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Abstract 

 Learning Bayesian network structure has been an active topic since they were 

introduced, especially when considering their causal interpretation. There have been several 

attempts at guiding the learning process by providing additional knowledge, usually supplied by 

experts. In the recent years, ontologies have gained popularity in terms of publishing domain 

knowledge in a formal, systematic and, above all, machine understandable way. It was to be 

expected for approaches to be developed that combine these two models for representing 

knowledge, made even more obvious when considering their underlying similarity. 

 In this work we will consider using the knowledge present in publicly available 

ontologies, focusing on causal knowledge, and using it to assist the construction of causal 

Bayesian networks. We will consider the needed assumptions to make the process sound and 

propose a structure learning algorithm. After an in-depth analysis of the algorithm we will 

consider its performance on a real-world dataset and compare it to existing approaches. 

We have taken an example from the field of molecular biology because of the amount of 

datasets available, the high quality publicly available ontologies as the Gene Ontology, and the 

interest in using Bayesian networks for modeling gene interaction networks.  

It will be shown that the devised approach is valid one and has many potential directions 

for future extension.  
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Sommario 

 L’apprendimento della struttura di reti Bayesiane è stato un argomento attivo da quando 

esse sono state introdotte, soprattutto se si considera la loro interpretazione causale. Ci sono 

stati diversi tentativi di dirigere il processo di apprendimento fornendo ulteriori conoscenze, di 

solito fornite da esperti. Negli ultimi anni, le ontologie hanno guadagnato popolarità in termini 

di pubblicazione di conoscenza del dominio in modo formale, sistematico e, soprattutto, 

utilizzabile da programmi informatici. Era da aspettarsi che vari approcci che combinano questi 

due modelli per la rappresentazione della conoscenza sarebbero stati sviluppati, e il tutto 

appare ancora più evidente se si considera la loro somiglianza di fondo. 

In questo lavoro considereremo l’utilizzo della conoscenza presente in ontologie  

disponibili pubblicamente, concentrandoci particolarmente alla conoscenza causale, e usandola 

per assistere la costruzione di reti Bayesiane causali. Saranno prese in considerazione le ipotesi 

necessarie per rendere il processo coerente e in seguito proporremo un algoritmo per 

l’apprendimento di tali strutture. Dopo l'analisi approfondita dell'algoritmo vedremo le sue 

prestazioni su un set di dati preso dal mondo reale e confrontarlo con approcci esistenti. 

Abbiamo preso un esempio dal settore della bioinformatica a causa della quantità di set 

di dati a disposizione, la disponibilità di ontologie pubblice di alta qualità come la Gene 

Ontology, e l'interesse elevato per l'utilizzo di reti Bayesiane per la modellazione di reti di 

interazioni geniche. 

Sarà mostrato che l'approccio messo a punto è valido e offre varie direzioni da 

considerare per una futura estensione.  
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1 Introduction 

1.1 Motivation 

 The popularity of Bayesian networks for representing uncertain knowledge, and 

ontologies for storing machine readable and structured knowledge has made people consider 

combined approaches. The main motivation to consider such an approach is made obvious 

when realizing the high similarity of their underlying structures. This similarity allows for 

knowledge to be transferred both ways, and thus two main approaches have been considered. 

One line of thought tries to incorporate uncertainty into ontologies, while the other wants to 

exploit the knowledge present in them to guide the construction of the Bayesian network 

structure. Our approach will follow the latter one. Moreover, we will consider our Bayesian 

network to have a causal interpretation and will be interested solely in its structure, 

disregarding the form of the causal relations. 

 General interest in the causal interpretation of the Bayesian networks is due to the 

stability of its relations. Once we know there exist a causal relation between two variables we 

know it to be an objective and physical constraint in our world. This comes at a price, the task of 

finding and justifying such a relation has proven to be quite non-trivial, especially when the goal 

is to learn them from offline data. In that case, even under reasonable assumptions, which may 

not hold in general, the process is driven by covariation and does not give us the guarantee of 

causality.  

 On the other hand we can expect ontologies to comprise in themselves among others, 

also causal knowledge. This is exactly the knowledge we want to exploit and for which we 

believe that reflects the true state of the world for the give domain.  

Following the discussion above, we can formulate the main idea behind our approach. 

We will be considering using publicly available domain knowledge in form of ontologies to assist 

the learning process of causal network structures. We say “assist” because the approach is 

based around a standard structure learning algorithm which uses the ontology for tuning up its 
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results. This general outline of the approach leaves enough space for considering different 

points of interaction between the ontology knowledge and the structure learning algorithm.  

1.2 Outline 

This work is structured as follows. In section 2 we will start by introducing Bayesian 

networks, their causal interpretation and looking at both the general idea of structure learning 

and at real approaches and their building blocks. Next, in the same section, we will introduce 

the concept of ontologies and look at how can they be used for learning causal network 

structures. We will continue by looking at the reasoning process for inferring implicit knowledge 

present in the ontology, and focusing on the one needed for our application. Before venturing 

into a deeper analysis of our approach, in section 3, we will take a look at some similar 

approaches taken by various groups. Later, in section 4, we will deal with the analysis of our 

approach with a detailed consideration of each algorithm step and end by considering its 

computational complexity. In section 5, we will look at the performance of our approach on a 

real world example from the molecular biology domain, compare it to other approaches and 

discuss the results. To conclude, in section 6, we are going to consider the open issues and 

possible extensions of this work. 
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2 Background 

2.1 Bayesian networks 

2.1.1 Introduction 

 Bayesian networks, also called belief networks, probabilistic networks, or causal 

networks, were developed to facilitate the task of prediction and abduction1 in artificial 

intelligence systems. In these tasks, it is necessary to find a coherent interpretation of incoming 

observations that is consistent with both the observations and the prior information at hand. 

Mathematically, the task boils down to the computation of       , where   is a set of 

observations and   is a set of variables that are deemed important for prediction or diagnosis. 

The computation involves a straightforward application of the Bayes’ rule [39].  

Formally, Bayesian networks are directed acyclic graphs (DAGs) composed of nodes, 

which correspond to random variables, and directed edges between nodes, which indicate a 

direct influence of the source (parent) node to the target (child) node.  

The set of nodes   and the set of edges   together define the structure of the Bayesian 

network      . The structure of the network specifies the conditional independence 

relationships that hold in the domain being modeled. Thus, inference over a large number of 

variables can be decomposed into a set of local calculations involving a small number of 

variables. Where conditional independence is defined as follows: given variables or sets of 

variables  ,   and   we say that   and   are conditionally independent given   if 

                                                                     

which can be also written as  

                                                                    

Along with the structure, to fully specify a Bayesian network we need to know the 

conditionally probability distributions                   for each random variable   , which 

                                                      
1
 Abduction is a form of logical inference that goes from observation to a hypothesis that accounts for the reliable 

data (observation) and seeks to explain relevant evidence.  
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are the parameters of the model. Whereas the structure defines the parents for each 

variable    the parameters define the degree of influence in a quantitative way.  

Variables can be either discrete or continuous2. In the case of discrete variables for each 

variable    and its parents         we can represent its distribution as a conditional probability 

table (CPT). If we take         to be the number of possible values of variables         

respectively, the CPT for variable    will have ∏   
 
    entries. This representation can describe 

any discrete conditional distribution, but having the downside that the number of free 

parameters is exponential in the number of parents.  

For continuous variables, unlike the case of discrete variables, there is no representation 

that can represent all possible densities. A natural choice for multivariate continuous 

distributions is to use Gaussian distributions in the form of linear Gaussian conditional densities, 

according to which the conditional density for    given its parents is: 

                 (   ∑     
 

   )                                  

Thus,    is normally distributed around a mean that depends linearly on the values of its 

parents, and a variance independent of the parents’ values. If all the variables have a linear 

Gaussian distribution the joint distribution is a multivariate Gaussian [16].  

Markov equivalence 

 The notion of Markov equivalence will be needed once we start talking about structure 

learning algorithms, for which we will need the notion of equivalence classes. 

 When considering conditional independences, represented in the network structure by 

means of directed edges, we are not interested in the edge orientation. The graphs     and 

    both imply the same set of conditional independencies. Therefore, more than one graph 

can imply the exact same set of independencies even though their structures differ in the 

                                                      
2
 In this work only networks having all variables of the same kind will be considered. 
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orientation of some edges. We say for such graphs to be Markov equivalent and the set of all 

equivalent graphs forms an equivalence class. The Markov equivalence is formally defined in the 

following theorem. 

Theorem: Two DAGs are Markov equivalent if and only if they have the same underlying 

undirected graph and the same v-structures (i.e., converging directed edges into the same 

nodes, such that      , and there is no edge between   and  ). [16] 

An equivalence class can be uniquely represented by a partially directed acyclic graph 

(PDAG), where a directed edge means that all the graphs in the class contain it. On the other 

hand an undirected edge denotes that graphs in the class disagree on its directionality.  

d-separation 

We are going to introduce the concept of d-separation since we are going to need it in a 

later section, when considering the structure learning algorithm. The intuition behind the 

concept is simple and can best be recognized if we attribute causal meaning to the arrows in the 

graph. In causal chains       and causal forks      , the   and   variables are 

marginally independent but become dependent once we condition on the   variable. 

Figuratively, conditioning on    appears to “block” the flow of information along the path, since 

learning about   has no effect on the probability of   given  . 

Inverted forks      , representing two causes having a common effect, act the 

opposite way; if the   and   variables are marginally independent, they will become dependent 

once we condition on the   variable or any of its descendants. 

Formally, we write: 

Definition: A path   is said to be d-separated (or blocked) by a set of nodes   if and only 

if: 

1.   contains a chain       or a fork       such that the middle node z is in   or, 

2.   contains an inverted fork (or collider)       such that the middle node z is not in   

and such that no descendant of   is in  . 
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A set   is said to d-separate   from   if and only if   blocks every path from a node in   to a 

node in  . 

2.1.2 Causality 

 A long tradition in psychology and philosophy has investigated the principles of causal 

understanding. We understand causation to be a relation between events in which the presence 

of some events causes the presence of others [20].  We assume causation to be a causal binary 

relation with the properties of being transitive, irreflexive, and asymmetric. That is: 

1. if A is a cause of B and B is a cause of C, then A is also a cause of C,  

2. an event A cannot cause itself, and  

3. if A is a cause of B then B is not a cause of A. 

Relative to the set of events causation can be direct or indirect. When we have two events of 

which one is the immediate cause of the other we say causation is direct. On the other hand 

when there is a chain of causally connected events for which A is the immediate cause and C the 

immediate effect then A and C are said to be in an indirect causal relationship. In such a 

relationship once it is known that an event has happened it screens off the events that are its 

direct and indirect causes from its direct and indirect effects to which we refer as the causal 

Markov assumption. By means of causal relationships we can construct a causal network 

representing some causal process in the world [39]. 

