderly care has been the responsibility of family members

and was provided within the extended family home. In modern societies,

elderly care is now being provided by the state or charitable institutions.

The reasons for this change include decreasing family size, the greater life

expectancy of elderly people, the geographical dispersion of families, and

the tendency for women to be educated and work outside the home [27].

Much research is being carried out on building ambient assisted living sys-

tems and most efforts are made in developing pervasive devices and use

Ambient Intelligence to integrate these devices together in order to build

up a safe environment around the assisted people and help them maintain-

ing an independent living. Due to the advances in the miniaturization of

electronics, computing devices with various capabilities and interfaces like

sensors and actuators can now be purchased at very affordable prices. This

technology can be networked and used with the coordination of intelligent

software to understand the events and the relevant context of a specific en-

vironment and to take decisions in real-time or a posteriori, for example a

system by alerting the family or the health providers in case of an anomalous

occurrence.

1.1 Context: Ambient Assisted Living

Ambient Assisted Living (AAL) is a relatively new approach which promises

to address special needs for elderly people or people with disabilities, reduc-

ing the cost of health and social care. Assisted living emerged in the 1990s

as an eldercare alternative for people whom independent living is not secure

but who do not need the 24-hour medical care provided by a nursing home

and are too young to live in a retirement home. AAL aims at extending the
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time older people can live in their home environment by assisting them in

carrying out activities of daily living by the use of advanced ICT technology

and providing remote services including care services, eventually increasing

their autonomy. The level of independence an elderly person living in his

own home is related to his autonomy in performing the basic actions involved

in daily living: to transfer to and from the bed, in and out of a chair, to move

around the flat. In a more precise way, an assisted living resident is defined

as a resident who needs assistance with at least one of the Activities of Day

Living (ADLs), such as the basic self-care tasks or skills that people usually

learn in their childhood, like feeding, bathing, dressing, walking or trans-

ferring for example from the bed to the wheelchair. For this aim housing

facilities have been built, providing supervision or assistance with activities

of daily living, coordination of services by outside health care providers, and

monitoring of residence activities to help to ensure their health, safety and

well-being, letting them age in place. The goal of AAL solutions is to apply

ambient intelligence technology to enable people with specific demands to

live in their preferred environment longer. The use of sensors is part of a

package which can provide support for people with illnesses or people at

risk of falling. Devices such as RFID, motion detectors and other smart

sensors, are spatially distributed and built up in wireless sensor networks,

cooperatively monitoring the environmental conditions in order to assist the

daily activities of the patients. Monitors and detectors are often linked to a

telecare system, which could be triggered when, for example, a person falls

or has a seizure, or when gas or smoke are detected, so that appropriate

help can be provided. Sensors can also detect problems as intruders or even

help to prevent them. For example, a spoken reminder to turn off the cooker

can help to prevent a kitchen fire, or a bed sensor that turns on the light

when it detects a person getting out of bed in the night can help to prevent

a fall. To give a numerical example, the Whole System Demonstrator head-

line findings after a trial involving 3154 patients, included these outcomes

[26]:

• 45% reduction in mortality rates,

• 20% reduction in emergency admissions,

• 15% reduction in Accident & Emergency visits,

• 14% reduction in elective admissions,

• 14% reduction in bed days,

• 8% reduction in tariff costs.



AAL is specifically different from telemedicine and telehealth, because it

does not deliver any health-related services nor provide clinical health care,

but still the results are promising. The key concept is preventing and mit-

igating harm by reacting to unforeseen events and raising a help response

promptly.

1.2 Motivations

We are moving into a new era of information and communication technology

called Ubiquitous Computing. Ubiquitous sensing technologies allow us to

elicit and collect information about steady or changing states of phenomena

and circumstances, through a great number of distributed, heterogeneous

sensors, actuators and processing components that exchange data and com-

municate and thereby form an ecology of information processing systems.

Successful integration of sensor technology into everyday life depends on end

users acceptance of the technology and how it affects their life. Privacy is

the most common issue of sensor technology for smart homes. Most of the

users do not like to carry a wearable device with them because it marks them

as diseased or dependent. Patients do not want to wear medical equipment

in public or even at home and even in life critical situations they sometimes

decide against the implantation of a medical device due to their fear of a

loss of independence [14]. In order to achieve a broad user acceptance it is

necessary to take even hedonic aspects into account when it comes to the

integration into existing home environments of sensor devices, which should

be primarily invisible and passive. A good compromise of ubiquity, relia-

bility and non-intrusiveness is established by the ambient sensors. Ambient

sensors are sensors capable of jointly sensing multiple physical phenomena

in surroundings, such as humidity, temperature, acoustic pressure, force,

and light, and these measured parameters can be associated with events

such as opening doors, human presence, tipping ladders, etc [29]. They

avoid problems like wearing a big reader in case of RFID-based method and

invasion of privacy in case of video camera-based method. Due to the com-

plexity of new technologies, sensors and robotic subsystems are a complex,

costly and time consuming matter. The inability to treat these individuals

in their own surrounding due to safety issues, often force them to move to

a new home. A way to efficiently prototype and develop ambient sensors

including their physical and digital parameters is then required, and it de-

mands for a simulation environment that allows to selectively investigate the

characteristics and properties of those systems and to test them in different

environments before installing them in the real ones. Specialized software



is needed, but even in one of the best suited open source tool chain such as

ROS [11](Robot Operating System) and its associated 3D simulator Gazebo

[15],ambient sensors have not been implemented.

1.3 Objectives

The purpose of this thesis is to develop a toolkit to extend the Ängen Cog-

nitive Environment (ACE) stack with the addition of ambient sensors to

make the environment intelligent. The ACE stack is a specialized ROS

stack developed at AASS Research Center at Örebro University to simulate

cognitive environments, providing easy-to-use tools for building and testing

actuators and robots in Gazebo.

The application developed in this thesis consists of a set of plugins that

allow users to visually create and spawn ambient sensors such as passive

infrared motion detectors, optical switches, pressure and light sensors, in

any environment with multiple floors, walls, rooms, appliances, furnitures,

doors, windows, lights and robots, giving the possibility to set parameters

accordingly with different datasheets. The data gathered and processed by

the sensors are made available through an interface according to the ROS

communication paradigm, which every other sensor or robot can access, to

retrieve information and react consequently. The plugins make extensive use

of the sensors already implemented in Gazebo, without altering the original

structure, not even the file organization of the ACE stack, enhancing the

operating principle, in some cases simplifying it, with a focus on keeping the

highest degree of simulation reproducibility and computational efficiency.



Chapter 2

Background and previous

work

2.1 Ambient Intelligence and smart homes

This thesis takes place within the context of smart environments or so-called

smart homes, with the goal to monitor the activities of elderly people, liv-

ing at home, in order to continuously assess their degree of independence

and therefore their autonomy. Today people live in homes that can be con-

sidered ”intelligent” by 1960s standards, and for a very reasonable cost.

Thermostats and movement sensors that control lighting are commonplace.

Now the bar has moved much higher: even the ability to link movement

sensors to a security alarm for detecting intruders will not impress a society

which regularly interacts with such facilities. The basic idea behind Am-

bient Intelligence (AmI) is that by integrating an environment through the

technology a system can be built as an ”electronic butler”, which senses fea-

tures of the users and their environment and then reason about the gathered

data, selecting actions to be performed.

2.2 Sensors

Ambient Intelligence has been characterized by researchers in different ways.

All the definitions highlight the features that are expected in AmI tech-

nologies: sensitive, responsive, adaptive, transparent, ubiquitous and intel-

ligent [12]. Ambient intelligence algorithms rely on sensors data from the

real world. Without physical components that allow an intelligent agent to

sense and act upon the environment, we end up indeed with theoretical algo-

rithms that have no practical use. Sensors are used by software algorithms

13



to perceive the environment and use this information to reason and decide

the action that has to be taken to change the environment. Perception in

accomplished using a variety of sensors. Sensors have been designed for po-

sition measurement, for detection of chemical and humidity sensing, and to

determine readings for light, radiation, temperature, sound, strain, pressure,

position, velocity and direction. Sensors are typically quite small and can

be integrated into almost any AmI application. Three types of sensor tech-

nologies have been demonstrated ability to address the challenges of sensing

human activity in a smart home, including wearable devices where sensor

are worn by the residents, direct environment components where sensors are

distributed in the environment, and infrastructure mediated system where

sensors are installed on an existing home infrastructure. This thesis focuses

on the simulation of the direct environment components. This technology

typically consists of a set of sensors and an associated sensor network (wired

or wireless) to transfer data to a centralized monitoring system where sensor

fusion and activity inference take place.

2.2.1 Sensor technology used by smart homes

Many smart homes today adopt the concept of ubiquitous sensing where a

network of sensors integrated with a network of processing devices yield a

rich multi-model stream of data. The sensory data are analysed to recog-

nize and monitor basic and instrumental activities of daily living performed

by the residents such as bathing, dressing or preparing a meal. This ap-

proach allows smart homes to capture patterns possibly reflecting physical

and cognitive health conditions and then recognize when the pattern begins

to deviate from individualized norms and when atypical behaviour occurs

that may indicate problems or require intervention [20]. One particular type

of sensor that is commonly used in smart homes is the binary sensor, which

simply detects the state of an object or movement with a single digit ’1’

or ’0’. Various types of binary sensors have been used in smart homes in-

cluding motion detectors, pressure sensors and contact or optical switches.

