
Politecnico di Milano
Scuola di Ingegneria dell’Informazione

Polo Territoriale di Como

Master of Science in Computer Engineering

Personal Process Management

Supervisor: Prof. Marco Brambilla

Master Graduation Thesis by:

Pierfilippo Bianchi Student Id. number 770115
Davide Maria Filippo Ripamonti Student Id. number 770028

Academic Year 2012 - 2013

Politecnico di Milano
Scuola di Ingegneria dell’Informazione

Polo Territoriale di Como

Corso di Laurea Specialistica in Ingegneria Informatica

Gestione di Processi Personali

Relatore: Prof. Marco Brambilla

Tesi di laurea di:

Pierfilippo Bianchi Matr. 770115
Davide Maria Filippo Ripamonti Matr. 770028

Anno Accademico 2012 - 2013

iv

Sommario

In questa tesi affrontiamo il problema dell’integrazione dei metodi pro-

pri del BPM nella gestione dei processi personali, sfruttando le funzionalità

messe a disposizione dalle reti sociali. Al giorno d’oggi, la maggior parte

degli utenti connessi ad Internet è registrata ad almeno un social network,

tramite il quale interagisce e comunica con amici e colleghi. Una tendenza

recente è quella della condivisione della gestione e della realizzazione di liste

di azioni. Un semplice esempio è dato dalle molteplici applicazioni web per

la gestione delle cosiddette “to-do list”. Esse sono molto semplici e intu-

itive da usare, e, in alcuni casi, offrono anche funzionalità social. Tuttavia

hanno anche alcuni limiti rappresentati principalmente dal fatto che non

consentono di gestire le attività in maniera strutturata: sono semplici se-

quenze di azioni. Al contrario, la notazione BPM, usata in ambito business,

permette di esprimere dipendenze e condizioni sull’esecuzione delle azioni

ma è inadatta a questo contesto. Per prima cosa analizziamo le applicazioni

simili esistenti sul mercato, allo scopo di comprendere sia i loro punti di

forza che i loro aspetti critici. Successivamente studiamo la Business Pro-

cess Management Notation con l’intenzione di identificare un set di costrutti

adatto alla gestione di processi personali. Per ciascuno di essi proponiamo

la miglior soluzione grafica in termini di espressività e aderenza ai principi

di Moody, dopodiché formuliamo quattro sintassi diverse, ognuna formata

da una combinazione degli elementi, per farle testare e valutare dagli utenti.

Presentiamo poi la progettazione e l’implementazione di un prototipo di

applicazione fornita di editor grafico per la modellazione di scenari di vita

quotidiana. Infine discutiamo i dati raccolti durante gli esperimenti di test

e traiamo delle considerazioni sulle quattro sintassi.

v

vi

Abstract

In this thesis we face the problem of the integration of BPM methods into

the management of personal processes, exploiting social network features.

Nowadays, most of the users connected with the Internet have at least an

account on a social network, which they use to interact and to communicate

with friends and colleagues. A recent trend in the online social sharing

is represented by the socialization of task management, which consists in

performing lists of actions in a collaborative way. A simple example is

given by all the existing web applications of to-do list management. All

these web applications are very simple and user friendly, and in some cases

they integrate social features. However they have also some limits, because

they do not allow to manage the activity sequence in a structured way, like

BPM does: they are simple sequences of actions. We start analyzing similar

existent applications in order to understand their points of strength and their

critical aspects. Then we study the Business Process Management Notation

with the purpose to identify a set of constructs suitable to describe personal

tasks. For each one we have chosen the best graphical solution which is

visually expressive and compliant with the Moody’s principles. Then we

create four syntaxes, each one made up of a combination of the original

set of elements and let them be tested by end users. We then present the

design and the development of an application prototype with a graphical

editor, which allows modeling daily life scenarios. At the end we discuss data

collected during the experiments in order to evaluate the four syntaxes.

vii

viii

Contents

Sommario v

Abstract vii

1 Introduction 1

2 Related Works 5

2.1 Web applications . 5

2.1.1 To-do list applications 5

2.1.2 Workflow management 14

2.1.3 Application conclusions 18

2.2 Academic works . 18

3 Background 21

3.1 Business Process Management 21

3.2 Business Process Modeling . 21

3.3 Business Process Modeling Notation 23

3.4 Social BPM . 25

3.5 The Physics of Notation . 26

3.5.1 Semiotic Clarity . 27

3.5.2 Perceptual Discriminability 27

3.5.3 Semantic Transparency 28

3.5.4 Complexity Management 29

3.5.5 Cognitive Integration 29

3.5.6 Visual Expressiveness 30

3.5.7 Dual Coding . 31

3.5.8 Graphic Economy . 31

3.5.9 Cognitive Fit . 32

3.5.10 Interactions among principles 33

ix

x CONTENTS

3.6 OAuth . 34

3.7 Draw2D . 36

4 Design 39

4.1 Description . 39

4.2 Requirements . 40

4.2.1 Use case . 41

4.3 Modeling syntax . 43

4.3.1 BPMN Analysis . 43

4.3.2 PPM Notation . 44

4.3.3 Restrictions . 49

4.3.4 Moody’s principles . 51

4.3.5 Building the four syntaxes 55

4.3.6 Application Behavior 56

4.4 Engine . 58

5 Implementation 61

5.1 The Web Site . 61

5.1.1 Profile . 63

5.1.2 Contacts . 63

5.1.3 Processes . 64

5.1.4 Social APIs . 65

5.2 Graphical Editor . 68

5.2.1 Classes . 68

5.2.2 Ports and connections 69

5.2.3 Gateways positioning 71

5.2.4 Elements management 72

5.2.5 Control Algorithms . 74

5.3 The Logging System . 78

6 Experiments 81

6.1 Preparation of the experiments 81

6.2 Experiment procedure . 85

6.3 Data analysis . 87

6.3.1 Outliers . 87

6.3.2 Durations . 87

6.3.3 Number of elements’ creations and deletions 88

CONTENTS xi

6.3.4 Validation requests . 89

6.3.5 Validation errors . 90

6.3.6 Wrong connections . 92

6.3.7 Editing elements . 94

6.3.8 Questionnaires . 95

6.4 Conclusions . 100

6.4.1 Syntax one . 100

6.4.2 Syntax two . 101

6.4.3 Syntax three . 102

6.4.4 Syntax four . 102

6.4.5 Elements evaluation 103

7 Conclusions 105

7.1 Experience and discussion . 105

7.2 Future work . 106

Bibliografia 107

xii CONTENTS

List of Figures

3.1 Visual variables . 27

3.2 Semantic transparency of relationships between elements . . . 29

3.3 Visual Expressiveness . 31

3.4 Interactions among principles 33

3.5 OAuth authorization flow . 37

4.1 System architecture . 40

4.2 Use case . 42

4.3 Task element . 44

4.4 Task icons . 45

4.5 Sequence connection . 45

4.6 Parallel opening and closure 46

4.7 Conditional opening and closure 46

4.8 Global parameters . 47

4.9 One-local parameter . 47

4.10 Loop element . 48

4.11 Intermediate events: Wait For and Wait Till 48

4.12 Start and End events . 49

4.13 Blocks levels . 49

4.14 The first diagram is syntactically correct while the second

presents a blocks structure violation: the loop backward con-

nection points to a task with a different level 50

4.15 Wrong cascading gateways openings and correct cascading

gateways closures . 54

4.16 Process states . 58

4.17 Task states . 59

5.1 ER diagram . 62

xiii

xiv LIST OF FIGURES

5.2 Profile page . 63

5.3 Contacts page . 64

5.4 Social network’s friends import panel 65

5.5 Friend’s details and contacts merging 66

5.6 Process page . 67

5.7 Graphical editor interface . 69

5.8 Editor class diagram . 70

5.9 Connection creation . 71

5.10 Parallel gateway . 71

5.11 Context menu for the creation of task and events 72

5.12 Context menu for the creation of gateways 72

5.13 Task editing panel . 73

5.14 Conditional branch editing panel 74

6.1 Graeco-Latin square of use case couples 84

6.2 Valid experiments . 85

6.3 Valid experiments . 85

6.4 Durations per syntax in seconds 88

6.5 Experiments’ duration per single user 89

6.6 Average number of creations and deletions per process 90

6.7 Average number of elements per process 92

6.8 Average number of validation requests per single test 92

6.9 Percentage of validations per syntax 94

6.10 Validation errors by syntax per single test 94

6.11 Validation errors per single test 95

6.12 Errors’percentages per syntax 96

6.13 Total connection errors per syntax 97

6.14 Connection errors per single test 98

6.15 Average editing time per process by syntax and element . . . 99

6.16 Number of info panels opened per single test 99

6.17 Syntaxes difficulty . 100

List of Tables

2.1 To-do list and workflow management analyzed applications . 6

2.2 To-do list applications’ features 15

2.3 Workflow applications’ features 17

4.1 Elements analysis . 52

4.2 Events analysis . 53

4.3 The four syntaxes . 56

5.1 Logged actions . 80

6.1 Use cases . 83

6.2 Experiments sets . 86

6.3 Validation errors codes . 91

6.4 Wrong connections codes . 93

xv

xvi LIST OF TABLES

Chapter 1

Introduction

With the advent of Web 2.0 and the explosion of the social networks

phenomenon, we have assisted to an evolution that was also spreading across

the business world. In fact, social networks’ peculiarities are widely exploited

in the realization of business applications to achieve a better collaboration

and performance improvement.

Nowadays, most of the users connected with the Internet have at least an

account on a social network, which they use to interact and to communicate

with friends and colleagues. Social networks themselves make available the

functionality to allow their integration in existing systems and to exploit the

resources they offer.

Web 2.0 technologies can thus be an interesting and powerful instru-

ment for organizations. Their interactivity can bring more employees into

daily contact at a lower cost. If properly used, they can also encourage par-

ticipation in projects and idea sharing. Last but not least, they may also

strengthen bonds with customers and improve communications with outside

partners. In a company lot of resources are generally invested in internal

management. Therefore, an evolution in this way would represent a great

benefit in terms of costs.

A recent trend in the online social sharing is represented by the social-

ization of task management, which consists in performing lists of actions

in a collaborative way. A simple example is given by all the existing web

applications of to-do list management like RememberTheMilk, Astrid, Too-

dledo and many others. All these web applications are very simple and user

friendly, and in some cases they integrate social features. However they have

also some limits, because they do not allow to manage the activity sequence

1

2 CHAPTER 1. INTRODUCTION

in a structured way, or to impose dependencies and constraints among them:

they are simple sequences of actions.

In business environment there have long been solutions for the simplifica-

tion and optimization of the processes management, which allow increasing

the performances at different company levels. The most used solution is the

BPM (Business Process Management) which has a well-structured notation

with a great expressive power: the BPMN. On the other hand, this one and

the other types of notations are not suitable to describe simple processes like

those of daily life. In fact they have elements too specific for the working

environment and they use symbols that represent concept too difficult to be

understood by common people who are not familiar with modeling in gen-

eral. Moreover, an attempt to bring social integration has been developed,

the Social BPM, but it remains confined in academic and industrial setting

and has not been exploited for end users.

The aim of our thesis is to find the connecting link between these two

worlds, the business and the daily one, building an application for the

management of personal processes based on a structured notation like the

BPMN, but at the same time easy and intuitive for common people. From

these premises, it develops the idea to create a simple but effective nota-

tion for the description of personal processes, the PPM (Personal Process

Management). The concept is to take inspiration from the BPMN syntax,

identifying those elements and notions that might be useful and discarding

those too specific for the business or less significant for the description of

daily life processes.

An important aspect is that of socialization: in fact generally the social

networks integration greatly increase the interaction and allow exploiting

the data and potentialities offered by social networks themselves. In our

case it would allow to involve other persons and to assign tasks to them, so

that the process goal will be reached in a participatory way. The integration

permits a quick access to the user contacts, so that he can import and save

them and afterwards assign them to tasks. It is also fundamental to send

notifications regarding task and process states.

The key point is to achieve an intuitive notation such that all kind of

users, also those without any confidence with diagrams, would be able to use

it in the modeling of their processes. This target can be realized through an

3

accurate choice of the notation trying to find the best compromise between

its descriptive power and its intuitivity and usability. To achieve our goal

we have developed a prototype of a graphical editor with the purpose of let

it be tested by people and to collect significant data and to make judgments

based on evidence.

This thesis is structured as follows:

• Chapter 2 - Related Works. In this chapter we will list and analyze

the similar web application already existent for the management of

personal processes. We will compare them and highlight both the

positive and negative aspects of each one. Also some academic works

concerning PPM will be presented.

• Chapter 3 - Background. In this chapter we will present the back-

ground theory on which our work is founded and the notions we have

studied in order to develop our application. In particular we will first

analyze the BPM and the features of its notation. Then we will il-

lustrate the guidelines to keep in mind to build consistent and valid

graphic notations, and finally some interesting technology we have

used to implement our application.

• Chapter 4 - Design. In this chapter we will examine in depth the

design of each aspect of our application. We will explain the methods

we have followed to come up with the final visual notation, together

with all the problems we have faced and the solutions we have adopted

to resolve them.

• Chapter 5 - Implementation. In this chapter we will explain how we

have developed the web application and all the technical aspects. Some

screenshots will be presented in order to better explain the general

functioning of the system.

• Chapter 6 - Experiments. In this chapter we will explain the exact

procedure we have followed to let the users test our application and the

proposed syntaxes. We then will show and analyze the data collected

through the experiments.

4 CHAPTER 1. INTRODUCTION

• Chapter 7 - Conclusions. In this chapter we will check if the goals we

set have been achieved. We will give some final consideration and we

will identify the aspects to improve and some other interesting ideas

to develop in future.

Chapter 2

Related Works

In this chapter we will analyze the tools available on the Web and the

academic researches made in the context of the personal task management.

Essentially, existing tools can be divided into two sets: web application for

the management of to-do lists and web applications for the management of

workflows. Although quite similar, none of these tools seems to have the

requirements and the behavior we are proposing in our thesis. Also in the

academic world, there are only few researches made in this direction.

2.1 Web applications

There are a lot of web and mobile applications to manage to-do lists

and workflows. The majority of them are focused on planning daily life

actions. They are simple and immediate to use, some others instead are

more oriented to support workflow management and are focused to be used

in a company environment. Table 2.1 shows the web applications we have

gathered and found interesting.