If willing to accept the causal Markov assumption we can interpret causal networks as 

Bayesian networks which are usually regarded as causal Bayesian networks (CBNs). When the 

assumption holds, the causal network satisfies the Markov independencies of the corresponding 

Bayesian network. One of the main differences between them is a stricter interpretation on the 

meaning of edges for the causal network: direct causal relationships, with parent nodes being 

causes, and child nodes effects. There is also a different interpretation of the conditional 

distributions which get interpreted as functional relationships between variables.  

Moving from a probabilistic model to a causal one we get a model that is much more 

informative. While the joint distribution tells us how probable events are and how probabilities 
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with subsequent observations change, a causal model also tells us how these probabilities 

would change as a result of external interventions. By means of interventions it is possible to 

test whether variable   causally influences variable  . To do so we compute the marginal 

distribution of   under the action        , namely      3, for all values   of   and test 

whether that distribution is sensitive to  . This understanding of causal influence permits us to 

see precisely why, and in what way, causal relationships are more “stable” than probabilistic 

ones. The stability comes from the fact that causal relationships are ontological, describing 

objective, physical constraints in our world, whereas probabilistic relationships are epistemic, 

reflecting what we know or believe about the world. Therefore, causal relationships should 

remain unaltered as long as the environment remains unchanged. We can see this in the 

following example [39].  

The simple Bayesian network shown in Figure 1 describes relationships among the 

season of the year, whether rain falls, whether the sprinkler is on, whether the pavement would 

get wet, and whether the pavement would be slippery. All the variables are discrete; season 

having four values, while all the others are binary. Now let us consider two relationships: 

1. a causal one, “Turning the sprinkler on would not affect the rain”, 

2. and the probabilistic counterpart, “The state of the sprinkler is independent of the 

state of the rain”. 

By looking at Figure 1 we can see two ways in which the second relationship would change 

while the first one would remain unaffected. Firstly rain and sprinkler are conditionally 

independent only when season is known4, which makes the relationship 2) change from false to 

true. The same relationship changes from true to false once the variable wet is observed 

through the explaining away effect. On the other hand relationship 1) remains true regardless 

of what observations we make on the other variables. In fact it will remain invariant to changes 

                                                      
3
       denotes the distribution resulting from the intervention         that sets a subset   of variables to 

constants  . 
4
                                                                             – if we observe that is 

raining there is a greater probability the season is a rainy one which in turn makes it less likely for the sprinkler to 
be on. 
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in all mechanisms shown in this causal graph and therefore we can see it exhibits greater 

robustness [39]. 

 

Figure 1 – A simple causal network 

Another consideration we should make is that it is understood that independence 

assumption carried by the DAG does not necessarily imply causation. On the other hand the 

stability of causal relationships mentioned above is the reason for the ubiquity of DAG models in 

AI applications. Therefore, probabilistic relationships may be helpful in hypothesizing initial 

causal structures from uncontrolled observations, but once the acquired knowledge is cast in 

causal structures the probabilistic interpretation tends to be forgotten. 

2.1.3 Causal structure learning 

Looking at the world as consisting of a collection of causal systems and each system 

consisting of a set of observable causal variables we can translate such systems into causal 

Bayesian networks. To learn such a network we observe causal systems on a set of trials on 

which each variable takes a specific value [20].  For example an autonomous intelligent system 

attempting to build a workable model of its environment cannot rely exclusively on 

preprogrammed causal knowledge; rather, it must be able to translate direct observations made 

using its sensors to cause-and-effect relationships [39].  

 The problem lies in the fact that data thus collected comprises a set of passive 

observations on which we can perform statistical analysis driven by covariation instead of 

causation. Learning causal relationships from raw data has been on philosophers' wish list since 

SLIPPERY WET SEASON 

RAIN 

SPRINKLER 
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the 18th century. The approach taken to achieve this goal has been to try understanding the 

process by which humans acquire causal relationships and trying to build a computational 

model based on it [39].  

Human inference of causal relationships is taken to rely primarily on universal cues such 

as spatiotemporal contingency or reliable covariation between effects and their causes as well 

as on domain-specific knowledge [33]. Accordingly, most theories of causation invoke an explicit 

requirement that a cause precedes its effect in time. Yet temporal information alone cannot 

distinguish genuine causation from spurious associations caused by unknown factors – the 

barometer falls before it rains yet it does not cause the rain [39]. Humans also heavily reside on 

the possibility of repeatedly performing interventions to discover causal laws. 

 In order to learn the structure of a causal network from raw data we need to make some 

assumptions. First, we assume that causal networks can provide reasonable models of the 

domain. Sometimes a stronger version of this assumption is required, namely that causal 

networks provide a perfect description of the domain. The second assumption states that there 

are no latent or hidden variables that affect the observable variables [37]. This assumption does 

not hold in all domains and we will see that it does not hold in the domain of molecular biology 

when dealing with microarray experiments. 

 From the above assumptions it follows that one of the possible structures over the 

domain variables is the “true” causal network. However, from observations alone it is not 

possible to distinguish between causal networks that belong to the same equivalence class. In 

consequence four different approaches have been developed: constraint-based learning, score-

based learning, Bayesian model averaging and hybrid approaches. 

Constraint-based learning methods view a Bayesian network as a representation of 

independencies. They try to test for conditional dependence and independence in the data in 

order to find a network, or more precisely an equivalence class of networks, that best explains 

them. Constraint-based methods are quite intuitive. They decouple the problem of finding 

structure from the notion of independence. They also follow more closely the definition of 

Bayesian networks: we have a distribution that satisfies a set of independencies, and our goal is 
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to find the equivalence class for this distribution [55]. Unfortunately, these methods can be 

sensitive to failures in individual independence tests. It suffices that one of these tests return a 

wrong answer to mislead the network construction procedure [45]. 

Score-based methods, also known as search-based, view Bayesian networks as specifying 

statistical models and address learning as a model selection problem. All of them operate on the 

same principle: we define a hypothesis space of potential models — the set of possible network 

structures we are willing to consider — and a scoring function that measures how well the 

model fits the observed data. Our computational task is then to find the highest-scoring 

network structure. The space of Bayesian networks is a combinatorial space, consisting of a 

super-exponential number of structures —     
  . Therefore, the problem translates to 

optimization problem. There are very special cases where we can find the optimal network. In 

general, however, the problem is (as usual) NP-hard, and we resort to heuristic search 

techniques. Score-based methods consider the whole structure at once; they are therefore less 

sensitive to individual failures and better at making compromises between the extent to which 

variables are dependent in the data and the “cost” of adding the edge. The disadvantage of the 

score-based approaches is that they pose a search problem that may not have an elegant and 

efficient solution [55]. 

Hybrid approaches combine the two learning methods described above, and are 

sometimes called search-and-score-based methods [55]. 

Finally, instead of attempting to learn a single structure the Bayesian model averaging 

methods generate an ensemble of possible structures. These methods extend the Bayesian 

reasoning and try to average the prediction of all possible structures. Since the number of 

structures is immense, performing this task seems impossible. Yet, for some classes of models 

this can be done efficiently, and for others we need to resort to approximations [31]. 

2.1.4 State of the art algorithms 

Here we will take a look at the various algorithms devised for learning causal Bayesian 

network structures. Since there are many such algorithms differing only in the details, such as 

the measure employed for network scoring, only an overview will be presented. 
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2.1.4.1 Score-based methods 

Let us start with the scoring-based algorithms. Their main difference is the metric used 

for scoring the network which is employed by all algorithms except when performing an 

exhaustive search5. The metrics differ in the assumptions they require, e.g. the type of data 

(discrete or continuous). Some of the metrics used are listed below. 

Maximum likelihood - measures the strength of the dependencies between variables 

and their parents. In other words, it prefers networks where the parents of each variable are 

informative about it. The maximum likelihood network will exhibit a conditional independence 

only when that independence happens to hold exactly in the empirical distribution. Due to 

statistical noise, exact independence almost never occurs, and therefore, in almost all cases, the 

maximum likelihood network will be a fully connected one. In other words, the likelihood score 

overfits the training data. [6, 31] 

Bayesian information criterion (BIC) - the score exhibits a trade-of between fit to data 

and model complexity: the stronger the dependence of a variable on its parents, the higher the 

score; the more complex the network, the lower the score [6, 43]. 

Akaike information criterion (AIC) – can be generally used for the identification of an 

optimum model in a class of competing models. It is a measure of the lack-of-fit of the chosen 

model and the increased unreliability of the chosen model due to the increased number of 

model parameters. The best approximating model is the one which achieves the minimum AIC 

in the class of the competing models [6, 42]. 

Bayesian metric with Dirichlet priors and equivalence (BDe) - evolved from the search 

for a network with the largest posterior probability, given priors over network structures and 

parameters. It is based on the concept of sets of likelihood equivalent network structures, 

where all members in a set of equivalent networks are given the same score. Used only with 

discrete data [6, 51]. 

                                                      
5
 Because of the triviality and practical infeasibility for networks with more than a small number of variables it 

won't be included in the list. 
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Bayesian metric with Gaussian priors and equivalence (BGe) – BDe counterpart for 

continuous data [31]. 

Mutual information tests (MIT) - measures the degree of interaction between each 

variable and its parents. This measure is, however, penalized by a term related to the Pearson 

   test of independence. This term attempts to re-scale the mutual information values in order 

to prevent them from systematically increasing with the number of variables [6]. 

When we fix the scoring metric we still need to decide the rules that will drive the 

searching process. The rules describe changes made to the structure at each step of the 

algorithm. They can be made either on a local scale (atomic) such that only one edge gets 

added, removed or changes the directionality, or on a larger scale (global) when the structure 

can change substantially [37].  

The simplest and most commonly used is the greedy algorithm, which at each step looks 

for the change in the structure with the best score. This procedure suffers from the fact it has a 

high probability of poor performance because of ending up in a local minima/maxima. On the 

other hand, more complex solutions, such as using metaheuristics (Hill-Climbing, Genetic 

algorithm, Tabu search, Simulated annealing,…) still offer no guarantee of finding the best 

solution but are less likely to get stuck with a low fitting structure [24]. 

2.1.4.2 Constraint-based methods 

We continue by considering some of the constraint-based methods. Unlike the score-

based methods which always return a fully oriented Bayesian network or a set of networks, 

these methods in general will return only an equivalence class, usually in the form of a single 

PDAG. The learning process is for most algorithms performed in two phases. In the first phase 

the algorithm looks for (in)dependencies using one of the possible independency tests and 

outputs the network skeleton6. The second phase tries to orient as many edges by following a 

set of rules [1, 2, 4, 9, 31, 32, 39, 45].  

