
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Spaziale

Decision-making on robotic networks
with hybrid performance metrics for
planetary exploration applications

Relatore: Prof. Franco Bernelli
Correlatori: Prof. Marco Pavone

Prof. Nicole Viola

Tesi di Laurea di
Federico Rossi

M. 766727

Anno Accademico 2012-2013

To my grandfather, Mario Rossi

Acknowledgments

First and foremost, I would like to thank my advisor, Professor Marco Pavone
from Stanford University. Marco has been an excellent advisor and mentor:
I am deeply indebted to him for his guidance and his help in this thesis and
beyond, for introducing me to the world of academia and for believing in my
potential. I do look forward to pursuing my studies under Marco’s guidance
for the next four years.

My gratitude also goes to Professor Franco Bernelli from Politecnico di
Milano, who believed in this work, agreed to be my internal advisor and
guided me from Milan. I thank him for his assistance, his patience and his
invaluable academic advice before and during this thesis.

I would like to acknowledge Professor Nicole Viola, who followed the
progression of my work from Politecnico di Torino and agreed to act as my
co-advisor: I am grateful to her for her advice and her kindness.

This thesis is the final chapter of a six-year journey at PoliMi: I would
like to acknowledge professor Lastaria, who instilled the love of mathematics
in me when I was a freshman; professor F. Auteri, who rekindled it; and
professor P. Masarati, thanks to whom I learned to see and appreciate the
elegant structure underlying linear dynamical systems.

My closest friends, my mellyn, were always there to patiently remind me
that there is a wide world outside the Terman Library. Thank you for your
nighttime phone calls, for the train conversations, the long emails and the
dinners in Milan; thank you for granting me your friendship.

My parents Teresite and Giuseppe supported me through these years,
always pushing me forward and supporting me in my decisions. To them I
owe everything.

Finally, I thank Valentina for her love and support. Thanks to her, I
never felt alone. This is just our first step together.

Contents

Summary XI

1 Introduction 1
1.1 Robotic exploration of the Solar System 1
1.2 On small solar system bodies 4
1.3 The advantages of an autonomous multiagent architecture . . 5
1.4 Challenges . 6
1.5 Contributions of this thesis . 7

2 State of the Art 9
2.1 Introduction . 10
2.2 Computer Science . 10

2.2.1 Distributed algorithms on wired networks 10
2.2.2 Wireless networks: challenges and opportunities 12
2.2.3 Parallel linear algebra 14

2.3 Control Systems . 14
2.3.1 Models and fundamental limitations 15
2.3.2 Specific network topologies 17
2.3.3 Distributed filtering . 17
2.3.4 Security of cyber-physical networks 17
2.3.5 Rendezvous, deployment and tracking 17

2.4 Autonomy and decentralization in space exploration 18
2.4.1 Autonomy . 18
2.4.2 Decentralization and multiagent architectures 20

2.5 Conclusion . 21

3 Problem statement 23
3.1 Preliminaries . 23

3.1.1 Consensus, convex consensus, sensitively decomposable
and locally computable functions 23

3.1.2 Cyber-physical networks, graphs and automata 26

I

3.1.3 Complexity and asymptotic notation 27
3.1.4 Random geometric graphs 29

3.2 Hypotheses . 30
3.3 Performance metrics . 35

3.3.1 Time complexity of a problem 35
3.3.2 Communication complexity of a problem 35
3.3.3 Byte complexity of a problem 36
3.3.4 Complexity of an algorithm 36
3.3.5 Discussion of complexity measures 37
3.3.6 Hybrid metrics . 38
3.3.7 Robustness . 38

3.4 Problem statement . 39
3.5 Conclusion . 39

4 Fundamental limitations 41
4.1 A lower bound on time complexity 41

4.1.1 A lower bound on the time complexity of consensus . . 41
4.1.2 A time-optimal flooding algorithm 41

4.2 A lower bound on communication complexity 43
4.2.1 Dense networks . 43
4.2.2 Sparse networks . 44

4.3 A lower bound on byte complexity 49
4.4 Conclusion . 50

5 An hybrid algorithm for distributed consensus in presence of
sporadic failures 53
5.1 Inspiration . 53
5.2 The high-level structure . 55
5.3 The details . 56