2.1.1 To-do list applications

All the considered applications for the management of to-do lists have

some common features and some original ones. Here are listed all the ana-

lyzed features with their explanations:

• social network integration: it simplifies the application login with-

out the need to register a new account, allows a quick access to the user

contacts and could be used to publish contents and send notifications

directly on social networks

5

6 CHAPTER 2. RELATED WORKS

Application URL

Remember The Milk http://www.rememberthemilk.com/

Online Task List http://www.onlinetasklist.com/

HiTask http://hitask.com/

Todoist http://todoist.com/

Toodledo http://www.toodledo.com/

Voo2do http://voo2do.com/

Astrid http://astrid.com/

Cozi http://www.cozi.com/

Bla-bla List http://blablalist.com/

ccToDo http://www.cctodo.com/

The Online CEO http://roughunderbelly.com/user/login

Gtdagenda http://www.gtdagenda.com/

Do https://do.com/

Producteev https://www.producteev.com/

Flow http://www.getflow.com/

KiSSFLOW http://kissflow.com/

Comindware http://www.comindware.com/

Table 2.1: To-do list and workflow management analyzed applications

2.1. WEB APPLICATIONS 7

• task via email: it allows to add new tasks to a list, simply sending

them to the application using email protocol

• quick insert: tasks are inserted in a quick and simple way without

unnecessary steps

• categories: they are used to index tasks and organize them in a logical

way simplifying their research

• geolocation: it allows to indicate on a geographic map the exact

physical location where the task will be performed

• contacts management: it allows to organize and manage own con-

tacts list simplifying the task assignments

• API support: the application offers powerful methods to facilitate

system integration and data access

• import: it supports the import of lists into the application

• export: it supports the export of lists in other formats

• feed: it supports the information sharing through feed RSS

• search: it is possible to search through lists and tasks using categories

and tags

• notifications: they are messages that notify users about deadlines,

tasks completions and other general information

• synchronization: it is a mechanism that synchronizes lists created

within the application with external and mobile devices, so that it is

possible to have all the daily activities under control

• keyboard shortcuts: they increase new tasks creation and are more

suitable to insert information

• project management: it helps the management of multiple lists and

offers business collaborative tools such as a chat to exchange ideas and

discuss the tasks

• permissions: the administrator can set permissions to control the

creation, deletion, editing of tasks, and the reading and possibility to

comment by other users

8 CHAPTER 2. RELATED WORKS

• task assignment: it allows to assign a task to one or more people

• public sharing: it allows the publication of own lists in order to share

them and make them accessible to others people

• reports / statistics: they are graphs that summarize statistics based

on data collected by the application, like task durations or the most

productive users

• drag & drop: it increases the interaction and the ease of use of the

application, for example dragging a contact over a task to assign it to

him

• file upload: files can be uploaded and associated to a task or to a

group of tasks.

• time tracking: it allows to constantly control the deadline of each

task

• multiple entry: it allows to enter multiple tasks in a lists

• backup / restore: it allows to save lists and tasks progresses and to

restore early states in case of errors

• periodic checklists: they provide the possibility to create lists that

can be repeated over time (daily, weekly, monthly)

• booklet print: it allows to easily print a to-do list as a foldable

booklet that you can put in your pocket

• voice recognition: they provide the possibility to insert vocal tasks.

• mobile support: it allows list interaction on mobile device trough

dedicated apps or with adaptive interfaces

• priorities / dependencies: it allows to define priorities among tasks

or to assign a priority tag to them.

Table 2.2 relates the web applications with the listed features.

Let’s now analyze each solution describing their principal characteristics

and listing their pros and cons.

2.1. WEB APPLICATIONS 9

Remember The Milk

This is one of the most full-featured to-do list managers that gives you

many options, including the ability to be reminded of your task via many

methods, such as emails and SMS. You can assign dates, categories and

time estimates to tasks. Remember The Milk supports geolocation, so it

is possible to locate on map the exact place of the tasks executions. It al-

lows you to organize your tasks into tabs and tags to do your work smooth

and fast. There is the possibility to repeat intervals and also collaborative

features are available. It has both a web and a mobile version always in sync.

Pros Cons

- Geolocation - Small number of export formats

- API support

- Feed

- Keyboard shortcuts

- Smart tags

- Task submission via email

Online Task List

It has an easy to use and fast user interface for the managing of task.

It supports task assignments to team members, notes, priorities, due dates

and notifications via email or SMS. It is also possible to set recurring tasks,

import and export lists from spreadsheet and search tasks by description,

detail, category, priority, date and status.

Pros Cons

- Keyboard shortcuts - No synchronization

- Permissions - No mobile support

- File upload - Not user-friendly

- Task priorities

- User roles

HiTask

This online task manager helps end users and businesses to effectively

organize their projects. It has a very clean, well organize and simple to use

interface, which allows scheduling, assigning and creating tasks and projects

10 CHAPTER 2. RELATED WORKS

in a short time. It has a reminder system that will send you reminders in

your mailbox. HiTask is suited for individuals and teams and has a mobile

application.

Pros Cons

- API support - No social network integration

- Feed

- Permissions

- File upload

- Multiple entry

- Backup / restore

- Task hierarchy

Todoist

This task manager application is designed for creating hierarchies of

projects and tasks. It is simple, fast and user-friendly and allows you to

organize your lists as well as create calendars, sub-projects and sub-tasks.

Its features comprehend grouping asks, email reminders and color coding

and keyboard shortcuts. It has a mobile web version and is fully integrated

into Gmail and other online productivity tools.

Pros Cons

- Keyboard shortcuts - Absence of team support

- Intuitive

Toodledo

This is an advanced and very complete to-do list organizer which han-

dles hierarchies, folders, tags, notes, priorities, goals, time tracking, timers,

and contexts. It supports also repeating tasks, search, history, sharing and

collaboration, reminders via email and SMS. It is also available for mobile

phones.

2.1. WEB APPLICATIONS 11

Pros Cons

- Geolocation - A lot of premium features

- File upload

- Multiple entry

- Backup / restore

- Task priorities

- Goal notion

- Task priorities

Voo2do

This manager has an easy user interface and allows to work on different

projects simultaneously, collaborate with others, publish task lists, prioritize

the tasks, set the deadlines, and track the estimated and actual time.

Pros Cons

- Multiple entry - No synchronization

- No mobile support

- No notifications

- Poor interface

Astrid

This application allows to create and share lists, also with unregistered

users. Astrid is set up to email the assigned person about the task, and in

that email, the recipient can either say yes or no to helping out. A notifica-

tion will be added to your account once they respond. You can also assign

due dates and priority levels, add descriptions and comments. It is available

for mobile phones, it has browsers’ extensions and is always synchronized

across devices. An interesting feature is the possibility to enter to-do lists

by voice.

Pros Cons

- Keyboard shortcuts - Notification system

- Voice recognition - File upload is not possible

- Social oriented

- Good integration with Twitter

and Facebook

12 CHAPTER 2. RELATED WORKS

Cozi

This application is designed for the family and helps you manage sched-

ules, organize your grocery shopping lists and to-do lists and capture favorite

memories in a family journal. It is accessible from any computer or mobile

phone.

Pros Cons

- Intuitive - No categories

- Designed for the family context

only

Bla-bla List

This to-do list organizer allows to share lists with others even if they

don’t have an account. You can publish your lists with RSS so that others

get instant updates. You can also share your lists privately and work on

them together.

Pros Cons

- Feed - No categories

- Permissions - No synchronization

- Simplicity and minimalism - No mobile support

- Private and public sharing of

lists

- It is not possible to share a sin-

gle task

ccToDo

This application is simple and intuitive and provides cloud synchroniza-

tion. It supports task submission via email.

Pros Cons

- Task submission via email - Minimum functionality

The Online CEO

The most interesting feature of this to-do list manager is the points sys-

tem to prioritize tasks. It follows the principle that every kind of to do list

falls in a category which can be assigned certain number of points for each

task completed under that category. Once you have list down a to-do and

2.1. WEB APPLICATIONS 13

complete it, you get certain points. At the end of the week you can calcu-

late your productivity by referring the points graph. This system is really

innovative and if you work regularly it can give you a good motivation.

Pros Cons

- Task priorities - No categories

- No synchronization

- No mobile support

Gtdagenda

This to-do list manager supports lists for goals, projects, tasks, next

actions, checklists, calendar and schedules. Schedules are templates for re-

curring daily or weekly time allocations. It has also a mobile version.

Pros Cons

- Periodic checklists - -

- Task priorities

- Social networks integration

Do

This application permits to easily organize track, and create tasks in

projects. Tasks lists can be shared or submitted via email. Its features com-

prehend: notes, reminders, groups, conversations, templates, feeds, calendar

synchronization. It has mobile versions.

Pros Cons

- Feed - -

- Permissions

- File upload

- Project templates

- Social integration with Google

and Linkedin

Producteev

It has a clean and clear interface and supports a prioritization system.

You can assign tasks to other people sending invitation via email or perform

14 CHAPTER 2. RELATED WORKS

actions in a collaborative way.

Pros Cons

- Social networks integration - -

Flow

This application provides all the collaboration tools needed to manage

projects online in one centralized place for everyone. Team members can be

added and tasks can be delegated to them. It supports files upload, dead-

lines, discussions, tasks via mail and tagging. Rather than a static list of

to-do items, each task can be commented on by team members. It is always

synchronized with all the devices.

Pros Cons

- social network integration - -

- notifications

- time tracking

2.1.2 Workflow management

This kind of applications focuses on workflow management support ori-

ented to business environment. Here follows the list of some significant

features we have identified for this kind of tools, that come in addition to

the features previously shown for to-do lists applications:

• data submission: it allows a data exchange between actors and ap-

plication

• workflow control: it is possible to control the flow execution impos-

ing conditions

• workflow automation: the execution of the activities is supported

by the application that coordinates the flow

• graphical workflow builder: it allows to describe workflows in the

application by means of graphical elements

We have found only two applications on the Web that belong to this

category: KiSSFLOW and Comindware. Table 2.3 shows these applications

and their features.

2.1. WEB APPLICATIONS 15

features R
em

em
b

er
T

h
e

M
il

k

O
n

li
n

e
T

as
k

L
is

t

H
iT

as
k

T
o
d

o
is

t

T
o
o
d

le
d

o

V
o
o
2
d

o

A
st

ri
d

C
oz

i

B
la

-b
la

L
is

t

cc
T

oD
o

T
h

e
O

n
li

n
e

C
E

O

G
td

ag
en

d
a

D
o

P
ro

d
u

ct
ee

v

F
lo

w

social network integration * * * * * * *

task via email * * * * * * *

quick insert * * * * * * * * *

categories * * * * * * * * * * * *

geolocation * *

contacts management * * * * * * * *

API support * *

import * * * * *

export * * * * * * * *

feed * * * *

search * * * * * * *

notifications * * * * * * *

synchronization * * * * * * * * * * *

keyboard shortcuts * * * *

project management * * * * * * *

permissions * * * *

task assignment * * * * * * * * *

public sharing * * * * * *

reports / statistics * * * * * * *

drag & drop * * * * *

file upload * * * *

time tracking * * * * * *

multiple entry * *

backup / restore * * *

periodic checklists *

booklet print * *

voice recognition *

mobile * * * * * * * * * * *

priorities / dependencies * * * *

Table 2.2: To-do list applications’ features

16 CHAPTER 2. RELATED WORKS

KiSSFLOW

This application lets users build business workflows and it offers a simple

and efficient way to automate workflows around their existing user base. It

is pre-integrated with Google Docs and Gmail. Users can attach documents

directly in their workflows and collaborate with others users and groups in

their company. Some of the available features are permission levels, time

tracking and statistics.

Pros Cons

- Notifications - Social integration limited to

Google

- Social integration - Mobile not supported

- Fully integrated with Google

Apps

- Permissions

- Task priorities and dependen-

cies

- Graphical workflow builder

Comindware

This application is a collaborative work management solution that fea-

tures workflow automation combined with task management, issue tracking,

online collaboration, email integration, reporting dashboards, workspaces

and API integration. It has a visual, interactive workflow design GUI with

simple drag and drop controls.

Pros Cons

- Process export - No permissions

- Task assignment - No notifications

- File upload

- Time tracking

- Mobile support

- Task priorities and dependen-

cies

- graphical workflow builder

2.1. WEB APPLICATIONS 17

features K
iS

S
F

L
O

W

C
o
m

in
d

w
ar

e

social network integration *

export *

notifications *

permissions *

task assignment *

public sharing * *

reports / statistics * *

drag & drop * *

file upload *

time tracking *

mobile *

priorities / dependencies * *

data submission

workflow control *

workflow automation * *

graphical workflow builder * *

Table 2.3: Workflow applications’ features

18 CHAPTER 2. RELATED WORKS

2.1.3 Application conclusions

Summarizing, all the applications we have analyzed are rich of functions

to help users in the management of their lives, but none of them has the

characteristics we are searching for. First of all they do not have a full and

robust integration with social networks. They do not support the manage-

ment of series of tasks related by dependencies, except for KiSSFLOW and

Comindware that however are business oriented and so are quite inapplica-

ble in a personal context. This means that there is wide gap between BPM

tools and the world of personal process management. There are a lot of

to-do list applications focused on personal usage, however they are too far

from what an integration of social BPM concepts in personal management

would offer.

2.2 Academic works

In this section we will discuss about some of the publications that are

inherent to this thread. Despite being an interesting and important issue,

personal task planning has received limited attention from academic research

so far. While BPM and social BPM are widely covered, we have found a

few documents about Personal Process Management as BPM tools applied

in daily life.

In a post on his blog, Dr. Michael Rosemann has been the first to suggest

the idea of introducing the benefits, methods and tools of BPM into private

life [1]. He have highlighted some applicable scenarios and have stated that

surprisingly at the moment there have not been any corporations that have

yet explored the commercialization of such personal processes. He however

affirmed that it will be only a matter of time before some solution in this

direction will come up.

The only structured research that can be found is reported in a Techni-

cal Report of University of New South Wales called “Personal Process Man-

agement: Design and Execution for End-Users” [2]. The report discusses

a possible implementation of personal process management, presenting a

novel approach for enabling end users to model and deploy processes they

encounter in their daily work. The processes are modeled without compli-

2.2. ACADEMIC WORKS 19

cated constructs using a simple textual process representation. They stated

that for example one person hardly ever pursues multiple tasks in paral-

lel. The simplicity is achieved by allowing only few activity types in the

process: filling forms, sending pre-formatted emails and filling HTML tem-

plates. The process models can then be translated to an executable format

and be deployed, including automatically generated Web interface for user

interaction. This paper is the only technical report about this topic, but it

is based on simplifications done to facilitate its study. This is done because

they start from the assumptions that personal needs are different from those

of business. Hence they face the problem taking in consideration a single

user and his personal process management, without consider multiple users,

social network integration and tasks structure.

A first attempt to implement an application for the management of per-

sonal processes structured with the BPM principles has been done by Profes-

sor Marco Brambilla. In his paper “Application and Simplification of BPM

Techniques for Personal Process Management” [3] some important features

for the adoption of BPM into PPM are identified and highlighted. First

of all a reduction in the expressive power of the BPM notation is needed,

because it is too complex for end users. In second place it is necessary

the introduction of social network integration to improve interaction, along

with social sharing and gamification. Finally, ease of use, flexibility and pro-

ductivity are critical aspect to reach in the application. After an informal

investigation, he proposed a first syntax made up of only three elements:

atomic tasks, sequential dependencies and parallel execution. In the conclu-

sions he proposed to extend this first simple approach with something more

structured, with the objective to isolate a reduced set of business process

modeling construct acceptable and convenient for end users.

20 CHAPTER 2. RELATED WORKS

Chapter 3

Background

3.1 Business Process Management

Business Process Management (BPM) is an approach that focuses on

optimizing business operations, both in the application and human aspect,

to increase the performance, quality, cost and operating times.

Instead of looking at the functional organization of a company (produc-

tion, accountability, marketing, etc.), BPM looks at the processes involved

in each function (design, production, distribution, administration, control,

etc.): it is based on the clear definition of processes.

A business process is a series of tasks or activities that produce a spe-

cific outcome. In many companies, business processes are informal and

undefined. This often creates inefficiencies and bottlenecks when there is

confusion as to employee responsibilities and company procedures.

The aim of BPM is to lead to a better overall view of all the company’s

work processes and their interactions in order to be able to optimize them

as much as possible and automate them to the maximum through working

applications.

3.2 Business Process Modeling

Business Process Modeling (BPM) consists in the representation of en-

terprise processes in order to analyze and improve them. It is generally

used by analysts and managers and it can be assisted by informative tools

to speed up repetitive actions.

A process model defines the behavior of a process and consists of a clear

start, a number of tasks that need to be carried out, sequences and con-

21

22 CHAPTER 3. BACKGROUND

ditions that determine the process flow, and a clear end. The scope of a

complete process can involve one or more organization units.

Here follow some definitions that describe key concepts of this activity.