                                                      
6
 The skeleton of a DAG is a graph having the same nodes and edges, but all edges being undirected. 
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The commonly used algorithms are IC (inductive causation)[39, 45], SGS (Spirtes, 

Glymour and Scheines) [39, 45], PC (Peter and Clark) [39, 45], Incremental Association Markov 

Blanket (IAMB or IA) [49], TPDA (Three Phase Dependency Analysis) [8] and RAI (recursive 

autonomy identification) [52]. Their short descriptions are given below. 

IC – the algorithm starts with the empty graph7 and for each pair of variables   and   

searches for a subset of nodes    8 such that they are conditionally independent given    . If 

no such subset exists it adds an undirected edge between   and  . Once the undirected graph 

has been constructed it orients the edges. First it looks for all nonadjacent pairs of variables   

and   that have a common neighbor   and checks if     contains  . If that is not the case then 

it orients the edges to get the v-structure      . It ends by trying to orient as many 

undirected edges as possible such that any alternative orientation would yield a new v-structure 

or a directed cycle. 

SGS – same as the IC algorithm except it starts with a fully connected graph and 

proceeds by removing edge by edge. 

PC – based on the previous two algorithms. It starts with a fully connected graph and 

continues with a systematic search for the sets    . First it starts with     of cardinality zero, 

then cardinality 1, and so on; meanwhile edges are removed from a complete graph as soon as 

separation is found. This refinement enjoys polynomial time complexity in graphs of finite 

degree, because at every stage the search for a separating set can be limited to nodes that are 

adjacent to the two taken into consideration for independence. The simplicity and efficiency of 

this algorithm are the reasons for choosing it to be the base algorithm for our solution and 

therefore it will be discussed in greater length later on. 

IA - consists of two phases, a forward and a backward one. An estimate of the Markov 

blanket for a variable  , denoted as      , is kept in the set    . In the forward phase all 

variables that belong in       and possibly more (false positives) enter     while in the 

backward phase the false positives are identified and removed so that             in the 

                                                      
7
 Graph containing all the nodes but no edges between them. 

8
 A subset of nodes that does not contain   and  . 
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end. The heuristic used in IA to identify potential Markov blanket members in the first phase is 

the following: start with an empty candidate set for the    , and admit into it (in the next 

iteration) the variable that maximizes a heuristic function               . Function   should 

return a non-zero value for every variable that is a member of the Markov Blanket for the 

algorithm to be sound, and typically it is a measure of association between   and   given    . 

In backward conditioning, the second phase, we remove one-by-one the features that do not 

belong to the       by testing whether a feature   from     is independent of   given the 

remaining    . 

TPDA – as the name states the algorithm has three phases: drafting, thickening and 

thinning. In the first phase the algorithm computes mutual information for each pair of nodes as 

a measure of closeness, and creates a draft based on this information. The draft is a singly 

connected graph (a graph without loops). In the second phase, the algorithm adds edges to the 

current graph when the pairs of nodes cannot be separated using a group of CI tests. The result 

of the second phase contains all the edges of the underlying dependency model given that the 

underlying model is monotone DAG-faithful9. In the third phase, each edge is examined using a 

group of CI tests and it will be removed if the two nodes of the edge are conditionally 

independent. The result of this phase contains exactly the same edges as those in the 

underlying model when the model is monotone DAG-faithful. At the end of this phase, the 

algorithm also carries out a procedure to orient the edges of the learned graph. This procedure 

may not be able to orient all the edges. The complexity of this algorithm is      . It has been 

shown that the monotone DAG-faithfulness assumption together with the faithfulness 

assumption restricts the class of possible Bayesian network structures to ones for which the 

optimal solution can be found in        

RAI - starting from a complete undirected graph and proceeding from low to high 

cardinality of separation sets, the RAI algorithm uncovers the correct pattern of a structure by 

performing the following sequence of operations: test of CI between nodes, followed by the 

                                                      
9
 The assumption states that the (conditional) mutual information between a pair of variables is a monotonic 

function of the set of active paths between those variables. The more active paths between the variables the higher 
the mutual information. 
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removal of edges related to independences, edge orientation according to rules (same ones as 

in the IC algorithm), and graph decomposition into autonomous sub-structures. For each 

autonomous sub-structure, the RAI algorithm is applied recursively, while increasing the order 

of CI testing. While we have already seen the first two steps in other algorithms we will take a 

closer look at the last one. Decomposition into separated, smaller, autonomous sub-structures 

reveals the structure hierarchy. Decomposition also decreases the number and length of paths 

between nodes that are CI-tested, thereby diminishing, respectively, the number of CI tests and 

the sizes of condition sets used in these tests. Both reduce computational complexity. 

Moreover, due to decomposition, additional edges can be directed, which reduces the 

complexity of CI testing of the subsequent iterations. Following decomposition, the RAI 

algorithm identifies ancestor and descendant sub-structures; the former are autonomous, and 

the latter are autonomous given nodes of the former. 

After looking at the description of the constraint-based algorithms we see that each 

resides on testing for conditional independence. In principle, each could use any of the tests 

that will be mentioned shortly. The tests differ in the data they can be applied to, either discrete 

or continuous, but all of them test only for linear dependencies. It has been argued that 

datasets in different domains are known to have a high number of non-linear dependencies 

between the variables making the use of this test inappropriate [27]. The most commonly used 

tests are: Pearson’s chi-squared test, Fisher’s Z test and mutual information. [45]  

Mutual information - measures the information that   and   share. It measures how 

much knowing one of these variables reduces uncertainty about the other. For example, 

if   and   are independent, then knowing   does not give any information about   and vice 

versa, so their mutual information is zero. At the other extreme, if   and   are identical then all 

information conveyed by   is shared with  . That is, knowing   determines the value of   and 

vice versa. It can be used with both continuous and discrete data. The estimation is sometimes 

improved through combination with other information by making it closer to the value of the 

provided information, and by doing so we get the shrinkage estimator of mutual information. To 

calculate the mutual information we use formulas (4) and (5) for discrete and continuous case 

respectively [58]. 
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Pearson’s chi-squared test (  ) - tests a null hypothesis, the one stating that the 

frequency distribution of certain events observed in a sample is consistent with a particular 

theoretical distribution. The events considered must be mutually exclusive and have total 

probability of one. A common case for this is where each event covers an outcome of a 

categorical variable. Therefore, it can be used only for discrete datasets. When testing 

independence of variables we use the following formula: 
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where   and   are the number of rows and columns respectively,   is the total sample size, and 

     is the observed frequency count at level   of the first and at level   of the second variable. A 

chi-squared static larger than the critical point (0.05) is commonly interpreted by applied 

workers as justification for rejecting the null hypothesis, stating the variables are independent 

[60]. 

 Fisher’s Z test – is used when dealing with continuous Gaussian random variables. After 

performing Fisher's z-transformation of the partial correlation, the test statistic has value 

√            ̂                                                      

where the   transformation is defined as 
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and the recursive form of the partial correlation as 

 ̂     
 ̂           ̂           ̂          

√   ̂           √
   ̂           

                                   

The terms in the above formulas are:   – the sample size;   – separation set;     – variables 

being tested for independence given  . In a multivariate normal distribution, zero partial 

correlation is equivalent to conditional independence therefore the null hypothesis is  

    ̂                                                                 

The test statistic is (asymptotically for large enough  ) standard normally distributed. We reject 

the null hypothesis with confidence   if the test statistic is greater than  

   (  
 

 
)                                                          

where      is the cumulative distribution function10 of a Gaussian distribution with zero mean 

and unit standard deviation [57, 59].  

                                                      
10

 It describes the probability that a real-valued random variable   with a given probability distribution will be 
found at a value less than or equal to  . In the case of a continuous distribution, it gives the area under the 
probability density function from minus infinity to  . 
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2.2 Ontology 

2.2.1 Introduction 

Over the last few years ontologies have emerged as means of providing a formal and 

structured representation of knowledge which can range from generic real world knowledge to 

strictly domain-specific (e.g., linguistics, semantic web, biology, etc.). They represent not only a 

fixed structure but also the basis for deductive reasoning [14]. The purpose of employing an 

ontological representation is to capture concepts in a given domain in order to provide a shared 

common understanding of this domain, enabling interoperability and knowledge reuse but also 

machine-readability and reasoning about information through inference. They are deterministic 

in nature, consisting of concepts and facts about a domain and their relationships to each other. 

The most common definition of an ontology is that it is a formal, explicit specification of a 

shared conceptualization. That is, an ontology is a description (like a formal specification of a 

program) of the concepts and relationships that can exist for an agent or a community of 

agents. It provides a shared vocabulary, which can be used to model a domain, the type of 

objects and/or concepts that exist, and their properties and relations [13, 14, 28, 29, 34]. 

The questions we are interested about ontologies are: what are ontologies for, and how 

can they be used in the domain of learning Bayesian network structures. To answer the first 

question is fairly easy – the purpose of ontologies is to enable knowledge sharing and reuse. The 

second question does not have a trivial and surely not a single answer. We will see some 

devised approaches in the section “Related works”, but for now we’ll just argue that bringing 

additional knowledge could undoubtedly be useful to guide the structure learning process. We 

saw that causality cannot be inferred from data alone, thus we will seek help from the 

additional information about variables and their relationship in the real world, in form of 

ontologies.  

2.2.2 Causal relationships 

 Except for “is a”, which is implied by the subclass statements, relationships in ontologies 

are user defined and domain specific (e.g. “father of”, “teaches”, “synonymy”, etc.). 

Relationships that we are interested in are those that could imply some kind of causal 
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relationship between the ontology terms, which could be in turn directly translated into 

directed edges of a causal Bayesian network.  

 We will take a closer look by introducing a simple example. The ontology presented in 

Figure 2 could be part of some larger disease ontology which deals with disease taxonomy, the 

relations of diseases and their symptoms, the location of the disease, etc. The larger ontology 

could also have other relationships as well as a more intricate taxonomy. 

 The relationships in this example are: “is_a”, “located_in”, and “has_symptom”. The 

“is_a” relationships, also called subclass relationship, is implicit and it follows from the class 

subsumption statements formally written as 

                                                                     

which we interpret as “Subclass is included in Superclass”, or alternatively and less formally “All 

the things from the world that are Subclass are also Superclass”. The relation is reflexive, 

antisymmetric and transitive11. From what we have seen earlier, it is clear that this relationship 

would not do as a causal one, which we know to have quite different properties than the ones 

listed for the “is_a” relation. The simple informal example of “Cause is_a Effect” would suffice 

to back up our intuition. 

 Next we will consider the user-defined “located_in” relationship. We can see that even 

though its properties are different from the “is_a” relationship it still does not have a causal 

meaning. The relation is irreflexive, asymmetric and transitive. 