5.3.1 Phase 1: tree building 56
5.3.2 Phase 2 . 57
5.3.3 Phase 3 . 59
5.3.4 Phase 4 . 60
5.3.5 Phase F (recovery from in-tree failure) 62
5.3.6 Phase OF (recovery from out-of-tree failure) 64

5.4 Complexity analysis . 64
5.5 Physical insight and tuning parameters 69

5.5.1 Node clustering and selective redundancy 69
5.5.2 Error isolation . 69
5.5.3 Reducing single points of failure 70
5.5.4 Failure frequency . 70

5.5.5 Consensus on time-varying parameters 70
5.6 Analytical performance on select network topologies 71

5.6.1 Star . 71
5.6.2 Line . 73
5.6.3 Ring . 74
5.6.4 Fully connected network 76

5.7 Conclusion . 77

6 Numerical investigation of a SSSB sampling scenario 79
6.1 Sampling of Small Solar System Bodies 79
6.2 Simulation methodology . 81
6.3 Results . 84

6.3.1 Time complexity . 84
6.3.2 Byte complexity . 85
6.3.3 Message complexity . 86
6.3.4 Tradeoffs between time and byte complexity 88
6.3.5 Recurring complexity 88

6.4 Conclusion . 93

7 Conclusions and future research directions 95
7.1 Conclusions . 95
7.2 Future research directions . 96

7.2.1 Application to moving networks 96
7.2.2 Broadcast communication protocols 97
7.2.3 Distributed tuning . 98
7.2.4 Handling of byzantine failures 98
7.2.5 Complex decision-making via LTL 99
7.2.6 Earth-based applications 99
7.2.7 A reference hardware implementation 99

Bibliography 101

List of Figures

1.1 An artist’s interpretation of Solar System exploration 2
1.2 Geophysical features of comet Tempel 1 and Martian moon

Phobos . 6

2.1 A representative cross-section of the literature 9

3.1 Graphic examples of the Θ, O, and Ω notations 29

4.1 Interaction of two I/O automata 45
4.2 Junction of lines A and B . 46
4.3 Four lines of automata arranged in a ring 47
4.4 Distribution of initial values 47

5.1 Gamma synchronizer . 54
5.2 Schematic representation of the algorithm behavior 55
5.3 Star network topology . 71
5.4 Line network topology . 73
5.5 Hybrid algorithm: clusters line partition 73
5.6 Ring network topology . 75
5.7 Fully connected network topology 76

6.1 Simulation software architecture 82
6.2 Rounds to completion of our hybrid algorithm compared to

GHS and flooding . 84
6.3 Bytes exchanged by our hybrid algorithm, GHS and flooding . 85
6.4 Messages exchanged by our hybrid algorithm compared to

GHS and flooding . 86
6.5 Variance (1σ) of numerical results 87
6.6 Pareto front formed by executions of our hybrid algorithm for

several values of m compared to time-optimal flooding and
byte-optimal GHS. n = 300. 88

6.7 Recurring rounds to completion of our hybrid algorithm com-
pared to GHS and flooding . 90

V

6.8 Recurring overall bytes exchanged by our hybrid algorithm
compared to GHS and flooding 91

6.9 Recurring number of messages exchanged by our hybrid algo-
rithm compared to GHS and flooding 92

7.1 Software architecture of a distributed implementation of our
hybrid algorithm on ASL’s robotic testbed 100

7.2 Stanford University Autonomous Systems Lab’s multiagent
robotic platform . 100

List of Tables

2.1 MER driving mode usage as of 15 August 2005 19

4.1 Time, message and byte complexity of a time-optimal and a
message-byte-optimal algorithm 50

5.1 Time, message and byte complexity of our hybrid algorithm . 69

VII

List of Notations

log The base 2 logarithm

G The maximal set of graphs with node set V

d The number of spatial dimensions of the problem under consideration

E The set of edges in a graph

G An undirected graph

n The number of nodes in a graph or, equivalently, agents in a network

Ni The set of neighbors of node i

V The node set of a graph

BC Byte complexity

CC Communication complexity

CS Computer Science

GHS Gallager, Humblet and Spira’s MST algorithm

LEO Low Earth Orbit

LTL Linear Temporal Logic

MER Mars Exploration Rover Mission (Spirit and Opportunity rovers)

MSL Mars Science Laboratory (Curiosity rover)

MST Minimum Spanning Tree

PLA Parallel Linear Algebra

SAR Search and Rescue

IX

SPF Single points of failure

SSSB Small Solar System Body

TC Time complexity

TTR Time to recovery

UAV Unmanned Aerial Vehicle

Summary

This thesis is about distributed consensus on robotic networks for planetary
exploration.

