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Abstract

The purpose of this work was to analyze the possibility of improving the use of LiDAR
(Light Detection And Ranging) technology, as a sensor to provide the feed-forward in-
formation to the predictive controller, which scans a unfrozen wind field. It was also
analyzed the improvements of predictive controls in comparison to a basic LQR con-
troller. The predictive controls considered are Non Homogenus Linear Quadratic Reg-
ulator (NHLQR) and Receding Horizon Control (RHC). The new idea of LiDAR sen-
sor, which scans an unfrozen wind field, arises to go beyond the limits imposed by the
LiDAR used today, which it is based on Taylor Hypothesis of Frozen Turbulence. The
unfrozen wind field is generated following the theory developed by Kirstensen, then to
obtain that it is developed a empirical-mathematical model that allows to unfreeze the
turbulence and a new wind generator, following Veers theory, that allows to elaborate
a new more complex unfrozen wind filed history. Therefore the Frozen-LiDAR was
updated with these mathematical models to perform unfrozen detection. To verify the
performance of the Unfrozen-LiDAR in comparison to the Frozen-LiDAR as device of
predictive controllers is used an aero-servo-elastic simulatior, CP-Lambda (Code for
Performance, Loads and Aeroelasticity by Multi-Body Dynamic Analysis) developed
by the Department of Aerospace Sciences and Technologies of Politecnico di Milano
(DAST-Polimi). In this approach the wind turbine is modeled as a multi-body sys-
tem, i.e., a complex model of interconnected flexible elements. In particular is useful
to emphasize that the simulations were computed fulfilling the International Standard
requirements. The results obtained are remarkable, the predictive controllers consid-
ered have significantly better performance, in some cases, than the controller reference
considered, that it is the Linear Quadratic Regulator control (LQR). Instead the differ-
ences between simulations of predictive controls equipped with Unfrozen-LiDAR and
Frozen-LiDAR are not significant.
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Sommario

Lo scopo di questo lavoro è stato quello di analizzare i possibili miglioramenti appor-
tati mediante l’utilizzo di un sensore LiDAR (Linght Detection And Ranging), come
strumento per fornire l’informazione predittiva ad un controllore in feed-forward, ca-
pace di rilevare la velocità del vento in un campo di vento definito scongelato. Inoltre
sono stati analizzati i notevoli miglioramenti in termini assoluti apportati mediante
l’utilizzo di controlli predittivi, quali Non Homogeneus Linear Qudratic Regulator
(NHLQR) and Receding Horizon Control (RHC), in confronto ad un controllore di
riferimento in feed-back, quale il Linear Quadratic Regulator (LQR). Il modello di
LiDAR scongelato, ovvero un LiDAR capace di scansionare un campo di vento scon-
gelato, è stato implementato prendendo in considerazione la teoria di turbolenza scon-
gelata enunciata da Kirstensen, per ottenere un campo di vento scongelato a partire da
una storia di vento di riferimento, in modo tale da rilassare l’ipotesi di Taylor (Ipotesi
di turbolenza congelata) che è alla base dei LiDAR usati oggigiorno. Tale modello è
stato prima verificato con un caso test e successivamente accorpato ad un generatore
di vento turbolento scongelato, seguendo la teoria di Veers. Le simulazione delle tur-
bine reali prese in considerazione, realizzate dal consorzio Innwind e dalla università
nazionale di Kangwon, sono state attuate mediante un simulatore aero-servo-elastico
virtuale multi corpo che prevede l’approssimazione del modello con elementi flessibili
interconnessi, tale simulatore è stato sviluppato dal dipartimento di Scienze e Tec-
nologie Aerospaziali del Politecnico di Milano (DAST-Polimi), CP-Lambda (Code for
Performance, Loads and Aeroelasticity by Multi-Body Dynamic Analysis). In partico-
lare le simulazioni sono state eseguite seguendo i requisiti della Normativa. I risultati
ottenuti sono notevoli. I controlli predittivi in termini di fatica e di qualità di potenza
risultano essere ben più efficienti nei confronti dei controlli in feed-back. In partico-
lare si può riscontrare come il LiDAR scongelato non contribuisce ad un sostanziale
miglioramento in confronto al il LiDAR congelato, in termini di fatica, deviazione
standard della potenza e deviazione standard della velocità angolare.

Parole Chiave: Scongelamento, Turbolenza, NHLQR, RHC, LiDAR, Coerenza Longi-
tudinale





Riassunto

Introduzione

La ricerca in ambito energetico sta cercando di sviluppare nuove soluzioni per sod-
disfare il fabbisogno mondiale. Questa necessità nasce dal fatto che i maggiori pro-
tagonisti della produzione di energia sono caratterizzati da materiali non rinnovabili
e altamente inquinanti, come petrolio, carbone, o le materie prime usate per produrre
energia nucleare. Essendo non rinnovabili sono destinate a finire. Proprio in con-
trapposizione a questi metodi di trasformazione energetica, negli ultimi anni si stanno
sviluppando diverse tecniche definite rinnovabili e soprattutto pulite, che sfruttano gli
elementi naturali come il calore o il vento per produrre energia, ne sono un esempio
fra tutti i pannelli solari e le turbine eoliche. Chiaramente queste tipologie di pro-
duzione energetica non possono soddisfare il fabbisogno mondiale, ne consegue che i
vecchi metodi non possono essere accantonati. L’idea dei ricercatori, dunque, è quella
di inserire le energie rinnovabili nell’equazione del mix energetico, che prevede oltre
ad esse una sostanziale produzione di energia mediante i metodi tradizionali. Quello
su cui si sta lavorando però è il peso che le rinnovabili hanno nell’equazione energet-
ica. Ovviamente oggigiorno la produzione kW/h mediante energia rinnovabile ha un
costo nettamente maggiore rispetto a quelle tradizionali, ed è proprio per questo che
la ricerca ha come principale obiettivo la riduzione dei costi globali che riguardano i
modelli di produzione energetica rinnovabile.

È in questo contesto che si inserisce il lavoro fatto per questa tesi. L’approccio è
stato quello di valutare l’utilizzo di sensori di nuova generazione, con opportune mod-
ifiche, e capire se quest’ultimi possano garantire un effettivo vantaggio in termini di
prestazione, quindi in termini di costo. Il sensore utilizzato è il LiDAR (Light De-
tection And Ranging), [9] [4] [5], che permette una previsione piuttosto accurata del
campo di vento di fronte alla turbina. L’utilizzo di un sensore come questo prevede
l’implementazione di strategie di controllo definite predittive, sviluppate di recente dal
Dipartimento di Scienze e Tecnologie Aerospaziali del Politecnico Di Milano (DAST-
Polimi), e in particolar modo dal gruppo di ricerca Poli-Wind. I controllori in questione
sono il Non Homogenus Linear Quadratic Regulator (NHLQR) e Receding Horizon
Control (RHC),[4], entrambi controllori in feed-forward, implementati in modo tale
da poter sfruttare l’informazione di vento fornita dal LiDAR. Ad oggi un qualsiasi
controllore installato su una turbina è caratterizzato da una strategia di controllo in
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feed-back . L’informazione di vento utilizzata da quest’ultimi viene fornita da un
anemometro posto dietro al rotore, in cima alla torre. Chiaramente è un informazione
di vento ritardata in quanto il vento rilevato dall’anemometro ha già attraversato il ro-
tore stesso. Il miglioramento imposto dal LiDAR è proprio quello di riuscire a rilevare
l’informazione di vento di fronte alla turbina prima ancora che esso colpisca il rotore.
Il problema principale del LiDAR ad oggi sviluppato è quello che l’informazione ril-
evata viene fornita al controllore senza considerare il fatto che nel tragitto che collega
il punto di rilevamento e il rotore stesso, il vento evolve. Chiaramente il suo evolvere
dipende dall’intensità turbolenta, dalla velocità media e dal profilo terrestre. Quindi
i LiDAR ad oggi utilizzati possono definirsi LiDAR congelati, perché sono vincolati
all’Ipotesi di Turbolenza Congelata di Taylor.

Il lavoro principale di questa tesi è stato quello di valutare la possibilità di scon-
gelare la turbolenza e rilassare di conseguenza l’ipotesi di Taylor che caratterizza il
LiDAR congelato. Il lavoro dunque prevede in prima analisi lo studio degli strumenti
utilizzati, ovvero il LiDAR, i diversi controllori presi in considerazione e il simulatore
areo-servo-eleastico utilizzato per simulare la turbina reale. Il secondo passo è stato
quello di sviluppare il codice che permette di scongelare la turbolenza, verificarlo in
un caso test, quindi implementare un generatore di vento scongelato e complesso, con
griglia 2D in funzione del tempo. Questi codici implementati sono fondamentali per lo
sviluppo di un LiDAR definibile scongelato, ovvero un LiDAR capace di scansionare
un campo di moto scongelato. Una volta definito il simulatore virtuale che permette di
rilevare il campo di vento scongelato di fronte ad esso si sono eseguite le simulazioni
vere e proprie. Per simulare una turbina reale in un ambiente virtuale è stato utilizzato
un codice sviluppato dal DAST-Polimi, ovvero CP-Lambda (Code for Performance,
Loads and Aeroelasticity by Multi-Body Dynamic Analysis), [27] [28], un simulatore
aero-servo-elastico dove la turbina viene rappresentata come un sistema multi corpo,
quindi un modello complesso definito da elementi flessibili interconnessi. I control-
lori utilizzati sono come già definito i controllori predittivi NHLQR e RHC, inoltre
per avere un confronto tra controllori in feedforward e in feedback è stato preso in
considerazione un semplice Linear Quadratic Regulator Integral (LQR-Integral).

In particolare è utile enfatizzare come le simulazioni fatte si siano basate su modelli
virtuali di turbine reali, ovvero la Turbina Kangwon 3MW, [34], e la Turbina Innwind
10MW, [35], con chiaramente dimensioni diverse anche dal punto di visto del rotore.
Ne consegue che per segreto industriale i dati riportati in questa tesi sono tutti adimen-
sionalizzati.

Campo di vento Scongelato
Il modello empirico matematico alla base dello scongelamento della turbolenza è
stato sviluppato seguendo la teoria enunciata da Kirstensen nel suo principale articolo,
[13]. La turbolenza può essere scongelata mediante il valore di coerenza longitudi-
nale tra due punti uno considerato quello di riferimento, l’altro quello che rappresenta
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l’evoluzione del vortice. Questo valore è fondamentale e viene definito a più riprese
uguale ad una funzione esponenziale dove all’esponente abbiamo un fattore di decadi-
mento, a, di ordine 10, moltiplicato per la frequenza del vortice, n, adimensionalizzata
con D/U0, dove D è la distanza tra il punto di riferimento e il punto da scongelare, e
U0 la velocità media della simulazione, [14] [15] [16] [20].

In particolare il sistema sperimentale installato da Kirstensen prevede due stazioni
anemometriche in grado di rilevare il vortice. La stazione 1, è la stazione di riferimento
mentre a distanza D da essa è presente la stazione 2 che rileva l’evolvere del vortice
misurato precedentemente dalla stazione 1.

Si possono distinguere due modelli di scongelamento di turbolenza, uno basi-
lare, determinato da un contributo di decadimento longitudinale, mentre il secondo
viene definito in modo più complesso dalla probabilità di decadimento determinata dal
prodotto di due contributi: quello longitudinale, e quello trasversale. Dunque nel sec-
ondo caso prendendo in considerazione la possibilità di una deriva laterale da parte del
vortice.

In entrambi i modelli la coerenza puramente longitudinale viene determinata allo
stesso modo, ovvero secondo la legge esponenziale sopra descritta. C’è la necessità
di determinare la frequenza del vortice. Essa è legata all’inverso di una quantità fon-
damentale per lo scongelamento di un campo di moto, ovvero il tempo di riciclo del
vortice, Eddy Turnover Time. Questo particolare tempo legato al decadimento della
turbolenza viene definito come una legge di potenza legata all’energia cinetica turbo-
lenta, e soprattutto dipendente dal range in frequenza del vortice (range inerziale o
range energetico).

Per quanto riguarda il secondo modello ovvero quello con il doppio contributo,
longitudinale e trasversale, bisogna definire la probabilità di deriva laterale quindi il
contributo trasversale. Esso viene definito da Kirstensen nel suo articolo con un mod-
ello empirico matematico approssimato mediante diverse assunzioni. Le assunzioni
che permettono di diminuire i parametri in gioco e semplificare il modello sono: il
considerare stazionaria la velocità trasversale lagrangiana, considerare la varianza di
quest’ultima uguale alla varianza della velocità longitudinale, mentre quella più im-
portante definisce la diffusione trasversale come diffusione trasversale Gaussiana sim-
metrica assialmente. Inoltre essendo un modello principalmente empirico necessità di
definire alcune caratteristiche della simulazione che permettono a seconda del caso di
calcolare in modo più accurato la coerenza. Una di queste è la scelta del tipo di spettro
turbolento in gioco, visto che per ogni modello di spettro corrisponde un parametro
empirico diverso nella formula della coerenza. Lo spettro preso in considerazione in
questo lavoro è lo spettro di Kaimal.