 In the end there is the “has_symptom” relation, which is also user-defined and its 

properties differ from both previously mentioned relationships. It is irreflexive, asymmetric and 

transitive. These are the properties we want for a causal relationship in order to include it in our 

causal Bayesian networks. As we can see the “has_symptom” relation does imply causation. The 

disease is the cause for symptoms to arise. Therefore, when the ontology states that a disease 

has some symptoms it means that the symptoms are a consequence of (they are caused by) the 

                                                      
11

 Fromally defined in the appendix section 7.1. 
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disease. Of course, not all relationships that have these properties are causal relationships. For 

example, we can think of an ontology about humans and their customs, which has a relationship 

“bigger than”. This relation does not have a causal interpretation because the statement - 

Elephant “bigger than” Bunny – does not imply that elephants are the causes of bunnies even 

though the relation is irreflexive, asymmetric and transitive. 

 

Figure 2 – An example ontology 

 In the discussion above we argued that some of the relationships can be regarded as 

causal. But in the ontology the relationships are not defined for each two terms for which the 

relationship holds but only for their most specific ancestors. This we can see in Figure 2 if we 

consider the relationship of the “Hodgkin’s lymphoma” and “Neck lymph node swelling” nodes. 

Thing 

Disease Symptom 

Cancer 

Lymphoid 

cancer 

Hodgkin's 

lymphoma 

Lymphocytes 

Lymph node 

swelling 

Neck lymph 

node swelling 

Armpit lymph 

node swelling 

is_a is_a 

is_a is_a 

is_a 

is_a 

is_a 
is_a 

has_symptom 

has_symptom 

located_in 

White 

blood 

cell 

Blood 

cell 

Cell 

is_a 

is_a 

is_a 
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Their connection is not explicitly stated but it can be easily inferred since the latter is a “Lymph 

node swelling” which is in relation “has_symptom” with the “Hodgkin’s lymphoma” node. 

Which tells us that the “is_a” and “has_symptom” relationship form chain rules that can be 

formalized as 

                                                                 

In order to infer if some relationship holds between to terms, either directly or indirectly, we 

will have to reason over the ontology by means of an inference engine usually referred to as a 

reasoner.  

2.2.3 Reasoning 

 Reasoning is the process of inferring logical consequences from a set of explicitly 

asserted facts or axioms. The process is performed by a reasoner which typically provides 

automated support for reasoning tasks such as classification and querying. Reasoning is needed, 

as we have already seen in the previous example, because knowledge in an ontology might not 

be explicit and a reasoner is required to deduce implicit knowledge so that the correct query 

results are obtained. 

 For our needs we will need a reasoner to find out if there exists a causal relationship 

between ontology terms. Unfortunately, the available reasoners (FaCT++, HermiT, Pellet, etc.) 

do not provide built-in methods for performing such inference. Therefore, it was needed to 

think of a procedure that will rely on the available functionalities, mainly subclass and 

superclass retrieval. 

 Before we continue by showing the steps needed to perform the needed inference 

process, we will introduce some notation to make it more understandable. We have already 

seen subsumption statements which use the   operator and now we will introduce another 

class expression which deals with relations. It is the qualified existential restriction usually 

written as 
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and our procedure will heavily rely on it. It is nothing more than a complex class denoting the 

set of all objects of the universe that are in relation “relation” with the objects from “class”. For 

example,                   is the set of all objects that have female children. 

 Now we can specify the steps of the process for inferring the presence of a causal 

relationship between two terms that we will refer to as Cause and Effect. 

1. Find the superclasses of Effect. 

2. Find all the classes that have a causal relation to the classes retrieved in step 1. 

3. Find if the set of the classes retrieved in steps 2 contains Cause. 

4. If it does, there exists a causal relationship between Cause and Effect. 

The explanation for the given procedure is the following. First in steps 1 and 2 we want 

to find all the classes that are causally related to the Effect class or any of its ancestors, since 

when a class is related to an ancestor, the relation also influences its descendant classes. If the 

Cause class is among the classes that are causally related to the Effect or some of its ancestors 

we can infer that there exists a causal relationship between the two.  

It might be tempting to consider taking into account subsets of the Effect class or 

subsets/supersets of the Cause class, but we will show that such inference is not sound. When 

we consider the subsets of the Effect class it is clear that if we have a cause that causally 

influences a subset of the descendants this relation does not tell us anything about its relation 

to the Effect class. Each descendant has an additional chunk of information which might be the 

reason for the presence of the causal relation. Even if all the descendants would be causally 

related to the Cause class it would not be enough to justify the existence of the relation for the 

Effect class because there might be other subclasses not yet present in the ontology which are 

not causally related to the Cause class. The same kind of reasoning can be used when 

considering subclasses of the Cause class.  

On the other hand if we consider including the superclasses of the Cause class when 

looking for its relation to the Effect class, two problems arise. The first one being the possibility 

that situations might arise in which a class is causally related to its own ancestor. The intuition 
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behind it is that those relations are to general because they involve quite general terms. For 

example, in the Biological processes ontology cases as the following arise: the ancestor of the 

Cause term is “regulation of biological process” which is related to “biological process” through 

the “regulates” relation, but the Cause term is itself a “biological process” (which is also the top 

class12 of the ontology). Such a relation tells us very little since it can be understood as a 

tautological statement. A more general rule would be to disregard relationships that are “too 

high” in the hierarchy. But it is not possible neither to state how high is too high nor to know 

during the reasoning process know where the terms reside since the ontologies are represented 

using DAG which does not have a fully defined ordering of terms.  

The other problem that would arise if we were to consider Cause class superclasses is 

related to the previous one but is more sever. Let us consider four classes  ,  ,   and  , where 

  and   are subclasses of   and   respectively, moreover   and   regulate   and   

respectively. Now, if we were to try inferring a causal relationship between   and any sibling of 

  by looking at both the causal relation of   and  . If we were to consider superclasses of   we 

would find a causal relation because of the relation existing between   and  . But such a 

conclusion is wrong because we know for a fact that   causally influences only   while the 

conclusion drawn would be that it is causally related not only  ’s ancestors but also to all its 

siblings.  

The exact way the described process will be used is going to be described in subsequent 

sections. Now we will turn to look at some related works in which ontologies were used in the 

process of learning the Bayesian network structure.  

                                                      
12

 The top class of an ontology is its root node. That is, all the classes in the ontology are in descendants of the top 
class. See also footnote 17. 
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3 Related work 

 Here we will discuss some approaches taken to combine the knowledge present in 

ontologies and Bayesian networks. They are concerned with mapping the ontology structure to 

a Bayesian network or representing uncertain knowledge in ontologies. The main idea behind 

these approaches is exploiting the structure similarity between Bayesian networks and 

ontologies, namely the underlying DAG. 

 The first work was done by E. Helsper and L. van der Gaag [22] and it dealt with devising 

a knowledge-engineering methodology for constructing and maintaining Bayesian networks. 

Their approach makes use of a manually constructed ontology which gets translated into a BN. 

The ontology here is used to make it easier for experts to model the domain knowledge that will 

be needed in the BN. In this approach as it will also be the case in others, there is no existing 

ontology whose knowledge is being exploited but it is just a more human-readable 

representation of the knowledge that gets translated into a BN. 

 Later, an extension of the OWL language for ontologies was proposed by Z. Ding and Y. 

Peng [14] in order to incorporate probabilistic knowledge which would allow for simpler 

translation process that would in turn allow probabilistic reasoning over the constructed BN. 

Again, we have a mapping from the ontology to the BN structure with the additional 

information of probabilistic markups attaching probabilities to classes and relations which are 

used for constructing conditional probability tables. A later extension of his approach allowed 

for automatic ontology mapping between ontologies. 

A. Devitt, B. Danev and K. Matusikova [13] continued on the idea from Helsper and van 

der Gaag to devise an algorithm for translating ontologies into Bayesian networks in the 

telecommunications domain. In this system, the ontology model has the dual function of 

knowledge repository and facilitator of automated workflows while the generated BN serves to 

monitor effects of management activity, forming part of a feedback loop for self-configuration 

decisions and tasks. All in all this work just puts in practice the previous idea and deals with the 

implementation issues more thoroughly. 
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 In the medical domain Jeon and Ko [29] proposed a semi-automatic algorithm which 

extracted nodes from an ontology and let the expert draw the causal relationships between 

them. Such an approach only facilitates the BN construction by providing the expert with a user 

friendly interface. 

 For the same domain in a later paper Zheng, Kang and Kim [54] proposed another way 

for incorporating uncertainty in ontologies. Their approach had the goal of both adding 

uncertainties in an ontology and allowing for the probability distribution to be updated by 

adding new data. They did it by adding additional (probabilistic) information into the ontology 

and upon the presence of new data the BN gets extracted from the ontology and its CPTs get 

updated. This approach uses the benefits of both BNs and ontologies, each bringing its full 

functionality into the system. 

 Ishak, Leray and Amor [28] again deal with the translation of the ontology into the BN 

structure with the difference that they use objective oriented Bayesian networks (OOBN). The 

advantage of using OOBN is in the fact that nodes can be assigned properties and be 

represented in a hierarchy making them more similar to ontologies than regular BNs. It is 

straightforward to see that by means of the hierarchy it is possible to translate the ontologies’ 

“is_a” relationship into the OOBN. 

 The last and closest approach to the one discussed in this work was proposed by 

Messaoud, Leray and Amor [34]. They use the knowledge and functionalities present in both 

models to transfer the knowledge both ways. First they use the knowledge present in the 

ontology to constrain the possible Bayesian network structures and guide the learning process. 

In a latter phase the BN structure is used to update the ontology structure by adding newly 

found causal relationships between terms. Unlike our approach they impose the following 

constraints: 

- each causal graph node must be modeled by a corresponding concept in the domain 

ontology, 

- and the causal relations have to be defined between all elements of the ontology for 

which it holds.  
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These constraints do not allow the usage of existing ontologies but only of those 

designed by experts, while in our work we would like to take advantage of preexisting 

ontologies. These ontologies are usually curated by experts and constantly evolving. 

 In the next section we are going to look at our solution which was inspired by 

ideas discussed in the aforementioned works.    
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4 The algorithm 

 The main goal of the proposed approach is learning the Bayesian network structure 

using a constraint-based algorithm and exploiting the knowledge present in the ontology to try 

orienting the remaining undirected edges. By using only the former will in most cases result in 

forming a PDAG structure. For this purpose we can use one of many algorithms mentioned in 

earlier sections. Which one depends on the characteristics of the data we are dealing with and 

most of all on the quality of results produced. In our case it will be a variant of the PC algorithm 

which uses continuous data. The knowledge present in the ontology can be used to infer 

connections between variables and it can be placed at different stages: 

- before using the constraint-based algorithm in order to find connections in order to 

lower the number of possible structures, 

- after using the constraint-based algorithm but before it assigns edge orientations13,  

- after the constraint-based algorithm has produced a PDAG structure to infer the 

orientation of undirected edges, 

- and same as in the last case with the additional task of checking the correctness of 

the orientation of the directed edges.  