The advantages of distributed architectures for space exploration have
long been studied; furthermore, multiagent architectures are extremely ad-
vantageous on small solar system bodies, whose low gravity and uncertain dy-
namic environment make traditional mobility paradigms unapplicable. Rel-
ativistic delays make autonomy paramount for all probes operating beyond
Earth orbit. Yet no energy-efficient procedures for autonomous consensus on
robotic networks exist: current algorithms are either optimized for ground-
based applications or largely inefficient.

The purpose of this thesis is to design efficient algorithms to reach an
agreement between cooperative stationary or slow-moving robotic agents.
We explore metrics describing time performance, power consumption and ro-
bustness; we propose time-optimal and energy-optimal algorithms and show
how optimality with respect to one parameter typically leads to very bad
performance with respect to other metrics.

We then design a novel hybrid algorithm that scales from time-optimal
to message-optimal behavior, trading time performance and robustness for
energy efficiency, according to an user-defined tuning parameter. Worst-
case performance of the algorithm is investigated analytically; real-world
performance on a simplified space exploration scenario is explored through
numerical simulations with satisfactory results.

Future research directions will include extension of our work to fast-
moving robotic networks such as swarms of planetary hoppers, optimization
with respect to legacy omnidirectional (broadcast) communication protocols
and application to problems such as UAV deployment for patrolling and ATC
conflict resolution.

XI

Sommario

Questa tesi studia come prendere decisioni in modo efficiente e decentraliz-
zato su reti robotiche per l’esplorazione di corpi del Sistema Solare.

Le architetture multiagente per l’esplorazione spaziale promettono di of-
frire maggiore robustezza e migliore efficienza rispetto ai paradigmi mono-
litici oggi dominanti. Un’architettura multiagente è inoltre particolarmente
adatta all’esplorazione dei piccoli corpi del Sistema Solare. Comete, asteroidi
e piccole lune presentano morfologie e composizioni geologiche complesse che
rendono necessaria l’esplorazione di regioni estese; d’altra parte, la micro-
gravitá rende impossibile o sconsigliabile l’applicazione di sistemi di mobilitá
tradizionali. Piú agenti stazionari ancorati alla superficie permetterebbero di
esplorare ampie regioni senza incorrere negli svantaggi inerenti in nuovi sis-
temi di mobilitá non ancora testati; una rete di agenti mobili, d’altra parte,
permetterebbe di rilassare i requisiti di mobilitá richiesti ad ogni singolo vei-
colo, concedendo di testare con gradualitá tecnologie innovative e garantendo
il raggiungimento degli obiettivi scientifici anche a fronte di guasti catastrofici
di uno o piú agenti.

L’autonomia é necessaria nell’esplorazione spaziale: i ritardi dovuti alle
distanze interplanetarie e la congestione del Deep Space Network non perme-
ttono di controllare direttamente i veicoli se non per periodi di tempo molto
brevi.

La letteratura scientifica presenta molti algoritmi per prendere decisioni
collaborative in modo decentralizzato: questi algoritmi, tuttavia, sono tipi-
camente ottimizzati per applicazioni terrestri e, in particolare, non tengono
conto del consumo energetico dovuto alle comunicazioni tra agenti.

Lo scopo di questa tesi é presentare algoritmi che permettano ad agenti
robotici di prendere decisioni in modo efficiente rispetto a metriche rilevanti
per l’esplorazione robotica del Sistema Solare.

Dopo aver evidenziato i limiti delle soluzioni esistenti nella letteratura,
presentiamo delle metriche che caratterizzano il comportamento temporale,
il consumo energetico e la robustezza degli algoritmi di consenso distribuito.
Esploriamo quindi i limiti fondamentali del problema del consenso rispetto
a queste metriche e mostriamo come due algoritmi esistenti permettano di

XIII

minimizzare rispettivamente il tempo necessario e il numero di bytes scam-
biati (quindi il consumo energetico) per raggiungere una decisione in modo
decentralizzato.