A business model is the representation of core aspects of a business made

with a broad range of formal and informal descriptions.

A business process is a set of structured tasks that serve a particular

product or service, or to reach a particular goal, for a particular customer.

There are three kinds of business processes:

• Management processes handle the operations of a system such as “Cor-

porate Governance” and “Strategic Management”.

• Operational processes are the core business. Most common operational

processes are purchasing, manufacturing, advertising and marketing.

• Supporting processes cooperate to support the core processes of the

business. Accounting, recruitment, call center and technical support

are examples of supporting processes.

A business process can be seen as a composition of several sub-processes

achieving the goal of the super-process and can be modeled using several

methods and techniques like Business Process Modeling Notation.

There are three types of business processes. Operational processes re-

late directly to the mission of the organization: they create the products or

services that generate the organization’s income. Another type are the in-

frastructure processes that support the operational processes (for example,

manage human resources). The last type are control processes that manage

the operational and infrastructure processes, such as setting goals and mon-

itoring results. All three kinds of models are closely linked. If it is needed

to model more than one of them, it is better to model them separately to

keep the models as simple and clear as possible.

There are many reasons why it could be needed to define business pro-

cesses. Generally models are created to study processes trying to improve

them in terms of efficiency and quality. A first step is the creation of the

3.3. BUSINESS PROCESS MODELING NOTATION 23

as-is model through which analysts and managers understand and analyze

the current way of working. Then come the modeling of the to-be model

that is the redesigned and improved version of the starting process.

Process models are also useful in the definition of risks and controls or in

the choice of roles and responsibilities for each task in a process, or they can

simply be used as a communication tool to facilitate understanding across

the organization.

3.3 Business Process Modeling Notation

Business Process Modeling Notation (BPMN) is an initiative that aims

to define a common graphic notation to create models for business processes.

The BPMN notation can be seen as a UML notation applied to business pro-

cesses.

Each process model consists of:

• a start event

• an end event

• one or more tasks

• sequence flows that define the routing trough the tasks

A task is an atomic activity that should have a well-defined input, a

transformation and an output. The input of a task defines the state of

the process just before the task starts. The output defines the state of the

process after the task is complete. The transformation defines the changes

the task do to the state of the process.

The size of a task is important: it should be such that it can be exe-

cuted at one place in one attempt, otherwise it should be decomposed in

other sub-tasks.

There are four types of routing that can be used while modeling a process:

• Sequential routing is the simplest one and it models sequential execu-

tion of tasks. There is generally a dependence between two sequential

tasks.

24 CHAPTER 3. BACKGROUND

• Parallel routing models two or more tasks or sequences of tasks that

can be executed simultaneously. Parallel tasks are independent but

they need to be completed to continue the process execution flow.

• Conditional routing is a way to control the paths of execution. When

the flow reaches a conditional routing, a condition for each path is an-

alyzed and the execution continues through the paths having satisfied

conditions. BPMN allows event-based choice for routing which means

that choice between tasks depends on an event.

• Iteration is similar to the conditional routing but it allows the repeti-

tion of one or more tasks until a condition is satisfied.

Huge processes with a large number of tasks become difficult to under-

stand. For this reason their tasks can be grouped into sub-processes that

can be modeled through separated diagrams. Each sub-process can in turn

be divided into other sub-processes and so on. This mechanism of grouping

and nesting processes is called hierarchical modeling. A general rule is to

use a maximum of three levels.

Besides task and routing, BPMN supports also intermediate events.

These elements are represented by a double circle with an icon that defines

the event type:

• Message: it models the situation where a task can start only when a

specific type is received

• Timer : it models the situation where a task can start only when a

certain amount of time elapsed or by a specific date/time

• Link : it denotes that the completion of one process is the trigger for

a task in another process

• Rule: it denotes that a task can start only when something outside

the process meets a certain rule

In BPMN there are also intermediate events without an internal marking:

these symbols are used to indicate a specific state of the process. States

provide a useful point to collect management information about the key

performance indicators such as waiting time and processing time.

3.4. SOCIAL BPM 25

When a process spans multiple organizational units or roles, BPMN

makes the use of swim lanes. This technique shows relationships between

process and organization structure and organizational unit or units respon-

sible for each task.

3.4 Social BPM

Social BPM [4] is the integration of social software into BPM. This aims

to increase performance by means of a controlled participation of external

stakeholders to the design and execution of the process.

Social extension to BPM wants to improve the organization efficiency by

exploiting social software potentialities. This can be done enhancing cooper-

ation between people with consequential improvement in activity execution

and dissemination of knowledge. Also mutual support among users is pos-

itively affected. Social functionality can also be used to increase process

transparency and participation of people to the decisions by sharing their

choices or feedback. Following this idea also informal communities can be

involved in activity execution, assigning so the execution to a broader set

of performers or to find most appropriate contributor. Summarizing, Social

BPM believes that the constant sharing and tight contacts typical of the

Social Web can make a significant contribution to the business world en-

hancing its processes.

In classic BPM, processes are defined centrally by the organization and

deployed for execution by internal performers. This close-world approach

can be opened introducing social features at different levels of control:

• Participatory Design opens the process design to multiple actors, in-

cluding end users; the resulting process is then executed in the tradi-

tionally way;

• Participatory Enactment shifts socialization from design to execution,

allowing limited user communities to gain visibility and limited par-

ticipation to the process;

• Social Enactment opens the process execution to open communities of

actors dynamically signed-up to the process.

26 CHAPTER 3. BACKGROUND

All these aspects require the introduction of new elements into the busi-

ness process notation and into development tools. These new features are

well suited to describe classical business process models but are not sufficient

to describe social aspects and informal interactions among people.

3.5 The Physics of Notation

Nowadays graphical languages are widely used in many fields to ease

modeling and designing. The main reason of this success is that it is com-

monly accepted that a visual representation is more suitable also for novices.

However, there are some aspects to take in consideration in order to obtain

a cognitively effective language really claiming these goals.

The most accepted theory is the “Physics of Notations” [5] by Dr. Daniel

Moody, who has identified a set of nine fundamental principles to evaluate

and improve notations on a scientific basis.

These principles are:

• Semiotic Clarity

• Perceptual Discriminability

• Semantic Transparency

• Complexity Management

• Cognitive Integration

• Visual Expressiveness

• Dual Coding

• Graphic Economy

• Cognitive Fit

In his theory, Moody also describes the anatomy of visual notations

identifying the characteristics involved in achieving these qualities.

He states that a visual notation consists of a set of graphical symbols

(visual vocabulary), a set of compositional rules (visual grammar) and def-

initions of the meaning of each symbol (visual semantics). The visual vo-

cabulary and visual grammar together form the visual syntax.

3.5. THE PHYSICS OF NOTATION 27

Figure 3.1: Visual variables

Graphical symbols are used to perceptually represent semantic constructs.

Symbols are made up of visual variables combined together. Bertin’s “Semi-

ology of Graphics” identifies eight visual variables divided into planar and

retinal variables. The planar variables are the horizontal and vertical posi-

tion, while the retinal variables are the shape, size, color, brightness, orien-

tation and texture of the symbol (Figure 3.1).

3.5.1 Semiotic Clarity

There must be a one-to-one correspondence between symbols and their

referent concepts. This is necessary to avoid the following anomalies:

• Symbol redundancy: occurs when multiple graphical symbols can be

used to represent the same semantic construct.

• Symbol overload: occurs when two different constructs can be repre-

sented by the same graphical symbol.

• Symbol excess: occurs when graphical symbols do not correspond to

any semantic construct.

• Symbol deficit: occurs when there are semantic constructs that are

not represented by any graphical symbol.

3.5.2 Perceptual Discriminability

Symbols should be clearly distinguishable from each other. To measure

the distance between symbols we can observe the number of visual variables

on which they differ and the size of the differences. The size is measured by

means of perceptible steps. Of all visual variables, shape plays a key role as

it represents the primary basis on which we identify objects.

28 CHAPTER 3. BACKGROUND

The greater the visual distance between symbols, the faster and more

accurately they will be recognized. A good practice is to create visual ele-

ments having unique value for at least one variable (perceptual popout). On

the other hand, symbols which are differentiated by unique combinations of

values cause slower and error-prone understanding. Another important tech-

nique is redundant coding, which consists in using multiple visual variables

to distinguish between symbols.

Using a textual differentiation is instead a bad choice, because text is

not a dimension that helps increasing the visual distance. Moreover text

processing makes the cognitive processes less efficient.

3.5.3 Semantic Transparency

Symbols should use a visual representation whose appearance suggests

their meaning. Using intuitive symbols reduce cognitive load because they

have built-in mnemonics: their meaning can be either be perceive directly

or easily learned.

A symbol is semantically immediate if a reader is able to infer its meaning

from its appearance alone.

A symbol is semantically opaque if the relationship between its appear-

ance and its meaning is purely arbitrary.

A symbol is semantically perverse if a reader infers a different or even

opposite meaning.

A simple solution to improve the semantic transparency is the use of

icons. Icons resemble the concepts they represent, speed up recognition and

recall, and make diagrams more accessible: people prefer real objects to

abstract shapes.

Another aspect to be considered is the semantic transparency of the

relationships between the elements. Notations in general use effective con-

nection lines that, however, provide few clues to their meaning as they can

be used to represent almost any type of relationship.

On the other hand, certain spatial arrangements of visual elements pre-

dispose people toward a particular interpretation of the relationship among

them even before the meaning of the elements is known. This conveys the

relationship among the entities in a more semantically transparent way than

using arrows, so is more likely to be interpreted correctly and more easily

remembered (Figure 3.2).

3.5. THE PHYSICS OF NOTATION 29

Figure 3.2: Semantic transparency of relationships between elements

3.5.4 Complexity Management

Complexity management is required to create a notation capable to rep-

resent information without overloading the human mind. Notation com-

plexity can be measured by the number of elements on a diagram, not to

be confused with the number of symbol types in a notation, that is called

graphic complexity.

The key is to keep a notation as simple as possible because complexity has

a major effect on cognitive effectiveness than on the amount of information

conveyable. In fact the latter is limited by human perceptual and cognitive

abilities.

Perceptual ability is the cleverness to discriminate between diagram el-

ements and it increases with diagram size. By cognitive ability we mean

the number of diagram elements that can be comprehended at a time. This

capability is strictly correlated to working-memory capacity. Complexity

management is particularly important when dealing with novices.

Some software engineering visual notation lack mechanisms for com-

plexity management and, as a result, really complex diagrams are often

produced. Modularization and hierarchically structuring can be practices of

great impact trying to reduce complexity. The former divides a large system

into more cognitively manageable smaller parts or subsystems. The latter

represents a system at different levels of detail.

3.5.5 Cognitive Integration

This principle applies when multiple diagrams are used to represent a

system. It is closely related to complexity management. Multi-diagram

30 CHAPTER 3. BACKGROUND

representations, in order to be cognitively effective, must include mechanism

to support conceptual and perceptual integration. Conceptual integration

is a mechanism to help the reader assemble the information from separate

diagrams in a coherent mental representation of the system.

A good technic is the contextualization: it consists of the inclusion of

all directly related elements from other diagrams as foreign elements. In-

cluding the overlaps between diagrams allows to better understand each

element in the system of diagrams in terms of its relationships to all other

elements. Perceptual integration is achieved using perceptual clues that

simplify navigation and transitions between diagrams such as clear labeling,

level numbering and a navigational map.

3.5.6 Visual Expressiveness

In a notation, information-carrying variables are variables used to encode

information. Variables not formally used are called free variables. The more

are the information-carrying variables used in a visual notation, the most

it is expressive. The inverse measure is the number of free variables, and it

is called the degrees of visual freedom. Having eight visual variables means

that there are eight degrees of both visual expressiveness and visual freedom.

A notation that uses eight degrees of visual freedom is called nonvisual

or textual, while a notation with eight degrees of visual expressiveness is

visually saturated.

Being visual expressiveness a measure of the graphic design space, a

notation using only a visual variable is said visually one-dimensional. Visual

expressiveness can be used to improve discriminability by choosing the right

number of variables (degree of expressiveness) to represent a certain quantity

of information.

The choice of the variables to use must be made on their capacity and

power compared to the information we want to represent. The capacity of a

variable is the number of its perceptible steps and it should be greater than

or equal to the number of values required. The power of a variable is the

highest level of measurement that can be encoded and so it should be greater

than or equal to the measurement level of the information (Figure 3.3).

3.5. THE PHYSICS OF NOTATION 31

Figure 3.3: Visual Expressiveness

3.5.7 Dual Coding

The principle of dual coding is about reinforcing the cognitive effec-

tiveness of the notation by adding complementary textual descriptions to

graphic symbols. When information is presented both verbally and visually,

representations of that information are encoded in separate systems in work-

ing memory and referential connections between the two are strengthened.

Textual encoding is more effective when it is used to supplement rather than

to substitute graphics.

One particular technique to achieve dual coding is the annotation, which

consists in adding textual explanations directly on the diagram near to the

symbol.

3.5.8 Graphic Economy

The graphic complexity of a notation is the number of graphical symbols

of that notation. It can also be seen as the size of its visual vocabulary.

Graphic complexity differs from notation complexity because it is at the

type level rather than the token level. This means that a notation with a

high graphic complexity can have a low notation complexity and vice versa.

Dealing with a lot of symbols affects novices the most, because they

have to consciously maintain meanings in working memory. Empirical stud-

ies show that the human ability to discriminate between perceptually dis-

tinct alternatives is around six categories. So this defines an upper limit

to graphic complexity. Software engineering notations tend to increase in

graphic complexity in the effort to increase their semantic expressiveness

by adding new constructs. An unwished effect of this trend is the loss of

cognitive effectiveness.

Managing graphic economy could be quite challenging. The main cause

of high graphic complexity is a big number of semantic constructs as different

32 CHAPTER 3. BACKGROUND

constructs are usually represented by different symbols. Reducing semantic

is therefore a simple way for graphic complexity reduction.

Another common practice is to introduce symbol deficit choosing not to

show some constructs graphically. This directly reduces complexity without

affecting semantics.

A third way consists in increasing human discrimination ability: this can

be achieved by increasing the number of perceptual dimensions on which

stimuli differ. This means that the six-symbol upper limit only applies if a

single visual variable is used. Using multiple visual variables to differentiate

symbols can increase human discrimination ability.

3.5.9 Cognitive Fit

The principle of cognitive fit states that different tasks and different

audiences require different representations of information. Multiple visual

dialects are necessary to overcome the differences between the problem solv-

ing skills of experts and novice, and deal with the task characteristics.

Representations must be understandable by both business and techni-

cal experts. While notation experts develop diagram schemas in long-term

memory which largely automates the process of diagram interpretation, non-

experts are slower to understand the notation and tend to make errors.

Novices face difficulties in symbols discrimination, they are more affected

by complexity and have to consciously remember the symbols meanings.

It is not possible to use a single notation optimized for one of the two

sides: it can reduce its effectiveness for the other side (expertise reversal

effect). The best solution is to have at least two different visual dialects: an

expert and a novice one. Notations designed for novices will have more dis-

criminable symbols (perceptual discriminability), reduced complexity (com-

plexity management), more mnemonic conventions (semantic transparency),

explanatory text (dual coding) and simplified visual vocabularies (graphic

economy).

Another situation that requires different visual dialects is the use of dif-

ferent representational media: requirements for sketching on whiteboards or

paper are different to those for using computer-based drawing tools. Some

notational requirements must be taken into account: perceptual discrim-

inability, due to the variations in how symbols are drawn by different people;

semantic transparency, due to the difficulty in drawing pictures and icons

3.5. THE PHYSICS OF NOTATION 33

Figure 3.4: Interactions among principles

with respect to simple geometric shapes; visual expressiveness, because some

visual variables like color and textures, are more difficult to use.