Ne consegue che il modello derivato dalla teoria di Kirstensen definisce un parametro
di coerenza , che determina il decadimento di un determinato vortice in funzione della
distanza tra i due anemometri, e in funzione della velocità media di trasporto del vor-
tice. Tale sistema è stato verificato e collaudato con un caso test. Il caso test prevede
la generazione di due serie temporali di vento, Eq. (3.18) e (3.19), una considerata
passante per la stazione 1, mentre la seconda considerata come condizione all’ infinito
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del vento. Queste sono generate mediate una sommatoria che vede come termini lo
spettro in funzione della frequenza moltiplicato per il coseno della frequenza adimen-
zionalizzata per il tempo della simulazione sommata ad un numero adimensionale che
possiamo considerare come la fase del coseno, φ, e quindi come caratteristica distin-
tiva tra le varie simulazioni di vento. La fase del coseno, φ può considerarsi come
il seme distintivo del vento. Definita dunque la distanza D che separa la stazione di
riferimento, 1, da quella scongelata, 2, possiamo creare la serie temporale di vento
scongelato considerando la fase di tale serie, φ, uguale ad una funzione che vede come
parametri le due fasi dei due venti di riferimento (stazione 1 ed infinto), quindi due
semi diversi, e la radice quadrata della coerenza stessa, Eq. (3.25). Una volta calcolata
la serie scongelata si è verificato la coerenza tra i tre venti generati.

Una volta verificata la bontà del modello di scongelamento si è voluto imple-
mentare da zero un codice che generasse un vento complesso costituito da una griglia
2D di valori in funzione del tempo, che avesse al suo interno il modello di sconge-
lamento della turbolenza, in modo tale che, dato un vento di riferimento, si potesse
generare la sua evoluzione ad una certa distanza dal punto in cui viene idealmente ril-
evato. Il vento di riferimento, in questo lavoro, è il vento visto dalla turbina, ovvero
quello che effettivamente colpisce il rotore. Dunque con questo programma, definite
due fasi da considerare come riferimento di vento congelato, un agente sulla turbina
l’altro è la condizione all’infinito, si ha la possibilità di generare una terza storia di
vento turbolento, da considerarsi scongelato. In particolare bisogna sottolineare il
fatto che un vento turbolento è funzione dell’Intensità Turbolenta, che è stata scelta
uguale al 16%, corrispondente alla turbolenza di tipo A (Normativa). L’intensità tur-
bolenta definisce la deviazione standard della velocità longitudinale, mentre il modello
e le dimensioni della turbina definiscono la scala di lunghezza integrale di turbolenza.
Quindi una volta definiti questi parametri fondamentali per la ricostruzione dello spet-
tro è stato sviluppato il programma che permette di generare un vento turbolento, che
soddisfi le richieste della Normativa, seguendo la teoria di Veers, [23].

LiDAR
Lo scopo di questa tesi è capire i possibili vataggi nell’utilizzo di un LiDAR che scan-
sioni un campo di vento scongelato da uno che scansioni un campo di vento congelato
secondo l’ipotesi di Taylor. Per questo motivo vengo distinti nella seguente trattazione
due tipi di LiDAR, uno scongelato e uno congelato, le operazioni eseguite da entrambi
sono le stesse, cambiano però i campi di moto che cercano di rilevare. Il LiDAR
definito scongelato si differenzia da quello congelato in quanto le informazione che
utilizzano, gli input, sono diverse. Il LiDAR congelato può utilizzare la storia di vento
temporale ottenuta mediante il codice open source TurbSim, come se stesse osser-
vando una storia di vento spaziale, dove la terza dimensione non è più il tempo ma la
distanza longitudinale tra il punto di rilevamento del LiDAR e la turbina, questo grazie
alla già citata Ipotesi di Taylor. È proprio questa approssimazione che si sta cercando
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di rilassare con il LiDAR scongelato. Prima di descrivere le informazioni necessarie
per il LiDAR scongelato è utile definire le operazioni che il LiDAR, qualsiasi esso sia,
attua.

Il LiDAR è un sensore ottico che viene abitualmente montato sulla gondola della
turbina e che emette un fascio di luce, o un laser (LASAR), che attraversando l’aria
viene riflesso dalle piccole particelle che vi sono sospese, come sabbia, piccole gocce
d’acqua e polline. Poichè queste particelle vengono trasportate dal vento la loro ve-
locità è una buona approssimazione di quella del vento stesso. Il sensore è in grado di
focalizzarsi ad una certa distanza e fornire una serie di misurazioni ad una determinata
frequenza. La strategia di scansionamento del LiDAR prevede la rivoluzione del laser
stesso secondo uno schema predefinito, solitamente circolare, in modo tale da eviden-
ziare un volume. L’output del LiDAR quindi rappresenta la media volumetrica tra tutte
le velcità rilevate dal laser sul contorno del volume ottenuto. Come detto il laser è in
grado di focalizzarsi in punti ad una certa distanza dalla turbina, chiamati appunto Fo-
cus. La velocità di questi particolari punti non viene rilevata dal LiDAR puntalmente,
perchè in tal caso non fornirebbe una misurazione precisa, ma viene fornita mediando,
secondo la funzione di Lorentz, la velocità di 101 punti scansionati in un rage di +/−
30 m dal focus stesso. Ogni punto così determinato fa parte del perimetro descritto
dalla rivoluzione del laser stesso. Quindi compiuta la prima media pesata con la fun-
zione di Lorentz, la seconda viene eseguita tra tutti i punti che costituiscono lo schema
di rivoluzione del laser, ottenendo così un unico valore per ogni distanza focale. Infine
l’ultima media fornisce il valore di velocità mediata appunto tra i valori ottenuti in
precedenza (uno per ogni focus). Di conseguenza l’informazione finale che il LiDAR
fornisce è un valore di velocità per ogni istante di tempo.

Il LiDAR sviluppato dal gruppo di ricerca POLI-Wind è costituito da una frequenza
di campionamento di 5 Hz, il che vuol dire che il laser impiega 0.2 secondi a spostarsi
tra un punto di rilevamento dello schema ad un altro. Il percorso, quindi lo schema,
definito dal LiDAR è circolare con 12 stop sulla circonferenza, il che significa che
il LiDAR impiega 2.4 secondi a completare un giro. L’output del LiDAR fornisce
un valore di velocità ogni 0.2 secondi, e non ogni 2.4 secondi. Questo significa che
l’aggiornamento dello schema di rivoluzione del LiDAR viene eseguito ogni 0.2 sec-
ondi, di conseguenza tutti i punti di rilevamento dello schema vengono aggiornati ogni
2.4 secondi. Il numero di focus considerati sono 5, quindi vengo definite 5 distanze fo-
cali in funzione del diametro del rotore (da 0.5 diametri a 1.5 diametri). Ne consegue
che i punti di campionamento per ottimizzare la pesatura alla Lorentz sono 505 per
ogni stop sulla circonferenza. La dimensione della circonferenza descritta nell’ultima
distanza focale è pari alla dimensione del rotore stesso.

Come accennato in precedenza l’input di un LiDAR congelato è radicalmente di-
verso da quello LiDAR scongelato, grazie all’ipotesi di Taylor. Un LiDAR scongelato
deve necessariamente avere come input 505 storie di vento scongelate, una per ogni
punto di rilevamento longitudinale lungo tutto il campo di moto di fronte alla turbina.
Ne consegue che dato un vento di riferimento, ovvero il vento agente sul rotore, me-
diante i programmi precedentemente descritti si sono create le 505 storie di vento
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scongelate una per ogni distanza dei punti di misura del LiDAR. Generate le storie di
vento scongelato vengo dunque usate come input del LiDAR.

Risultati
Il sistema di simulazioni implementato è stato strutturato in modo tale da soddisfare
la Normativa. Quindi ogni simulazione eseguita per ciascuna tipologia di controllo, è
stata mediata con almeno 4 simulazioni riferite a 4 storie di vento diverse, in modo tale
da ottenere un risultato statistico corretto. Le quattro storie di vento forniscono la base
per le simulazioni riferite a controllori predittivi equipaggiati con LiDAR scongelato,
in quanto queste storie forniscono il primo seme di turbolenza, quello che successiva-
mente verrà considerato fisso. Per soddisfare la Normativa la simulazione riferita ad
un qualsiasi controllore predittivo equipaggiato con un LiDAR scongelato necessita di
essere mediata con i risultati di almeno 16 simulazioni, in quanto si deve considerare
4 simulazioni per il primo seme, e 4 simulazioni riferite al secondo seme per ciascun
primo seme fissato in precedenza. Un riassunto delle simulazioni eseguite lo si può
trovare in tabella 4.3.

I parametri che si utilizzano per attuare un confronto diretto tra i vari controlli
sono: la fatica riferita al momento flettente agente sul fore-aft della torre, la deviazione
standard della velocità angolare e la deviazione standard della potenza.

I risultati ottenuti sono notevoli, i controllori predittivi sono decisamente conve-
nienti in termini di fatica e di deviazione standard della potenza, ma non solo, anche
in termini di deviazione standard della velocità angolare si sono ottenuti dei risultati
eccellenti. Questo andamento lo si può notare attraverso i risultati mostrati nelle figure
4.2, 4.4, 4.3, 4.5, 4.7, 4.6. In particolare si può evidenziare come la strategia di con-
trollo in regione II limiti il vantaggio dei controlli predittivi in termini di fatica, questo
perché la strategia di controllo in questa regione è determinata da una strategia a passo
bloccato, quindi senza nessun tipo di attuazione attiva. Un altro elemento che vale la
pena evidenziare è il grafico della deviazione standard della velocità angolare per la
turbina dell’Innwind, 4.6(b). Questo grafico sembra evidenziare un problema da parte
del controllo predittivo NHLQR, avendo in regione III dei valori di deviazione standard
maggiori rispetto a quelli del normale LQR. Invece osservando il grafico 4.6(a) si può
notare come tali differenze in termini percentuali siano davvero minime. Questo prob-
lema non è dipeso da un mal funzionamento in tale regione del controllore NHLQR,
ma dal fatto che tale strategia di controllo non è stata completamente ottimizzata in
termini dei guadagni del controllore. L’ottimizzazione della matrice dei guadagni è
una procedura molto laboriosa in quanto i guadagni del controllore dipendendo da una
particolare pesatura scelta dall’utente e che essendo riferita al vettore degli ingressi
prevede diverse combinazioni. La dimensioni del vettore degli ingressi, è utile ricor-
dare, è diversa da uno, trattandosi di controllori multi ingresso multi uscite (MIMO).
Di conseguenza trovare l’esatta combinazione di pesi che permetta un perfetto quadro
di risultati è molto complicato, ne sono un esempio i risultati ottenuti appunto con la
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macchina di Innwind.
Un altro risultato importante da sottolineare è quello riguardante la potenza, infatti

i controlli predittivi dimostrano di raggiungere una migliore Power Quality.
Infine va sottolineato il comportamento dei controlli predittivi equipaggiati con un

LiDAR scongelato. I loro risultati sono comunque notevoli in confronto ad un sem-
plice controllore in feedback. Al contrario se tali risultati li confrontiamo con quelli
ottenuti mediante LiDAR congelato, quello che possiamo osservare è un andamento
piuttosto simile, in alcuni casi identico. Questo implica che il scansionamento di un
campo di vento scongelato rispetto un campo di vento congelato da parte del LiDAR
non comporta sostanziali miglioramenti.

Conclusioni e Ulteriori Sviluppi
Lo scopo di questo lavoro è stato quello di analizzare la possibilità di eventuali miglio-
ramenti nell’utilizzo di un LiDAR capace di scansionare un campo di vento sconge-
lato, come sensore per fornire l’informazione in feed-forward al controllore di tipo
predittivo. Inoltre sono stati verificati i notevoli miglioramenti indotti dall’utilizzo
di controlli predittivo al posto di semplici controlli in feed-back. Come descritto nel
capitolo 3 il LiDAR definito scongelato neccessita come input un campo di vento scon-
gelato. La teoria alla base del scongelamento di un campo di moto è stata sviluppata
da Kirstensen, e avviene mediante un modello matematico che permette di scongelare
la turbolenza dato come ingresso la velocità media del vento e la distanza tra il punto
da scongelare e il punto di riferimento. Questo modello, inizialmente non legato al
sensore LiDAR, è stato sviluppato negli anni ’70 dello scorso secolo, dunque larga-
mente verificato. È un modello semi-empirico ed è strettamente correlato al modello
di turbolenza che si vuole scegliere, quindi tipo di spettro, intensità di turbolenza, e
scala di lunghezza integrale di turbolenza. Il modello fornisce dunque un valore di
coerenza in funzione della frequenza, questo valore è utile per determinare il passag-
gio da una storia di vento ad un’altra, determinando dunque un terzo vento definito
appunto scongelato. Solo recentemente si è voluto potenziare il sensore LiDAR con-
gelato con questo modello matematico rendendolo appunto scongelato, cioè in grado
di rilevare un campo di vento scongelato. Questo perché si è sentita la necessità di
migliorare l’informazione fornita al controllore predittivo nella speranza di migliorare
ulteriormente le sue prestazioni. Questo in linea teorica dovrebbe essere vero, ciò però
che si è verificato con questo lavoro è qualcosa di diverso.

Sono state confermate le ottime prestazioni dei controlli predittivi, verificandoli
con turbine reali di diversa grandezza e produzione di energia. Si è compreso dunque
che l’utilizzo dei controlli predittivi possa diminuire in modo significativo i costi che
comportano la produzione e la manutenzione della macchina. Questo perché come
ben si può notare dai grafici riportati nel capitolo 4 la fatica riferita al carico agente
sul fore-aft della torre si riduce sensibilmente rispetto ad un basilare controllo LQR-
integral. Anche se entrambe le tipologie di controllo danno risultati più che vantaggiosi
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in termini di deviazione standard della velocità angolare, il che sta a significare un
pregio per entrambi i controllori, la deviazione standard della potenza è molto bassa
per quanto riguarda un controllore predittivo, il che sta a significare una Power Quality
decisamente migliore.