Questa soluzione, tuttavia, non é soddisfacente: prestazioni ottimali nel
tempo comportano forti compromessi in termini di consumo energetico, men-
tre la minimizzazione del consumo energetico rende l’algoritmo lento e fragile
rispetto a guasti dei canali di comunicazione.

Progettiamo quindi un algoritmo ibrido e regolabile che permette di ot-
tenere compromessi tra tempo di convergenza, consumo energetico e ro-
bustezza. Le prestazioni dell’algoritmo sono esplorate analiticamente nel
caso peggiore e su alcune semplici topologie di rete; simulazioni numeriche
permettono quindi di valutare il comportamento dell’algoritmo in uno sce-
nario realistico di esplorazione di un piccolo corpo del Sistema Solare. I
risultati sono soddisfacenti.

Nel prossimo futuro, la ricerca si concentrerá sull’estensione dei nostri
risultati a reti di agenti in rapido movimento e alla ricerca di algoritmi ot-
timali per reti broadcast. Le applicazioni del nostro algoritmo vanno oltre
l’esplorazione spaziale e includono problemi di interesse aerospaziale come
il controllo di gruppi di pattugliatori aerei senza pilota e la risoluzione di
conflitti nel controllo del traffico aereo.

Chapter 1

Introduction

This thesis is about autonomous decision-making in robotic networks. Our
goal is to find algorithms to reach consensus in a highly dynamical envi-
ronment, with limited time, scarce energy and failures of communication
equipment.

Our quest is motivated by exploration of small solar system bodies. We
have visited all planets in the Solar System: we have landed on Mars, Venus
and the Moon, we have pierced Jupiter’s clouds and deployed a probe on
the surface of Saturn moon Titan. Yet small bodies, which hold the answer
to many fundamental questions about the origin of our Solar System, are
virtually unexplored: only in recent years have we been able to gain insight
into them and, to date, questions about them far outnumber the few answers
we have gathered from flybys.

This chapter is dedicated to robotic exploration of small bodies with
swarms of autonomous agents. In the next sections, we outline what planets,
moons and asteroids have already been visited by mankind; we discuss the
importance of small bodies to a better understanding of our Solar System; we
show how a distributed architecture is instrumental to exploration of hostile,
low-gravity objects and we (hopefully) convince the reader that distributed
decision making is an key technology to better understand these bodies and,
through them, our home among the stars.

1.1 Robotic exploration of the Solar System

Probes have flown by all planets in the Solar System. Mercury, Venus,
Mars, Jupiter and Saturn have or have had manmade satellites; landers have
touched down on Venus and Mars, a probe has entered gas giant Jupiter’s
atmosphere and we have landed a vehicle on another planet’s moon, Titan
[75].

2 Introduction

Figure 1.1: An artist’s interpretation of Solar System exploration (Image credit: Sean
McNaughton and Samuel Velasco, National Geographic Society)

The Moon The Earth’s Moon was the first Solar System body targeted by
U.S. and Russian efforts in the early years of the space age. The first man-
made vehicle to escape Earth gravity was Soviet probe Luna 1, in January
1959. In September of the same year, Luna 2 was the first vehicle to crash
land on the Moon; in October 1959, Luna 3 performed the first controlled
Lunar flyby and imaged the dark side of our natural satellite.
The Moon would remain a prime target for robotic and manned exploration:
it was the host to the first survivable landing by Luna 9 in 1966, the first rover,
Soviet Lunokhod 1, in 1970 and the first robotic sample return mission, Luna
16, in the same year. As of 2012, 73 missions, manned or unmanned, have
targeted our natural satellite. The Lunar Reconnaissance Orbiter spacecraft
is currently in Lunar orbit, producing high-resolution maps of our natural
satellite. [76, 78]

Mercury The first spacecraft to fly by Mercury was Mariner 10, which ap-
proached the planet three times in 1974. MESSENGER was the first vehicle
to orbit the planet in 2011. Plans to carry a lander with the BepiColombo
mission, currently in development, have been canceled. [33, 74, 99]