Motion detectors and pressure sensors are usually used to detect occupant

presence and locations throughout the house. Contact switches are usually

installed on the doors in a smart home such as the front door and doors of

cabinets and appliances to provide information on the specific interaction

that the occupant performs with objects and appliances. The advantage

of binary sensors include low cost, easy installation, with privacy concerns.

However, these sensors only give information at an abstract level and are

limited when inferring activities. It is for example impossible to understand



which item is removed from a cabinet by simply knowing the state of the

cabinet. A variety of other sensors can be deployed in smart homes to help

infer activities and trigger automatic services. These sensors usually provide

more specific information than simple binary sensors but give fewer details

than video cameras for instance. Tracking and identifying people in the en-

vironment is an issue in AmI systems. If the location of a person is known,

the system can serve the individual better by anticipating needs based on

their preferences and delivering services based on when they are commonly

required. The technology which is often used to track individuals are motion

sensors. Motion sensors have been used as a backbone of security systems

for decades. However, while they can detect movement they cannot provide

information to distinguish who (or what) produced the movement. As an

alternative, a person can wear a sensor that helps to track the individual.

An example of this technology is RFID tags that can be coupled with an

RFID tag reader to monitor the movement of the tagged objects.

2.2.2 Sensor data

There are efforts in the wide field of applications today to fuse heterogeneous

data from sensors in order to provide outputs, which are more informative

than the original data from particular sensors. Reliable data are essential

to be able to fuse sensor data in sensor fusion system. Nevertheless, it is in

some cases difficult or even impossible to build a real environment complete

with deployed sensors in order to ensure reliable data for the research, de-

velopment and testing of sensor data fusion systems. Implementation of a

sensors simulation environment, which would generate synthetic sensor data

(numerical and non- numerical) is a solution to fulfill such efforts.

Researchers have found that different types of sensor information are ef-

fective for classifying different type of activities. When trying to recognize

actions that involve repetitive body motions (e.g. walking, running, sitting,

standing, climbing stairs), data collected from motion detectors installed in

a strategic position have been used. In contrast, other activities are not as

easily distinguishable by body position. In these cases, researchers observe

the smart home residents interaction with objects of interest such as doors,

windows, refrigerators, keys and medicine containers, through pressure sen-

sors and optical switches.



2.3 ROS - Robot Operating system

Robot Operating System (ROS) is an open source software framework for

robot software development, originally developed in 2007 under the name

switchyard by the Stanford Artificial Intelligence Laboratory in support of

the Stanford AI Robot (STAIR) project [22]. It provides operating system-

like functionalities including hardware abstraction, lowlevel device control,

messagepassing between processes and package management. Tools and li-

braries are also available for building and running the code across multiple

computers. It is based on a graph architecture where processing takes place

in nodes that may receive, post and multiplex sensor, control, state, plan-

ning, actuator and other messages. This runtime graph is a peer-to-peer

network of processes, coupled using the ROS communication infrastructure.

ROS implements several different styles of communication, including syn-

chronous RPC-style communication over services, asynchronous streaming

of data over topics, and storage of data on a Parameter Server [11]. ROS cur-

rently only runs on Unix-based platforms. The library and the core system,

along with useful tools and libraries, are regularly released as a Linux-like

distribution that provides a set of compatible software for others to use and

build upon. Even if it is not a realtime framework, it is possible to integrate

ROS with realtime code. More details about the ROS goals and concepts

are explained below.

2.4 Goals

The primary goal of ROS is not to be a framework with the most features,

rather it is to support code reuse in robotics research and development.

ROS is a distributed framework of processes that enables executables to

be individually designed and loosely coupled at runtime. These processes

can be grouped into Packages and Stacks, which can be easily shared and

distributed. ROS also supports a federated system of code Repositories

that enable collaboration to be distributed as well. This design, from the

filesystem level to the community level, enables independent decisions about

development and implementation, but all can be brought together with ROS

infrastructure tools.

In support of this primary goal of sharing and collaboration, there are several

other goals of the ROS framework [23]:

• Thin: ROS is designed to be as thin as possible so that code writ-

ten for ROS can be used with other robot software frameworks. A



corollary to this is that ROS is easy to integrate with other robot soft-

ware frameworks: ROS has already been integrated with OpenRAVE,

Orocos, and Player.

• Peer-to-peer: a system built using ROS consists of a number of pro-

cesses, potentially on a number of different hosts, connected at runtime

in a peer-to-peer topology.

• Tools-based: in order to manage the complexity the developers opted

for a microkernel design, where a large number of small tools are used

to build and run the various ROS components, rather than construct-

ing a monolithic development and runtime environment. These tools

perform various tasks, e.g. navigate the source code tree, get and

set the configuration parameters, visualize the peer-to-peer connec-

tion topology, measure bandwidth utilisation, graphically plot message

data, auto-generate documentation, and so on.

• Multi-lingual: ROS currently supports four very different languages

such as C++, Python, Octave, and LISP, when other language ports

in various states of completion.

• Easy testing: ROS has a builtin unit/integration test framework called

rostest that makes it easy to bring up and tear down test fixtures.

• Scaling: ROS is appropriate for large runtime systems and for large

development processes.

• Free and Open Source: the full source code of ROS is publicly available

and it is distributed under the terms of the BSD license, which allows

the development of both non-commercial and commercial projects.

2.5 Concepts

The fundamental concepts of the ROS implementation are nodes, messages,

topics, and services. Nodes are processes that perform computation. ROS

is designed to be modular at a fine-grained scale: a system is typically

comprised of many nodes. Nodes communicate with each other by passing

messages. A message is a strictly typed data structure. Standard primitive

types (integer, floating point, boolean, ect.) are supported, as are arrays of

primitive types and constants. Message can be composed of other messages,

and arrays of other messages, nested arbitrarily deep. A node sends a mes-

sage by publishing it to a given topic, which is simply a string. A node that is



interested in a certain kind of data will subscribe to the appropriate topic.

There may be multiple concurrent publishers and subscribers for a single

topic, and a single node may publish and/or subscribe to multiple topics.

In general, publishers and subscribers are not aware of each others’ exis-

tence. The simplest communications are along pipelines. However, graphs

are usually far more complex, often containing cyrcles and one-to-many or

many-to-many connections. Although the topic-based publish-subscribed

model is a flexible communication paradigm, its ”broadcast” routing scheme

is not appropriate for synchronous transactions, which can simplify the de-

sign of some nodes. In ROS this is called a service, defined by a string

name and a pair of strictly typed messages: one for the request and one for

the response. This is analogous to web services, which are defined by URIs

and have request and response documents of well-defined types. Note that,

unlike topics, only one node can advertise a service of any particular name.

Figure 2.1: Basic concepts of the communication between nodes.

2.6 URDF - Unified Robot Description Format

Each visual entity in the environment needs to be described in a way that

ROS will recognise it. For describing them it is necessary to make use of

a XML language called URDF (Unified Robot Description Format). The

main limitation at this point is that only tree structures can be represented,

ruling out all parallel robots. Also, the specification assumes the sensor

consists of rigid links connected by joints; therefore flexible elements are not

supported. The specification covers:

• Kinematic and dynamic description of the robot

• Visual representation of the robot

• Collision model of the robot

Bodies represent the basic building blocks of a model. Their physical repre-

sentation take form of geometric shapes chosen from boxes, spheres, cylin-

ders, planes and lines. Each body has an assigned mass, friction, bounce



factor, and rendering properties such as color, texture, transparency, etc.

Joints provide the mechanism to connect bodies together to form kinematic

and dynamic relationships. A variety of joints are available including hinge

joints for rotation along one or two axis, slider joints for translation along a

single axis, ball and socket joints, and universal joints for rotation along to

perpendicular joints. Besides connecting two bodies together, these joints

can act like motors. When a force is applied to the joint, the friction between

the connected body and the other bodies cause motion.

2.7 Gazebo simulator

Simulation tools play a significant role in design and development of com-

plex robotics systems. They allow to implement applications that does not

depend physically on the actual device, saving cost and time. Modelling

and simulation of rigid robots has been relatively matured over the past two

decades, however in order to model the state of the art in robotics with new

sensors and actuators and advanced control algorithms with realistic physics,

there is a need to have improved simulation tools. Gazebo is a multi-robot

simulator for outdoor and indoor environments, created by Nathan Koenig

and Andrew Howard at the University of Southern California, and incor-

porated into the above mentioned ROS. Gazebo is capable of simulating a

population of robots, sensors and objects, and does so in a three-dimensional

world. It generates both realistic sensor feedback and physically-plausible in-

teractions between objects (it includes an accurate simulation of rigid-body

physics). Since Gazebo realistically simulates robots and environments, code

designed to operate a physical robot is normally executed on an artificial

version in order to avoid common problems associated with hardware such

as short battery life, hardware failures, and unexpected and dangerous be-

haviours. It is also faster to spin up a simulation engine than continually

run code on a robot, especially when the simulation engine can run faster

than real-time. Gazebo Simulator utilizes an open-source graphics renderer

(Ogre[6]) and an open-source physics engine (ODE [5]) to model how the

robot interacts with its surroundings, and to visualize both how the world

appears and to generate renderings of what different sensors can see. Gazebo

also uses the free open 3rd party library “Assimp” (Asset Import Library

[4]) to import various well-known 3D model formats, so that the realistic re-

construction of realworld environments is possible. By using standard ROS

messages, higherlevel client applications will not be aware if they are inter-

acting with the real system or the simulated version. Developers will be

able to develop applications that process the sensor data and command the



simulated robot system to perform various manipulation tasks within the

simulated world, and then easily have this software transitioned to run on

the robot (almost without changing the code).