Per quanto riguarda invece il caso in cui si utilizzi un controllore predittivo equipag-
giato di un LiDAR scongelato i risultati ottenuti sono comunque notevoli, nel senso
che sono nettamente migliori rispetto ad un basilare LQR. Ci si aspettava però risul-
tati migliori rispetto anche ad un controllo predittivo di tipo congelato. Ciò non è
avvenuto, i risultati, che come già detto sono mediati tra 4 differenti simulazioni per
soddisfare le richieste della normativa, sono pressoché identici a quelli ottenuti me-
diante simulazione congelata. Dunque non si è ottenuto un sensibile miglioramento.
Questo perché proprio per la natura del modello matematico che scongela la turbolenza
con i parametri in ingresso considerati, dipendenti dalla turbina e dall’intensità turbo-
lenta, forniscono un output del LiDAR non così diverso dal modello congelato. Ciò è
dipeso dal fatto che come sostenuto nel capitolo 3 le distanze dei focus dalla turbina
non sono così enormi rispetto alle scale di lunghezza integrali in gioco nel modello.
Di conseguenza il parametro di decadimento della turbolenza non è così elevato da
produrre due segnali LiDAR totalmente differenti. Inoltre si può anche sottolineare
il fatto che le piccole variazione che sussistono tra un modello di LiDAR e l’altro in
termini di output una volta lette dal controllore possono venir livellate. Questo perché
il controllore predittivo in generale è stato costruito su un modello approssimato di
conseguenza c’è il rischio che agisca come filtro rispetto ad alcune perturbazioni.

In conclusione il controllo predittivo è la direzione giusta per dare un contributo
considerevole alla diminuzione dei costi che riguardano la turbina eolica. Per quanto
riguarda il LiDAR scongelato, per il momento sembra non dare i risultati sperati, o
comunque quel considerevole miglioramento che giustifichi il costo della simulazione
rispetto ad un LiDAR congelato.

Per il momento uno sviluppo futuro sul LiDAR scongelato non è contemplato.
Solo di recente si è iniziato a raccogliere i primi dati sperimentali, da campagne su
turbine reali equipaggiate con un LiDAR, ciò comporterà sicuramente la possibilità di
validare il codice di scongelamento della turbolenza e la verifica del modello semi-
empirico. Nel momento in cui tale modello viene raffinato e nel caso in cui fornisca
valori considerevolmente migliori rispetto ad un sensore che scansiona un campo di
vento congelato esso potrà allora essere preso in considerazione.

Per quanto riguarda in generale il sensore LiDAR esso momentaneamente è stato
applicato solo per controllori predittivi a passo collettivo, ciò ovviamente può es-
sere esteso alle altre tipologie di controllore. Infatti prendendo in considerazione un
controllore a passo individuale l’informazione del LiDAR così come viene calcolata
ora non ha alcun valore. Ma potendo utilizzare una coppia di LiDAR o semplice-
mente cambiando la medie volumetriche che vengono attuate oggigiorno dal LiDAR si
potrebbe fornire delle informazioni utili per un controllore a passo individuale. Un es-
empio delle potenzialità del LiDAR è quello di poter fornire delle velocità per settore,
o di fornire in generale il wind shear orizzonatale e verticale, ovviamente cambiando
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lo schema percorso durante il campionamento e le modalità di medie.
Un altro aspetto su cui si può lavorare è migliorare il processo di definizione della

pesatura del controllo. Uno dei passaggi più impegnativi in termini di tempo è stato
quello del settaggio appunto dei pesi in gioco per ottimizzare la matrice dei guadagni.
Un progetto futuro potrebbe riguardare lo sviluppo di un codice di ottimizzazione di
tali pesi, in modo tale da garantire dei buoni risultati in termini di tempo ragionevoli.
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Chapter 1

Introduction

Nowadays the energetic resource is an important issue. The purpose of many univer-
sities is to revolutionize the idea of energy production. This goal arises due to a new
environmentalist vision of mankind, that wants to reduce the heavy pollution that has
today. Another good reason is that most types of energy production are not renewable.
In fact both coal and oil are bound to end, as well as the raw material of the nuclear
energy. So research is required to solve this issue. In this context is introduced the ex-
ploitation of natural forces to produce energy such as Wind Power. This kind of energy
is called renewable, it’s very important precisely because it’s theoretically infinite and
completely clean.

Renewable energy production has become very important in last few years, but
not enough to satisfy the request. For this reason we need to develop a new concept
of energy mix. We must change the equation of energy production and give more
weight to renewable. To do this, it need to improve the efficiency of renewable energy
production and aim to lower costs. As it can be seen from the document [2], the trend
is just that.

(a) Europe Power Mix 2000 (b) Europe Power Mix 2012

Figure 1.1: Europe Power Mix
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As it can be noticed in Figure 1.1, in Europe, wind power’s share of total installed
power capacity has increased five-fold since 2000; from 2.2% in 2000 to 11.4% in
2012. Over the same period, renewable capacity increased by 51%; from 22.5% in
2000 to 33.9% in 2012. In term of new installations there are three types of energy
production that dominate the market: Solar PV (37%), Wind Power (26.5%) and Gas
(23%). In Figure 1.2 (Data from document [2]) it can be noticed as old methods of
energy production are at the edge of research and new investment.

Figure 1.2: Share of new power capacity installation in Europe

It’s almost 70% of all new installed capacity in EU is linked to renewable sources.
Furthermore, it’s the fifth year running that over 55% of all new power capacity in the
EU is renewable. In particular 31 GW during 2012 have been installed (Figure 1.3).

Figure 1.3: Share of new renewable power capacity installation in Europe
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Not only Europe is interested to revolutionize this field, but it is a goal of many
countries outside Europe. China and United State of America are the most active
countries in this regard, as it can be shown in Figure 1.4

(a) Top 10 new installed capacity in 2012 (b) Top 10 new cumulative capacity in 2012

Figure 1.4: Top 10 new installed and cumulative capacity in 2012

It’s interesting to notice that China is one of the major countries that installed more
MW of wind turbine, data from [1]. Though in 2009 this country seems to hasn’t
reached adequate level of energetic mix, Figure 1.5 (data from document [3]). In facts,
the energy is produced from coal still has a primary role.

(a) Share of total primary energy supply in
2009

(b) Energy production from 1971 to 2009

Figure 1.5: China statistic data of energy production in 2009

After the analysis of these data, it is important to emphasize that the investment on
renewable energy is steadily increasing. Primary purpose of Research centers, univer-
sities, and energy companies is the continuous improvement of this technology, thus
giving a primary role to renewable in the energy mix.
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1.1 Wind Power
The wind power is the new way to covert energy in the last thirty years, and most
important is one of new so-called renewable and clean energy. This kind of energy
is very important because it does not produce greenhouse gases during operations,
unlike energy linked to fossil fuels and oil. There are pollutant gases emissions only
in machine production phase. Then during machine operating life it is produced clean
electric power by a natural event: Wind. One of the defects that are associated to
production energy through Wind Power is linked to wind turbines size. The landscape
pollution is relevant, but is not different with whatever power station (hydroelectric,
coal and nuclear power plant). However at the end of wind turbine operating life it is
possible to remove the device and the landscape returns as it was before. This is not
the case when traditional plants are removed

Exploitation of the wind power is not a XXI century discovery, in fact windmills
have been exploited for more than two thousand years. Clearly the windmills role was
totally different in comparison to modern wind turbine. They were less efficient, and in
particular they produced mechanical energy and did not storage electric power. Only
with modern era and its technology the windmills idea is evolved towards the wind
turbine concept.

(a) Windmill (b) Wind Turbine

Figure 1.6: Types of Exploitation of Wind Power

This exponential growth of efficiency, due to an increasing interest by research
centers, led wind energy to a more central role. During 2012, 12744 MW of wind
power were installed across the Europe, of which 11895 MW were in the Europe
Union (EU). Among its countries, the largest effort has been made by Germany (2415
MW), followed by UK and Italy, as it can be noticed in Figure 1.7 (data from document
[2]).
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Figure 1.7: EU member state market shares for new capacity installed during 2012 in
MW

To understand the weight of wind power it is interesting to observe that the wind
capacity installed at end 2012 will, in a normal wind year, produce 231 TWh of elec-
tricity, that value representing 7% of the EU’s gross final consumption. Denmark is
the most virtuous country (Figure 1.8), which is occasionally able to meets its internal
demand with only wind power.

Figure 1.8: Wind power shear of total electricity consumption in EU and in member
states
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It’s important to emphasize that only certain areas can be protagonists for this new
frontier of energy production. In facts, the installation of wind turbine, or the design
of wind farm, are closely linked to the presence on territory of high wind indices. This
reason, combined with internal politics requirements moved the interest towards off-
shore turbines. Because the annual wind presence is most relevant and because they
are considered less pollutants to an environmental point of view.

1.2 Contributions of the present thesis
The purpose of this research is to improve the role of wind power in the energetic
mix equation. To do that the main aim is to reduce the costs of wind energy. In
particular there are three different types of cost: maintenance costs, production costs
and power cost that depends on conversion efficiency of machine. In practical terms
some performance indexes have been selected which are strictly bound to these cost
components, like for instance the Fore-aft load, My (Figure 1.9), the standard deviation
of power and the standard deviation of angular velocity. The first has an impact on the
design and production cost of the tower, while the others are relevant under the power
quality profile. Control laws are pivotal in driving this indexes, and hence it makes
sense study sophisticated control strategies able to improve these indexes.

We have analyzed the possible advantages of using predictive control systems, and
possible solutions to improve them. Nowadays all installed turbines are provided with
a simple feed-back controller and this implies that the real control system is usually
rather basic and underperforming on the quantities of interest. The greatest efforts in
this area are concerned with a virtual development of new control techniques, which
allow to reduce forces imposed on the turbine. This is possible thanks to the presence
of virtual environments developed by different research centers that allow a realistic
simulation, such as Cp-Lambda [27] [28] [8], Bladed [29], FAST [30]. In particular,
recent works are addressed to innovative wind turbine control architectures able to treat
a information about the incoming wind [4]. The latter is provided by the technology
of a new sensor: the LiDAR (Light Detection And Ranging). A measure of the wind
ahead of the rotor for each time instant is obtained by LiDAR with a volumetric mean
of the wind field as will be explained in later chapters.

The a particular averaging action carried out by the real LiDAR sensor on the local
wind speed of the free stream has a impact on the behavior of any predictive control
laws. To suitably assess the performance of LiDAR and control assembly in simulation
environment, it is necessary a virtual model of the LiDAR sensor. Today the majority
of the existing LiDAR simulator is based on Taylor’s frozen turbulence hypothesis.

The most important contribution of this work is to improve the information ob-
tained by LiDAR sensor. Nowadays LiDAR technology is the state of the art of the
predictive control, and it provides a frozen velocity input to the controller. It detects a
set of wind grids in front of the turbine at specified distances, and it provides the av-
erage information without considering the fact that it will not be the same which will
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(a) Skecth of tower coordinate system and the
moments acting on tower

(b) Sketch of the main rigid movements of the
system

Figure 1.9: Sketch of tower coordinate system, its main rigid movements and moments
acting on the tower

hit the turbine. Therefore recent works to setting up a model that allows to unfreeze
the turbulence and to investigate the exact flow filed. The work is inserted in this re-
search context. A new LIDAR simulator is developed considering interface with the
available controller, this sensor is able to detect an unfrozen wind field in front of the
turbine, the differences from the previous model do not concern the LiDAR operations
but only the input that needs to detect an unfrozen wind field. In the following will be
considered Unfrozen LiDAR, a LiDAR able to detect an unfrozen wind field, instead a
Frozen LiDAR a LiDAR based on Taylor Hypothesis then able to detect a frozen wind
field. For this purpose a new wind model generator is implemented, that it is able to
unfreeze the turbulence. Then the frozen LiDAR model is reviewed and improved.
In particular the implementation aspect has a fundamental role, because a model able
to unfreeze the turbulence, may present numerical issues in terms of time simulation
and data storage. In last chapter a full comparison between several control strategies
working in conjunction with frozen or unfrozen turbulence is presented.

For completeness the study is carried out on two turbines of completely different
sizes. One is the Kangwon, 3MW turbine with rotor diameter of 93 m, and the other
is the Inwind machine, 10MW turbine with rotor diameter of 180 m. Afterwards the
results are compared. Clearly the results reported here in will be dimensionless as they
relate to real machines for which the design data are covered by industrial secrecy.

1.3 Outline
This work is developed in three phases:
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• Chapter 2: In this chapter there is an exhaustive description of main character-
istics of available tools and devices, in particular the state of the art of wind tur-
bines, their characteristics, their different controllers and LiDAR sensors, then
the description of the simulation software. The purpose of this section is to
emphasize the difference between a feed-back and a feed-forward controller, be-
cause this is considered to be useful for the understanding of the work done.