Venus The first Venus flyby was performed by U.S. Mariner 2 in 1962. The
planet’s atmosphere was first studied by the Soviet Venera 4 probe in 1967;
in 1970, Venera 7 reached the surface of the planet with an intact scientific
payload. Venera 9 became Venus’s first artificial satellite in 1975; its lander
was the first to send back photos from the surface of another planet. To
date, more than 40 missions have directly targeted Venus; in addition, many

1.1 Robotic exploration of the Solar System 3

missions have studied the planet during gravity assists en route to other
targets. ESA’s Venus Express is currently in orbit around the planet. [35,
99]

Mars After many failed attempts, Soviet probes Mars 2 and 3, launched
within weeks of each other, became the first Martian artificial satellites in
November 1970. Mars 2’s lander achieved the first landing on the Martian
surface; the first survivable landing was performed by Mars 3 five days later.
Since then, Mars has been a prime target for robotic exploration: the planet
is currently host to two active U.S. rovers and three orbiters. [51, 98]

Jupiter and its moons The first Jupiter flyby was performed by Pioneer
10 in 1973 and the first close approach to Jupiter’s Galilean satellites is due
to Voyager 1 in 1979. In 1995, the Galileo spacecraft became Jupiter’s first
artificial satellite; its probe relayed data from the upper layers of the gas
giant’s atmosphere, whereas the orbiter performed several flybys of major
Jupiter moons Io, Europa, Ganymede and Callisto. Jupiter and its moons
are currently host to no man-made spacecraft. The Juno mission is slated to
reach the gas giant in 2016. [67, 73, 75]

Saturn and its moons Pioneer 11 performed the first flyby of Saturn in
1979. Twenty-five years later, the Cassini spacecraft entered Saturn’s orbit,
where it currently resides. Cassini has performed a number of flybys of Saturn
and its moons and relayed invaluable scientific data; its lander Huygens was
the first man-made object to land on another planet’s moon when it touched
down on Titan in January 2005. [48, 62, 75]

Uranus and Neptune The Voyager 2 probe flew by Uranus and Nep-
tune in 1986 and 1989 respectively. Follow-up missions to Uranus have been
proposed but none are actively being planned at the time of writing. [82]

Small Solar System bodies To date, Small Solar System bodies have
received significantly less attention than planets and large moons.
The first flyby of a comet was performed in 1985 by the ISEE3 spacecraft,
originally designed to study the magnetosphere from an halo orbit, during
an extension of its mission. The first spacecraft purpose-built to rendezvous
with a comet was ESA’s Giotto, who passed 596 km from the Halley comet
in 1986.
The NEAR-Shoemaker probe first entered an asteroid’s orbit in 2000 and,
after collecting information about EROS 433, landed on it in 2001. The

4 Introduction

probe was not designed to survive the landing and had no dedicated surface
experiments on board; despite this, its instruments kept sending information
from the asteroid surface for fourteen days after touchdown.

In 2006, Stardust returned the first samples from a comet tail to Earth;
the first samples from an asteroid’s surface were returned to our planet by
Hayabusa in 2006. [34, 39, 60, 66, 77, 81]

1.2 On small solar system bodies

Small Solar System bodies hold the answer to many questions about the
origin of our Solar System. Current models for the evolution of the Solar
System (especially the Nice model, introduced in [46, 70, 113]) theorize large
dynamic shifts in the position of SSSBs as massive planets migrated to their
current orbits; analysis of the geochemical composition of small bodies would
allow to confirm or refute such models [18].

In addition, SSSBs are a pristine sample of the composition of the early
Solar System: while the heat produced by the core of larger planets and
moons has causes significant shifts in their chemical and mineralogical com-
position, small bodies are largely unaffected by geochemical evolution. Be-
neath their regolith surface, SSSBs probably hold a snapshot of the early
stages of the Solar System.

Despite numerous efforts, these asteroids, comets and irregular moons
remain mysterious: while their orbital parameters are well understood from
ground-based observations and the mass of select bodies has been estimated
through flybys, little is known about their internal composition and optical
observation is often hindered by a thick regolith surface layer.