2.7.1 Architecture

A major feature of Gazebo is the ability to easily create new robots, actua-

tors, sensors, and arbitrary objects. As a result, Gazebo maintains a simple

API for addition of these objects, called models, and the necessary hooks for

interaction with client programs. A layer below this API resides the third

party libraries that handle both the physical simulation and visualization.

This architecture is graphically depicted in Figure 2.2.

Figure 2.2: Gazebo Dependency Graph

The World represents the set of all models and environmental factors such

as gravity and lighting. Each model is composed of at least one body and

any number of joints and sensors. The third party libraries interface with

Gazebo at the lowest level. This prevents models from becoming dependent

on specific tools that may change in the future. Finally, client commands are

received and data returned through a shared memory interface. A model

can have many interfaces for functions involving, for example, control of

joints and transmission of sensor data.



2.7.2 Physics Engine

The Open Dynamic Engine[8], created by Russel Smith is a widely used

physics engine in the open source community. It is designed to simulate

the dynamics and kinematics associated with articulated rigid bodies. This

engine includes many features such as numerous joints, collision detection,

mass and rotational functions, and many geometries including arbitrary tri-

angle meshes. Gazebo utilizes these features by providing a layer of ab-

straction situated between ODE and Gazebo models. This layer allows easy

creation of both normal and abstract objects such as layer rays and ground

planes while maintaining all the functionality provided by ODE.

2.7.3 Visualization

A well designed simulator usually provides some form of user interface, and

Gazebo requires one that is both sophisticated and fast. The heart of Gazebo

lies in its ability to simulate dynamics, and this requires significant work on

behalf of the user’s computer. A slow and cumbersome user interface would

only detract from the simulator’s primary purpose. To account for this,

OpenGL and GLUT (OpenGL Utility Toolkit)[9] were chosen as the default

visualization tools. Besides ROS has another 3D visualization tool: Rviz.

It can analyze collisions and represent them as a three-dimensional model,

show the information about joints, mass and center of mass. It can create

a new rendering window with an image and show data from a laser scan,

with different options for rendering modes, accumulation, etc. Although also

Rviz is a powerful tool that allows not only to reproduce sensor data but

to control the sensors themselves, non of them excludes the other, but it is

useful to use both of them in a complementary way. The advantage of Rviz

is that the user can choose the data he wants to reproduce and personalize

the interface. It is convenient for example when the user wants to lighten

the simulation. For example, displaying the rays of a laser scan in Gazebo

may slow down the simulation, so visualizing them in Rviz could solve the

problem.

2.8 Sensor used in simulation

A complete environment is essentially a collection of models and sensors.

The ground and buildings represent stationary models while robots and

other objects are dynamic. Sensors remain separate from the dynamic sim-

ulation since they only collect data, or emit data if it is an active sensor.

A sensor in Gazebo is an abstract device lacking a physical representation.



It only gains embodiment when incorporated into a model. This feature al-

lows for the reuse of sensors in numerous models thereby reducing the code

and confusion. There currently are three sensor implementations including

an odometer, ray proximity, and a camera. Odometry is easily accessible

through integration of the distance travelled. The ray proximity sensor re-

turns the contact point of the closest object along the ray’s path. This

generic sensor has been incorporated into a Sick LMS200 model to simulate

a scanning laser range finder, and also a sonar array for the Pioneer 2. Fi-

nally, the camera renders a scene using OpenGL from the perspective of the

model the camera is attached to. Currently the camera sensor is used for

both a Sony VID30 camera and the ”God’s eye” view of the world [18].

2.9 Ängen testbed facility model

The Ängen facility is a newly built senior living facility that provides an

extensible, fully functional research facility for the development of assistive

technology, with a particular emphasis on AmI solutions for elderly care,

implemented in the centre for Applied Autonomous Sensor System (AASS)

research group at Orebro University. The Ängen facility has been built and

is administered by the Länsg̊arden real estate company and began to host

residents in Spring 2011. Ängen aims to build an open infrastructure for

assessing deployability and validation of research prototypes, involving sev-

eral partners representing complementary communities around elderly care.

The Ängen apartment includes some robots and many simple devices - like

people detectors and pressure sensors under the chairs, optical switches at-

tached to doors and shutters as well as a special infrastructure that includes

RFID-based sensory technology to provide reliable localization for robots

and people through a special floor. These robots and devices may cooperate

to generate some sort of collective intelligence.

(a) (b)

Figure 2.3: Floor plan of the real apartment (a) and top view of the simulated model

(b).



(a) (b)

Figure 2.4: Views of the real (a) and the modelled (b) livingroom.

(a) (b)

Figure 2.5: Views of the real (a) and the modelled (b) kitchen.

(a) (b)

Figure 2.6: Views of the real (a) and the modelled (b) bedroom.

(a) (b)

Figure 2.7: Views of the real (a) and the modelled (b) bathroom.





Chapter 3

System and package overview

The purpose of this thesis is to implement in ROS (and in Gazebo) am-

bient sensors such as motion detectors, optical switches, light sensors and

pressure sensors, not implemented yet in the framework. The development

of those sensors takes the ones already present in ROS, such as cameras,

lasers and contact bumpers, as a starting point, extending the functionali-

ties, sometimes simplifying them, and manage to make them communicate

and integrate with the environment. The approach is to use plugins. A

plugin is a code snipplet that is compiled as a shared library and inserted

into the simulation. The plugin has direct access to all the functionality

of ROS through the standard C++ classes, documented in the public API.

Using plugins is very useful. They let the developer directly control joints

and links of the model as well as data generation and processing of the at-

tached sensor, are self contained routines easily shared that can be inserted

and removed at run-time without any overhead of the transport layer (e.g.

no serialization and deserialization of messages). They are useful in many

use cases, from data filtering to noise models addition. These advantages

make plugins more flexible and so preferable to client nodes. Launching

few sensors with the incorporated plugin is better than firstly spawning the

decoupled models and then execute a node that have to access them. Every

node that is executed requires in average 10% of the CPU within the simu-

lation. Considering that the simulator requires around 60% of the CPU, it

may be irrelevant for a test with only few sensors but it becomes inconceiv-

able if we want to simulate a real environments with more than ten sensors,

especially if we add the presence of robots.
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3.1 Angen Sensor Plugins Package

Angen Sensor Plugins is a package with the aim to expand the Angen Con-

gnitive Stack (ACE), a specialized ROS stack developed at AASS Research

Center at Örebro University that provides easy-to-use tools for building and

simulating cognitive environments in ROS Gazebo, with the addition of sen-

sors to make the environment intelligent. The core of the package is a set

of controllers that take the gazebo ones as starting point and are modified

accordingly with the functional and operational requirements of the environ-

ment. The sensors implemented are four: passive infrared motion detector,

optical switch, pressure sensor, photosensor (or photodetector). The pack-

age contains the URDF models as well as the 3D meshes and textures of the

sensors, headers and source files, custom messages used by the controllers

to publish sensor information and some configuration files.

Figure 3.1: Package overview

The motion detector is implemented using a rangefinder laser in order to

overtake the impossibility to simulate the infrared emitting light in Gazebo

and simplifying by far its derived operative principle. The laser is tilted

and the gathered range values are store in a matrix; the difference with

the previous scans is compared with a threshold to detect movements. The

optical switch makes use once again of a laser, with only one ray. A small

tag is attached to doors and shutters, so when the door is closed the small

tag breaks the ray and the event is triggered. The pressure sensor is a

bumper that detects collisions and measure the z-axis component of the

opposite ground reaction force exerted by the floors. The light sensor is a

camera that computes a one-pixel image and calculate the RGB color space

luminance. In the following chapters every sensor is explained in details.



Chapter 4

Passive infrared motion

detector (PIR)

Figure 4.1: Passive infrared motion detector.

The role of the popular passive infrared motion detector has been reviewed

during the last years, from a simple peripheral component of security systems

to a basic building block in the integrated building automation systems[17].

Originally used to protect objects or rooms from unwanted intruders, they

are now employed in daily activity recognition systems for eldery people in

the smart environments discussed before. Therefore beyond the common

requirements of security and access control, the occupancy picture of the

building is extremely helpful to obtain activity profiles of patients, to pro-

vide a warning sign for unhealthy cases such as skipping meals and for the

intervention during security incidents.
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In Ambient Assisted Living, motion detector sensors are deployed differently

than in the typical security applications and different results are expected by

the users from the sensors. In security applications, it is required to inform

the security system as soon as possible about any movement in the observed

area, while in AAL applications the system and at the end the users are

interested in the intensity of the movement in a given time frame (typically

from several seconds to a minute) and everything has to be developed using

a minimal number of sensors without affecting the patients behavior or daily

routine. There are several advantages using PIR sensors. First, they do not

require any signal or device on the object to be tracked. Second, they can

work in dark environment as well, whereas vision-based system cannot, and

third, they are cheap, easy to use and they not require huge computational

power.