Moreover, the ontology could be used in combination even with a score-based approach but we 

are not going to deal with it in this work. 

 Our approach tried to lesser the constraints imposed upon the format of the ontology in 

order to allow using popular existing ontologies from different fields such as biology, medicine, 

chemistry, and others. All the user has to define is the causal relationship that is present in the 

ontology such as “has_symptom” or “regulates” since each ontology contains different such 

relations. 

 One important question is how do we connect the BN variables to the concepts present 

in the ontology? The approaches we have seen in the previous section make either the user 

select the concepts to be used or just use all the leaf concepts. In our approach we take a 

                                                      
13

 Given the algorithm performs the processes of finding edges and orienting them in different stages. 
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somewhat different approach where we annotate the nodes of the BN with terms from the 

ontology. This was done by taking into consideration how genes in the bioinformatics field get 

annotated with ontology terms. Each gene can have different functions and be part of different 

pathways. Therefore, a single annotation is not enough. In the same way we annotate our 

variables in the BN with terms of the given ontology. This way we are not bound to having an 

ontology with all the variables present in the BN and we can also transfer more information to 

the BN. On the other hand we need to provide a mapping between the BN variables and the 

ontology terms. Such mappings already exist in some domains, for example in bioinformatics 

between genes and terms from the Gene Ontology.  

4.1 Steps of the algorithm 

 We have seen all the needed components for our algorithm and now we can specify its 

steps and afterwards go through them in detail. As we mentioned earlier the ontology can be 

used at different points of the algorithm but in this work only one will be considered leaving the 

other options for future work. The algorithm will go through the following steps: 

1. Data preparation 

2. Structure learning with PC algorithm 

a. Independence testing 

b. Edge orientation 

3. Node annotation 

4. Inferring undirected edge orientation from the ontology 

4.1.1 Data preparation 

 This step is strictly speaking not part of the algorithm but is crucial and the result highly 

depends on it. For the purposes of our algorithm it won’t be needed to discretize the data 

however it is required to be in a proper format and missing values have to be taken care of. The 

downside of this approach is not having the possibility to deal with categorical variables for 

which a different version of the PC algorithm or a different algorithm altogether should be used. 

 Since the formatting part of the data preparation step involved only parsing of the 

dataset we are not going look into it. However, dealing with missing values requires some 
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attention. Datasets containing experimental data usually contain a fair amount of missing values 

especially in high-throughput methods such as microarray experiments. To sanitize such a 

dataset a couple of methods have been devised which try to impute the missing value with a 

value similar to values of that the variable in other experiments. One such method which was 

used in our work is the kNNimpute algorithm [48].  

 The kNNimpute algorithm works as follows. If a variable misses the value for the first 

experiment, the algorithm will go looking for   other variables that have similar values in other 

experiments. In the end it will assign the value that is calculated as a weighted average of the   

nearest variable values in the first experiment. The algorithm can be used with different metrics 

for calculating the distance. In our case the distance metric used was the Euclidian one. It has 

been shown empirically that using this metric gives the best results [48].  

 The only parameter that influences the output of the kNNimpute algorithm is the 

minimum percentage of data values present for a variable over the experiments. This threshold 

was set to a quite low value (10%) in order to retain as many variables as possible. By doing so 

we have lessened the importance of having a dataset that faithfully resembles the real data, and 

are more concerned with having as much data as possible. 

4.1.2 Structure learning with PC algorithm 

 We have already given some overview of this algorithm in an earlier section. Now we will 

give a closer look at the details regarding its implementation and the specific variant used in our 

algorithm. We will start by looking at the steps of the algorithm and later specify the conditional 

independency test employed.  

 The steps of the PC algorithm are described in Figure 3 where we can see that some 

steps offer a high degree of flexibility allowing different approaches. For example, in step 2) any 

conditional independency test would do, but also different orders of variable selection can be 

used. In our work we used the Fisher’s Z test and the simplest ordering, checking sequentially 

pairs of variables in the order variables appear in the dataset.  
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 The Fisher’s Z test was explained in detail in section 2.1.4.2. We used it with the 

parameter  14 having value 0.05, meaning that the probability of incorrectly rejecting the null 

hypothesis is 5%. This is the most commonly used value and it will serve our purposes. 

Steps 1) and 2) produce an undirected graph while steps 3) and 4) try to orient as many 

edges as possible. The inference of edge orientation through the knowledge present in the 

ontology could be done before step 1), after step 2), or as it will be in our case after the 

algorithm finishes. 

Step 4) is also given in a descriptive way which allows us to take different approaches. It 

has been shown the four rules listed in Figure 4 are required for obtaining a maximally oriented 

PDAG. Moreover, they are sufficient, meaning that repeated application will eventually orient 

all edges which are common to the graph’s equivalence class [39]. 

This algorithm works under the assumption of absence of latent structures15. They 

require a special treatment, because the constraints a latent structure imposes upon the 

distribution cannot be completely characterized by any set of conditional independence 

statements. 

4.1.3 Node annotation 

 In order to use the PDAG produced from the previous step together with the ontology 

we need to make a connection between ontology concepts and the BN variables. As we have 

discussed earlier, this is done by assigning a set of ontology terms to each variable. We assume 

that there exists a mapping created by experts which faithfully resembles the state of the world 

for the domain of interest. 

 

                                                      
14

 Usually refered to as significance level. 
15

 A latent structure is one having only a subset of variables observed. By making the above assumption we assume 
that the variables from the dataset are indeed all the variables present in the system being modeled. This is a 
strong assumption which is rarely true. 
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1. Orient     into     whenever there is an arrow     such that   and   are 

nonadjecent. 

2. Orient     into     whenever there is a chain      . 

3. Orient     into     whenever there are two chains       and       

such that   and   are nonadjecent. 

4. Orient     into     whenever there are two chains       and       

such that   and   are nonadjecent and   and   are adjecent. 

 
Figure 3 - PC algorithm 

1) Form the complete undirected graph   on the vertex set  . 

 

2)    . 

Repeat 

Repeat 

Select an ordered pair of variables   and   that are adjacent in   such 

that                      has cardinality greater than or equal to  , 

and a subset   of                      of cardinality  , and if   and 

  are d-separated given   delete edge     from   and record   in 

             and            ; 

Until all ordered pairs of adjacent variables   and   such that 

                     has cardinality greater than or equal to   and all subsets 

  of                      of cardinality   have been tested for d-separation; 

 

         ; 

Until for each ordered pair of adjacent vertices  ,  ,                      is of 

cardinality less than  .  

 

3) For each triple of vertices  ,  ,   such that the pair  ,   and the pair  ,   are each 

adjacent in C but the pair  ,   are not adjacent in  , orient       as           

if and only if    is not in            . 

 

4) In the partially directed graph that results, orient as many of the undirected edges as 

possible subject to two conditions: any alternative orientation would yield a new v-

structure; or any alternative orientation would yield a direct cycle. 

 

                 – set of nodes adjacent to   in graph   

            – set of node d–separating nodes   and   

Figure 4 – PC algorithm rules 
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4.1.4 Inferring undirected edge orientation from the ontology 

 We discussed the idea behind this step in the section where we dealt with the reasoning 

process. There we considered only how to infer if there exists a causal relationship between two 

terms. But in our approach each variable is annotated with a set of terms. Therefore, to infer a 

causal relationship between two variables we will have to look for a presence of a causal 

relationship between every pair of terms the two variables are annotated with.  

 For example, for two variables   and  , such that   is annotated with the set of terms 

        and   with the set of terms            we will need to check for a causal relation 

between terms                                                . By doing 

this we will check only if    . Therefore, we will also need to check the inverse relation. 

 For performing the reasoning process we used the HermiT reasoner. Two other 

reasoners were tried, Pellet and TrOWL, but they did not perform as well as HermiT [12]. There 

are also other reasoners available but they either did not provide an API for Java16 or were not 

publicly available. 

 When considering the DAG property of BNs we could conclude that after finding a causal 

relation between two terms we do not have to check the existence in the other direction. 

However, in an ontology it is not mandatory for relationships to be acyclic. The simplest 

examples are relations such as “friend of” and “sister of” which will be present both ways and 

thus form a cycle. But this is also the case for causal relationships such as “regulates”, present in 

the GO. Some genes are parts of regulatory mechanisms which involve loops.  

One such mechanism is one where we have a gene that starts getting expressed because 

of the presence of some chemical in the cell body. This gene gets translated into a protein which 

also has the ability to promote the expression of a second gene. Once the concentration of the 

protein reaches the threshold value the second gene starts getting expressed. The protein 

encoded by the second gene on the other hand acts as a repressor for the expression of the first 

gene and therefore we have a regulation loop. 

                                                      
16

 Which was used for implementing the algorithm. 
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 There is the possibility even of self-regulating loops, when a gene is involved in 

regulating its own activity. Even though such loops could be found in an ontology, this case 

won’t be considered in our approach. 

This kind of cyclic relations cannot be encoded in BNs because it lacks the ability of 

representing temporal/dynamic aspects of the system. To do so an extension of the BN model 

should be introduced. Even if were to allow this violation it would not be too concerning since 

we are only interested in learning the structure and not using the BN for probabilistic inference. 

There is another question that needs to be raised, the one asking which edges should 

the algorithm try to orient. The simplest approach would be to assume that the constraint-

based structure learning algorithm has found all the independencies and we are left to try 

orienting only the undirected edges. On the other hand, from the previous discussion we see 

that some orientations might not have been considered because they violate the acyclicity 

property. Therefore, it would be worthwhile to consider all edges at the same time validating 

the results of the PC algorithm. The problem with this approach is the complexity of task that 

will be considered in the following section. This is also the reason for not using this step before 

the PC algorithm. 

In order to deal with the mentioned complexity the implementation of this step was 

done by parallelizing the process such that each thread deals with one edge. The speedup of 

this step is therefore proportional to the number of threads/processing units. The 

implementation code for this step is given in the appendix section 7.2. 

4.2 Complexity analysis 

 Now that we have seen the steps of the algorithm in detail we are going to consider 

their computational cost. The complexity, both space and time, proved to be quite a challenge 

when dealing with real-world data. For example the number of genes that get represented as 

nodes in the BN from a microarray experiment is in order of thousands. In that case just fully 

connecting a graph proves to be a challenge space-wise. In this section we will also show some 

optimization steps taken in order to deal with such challenges.  
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 However, in this work we will be considering just the complexity of the steps in our 

algorithm and not the complexity of tools used, such as the reasoner. Specifically for reasoners, 

their performance is usually compared empirically. Tests show that different reasoners perform 

differently for different ontologies [12]. In our case we have chosen the reasoner that was the 

easiest to integrate and the one best performing on the example we used.  