Irregular Martian moon Phobos is a prime example of this: the moon has
been the target of five distinct flybys, which allowed to determine the mass
[4], surface composition [12, 44] and outer shape [109] of the object to a very
high degree of accuracy. Yet the internal composition of Phobos, which holds
the answer to the moon’s origin, is still a matter of debate within the scientific
community. Only a lander would be able to pierce the regolith surface and
study the moon’s geology and chemistry. We refer the reader to [72] for a
more thorough discussion of the debate within the scientific community and
the potential benefits of a mission to Phobos’s surface.

1.3 The advantages of an autonomous multiagent architecture 5

1.3 The advantages of an autonomous multi-

agent architecture

Autonomous multi-agent architectures [54] have often been proposed for
space exploration. Multi-agent systems present several advantages with re-
spect to monolithic architectures: among these are the ability to optimize the
mission architecture on the fly as science objectives change, higher adaptabil-
ity to an uncertain environment and more graceful degradation in presence
of failures. We refer the reader to Truszkowski’s work [112] for further infor-
mation.
Autonomy is necessary in robotic space exploration: limited opportunities
for communication and relativistic delays require that agents be able to react
to their environment, execute complex tasks and plan actions with limited
or no human intervention.

Small Solar System Bodies offer additional compelling reasons to adopt a
multiagent architecture. The varied geological landscape of SSSBs can not be
thoroughly explored by a single, static lander: Castillo et al. [18] show that
comet Tempel 1, shown in fig. 1.2a presents at least four distinct geological
regions, whereas Phobos’s surface, shown in fig. 1.2b can be partitioned in
four to five spectral units.
On massive bodies, exploration of contiguous yet geologically diverse regions
may be achieved with rovers; mobility in microgravity, however, is far more
complex and less understood.
Castillo’s paper surveys a number of possible strategies for mobility in micro-
gravity; an hybrid spacecraft-rover architecture is further explored in [95] and
[3]. Technologies for mobility in microgravity, however, are still in very early
stages of development: a single agent would not be able to offer reliability
guarantees and reconfigurability capabilities needed to successfully explore
Small Solar System bodies. A network of stationary agents (e.g. penetra-
tors) deployed on the surface of a small body, on the other hand, could easily
perform exploration of its geophysical properties without the complexity and
uncertainty inherent in microgravity mobility; even in presence of mobile
agents, a distributed architecture would offer far greater reliability guaran-
tees and allow for less conservative mission profiles, guaranteeing graceful
performance degradation even in presence of catastrophic failures of one or
more agents.

6 Introduction

(a) Tempel 1’s surface presents a
varied topology, including large,
smooth areas (indicated by arrows
a and b), scarps and very rough ter-
rain. ITS composite observation by
Deep Impact, from [2].

(b) The surface of Phobos shows lateral
variation in color properties, which sug-
gest Phobos material may have different ori-
gins. HiRISE observation PSP 007769 9010
(IRB composite), via [18]. Image credit
NASA/University of Arizona

Figure 1.2: Geophysical features of comet Tempel 1 and Martian moon Phobos

1.4 Challenges

In recent years, the scientific community has shown great interest in decision-
making in multiagent systems. Models and algorithms have been proposed
that can solve distributed optimization problems, study the collective be-
havior of cooperative and noncooperative agents, reproduce learning and
teaching and negotiate decisions through voting and auctions [106, 121, 122].

Most studies in multiagent autonomy, however, focus on the high-level
dynamics of knowledge and decision of a system of agents; little to no thought
is paid to how agents should communicate to efficiently exchange information
and gather the knowledge they need to make informed decisions.

The issue is not excessively pressing for software-based agents, which typi-
cally have access to an all-to-all network with efficient, reliable, transparently
implemented message routing algorithms.

Ground-based robotic applications also often exploit TCP/IP based net-
works which offer transparent all-to-all message routing, typically relying on
already-in-place infrastructures and well-known protocols.

Yet such architectures are expensive and inefficient when applied to mul-
tiagent systems for space exploration, which are typically subject to strong

1.5 Contributions of this thesis 7

constraints on available power and energy consumption. Energy-efficient
decision-making algorithms that exploit the variable topology of a multia-
gent system can enable longer, more ambitious missions, leaving power and
energy for more demanding scientific instruments and longer experiments.