Before entering the details of how the sensor works and which is the opera-

tive principle, it is appropriate to describe in few words the context in which

it is placed and what is its real purpose: motion detection. Motion detection

is the process of detecting a change in position of an object relative to its

surroundings or the change in the surroundings relative to an object, and

can be achieved by both mechanical and electronic methods. The most ba-

sic forms of electronic motion detection are acoustical detection and optical

detection. Optical motion detection devices, such as the passive infrared

sensors implemented in this thesis, have a sensor that detects a disturbance

in the infrared spectrum, such as a person or an animal. Once detected,

an electronic signal can activate an alarm or a camera that can capture an

image or video of the motioner.

4.1 How the real sensor works

Strictly speaking, individual PIR sensors do not detect motion; rather, they

detect abrupt changes in temperature at a given point. The term passive

in this instance refers to the fact that PIR devices contribute no energy of

their own - do not generate or radiate any energy for detection purposes -

but they work entirely by detecting the energy given off by other objects

[24]. For this reason, many PIRs can be used together within the same area

without interfering with each other.

All objects with a temperature above absolute zero emit heat energy in the

form of optical radiation (light). Usually this light is invisible to the human

eye because body temperature radiates at infrared wavelengths, but it can

be detected by electronic devices designed for such a purpose. As an object,

such as a human, passes in front of the background, such as a wall, the



temperature at that point will rise from room temperature to body temper-

ature, and then back again. This quick change triggers the detection.

The sensor technology has evolved from simple thermistor sensors to highly

sophisticated differential pyro-electric devices with microprocessor based sig-

nal processing [10]. The most common models have numerous Fresnel lenses

or mirror segments, an effective range of about ten meters, and a field of

view less than 180 degrees (models with wider fields of view, including 360

degrees, are typically designed to mount on a ceiling).

Figure 4.2: Example of horizontal and vertical view of detection zones of the PIR sensor

The occupancy monitoring system consist of a transmitter unit, a receiver

unit and a commercially available passive infrared detector (PIRD). The

microcontroller in the transmitter unit samples the output of the motion

sensor via its analog to digital converter at a rate of 20 Hz. This digitized

data is then subject to a motion detection algorithm embedded in the flash

memory of the microcontroller, which determines whether activity has oc-

curred or not. When motion is deemed to be of significance, the relevant

data is time stamped by accessing the real-time clock and sent to the wire-

less transceiver module for transfer to the receiver unit. The selection of

an analog infrared sensor provides the ability to set a minimum threshold

to increase the detector sensivity, wider detection area and such a device

consumes very low power [16].



4.2 How the simulated sensor works

Since it is not possible to simulate the emitting heat energy of the objects

in Gazebo, the detection is triggered by the change of the ranges values

gathered by a laser rangefinder. A laser rangefinder is a device which uses

a laser beam to determine the distance to an object.

4.2.1 Design

(a) Sketch-up format (b) Collada file

Figure 4.3: Three-dimensional model of the motion detector

The model consists of two links and one joint. The first more simplistic

version only included one link and no joints. In order to make it more real

a link to simulate the housing is added to a spherical link that acts as the

core of the sensor. Therefore a joint to connect them is required. The joint

is a hinge joint that rotates along the axis and has a limited range specified

by the upper and lower limits. The code below shows an example of the

plugin:

<s enso r name=’ p i r s e n s o r ’ type=’ ray ’ always on=’ 1 ’

update rate=’ 10 ’ v i s u a l i z e=’ f a l s e ’>

<ray>

<scan>

<h o r i z o n t a l samples=”120” r e s o l u t i o n=”1”

min angle=”−60” max angle=”60” />

</ scan>

<range min=” 0 .05 ” max=”4” />

</ ray>



<plug in name=” angen p i r ” f i l ename=” l i b a n g e n p i r . so ”>

<gauss ianNoi se>0</ gauss ianNoi se>

<alwaysOn>t rue</alwaysOn>

<updateRate>10</updateRate>

<topicName>room state</topicName>

<frameName> l i n k 1</frameName>

<fov>90</ fov>

<fovRes>10</ fovRes>

</ p lug in>

</ senso r>

The link element describes a rigid body with an inertia, visual features and

collision properties. The visual element specifies the shape of the object

(box, cylinder, etc.) for visualization purposes. The geometrical shape of

the visual object is described by a trimesh, and an optional scale that scales

the mesh’s axis-aligned-bounding-box. The trimesh formats accepted by

Gazebo are .dae (collada), .stl (stereo-lithography) and .mesh (Ogre mesh).

In this thesis the models are created with the Google-Sketch-Up 3D mod-

elling software [3], or downloaded from the online repository Google 3D

Warehouse [2]. The collision properties are similar to the visual properties

of a link, but can be different. For example, simpler collision models are

often used to reduce computation time. The joint element describes the

kinematics and dynamics of the joint, including the axis of rotation, and

also specifies the safety limits of the joint, particularly useful in simulation.

The plugin, in order to work correctly, needs a ray sensor as its parent. The

sensor element describes basic properties of the visual sensor such as the

name, the type and the frequency at which the sensor data is generated.

Other attributes contribute to characterize the sensor, like the pose of the

sensor optical frame, relative to the sensor parent reference frame (the sen-

sor optical frame adopts the conventions of z-forward, x-right and y-down),

the horizontal samples, the number of simulated rays to generate per com-

plete laser sweep cycle and their resolution (this number is multiplied by

samples to determine the number of range data points returned), the an-

gles of the first and the last range measurement in radians and the smallest

and the largest distances that can be measured. Although is possible to set

attributes to get also a vertical scan, samples are collected only horizon-

tally to gain major flexibility of the data structure and the operations on

it, flexibility that may be lost working on a three-dimensional point cloud.

In simulation large sensors will slow down overall performance. Depending

on update rates required, it is then recommended to keep the ray resolution



and update rates as low as possible.

For that concerns the plugin itself the most important parameters are the

filename and the update rate: the first is the name of the library generated

from the compiled source file and the rate is the rate the plugin is throttled

and should be the same of the sensor update rate in order to be synchro-

nized with the scans. For simplicity and bigger precision the gaussian noise

is removed (set to zero). Another important attribute, common to all the

sensor plugins, is the name of the topic the sensor will send data on. The

plugin is similar to the GazeboRosLaser controller, but requires two addi-

tional parameters: field of view and field of view resolution (fov and fovRes

respectively).

4.2.2 Implementation

As mentioned before the plugin requires a ray sensor as its parent. This

sensor casts rays into the world, test for intersections, and reports the range

to the nearest object. The scans are taken in a counter-clockwise direction.

Angles are measured counter clockwise with 0 pointing directly forward.

The plugin stores the gathered ranges values in a matrix. Then the laser

is tilted, making the spherical link rotate of an angle equal to the resolu-

tion of the horizontal field of view. The tilting is implemented as a call to

the gazebo SetModelConfiguration service, which allows to rotate the joint

along the rotation axis of an angle passed as parameter, without invoking

dynamics. The number of scans is given by the ratio between the vertical

field of view and its resolution. The joint positions are calculated and stored

in another array. Every second the sensor executes as many scans as the

update rate, and every scan at time t is compared with the prior scan of

the same angle, at time t-1. A threshold is set to trigger the movement, so

when the value of the difference between the two sequential scan is bigger

than the threshold the boolean field of the message is set to True.

The message published by the laser sensor is showed below:

std msgs/Header header

float32 angle min

float32 angle max

float32 angle increment

float32 time increment

float32 scan time

float32 range min



float32 range max

float32[] ranges

float32[] intensities

while the PirMsg.msg is:

std msgs/Header header

float32 angle

bool moved

where header contains the time stamp of the current scan and the frame

name of the PIR sensor currently being listened to, angle contains the angle

in radians within the field of view the sensor is scanning at the time stamp,

and moved tells if any object within the field of view moved or not at that

instance.

An example of the message output can be displayed on a new terminal

typing the following command:

r o s t o p i c echo / p i r s e n s o r s / bedroom pir / room state

It will print:

header:

seq: 0

stamp:

secs: 58

nsecs: 235000000

frame id: /link1

angle: 0.698131680489

moved: False



4.3 Example

Many of the sensors implemented in this thesis have been initially tested

within an empty world, but simulating a laser range finder with no walls or

objects would not make sense. At the beginning the motion detectors were

created inside the model of the empty apartment, in order to get feedbacks

about the overall functioning. At the later stage every single piece of furni-

ture was added to the scene to set positions, angles and other parameters

to properly calibrate the sensors, accordingly to the furniture placement.

To start the simulation with the empty environment a launch file is used:

<launch>

<node name=” gazebo ” pkg=” gazebo ” type=” gazebo ”

args =$( f i n d angen gazebo )/ worlds /angen empty . world

respawn=” f a l s e ” output=” sc r e en ”/>

<param name=” p i r d e s c r i p t i o n ” command=$( f i n d xacro )/ xacro . py

’ $( f i n d angen p lug ins )/ urdf / p i r . sd f ’ />

<node name=” $( spawn node ) ” pkg=” gazebo ” type=”spawn model”

args=−gazebo −param / p i r d e s c r i p t i o n

−x −1.6 −y −4.65 −z 2 .9 −Y 2.55 −model t e s t p i r

respawn=” f a l s e ” output=” sc r e en ” />

</ launch>

As soon as the model is spawned into the world the plugin is loaded. Sub-

sequently the matrix of the range values is initialized and like so the joint

positions are calculated relatively to the field of view and its resolution. The

field of view of the motion detector looks like beams reaching out into an

area and stopping at the nearest solid object, like a wall, floor, human body

or piece of furniture (Figure 4.4).