4.2.1 PC algorithm complexity 

 We will start by considering the complexity of the PC algorithm. More precisely we are 

going to put an upper bound on it. If we take that the graph has   nodes and let   be the 

maximal degree of any node. In the worst case, in each iteration, no edge will get removed. 

Therefore in the  -th iteration we will have to check separation sets of cardinality   and for each 

of the         pairs of variables there are (
   
 

) candidate separation sets, which gives us 

a total of 

        ∑(
   
 

)

 

   

                                       

independency tests. Such worst case examples are highly unlikely to be found in any dataset 

and the average expected number of independency tests is much lower. Still, the complexity is 

polynomial, namely        . 

 For each independency test we use the Fisher’s Z test calculated by the recursive 

formula  

 ̂     
 ̂           ̂           ̂          

√   ̂ 
          

√   ̂ 
          

                                

Where   is the separation set being considered in the  -th step and therefore having cardinality 

     . To calculate this value we need to recursively call three calculations of the coefficient 

with separation set having cardinality    . Thus we have 
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and therefore 

                                                                       

                                                                      

Here   stands for number of data values for each variable (number of experiments) and    

denotes the number of arithmetic operations needed for each independency test between two 

variables with a separation set of cardinality  . 

  As we can see the complexity when considering the number of arithmetic operations 

turns out to be exponential. On the other hand by looking at the recursive formula we see that 

the complexity can be dealt with if we introduce caching of results since there will be lots of 

calls to previously calculated values. For caching results a tree-like structure was implemented 

where each path represents a string of node ids and the value at each tree node the value of the 

calculated coefficient. The first and second node in the path are the   and   variables being 

tested for independence and the rest of the tree nodes in the path stand for the nodes in the 

separation set.  

 This approach considerably reduces time complexity but also takes into consideration 

the space complexity because it is not feasible to cache all the possible results in memory. The 

algorithm designed this way has been able to deal with datasets with as many as 6000 variables 

in a reasonable amount of time (under 2 min). For comparison most of the publicly available 

constraint-based structure learning algorithms struggle with the subset of the same dataset 

having around 100 variables.  

4.2.2 Ontology inference complexity  

The complexity of annotating nodes with ontology terms is linear, straightforward to 

deduce and it will not be considered. On the other hand the complexity for the inference by 



 

36 
 

means of the ontology was already hinted. Here we will just formalize it. Let   be the maximum 

number of ontology terms mapped to any variable. Then for   undirected edges we have to 

make at most 

                                                                   

calls to the reasoner. The first factor stands for checking both orientations, the third factor tells 

the number of pairs of terms to be sought for a causal relationship, and the last factor is just the 

number of calls to the reasoner for retrieving superclasses and related terms. 

 Even though the number of calls to the reasoner is quite low, the reasoning process itself 

is quite time consuming, especially if the ontology being employed is big. Even though the 

performance drastically increases when the inference process gets parallelized, such that each 

edge is given its own thread, it still takes a lot of time to perform this step (several hours).  
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5 Example 

 Now that we have discussed the algorithm we can look at how it behaves on a real-life 

example. We have chosen the field of molecular biology because of the amount of standardized 

data publicly available, the number of high quality ontologies devised, and of course the 

importance of the field. The data we are going to use was produced by a microarray experiment 

concerning the yeast cell cycle. The motivation for using this dataset was the fact it has been 

used in a number of papers that tried to learn the interaction network of its genes [7, 11, 16, 18, 

37, 44]. There are various approaches varying in methods used, while only a small involved 

causal Bayesian networks, even though they gave promising results [16, 37].  

 We will see a brief overview of the data, the ontology employed, and in the end the 

results produced by the algorithm. All the resources used are publicly available [61, 62, 63]. 

5.1 Resources 

5.1.1 Yeast cell cycle dataset 

 This dataset was created as a comprehensive catalog of yeast genes whose transcript 

levels vary periodically within the cell cycle. The experiments were done under different 

conditions and monitored during equally spaced intervals17. In our work the temporal aspect of 

the experiments was not considered, as it was done in other related works, instead it was 

assumed that the values are independently drawn from an unknown distribution [16, 37]. 

 The dataset came in an already preprocessed form. It underwent through some standard 

transformation processes and it was normalized. To correct for the missing values the 

kNNimpute algorithm was used as explained in a previous section. It contains 76 gene 

expression measurements of the mRNA levels of 6177 S. cerevisiae open reading frames. Only 

small number of them have been proven to be cell cycle regulated (~800) [44]. 

 Most related works use even smaller subsets of the original dataset to test their 

algorithms. The only one that considered at least the 800 genes found to be cell cycle regulated 

was proposed by Friedman, Linial, Nachman, Pe’er but we were unable to get the results in a 
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 Different for each experiment. 
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machine readable format, only as an on-line interactive graph which would require a great 

amount of time in order to compare with our results [16]. 

 These smaller datasets are those for which it was found to regulate the production of a 

certain important gene, regulating the cell cycle or which are known to be highly over or under 

expressed during a specific phase of the cell cycle [44].  

5.1.2 Gene Ontology 

 We decided to use the Gene Ontology since it is one of the most actively used and 

maintained ontologies and thus providing high quality knowledge. It is part of a major 

bioinformatics initiative with the aim of standardizing the representation of gene and gene 

product attributes across species and databases. The project provides a controlled vocabulary of 

terms for describing gene product characteristics and gene product annotation data. It has 

developed three ontologies that describe gene products in terms of their associated biological 

processes, cellular components and molecular functions in a species-independent manner [61]. 

They cover three different domains:  

- cellular component, the parts of a cell or its extracellular environment,  

- molecular function, the elemental activities of a gene product at the molecular level, 

such as binding or catalysis, and  

- biological process, operations or sets of molecular events with a defined beginning 

and end, pertinent to the functioning of integrated living units: cells, tissues, organs, 

and organisms. 

In our example we used the biological processes ontology, being the one containing the 

“regulates” relation which can be easily attributed a causal interpretation. A biological process is 

series of events accomplished by one or more ordered sets of molecular functions. Examples of 

broad biological process terms are cellular physiological process or signal transduction. It can be 

difficult to distinguish between a biological process and a molecular function, but the general 

rule is that a process must have more than one distinct steps [61]. 
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Other than the “regulates” relationship the biological processes ontology also contains 

two sub-relationships, namely “positively regulates” and “negatively regulates”. For our 

purposes we do not need to distinguish them since we are not interested in the functional form 

of the causal relationship but only in the structure of the causal network. On the other hand 

some more advanced approaches in the future whose goal goes beyond structure learning could 

use this additional knowledge. 

The upside of the Gene Ontology from an epistemic point of view, of being organism-

independent is also a downside from a practical point. When dealing with a single organism 

(which is usually the case) we have a much bigger ontology of what is actually needed which 

considerably affects the performance. Some organism-specific ontologies have been created but 

are much too simple and stripped from most of the useful relations present in the complete 

one.  

In any case we can be sure that the evolution of the Gene Ontology hasn’t stopped, 

which is currently being updated on a daily basis, and that it might provide a great deal more of 

useful knowledge in the future. Moreover, there are many more ontologies being created that 

could be used for supporting causal network structure learning in other domains. 

5.1.3 Annotations 

For standardization purposes the GO consortium devised also an annotation format, 

namely the GAF, currently version 2.0. The format specifies information that needs to be 

provided for each annotation of a gene, e.g. the GO id, evidence code and name [61].  

A GO annotation consists of a GO term associated with a specific reference that 

describes the work or analysis upon which the association between a specific GO term and gene 

product is based. Each annotation must also include an evidence code to indicate how the 

annotation to a particular term is supported. Although evidence codes do reflect the type of 

work or analysis described in the cited reference which supports the GO term to gene product 

association, they are not necessarily a classification of types of experiments/analyses. Note that 

these evidence codes are intended for use in conjunction with GO terms, and should not be 

considered in isolation from the terms. If a reference describes multiple methods that each 
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provides evidence to make a GO annotation to a particular term, then multiple annotations with 

identical GO identifiers and reference identifiers but different evidence codes may be made 

[61]. 

The evidence or quality code describes the work or analysis upon which the association 

between a specific GO term and gene product is based e.g. manual, automatic or computer 

analysis. It has a number of possible values depending on the analysis type. Not all the codes 

have the same strength and there exists a hierarchy between them18. They range from manually 

curated annotations inferred by direct assays to automatically assigned annotations based on 

similarity searches. The former being a highly trusted one, while the latter the least dependable 

[61].  

The annotations process, in our case, was implemented quite straightforward since we 

used a publicly available web service which for a given gene id returns its GO terms. The web 

service we used is provided by YeastMine [63] which is specialized for the Yeast (Saccharomyces 

cerevisiae) genome. During the annotation process we haven’t considered the evidence code 

information, for lack of expertise in the bioinformatics domain and again for testing our 

approach on as much data as possible. This may turn out to be a shortcoming and a potential 

cause for inferring non-causal relationships. Yet, a simple extension would allow an expert to 

use the algorithm only with the evidence codes she finds fit. 

The mapping can be also loaded from and saved to a file. In our case it we use a standard 

format specified by the GO Consortium, the GAF 2.0 annotation file format. 

5.2 Results 

 Here we will look at the resulting graphs produced by our algorithm. They have been 

produced on different subsets of the yeast cell cycle dataset and compared to other 

approaches. It wasn’t possible to compare the graph resulting from the complete dataset since 

no other algorithm was able to deal with such an amount of data. Before we continue, we will 

pose some questions that will guide our review. The questions are the following: 

                                                      
18

 It can be seen in the appendix. 
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- Is it possible to find the orientation of undirected edges by reasoning over an 

ontology? 

- Are the orientations sound? 

- How do the results compare to other approaches? 

- Is the process feasible on a larger scale? 

5.2.1 Algorithm performance 

In our first experiment we used a dataset made up from the 800 genes found to be cell 

cycle regulated. All the 76 data values for different experiments have been used and treated as 

independent observations. The PC algorithm ran for around 4 seconds and produced a graph 

with 132 undirected edges and 1251 directed ones. The annotation step assigned a total of 3072 

terms to the 800 variables making an average of 3.84 terms per variable. The annotation was 

done by using a mapping file, after which the undirected edges were checked for causal 

relations between the incident variables. As a result 4 undirected edges have been oriented, 

one of which have been found to be bidirectional. Since we know the data to be temporal in its 

essence we cannot resolve these ambiguities. The step took around 2 hours and 27 minutes to 

complete while being executed in parallel on 3 threads. 