• Chapter 3: This is the core of the research work. In this chapter there is a de-
tailed description of different unfrozen turbulence models and how they are im-
plemented and how they are included in the overall research work of the Depart-
ment of Aerospace Sciences and Technologies of Politecnico di Milano (DAST-
Polimi). Once the models are described, it follows a description of how they
modified the turbulent wind generated and how a new turbulent wind generator
is implemented, associating it with a code that complies with the requirements,
TurbSim [25]. The last section of this chapter is centered on the explanation of
the implementation aspects to ensure reasonable efficiency, in term of simulation
time and data storage.

• Chapter 4: This chapter focuses on a description of simulations performed and
on the comparison between their results. In particular there are some details of
the wind turbines that we use.



Chapter 2

Wind Turbine

A wind turbine is a plant able to extract power from wind and transform it into electric
power. The distinction between different types of wind turbine depends on how it work
to extract wind power. There are mainly two types of machines that are distinguished
by the direction of the rotation axis of the main rotor:

• Horizontal-axis: This type of machine can reach larger size and produces a
greater amount of power. As it can be noted in Figure 2.1, the electric power,
that can be extracted from turbulent wind, depends directly on the size of the tur-
bine. Nowadays the largest wind turbine installed is a 7.5 MW turbine, having a
rotor diameter of 126 m.

• Vertical-axis: This type of machine is less bulky, and usually smaller than a
horizontal-axis wind turbine. Its typical feature is that it can be installed in sites
where the wind direction is unstable and unknown. The main problem is that it
produces less electrical power than a typical horizontal-axis wind turbine.

Figure 2.1: Comparison between size and power produced by wind turbine
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Figure 2.2: Sketch of upwind horizontal axis wind turbine components

2.1 General aspects
This work is concerned on horizontal-axis wind turbines, which, in a typical configura-
tion show a three bladed rotor connected to the hub. Usually blades are constructed of
carbon or glass fiber. The weight of main rotor, which includes blades and hub, is vari-
able, depending on the material that is used and on size of the blades. For a 2-3 MW
turbine and 40 m blade length, the weight of the rotor is 40-50 tons. The hub rotor can
reach very high weight because it is made entirely of steel, it is approximately 20 tons,
almost a half of the entire weight of the rotor. All electric components are mounted
into a structural element at the top of tower, which is called nacelle. It usually includes
the low speed shaft, the high speed shaft, the gear box or drivetrain and the electric
generator. A sketch of an upwind wind turbine can be seen in Figure 2.2.

The power associated to the flow, can be expressed with Eq. (2.1)

Pw =
1
2
ρAU2

w (2.1)

Where Uw is the mean wind speed vector, A is the cross section of the stream tube
normal to average wind speed vector Uw and ρ is the density of air. If we consider a
wind turbine with rotor area Ar, the extracted power can be defined by Eq. (2.2)

Paero =
1
2
ρArU2

wCp (2.2)

In particular it can be seen in Eq. (2.2) the introduction of a new factor Cp. It
is a turbine power coefficient that depends on tip-speed ratio, λTS R = ΩR

Uw
where Ω

is the rotational speed of rotor, and on collective blades pitch β. The ability of a
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Figure 2.3: Chart of Cp trend, in function of λ and β. Sketch of different regions and
its strategies

turbine to extract power from wind is defined by this factor, which has a theoretical
limit defined by Betz limit, Ctheor

p ≈ 0.59. This represents an aerodynamic limit that
can’t be reached by any type of machine, in fact nowadays a typical turbine power
coefficient is Creal

p ≈ 0.5 at its maximum. However the real output of power is reduced
by mechanical and electrical losses (ηm,ηel), then it can be defined as in Eq. (2.3).

Poutput = ηmηelPaero (2.3)

A typical control strategy is defined to keep an optimal efficiency for each wind
value, in order to extract as much power as possible. A design parameter is the rated
power value, PR, that depends on the electrical grid, and on considerations about the
wind Weibull curve. Instead the rated wind value, UR

w, is defined by PR and by Eq.
(2.2), where Cp is completely defined by the structural model of the wind turbine, and
depends on collective pitch, β and λTS R. Once defined UR

w, the control strategy can be
splitted into two regions:

• Region II: This region is defined by a Uw less than UR
w. The consequence is that

the PR is not reached. The goal is to work with the Cmax
p maximum, to extract

a greatest possible power. In this region the controller tries to maintain λTS R as
close as possible to λTS R of Cmax

p , lowering Ω and maintaining a constant col-
lective pitch as the wind speed grows. In terms of the speed, the region extends
from Ucut−in to UR

w.

• Region III: This region is defined by a Uw higher than UR
w. Then PR is always

reached. The goal of the controller is to maintain this value of rated power, then
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Figure 2.4: Example of LiDAR measuring hub-height windspeed

to do this it needs to work with the collective pitch and TS R, and maintain-
ing a constant Ω, that is the rated rotor speed, ΩR. The most effective control
strategy makes use of actively controlled pitch actuators (there exist other more
basic types of control, like stall-regulation control and the tilt-regulation control,
which are not considered in this work). In terms of the speed, the region extends
from UR

w to Ucut−out.

.
This classification is the ideal case, but in most installations we must consider the

noise limit as a project parameter. This implies that the ΩR must be lower than the ideal
case. Then between Region II and Region III a new region arises, called Region II 1

2 ,
where ΩR is already reached but PR is not. Since Ω is locked, the control strategy must
compensate a variable TSR with an adjustment of pitch. This way, it is still possible
to work with Cp values very close to the maximum. To better understand what we just
explained it is useful to see Figure 2.3.

2.2 Control Techniques for Wind Turbines
This work explores three different control approaches. The first of these is the basic,
non predictive LQR-integral, and it is used as reference. The others are two types of
predictive control, that are to be tested. In particular the greatest difference between
LQR-integral and predictive control, is that these last mentioned are feed-forward con-
trollers. In fact wind information is used by these controllers to prepare the machine
to an incoming wind event, e.g. a wind gust or a change in the average wind speed,
Figure 2.4.

The improvement of the predictive controller with respect to the reference is that
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the wind information not derived from an anemometer behind the rotor, but it’s derived
from a laser sensor placed on the hub. This technology, called LiDAR, scans the
wind field in front of the turbine and provides a volumetric mean of the wind speed.
Therefore the predictive control has access to an information on the wind before the
same wind hit the turbine.

A quick description of the controllers is presented in the next sections. The intent
is not to explain the implementation details of control method, but simply its main
corresponding features. A more detailed description can be found in the reference [4],
[32], [5], [6], [7].

2.2.1 LiDAR Techonology
The incoming wind information is a natural and perfect input for a predictive control
law. Recent studies have led to a refinement of the technique able to detect the wind
in front of the turbine. This technology is called LiDAR and usually placed on top of
the tower, into the nacelle. The detection system uses a laser beam to hit some water
or dust particles in the air in front of the turbine transported by the wind flow, and
capturing their reflections, it is able to provide a detailed spatial description of the wind
velocity field. Nowadays there are several experiments on real machines of different
sizes, and the first results are encouraging in terms of the punctual reconstruction of
the wind field. Clearly this is a recent technology, then in parallel to experiments in
real environment, this sensor is also developing in different virtual simulators. For
a comprehensive description of the topic see the references [4], [5], [10] and [9], in
this section we discuss the main themes useful to understand this work and the next
chapter.

In general a LiDAR simulator is developed to analyze a discrete wind field, Figure
2.5. The output of the LiDAR is a wind time series characterized by only one value of
wind speed for time step. This value is obtained by a complex volumetric mean at each
time instant. The volumetric mean is characterized by three spatial averages and one
spatial interpolation. Clearly the laser beam does not intersect the exact point of the
wind grid that represents the value of wind velocity in that spatial region. Therefore
each point that it should be detected by laser beam, it is obtained by the first spatial
interpolation between the four values of wind speed that surround it. The first mean
is based on a series of data collected by the laser beam, this data are broken down by
the number of focus that are considered, and for each focus there are several values
as reference. This because the LiDAR can not detect the velocity of only one point,
but to provide a exact value it must detect several values around it. After collecting at
least 100 values for each focus a first mean is implemented, as explained after, with
the Lorentz function. The laser beam follows an imposed pattern, which is split into
multiple detection points. After the LiDAR detects each pattern sectors, the average is
computed between these points. Therefore the output of the second average for each
focus is provided. The last step of the volumetric mean is a simple average between
the values of each focus at each time instant.
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Figure 2.5: Sketch of the LiDAR sensor and the main characteristics of the detection
system. In the first sketch it is represents the laser beam, each pattern focus and each
detection point of LiDAR. In the second sketch it is shown the sampling range in light
blue.

Table 2.1: Main characteristics of the focuses

Focus Distance to WT Pattern Diameter
1 0.5 D 1/3 D
2 0.75 D 1/2 D
3 1 D 2/3 D
4 1.25 D 5/6 D
5 1.5 D 1 D

The LiDAR simulator developed by DAST-Polimi has 5 Hz as sampling frequency,
that means 0.2 sec per beam position. The pattern, that is used, is a circle with 12 stops,
then with step of 30 degrees. Therefore the laser beam completes the circle in 2.4 sec.
The number of focus that is considered is five, only constraint that is imposed is the
size of the last circle. In fact the circle diameter of last focus is equal to the turbine
diameter. The latter data requires the inclination of the laser beam with respect to the
longitudinal axis, which is perpendicular to the rotor. Therefore every circle diameter
for each focus is determined. The main characteristics of the focuses can be noticed in
Table 2.1.

A simple representation of a basic LiDAR structure can be seen in Figure 2.5,
where w indicates the rotation speed of the sensor with counterclockwise direction.
As it is explained in reference [4], [5] and [9], the sensor doesn’t detect the particles
velocity only in the focal points, because this procedure can introduce a large error
in the prediction of incoming wind. Then the sensor records 101 speed values in 60
meters of range (in Figure 2.5 this range is indicated as D) centered on each focal
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Figure 2.6: Simulation of LiDAR measurement at focal point: the measure is a
weighted integral of the speed of 100 points within 60m centered on the focal point

point. After that, a weighted average is performed between these values, obtaining
twelve speed values for each focal point. The weighing function can be based on the
usual Lorentz profile (Figure 2.6), Eq. (2.4).

w(x, xs) =
e−4ln2( x−xs

W )2∫ ∞
∞

e−4ln2( x−xs
W )2dx

=
2ln2e−4ln2( x−xs

W )2

W
√

ln2(π)
(2.4)

Where xs is the designated focal distance ahead of the rotor, and the parameter W
defines the span of the weighting function.

As described above after the LiDAR completes the first rotation, then after it
has collected the first tranche of twelve values, it starts with the second average be-
tween these. An important characteristic of the LiDAR simulator developed by DAST-
Polimi, is that this second average it is updated after each sampling instant of the
LiDAR and not after each rotation of laser beam. The consequence of this peculiar-
ity is that the LiDAR provides a value of wind speed for each sampling instant of
the LiDAR, 0.2 sec, and not for each time rotation, 2.4 sec. Finally the last average
is computed between the five values obtained from the second average, one for each
focus.

In particular the wind value seen from the turbine is also a time series and it can be
expressed by Eq. (2.5)

Uw(t) =
1
5

5∑
n=1

Un(t − tPreviewn) (2.5)

Where tPreviewn is a ’time-shifted’ according to Taylor’s frozen turbulence hypothe-
sis, and it is used to compute the correct average.
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(c) Wind Speed = 21
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(d) Wind Speed = 25

Figure 2.7: Comparison between Output LiDAR and wind grid average for each time
instant

To verified the goodness of the output of the LiDAR simulator a comparison be-
tween it and simple average of discrete wind grid at each time instant is computed.
The discrete wind grid as a function of time is obtained by using TurbSim code. The
comparison is can be seen in Figure 2.7, for several speed simulation. It can be noticed
that the difference between the these two signals is very low.

2.2.2 Linear Quadratic Regulator

The reduced model which is used for the synthesis of the LQR, can be seen in Figure
2.8. The considered set of states is composed by the fore-aft displacement of the
tower head, d, and its time derivative ḋ; the rotor rotational speed Ω that it’s measured
on the low speed shaft; the measured pitch angle βe and its time derivative β̇e; and
the measured generator torque Tele . The red arrows are the components of the input
array: collective pitch βc and electric torque Telc . Fa and Ma are the aerodynamic
loads considered in this reduced model, while Tl is the loss of torque due to effects
of mechanical friction. Finally MT , KT and CT are respectively mass, stiffness and
damping of a second order system modeling the fore-aft dynamics of the tower head,
based on a modal description of the tower dynamics truncated at the first mode.
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Figure 2.8: Scheme of the reduced model considered for the synthesis of the LQR
control law

Therefore the following system of equations can be written for the reduced model:

(JR + JG)Ω̇ + Tl(Ω) + Tele − Ta(Ω, βe,Uw − ḋ,Um) = 0 (2.6a)

MT d̈ + CT ḋ + KT d − Fa(Ω, βe,Uw − ḋ,Um) = 0 (2.6b)

β̈e + 2ζωβ̇e + ω2(βe − βc) = 0 (2.6c)

T̈ele +
1
τ

(Tele − Telc) = 0 (2.6d)

Where second order equation, Eq. (2.6a), are for the rotational dynamics of rotor.
Equation 2.6b is the tower fore-aft dynamic equation. The last two are implemented
to model the dynamics of actuators: a second order equation for pitch actuator and
first order equation for the generator (torque actuator). In particular it can be noticed
the presence of aerodynamic loads Ta and Fa in Eq. (2.6a) and (2.6b) that depend
on several terms. The reason lies in the definition of aerodynamic torque and force
exerted on the rotor:

Ta =
1
2
ρπR3 CPe(λ, βe,Um)

λ
(Uw − ḋ)2 (2.7a)

Fa =
1
2
ρπR2 CFe(λ, βe,Um)

λ
(Uw − ḋ)2 (2.7b)

Where CPe and CFe are non-dimensional torque and force factors, while R is the
radius of rotor. Another term needs clarification: Um is defined as the axial speed
averaged over the rotor and over a suitably large time frame. Therefore the wind
speed can be defined as Uw = Um + ut, ut representing the turbulent fluctuations. The
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aerodynamic thrust force and aerodynamic torque, as tip speed ratio λ, are related to
the square of the actual wind speed seen by the rotor, which is the difference (Uw − ḋ).