3.5.10 Interactions among principles

Some principles are in conflict, other support each other, so interactions

should be studied in order to make trade-offs end exploit synergies. More-

over interactions are not necessarily symmetrical. Figure 3.4 summarizes

these interactions among the principles.

Some important interactions are:

• Semiotic Clarity vs. Graphic Economy : symbol excess and redun-

dancy increase graphic complexity but symbol overload and deficit

reduce it.

• Graphic Economy vs. Perceptual Discriminability : increasing the num-

ber of symbols makes it more difficult to discriminate between them.

• Perceptual Discriminability vs. Visual Expressiveness: the use of more

visual variables and a wider range of values increases both Perceptual

Discriminability and Visual Expressiveness.

• Visual Expressiveness vs. Graphic Economy : Graphic Economy de-

fines limits on Visual Expressiveness and Visual Expressiveness re-

duces graphic complexity.

34 CHAPTER 3. BACKGROUND

• Perceptual Discriminability, Complexity Management, Semantic Trans-

parency, Graphic Economy and Dual Coding improve effectiveness for

novices but, according to the Cognitive Fit principle, Semantic Trans-

parency can reduce effectiveness for experts.

3.6 OAuth

OAuth (Open Authorization) [6] is an open protocol that allows secure

authorization in a simple and standard method from web, mobile and desk-

top applications. It allows authorized third parties applications to access

users’ data and perform actions in their place without knowing their user-

names and passwords.

The actors involved in an OAuth authorization request are:

• Service provider : the web service in which the protected resources are

stored.

• User : the one who wants to share his protected resources with a con-

sumer without making them public.

• Consumer : the web application who wants to access to the user pro-

tected resources.

• Protected resources: the objects protected by the OAuth protocol, on

which it grants the access and permits.

• Access and request token: the elements used in place of the user cre-

dentials.

The complete OAuth authorization flow (Figure 3.5) is as follows.

First of all the consumer must register itself with the service provider,

obtain an API key and a shared secret and keep them saved. It is important

that the shared secret is sent through a secure channel.

When the user makes a request to the consumer, the consumer prepares

an OAuth request with its API key and redirects the user to the service

provider. The service provider presents to the user a login page with the

specifications of the consumer request and asks him the authorization to

3.6. OAUTH 35

proceed. If the user grants it, the service provider answers with a request-

token and redirects the user back to the consumer page. At this point, the

consumer sends its API key and shared secret with the request token, asking

the service provider for an access token. The service provider verifies data

and sends the access token.

Finally the consumer can use the token to perform requests of user pro-

tected data to the service provider.

The OAuth protocol introduces many advantages:

• it allows quick login without the need to create a new account

• users can control customer accesses and permits to their protected

data

• there is no need to redesign a more robust authentication system every

time

• the login simplicity and velocity encourages users to visit and test new

websites

• it is a standard and all the data transfers take place on SSL

• it is well known and adopted by all the major social networks

However, OAuth protocol has some disadvantages:

• it lacks of anonymity, because users are always obliged to use their

personal data

• accustoming users to login to different sites with their credentials can

be dangerous and make them think that this practice is always safe

• since we are using a unique account for many sites, if we lose it or

decide to close it, then there will be serious impacts across all these

sites

• if it becomes a permanent standard, everyone would be forced to use

this method without alternatives

36 CHAPTER 3. BACKGROUND

3.7 Draw2D

Draw2D [7] is a JavaScript library that allows creating graphs, dia-

grams and workflows inside an HTML5 canvas. It is based on jQuery and

RaphaelJS, it is platform independent, and it has a fast SVG rendering.

It is well supported by all modern browsers like Chrome, FireFox, Sa-

fari, IE9+ and Opera and it is compatible with mobile devices. Compared to

Raphael, Draw2D simplifies the creation and management of figures thanks

to its powerful API that allows writing less code to obtain more flexible re-

sults. Elements are designed as classes with inheritance support, simulating

an object oriented coding style, so it is really easy to extend figures, adding

new functionality, and to modify their appearance.

Draw2D offers extendible basic vector shapes like Rectangle, Circle, Oval

and Diamond. Each one can be graphically customize changing dimensions,

background and border colors and other parameters.

All figures are treated like nodes inside the canvas. Each node can have

input and output ports that allow to connect nodes with lines using the drag

and drop paradigm. Draw2D also supports images and labels, and allows to

import and export diagrams in JSON format, so it is easier to save and load

processes from the database. It also implements some useful functionality

like zooming in and out on the canvas and a commands stack to keep trace

of performed actions that behave like undo and redo system.

3.7. DRAW2D 37

Figure 3.5: OAuth authorization flow

38 CHAPTER 3. BACKGROUND

Chapter 4

Design

4.1 Description

In Chapter 2 we have listed and described many web applications for

the management of workflows and to-do lists. In Chapter 3 we have intro-

duced the BPM and its notation. From these analyses it results that the

applications managing the to-do lists have many restrictions and do not al-

low specifying relationships between tasks other than the simple temporal

sequence. Business process management notation instead is well structured,

but it is too focused on enterprise environment and it is not immediate to

common people. Our thesis will try to merge these two worlds and find a

way to manage the personal processes with a simple but expressive notation.

Our idea is to develop a web application for the management of personal

processes in collaboration with other people, exploiting social networks ca-

pabilities. Users can log into the application through the OAuth protocol,

using one of the social networks they are already registered to. Once they

are logged in, they can connect the application with their other networks

and then they can import friends building their own contacts list. The added

friends then will be available to be assigned to tasks.

At this point users can start creating a process. A graphical editor will

be needed to let them visually model the actions and put them in a sequence,

assign a friend to each task and maybe express conditions or impose time

constraints. Once they have modeled the process, it will be saved in the

database and will be ready to be started and executed.

When the user will start a process, the first task will be read by the

39

40 CHAPTER 4. DESIGN

Figure 4.1: System architecture

system and a notification will be sent to the person assigned to it, informing

him to do the particular action. Once performed, this person must con-

firm the completion by clicking on a special link. A workflow engine will

be in charge of coordinate the execution flow of the process and send the

notifications.

Figure 4.1 explains the architecture of the whole system.

4.2 Requirements

As introduced above, the goal of our thesis is to find the connecting link

between the business process management and the to-do list management.

In order to reach our purposes, some general requirements must be satisfied:

• easy, intuitive and expressive notation

• graphic modeling of the process

• automatic coordination and control of the execution flow of the process

• socialization must be exploited

4.2. REQUIREMENTS 41

To achieve the notation requirements we have planned to take as a ref-

erence the BPMN specifications and then to adapt them to our scope. We

also have decided to keep in mind the analysis and the guidelines exposed

by Moody in his work Physics of Notation in order to build a consistent and

valid notation.

We have thought that a graphic editor would be the better solution to

organize tasks and to model the processes: it offers a great level of interac-

tion and it allows moving around the elements and positioning them in the

way the user prefers. On the other hand, having too elements, the modeled

process could be visually too heavy, and letting the users have too much

freedom can be somewhat disorienting. These could represent critical prob-

lems, but since our targets are quite small processes we have thought that

we can control them.

In order to coordinate the tasks and follow the right execution flow we

have planned to use a workflow engine. The idea is to pass the modeled

process to the engine, and then let it manage the notifications and the

precedences between tasks.

Socialization can be achieved with social networks integration. A first

step is to use the social login feature to access the web application. This

is possible using the OAuth protocol implemented by all the major social

networks. Using it, users have not to register a new account and then can

benefit of contacts import and notifications. Then we can exploit also the

API functionality offered by the social networks to request and exchange

data.

4.2.1 Use case

There are three actors involved in the usage of the application:

• User: he is the user that visits the site for the first time. He can only

choose the social network to use for the first login.

• Logged User: he is the user that has already logged in using a social

network. He can join other social accounts, import and edit contacts,

create and manage processes.

• Actor: the actors are people to whom tasks are assigned. They receive

42 CHAPTER 4. DESIGN

activities to complete and they can only report tasks completions and

submit required parameters’ values.

Figure 4.2 shows the use case diagram of the actors’ interactions with

the system.

Figure 4.2: Use case

4.3. MODELING SYNTAX 43

4.3 Modeling syntax

4.3.1 BPMN Analysis

The first step to define the PPM notation has been the analysis of the

elements defined by the BPMN, in order to identify the conceptual features

valid to reach our purpose.

The concept of the task stands at the base of the process modeling: a

task represents an atomic action that, in a sequence together with other

tasks, allows achieving the process goal. So, a task is the basic block around

which the process is built and it is an obliged choice.

A task represents a state of the process at a given time. It receives

an input, coming from a previous task, and produces an output. We have

chosen to model inputs and outputs like optional parameters receivable and

craftable by a task. These variables could be useful to interact with tasks

and users assigned to tasks.

Another basic concept we have identified, is the concept of sequence be-

tween tasks: tasks have relationships between themselves, such as temporal

priorities. The sequence concept represents the easiest type of relation and

so we have chosen to maintain it.

A point of strength of the BPMN is represented by gateways. These ele-

ments allow expressing more advanced relationships among tasks: a gateway

divides the linear execution flow of the process. There are three main types

of gateways: parallel, conditional and loop.

The parallel gateway permits the simultaneous execution of tasks start-

ing after it. This concept is powerful, and if applied in the right way, it

allows saving a large amount of time. The parallel execution is easy to un-

derstand and for this and the previous reasons, it might be very useful in

the modeling of personal processes.

The conditional gateway is a bit harder to comprehend, especially for

people who are not confident with the concept of variables. This element

allows splitting the execution flow along one or more of his branches, as

long as the conditions declared on them are satisfied. There are some vari-

ations of this element available in the way it manages conditions: exclusive,

inclusive and binary. Since these differences are too specific and could con-

fuse a common person, we have decided to consider the inclusive conditional

gateway only.

44 CHAPTER 4. DESIGN

The last type of gateway is the Loop. This is the one who needs the

most attention, mostly regarding the duration and deadlines management.

The loop, in fact, allows the execution flow to go backward to a previous

state of the process. If it is used in conjunction with the other two types of

gateway, an execution flows overlap could occur. Although these drawbacks,

we have decided anyway to include the loop in our notation for its expressive

power. However, we have decided to impose some restrictions on it, in order

to avoid or to reduce these problems.

Other types of elements used in BPMN are the intermediate events or

triggers. Among all the types of events, we have chosen to keep only the

timer event, because it could be useful to impose time constraints on the

execution flow. In particular we have chosen to introduce two different time

events: one to express the waiting of a generic period of time, one to express

the waiting of a specific date or time.

BPMN provides also other elements, like for example annotations and

swimlanes, that we judged to be unnecessary in the description of daily life

processes and too difficult to be used by ordinary people.

4.3.2 PPM Notation

From the preliminary analysis we have defined in a more rigorously way

the elements behaviors.

Task

A Task (Figure 4.3) defines an atomic activity included within a Process,

and it must be assigned to one or more Actors. It is represented with a

rectangle with the title of the activity written in it. Some icons tell which

properties of the task have been set.

Figure 4.3: Task element

Attributes of a task are:

• Title (string): the name used by the admin to identify the Task.

4.3. MODELING SYNTAX 45

• Actors (list): people to which the Task is assigned. They must com-

plete the task following orders and respecting any time constraint.

• Body (text): the message for the actor(s) containing detailed descrip-

tion of what he/they have to do in order to complete the Task.

• Time constraint (optional): it indicates the maximum time Actors

have to complete the job. It can be a quantity of time (minutes,

hours, days) or a date.

• Parameter(s) (optional): if Actors are supposed to produce an input, a

Parameter must be declared. It can be of two types: string or number.

Icons (Figure 4.4) used in Tasks are:

Figure 4.4: Task icons

• Human Shape/Shapes: it appears on a Task if there is/there are ac-

tor/s assigned to that Task.

• Alarm Clock: it indicates that a time constraint for the Task has been

set.

• Box with arrow (only with global parameters): if a Task leads the

Actor to create a global parameter, a box with an incoming arrow

appears on it. On the contrary, if the box has an outcoming arrow,

it means that a global parameter is read (its value is printed in the

Task’s body).

Sequence

Figure 4.5: Sequence connection

Sequence flow of execution is represented by arrows (Figure 4.5). An

arrow connecting two tasks means that the task at the start of the arrow

must be completed before starting the execution of the task at the end. The

destination cannot be an element preceding the source.

46 CHAPTER 4. DESIGN

Parallel Execution

Figure 4.6: Parallel opening and closure

Parallel Gateways create parallel flows for a simultaneous execution of

tasks. A Parallel Gateway has a unique incoming arrow and two or more

outcoming arrows. The execution of parallel branches starts when the task

directly before the gateway is completed. Being possible to use one and only

one End event per process, multiple flows must be joined before the end. In

the case of parallel flows, this can be done with Parallel Closing Gateways.

A Closing Gateway has two or more incoming arrows and one outcoming

arrow (Figure 4.6). The execution of the Task to which the outcoming arrow

is connected starts only when all the parallel branches are completed.

Conditional Execution

Figure 4.7: Conditional opening and closure

The only way to make conditional execution is to create conditional par-

allel flows using Conditional Gateway. A Conditional Gateway has a unique

incoming arrow and two or more outcoming arrows. The execution of each

parallel branch starts only when the task directly before the gateway is com-

pleted and only if the condition expressed on the branch is verified to be

true. For the sake of simplicity, only simple conditions can be used: arith-

metic operations or comparisons between two parameters are not allowed.

Being possible to use one and only one End event per process, multiple

flows must be joined before the end. In the case of conditional parallels

4.3. MODELING SYNTAX 47

this can be done with Conditional Closing Gateways. A Conditional Clos-

ing Gateway has two or more incoming arrows and one outcoming arrow

(Figure 4.7). The execution of the Task to which the outcoming arrow is

connected starts only when all the parallel branches with true conditions are

completed. In the case of global parameters, conditions can be expressed on

all the parameters created by all the Tasks directly or indirectly connected

to the Conditional Gateway. In the case of local parameters, conditions can

be expressed on parameters created in the Task directly connected to the

Conditional Gateway, or on parameters properly propagated through Tasks

indirectly connected to the gateway.

Parameters

The Parameters are used to store values submitted by Actors. These

values can be used in following Conditional Gateways, to be printed in

following Tasks bodies or just to be stored. We have identified three possible

ways to use parameters: global, one-local and multiple local.

Figure 4.8: Global parameters

Once they have been created, Global Parameters (Figure 4.8) are avail-

able in all the processes directly or indirectly connected after the creating

Task. If one or more Global Parameters are created in a Task, they must

be represented with an icon of a box with an incoming arrow. If they are

read, a box with an outcoming arrow is used instead.

Figure 4.9: One-local parameter

One-Local Parameters are only available in Tasks to which they have

been propagated. A small square at the base of the outgoing arrow means

48 CHAPTER 4. DESIGN

that a single local parameter is being propagated from that Task. A small

square where the arrow hits the Task means that a single local parameter

is being received from that Task. The names of the parameters are written

right above the squares (Figure 4.9).

Also Multiple Local Parameters are only available in Tasks to which

they have been propagated. The difference is that in this case more than a

parameter can be propagated. No icons or squares are needed: their names

appear on the outgoing connection of the Task.

Apart from this distinctions, parameters can accept two types of values:

textual and numerical. The type is chosen by the creator of the project.

Loop

Figure 4.10: Loop element

The Loop is a specific tool to create backward flows. It has one input

arrow and two output arrows, one going forward and one going backward.

The expressed conditions are mutually exclusive: this means that the flow

can continue only on one direction. Once a condition is declared on a branch,

the other one is intended to be the complementary condition (Figure 4.10).