(a) A scan of the living room (b) Rviz

Figure 4.4: Example of a scan and its visualization in Rviz

As what happens in many real cases, the direction of the rays corresponding

to an angle of 0 degrees is parallel with the floor plane, but unlike what hap-

pens with the real PIRs, where the vertical field of view grows downwards

and decreases upwards, in the simulated model the angle of the vertical field

of view only increases downwards, since the sensor only rotates clockwise.

This implementation choice is justified by greater simplicity that derives,

and it is completely transparent to the user, which is left to a greater flexi-

bility, setting the parameters, such as a minimum and a maximum angle and

the height of the sensor. Another implementation choice, this time dictated

by the need to improve the data consistency, is the saw-tooth shape of the

sensors movement. Many sensors rotate the laser from the minimum angle

to the maximum angle gradually, and vice versa from the maximum to the

minimum angle always passing through the intermediate angles. This how-

ever does not lead to consistency on the timing level, because each successive

scans of the same angle are performed within a time interval that is not the

same for all the angles. In the simulated sensor once the scan relative to

the maximum angle is performed, the laser is tilted suddenly and moved

back to the position relative to the minimum angle. The beams only cover

a single line-of-sight, leaving the detection area largely uncovered. There-

fore the tilting is necessary, but the number of angles has to be controlled

because to every new position of the sensor corresponds a new dimension in

the matrix (a new array of as many floating point elements as the number of

beams) and operations can slow down the entire execution. Areas between

the beams are called dead zones. In simulation we can easily increase the

number of beams by increasing the resolution, but it is a double-edged sword

because it will increase the rendering job of the rendering engine as well as

the matrices size. The placement of the devices is important to prevent false

alarms, for instance mounting the PIRs in such a way that the PIR cannot

”see” out of a window, in case of a window facing a public sidewalk. Using



a laser rangefinder allows us to avoid this problem, because the window will

stop the laser beam and a person moving on the other side of the glass would

not be ”seen” by the PID, even in the simulation.

For very low velocity movements such as a movement of a hand, the sensi-

tivity reduces sharply with an increase in the distance. Studies demonstrate

that if a detector is used in a room of dimension half the maximum design

distance of the detector, there exist dead points where detection sensitivity

is very low and may give rise to false alarms [25]. Moreover, movements di-

rectly towards or away from the detector may sometimes escape detection as

the PIRD tends to be less sensitive to this type of movement (radial move-

ments), and a single detector may fail to respond in the extended range.

Using a laser rangefinder is sufficient to monitor the occupancy pattern of

the room reliably, especially when it deals with radial movements: object

moving towards or away from the detector are detected easier than the move-

ments perpendicular to the rays.

(a) Scan at time t (b) Scan at time t+1

Figure 4.5: Example of two consecutive scans within the vertical field of view



Chapter 5

Slotted optical switch

Figure 5.1: Slotted optical switch

The slotted optical switch, sometimes known as opto switch or optical switch

(not to be confused with the optical component), is a device comprising a

photoemitter (e.g. LED) and a photodetector (e.g. photodiode) mounted in

a single package so that the photoemitter normally illuminates the photode-

tector, but an opaque object can be inserted in a slot between them to break

the beam. Slotted switches are often used to detect motor speed by placing

a slotted wheel on the motor shaft; as the shaft rotates, it alternately blocks

and unblocks the light path [9]. In Ambient Assisted Living applications

and in particular in the simulated experimental testbed scenarios, optical

switches are used as indicators when a door or hood is open or closed, moni-

toring the state of the doors or the shutters and the open/close events. This

is implemented not only to detect if an elder person left the fridge open,

but can be extended to study the daily activities of people living there in a

non-intrusively way.
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5.1 How the real sensor works

Figure 5.2: Mechanical package information

The slotted optical switches consist of an infrared emitting diode (e.g. LED)

facing a photodetector (e.g. photodiode) in a molded plastic housing. A gap

separates the two, so if something moves within the gap, it blocks the light

path between the LED and the photodetector. A slot in the housing between

the emitter and the detector provides a means of interrupting the signal [7].

5.2 How the simulated sensor works

A typical use for slotted switches is as indicators when a door or hood is

open or closed. When the door is closed, a flag attached on the door frame

drops into the slot and blocks the light.

5.2.1 Design

The simulated model consists of two links and one joint. The links represent

both the emitter and the detector elements (components) connected by a

fixed joint. The following code shows an example:

<s enso r name=’ o p t i c a l s w i t c h ’ type=’ ray ’ always on=’ 1 ’

update rate=’ 1 ’ v i s u a l i z e=’ f a l s e ’>

<ray>

<scan>

<h o r i z o n t a l samples=”1” r e s o l u t i o n=”1”

min angle=”−0” max angle=”0” />

</ scan>

<range min=” 0.001 ” max=” 0 .5 ” />



</ ray>

<plug in name=” a n g e n o p t i c a l s w i t c h ”

f i l ename=” l i b a n g e n o p t i c a l s w i t c h . so ”>

<alwaysOn>t rue</alwaysOn>

<gauss ianNoi se>0</ gauss ianNoi se>

<hokuyoMinIntensity>101</ hokuyoMinIntensity>

<updateRate>1 .0</updateRate>

<topicName>d o o r s t a t e</topicName>

<frameName> l i n k 1</frameName>

</ p lug in>

</ senso r>

The link elements are modelled as thin parallelepipeds and to make it more

real the visual shape is described by a trimesh, scaled of a proper scale. The

collision properties are a bit different to the visual properties of the model.

Since the laser is within the emitter element bounding box, the laser ray that

starts inside the element would hit the bounding box measuring the same

value and in this way nullifying the purpose. The plugin, in order to work

correctly, needs a ray sensor as its parent, and since in Gazebo the sensor

lacks a physical representation, to gain embodiment it has to be incorpo-

rated into the model. The sensor element describes the basic properties of

the visual sensor, such as the name, the type and the frequency at which

the sensor data is generated. Other attributes contribute to characterize

the sensor, like the pose of the sensor optical frame, relative to the sensor

parent reference frame, the horizontal samples, and the number of simulated

rays to generate per complete laser sweep cycle and their resolution. Lastly

the angles of the first and the last range measurement in radians and the

smallest and the largest distances that can be measured by the currently

connected device. One single ray is sufficient to obtain a correct estimate

but in order to have a precise measurement the resolution of the ray has to

be quite high since the distances to measure are small and the step size may

become bigger than the threshold. The choice of the maximum and mini-

mum range is quite flexible, on condition that the second is smaller than the

threshold. The angles have to be set to 0 to make the laser perpendicular to

the link. The laser is attached on a link and is fixed. That means that it is

sufficient to move only the link and the laser will orientate according to it.

In simulation, large sensors will slow down overall performance. Depending

on update rates required, it is once again recommended to keep the ray reso-

lution and update rates as low as possible. The plugin itself is characterized



by two parameters: the name of the library generated from the compiled

source file and the update rate at which the plugin is throttled, that should

be the same of the sensor. For simplicity and bigger precision the gaussian

noise is removed (set to zero). Another important attribute, common to all

the sensor plugins, is the name of the topic the sensor will send data on.

(a) Sketch-up format (b) Collada file

Figure 5.3: Three-dimensional model of the optical switch

5.2.2 Implementation

The optical switches are used in the Ängen testbed apartment to monitor

the state of many actuators as doors and shutters. The implementation of

these sensors is quite simple and it is based on a ray sensor (once again a

laser range-finder as for the motion detector). The key concept is to have a

ray between two links situated on the top part of the door frame, and a small

card on the top of the door or the shutter. When the door is closed, the

small card is situated in between the two links and the ray is interrupted. In

that way the range value measured by the range finder is minor of a chosen

threshold and the closing event is triggered. In order to do that we have

to get the laser data and retrieve the range values (one in this case). The

message the ray sensor sends out in the interface is the same showed before

for the motion detector:

std msgs/Header header

float32 angle min

float32 angle max

float32 angle increment

float32 time increment

float32 scan time

float32 range min

float32 range max



float32[] ranges

float32[] intensities

The field we are interested in is ranges, an array of floats that specifies

the distance of the first object on the ray path that breaks the ray, while

the message published by the plugin is:

std msgs/Header header

bool open

where header contains the current time stamp and open contains the boolean

value that specifies the door state, whether the door is open(true) or closed(false).

An example of the output:

header:

seq: 0

stamp:

secs: 306

nsecs: 121000000

frame id: /link1

open: True

A difference with the pir sensor seen previously is that the optical switch

is memoryless. While the range values of the pir must be compared with

the previous ones stored in the matrix, the switch range value is compared

with a fixed threshold every time, so that its operation is not affected by

the history of the preceding data.

5.3 Example

Optical switches have initially been tested in a empty world, and only at a

later stage they have been integrated with the environment. To start the

simulation two ways are available, depending if the world is already started,

it is possible to spawn the single sensor by command line or through a

Gazebo launch file.

Once the sensor is spawned, it will not be active from the beginning. Only

when some node will start to listen to the topic subscribed by the sensor,

the latter will start the execution. This choice is driven by the search for

optimization of the computational resources and the try of lowering as much

as possible the impact that every sensor has on the simulator performances.