The nonlinear reduced model, described by Eq. (2.6), can be easily linearized for a
given equilibrium condition, defined by a given state and input set point corresponding
to an assigned value of the wind speed U∗m. In analytical terms, a trim condition is
defined by a reference {x∗,u∗,U∗m}, the turbulent fluctuation having been set to zero,
ut = 0. Therefore the nonlinear system can be rewritten in the form

ẋ = f(x,u,Um) (2.8)

where:

• State array: x = (d, ḋ,Ω, βe, β̇e,Tele)
T

• Input array: u = (βc),Telc

Then this can be linearized to give a form like

∆ẋ = A(x,u,Um)∆x + B(x,u,Um)∆u (2.9)

where:

• ∆x = x − x∗

• ∆u = u − u∗

Notice that in practice the linearization can be completed following a differentia-
tion of the system 2.6. To identify the actual values of the coefficients of the A and B
matrices it is possible the use of a simulator like Cp − Lambda. In fact to know these
matrix coefficients it is necessary to know the derivatives ∂CTe

∂x ,∂CTe
∂u , where the torque

coefficient CTe is by definition CTe =
CPe
λ

, and similar derivatives for CFe . These coef-
ficients are computed as punctual functions of λ and βe from Cp − Lambda, therefore
these derivatives can be calculated numerically.

The linearization is performed for a given value of Um. This represents a parameter
of the linearization, which must cover the entire length of the wind field (from Ucut−in

to Ucut−out).
After this the linearized system can be rewritten as

∆ẋ = A(Um)∆x + B(Um)∆u (2.10)

The theory behind the LQR design is based on the cost function minimization
over an infinite time horizon, imposing the dynamics of the linearized system as a
constraint.

J =
1
2

∫ ∞

0
(∆xT Q∆x + (∆uT R∆u))dt (2.11)
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With this cost function and this shape of the linearized system, the optimal control
solution can be obtained in closed form for a given Um as

∆u = −R−1BT P∆x (2.12a)

PA + AT P − PRP + Q = 0 (2.12b)

R = BR−1BT (2.12c)

where P is matrix that solves the algebraic Riccati equation, Eq. (2.12b). While,
in Eq. (2.12a), R−1BTP can be considered as a unique gain matrix, which is called
K. Since the value of Um is equal to the value provided from the anemometer placed
on the nacelle (Uw), filtered by the turbulent component (ut), it is possible to find the
control input as

u = −K(Um)(x − x∗(Um)) + u∗(Um) (2.13)

The reduced model cit, although rather complete and complex, is an approximation
of the reality. It is useful in some cases to use an augmented model, represented by
control LQR-integral, find more details in [4]. The new state includes in addition to
the old parameters also one integral, as defined

∫
Ωdt. Therefore the new augmented

state is xaug = (d, ḋ,Ω, βe, β̇e,Tele ,
∫

Ωdt); while the new linearized state equation can
be written as

∆ẋaug = Aaug(x∗,u∗,U∗m)∆xaug + Baug(x∗,u∗,U∗m)∆uaug (2.14)

where:

Aaug(x∗,u∗,U∗m) =


A(x∗,u∗,U∗m)



0
0
0
0
0
0

[
0 0 1 0 0 0

]
0


(2.15)

and

Baug(x∗,u∗,U∗m) =

[
B(x∗,u∗,U∗m)[

0 0
] ]

(2.16)

The LQR accounting for a integral state allows a better control performance on the
rotational speed, both in deterministic and especially turbulent conditions.
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2.2.3 Predictive Controllers
The type of control described above has a small defect: the wind information, that is
used by controller, is provided by an anemometer placed behind the rotor. Therefore
the value of Uw, that is detected by the measuring device, is referred to a wind history
that has already passed through the rotor. Also we must consider other two issues, the
amount of time to read the information, and the control action to react to it.

Therefore the LQR control is from the start less performing, as it has no access to
any predictive information. One way to solve this problem is to design a control that
can use wind information measured at a certain distance from the turbine. The tech-
nology that allows to predict the incoming wind is the LiDAR sensor (Light Detection
And Ranging). The predictive taken into account for this work are Non-Homogeneous
LQR (NHLQR) and Receding Horizon Control (RHC).

Receding Horizon Control

The basic idea behind the RHC control is that of solving a cost function optimization
problem on a finite time window instead of considering an infinite window. The new
cost function may be defined as

J =
1
2

(
∆xT (T f )Q f ∆x(T f ) +

∫ T f

0
(∆xT Q∆x + ∆uT R∆u)dt

)
(2.17)

and its minimization is subjected to the dynamics system that may be defined as

∆ẋ = A(x∗,u∗,U∗m)∆x + B(x∗,u∗,U∗m)∆u + G(x∗,u∗,U∗m)∆ω (2.18)

where x∗ and u∗ are respectively the states and controls array at the trim point of
wind speed U∗m. Meantime ∆ω = ω − ω∗ = Uw − U∗m is defined as an exogenous
input. An advantage of this formulation is the possibility to naturally put inequality
constrains in the optimization problem, in the form D∆x + E∆u 6 0, which may be
helpful to account for control time-rate limitations, e.g pitch rate, directly in the opti-
mization problem. The obvious disadvantage is that there is no closed form solution to
the optimization problem. In order to apply existing numerical solving schemes it nec-
essary to switch to a discretized formulation, based on both a discretized cost function
and state equation.

Consider a discretization of the prediction window T f by N steps.

• The Cost Function

Ĵ =
1
2

(
∆xT

NQ f ∆xN +

N∑
k=1

(∆xT
k Q∆xk + ∆uT

k R∆uk)
)

(2.19)

• Dynamics System
∆xk+1 = Ak∆xk + Bk∆uk (2.20)
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• Linear Inequality Constraints

D∆xk + E∆uk 6 0 (2.21)

The solution of the optimization problem provides the control scheduling for each
step within the prediction window. But only the first value is actually used and com-
manded to the actuators, after verifying the limits of the same.

Non Homogeneous LQR

This type of control is a natural extension of the basic LQR. In fact NHLQR is a con-
troller that tries to overcome the limits of LQR, previously described. The dynamic
system is the same of RHC, Eq. (2.18), and a typical cost function with infinite horizon
(T f → ∞) already described in Eq. (2.11) is considered. The ’predictive’ component
in the dynamic system introduces a non homogeneous term in the solution of the opti-
mization problem. In fact the optimal control input has the following form

∆u(t) = −R−1BT P∆x(t) − R−1BT
∫ ∞

t
(e−A

T
(t−τ)PG∆ω(τ))dτ (2.22)

where it can be noticed that the first term is equal to an optimal control input of
basic LQR. Therefore Eq. (2.22) can be rewritten in the following compact form

∆u(t) = ∆uLQR(t) + ∆unh(t) (2.23)

where

∆unh(t) = −R−1BT
∫ ∞

t
(e−A

T
(t−τ)PG∆ω(τ))dτ (2.24)

In particular matrix A is derived from the minimization of the cost functional and
is equal to A − BR−1BT P, and P solves the usual algebraic Riccati equation. This
controller is important because it allows to include a predictive information without
affecting the system stability. It is also possible to solve analytically the integral in
Eq. (2.24), and then scheduling the gains of the control. But to do this, the only
constraint is to consider the difference between incoming wind information provided
by the LiDAR and reference wind value (∆ω), as a piecewise constant. The reference
value is evaluated as slowly varying moving average of the LiDAR information itself.
Clearly this is a strong approximation, from the theoretical point of view, given that the
output of the LiDAR is definitely not constant and it is only able to provide a prediction
over a finite time span. Then Eq. (2.24) can be rewritten in following form:

∆unh(t) = −R−1BT A
−T

PG(ω − ω∗) (2.25)
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Figure 2.9: Sketch of the main Cp-Lambda elements

2.3 Simulators considered for this work
It is important to emphasize that all virtual simulations performed in this work have
been done with the use of a simulator capable of describing the wind turbine dynamics.
This simulator is Cp-Lambda (Code for Performance, Loads and Aeroelasticity by
Multi-Body Dynamic Analysis), a code developed internally by DAST-Polimi. This
software is a multi-body code, allowing a sophisticated description of the topology
of a real horizontal-axis wind turbine, all the relevant rigid dynamics and those of
the actuators, a detailed finite-element based modeling of many kind of beams and
deformable structures, Figure 2.9.

Therefore the code has some peculiarities that allows to generate very realistic
simulations:

• Geometrically exact composite beam models

• Generic topology (Cartesian coordinates and Lagrange multipliers)

• Dynamic wake model

• Efficient large-scale DAE solver

• Non-linearly stable time integrator

• Fully IEC 61400 compliant (DLCs, wind models)
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But an important feature is the very nature of the model, which takes into account
various effects, being an aero-servo-elastic model. So with a coupling between two
models, a structural one and an aerodynamic one, it is possible to obtain realistic sim-
ulations.

Another simulator taken into account in this thesis is TurbSim, a code developed by
National Renewable Energy Laboratory (NREL). It is a stochastic, full-field, turbulent-
wind simulator. This allows to generate three wind files, one per component, which
characterize a three-dimensional wind field. In particular, it allows to set, besides the
main characteristics of the turbine, also the type of wind that you want to generate,
namely the average of the simulation, the type of turbulence, and the boundary layer
of the Earth.





Chapter 3

Unfrozen Incoming Wind for LiDAR
Sensor

Nowadays most of LiDAR simulators are based on Taylor Hypothesis. This hypoth-
esis is a strong approximation. It arise for comparison of some typical quantities of
turbulence between experimental campaigns and Direct Numerical Simulation (DNS).
These quantities, such as velocity-spectrum tensor and the energy-spectrum function,
can be extracted from the DNS of turbulence but they cannot be detected directly from
any experimental campaign because require the measurement of the two-point veloc-
ity correlation, which clearly is not feasible. However, thanks Taylor Hypothesis and
with a single probe (e.g. a hot-wire anemometer) it is possible to approximate the
measurement of two-point velocity correlation. Whereby this approximation allows to
switch from time domain to space domain with only the average velocity information.
In terms of LiDAR sensor this approximation enables to calculate the travel time of a
wind field previously detected by the LiDAR at a defined distance. In fact, a value of
average velocity must be provided to the LiDAR sensor. The time taken by air par-
ticles to reach the turbine is computed, by dividing the focal distance by the average
speed. In this way the LiDAR sensor simulator is developed without taking into ac-
count the possibility that the velocity and turbulence can change over the distance from
the detecting point to the turbine. The consequence is that the wind front that hits the
turbine is not exactly the same measured by LiDAR. This implies that the predictive
control prepares the machine with a wind information which is neither totally wrong
nor perfect. In the last few years the need to go beyond this problem has emerged. The
scope of the current research is to understand if the unfrozen theory can introduce a
real improvement in the prediction of the incoming wind, and how many differences
there are between a frozen and unfrozen model.

In this chapter in the first section there is an extensive description of unfrozen
model, derived from the Kirstensen theory, reference [13]. Therefore the mathemat-
ical model is described. After this a test model that generating a simple wind time
series (one-point grid) to verified the goodness of the unfrozen model is explained. As
parameter of goodness, the coherence between different signals is taken into account.
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Once verified that the unfrozen model allows to generating a reasonable unfrozen wind
time series, a more complete and more complex description of generator of wind filed
is reported. Therefore it is described how all these tools can change the available
frozen LiDAR to a new unfrozen LiDAR, that it is used in this work. The last sec-
tion describes the implementation aspects that we faced in this work, in particular the
risk of a large amount of data storage and the possibility that the time of simulation
explode.

3.1 Unfrozen Turbulence
The unfreezing of turbulence is based on a theory arisen in the Seventies of the last cen-
tury. The greatest protagonist of the development of an unfrozen model was Kirstensen
with his main article, reference [13]. His theory is based on different articles written
in the same period, references [22], [20], [19], [21]. The basic idea behind the un-
frozen turbulence is the determination of a longitudinal spectral coherence function,
that it is rather different from transversal coherence function. In the paper by Pielke
and Panofsky, reference [20] it is suggested that the coherence has the form

coh(n) = e−a nD
U0 (3.1)

where n is the frequency in Hz, U0 is the time averaged velocity and D is the
displacement between two position in space. In particular the parameter a is a dimen-
sionless decay factor of order 10. Clearly if we consider the Taylor Hypothesis the
longitudinal coherence is unit. The idea that the coherence has the form written in Eq.
(3.1) is verified by Davenport, reference [16], with an analysis of data from vertically
displaced cup anemometers in a experimental campaign. After Pielke and Panofsky
several developments appeared, but essentially the main equation of longitudinal co-
herence is unchanged.