Events

An event is something that happens during the course of a process. There

are three kinds of Events: Start, Intermediate and End.

Figure 4.11: Intermediate events: Wait For and Wait Till

Intermediate Events are Time Events. They have one input arrow and

one output arrow and they occur between a Start and an End Event. A

4.3. MODELING SYNTAX 49

Time Event is activated when the Task before it is completed, and it will

not start or terminate the process. There are two type of Time Events:

Wait Till and Wait For (Figure 4.11). When the flow reaches one of these

events, it will stop until the time or the date expressed has elapsed. Then

it continues normally.

Figure 4.12: Start and End events

The Start Event indicates where a particular process will start. The End

Event indicates where a process will end (Figure 4.12).

4.3.3 Restrictions

We have said that we want to achieve an easy notation, so we have

imposed some constraints to avoid users making errors or coming up with

invalid diagrams. These restrictions can be seen as easily remembered rules

that guarantee the correct modeling of the process.

First of all we have imposed that each element, except for the Start and

the End events, has only one input and one output ports. This means that

each element can accept only one incoming connection and can have only

one outcoming connection. Only gateways make exception of this rule.

Figure 4.13: Blocks levels

An important constraint is represented by the block structure, along

with depth levels (Figure 4.13). The Start and End events belong to the

50 CHAPTER 4. DESIGN

Figure 4.14: The first diagram is syntactically correct while the second
presents a blocks structure violation: the loop backward connection points
to a task with a different level

zero level. Whenever a parallel or conditional gateway is opened, a new

block is created and the level of depth increases. On the contrary, when a

parallel or conditional gateway is closed, the block is closed too and the level

of depth decreases. So a block can be defined as a subpart of the process,

comprised between a parallel or conditional gateway opening and its closure.

Connections between elements of different blocks are prevented: you cannot

connect a task of level one with a task of level three and vice versa. This is

done in order to avoid possible inconsistent states or execution flow overlap.

The Loop does not create new blocks neither it changes the depth level, but

its outgoing branches must be connected with elements of its level.

Figure 4.14 shows some example of wrong modeling and highlight some

of the problems just described related to the block structure.

As a consequence of the block structure, it follows that every gateway

opening and its correspondent closure must have the same number of out-

coming and incoming branches. If this does not happen, it means that there

have been wrong connections together with a block violation or that there

are blocks which have been created but no closed.

We have imposed restrictions also on parallel and conditional gateway

4.3. MODELING SYNTAX 51

openings: it is not possible to open cascading gateways. Here we have to

distinguish all the cases. Opening a parallel gateway right after another

parallel gateway is useless: this scenario can be better modeled using only

one parallel gateway which has the branches of both gateways. A cascade

of conditional gateways can be resolved in the same way. Mixed sequences

are trickier. A conditional gateway immediately followed by a parallel one,

can be replaced by a unique conditional gateway with two or more branches

with the same condition, so that the flow can proceed simulating a parallel

execution. The last case is the parallel gateway followed by a conditional

one. In this case, it is not possible to replace it with a single gateway

and, more importantly, it becomes less immediate to use local parameters

to express conditions. In order to maintain consistency, we choose to avoid

cascade openings: at least a task must be placed between them. Cascading

closure is instead accepted because they cannot lead to misunderstandings

(Figure 4.15).

4.3.4 Moody’s principles

Now that we have proposed the syntax, we have to analyze it from the

point of view of Moody’s Principles. First of all we analyze the basic shapes

of the elements, listing their visual variables and observing if they carry

any semantics (Table 4.1). From the resulting tables it is clear how the

Visual Distance among all the elements is respected giving a good value of

Perceptual Discriminability. In fact, each element has completely different

basic shapes and each sub-event differs in color and texture. A good result

in this direction is also helped by the global simplicity of the target, in

particular by the small number of semantics that must be encoded.

As said in a previous chapter, there are three types of event. Table 4.2

is an analysis of such variations.

Semiotic Clarity, the first Moody’s Principle, is respected by all the ele-

ments. Events share the circular shape, while tasks are rectangular. Parallel

flows are represented with their own gateways, a vertical bar and a diamond

respectively, and connections among these elements are represented with

arrows. Furthermore, each event subtype has its own color and its own tex-

ture. Events’ colors and textures are also in compliance with the Principles

of Perceptual Discriminability and Semiotic Transparency. The Start has

green color and a triangular symbol, properties that are both commonly

52 CHAPTER 4. DESIGN

Metaclass Symbol Visual variables values Semantics carrier

Event

(x,y): variable
shape: circle
color: yes
brightness: NA
size: fixed
orientation: NA
texture: border line

no
yes
yes
NA
no
NA
no

Activity

(x,y): variable
shape: quadrilateral
color: black/white
brightness: NA
size: fixed
orientation: NA
texture: border line

no
yes
yes
NA
no
NA
no

Sequence Flow

(x,y): variable
shape: arrowhead link
color: black/white
brightness: NA
size: variable
orientation: NA
texture: single line

no
yes
yes
no
no
no
no

Parallel Flow

(x,y): variable
shape: quadrilateral
color: black/white
brightness: NA
size: variable
orientation: NA
texture: border line

no
yes
no
NA
no
NA
no

Conditional Flow

(x,y): variable
shape: quadrilateral
color: black/white
brightness: NA
size: fixed
orientation: NA
texture: border line

no
yes
no
NA
no
NA
no

Table 4.1: Elements analysis

4.3. MODELING SYNTAX 53

Metaclass Symbol Visual variables values Semantics carrier

Start

(x,y): variable
shape: circle
color: green
brightness: NA
size: fixed
orientation: NA
texture: start triangular icon

no
yes
yes
NA
no
NA
yes

End

(x,y): variable
shape: circle
color: red
brightness: NA
size: fixed
orientation: NA
texture: stop squared icon

no
yes
yes
NA
no
NA
yes

Wait Till

(x,y): variable
shape: circle
color: orange
brightness: NA
size: fixed
orientation: NA
texture: calendar icon

no
yes
yes
NA
no
NA
yes

Wait For

(x,y): variable
shape: circle
color: yellow
brightness: NA
size: fixed
orientation: NA
texture: hourglass icon

no
yes
yes
NA
no
NA
yes

Table 4.2: Events analysis

54 CHAPTER 4. DESIGN

Figure 4.15: Wrong cascading gateways openings and correct cascading gate-
ways closures

used to represent the “start” concept. The End is in red with a squared

symbol and, also in this case, those are elements commonly used to repre-

sent the “end/stop” notion. Wait For and Wait Till are colored in yellow

and orange, colors that communicate “warning” and so they are suitable for

events that put the process in pause waiting for something. The Wait For

icon is an hourglass and it clearly expresses the notion of waiting for a de-

termined quantity of time. The Wait Till icon is a calendar and it is a good

choice to express the concept of waiting till a chosen day. Arrows to model

sequence flow of execution are a good and quite foregone choice. This is

true also according to Winn’s experiments on spontaneous interpretation of

diagrams. According to the Dual Coding Principle, text elements are used

to enrich graphical elements of information. Tasks have titles, local parame-

ters and conditions are written as labels near arrows, and Time Events have

4.3. MODELING SYNTAX 55

the amount of time to wait for or the day to wait till written above the

element. Complexity Management and Graphic Economy Principles are not

a problem because of the requirements. All the work is based on the idea to

create a tool for personal processes or small business processes and usable

by all with simplicity. The other Principles are irrelevant for this thesis.

4.3.5 Building the four syntaxes

Above we have listed all the elements that we have thought to be useful in

our notation. In order to better understand if the syntax we have identified

is valid and suitable, we need to let it tested by users.

Here we face a delicate situation, which is how to submit the elements

to the users so that they can evaluate them in the best way. Using a unique

syntax with all symbols, for all users, is not possible. In fact there are three

types of parameter management and they cannot be used at the same time.

Moreover, taking into account the target of our experiments, using all the

elements may be too confusing. A possible solution is to fix a number of

elements and then take all the possible combinations, but having too much

alternatives could be a problem. In fact we would need a large number of

people to test all of them. For these reasons, we have decided that a good

compromise would be to have four syntaxes.

All the four syntaxes have the basic elements in common: the start and

the end events, the task and the sequence routing. We built a linear syntax

with global parameters, events, parallel routing but not conditional and

loop gateways. We also built a more complex syntax with multiple local

parameters, conditional routing but no parallel gateway. The other two

syntaxes were instead more balanced. Being the Loop probably the most

critical element, we chose to include it only in one syntax, excluding the

time events to prevent problems in time management.

The four syntaxes are:

• Syntax 1: it makes use of sequence and parallel flows, events, global

parameters, but no loops and no conditional flows.

• Syntax 2: it makes use of sequence, parallel and conditional flows,

global parameters, loops but no events.

• Syntax 3: it makes use of sequence, parallel and conditional flows,

events, one local parameter, but no loops.

56 CHAPTER 4. DESIGN

Element Syntax 1 Syntax 2 Syntax 3 Syntax 4

start x x x x

end x x x x

task x x x x

global parameters x x

one local parameter x

multiple local parameters x

events x x x

sequence x x x x

parallel gateway x x x

conditional gateway x x x

loop gateway x

Table 4.3: The four syntaxes

• Syntax 4: it makes use of sequence and conditional flows, events, mul-

tiple local parameters, but no loops and no parallel flows.

In Table 4.3 are listed the four syntaxes with their constitutive elements.

4.3.6 Application Behavior

Each task must have at least one actor. During the execution of the

process, actors will receive notifications in the form of messages through

social networks or emails. Task orders will be sent to actors in the right

moment telling them to start the activity and how to do it. In the message

there will be a link to follow in order to report the task completion. If the

actor is asked to insert any value, there will be a link to a page were he can

write any input and report that task as completed.

As we said, a task can be assigned to more than one actor. From the exe-

cutional point of view, multiple assignment can be handled in three different

ways:

All. The task must be performed by all the designated actors. The

next task will be available only when all the actors have fulfilled the current

activity. This scenario is nothing but a simplified notation of a parallel

execution of the same task done by different people. The first starting. In

4.3. MODELING SYNTAX 57

this scenario the admin assigns the task to multiple actors but only the first

one who confirms its execution will perform it. In this case it is necessary

the implementation of a mechanism to let users to accept and confirm the

task execution. Also it is necessary to introduce a timer within which users

must confirm the activity. Furthermore if no one accepts the activity, the

entire process may be interrupted and the admin have to choose a random

user and assign him the task. Due to these issues, this scenario is discarded.

The first ending. In this last scenario the admin assigns the task to multiple

actors and all can start to work on it. The task is completed when an actor

finishes it first, though other users are still performing it. This case is quite

inefficient and so it is discarded too.

In conclusion, multiple assignment can speed up the modeling process

by simplifying the representation of multiple execution of the same task by

different people. However it makes parameters handling more complex. If

a task with multiple actors asks to insert a value, there are three ways to

do it. The first one is to handle users’ inputs as an array of parameters but

this will make its usage too complex, especially in building conditions. A

second way is to admit only one input from all the actors. This solution

inevitably assumes cooperating actors, and would fit better with a multi-

ple “first ending actor” assignment. A last solution could be to keep the

last value submitted, admitting a sort of parameter overwriting. Also this

solution needs actors’ cooperation and it is necessarily less tight.

Speaking about parameters, another critical issue exists. If a parameter

is created in a task inside a block opened by a conditional gateway, it is not

obvious to assume its existence outside of that block. In fact its existence

is certainly known at runtime only, when the gateway condition will be

evaluated and the parameter eventually created. This aspect is really tricky,

but a way to resolve it does exist: the introduction of a default value for

every parameter. The default value must be set by the creator of the process

and it will allow maintaining consistency.

Up to this point we have assumed that an actor will perform its assigned

task in the set time interval. But what happens if he doesn’t? A simple solu-

tion might be to send again the original notification, or a message informing

him that the time available is running out. In the event that the actor does

not complete its task, the unique solution is to inform the admin, so that

he can assign the task to an other people or stop the process. Some more

58 CHAPTER 4. DESIGN

advanced technique might consist in introduce safety times between tasks,

letting the actors and the admin have more time to manage this kind of situ-

ations, or give the possibility to choose in advance some possible substitutes

for each task.

4.4 Engine

We said that notifications and process execution flow would be managed

automatically by the system. In particular this will be possible using a

workflow engine. Instead of building a new engine we have planned to choose

it between some already available implementations. They are typically built

in Java and require a mapping of the process in order to correctly work.

The execution of a process instance is similar to a finite state machine,

where it responds to external events changing its state.

Figure 4.16: Process states

At any time during the execution, as shown in Figure 4.16, the process

can be in one of these states:

• Initiated: the instance of the process has been created but the execu-

tion has not started yet.

• Running: the instance of the process has started the execution and

any of the activities may be started.

• Active: one or more activities of the process instance have been started.

4.4. ENGINE 59

• Suspended: the entire execution has been suspended and no activities

can be started until the process returns in the running state.

• Completed: the process instance has fulfilled the conditions for com-

pletion and no more activities will be executed.

• Terminated: the execution of the process has been stopped before it

could reach the completed state.

Also tasks can switch through different states like shown in Figure 4.17.

• Inactive: the task is not currently been processed.

• Active: the task instance is running.

• Suspended: the task instance is blocked and is waiting to be resumed.

• Completed: the task instance has been correctly fulfilled.

Figure 4.17: Task states

Above we have said that we have four syntaxes with different behaviors

in the parameters management. This means that four versions of the engine

are required. Since we are more interested in the notation evaluation, we

will not implement the engine.

60 CHAPTER 4. DESIGN

Chapter 5

Implementation

5.1 The Web Site

We have realized the web site in PHP, HTML and CSS and we have

made large use of JavaScript and jQuery to increase the interaction and the

responsivity of the system.

The site has a really simple structure. It is divided into three main sec-

tions: Processes, Contacts and Profile. To access them, a user must first

authenticate himself. The authentication is done with the OAuth mecha-

nism: users can so choose among some of the most used social networks.

In our case, we have implemented login systems for Google+, Facebook,

Twitter and LinkedIn.

Once the user has been authenticated for the first time, the application

creates a new database entry in the users table with his name and avatar.

The respective social ID is also saved, while the OAuth token is temporarily

stored in session.

Figure 5.1 shows the database schema to manage the registered users,

their contacts and the created processes. We decided to store social details

for both users and contacts in the table Social. It contains the ID of the

account in the social network, the name of the person and the avatar. Face-

book and Twitter make use of numeric IDs, while LinkedIn and Google+

use strings. For this reason in Social there are social id and social token.

The first one is used for integer IDs and the second one for string IDs.

61

62 CHAPTER 5. IMPLEMENTATION

Figure 5.1: ER diagram

5.1. THE WEB SITE 63

5.1.1 Profile

In this page the user can join other social accounts with the one he has

used for the first authentication (Figure 5.2). He can also see a list of all his

joined accounts. For each one of them, the username, the user’s avatar and

the related social network icon are shown. An account can also be disjoined

and consequently removed by clicking on the cross button. This action will

remove also contacts imported with that account.

Figure 5.2: Profile page

On the left side of the page users can choose more social networks to

join. When he clicks on one of them, an OAuth process is started through

the APIs of that social in order to authenticate him. If the authentication

successfully ends, his name, his avatar and his user ID are added to his

account, and the token is saved in session. From now on, the user will be

able to import and use contacts from the contacts’ list of that social.

5.1.2 Contacts

In the Contacts page users can import contacts from their socials’ friends’

lists (Figure 5.3). On the left side of the page there are buttons to require

the import. When the user clicks on one of them, an AJAX request is sent

to the chosen social through its specific APIs, asking for a complete friend

64 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Contacts page

list. When the list is received, the user can select which contacts to import

(Figure 5.4).