From this information we can answer the first and last question. Yes, it is possible to 

infer the orientation of some undirected edges and in a similar manner it would be possible to 

validate the orientations found in the previous steps. But it is clear that the computational 

power needed for performing such an inference, which has resulted in the orientation of only a 

small fraction of undirected edges, is more than we would expect to spend for such a 

procedure. Especially when knowing that much quicker results could be produced by some 

other methods even when sacrificing correctness. As always it is a matter of our needs and the 

trade-off we are willing to make. 

5.2.1.1 Soundness 

To see whether the orientations inferred using the ontology are sound we will inspect 

the ontology to see if the semantics of the gene annotations match causal relations. We will 

look at two cases:  
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- when an undirected edge between   and   gets directed into    ; 

- when an undirected edge between   and   gets directed into    .    

For the first case genes         and         will be considered whose annotation 

can be seen in Table 1, while part of the ontology is shown in Figure 5. In the red area we can 

see some of the         gene terms and in the green one some terms related to the 

        gene. 

Table 1 – YGR108W and YGL021W annotations 

Gene id GO term id GO term name Evidence code 

                    regulation of cyclin-dependent protein 

kinase activity 

IMP 

            G2/M transition of mitotic cell cycle IMP 

            cell cycle IEA 

            mitosis IEA 

            meiotic G2/MI transition IMP 

            positive regulation of spindle pole body 

separation 

IGI 

            mitotic spindle organization in nucleus IMP 

            cell division IEA 

            regulation of cell cycle IEA 

                   protein phosphorylation IDA 

            response to DNA damage stimulus IEA 

           cell cycle IEA 

           mitosis IEP 

           phosphorylation IEA 

 

As we can see the terms overlap and we could expect to find a self-regulatory loop if we 

were to consider it. The nodes acting as end points of “regulates” relations have a 

straightforward semantic relation to the starting nodes (“cellular process”, “regulation of 
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cellular process”). The rightmost regulatory relation is the one upon which the causal relation 

between the two genes would be inferred. Other regulatory relations would not be considered 

since starting from superclasses of their terms.  

If we were to consider the relations between the other terms no new regulatory 

relations would be found and therefore no other orientation, other than the so far discussed, 

would be found. Therefore the edge was oriented as                 and based on the 

semantics of the term names we can conclude that such an orientation is sound under the 

assumption that the ontology and the annotations reflect the real sate of the world. 

Unfortunately if we were to consider the interaction networks of the two genes we 

would find no interactions between them as shown in Figure 6 [63]. Therefore, either the 

algorithm has found a new interaction or the structure found is wrong. For the latter case, the 

reason for the error is twofold. Firstly, the PC algorithm found the genes to be dependent which 

is not the case. Secondly, the evidence codes, which can be seen in Table 1, are of the lowest 

confidence level and being automatically assigned it is possible that in the future they will be 

proved to be incorrect. On the other hand in case of finding strong evidence for the given 

annotation it would imply the need for updating the interaction network. 

 

Figure 5 - Ontology fragment 
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Figure 6 - YGL021W (ALK1) interaction network 

The other case we are about to explore deals with edges found to be bidirectional for 

which we will try to give biological interpretation/justification. In the current example the genes 

found to be involved in such way are         and        . The first thing to notice for 

these two genes is that they are annotated by the same terms which incited us to look deeper in 

their biological role. As it turns out the latter is just a silenced copy19 of the former one, and 

therefore these genes are not part of a regulatory cycle which can be also seen by looking at 

their interaction networks, shown in Figure 7 [63]. 

Again if we were to look at the evidence codes for the annotation terms, the ones 

implying a causal relationship have poor evidence codes and therefore the same discussion 

presented above would apply. However, the PC algorithm in this case has correctly inferred the 

correlation between the two genes since they are equal sequences encoding the same gene, 

where one is just a silenced copy of the other. Such genes, having the same amino-acid 

sequence, would have the same expression levels in a microarray experiment and therefore 

their correlation is inevitable. The best way to treat such variables would be to eliminate one, 

since in this experiment they cannot be told apart.  

                                                      
19

 The exact copy of the gene's amino-acid sequence which is present in the genetic code for the purpose of 
preserving genetic material. Usually present in cases where there exists an alternative silenced gene that gets, 
given the right setting, expressed instead. 
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If we were to look at the two genes as being the same node it would turn out to be a 

self-regulatory node which would not be considered by our algorithm.  

 
Figure 7 - YCR040W (MATALPHA1) and YCL066W (HMLAPHA1) interaction networks 

 The considerations made so far show the importance of the knowledge used for 

inferring the network structure. Since we rely on assumption that it reflects the true state of the 

world, the produced network is sound under the given assumption. This we saw to be reflected 

in the semantics of the ontology terms. The difference between this and other manual 

approaches is that our algorithm relies on publicly available and constantly changing data used 

also for other purposes. This does not require a domain expert being present every time a 

network needs to be constructed but only experts curating publicly available knowledge, which 

in this case comes in the form of an ontology and the annotation mappings. 

5.2.2 Comparison to other approaches 

Now we are left with answering the last question left unanswered which requires 

comparing our algorithm to other approaches. Even though the motivation for using the 

proposed dataset was because it was referenced by a number of papers dealing with Bayesian 

network structure learning, none provide a machine readable BN with all the 800 cell cycle 

regulated genes. Most of them deal with only small subset of nodes. For the comparison we 

decided to use some of the algorithms made publicly available and compare their resulting 

graphs with ours on a randomly chosen subset of the Spellman dataset containing 50 genes. 
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 Some of the algorithms might perform poorly because needing data discretization and 

we cannot guarantee that the discretization parameters used are the optimal for the given 

dataset and algorithm. Another factor that should be taken into account is that some 

algorithms, especially the score-based ones, are nondeterministic in nature and might not give 

the same answer each time. In our case, the relatively small number of variables taken into 

account has proven to produce the same structure on different runs which made it easier to 

analyze the results. 

 Two main characteristics of the resulting graphs will be in our focus: the degree of 

similarity of the resulting graphs’ skeletons and the degree of similarity of edge orientations. 

This will be done by counting the number of edges the graphs agree and disagree upon, for both 

characteristics.  

 The comparison will be performed with both score-based and constraint-based 

approaches which are listed below. A difference between these algorithms is one that we have 

already seen earlier but it is worth repeating, namely that constraint-based algorithms in 

general produce partially oriented graphs, while score-based always produce totally oriented 

graphs.  

- Constraint-based: Grow-Shrink, Incremental Association (IA), PC with discrete data 

- Score-based: Hill-Climbing (HC) with continuous data, Hill-Climbing with discrete 

data, Tabu search 

All of the above algorithms were run on the same computer and took a couple of seconds to 

finish, except for our approach which took under a second for the step involving the PC 

algorithm and a couple of minutes for the ontology inference step.  

 The results are shown in tables 2, 3 and 4. Table 2 shows number of edges found by the 

algorithms, from which we can read out that score-based algorithms prefer highly connected 

structures. Such structures are not expected when considering causal networks, for which we 

expect that each effect has only a small number of direct causes. On the other hand, constraint-

based algorithms seem to form reasonable structures except maybe for the PC algorithm with 
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discrete variables, probably affected by the discretization step. Moreover, the IA algorithm 

proved to perform quite poorly in the edge-orienting phase.  

Table 2 - Number of edges found 

Algorithm 
Directed 

edges found 
Undirected 

edges found 
Total 

Our approach 67 5 72 

Grow-Shrink 40 2 42 

IA 4 55 59 

PC (discrete) 21 0 21 

HC (discrete) 86 0 86 

HC (continuous) 220 0 220 

Tabu 220 0 220 

 

 Tables 3 and 4 show the similarity measures between the resulting graph of the 

respective algorithm and the one produced by our approach. The ratio indicates the number of 

edges the graphs have in common with respect to the total number of edges. Each of the two 

characteristics of interest takes into consideration different sets of edges. When considering the 

skeleton similarity we disregard the edge orientation and just look for the number of edges 

present in the intersection of the sets of edges with respect to the number of edges present in 

their union. Orientation similarity on the other hand takes into consideration only directed 

edges and counts the edges present in both skeletons and having the same orientation.  

Table 3 - Constraint-based algorithms 

 Grow-Shrink IA PC (discrete) 

Skeleton 28/87 (31.0%) 41/90 (45.6%) 14/79 (17.7%) 

Orientation 10/80 (12.5%) 1/70 (1.4%) 4/74 (5.4%) 
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Table 4 - Score-based algorithms 

 HC (discrete) HC (continuous) Tabu 

Skeleton 29/129 (22.5%) 62/230 (27.0%) 62/230 (27.0%) 

Orientation 15/124 (12.1%) 22/225 (9.8%) 22/225 (9.8%) 

As expected the similarities are higher for the skeletons than for the orientations. This is 

because orientation similarity along with the skeleton similarity also requires the orientations to 

agree. The similarity in the number of edges makes the constraint-based approaches’ graphs 

have a greater structural similarity with the ones produced by our approach. On the other hand 

the high number of oriented edges present in the graphs of score-based approaches has the 

consequence that the two compared graphs share a higher number of edges and are more likely 

to agree on their orientation. This comes with the cost of a less similar structure. 

A closer look to the edges between specific nodes reveals that the edge orientations 

inferred by the ontology are usually in accordance with the ones found by other algorithms. In 

one case, three algorithms are in accordance with the findings, two disagree on the orientation, 

one did not orient the edge, and one did not have the edge in its structure. In the other case 

four agree on the orientation, and two do not contain the edge in question.  

Unfortunately in this work we will not compare the results to some known causal 

structure for the given genes. Such a comparison would require a deeper knowledge of the 

domain since there exist some graphs representing the relations between the genes but their 

semantics was not understood properly enough in order to draw conclusions. 

5.3 Discussion 

 Now that we have seen the answers to all the posed questions we are ready to put 

things in perspective. We can see that our approach is a valid one with sound results in the 

chosen domain, but at the same time it is easy to see that the approach is domain independent. 

 Comparison to other approaches has proven to be hard because of two reasons. The first 

one being that other approaches were able to handle only small fragments of the entire dataset 

and thus not allowing a full scale comparison. Either the space requirements at some point of 

the execution of the algorithm would exceed the available amount of memory, or when the 
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data was scaled to overcome the memory problem the execution had to be interrupted because 

exceeding the amount of time set as the threshold (several hours, whereas our approach would 

end in matter of seconds).  