3.1.1 Kirstensen Model
Kirstensen model is based on a longitudinal coherence between two points at the dis-
tance D from each other. The model represents the possibility that an eddy, with par-
ticular characteristics in terms of mean velocity and size, which is detected by the first
anemometer, can reach the second anemometer with the same characteristics or with
some variations. A sketch of this type of experiment can be noticed in Figure 3.1.

Where U0 is the time averaged velocity of the incoming wind, and λ is the size
of the vortex. With this data it’s possible to determine the eddy frequency n ≈ U0

λ
.

Another important term for this model, representing the decay of the vortex, is the
eddy turnover time, τλ. The contributions which impose a decay to the vortex can be
purely longitudinal or with a combination between a longitudinal decay and a lateral
drift. Then it should be possible to develop two different models: Longitudinal Model
and Longitudinal Transversal Model.
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Figure 3.1: A experimental model that is considered by Kirstensen to develop his
numerical model

Longitudinal Model

This model is based on a purely longitudinal decay, that is defined by turbulent kinetic
energy per unit wavelength, B(λ). In fact the eddy turnover time is described by Eq.
(3.2).

τλ ≈
(B(λ)
λ

)−1/2

(3.2)

where B(λ) is defined by [14] as:

B(λ) =
2π
λ2 E

(2π
λ

)
. (3.3)

In particular the turbulent kinetic energy per unit wavelength is approximately de-
fined as a function of frequency range. In fact there are mainly two different frequency
ranges: Inertial Sub-range, Energetic Range.

In inertial sub-range, [12], which means λ < l where l is the scale of turbulence,
B(λ) is entirely defined by λ and ε. Then B(λ) has the following form

B(λ) ≈ ε2/3λ−1/3 (3.4)

where ε is the rate of dissipation of turbulent kinetic energy and is defined as

ε ≈
σ3

l
(3.5)

Then it is possible to rewrite the eddy turnover time for the inertial sub-range case:

τλ ≈
l1/3λ2/3

σ
. (3.6)
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Viceversa in the general case, when the inertial condition is not satisfied, it is pos-
sible to introduce a new parameter, that it’s called g. It is a dimensionless function of
the parameter l

λ
. This parameter is defined by experimental campaign and has the role

of adjusting the definition of turbulent kinetic energy defined in inertial sub-range (Eq.
3.4). Then the new form of B(λ) is the following equation

B(λ) ≈ ε2/3λ−1/3g
( l
λ

)
(3.7)

and the eddy turnover time is

τλ ≈
( l1/3λ2/3

σ

)
g−1/2

( l
λ

)
. (3.8)

Once determined the eddy turnover time, we need to define the probability that the
eddy detected by the first anemometer can hit the second target. Since the time t of
travel from station 1 to station 2 is D/U0 the probability P1 that an eddy does not decay
during the transport is hypothesized to be

P1 ≈ e−
D

Uτλ (3.9)

then the coherence for a purely longitudinal model is

coh(n) = P2
1. (3.10)

Longitudinal Transversal Model

On the contrary this model is more complex. It’s developed on the combination of two
contributions. As the name indicates, it is constituted by a longitudinal effect of decay
and a transversal one. Then the coherence is defined by the following equation:

coh(n) ≈ P2
1P2

2 (3.11)

Where P1 is just defined in Eq. (3.9). Instead P2 indicates the probability that a
vortex detected by the first station is still detected in the second station, taking into ac-
count the possibility of dissipation due to the amount of transversal turbulent diffusion
during the travel between the two stations. The definition of P2 is more complex than
P1 and also for this parameter several experimental campaigns were carried out in the
past. For a complete mathematical proof see reference [13], here the main steps are
illustrated.

Before explaining the mathematical model it is helpful to itemize the three assump-
tions which characterize the model:
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• First Assumption: The transversal Lagrangian velocity, vt is stationary. Then

σ2
t =

∫ D/U

0
dt′

∫ D/U

0
dt′′ < vt(t′)vt(t′′) > (3.12a)

≈ 2σ2 D
U

∫ D/U

0

(
1 −

Uτ

D

)
ρL(τ)dτ (3.12b)

where the brackets denote ensemble averaging and the function ρL(τ) is the La-
grangian autocorrelation function.

• Second Assumption: In order to reduce the number of parameters the variance
of vt is equal to σ2. Consequently it can be approximated σ2

t with the following

σ2
t ≈


(
σ
U

)2

D2 if σ
U

D
l 6 1

σ
U Dl if σ

U
D
l > 1

(3.13)

• Third Assumption: the transversal diffusion is considered as an axisymmetric
Gaussian transversal diffusion

Then the probability P2 has the following form:

P2 =

∫ λ

0
rdr

∫ 2π

0
dφ

e
− r2

2σ2
t

2πσ2
t

= 1 − e
− λ2

2σ2
t . (3.14)

With this definition of P2 we can rewrite Eq. (3.11):

coh(n) = e−2αG nl
U0

(1 − e−(2α2
(

nl
U

)2
)−1

)2 for α 6 1

(1 − e−(2α
(

nl
U

)2
)−1

)2 for α > 1
(3.15)

where

α =
σ

U
D
l

(3.16)

and

G(ζ) = 33−2/3 (33ζ)2(33ζ + 3
11 )1/2

(33ζ + 1)11/6 (3.17)

It’s useful to emphasize what is the origin of Eq. (3.17). Assuming isotropy and
neutral lapse rates, as it is written in reference [13] and [17], G(ζ) is a semi-empirical
expression, in the Kaimal spectrum case, where ζ = l

λ
= nl

U .



30 Unfrozen Incoming Wind for LiDAR Sensor

3.1.2 Test Model

Once developed the unfrozen turbulence model, the next step is create a wind model
to verify the goodness of unfreezing. Therefore a simple wind time series is chosen,
which is composed of a constant in time value, that represents the wind mean velocity,
and a fluctuation part, that represents the turbulent contribute.

Uk(t) = Uk0 + uk(t) where k = u, v,w (3.18)

Where Uk0 is the wind mean velocity, and uk(t) is the turbulence fluctuation. In
particular uk(t) can be written in the following form

uk(t) =

N∑
i=1

S k(ni)cos(2πnit + φki). (3.19)

The turbulent fluctuation is determined by the magnitude of the turbulent spectrum,
S k(ni), where ni is the frequency value. Another important parameter in Eq. (3.19) is
the value of φki , that represents a random seed, one for each frequency, which intro-
duces randomness in the generation of turbulence. In particular the frequency range
is determined as a function of the time window and the time steps, accordingly with
Nyquist sampling theorem. Instead for the form of turbulence spectrum we refer to the
reference [18]:

S k(ni) =
4σ2

k
Lk

Uk0

(1 + 6ni
Lk

Uk0
)5/3

(3.20)

It can be noticed that Eq. (3.20) represents the Kaimal Turbulent Spectrum, where
Lk is the integral scale parameter, that it is defined as

Lk =


8.10ΛU for k = u
2.70ΛU for k = v
0.66ΛU for k = w

(3.21)

with

ΛU =



21 HH < 30
0.7 · HH HH > 30

Edition→ 242 HH < 60
0.7 · HH HH > 60

Edition→ 3
(3.22)

where HH is the height of the hub. For this work the Edition 3, which refers to
a scale parameter [33] [25], is considered. In addition there is a further term to be
determined, σk. The value of standard deviation is defined as follows
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Figure 3.2: Turbulent Spectrum with mean velocity equal to 15 m/s, and 600 sec of
time window

σk =


σIEC for k = u
0.8σIEC for k = v
0.5σIEC for k = w

(3.23)

where

σIEC = TurbInt(0.75Uk0 + 5.6) (3.24)

As required by International Standard, a value of turbulent intensity, TurbInt, has
been chosen equal to 16%, which corresponds to a turbulence of type A, namely that
of maximum intensity. After this it should be possible to reconstruct the turbulent
spectrum as a function of frequency. The trends are shown in Figure 3.2

In the first analysis a wind field with only one grid point has been generated. The
longitudinal mean velocity, Uu0 , is equal to 15 m/s, and with Uv0 = Uw0 = 0. A
simulation time of 600 sec is considered, with time steps equal to 0.05 sec. The result
has the shape shown in Figure 3.3

Therefore to recreate an unfrozen wind time history it is necessary to set up two
different time histories, one for the start of the simulation and one to set the evolu-
tion parameter of unfrozen wind. In fact the unfrozen wind represents the evolution
of the seed of the first wind towards the seed of the second one. To do this it is im-
portant to define the unfreezing model, for this purpose the most complete is chosen,
i.e. Longitudinal Transversal Model. The evolution is represented by the following
equation
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Figure 3.3: Example of wind time history for the component u

Φiun f rozen = fiφi f rozen,1 + (1 − fi)φi f rozen,2 (3.25)

where f is defined as

fi =
√

coh = P1P2. (3.26)

In particular it can be noticed that P1 and P2 depend on the wind components
(u, v,w),then we have three different trends of f , one for each component. They can be
seen in Figure 3.4

Then the unfrozen wind field can be written, always as a sum of two contributions:
mean wind speed, and turbulent fluctuation.

Ukun f rozen(t) = Uk0 +

N∑
i=1

S k(ni)cos(2πnit + Φiun f rozen) (3.27)

It is important to emphasize what are the key parameters that influence the un-
frozen wind field. As written above the fundamental parameter is the seed of the wind,
because it can be considered as the fingerprint of the wind. The α parameter is hidden
in f , Eq. (3.16). It is another fundamental quantity because changing it will change the
unfrozen wind trend. This parameter determines how rapidly the coherence decreases
with the dimensionless frequency nl

U0
, reference [13], and it’s closed related to of the

decay of turbulence. In fact, in Eq. (3.15) it was assumed that the decay part is an
exponential function of time of travel, t, divided by an eddy lifetime, τλ
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Figure 3.4: Trends of longitudinal coherence, f , as a function of frequency for each
wind component

a =
t
τλ
≈

σ

U0

D
l

nl
U0

(3.28)

where it can be noticed the presence of α parameter. The value of this quantity
depends on two variables, D and U. While U is the mean velocity of each considered
simulation, D represents the distance between two anemometers, then the distance
between the reference point and the point that we want to unfreeze. In particular the
magnitude of this distance can not be considered in absolute terms, but in relation with
the integral scale, Lk, and its magnitude.

As it can be seen in Figure 3.5 the trend of unfrozen wind is quite similar to Frozen
1. The reason for this behavior is because the value of D, that it is considered, is
equal to 150 meters, while the value of averaged time speed of wind is equal to 15
m/s. If we take a hub height equal to 80 meters and the intensity of turbulence equal
to 16%, we obtain the integral scale l equal to 56 m and σ equal to 2.69 m/s. After
this consideration of data simulation the decay parameter can defined as a function of
frequency n : t/τλ ≈ 1.8n. It’s clear how at low frequencies the value of the turbulent
decay is rather low. In fact, if t/τλ ≈ 0 we obtain a value of coherence equal to 1, then
the Frozen Hypothesis.

This reasoning can be verified by looking at the charts of coherence, Figure 3.6.
In fact, as expected there is a higher coherence between Frozen 1 and Unfrozen at low
frequencies. This means that the signal represented by Unfrozen is quite similar to
Frozen 1, because the low frequencies are those with grater energy. Therefore the two
trends are close. Viceversa at the high frequencies there is a greater coherence between
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(a) Wind Field, component u
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(b) Wind Field, component u, focus 20 sec
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(c) Wind Field, component v
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(d) Wind Field, component v, focus 20 sec
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(e) Wind Field, component w
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(f) Wind Field, component w, focus 20 sec

Figure 3.5: Comparison between trends of wind time histories: Frozen 1, Frozen 2 and
Unfrozen
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(a) Coherence Trend for component u
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(b) Coherence Trend for component v
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(c) Coherence Trend for component w

Figure 3.6: Comparison between trends of Frozen 1, Frozen 2 and Unfrozen longitu-
dinal coherence

Frozen 2 and Unfrozen. The consequence is that the high perturbations of wind field
are close between these two seeds of wind.

To underline the importance of the decay parameter, it is useful to see the Figures
3.7 and 3.8. Where in the first it can be noticed the difference between three coherence
analysis of three different unfrozen wind histories, changing the distance from the
turbine. In the second one it can be seen how three different values of averaged time
wind speed can influence the decay of turbulence. Three different coherence analysis
are done, changing only mean velocity.

3.2 Unfrozen Wind Field
The test model to generate a casual wind history is a simple code that takes into ac-
count only one grid point and a sinusoidal signal with a random phase. To generate
a complex wind field with a finer grid, it is necessary to develop a new wind model.
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Figure 3.7: Comparison between three different unfrozen wind histories in terms of
the longitudinal coherence, changing the parameter D
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For consistency with previous works of DAST-Polimi the theory described in Turbsim
Manual was employed as the base of the model. As we can see from reference [25],
this code meets the requirements. Therefore a new code is written following articles
[23], [26] and [25], also studying [24].