As explained in the following ”Benchmarks” section, the use of some pa-

rameters rather than others and the addition of a sensor will cause a severe

speed reduction, sometimes making the simulation even slower than the real

time. This plugin implementation assume that every door or shutter has a

small flag on it to interrupt the laser ray. Although at first glance it might

seem more immediate to utilize more than one ray in order to have a more

robust detection, the use of a single ray has proved to be more effective,

even as a matter of consistence: if the flag that interrupts the light path

only partially breaks the beams stream, interrupting only some of the rays,

it could leave the device halfway on, causing an ambiguous output, and this

requires a computation overhead for the disambiguation.

(a) (b)

Figure 5.4: The sensor spawned in the simulated environment on the door frame. From

the figure is also possible to see clearly the card (the green rectangle) put on the top

of the door used to break the ray.



Chapter 6

Pressure sensor

Figure 6.1: Interlink Electronics FSR-402 Force Sensing Resistor.

Pressure sensors are used for control and monitoring in thousands of ev-

eryday applications, providing robust solutions for the appliance, medical,

consumer, industrial and automotive markets. The measurement of interest

is pressure, stated in terms of force per unit area. A pressure sensor usu-

ally acts as a transducer, generating a signal as a function of the pressure

imposed. Pressure sensors can vary drastically in technology, design, per-

formance, application suitability and cost. The modern pressure sensors are

ultra-small and thin, made of silicon, and provide extremely high resolution

measurements thanks to the use of the innovative MEMS technology. A

conservative estimate would be that there may be over 50 technologies and

at least 300 companies making pressure sensors worldwide [8]. In Ambient

Assisted Living pressure sensors are the core of the smart home ecology

and an important tool for a daily activity recognition system for elder peo-

ple. The proposed system in the Ängen facility installs pressure sensor to

furnitures and floors, to monitor the elder people living there, react in the

emergency cases or simply recognize daily activities based on the object us-

age information. In this case the smart environment can provide a warning

sign for unhealthy cases such as skipping meals. For example, to recognize

a meal activity, pressure sensors can be installed to each table or chair.
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For sleep recognition we can install pressure sensors to a bed in order to

capture a lying posture. Pressure sensors can be also installed to sofa and

toilet bowl to recognize rest and excretion activities, respectively. Eldercare

has been studied for long time and many previous works adopted systems

based on RFID or CCTV, where cameras were installed in home and the

captured images analyzed. Pressure sensors come forward as a good com-

promise, resolving the problems of wearing a big and heavy reader in case of

RFID-based method and invasion of privacy in case of CCTV-based method,

obtaining objects usage information noninvasively.

6.1 How the real sensor works

As a pressure sensor we use a force sensing resistor (FSR), as it is shown in

Figure 6.1. FSRs are sensors that detect physical pressure, squeezing and

weight. They are simple to use and low cost. Force-sensing resistors are two-

wire devices, consisting of a robust piezoresistive conductive polymer thick

film, with a variable resistance as a function of applied pressure to its surface.

In this sense, the term force-sensitive is misleading: a more appropriate one

would be pressure-sensitive, since the sensor’s output is dependent on the

area on the sensor’s surface to which force is applied. These devices are

fabricated with elastic material in four layers, consisting of:

• A layer of electrically insulating plastic;

• An active area consisting of a pattern of conductors, which is connected

to the leads on the tail to be charged with an electrical voltage;

• A plastic spacer, which includes an opening aligned with the active

area, as well as an air vent through the tail;

• A flexible substrate coated with a thick polymer conductive film, aligned

with the active area. This polymer is very often replaced by a layer of

FSR ink.



Figure 6.2: FSR parts description

When external force is applied to the sensor, the resistive element is de-

formed against the substrate. Air from the spacer opening is pushed through

the air vent in the tail, and the conductive material on the substrate comes

into contact with parts of the active area. The more of the active area that

touches the conductive element, the lower the resistance [1]. When there

is no pressure, the sensor looks like an infinite resistor (open circuit), as

the pressure increases, the resistance goes down (the resistance is inversely

proportional to the force applied), as shown in Figure 6.3.

Figure 6.3: FSR characteristic curve. Note that the graph isn’t really linear but it is a

log/log graph.

Force-sensing resistors are normally supplied as a polymer sheet or ink that

can be applied by screen printing. The sensing film consists of both elec-

trically conducting and non-conducting particles suspended in matrix. The

particles are sub-micrometer sizes, and are formulated to reduce the tem-

perature dependence, improve mechanical properties and increase surface

durability. Applying a force to the surface of a the sensing film causes parti-



cles to touch the conducting electrodes, changing the resistance of the film.

As with all resistive based sensors, force-sensing resistors require a relatively

simple interface and can operate satisfactorily in moderately hostile environ-

ments [13]. Compared to other force sensors, the advantages of FSRs are

their size (with a thickness typically less than 0.5 mm), low cost and good

shock resistance. However, FSRs will be damaged if pressure is applied for

a longer time period (hours). A disadvantage is their low precision: mea-

surement results may differ 10% and more.

6.2 How the simulated sensor works

A pressure sensor usually acts as a transducer, it generates a signal as a

function of the pressure imposed, expressed as a force per unit area. The

sensor used in the implementation however is a contact sensor, a sensor that

detects collisions between two object and reports the location of the contact

associated forces. The force in question is the ground reaction force. In

physics the ground reaction force is the force exerted by the ground on a

body in contact with it. For example, a person standing motionless on the

ground exerts a contact force on it (equal to the person’s weight) and at

the same time an equal and opposite ground reaction force is exerted by the

ground on the person. What the sensor does is to retrieve the component

of the total ground reaction force on the z axis exerting on it.

6.2.1 Design

The model of the pressure sensor used in simulation is very simple. It

consists in fact of only one link, with no joints. The code below shows an

example of the plugin:

<s enso r name=’ p r e s s u r e s e n s o r ’ type=’ contact ’ a lways on=’ 1 ’

update rate=’ 1 ’ v i s u a l i z e=’ 0 ’>

<contact>

<c o l l i s i o n name=” l ink geom ”>l ink geom</ c o l l i s i o n>

</ contact>

<plug in name=” a n g e n p r e s s u r e s e n s o r ”

f i l ename=” l i b c o n t a c t . so ”>

<alwaysOn>t rue</alwaysOn>

<updateRate>1 .0</updateRate>

<bumperTopicName>pre s su r e</bumperTopicName>

<referenceFrameName> f l o o r</referenceFrameName>

<frameName> l i n k</frameName>



</ p lug in>

</ senso r>

The collision element is a thin box but with a huge mass. This value is so

high because the physics engine of the simulator accentuates the collisions

between the objects and for some reasons a link with a small amount of mass

might go unstable and consequently explode. A solution may be reducing

the physics solver timestep, but the expedient of raising the mass of the

sensor allowed to keep the physics engine unchanged. The visual element is

instead once again a trimesh, opportunely scaled.

The plugin, in order to work correctly, needs a contact sensor as its parent.

The contact sensor is attached to the link within the box model. It will

report collisions between the box collision object and any other object in

the world. One important parameter is the collision name of the contact

tag. Since multiple instances of collision tags can exist for the same link

(in that case the union of the geometry they define will form the collision

representation of the link), it is necessary to specify which is the correct

collision object we need to associate the contact sensor to. Another im-

portant parameter is the reference frame name. This parameter is required

in order to retrieve the correct ground reaction force. Since the pressure

sensor is implemented as a contact sensor, all the forces exerting on it will

be measured. The reference frame name parameter will tell the controller

to measure only the forces exerting on the sensor from that frame (e.g the

floor) exclusively.

6.2.2 Implementation

As said before, the sensor retrieves the component of the total ground re-

action force on the z axis exerting on it. Among all the forces retrieved

by the contact sensor only the forces exerting on the reference frame are

considered. The value of the pressure is calculated summing up all the z-

axis components of the forces, and subtracting the opposite force due to the

sensor weight.

The message published by the contact sensor contains a set of states:

Header header

gazebo msgs/ContactState[] states

where every state is composed by the following information:



string info

string collision1 name

string collision2 name

geometry msgs/Wrench[] wrenches

geometry msgs/Wrench total wrench

geometry msgs/Vector3[] contact positions

geometry msgs/Vector3[] contact normals

float64[] depths

The information we are insterested in is contained in the field total wrench,

that stores the sum of both the forces and torques in every degree of free-

dom.

An example of the output:

header:

seq: 0

stamp:

secs: 829

nsecs: 269000000

frame id: /world

data: 0.0434107481423

Figure 6.4: Pressure sensor installed underneath a sofa



6.3 Example

In order to test the pressure sensor system, we install pressure sensors to

furniture and floors of the virtual home. Even though the real sensors are

fairly low cost and easy to use, they are rarely accurate. Therefore only

ranges of response can be expected, and even if they can detect weight,

they’re a bad choice for detecting exactly how many kilograms of weight are

on them. The initial objective was to effectively detect only the presence or

the absence of a person on a chair or a sofa and their accuracy indicated a

performance of the sensor ON/OFF states correctness, when an old person

gave a force to furniture or floors during sitting and lying activities. Subse-

quently it is thought also to the recognition of objects, linking each of them

to a weight and comparing the force exerted by the object on the sensor.

In simulation this is possible by simply observing the contacts detected by

the bumper and reading in the message published by the bumper sensor

the name of the collision box that collides with our device’s collision box.