 The second reason has to do with the degree of similarity of the resulting graphs, which 

has proven to be quite low. Each algorithm resulted in completely different network structure, 

i.e. different set of independence statements. With such a difference in the results it is hard to 

justify any of them. It is reasonable to ask, why do we get such different results? Especially 

when trying to infer causal relations which are of particular interest exactly because of their 

stability. The best answer we can give as of now is that we lack data, and that the 76 data points 

at our disposal are not enough for inferring stable causal relations. On the other hand the lack 

of data, which is usually expensive to gather, is the trademark of real world settings and our 

main goal is trying to devise an approach that could exploit the small amount of data at our 

disposal to infer the underlying causal relations.  

 This is where our approach differs from others, it exploits publicly available knowledge 

of the domain, which is also known to incorporate causal knowledge about its terms. The 

downside is that inferring the needed relations from such knowledge is not easy and for now it 

is a quite slow process. On the other hand the main advantage is that if the knowledge source, 

in our case an ontology, is assumed to reflect the true state the real world, we can regard the 

knowledge transferred to our network as stable, which gives us the needed property for giving 

the resulting network a causal interpretation. 

 Another consideration which was mentioned earlier but that maybe has not been 

stressed enough is the fact that even though we used a specific constraint-based algorithm, 

namely the PC algorithm, as a base for our approach it could be replaced by any other 

algorithm. The PC algorithm is in itself quite a simple approach and in the meanwhile more 

advanced algorithms have been devised which could, coupled with the ontology-driven phase, 

give better results. 

The possible extensions of our approach and other considerations will be left for the 

next section.  
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6 Conclusion 

 We have showed in detail the idea behind our approach, how it performs on a real-world 

dataset and how it compares to other approaches. Throughout this work we stated the 

assumptions needed for the approach to work and in the discussion given in the previous 

chapter we covered the pros and cons inherent in our approach.  

 To conclude, we can state that our idea does provide a valid approach for the problem of 

causal Bayesian network structure learning. Even though it did not excel on the example 

considered in this work it is likely that it would perform better on some other dataset or given a 

better mapping between the ontology terms and the variables. Besides that, the knowledge 

transferred from the ontology can be regarded as reflecting the true state of the world, which 

provides the needed guarantee for interpreting the resulting Bayesian network as causal one. 

 On the other hand, some open issues remain. The time required for inferring relations in 

the ontology is too high compared to what we would like to see when considering practical 

applications. Also, the mapping of the ontology terms to variables might have to be performed 

manually for most of the domains which would make the algorithm outside of the molecular 

biology domain semi-automatic. Another issue worth considering is whether it is possible to 

decide which relations defined in the ontology have causal semantics and in which way do they 

relate to other relations, e.g. do they form property chains. 

 Future works based on this approach can go different ways. One direction is the 

optimization of the step for inferring the edge orientation. Other approaches could consider 

placing the mentioned step at some other point of the structure learning process or using it for 

checking and updating the structure found by the base algorithm. Yet another direction could 

consider an in-depth analysis of the base structure learning algorithm focused on finding one 

that either gives an overall better performance than the PC algorithm used or one which 

integrates better with the step involving ontology inferrence. As last we will also mention the 

possibility of considering different types of Bayesian networks, such as object-oriented and 

hierarchical Bayesian networks.  
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7 Appendix 

7.1 Relation properties 

Some important properties of binary relations: 

Reflexivity:        

Irreflexivity:             

Symmetry:              

Asymmetry:                 

Antisymmetry:                     

Transitivity:                       

Intransitivity:                        

 

7.2 Ontology inference step code 

In this section of the appendix we can see the Java code implementation of the ontology 

inference step used for inferring a causal relation between two graph nodes (variables). The full 

code will be made available upon request.  

public class CausalInference extends Thread 
{ 
 // List of newly oriented edges. 
 private List<Touple<Integer, Integer>> inferedDirections; 
 // The reasoner used for the inference process. 
 private Reasoner reasoner; 
 // Variable being considered to be the potential cause. 
 private NodeItem cause; 
 // Variable being considered to be the potential effect. 
 private NodeItem effect; 
   
 /** 
  *  Constructor 
  * @param reasoner The reasoner to be used for the inference 
  * @param ontology The ontology name to be used 
  * @param cause Potential cause 
  * @param effect Potential effect 
  */ 
 public CausalInference(Reasoner reasoner, NodeItem cause, NodeItem effect) 
 { 
  super("Causal inference"); 
  this.reasoner = reasoner; 
  this.cause = cause; 
  this.effect = effect; 
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 } 
   
 /** 
  * Starts the thread and passes the current list of newly 
  * directed edges. 
  * @param inferedDirections List of newly directed edges 
  */ 
 public void run(List<Touple<Integer, Integer>> inferedDirections) 
 { 
  this.inferedDirections = inferedDirections; 
  start(); 
 } 
  
 /** 
  * The main method of the causal inference process. It  
  * performs the steps described in the work to find out 
  * if there exists a causal relation from the "cause" 
  * and "effect" variable. 
  */ 
 @Override 
 public void run()  
 { 
  // The lists of annotations for the respective variables. 
  List<String> causeAnnotations = cause.getAnnotations(ontologyName); 
  List<String> effectAnnotations = effect.getAnnotations(ontologyName); 
  // In case that either list of annotations is empty there is no 
  // reasoning to be done and the method exits. 
  if(causeAnnotations.isEmpty() || effectAnnotations.isEmpty())  
  { 
   returnReasoner(); 
   return; 
  } 
   
  // Set of the OWL terms of the cause variable. 
  Set<OWLClassExpression> causeTerms = new HashSet<OWLClassExpression>(); 
  for(String causeTermId : causeAnnotations) 

{ 
causeTerms.add(dataFactory.getOWLClass(IRI.create(GeneOntology.prefix  

+ causeTermId))); 
  } 
    
  // The OWL property expression for the causal relation 

OWLObjectPropertyExpression causallyRelates = dataFactory.getOWLObjectProperty( 
IRI.create(Ontology.this.causalRelation)); 

    
  // OWL expression of terms causally influencing terms of the effect  

variable. 
  OWLClassExpression causallyInfluencingTerms; 
  // Term of the effect variable considered. 
  OWLClass causallyInfluencedTerm; 
  // Set of all the terms causally influencing the effect variable's term. 

Set<OWLClassExpression> termSetCausallyInfluencingEffect = new  
      HashSet<OWLClassExpression>(); 

    
  // Loops through all the terms in the effect variable's annotations, 
  // infers all the terms causally influencing each of them, and adds 
  // them to the specified set. 
  for(String annotation : effectAnnotations) 
  { 
   causallyInfluencedTerm = dataFactory.getOWLClass(IRI.create( 

ontologyPrefix + annotation)); 
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causallyInfluencingTerms = dataFactory.getOWLObjectSomeValuesFrom( 
causallyRelates, causallyInfluencedTerm); 
 

   // Loops through all the terms causally influencing the current   
   // term (from the effect variable's annotations). 

  for(Node<OWLClass> regulatingGene :  
reasoner.getSubClasses(causallyInfluencingTerms, true)) 

   { 
    termSetCausallyInfluencingEffect.add( 

regulatingGene.getRepresentativeElement()); 
} 

  } 
    
  // Looks for the intersection between the terms causally influencing  
  // the effect variable's terms and cause's terms. 
  List<OWLClassExpression> intersection = intersectionOf(causeTerms,  

termSetCausallyInfluencingEffect); 
     
  // In case the intersection is not empty there exists a causal  
  // relation from the cause to the effect variable. 
  if(!intersection.isEmpty()) 
  { 
   synchronized (inferedDirections)  
   { 
    inferedDirections.add(new Touple<Integer, Integer>(cause.getId(),  

effect.getId())); 
   } 
  } 
    
  // Returns the reasoner to the reasoner pool. 
  returnReasoner(); 
 } 
   
 /** 
  * Returns the reasoner to the reasoner pool. 
  */ 
 private void returnReasoner() 
 { 
  synchronized (reasoners)  
  { 
   reasoners.add(this.reasoner); 
   reasoners.notify(); 
  } 
   
 } 
} 

 

7.3 Evidence codes 

The experimental evidence codes are: 
Inferred from Experiment (EXP) 
Inferred from Direct Assay (IDA) 
Inferred from Physical Interaction (IPI) 
Inferred from Mutant Phenotype (IMP) 
Inferred from Genetic Interaction (IGI) 
Inferred from Expression Pattern (IEP) 

http://www.geneontology.org/GO.evidence.shtml#exp
http://www.geneontology.org/GO.evidence.shtml#ida
http://www.geneontology.org/GO.evidence.shtml#ida
http://www.geneontology.org/GO.evidence.shtml#imp
http://www.geneontology.org/GO.evidence.shtml#igi
http://www.geneontology.org/GO.evidence.shtml#iep
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The computational analysis evidence codes are: 
Inferred from Sequence or structural Similarity (ISS) 
Inferred from Sequence Orthology (ISO) 
Inferred from Sequence (ISA) 
Inferred from Sequence Model (ISM) 
Inferred from Genomic Context (IGC) 
Inferred from Biological aspect of Ancestor (IBA) 
Inferred from Biological aspect of Descendant (IBD) 
Inferred from Key Residues (IKR) 
 

The author statement evidence codes used by GO are: 
Traceable Author Statement (TAS) 
Non-traceable Author Statement (NAS) 
 

 The curatorial statement codes are: 
Inferred by Curator (IC) 
No biological Data available (ND) 
 
 
The automatically-assigned evidence code is: 
Inferred from Electronic Annotation (IEA) 

 
The evidence codes can be thought of in a loose hierarchy of reliability, part of it would be the 

following: 

1. TAS/IDA 
2. IMP/IGI/IPI 
3. ISS/IEP 
4. NAS 
5. IEA 

 
This hierarchy should not be interpreted as a rigid ranking of evidence types. The users can and 

should form their own conclusions as to the reliability of each type of evidence and each 

individual annotation. It is a loose hierarchy also partly because the strength of the evidence will 

also depend on to what resolution is being annotated, and because there is a range of reliability 

within each evidence category.  

http://www.geneontology.org/GO.evidence.shtml#iss
http://www.geneontology.org/GO.evidence.shtml#iss
http://www.geneontology.org/GO.evidence.shtml#iss
http://www.geneontology.org/GO.evidence.shtml#iss
http://www.geneontology.org/GO.evidence.shtml#igc
http://www.geneontology.org/GO.evidence.shtml#iba
http://www.geneontology.org/GO.evidence.shtml#ibd
http://www.geneontology.org/GO.evidence.shtml#ikr
http://www.geneontology.org/GO.evidence.shtml#tas
http://www.geneontology.org/GO.evidence.shtml#nas
http://www.geneontology.org/GO.evidence.shtml#ic
http://www.geneontology.org/GO.evidence.shtml#nd
http://www.geneontology.org/GO.evidence.shtml#iea


 

55 
 

7.4 Class diagrams 
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