The greatest difference of this new turbulent wind generator with respect to the test
model is that, in order to recreate a denser grid of values, it is necessary to consider the
lateral coherence between one grid point and all the others. Therefore it is clear how
this introduces others factors in the Eq. (3.27). Following Veers’s work, reference [23]
and [26], we can write a new equation for wind time series:

U(t) = U +

N∑
j=1

(A jsinω jt + B jcosω jt) (3.29)

where

A j = sinφ j

√
1
2

S j∆ω (3.30)

and

B j = cosφ j

√
1
2

S j∆ω (3.31)

Which it can be rewritten as

U(t) = U + F−1
N∑

j=1

(A j + iB j). (3.32)

where F−1 is the inverse Fourier transform.
This formulation of wind field does not yet take into account the coherence between

one point and all the others, but only develops a more complete unrelated wind. This
represents the base of the following formulation. We want to focus only on turbulent
fluctuations, because this is the main aspect of a related wind field. For this purpose a
new spectral matrix must be introduced, called S. The peculiarity of this matrix is that
its diagonal terms are the power spectral densities (PSDs); instead, each off-diagonal
term, S i j, is the cross spectral density between points i and j (CSD). The magnitude of
the cross spectrum between points i and j can be defined in terms of the PSDs and the
coherence function, Cohi j, as

|S i j(nm)| = Cohi j(nm,∆ri j,Ui j)
√

S ii(nm)S j j(nm) (3.33)

where the coherence is a function of frequency, nm, distance between points i and
j, ∆ri j, and mean wind speed, Ui j.

The N correlated time series are generated by linear combination of N independent,
white-noise processes. In this case, S can be written as the product of a transformation
matrix, H, and the transpose of its complex conjugate.
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S = H(nm)H∗
T
(nm) (3.34)

Physically, H is a transfer matrix from uncorrelated white noise to the correlated
spectra of the wind at input points. It is a lower triangular matrix, and then it is com-
pletely defined by Eq.(3.34). The elements of H can be determined recursively:

H11 = S 1/2
11

H21 = S 21/H11

H22 = (S 22 − H2
21)1/2

H31 = S 31/H11

H32 = (S 32 − H31H21/H22

...

Hii = (S ii −

i−1∑
j=1

H2
i j)

1/2

Hi j = (S i j −

j−1∑
k=1

HikH jk)/H j j

Instead the independent, unit-magnitude, white noise inputs are contained in an
N × N diagonal matrix X such that

Xi j(n) =

eiθ jm i = j
0 i , j

(3.36)

where θ jm is a random phase associated to the jth input point and mth frequency
component. To unfreeze the turbulence we must work on θ jm. In fact, eiθ jm is considered
equal to cosθ + isinθ. Therefore the Eq. (3.25) is applicable, switching from two
frozen seeds to an unfrozen one. Defined this new phase, it is possible to compute the
unfrozen turbulence fluctuations.

u(t) = F−1(HX) (3.37)

Then the completed wind field can be written as

Uk(t) = Uk + u(t)k where k = u, v,w (3.38)

3.3 Unfrozen LiDAR Sensor
The frozen LiDAR simulator consists of five focuses and 101 detection points for
each focus. For a frozen LiDAR this is not a problem, because a unique wind time
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Figure 3.9: Sketch of LiDAR detection points. Only focus points are shown. For each
focus is represented its wind time histories, that it is different from the others

series is sufficient as it is convertible to a wind spatial series, thanks to the Taylor
Hypothesis. Regarding an Unfrozen LiDAR this procedure is not feasible, because the
intent is to eliminate this hypothesis. Therefore we considered a simple wind time
series that is seen by the turbine, and consequently we must unfreeze the wind field
in the longitudinal direction, as Figure 3.9. This means generating 505 unfrozen wind
time histories, one for each measurement point (the number of unfrozen wind time
histories is given by the number of focuses and 101 detection points for each focus).
Then the LiDAR takes the wind velocities from these histories as input, one for each
distance of detection point to wind turbine.

It’s important to notice that with this simulation strategy, the model that detects the
exact wind speed is the frozen LiDAR, because it detects the exact wind history that
hits the wind turbine. However, what is certain is that the two types of LiDAR provide
two signals which differ a little, as it can be noticed in Figure 3.10.

It’s useful for understanding the mechanisms of turbulence unfreezing to see Fig-
ures 3.11 and 3.12. In both figures the LiDAR output is plotted. Looking at Figure 3.11
and recalling that the first seed characterize the wind hitting the turbine, we notice that
keeping it fixed and changing the second, we obtain very similar LiDAR outputs. This
result means that the distance of the focal points is too low to raise the value of the
decay , then the second seed has little influence on the final value of the wind. This
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Figure 3.10: Comparison between Frozen and Unfrozen LiDAR for a wind speed equal
to 15 m/s.
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Figure 3.11: Five output detected by LiDAR is shown, one derived from frozen wind
field and the others derived from unfrozen wind field. The characteristic of these sim-
ulations are that the first seed of turbulence is fixed while the second one is variable
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Figure 3.12: Four output detected by LiDAR is shown, all these derived from unfrozen
wind field. The characteristic of these simulations are that the first seed of turbulence
is variable while the second one is fixed

trend can be verified also in Figure 3.12. In fact, in this figure the LiDAR outputs are
plotted. They are characterized by the second seed fixed while the first one is variable.
The consequence of this simulation is that we obtain four different LiDAR signals, as
if they were four different wind histories.

3.4 Implementation Aspects

The implementation was one of the crucial aspects of this work. In general there are
two types of controller configurations, one with LiDAR on real time, and one with
LiDAR simulation separated from Cp-Lambda simulation. Clearly the first choice
implies a great memory saving because all simulations are on real time. Hence, there is
no need to store a large amount of data because all the data computed by the LiDAR are
used instantly and overwritten. This advantage has a cost, in fact the time simulation
explodes. Contrariwise the second choice allows to reduce substantially the simulation
time, because LiDAR simulation is computed separately from Cp-Lambda simulations
and its output is stored in a physical memory. The consequence is an increase in
required storage space. Given our resources it seemed convenient to prefer the second
choice, because the increase of data storage is lower than the corresponding increase
in time simulation that characterize the first choice.

Another implementation aspect that we had to deal with, relates to the use of un-
frozen LiDAR. As described above, unfrozen LiDAR needs 505 unfrozen wind histo-
ries, one for each distance between detection points and the wind turbine. Therefore in
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order to reduce both time simulation and data storage, it was developed a code that, in
the first step, computes 505 unfrozen wind histories, but without saving anything. In
the second step the code computes a linear interpolation, to find, for each wind grid,
the value of speed for each pattern point. We want to remind that the pattern points
are those that identify the LiDAR detection points, where the real LiDAR measures the
wind speed. After this the code saves only the value of linear interpolation, then twelve
values for each time step and for each longitudinal displacement from the turbine. The
data that is stored is used as input of unfrozen LiDAR, the output is one value of wind
speed like for the frozen LiDAR. For this procedure it is highly recommended the use
of PC with parallel processors, at least eight, which allow the programming of code
that can exploit them simultaneously and reduce simulation time considerably.



Chapter 4

Applications

The purpose of this section is to show the differences between three different control
systems, and in particular the possible improvements in the use of the unfrozen LiDAR
simulator against the frozen one. The control strategies, that we take into account, are
the LQR-Integral controller, considered as a reference, and the others are the NHLQR
and the RHC, i.e. two predictive control strategies. An exhaustive description of the
main characteristics of these controllers can be seen in chapter 2. In particular it is
useful to emphasize that all the simulations and their results here reported comply with
the International Standard, reference [33]. This means that all results that we report
here are obtained by an average between at least four simulations, corresponding to
four different turbulent seeds. Therefore to underline the goodness of employing a
predictive control, four wind time histories have been considered. The goal of this
intention is to report a correct data from the statistical point of view, as required by
International Standard.

The simulation strategy to explore whether the unfrozen LiDAR can improve the
prediction of the incoming wind is also based on the average between four different
wind histories. Nevertheless, in order to unfreeze the wind field, a second random
phase is necessary. Hence, four additional simulations are required for each wind
history, only for the purpose to obtain a simulation with the unfrozen LiDAR which is
correct under a statistical point of view.

As described above we consider four wind time histories, provided by TurbSim,
that the wind turbine sees one at a time, as is shown in Figure 4.1. Therefore we
use the output of TurbSim as input of Cp-Lambda. Instead the input of the predictive
control is provided by unfrozen and frozen off-line LiDAR simulators. In case we
want to define the unfrozen wind signal, we must unfreeze the flow field in front of the
turbine. This means that we need to use a program that allows to create an unfrozen
turbulent wind field, described in chapter 3, where the first seed, that characterizes the
unfrozen wind, is defined by one of the four wind time histories that we consider as
the wind seen by the turbine. To fulfill the requirements of the International Standard,
16 unfrozen LiDAR simulations are computed, four for each frozen wind history. The
consequence is that the results of unfrozen simulations are obtained by two averages.
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Figure 4.1: Sketch of wind field in front of the turbine

The first average is between four different simulations, characterized by the first (fixed)
seed and the second (variable) seed, then four different values of second (variable) seed
are considered. This operation is computed by varying also the first seed. Finally there
is the second average between the four simulations obtained from the first average.

In all graphs reported here there are 5 curves. One of these represents the results ob-
tained with the reference controller, LQR-Integral. Two of these represent the NHLQR
predictive controller, one using the frozen LiDAR and one using the unfrozen LiDAR.
The last two curves represent the RHC predictive controller, and as for NHLQR sim-
ulations one of these curves is computed using the frozen LiDAR and one using the
unfrozen LiDAR.

It is also useful to say a few words about the parameters used to make the compar-
ison. In particular the My tower base bending moment, Figure 1.9, standard deviation
of rotor speed and standard deviation of power are selected. It is clear that it should be
possible to select many other parameters for a comparison between different control
systems, since there are many other loads acting on the wind turbine structure. But
we consider only the fatigue characterized by the load acting on the fore-aft of tower
because it is a parameter that we have the ability to control by the control system.
This because one terms of the states vector of the control technique is represented by
the fore-aft velocity. Instead it seemed natural to choose the other two parameters, be-
cause the standard deviation of the rotor speed is a typical value that is used to compare
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different control strategies, and because it is the most important value that represents
how a machine is nervous under the control law which regulate it. On the contrary the
standard deviation of power is the best index of the power quality.

For completeness this simulations system is proposed for two different wind tur-
bines. The first turbine considered is the Kangwon Turbine while the second one is
the Innwind Turbine. All main characteristics of these machines are discussed in next
section. In particular it is useful to emphasize how they represent two real machines
with different rotor sizes. For this reason the graphs reported here are all dimensionless
because the data design are covered by industrial secrecy.

4.1 Machine Models

As described above all the simulations reported in this work are obtained using the
virtual models of two real machines: Kangwon Turbine and Innwind Trubine. The
designs of these two wind turbines are covered by industrial secrecy then only their
main characteristics are shown in this section.

• Kangwon Turbine: The Kangwon Turbine is a 3.0 MW machine designed by
the Kangwon National University [34]. It features a rotor diameter in excess
of 93 m, a tower height of about 77 m, a drive-train with a reduction ratio of
about 90. This machine is certified as IEC class A, and its operating wind speed
envelope goes from 3 to 25 m/sec, with a region II 1

2 extending from 9 m/sec to
the rated wind speed of 11.5 m/sec. The standard operating rotor speed in region
III is 15 rpm.

Table 4.1: Main characteristics of Kangwon Turbine

Parameter Value
Rotor diameter 93 m
Tower height 77 m
Hub height 80 m

Cut-in speed 3 m/s
Cut-out speed 25 m/s

• The Innwind Turbine: The Innwind Turbine is a 10.0 MW machine designed
by the European consortium that comprises of leading Industrial Partners and
Research Establishments [35]. It features a rotor diameter of about 180 m, a
tower height of about 115 m. This machine is certified as IEC class 1A, and its
operating wind speed envelope goes from 4 to 25 m/sec, with rated wind speed
of about 11 m/s. The maximum rotor speed is 10 rpm.
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Table 4.2: Main characteristics of Innwind Turbine

Parameter Value
Rotor diameter 180 m
Tower height 115 m
Hub height 120 m

Cut-in speed 4 m/s
Cut-out speed 25 m/s

4.2 Results

The International Standard requires reliable results from the statistical point of view
to certificate whatever controller or amendment to the design of a wind turbine. This
means that we consider for all results reported here an average between four different
simulations. These four simulations are represented by four different wind histories
that the wind turbine sees. The consequence is that the first seed of whatever unfrozen
wind is fixed by the corresponding main wind history (one among the four chosen). To
fulfill the International Standard a simulation with unfrozen LiDAR requires another
four sets of wind histories for the statistical evaluation of the second seed. Therefore
the results of simulations with unfrozen LiDAR is averaged between 16 different sim-
ulations, four simulations for each main wind histories. Whereby we consider three
different controllers, one in feed-back and the others in feed-forward with frozen and
unfrozen LiDAR, the amount of CP-Lambda simulations are shown in Table 4.3.

Table 4.3: Summary scheme of number simulations for each control strategy

Controller LiDAR simulator Simulations Description
LQR-Integral // 4 One for each main wind histories

NHLQR Frozen 4 One for each main wind histories
NHLQR Unfrozen 16 Four for each main wind histories

RHC Frozen 4 One for each main wind histories
RHC Unfrozen 16 Four for each main wind histories

Clearly the four main wind histories considered are four turbulent winds, with a
turbulent intensity equal to 16%, type of turbulence A. This is the highest turbulent
intensity, as required by International Standard. In particular all wind operating ranges
of the turbines are considered, and Kaimal spectrum is chosen as a spectrum of turbu-
lence. The other parameters of section Meteorological Boundary Conditions of input
file of TurbSim are set to default, [25].