Due to Google+ APIs restrictions it was not possible to import contacts

from Google+ circles. Imported contacts are listed in the rest of the page.

Users can also create new contacts from scratch writing name and email,

or modify the existing ones. We also have implemented a mechanism for

contacts merging that allows merging data of two different contacts in the list

(Figure 5.5). Therefore if the user is connected to a friend through different

socials, he can put his friend’s socials all together in only one contact.

Some icons show which social networks are available for each contact.

Users can also express a preference for each contact, setting which social to

use as default.

5.1.3 Processes

In the processes page users can create and manage their own processes

(Figure 5.6). Created processes are listed in a table showing creation dates

and their status. Processes can be deleted and opened in the editor to have

a detailed view or to modify them.

5.1. THE WEB SITE 65

Figure 5.4: Social network’s friends import panel

5.1.4 Social APIs

We have used social networks integration to manage the application login

and contacts lists. Each social has its API to make requests and exchange

resources. First of all we have registered our application to the chosen social

networks obtaining the application keys and secrets which permits to execute

valid calls.

Although the interaction mechanism is similar, every social network dif-

fers in the way the requests are built. In order to make things easier, there

are libraries and official developer’s kits of functions to use. Usually the first

operation to do is the instantiation of the object that will manage the calls,

setting the proper application key and secret.

For example in Facebook it is done in this way:

$facebook = new Facebook (array (

’appId’ => FB_CONSUMER_KEY,

’secret’ => FB_CONSUMER_SECRET,

));

$facebook->setAccessToken($user->fb_token);

while in Twitter:

66 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Friend’s details and contacts merging

$twitter = new TwitterOAuth(TW_CONSUMER_KEY, TW_CONSUMER_SECRET,

$user->tw_token, $user->tw_secret);

The API interaction consists in a HTTP GET or POST request sent to

the social network, and is followed by its response, usually received under

the form of a JSON file. Usually, when asking for the user friends list, more

than one API call is necessary: a counter variable, coded in each JSON file,

tells if other requests must be made to obtain the complete list. This is the

case of Twitter, which need the use of a loop of calls to correctly collect all

the user friends. First of all it is necessary to request the array of friends’

ids, and then use it to formulate another request to get the corresponding

profiles. Since in Twitter there is the distinction between followers and

followings, and not just the concept of friends, we have decided to return

data of both of them. The procedure is the following:

$followers_ids = $twitter->get(’followers/ids’,

array(’user_id’ => $user->tw_id));

$friends_ids = $twitter->get(’friends/ids’,

array(’user_id’ => $user->tw_id));

$contacts = array_merge($friends_ids->ids, $followers_ids->ids);

$contacts = array_unique($contacts);

$contacts = array_chunk($contacts, 100);

$friends = array();

5.1. THE WEB SITE 67

Figure 5.6: Process page

foreach ($contacts as $c) {

$contacts_str = implode(’,’, $c);

do {

$friends_lookup = $twitter->post(’users/lookup’,

array(’user_id’ => $contacts_str));

} while(count($friends_lookup) == 0);

foreach ($friends_lookup as $r) {

array_push($friends, array($r->id, $r->screen_name,

$r->profile_image_url));

}

}

Facebook appears to be more immediate and allows making requests

using a query language:

$params = array(

’method’ => ’fql.query’,

’query’ => "SELECT uid, name, pic_square FROM user WHERE uid IN

(SELECT uid2 FROM friend WHERE uid1 = me())"

);

$result = $facebook->api($params);

68 CHAPTER 5. IMPLEMENTATION

5.2 Graphical Editor

We have chosen to develop the graphical editor in JavaScript using the

canvas potentialities. The canvas is an HTML5 element that allows to draw

graphics on web. It is only a container and it requires scripts to actually

draw the graphics, so JavaScript represents the obvious choice.

Since the functions to create figures are of low-level and they require

a lot of code lines, even for the easiest things, in order to better manage

the creation, deletion, customization and movement of the elements, we

have relied on a library. In particular we have chosen to use the Draw2D

library [7], which is based in its turn on Raphael [8], another JavaScript

library, and simplifies the drawing and the interaction. It in fact supports

the drag and drop of the elements with mouse and all the other events like

click, double click and keypress.

We have developed the editor in a popup window, separated from the

website, in order to remove the browser’s menu and status bars and maxi-

mize the space. We have organized the layout using a jQuery plugin so that

it becomes more responsive on window resizing. The editor is divided in

two parts: a toolbar on top and the canvas in the middle (Figure 5.7). The

toolbar shows the process name, which can be edited, and the buttons to

clear the canvas, save the process, validate the diagram, delete a selected

element and zooming.

5.2.1 Classes

A peculiarity of Draw2D is that it simulates an object oriented coding

style and its strength resides in the possibility to inherit and to extend

classes. Draw2D makes available some basic elements that we extended for

our purposes.

Figure 5.8 shows the class diagram which explain the class hierarchies.

The most important object is the VectorFigure class. It is the base class

for all vector based figures inside the canvas. It inherits from the Node class

which is instead the base class for all figures which can have ports. Ports

are the anchors for connection lines.

Some basic geometric shapes are also available, that inherit from Vec-

torFigure. Since we needed three kinds of shapes, the rectangle, the circle

and the diamond, we extended those classes.

5.2. GRAPHICAL EDITOR 69

Figure 5.7: Graphical editor interface

We have extended the Rectangle class to create the task element and the

parallel opening and closure gateways. While the task has fixed dimensions,

the parallel gateways have variable height depending of the position of the

connected elements. We have extended the Diamond class to create the loop

and the conditional opening and closure gateway. These three gateways

have the same exact shape: a loop can be seen as a modified version of the

conditional gateway. We have extended the Circle class to create the start,

the end and the intermediate events. This last one was specialized in the

two types of time event: wait for and wait till. These four events differ in

size, colors and in the icons we loaded inside them.

The VectorFigure class has been enriched with the functions useful for

each elements like the onDrag() method which is called whenever an element

is been moving in the canvas.

5.2.2 Ports and connections

Tasks elements and intermediate events present two ports, one for the

input and one for the output connections. The start event instead has only

the output port while the end event has only the input port. The input

port is always positioned on the middle of the left side of the element while

70 CHAPTER 5. IMPLEMENTATION

Figure 5.8: Editor class diagram

5.2. GRAPHICAL EDITOR 71

the output port on the middle of the right side. When a connection has

been created, the source and target ports became invisible, because these

elements can have only one connection per port Figure 5.9.

Figure 5.9: Connection creation

For gateways the situation is a little different. In fact, they must han-

dle many connections. In order to facilitate the drag and drop to create

connections from and to the gateway, we have introduced a particular type

of port always fixed at the center of the gateway, on left side for incoming

connections, on right side for outcoming connections. This port is always

visible and available, since once a connection has been created, the link is

drawn between a new hidden port created on the gateway and the connected

element Figure 5.10.

Figure 5.10: Parallel gateway

5.2.3 Gateways positioning

We have imposed some movement restrictions in order to keep the dia-

gram more orderly, to avoid overlaps and to better shift gateways. Elements

connected to gateways openings cannot be moved toward the right over a

certain limit. The same applies for elements connected on the right of gate-

ways closures: they cannot be shifted too much to the left. Gateways can be

moved only in the space between the previous and next connected elements.

In this way the block structure of the diagram is kept legible. If more space

is needed in the canvas, groups of elements can be selected together and

moved in a new position.

72 CHAPTER 5. IMPLEMENTATION

5.2.4 Elements management

We have managed the creation of elements in two ways. Right clicking

on the canvas shows up the context menu to create a new task or an inter-

mediate event (Figure 5.11). The start and end events are already present

in the canvas, since they cannot be duplicated or deleted.

Figure 5.11: Context menu for the creation of task and events

Gateways instead are created right clicking on tasks’ and events’ output

ports (Figure 5.12). We have adopted this solution for two reasons. First of

all it allows us a better control on the validation of the modeling: when the

user clicks with the right button on an output port, a menu shows up listing

both the available gateways openings and specially the available closures. In

this way the user is guided and is less likely to make mistakes. The second

reason is that gateways cannot be detached from elements: they must have

at least an input or an output connection. This is done again to help the

user keeping the control on the diagram and to reduce errors.

Figure 5.12: Context menu for the creation of gateways

All elements, except for start and end events, can be deleted from their

context menus. Gateways are automatically deleted when their input con-

nection or their previous element are deleted.

5.2. GRAPHICAL EDITOR 73

Tasks, intermediate events and conditional branches context menus allow

also editing the element. We have built a draggable panel which appears on

foreground listing all the information.

Figure 5.13: Task editing panel

Figure 5.13 shows the task editing panel. The admin can set the task

name, the body message used for the notification and the execution time

deadline. Clicking on the “Manage Users” button, a window with admin’s

friends is loaded, and from it he can choose one or more actors to assign

to the task. Depending on the current parameters management, the admin

can also create, accept and propagate parameters or print them in the body

message.

Intermediate events editing panels simply allow the admin to set the

waiting time intervals.

Clicking on a conditional branch, it is possible to express conditions on

parameters. As shown in Figure 5.14, the admin must first select an available

parameter, then, depending on its type, he can choose a logical operator and

insert a value.

74 CHAPTER 5. IMPLEMENTATION

Figure 5.14: Conditional branch editing panel

5.2.5 Control Algorithms

We noticed that it would have been difficult for a novice user to create

an entirely correct and working process. For this reason we decided that the

introduction of control systems was essential. We have thus implemented

a validation system that can be used by users every time they want, while

modeling a process, to check its status. We have implemented also real-time

controls on creation of connections between elements. The algorithms we

have built for these controls make use of two key concepts we have devised.

The first one is the block structure described in chapter 4, based on elements

levels. The second one is the notion of element weight. We will now describe

how the weights are generated and how we use them. We will then describe

the details of each control algorithm.

Elements Weigths

The idea is to give a weight to each element of the graph. Each weight

value depends on the weights of the previous elements. The only element

having a predefined value is the Start, with weight equal to 1. The algorithm

we wrote explores the graph starting from the Start and computing weights

one by one according to the way the elements are connected. The rule is

that if an element B comes after an element A and they are in sequence, B

gains the weight of A. Otherwise if they are connected by a gateway opening

(parallel or condition), B gains the weight of A divided by the number of

the gateway output connections. It follows that elements in nested blocks

have different weights or, in other words, the higher the level, the lower the

weight.

5.2. GRAPHICAL EDITOR 75

If we state that the execution of a process must start only from the Start

and that the End Event is the only element that can symbolize the end of a

process, it is clear that a process can be considered complete if and only if

the weight of the End is one.

Graph Traversal

Weights computation, connection controls and process validation require

a lot of graph exploring. In order to simplify our algorithms we have created

a set of basic functions for the execution of recurrent operations. Here follows

the list of these functions with a short description for each one:

• getApertura : function(elem, level): given an element and its level,

the function returns, if it exists, the Opening Gateway that delimits

the block in which the element is contained. A gateway is considered

belonging to the block which contains it, and not the block delimited

by that gateway.

• getChiusura : function(elem, level): given an element and its level,

the function returns, if it exists, the Closing Gateway delimiting the

block in which the element is contained.

• getGateway : function(closure, level): given a Closing Gateway, the

function returns the corresponding Opening. It assumes that all the

incoming branches start from the same Opening. This is possible

thanks to constraints and controls that avoid cross-block connections

and Opening-Closing decoupling.

• getChiusuraGateway : function(opening, level): given an Opening

Gateway, the function returns the corresponding Closing.

• getStart : function(canvas): this function returns the Start element

object.

• getEnd : function(canvas): this function returns the End element

object.

• getRoot : function(elem, canvas): given an element, this function

returns the root element of the graph in which the element is contained.

Note that creation of subgraphs is allowed, although they must be

connected together to form a correct process.

76 CHAPTER 5. IMPLEMENTATION

• sonoInLoop : function(source, target): given potential source and

target elements of a connection, it checks if they are in loop. In other

words, if the target element is currently preceding the source inside

the graph, the function returns true.

• sonoConnessi : function(source, target): it checks if potential source

and target elements of a connection are already connected.

Connection Control

Each time a user tries to create a connection between two elements, the

function validaConnessione : function(source, target, canvas) is called.

This function receives source and target elements and checks if the user is

trying to create a valid connection.

First of all, it checks if the source is a backward port of a loop and then

if the potential connection is valid. Rules for a valid loop are:

• The source element of a loop must be reachable from the target.

• Tasks are the only type of element allowed as target for a loop.

• The source and the target of a loop must be of the same level.

• The source and the target of a loop must reside in the same block

(getApertura : function(elem, level) returns two different Gateways

for the source and the target).

If the source of the connection is not a backward port it means that the

user is trying to connect two elements in sequence. In this case the rules for

a valid connection are:

• The source cannot have an already outcoming connection and the tar-

get cannot have an already incoming connection.

• If the target is the End, the source must have level equal to zero and

it must not be a Gateway Opening. Otherwise this would cause End

to have weight less than one.

• The connection must not make a Closing Gateway the closing of an

Opening Gateway different from its corresponding opening.

5.2. GRAPHICAL EDITOR 77

• If the source has level equal to zero, the target cannot be a Closing

Gateway.

• The source must not be reachable by the target.

• The connection cannot directly connect the Start and the End.

If the user tries to connect two elements breaking one of the previous

rules, the application detects the error and prevents the connection from

being created. The user is warned by an alert. On the contrary, if the

connection is valid an arrow from the source to the target element is drawn

and elements levels are updated by calling the function ricalcolaLivelli :

function (elem, canvas, isFirst). Given an element, this function updates

levels starting from the root element of the subgraph in which the element

is contained. In fact a connection can alterate only element’s levels of its

containing subgraph.

Validation Algorithm

The validation algorithm checks if the process is rules compliant. We

have said that we have imposed many constraints from a syntactical point

of view, in order to address the user to a good solution and to prevent

excessively faulty processes.

The validation algorithm scans the entire process searching for a pre-

defined set of errors. Every aspect making the process incomplete or not

restrictions compliant is considered an error. When invoked, the algorithm

starts analyzing the diagram element by element. It searches for any element

not reachable from the Start. It scans gateways to ensure that each Closing

has at least two incoming connections and that each Opening has at least

two outcoming connections. Tasks and events are scanned to ensure that

their mandatory properties have been set. At this point the algorithm calls

azzeraPesi : function(canvas) and ricalcolaPesi : function(elem, nCiclo,

nTot) and element’s weights are updated. azzeraPesi() is required because

of the structure of the recursive function ricalcolaPesi(), which assumes all

elements having weight equal to zero. nCiclo and nTot parameters are used

in order to avoid redundancy in the exploration of the graph. Otherwise re-

dundancy could occur with gateways. Once the weights have been updated,

the algorithm checks the level and the weight of the End. As we have al-

ready said, if the End has weight less than one, it means that the flow is not

78 CHAPTER 5. IMPLEMENTATION

entirely routed in the End and the process is either invalid or incomplete.

Furthermore, if the End has level greater than one it means that the user

was able to end the process without closing all the opened blocks.

Load and Save

Processes are stored in the database under the form of JSON strings.

Elements’ properties can be divided into two categories. Some of them are

variable and they change from an element to another, some other are equal

to all the elements of the same type. Only the variable attributes are saved

of course. Each element class has its own method to extract those data,

getPersistentData(). The save method collects all the persistent data of all

the elements one by one, and then it converts them into JSON. Lastly a

PHP action assigned to JSON storing into the database is called.