With a proper nomenclature of the objects their recognition is immediate.

Especially with the pressure sensors the physical engine simulator is very

realistic: for instance if the sensor is placed under the leg of a table and an

object is moved on the table, the weight detected by the sensor varies ac-

cording to the position, it will be greater as it is near the corner of the table

corresponding to the foot beneath which is the sensor, smaller as it is away

from it. Even putting objects on top of others, the result is the same, as the

weight is exerted transitively on the foot of the table. Another disadvantage

is that the information about the name of the object on top is lost, as the

bumper only detects the collision with the object that actually touches it,

even though the total weight is still the sum of all the ‘stacked’ objects.

By setting the weight of the human model appropriately and retrieving the

contact positions returned by the sensor, even a different position or posture

and therefore a different activity executed by the user can be detected in a

consistent way from the pressure sensor.



(a)

(b)

(c)

Figure 6.5: Example of different scenarios: a human seated on a chair (a), lying on the

bed (b) and on the toilet (c)



Chapter 7

Light sensor

Figure 7.1: Light Dependent Resistor (LDR)

Light sensing devices are used in almost any branch of industry for control,

safety and amusement. From cell phones where they enable automatic con-

trol of display backlight brightness to automobiles where the use of LCDs

is increasing for navigation, entertainment and comfort systems as well as

control monitoring and dimming mirrors. In Ambient Assisted Living light

sensors are used for automatic room light detection and control, in order to

lower the home power consumption and save energy. Sometimes in fact, the

light intensity from outside is sufficient and we don‘t need to turn on any

light, but often the user leaves the home forgetting to turn off the light and

this causes a waste of energy. In the testbed facility apartment, light sen-

sors are installed on every lamp. By using the PIR sensor seen before, the

light control system can detect if a human body enters the detection area or

not. In case there is no human body present, all controlled lights are turned

off. If there is, the sensor detects the light intensity under the environment

and maintains sufficient light by controlling the number of lights. Today

designers have more technology choices for ambient light sensors including

photoelectric cells, photodiodes, phototransistors, and photo ICs. In the real

Ängen facility, light sensors use a photoresistor to detect the light intensity

of the environment. A photoresistor or light dependent resistor (LDR) is
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a resistor whose resistance decreases with increasing incident light inten-

sity; in other words, it exhibits photoconductivity. There are many types of

photoresistors, with different specifications and models. Photoresistors can

be coated with or packaged in different materials that vary the resistance,

depending on the use. Many of them are radiometric and characterize the

distribution of the radiation’s power in space, many are photometric and

characterize the light’s interaction with the human eye. Some of them are

analog, some others are digital. Some devices contain both infrared and full

spectrum diodes, allowing to separately measure infrared, full-spectrum or

human-visible light [28]. The SI unit of illuminance and luminous emittance

is called lux, which measures luminous flux per unit area. It is equal to one

lumen per square meter and it is used in photometry as a measure of the

intensity, as perceived by the human eye, of light that hits or passes through

a surface.

7.1 How the real sensor works

A photoresistor is made of a high resistance semiconductor. The resistance

of the sensor decreases when the light intensity of the environment increases.

If light falling on the device is of high enough frequency, photons absorbed

by the semiconductor give bound electrons enough energy to jump into the

conduction band. The free electron (and its hole partner) conduct electricity,

thereby lowering resistance. The amount of light detected can be read as

an analog value or set to trigger a digital signal when a threshold is reached

[21].

Figure 7.2: Sensor description



7.2 How the simulated sensor works

The aim of the simulation is to abstract the physical architecture and sim-

plify the operating principle. Previous attempts tried to obtain the material

properties of the objects spawned into the world, trying to retrieve the spec-

ular and reflective components of the light incident on them, or access the

lights themselves to deduce the contribution of each of them, but that was

not possible at run-time because the simulator had no interfaces of that

kind exposed. One idea was to access the main camera and look for some

parameter that could refer to the luminosity of the entire scene, but that

feature is implemented only within the stand-alone version of Gazebo. One

solution seemed to be dealing directly with the rendering engine, since it

needs the light information to draw the scene, but once again, it was not

possible to act in such a low level cause the simulator developers built the

rendering engine strongly decoupled from the simulator itself. The solution

implemented takes the Lego NTX Light Sensor [19] as its starting point.

This device enables to distinguish not only between light and dark, but can

only determine the light intensity of different colors.

7.2.1 Design

As already mentioned, one of the advantages of the simulation is the abstrac-

tion of all the physical and architectural details. The model of the simulated

light sensor implemented in the environment is composed of a single link,

with cylindric shape, and no joints. The camera sensor is required as the

parent of the plugin. In order to work properly the image format has to

be set to RBG (R8G8B8). For simplicity the image size is reduced to one

pixel only. The light spread out uniformly on the walls of the simulated

apartment model so the result would be the same even using a bigger image

size. Another essential parameter is the farClip parameter. It is important

that the ray of the camera is able to reach the wall to sample the pixel

values. Introducing a distance that is not big enough will cause an incorrect

measurement. The code below shows an example of the plugin:

<s enso r name=’ l i g h t s e n s o r ’ type=’ camera ’ always on=’ 1 ’

update rate=’ 1 ’ v i s u a l i z e=’ f a l s e ’>

<camera>

<h o r i z o n t a l f o v ang le=’ 0 .02 ’ />

<image width=’ 1 ’ he ight=’ 1 ’ format=’R8G8B8 ’ />

<c l i p near=’ 0 .5 ’ f a r=’ 5 ’ />

</camera>



<plug in name=” a n g e n l i g h t s e n s o r ”

f i l ename=” l i b a n g e n l i g h t s e n s o r . so ”>

<alwaysOn>t rue</alwaysOn>

<imageTopicName>image</imageTopicName>

<luminosityTopicName>l uminos i ty</ luminosityTopicName>

<updateRate>1 .0</updateRate>

<cameraName> l i g h t s e n s o r</cameraName>

<frameName> l i n k</frameName>

</ p lug in>

</ senso r>

7.2.2 Implementation

Photosensors or photodetectors are sensors of light or other electromagnetic

energy. The operating principle is similar to the principle used by a particu-

lar photosensor called image sensor, a device that converts an optical image

into an electronic signal. What the sensor does is to use a camera to retrieve

the RGB values of four pixels, each one taken by each wall of a room. This

method works well because the color of the walls is white. This allows the

pixels to vary between absolute white (255) and absolute black (0), while

other colors spaced in a smaller range, making the calculation harder and

less precise. Once the values are retrieved, the luminance is calculated. Lu-

minance is a photometric measure of the luminous intensity per unit area of

light travelling in a given direction. For RGB color spaces luminance can be

calculated as the linear combination of the standard chromaticities of red,

green, and blue with the formula:

Y = 0.2126 ∗R + 0.7152 ∗G + 0.0722 ∗B

Since a camera sensor is used, we will benefit from the camera plugin al-

ready implemented in ROS to retrieve the image, one pixel in our case. The

message published by the camera controller is the following:

Header header

uint32 height

uint32 width

string encoding

uint8 is bigendian

uint32 step

uint8[] data



The only piece of information we are interested in is stored in the array

of integers that represents the actual matrix data. Since we have only one

pixel and the image is in the RGB format, the array will contain three integer

values, that specify respectively the red, green and blue channel components.

Once these values are extracted the luminance is calculated with the formula

seen before and published through the LightSens.msg message:

std msgs/Header header

float32 data

where data represents the value averaged out from the four pixel values

and reproduced on a percentage scale. An example of the output:

header:

seq: 0

stamp:

secs: 5632

nsecs: 333000000

frame id: /link1

data: 11.37254905723

7.3 Example

The addition of furniture in the empty world for the simulation of the light

sensors does not affect their operating principle, unless the furniture are

placed in between the camera and the walls. As explained before, the cam-

era retrieves the pixels of the walls since they are white and this allows to

calculate a consistent value. To avoid this problem and not to limit the

flexibility in placing the furniture, the sensors are positioned high up in the

middle of the rooms. At the beginning it was thought to point the camera

on the floor, but its colour does not vary uniformly, remaining almost stable

to the same RGB values. Even by positioning the sensor to make it pointing

the light does not solve the issue and the values are not coherent since lights

in Gazebo are not conceived as visual objects out-and-out. To retrieve the

wall pixel colour has been proved to be the best option. The choice to use

more than one pixel is due to the coherence of the model: by pointing the

camera on a single wall, the sensor would retrieve an high level of luminos-

ity in case a directional light is pointed on it, even if the entire room would

be not as lighten. By averaging the contribution of all the four walls the

obtained value is instead consistent. Using four cameras may be compu-



tationally expensive and overburden the simulation, so a single camera is

rotated four times. Finally the sensor is able to retrieve a wide spectrum,

with a range that goes from 0.39%, obtained deleting any light from the

world, to 99%, obtained placing two lights in the middle of the room.

Figure 7.3: The four pixels of the walls sampled in the kitchen by the light sensor.



Chapter 8

Evaluation

Not all the simulations are the same. A criteria to establish which simula-

tion is more effective is without a doubt the evaluation of parameters like

computational load, CPU and memory occupancy, speed and reproducibil-

ity. A model that requires lots of computational resources and fill up the

CPU, slowing the entire simulation, should be discarded.