As described above three parameters are chosen to compare to the simulations
results between LQR-Integral and NHLQR and RHC controllers:
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• Fatigue: The fatigue considered is referred to the load, My tower base bending
moment. Clearly there are many other loads that act on the wind turbine. Never-
theless this load is chosen because the controllers considered have the velocity
of the fore-aft of tower, ḋ, as a parameter of the state array. Therefore it seemed
natural to choose this type of load. This value is made non-dimensional with a
reference value because in order to preserving industrial secrecy.

• Standard Deviation of Rotor Speed: This is a typical parameter that it is used
to verify the goodness of the controllers considered. Another reason for the
choice of this parameter is because it can be a good indicator of the operation of
the machine. In particular if this has a value too high then it may indicate the
probability of the shutdown of the machine during the simulation. This value is
made non-dimensional with the maximum value of rotor speed detected during
simulation.

• Standard Deviation of Power: Clearly between the chosen parameters could
not miss one related to power. This because we are interested in a good Power
Quality. Then the standard deviation of Power is chosen. This value is made
non-dimensional with the maximum value of power produced during simulation.

4.2.1 3MW Kangwon Turbine Results

The results reported in this subsection are referred to the Kangwon Turbine. The order
in which they are listed is the same as described above. It is important to emphasize
that the Region II 1

2 extends from 9 m/s to 11.5 m/s, in this range of velocity it is
possible to obtain performance values of predictive controllers very similar to LQR-
Integral. Instead the simulations at wind speed 3 m/s and 25 m/s are critical, because
the turbulent intensity can be lead to lower speed than Ucut−in or greater than Ucut−out.
In particular in Region II the controllers are limited by the fixed pitch strategy. Each
figure in this section shows a pair of graphs, referring to same results. In all cases, the
first plot is made non-dimensional with a reference value (not explicit, due to industrial
copyright), instead the second plot is made non-dimensional with LQR-Integral.

In the first figure, Figure 4.2, the trends of fatigue for each control strategy are
shown. It can be noticed that the solid red line, that represents the LQR-Integral sim-
ulations, has performance values higher than NHLQR and RHC with both LiDAR
simulators. This means that in terms of the values of loads acting on the wind turbine,
the LQR-Integral imposes the highest values between all control strategies considered,
all over the entire speed range. Besides that we are interested in the comparison be-
tween the Unfrozen LiDAR simulator and the Frozen one. The results reported here
are clear, for the NHLQR controller there aren’t any differences between two simula-
tions (Unfrozen and Frozen one). In case that we consider the RHC controller there is
a very low difference, that does not justify the use of a simulator rather than another. In
particular it is important to emphasize that the results of the RHC controller are the best
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Figure 4.2: Kangwon Turbine Results: Value of fatigue along the operating speed
range of the machine, made non-dimensional with reference value (not reportable)
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here reported. In fact, the nature of NHLQR controller is to improve the performance
of the basic LQR-Integral, but with a computational cost roughly 1000 times lower
than RHC controller, the consequence is that the controller performance of NHLQR
is lower than RHC. Another behavior that can be noticed is the very close trend be-
tween the NHLQR and LQR-Integral controllers in Region II; RHC controller also has
a performance close enough to the other controllers in that region. This underlines the
difficulties of predictive controls at certain speeds.

In Figure 4.3 are shown the trends of standard deviation of the rotor speed. It can be
noticed that in Region III (for U > 11m/s) the trends of NHLQR and RHC controllers
are very close and at the same time they are very low in comparison to LQR-Integral
controller. In terms of the rotor speed the critical region for the predictive controllers
is the Region II 1

2 , in fact, both these controllers have a value of standard deviation very
similar to LQR-Integral values. Besides that it can be seen that the values of RHC for
the simulation at speed 3 m/s are too high in comparison to the other controllers. This
bad performance is related to the shutdown of the machine.

In Figure 4.4 are shown the trends of the standard deviation of power. Once again it
can be noticed that LQR-Integral controller performances are higher than the predictive
control strategies. It is also important to emphasize that the differences between the
Unfrozen LiDAR simulator and the Frozen one are rather low. In Region II if we
consider the RHC controller there are values of standard deviation of power very low
in comparison to LQR-Integral, this means a better behavior of the machine at low
speed. In region III the values seem very close, but this is not true, in fact in terms of
percentage the improvements are remarkable, see Figure 4.4(b).

In conclusion for the Kangwon Turbine the predictive controls developed provide
better performance than a basic LQR-Integral controller. The differences between sim-
ulations with Unfrozen LiDAR sensor and Frozen LiDAR sensor are not significant.
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Figure 4.3: Kangwon Turbine Results: Value of standard deviation of the rotor speed
along the operating speed range of the machine, made non-dimensional with reference
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4.2.2 10MW Innwind Turbine Results
The results reported in this subsection are referred to the Innwind Turbine. The same
observations made for the other machine can also be done in this case. Important
to emphasize that the simulations at speed 3 m/s are excluded, because that wind is
lower than Ucut−in. Each figure in this section shows a pair of graphs, referring to same
results. In all cases, the first plot is made non-dimensional with a reference value (not
explicit, due to industrial copyright), instead the second plot is made non-dimensional
with LQR-Integral.

In Figure 4.5 it can be noticed that the red solid line that represents the LQR sim-
ulations shows bad performance in comparison to the others. As in the case reported
before also for this turbine the best controller is represented by RHC. It can be seen
that also in this case the critical region is the Region II. In particular for NHLQR also
the Region II 1

2 is critical. Instead the differences between simulations with different
LiDAR strategy are very low, then also in this case the performance of the two LiDARs
is very close.

In Figure 4.6 it can be noticed immediately that the values of standard deviation of
rotor speed of simulations with NHLQR controller in Region III are the worst. This
behavior depends on gains scheduling of this controller. In fact, it was made a compro-
mise choice, because with some values of the controller weights the value of standard
deviation of rotor speed has improved but at the same time the value of the fatigue or
standard deviation of power have worsened. In fact, tuning some weight values we
tried to improve three different performance indexes, such us Fatigue, standard devi-
ation of rotor speed and standard deviation of power. Therefore the results reported
here derive from the best choice of weight that we have done. It is possible that there
are others controller weights that give better results. It is important to emphasize that
the values of the standard deviation of the rotor speed of NHLQR control simulations
in Region III are not so disappointing. In fact, these results, in comparison to those
obtained with Kangowon Turbine, show a considerable improvement, the values of
NHLQR simulations of Innwind Turbine amounted to 2% while the values of NHLQR
simulations of Kangowon Turbine amounted to 3%. Finally it can be seen that in the
region II the performance of predictive controls, and in particular of RHC, are better
than LQR-Integral controller.

In Figure 4.7 it can be noticed that the predictive controls lead to better power
quality than the basic controller. The curves that represent the predictive controls are
below the red solid line. In terms of standard deviation of power, simulations on both
the Innwind Turbine and Kangowon Turbine, have demonstrated that the predictive
controls are definitely better performing than LQR-Integral control.
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Figure 4.5: Innwind Turbine Results: Value of fatigue along the operating speed range
of the machine, made non-dimensional with reference value (not reportable)
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Figure 4.6: Innwind Turbine Results: Value of standard deviation of the rotor speed
along the operating speed range of the machine, made non-dimensional with reference
value (not reportable)



4.2 Results 55

4 6 8 10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Reference Wind Speed [m/sec]

S
td

P
/A

vP
 [−

]

 

 

LQR w. Integral
LQR N−H LiDAR 5Hz OneBeamATime FROZEN
RHC LiDAR 5Hz OneBeamATime FROZEN
LQR N−H LiDAR 5Hz OneBeamATime UNFROZEN
RHC LiDAR 5Hz OneBeamATime UNFROZEN

(a) Made non-dimensional with reference value

4 6 8 10 12 14 16 18 20 22 24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Reference Wind Speed [m/sec]

S
td

P
/A

vP
 [−

]

 

 

LQR w. Integral
LQR N−H LiDAR 5Hz OneBeamATime FROZEN
RHC LiDAR 5Hz OneBeamATime FROZEN
LQR N−H LiDAR 5Hz OneBeamATime UNFROZEN
RHC LiDAR 5Hz OneBeamATime UNFROZEN

(b) Made non-dimensional with LQR-Integral value

Figure 4.7: Innwind Turbine Results: Value of standard deviation of the power along
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Chapter 5

Conclusion

The purpose of this work was to analyze the possibility of improving the use of Un-
frozen LiDAR technology as a sensor to provide the feed-forward information to the
predictive controller. It was also verified the remarkable improvements obtained thanks
to the use of the predictive control strategy against a basic feed-back control strategy,
such as LQR-Integral.

As described in chapter 3, the unfrozen LiDAR is based on the theory developed
by Kirstensen, i.e. a mathematical model that allows to unfreeze the turbulence having
as input the time average velocity of the wind field and the displacement between the
point to unfreeze and the reference point. Initially this model was not related to any Li-
DAR sensor, in fact, it was developed in the Seventies of the last century, then largely
verified. It is a semi-empirical model and it is strictly related to the chosen turbulence
model. Then the Kirstensen model also depends on the value of turbulent intensity, on
the type of spectrum and on the value of turbulent integral length scale. The mathe-
matical model provides a coherence value as a function of frequency, and this value is
useful to determine the transition from one wind history to another, generating a third
wind time history that is called Unfrozen. Recently many researchers have tried to im-
prove the available Frozen LiDAR sensor with this mathematical model, transforming
it into the Unfrozen LiDAR. This is because the need to provide a better information
to predictive controller has arisen. It’s clear that if the controller may have a better
incoming wind information, then the performance can be improved. This is a theoret-
ical idea, in fact, this work is focused on understanding the possible improvement that
the unfrozen LiDAR involve, and most in general to emphasize the improvements of
predictive control law.

The remarkable improvements of the predictive control law obtained in the pre-
vious work by the DAST-Polimi are confirmed. This trend is verified with two real
turbines with different rotor size and energy production. It was understood, therefore,
that the use of predictive controls can significantly decrease the costs involving the
production and maintenance of the machines. This is because, as it can be noticed in
the graphs that represent the simulations results in chapter four, the fatigue, which is
referred to the loads acting on tower fore-aft, is considerably reduced compared to the
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basic LQR-Integral controller. The other comparison parameter is the standard devia-
tion of rotor speed, in this case the trends of all controllers considered have a very low
value of standard deviation, then it can be possible to consider these control strategies
as suitable. Finally the standard deviation of power is taken into account, in this case
it can be noticed how the predictive control strategy provides a more smooth trend,
therefore with this behavior better power quality than with LQR-Integral is obtained.
Regarding the simulations case with the use of Unfrozen LiDAR sensor to provide
the incoming wind information, the results obtained are also very remarkable. In fact,
the trends of the results are better than simulations results of LQR-Integral controller.
However, better results were expected even with respect to frozen predictive control.
This has not happened, the results, which as mentioned above are averaged between
four different simulations to meet the requirements of International Standard, are al-
most identical to results obtained by frozen simulations. This behavior depends on the
displacements of each focus from the turbine. As described above these distances are
comparable to the turbulent integral length scale. The consequence of this character-
istic of the focuses of Unfrozen LiDAR leads to a value of decay which is very low,
as defined in chapter 3, then a decay parameter that is not high enough. This behav-
ior can be seen also looking at the output of LiDAR, in fact, the signals, provided by
Frozen and Unfrozen LiDAR, are very close. Furthermore, it can also be emphasized
the fact that the small variations that exist between different models of LiDAR, passing
through the controller, could in principle smooth even those small differences, because
the controller basically acts as a filter.

In conclusion the predictive control strategies are one of the better ways to reduce
the cost of the wind turbine. Instead the adjustment of the Frozen LiDAR sensor by
accounting for the mathematical model developed by Kirstensen for Unfrozen LiDAR
sensor does not seem to give advantages against the original LiDAR implementation.

5.1 Future Works
Nowadays a development of the unfrozen LiDAR is strictly related to the experimen-
tal campaigns. The results of virtual simulations with Unfrozen LiDAR are almost
unchanged when compared to the Frozen LiDAR, then it would seem a useless tech-
nology. Nevertheless there is the possibility that the experimental campaigns can im-
prove the empirical-mathematical model that characterized the Unfrozen LiDAR.

It is useful to emphasize that in general the LiDAR sensor has a huge potential.
In fact, nowadays, the LiDAR sensor is installed as a device for the predictive control
of collective pitch strategy. In the future it can be introduced as part of the new idea
of predictive control, that is, when individual pitch or distributed control is used. To
do that the averages computed by LiDAR sensor must be changed. In fact the LiDAR
sensor as developed today is not useful to provide an incoming wind information in
the case of the hypothetical individual pitch predictive control, because it provides only
one value of wind velocity for each time instant. Therefore to develop a sensor useful
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for individual pitch predictive control the strategy to detect the wind speed, inside the
LIDAR, must be changed. Then, the detection pattern and the output of the LiDAR
sensor must change accordingly. We can imagine that a useful information for this
new predictive control should be the horizontal wind shear and vertical wind shear.

Another improvement in this field can be to improve the gains scheduling of the
predictive controller. One of the main causes of time-losses in this work was the need
to set the weights of the matrices of control, because we must handle a multi-input
vector. Therefore we imagine a possible optimization system to improve the time
taken in the choice of the weights of the gains matrices. the choice of the weight is a
very general issue concerning a great many model based controllers.
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