Some of the attributes to save are different depending on the element

class. Name of the class of course, element ID, coordinates, size and level

are common to all the classes. For tasks are saved also the weight and all

the attributes set by the user like title, body, time constraints, actors and

parameters. Also for events the weight is saved while gateways have the

number of output ports in the case of Openings or the number of input

ports in the case of Closings. A special case is the connection that only

needs a source ID and a target ID.

5.3 The Logging System

In order to evaluate the four syntaxes, we decided to implement a log-

ging system able to collect more data as possible during the usage of the

application. Logging was limited to the graphical editor. The logger was

made up of a PHP action, responsible for logged actions storage into the

database, and of a JavaScript file, responsible for data collection from each

log request and used for building an AJAX request to be sent to the PHP

action.

First of all the JavaScript logger must be instantiated:

logger = new Logger(userID, syntax, processID);

The parameters accepted by the constructor are the user ID, the syntax

number, and the process ID. Once the logger has been initialized, a log

request can be done calling the function “log”:

5.3. THE LOGGING SYSTEM 79

logger.log(’create’, ’task’, task.getId());

This function makes an AJAX request and the PHP action inserts new

data in the database. Each log row contains a code name for the tracked

action, a field used for additional info, and the target of the action. In

Table 5.1 are listed all the actions we decided to record with the respective

names and codes used in log rows. Error codes and invalid connections codes

are explained in Table 6.3 and Table 6.4

Being logs stored in a database, desired data can be easily extracted by

means of SQL queries. We prepared a set of basic queries capable for the

extraction of:

• time required to create each process

• number of times an element has been edited

• number of elements created

• number of times an element has been moved

• number of delete

• number of process savings

• number of validation requests

• number of invalid connections

Starting from these queries then we could easily build composite queries

extracting derived data useful for comparison and evaluation of the syn-

taxes.

80 CHAPTER 5. IMPLEMENTATION

Description Coding

The user starts the creation of a
new process by opening the edi-
tor.

Name: start
Info: NA
Target : NA

The user creates a new element
in the canvas.

Name: create
Info: task, wait for, wait till, and open, or open,
and close, or close, connection, loop
Target : elementID

The user tries to create a not al-
lowed connection.

Name: invalid connection
Info: invalid connection error code
Target : NA

The user deletes an element of
the canvas.

Name: delete
Info: task, wait for, wait till, and open, or open,
and close, or close, connection, loop
Target : elementID

The user opens the info panel of
an element.

Name: open info
Info: task, wait for, wait till, connection
Target : elementID

The user edits an attribute of a
task.

Name: edit task
Info: title, body, actors, deadline, param add,
param remove, param rename, param prop,
param recv, param unprop, param unrecv,
param type, param print
Target : taskID

The user edits the time of an
event.

Name: edit event
Info: time waittill, time waitfor
Target : eventID

The user edits a condition. Code name: edit connection
Info: cond add, cond remove, param, operator,
value
Target : connectionID

The user closes an info panel of
an element.

Name: close info
Info: close, cancel, save
Target : elementID

The user moves an element in the
canvas.

Name: move
Info: task, wait for, wait till, and open, or open,
and close, or close, loop, start, end
Target : elementID

The user clicks on the “Validate”
button asking for a validation of
the created process.

Name: validate
Info: validation error code (if invalid)
Result : True / False

The user clicks on the “Save”
button saving the process.

Name: save
Info: NA
Target : NA

The user clicks on the “Shut
Down” button to conclude the
experiment.

Name: end
Info: NA
Target : NA

Table 5.1: Logged actions

Chapter 6

Experiments

6.1 Preparation of the experiments

In Chapter 4 we have introduced the graphical notation and we have

identified four different syntaxes, each one consisting of a combination of

some of the notation elements.

The idea was to submit these syntaxes to real users and to conduct

experiments in which they used one of these syntaxes to model a process

inside the graphic editor we have developed. By observing how users model

the processes, and then analyzing their outcomes, we expect to determine

which is the best configuration.

To do this, we have invented some simple scenarios based on situations

that may happen to face in real life, being this the goal we want to achieve.

Every scenario describes a process with suggested activities and some gen-

eral constraints. We have asked people to model the process, imaging that

they need to coordinate a group of friends and colleagues, assigning persons

to tasks.

These are the three scenarios used during the experiments along with

the test scenario used to explain the editor functionality:

Scenario A - Holiday with friends

You are organizing a holiday with your friends in the first week of August.

You have decided to visit London and set the budget to ¤1200 per person.

First of all you must decide the transport, choose the hotel and plan some

possible tours. Then you have to draw up the final budget and if it is

81

82 CHAPTER 6. EXPERIMENTS

included in the planned costs, you can proceed with reservations. The week

before the departure, you will meet together to define the last details.

Scenario B - Association party

You are a member of an association which wants to organize a party

on July 1st with an outdoor dinner and music to celebrate its 10 years of

activity. Participation at the event is free for anyone but it is necessary to

take a reservation. First of all you need to publicize the event, and once at

least 50 reservations are taken, you have to inform the municipality and get

the authorization. Then you can contact the catering service and engage

the band. The event will start with the dinner at 8:00 pm followed by the

concert at 9:30 pm if the dinner has finished.

Scenario C - Warehouse management

Your company works with a lot of raw materials stocked in the ware-

house. Your goal is to optimize the buying and selling of the materials to

avoid wasting it, maintaining always 1000 units constant. Every week, the

total quantity of material stocked in warehouse must be checked and then,

according to the amount, you need to buy new raw material or sell it. Each

order must be first approved by the accounting department. Once arrived,

new stock must be placed and catalogued.

Scenario Test - Basket tournament

You are organizing a basket tournament. You need to collect the reg-

istrations, schedule the matches, rent the playgrounds and find the sponsors.

In every scenario we have asked users to model the process trying to

reduce organization times and involving as many persons as possible.

Having four syntaxes and three scenarios, overall there are twelve possi-

ble couples, called use cases, shown in Table 6.1.

We have decided to submit two use cases to each user. It should be

noticed that the submission order of the two use cases is relevant because,

trying to solve the second test, the user will apply the knowledge gained

during the first one.

6.1. PREPARATION OF THE EXPERIMENTS 83

use case syntax scenario

1 1 A

2 2 A

3 3 A

4 4 A

5 1 B

6 2 B

7 3 B

8 4 B

9 1 C

10 2 C

11 3 C

12 4 C

Table 6.1: Use cases

In order to overcome unintended effects and to have balanced experi-

ments, we have studied all the possible use cases pairs taking in considera-

tion both the order and the scenario-syntax coupling.

Applying the Graeco-Latin square theory to the use cases, we obtained

the result shown in Figure 6.1.

Each cell of the table represents a single experiment, made up by two

use cases to be assigned to a single user. In each row of the table, every

syntax and every scenario appears the same number of times, and every use

case appears one time in the first position and one time in second position.

Invalid experiments are highlighted in red. We consider invalid an ex-

periment which has the same scenario and/or the same syntax in both tests.

For example, the experiment [2,3] is invalid because of the repetition of sce-

nario A, while the experiment [5,9] is invalid because of the repetition of the

first syntax.

Excluding the red cells, the remaining green cells can be grouped as

shown in Figure 6.2.

The second and the fifth rows have six cells each that are mirrored rep-

etitions of the other six cells ([3,5] and [5,3], [4-6] and [6,4], etc.). However,

it was possible to combine them to obtain two new rows in compliance with

84 CHAPTER 6. EXPERIMENTS

Figure 6.1: Graeco-Latin square of use case couples

the properties we have described above.

Let’s call the remaining rows A, A’, B, B’, C and C’ (Figure 6.3). We

can see that A’ has the same couplings of A but with use cases in the

inverse order. The same is for B’-B and for C’-C. In conclusion, we can say

that taking in consideration multiples of twelve experiments following the

previous technique, we have all the scenarios and syntaxes configurations

balanced. This means that in our set of experiments we will have an equal

number of times each scenario and each syntax, as well as each use case will

appear in first or second position a number of times equal to the other use

cases, and consequently this will be valid also for scenarios and syntaxes.

According to these considerations, good sets for the experiment are rep-

resented in Table 6.2

6.2. EXPERIMENT PROCEDURE 85

Figure 6.2: Valid experiments

Figure 6.3: Valid experiments

Notice that it would be better to take all the mirrored rows of those

currently taken, instead of just a part of them. For instance, if we take A,

B and C, it is better to choose also A’, B’ and C’ instead of A’ only.

However, having found about twenty people available to test, we have

decided to choose A and B rows.

6.2 Experiment procedure

Each experiment has been conducted following this exact procedure in

five steps:

1. Introduction. First of all, the user was informed about the tool and

86 CHAPTER 6. EXPERIMENTS

A B C

A - ok ok

B ok - ok

C ok ok -

Table 6.2: Experiments sets

its purposes. Then he was told that we wanted to test the effectiveness

and ease of use of the editor and of the adopted modeling syntax

to model small processes, in daily life or in small and medium-sized

enterprises.

2. Registration. The user logged in to the web site using one of his

social accounts and then he imported a maximum of 15-25 contacts

from his socials. If it was possible, the user merged his contacts when

there were multiple accounts of the same person.

3. Instruction. The user read the main manual of the editor which

describes how to make the basic actions of creation, modification and

deletion of elements. Then, a short test of 3 minutes took place under

our supervision in order to take confidence with the basic functionality

of the tool. This was done using a test scenario, equal for all the users,

written specifically for this phase.

4. Experiment. Each user had to model two use cases. In this step the

user could read the manual of the first assigned syntax followed by

the description of the coupled scenario. At this point he could start

modeling the process. The experiment was supervised and the user

could read manuals or ask for help while modeling. Once the first

process was modeled, the user could proceed with the second use case

in the same way described before.

5. Closure. At the end of the test, after the user had submitted both

models, he was asked to answer a questionnaire about some personal

information, his knowledge in the computer science field and about

the ease of understanding the scenarios and modeling them with the

assigned syntaxes. We asked him also to report the lack of elements

or functionality both in the syntax and in the editor.

6.3. DATA ANALYSIS 87

6.3 Data analysis

During the experiments we have logged all the users’ actions, as ex-

plained in Chapter 5, and we have taken some notes on processes modeling

by direct observation. All these data, together with the opinions and feed-

back collected from the questionnaire, must be analyzed to understand each

syntax’s pro and cons, and hopefully, identify a good compromise.

6.3.1 Outliers

We have paid particular attention to timings and especially to the ex-

ecution time of each experiment. We have found out that two users have

taken an amount of time greater than the one acceptable, with respect to

the others, for both the tests. In fact, it was greater than the average time

plus the double of the standard deviation. So we have decided to exclude

their data and to repeat those experiments with two other new people.

Then we have updated the averages and the standard deviations to check

if the new data had created new outliers. Fortunately, there were no prob-

lems, so we could proceed to analyze them.

6.3.2 Durations

From the analysis of the times of the single experiments (Figure 6.5) we

notice that processes modeled with the first syntax are those done faster,

with an average duration of 16’27”. On the contrary the fourth syntax is

the slower, with an average time of 22’02”, about 34% slower than the first

(5’35” more). The second and the third syntaxes are instead quite similar

between them, about 16% and 15% slower than the first. Looking at the

standard deviations, the fourth and first syntaxes have higher values. All

the delivered processes are correctly validated except one made with the

second syntax. It’s interesting to notice that 19 times over 24, the second

test has been modeled in less time than the first one, with an average of

7’30” less. This is probably due to the fact that during the first test users

need more time to take confidence with the editor. In the remaining 5 times,

users took an average of 3’20” more. Also the syntaxes play a role in the

difference of time between the two tests. In fact, users who play first with

the fourth syntax, and then with the first syntax, take on average 12’43”

less, while users who first used the first syntax and then used the second

88 CHAPTER 6. EXPERIMENTS

Figure 6.4: Durations per syntax in seconds

syntax, take on average 1’27” less. It seems that the fourth syntax is more

powerful then the first but is also heavier to use, so it takes more time. The

first syntax is simpler, offers minor possibilities and is faster to use.

6.3.3 Number of elements’ creations and deletions

Looking at the number of elements (Figure 6.6) created and deleted per

syntax, we notice that the processes created with the first syntax have fewer

elements and so they are simpler and smaller. Instead, the fourth syntax has

the most number of creations and is the richer one. The second and third

syntaxes seem to have a similar quantity of elements used. The number of

deletions is quite constant for all the syntaxes, a little less in the first and a

little more in the second.

The most used elements are of course tasks and connections. In Fig-

ure 6.7 they are omitted in order to better highlight other elements varia-

tions. The Wait For events are rarely used and have a high percentage of

deletions in all the syntaxes in which they appear, respectively 60%, 80%

and 67%, while the Wait Till events are preferred and more used. It is in-

teresting to notice that overall the Parallel Gateway is less used than the

Conditional Gateway. In the first syntax there is only the Parallel Gateway,

6.3. DATA ANALYSIS 89

Figure 6.5: Experiments’ duration per single user

in the fourth there is only the Conditional Gateway, while in the other two

they appear both. In the second syntax the Parallel Gateway is used twice

as often as the Conditional. In relation to these data we also need to point

out that syntaxes three and four are those with a greater number of created

elements overall.

The Loop, with an average use of 1.33 per process, is the most used

element in the processes where it is available, namely those modeled with

syntax two.

6.3.4 Validation requests

During all the tests, users have used the validation button to check their

processes correctness. The diagram in Figure 6.8 shows the average number

of requests per test done by users for each syntax.

Generally, the processes were correct but sometimes errors were found

and users had to revalidate at least another time. Globally, all the syntaxes

have almost the same number of validations.

The highest percentage of validations with errors is the one related to

the second syntax, immediately followed by syntax three. Syntax one and

syntax four are those with the lowest percentages of false validations.

90 CHAPTER 6. EXPERIMENTS

Figure 6.6: Average number of creations and deletions per process

6.3.5 Validation errors

Table 6.3 shows all the errors that could occur during validation. Each

error has an identification code used for logging.

Figure 6.10 shows the average number of errors by type per single test.

The number of occurrences of an error is divided by the number of all the

tests in which it could occur. The second syntax presents the highest number

of validation errors, with an average value of 1.33 per process, while the third

has 1.08 errors and the first and the fourth only 0.75.

As shown in Figure 6.11, errors per process were really few. The most re-

current error is invalid04 which occur about one time every three processes.

It is followed by both errors invalid03 and invalid09 which occur one time

every six processes.

Figure 6.12 shows the most relevant errors for each syntax. In the first

syntax the most common error is caused by time events, which users gener-

ally forgot to configure. Syntaxes two and three are largely affected by error

invalid05. In syntaxes three and four conditions over gateway connections

were often forgotten, but not in syntax two. Another frequent forgetfulness

in syntax four was the assignment of user to tasks. A curious fact in syntax

two is that a lot of times users didn’t connected the start to any task.

6.3. DATA ANALYSIS 91

error code description

invalid00 One or more elements are not reachable from the Start

invalid01 One or more Loop Gateways are not used

invalid02 One or more opening gateways do not have the right number
of outgoing connections

invalid03 One or more Closing Gateways do not have the right number
of incoming connections

invalid04 The End is not zero level

invalid05 The End element is not reachable by all the other elements

invalid06 One or more Task elements are not assigned to anyone

invalid07 One or more Time events do not have the time set

invalid08 One or more Conditional Gateway connections do not have
the conditions set

invalid09 One or more Loop Gateway connections do not have the
conditions set

invalid10 One or more Loop Gateway do not have the forward con-
nection

Table 6.3: Validation errors codes

92 CHAPTER 6. EXPERIMENTS

Figure 6.7: Average number of elements per process

Figure 6.8: Average number of validation requests per single test

6.3.6 Wrong connections

In Table 6.4 are listed all the errors of invalid connections.