8.1 Computational efficiency

A previous simplistic approach implemented the sensors decoupling the

model from the plugin, moving the logic to an external node. This caused

a sensible deterioration of the performances, and a big slowing down of the

simulation time. Every single node executed requires in average 10% of the

CPU and it produces overhead on the transport layer, due to serialization

and deserializazion of the messages used for communication. Considering

that the simulator requires up to 60% of the CPU, it may be irrelevant for a

test with only few sensors but it becomes inconceivable if we want to simu-

late a real environments with more than ten sensors, especially if we add the

presence of robots. Using plugins is convenient but still many improvements

can be obtained with a proper combination of parameter.

One solution is to make the model as simple as possible. Removing for

instance the collision component when it is not necessary can reduce compu-

tation time. Another approach can be to downsample the sensors as much

as possible or to downsample the physics. Even if it is required to increase

the number of quick step iterations per physics loop, decreasing the update

rate is still an advantage because collision checks are not executed so often.

Obviously, this can cause problems in physics quality, and objects/robots

can ”explode”. It is necessary to tune controller gains for a lower update
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rate. An extreme solution may be to reduce CPU load by disabling the

simulator GUI. A large performance hit to the simulator is laser scan gen-

eration. The laser data is generated with ODE collision checking, and a

very noticeable difference can be seen in speed when subscribing to the laser

data. For the motion detector and the optical switches, tests are executed

measuring the impact of the number of rays that composed the beam. The

result, shown in Figure 8.1, reveals that reducing the number of rays from

640 to 160 for each laser, the simulation is speeded up of a factor of 10X.

Another important aspect visible from the plot is that keeping 160 rays is

not so much more heavy than having 80 rays, and we are able to maintain

a high level of accuracy, up to 90%.
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Figure 8.1: Impact on the simulation speed of the number of rays composing the laser

beam.

Figure 8.2 shows instead the impact of the number of motion detectors

added to the environment. Every time we add a new sensor, the simulation

is slowed up of a factor of 5X, a value rather acceptable.

Camera rendering is also expensive. Since we have only one-pixel image to

render, the rendering is not expensive. Furthermore the sensors are imple-

mented in a way that if there are no nodes subscribing to the camera topic,

the data will not be generated. Another choice imposed by performance

requirements has been to not use point clouds. The cost to tilt the laser and

execute an arbitrary number of scans is lesser than the cost to elaborate

a three-dimensional scan and the quality of the operative principle is not

subjected to a worsening. For that concerns optical switches experiments

shown that the ray resolution does not affect performance, since the beam

is composed by a single ray. The impact on performance of light sensors

is tested varying the distance of the far plane. Increasing for example the
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Figure 8.2: Impact on the simulation speed of the number of PIRs.

range from 10 meters to 25, we assist to a slow down of 1-2%. It is a com-

promise if we want to measure for instance the light in a wide surrounding

like a spacious living room or a warehouse.

8.2 Integrated System

All the experiments have been done on a Intel(R) Core(TM) i5-2435M CPU

@ 2.40GHz machine. The whole ecology of sensors implemented in the

test environment is composed by 22 sensors: 7 motion detectors, 7 optical

switches, 7 light sensors and 1 pressure sensor.
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Figure 8.3: Simulation performances with all the sensors active.

As shown in Figure 8.3, integrating the environment with the sensors, the

simulation time is slowed down from a factor of 70X to a factor of 10X. The



biggest contribution to the computational load is given by the light sensor,

as it makes use of a camera, and by the motion detector, as it processes

relatively wide matrices of data every second.



Chapter 9

Portability

As almost all the open source (and relatively recent) software, supported

by a very active and fertile community of users and developers, ROS and

consequently Gazebo have been subject to changes, both bugfixes and im-

provements, that led to version updates, often very close to each other. Now

Gazebo is a stand alone project and users are highly discouraged from using

the documentation and tutorials for Gazebo on the ROS wiki page. Below

are listed the main changes.

9.1 From Electric to Fuerte

Previous versions of Gazebo (including Electric) utilized controllers. These

behaved in much the same way as plugins, but were statically compiled

into Gazebo. Plugins are more flexible, and allow users to pick and choose

what functionality to include in their simulations. Furthermore to update

from gazebo’s pre-1.0.0 release to the latest revision a plugin conversion

has been necessary. The changelist highlights of that API update concern

files including, class inheritance (no longer a controller but a specific type,

SensorPlugin), constructors, loading and initialization functions, parameter

parsing and registration macros.

9.2 Troubleshooting in Fuerte

With Fuerte there have been introduced some bugfixes concerning some

sensor implementations, from cameras to ray sensors, up to the contact

bumper. While the first improvements did not influence the work since they

dealt with z-buffering or image rendering of point clouds, which we were

not interested in, the bug that came together with the contact sensor gave
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us a hard time. Until the bumper was spawned into the world, everything

worked as expected and the plugin was loaded, but when we tried to listen

to the topic an error popped up on the console saying that the sensor did not

have any collisions. The problem was that the first of two piped functions

returned only the name of the collision object/geometry while the second

one used the scoped name to fill the contacts map. The solution was to

replace a method call to retrieve the scoped name this time, modifying a

single line of code. What made things difficult was to modify the source file

that could not be accessed on the online Gazebo repository. The only way

to apply the patch was to create a stack overlay with the latest tag which

contained the bugfix.

9.3 From Fuerte to Gazebo stand-alone

As mentioned before, Gazebo is now a stand alone project. The previous

version of Gazebo was a monolithic implementation where the user accessed

to sensors and controllers through a shared memory interface. These imple-

mentation caused issues in relation to the speed and flexibility of the simu-

lator. In order to address the requirements and resolve the current issues,

a new distributed architecture was proposed. Gazebo has been broken into

libraries for physics simulation, rendering, user interface, communication,

and sensor generation, providing three different processes that communi-

cate using a combination of google::protobufs and sockets. The stand alone

version also defines a new format to load and save information about a sim-

ulation world or model, called Simulation Description Format (SDF). The

standardized URDF format used in ROS is lacking many features and has

not been updated to deal with the evolving needs of robotics. URDF can

only specify the kinematic and dynamic properties of a single robot in isola-

tion but it cannot specify the pose of the robot itself within a world, and it

is also not a universal description format since it cannot specify joint loops

(parallel linkages), and it lacks friction and other properties. Additionally,

it cannot specify things that are not robots, such as lights, heightmaps, etc.

On the implementation side, the URDF syntax breaks proper formatting

with heavy use of XML attributes, which in turn makes URDF more in-

flexible. There is also no mechanism for backward compatibility. On the

other hand, SDF is a complete description for everything from the world

level down to the robot level. It is scalable, and makes it easy to add and

modify elements. The SDF format is itself described using XML, which fa-

cilitates a simple upgrade tool to migrate old versions to new versions. It

is also easily extensible and self-descriptive. Many other improvements are



done concerning speed (decoupling physics, sensor generation, and gui into

separate processes which can be run independently), modularity (the user

can pick and choose which processes to run and where to run them), and

portability (the user can run complete simulation on a cluster and run the

graphic interface on local machine). Other important features can be listed

below:

• access to multiple physics engines including ODE and Bullet

• direct control to all aspects of the simulation engine including the

phyics engine, graphics libraries, and sensor generation

• possibility to run Gazebo on remote servers

• new tool to construct a 3D model of a building within the Gazebo UI,

without writing a line of code

• redesigned graphical interface that provides access to simulation prop-

erties, modification of models, and drag-and-drop insertion of models

• new sensors (e.g. RFID) and robots provided

• human simulation: replay of human motion capture data in a running

simulation.





Chapter 10

Conclusions

The population of elderly people and individuals with disabilities is in con-

stant need of continuing research in order to improve their independent life

and their possibility to age in place. With the smart home technology the

needs for those people can be met and relive the workload from family and

health providers. However successful integration of supporting intelligent

systems into everyday life depends on end users acceptance of the technol-

ogy and how it affects their daily life. A good compromise of ubiquity,

reliability and non-intrusiveness is established by the ambient sensors. By

rapid prototyping these sensors a significant reduction in efforts and com-

plexity is obtained, and using proper development and simulation tools such

as the Robot Operating System (ROS) and its 3D simulator Gazebo shown

before allows to maintain a high degree of flexibility and possibilities for

reuse.

10.1 Achieved objectives and future work

The implemented plugin allows to create the ambient sensors with the possi-

bility to set many of the parameters that characterize the real counterparts

and that can be found in almost all the datasheets. Every sensor is a stand-

alone device that can be spawned anywhere in the world and moved as the

user prefers. Due to its modular architecture, the entire ecology of sensors

can be easily extended by additional modules to provide other functional-

ities. It is possible to create a launch file and group together the sensors

within the environment to start the simulation together with other actua-

tors or robots, or individually through the command line if the simulation is

already started. The implementation maintains the simulation performance

quite high. The sensors are not active as soon as they are created, even if the
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simulation is running. Only when the topic of the sensor is subscribed by

some other node, it starts to produce data and fill the customized messages

that will be published on its own topic. These sensors can be connected

to some distributed computing system and send the information collected

from the simulated environment to all the actuators and robot present in

the surroundings, in order to perform a proactive action consequently to a

state change or anomalous event.

Future research will be directed towards the implementation of a graphic

interface that allows the user to choose the sensor and set the parameters

in a more intuitive way, in a form of a small separate application. Another

aspect that will be taken in consideration will be the simulation of humans

to allow the investigation of interaction-related issues.
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