In general connection errors were few and there was less than one error

per test. As shown in Figure 6.13, the first syntax has no errors at all,

while the third and the fourth are those with more wrong connections with

respectively eight and nine errors in twelve tests each.

Looking at Figure 6.14 we see that the only two significant errors are

seq01 and loop02 in about one test over four, users tried to connect non

zero level elements to the end, and with the same frequency they connected

a Loop to elements with different level.

6.3. DATA ANALYSIS 93

error code description

seq00 Either the source has already outgoing connections, or the
target has already incoming connections

seq01 The target element of the arrow is the End and source is a
non zero level element

seq02 The source element of the arrow is an opening gateway while
the target is the End

seq03 The arrow directly connects an opening gateway with a clos-
ing gateway

seq04 The user is trying to close different openings with a unique
closing gateway

seq05 The source element is at level zero and the target is a closing
gateway

seq06 The target comes before the source in the execution flow,
but the source is not a Loop Gateway

seq07 The arrow directly connects the Start to the End

loop00 The target of the loop does not come before the source in
the execution flow

loop01 Target element is not either task or event

loop02 Source and target levels are different

loop03 The source and the target are not in the same block

Table 6.4: Wrong connections codes

94 CHAPTER 6. EXPERIMENTS

Figure 6.9: Percentage of validations per syntax

Figure 6.10: Validation errors by syntax per single test

6.3.7 Editing elements

The average time per process spent by users editing elements is about

the same for all the syntaxes except for the second one that is significantly

smaller.

On average, the time spent modifying single elements is more in the first

syntax, though with higher standard deviation, while less time was spent

on the fourth. This is not true for the Wait For element that, as previously

said, is very little used.

On the other hand, the number of element changes is greater in the

fourth syntax, while it’s smaller for the first one. It’s noticeable the high

number of changes for syntaxes with local parameters characterized however

by short editing times. These characteristics should be caused by the need

to manually propagate local parameters. For what concerns events data are

6.3. DATA ANALYSIS 95

Figure 6.11: Validation errors per single test

quite the same. Conditions on average require more time to be configured

with the syntax four.

6.3.8 Questionnaires

Demographic analysis

Overall, twenty-six persons tested the editor and the syntax. Actually,

the data we are showing refers to twenty-four users, because two of them

were considered outliers and so they were replaced by two other new people.

Of the final twenty-four users, twenty-one were men, while only three were

females. Nineteen users are in the 18-30 years old range, two users in the 31-

50 range and three users in the 51-70 range. Half of the users are students,

and seven of them have high skills in computer science. Nine persons define

themselves as basic PC users. Concerning BPM knowledge, only two users

claim to use it regularly, while eight of them know it without using it and

fourteen have never heard of it.

Scenarios difficulty

Each scenario was tested sixteen times. Both scenarios A and B were

judged mainly easy with 13 and 12 votes each and the remaining votes on

96 CHAPTER 6. EXPERIMENTS

Figure 6.12: Errors’percentages per syntax

medium level. Scenario C resulted to be the hardest with only 8 votes on

easy level, 7 on medium level and 1 on hard level.

Syntaxes difficulty

Each syntax was tested twelve times. Syntaxes 1, 2 and 3 were equally

judged with 7 votes on easy, 4 on medium e 1 on hard difficulty. Instead,

syntax 4 is perceived harder since users gave only 2 votes on easy, 8 on

medium and 2 on hard (Figure 6.17).

Cases difficulty

The easiest combination of syntaxes and scenarios resulted to be syntax

3 and 4 with scenario A, and syntax 1 with scenario B. The worst was syntax

3 with scenario C.

6.3. DATA ANALYSIS 97

Figure 6.13: Total connection errors per syntax

Syntaxes deficiencies

The most noticed deficiency was the lack of the Loop element. In 15

tests, users claimed the necessity to have the Loop to correctly model the

process they had in mind. Particularly, its absence was felt more in the

third syntax.

The Conditional Gateway is included in all the syntaxes except for the

first, and right in this, in 8 tests over 12, users wanted it.

The Parallel Gateway does not exist only in the fourth syntax end its

absence was notice only in 3 tests over 12. In some cases it is possible to

overcome the parallel absence using a Conditional Gateway with replicated

conditions over multiple connections.

Other interesting recursive deficiencies are those regarding the lack of

a singular condition and the lack of an early termination. With singular

condition we mean the possibility to use a Conditional Gateway with a

branch that connects directly the opening with the closure without tasks

in the middle. This can be useful when there is the necessity to execute a

task only when a particular condition is satisfied, otherwise the task must

be ignored and the flow of the process can continue.

With early termination we mean a particular element, it can be a task,

that once reached, it blocks the process in an error state, or it directly

terminates the process. Many times during the experiments it was necessary

to replicate the same task representing an early termination of the process

because for example some condition to correctly proceed with the process

98 CHAPTER 6. EXPERIMENTS

Figure 6.14: Connection errors per single test

was not verified. However, after these tasks, the process flow continued as

there were no errors. Related to this problem there is the limitation imposed

by the strict block structure: every gateway opened must then be closed with

the same number of connections, and inside a block it is not possible to draw

a connection to an element located in a different block. So it is not possible

to connect a conditional branch directly to the end of the process, nor it is

possible to let a task without outgoing connections.

The lack of the events has not gone unnoticed in the second syntax.

Speaking about the Loop, in some cases, users would have preferred to

have the possibility to connect the backward connection not with a task but

with another connection. For example this is useful to go back to a gateway,

both parallel and conditional. However, this implies to exit from the current

block.

Users noticed also deficiencies on parameters types: someone claimed

Boolean parameters but then he resolved using the textual type; other users

would have preferred to create lists of parameters and treat them as arrays.

In some cases it would have been useful to compare two parameters inside

a condition, or sum them or compare them with a value. Using the third

syntax, in two cases users would have needed to propagate more than one

local parameter, while in other two cases they would have preferred to have

global parameters that are more comfortable to use. In the fourth syntax

6.3. DATA ANALYSIS 99

Figure 6.15: Average editing time per process by syntax and element

Figure 6.16: Number of info panels opened per single test

instead, in three tests the propagation of multiple local parameters was

found too heavy.

After all, even if every syntax has its pro and cons, all the users have

succeeded to model the processes, sometimes using alternative, weird but

functional methods to bypass restrictions.

Editor deficiencies

Concerning the editor deficiencies and functionality that might have been

useful, the most requested was a better time and schedule management of

task durations. Particularly it was requested a way to quickly visualize all

the deadlines and the temporal limits set. Other interesting features refer

100 CHAPTER 6. EXPERIMENTS

Figure 6.17: Syntaxes difficulty

to possibility to do undo e redo and copy and paste of tasks.

6.4 Conclusions

Analyzing all the data related to the different aspects of the modeled

processes during the experiments, we can state that does not exist a syntax

which is clearly better than the other ones. Each syntax has indeed its pro

and cons.

Probably the best syntax would be the one achievable choosing the best

elements of each of the four tested syntaxes, making sure to impose a greater

control over the most critical elements that are the most likely to take the

user to make mistakes.

Here follow the resuming considerations about the syntaxes, along with

a pros and cons list of each one.

6.4.1 Syntax one

It is the quickest and leanest in the processes creation, but in many cases

it has turned out to be too poor and ineffective. It is more suitable to de-

6.4. CONCLUSIONS 101

scribe very easy and linear processes and it is too limited if there is the need

to increase the modeling detail.

Pros Cons

- Small number of elements to

learn and a few rules to use them.

- Lack of specific tools to express

the conditional execution.

- Processes are modeled faster

with a smaller number of ele-

ments and deletions.

- Harder in medium complex and

complex processes modeling.

- Shorter process design time. - Longer task editing time.

- No connection errors were done

during the experiments.

- Poor expressive power.

- A few validation errors were

done during the experiments.

- Smaller number of validation

requests and lower percentage of

wrong models submitted for val-

idation.

6.4.2 Syntax two

It is the only syntax which presents all the gateway types: particularly

the Loop Gateway has proved to be really useful in the modeling of the more

complex passages of the processes.

Pros Cons

- The loop gateway makes possi-

ble to model iterative execution

- Lack of specific tools to express

time events.

- Average modeling time - Higher percentage of validation

errors.

- Number of used elements below

the average.

- Higher number of validation re-

quests.

- Small number of connection er-

rors

102 CHAPTER 6. EXPERIMENTS

6.4.3 Syntax three

This syntax represents a good compromise between ease of use and de-

scriptive power but the simplicity of a single parameter is, in practice, a

great limit.

Pros Cons

- Lower Wait Till and Conditions

editing times.

- Number of connection errors

over the average.

- Small number of Wait Till and

Conditions changes.

- Each time a parameter is added

it must be manually propagated,

if needed.

- Lower number of users’ sugges-

tions in the questionnaire.

6.4.4 Syntax four

This syntax turned out to be the worse one, and was the one more crit-

icized by users.

Pros Cons

- Small number of validation er-

rors

- Connection errors above the av-

erage.

- Lower number of validation re-

quest with lower percentage of in-

validity.

- Bigger number of elements

used.

- Each time a parameter is added

it must be manually propagated,

if needed.

- Longer processes creation

times.

- Longer elements editing times.

- Higher number of editing on el-

ements.

- The hardest to use according to

questionnaire results.

- Greater number of suggestions

in the questionnaire.

6.4. CONCLUSIONS 103

6.4.5 Elements evaluation

To choose the best syntax, also the users’ evaluations given in the ques-

tionnaire and the notes taken by us during the experiments must be taken

in consideration. In fact, in some cases, data collected through the logger

may have little meaning if not complemented by the users’ impressions.

Keeping in mind all these aspects, we can give a resuming evaluation of

the single elements of the four syntaxes.

• Wait For Event. It has been by far the least used element and the

most deleted. Sometimes, instead of using it, users preferred to use

the time constraints inside the tasks, misinterpreting their meaning.

• Wait Till Event. Compared to the Wait For event, the Wait Till

event has been used and appreciated by the users, and it has been

useful to resolve the proposed scenarios.

• Parallel Gateway. It is a basic element that has been frequently

used when it was available and missed in the syntax where it was not.

Sometimes it has been replaced by the Conditional Gateway using

equal conditions on the branches.

• Conditional Gateway. It has turned out to be fundamental for its

great descriptive power. Users have felt the lack of it when it was not

available.

• Loop Gateway. Looking at the collected data, the Loop has been the

most relatively used element, proving to be very useful to resolve the

critical aspects of the modeling. When available, it has been really

appreciated, while, when missing, users claimed its need and have

found harder the process modeling. Conversely, the Loop element has

introduced some more errors, so it requires a little more attention in

its use.

• Global Parameters. Overall, global parameters were easy to un-

derstand and much appreciated, despite an initial difficulty of some

users that were not confident with the concept of variable and param-

eter in computer environment (this consideration applies also to local

parameters).

104 CHAPTER 6. EXPERIMENTS

• One Local Parameter. It has shown its limit when there was the

need to receive more than a parameter in a task. Users found unintu-

itive to propagate and receive the parameter.

• Multiple Local Parameters. The have been judged more useful

than the one local parameter because they increased the modeling

efficiency, but on the other hand, they were criticized because of the

heaviness they introduce in the notation.

Chapter 7

Conclusions

7.1 Experience and discussion

In this thesis we have faced the problem of the integration of BPM

methods into the management of personal processes. Our goal was the

identification of a modeling visual notation powerful enough to describe tasks

and their relationships, but also clear and immediate to use for common

people.

First of all we have explored and analyzed similar existent applications

in order to understand their points of strength and their critical aspects.

We have realized that none of them allows to control the execution flow of

actions. In fact they are basically to-do lists managing applications: tasks

have no dependencies between them, they are just put in sequence, and the

notion of process is not always clear.

Then we have studied the Business Process Management Notation with

the purpose to identify a set of constructs suitable to describe personal

tasks. For each one we have chosen the best graphical solution which is

visually expressive and compliant with the Moody’s principles. A particular

attention was paid to the mechanisms of task assignments, time events,

dependencies, and parallel and conditional routing. This was a central point

because the introduction of non-basic constructs should not overburden the

notation’s intuitiveness and usability. Once we have defined the notation,

we have prepared four syntaxes, each one made up of a combination of the

original set of elements. The idea was to let users evaluate the proposed

syntaxes and to identify the best compromise for the description of personal

processes.

105

106 CHAPTER 7. CONCLUSIONS

To do so we have built an application prototype with a graphical editor,

which allows modeling daily life scenarios. We have also exploited social

networks integration in the managing of user contacts and in the possibility

to assign actors to tasks, in order to perform them in a participatory way.

With the help of a logger we have gathered interesting data about the

actions performed by users during the experiments, in particular errors and

invalid connections. Analyzing such information we have been able to better

evaluate the pros and cons of each syntax.

Our study has laid the groundworks for the choice of a language for the

description of personal processes, suited both for the context and for the

targeted users. The experimentation has shown that this approach works,

provided that a good equilibrium between expressive freedom, intuitiveness

and ease of use is reached. The social network integration is as powerful as

fundamental and must be exploited, specially for manage the notifications.

With respect to previous works on this topic, we have tried a richer

notation and the results we have obtained were satisfactory. In fact, end

users have correctly understood how to make use of elements, after the

early impact. We can state that we have obtained a visual notation with a

good and balanced expressive power. Also the graphical editor has worked

well and has been appreciated.

7.2 Future work

Here we list some possible future works base on our thesis.

• A first and obvious development must be the engine implementation.

To do so, a definitive notation must be chosen. This will make possible

to test in a more accurate way the whole system and the validity of the

notation. There are however some issues that arise. First of all, pro-

cesses error states must be managed. This means, for example, that

a solution to tasks not performed by the deadline or to unexpected

behaviors must be found. A possible solution could be the implemen-

tation of a notification mechanism that warns first the actor, if the

available time is ending, and then the process admin, if the time has

passed without the task completion. Attention must be paid also to

the parameters management and to the notification system.

7.2. FUTURE WORK 107

• A second improvement could be done in the direction of social networks

integration. First of all, the list of the available social networks can

be expanded. Then the problem of tokens’ lifetime must be solved. In

fact, they must be always up to date in order to let the engine send

out notifications in place of the admin.

• The editor and the notation could be enriched with the missing func-

tionality spotted by users during the experiments, such as a summary

of all the tasks deadlines or the event of early process termination.

Time events can be improved making them parametric.

• It may be interesting the introduction of process templates. They can

both serve as example for novice or starting points that allow quicker

modeling. They also could be organized in categories.

108 CHAPTER 7. CONCLUSIONS

Bibliography

[1] Personal Process Management, Michael Rosemann,

http://www.michaelrosemann.com/uncategorized/113/

[2] Weber, I., Paik, H.-Y., Benatallah, B., Vorwerk, C., Zheng, L., Kim,

S.: Personal Process Management: Design and Execution for End-

Users. Technical Report UNSW-CSE-TR-1018, School of Computer

Science and Engineering, the University of New South Wales, Sydney,

NSW 2052, Australia (2010)

[3] Marco Brambilla, Application and Simplification of

BPM Techniques for Personal Process Management,

http://dbgroup.como.polimi.it/brambilla/personal-process-

management-bpms2-paper

[4] BPM4PEOPLE, Social BPM Project,

http://www.bpm4people.org/cms/content/en/socialbpm

[5] Daniel L. Moody, The “Physics” of Notations: Toward a Scientific

Basis for Constructing Visual Notations in Software Engineering

[6] OAuth, open authorization protocol, http://oauth.net/

[7] Draw2D, javascript graphic library, http://www.draw2d.org/

[8] Raphael, javascript graphic library, http://raphaeljs.com/

109