This thesis is about the quest for these algorithms.

1.5 Contributions of this thesis

In this thesis, we focus on the consensus problem for robotic networks. Con-
sensus is a key subroutine of virtually all distributed decision-making pro-
tocols: it allows all participating agents to agree on a common logical or
numerical value computed as a function (which we call consensus function)
of the agents’ initial opinions. Consensus directly encompasses distributed
estimation, leader election, majority voting and mediation among a set of
policies; it can also be used as a subroutine to solve complex distributed
optimization, deployment and task allocation problems.

Our work is laid out as follows:

Chapter 2 presents an overview of the state of the art of consensus in
the Computer Science and the Control Systems communities with an histor-
ical perspective. After reviewing the existing literature, we show how met-
rics used in the Computer Science community are inadequate to the needs
of robotic multiagent systems, whereas the dominant paradigm within the
Control Systems community is only optimal for a limited range of simple
applications and underexploits capabilities of modern robotic agents.

Chapter 3 rigorously presents the problem we wish to solve and motivates
the mathematical hypotheses that will guide our research. We give a math-
ematically sound definition of the consensus problem and present a model
of a cyber-physical robotic network, motivating our hypotheses regarding
the agents’ capabilities and the network topology. We present the concepts
of locally computable and hierarchically computable consensus functions and
give real-world examples of both. Finally, we introduce time, message and
byte complexity, the three metrics that will guide our research, and we show
how message and byte complexity relate to power consumption for telecom-
munications in robotic networks. We also discuss the issue of robustness in
presence of link failures.

Chapter 4 is dedicated to fundamental limitations of decision-making on
cyber-physical networks. We show a trivial lower bound on the time complex-

8 Introduction

ity of the consensus problem and produce a matching time-optimal consensus
algorithm, flooding. We then turn our attention to message complexity : we
prove a lower bound on the message complexity of a wide class of convex
consensus problems and show that an existing algorithm, GHS, solves prob-
lems in this class with message-optimal performance. We show that GHS
also achieves optimal byte complexity if some simple hypotheses about the
nature of the communication protocol are verified. We discuss the drawbacks
of the two optimal algorithms: time-optimal flooding is resilient but sports
very high byte complexity, while byte-optimal GHS is comparatively slow
and very fragile in case of link failures.

Chapter 5 presents a novel hybrid, tunable algorithm that solves the con-
sensus problem on certain slowly time-varying network topologies with time
and byte performance intermediate between time-optimal flooding and byte-
optimal GHS. Upper bounds on the time, message and byte complexity of
the algorithm are rigorously proven; analytical performance of the hybrid
algorithm on select network topologies is also presented at the end of the
chapter.

Chapter 6 explores performance of GHS, flooding and our hybrid algo-
rithm in a simplified model of a real-world space exploration scenario, soil
sampling of a small solar system body with a network of penetrators. Nu-
merical simulations show that the cost in terms of running time, messages
and bytes exchanged of the three algorithms agrees with theoretical results.
Our hybrid algorithm is proven to be a solid choice for distributed consensus
problems with hybrid performance metrics, where optimality with respect to
one metric does not justify subpar performance in all others.

Chapter 7 concludes our work by summarizing our findings and their rel-
evance to space exploration. We also discuss future research directions and
potential further applications of our results, which extend to airborne and
ground-based robotic networks.

Chapter 2

State of the Art

This chapter strives to give a comprehensive review of scientific efforts in the
field of distributed consensus. The relevant literature spans several fields,
including graph theory, computer science, statistics and control systems en-
gineering, and several decades: in an effort to organize it, after a brief his-
torical introduction in Section 2.1, we present the state of the art in the two
fields most relevant to our work, computer science and control engineering,
in Sections 2.2 and 2.3 respectively. We highlight the main areas of research
within each discipline and present a selection of landmark works from an
historical perspective. Finally, Section 2.4 is dedicated to existing applica-
tions of centralized and distributed autonomy algorithms, which represent a
superset of the consensus problem, to space exploration.

1975 1980 1985 1990 1995 2000 2005 2010

DeG
roo

t 74
(C

S)

Cha
tte

rje
e an

d

 S

en
eta

77
(Stat

)

Tsits
ikli

s 85
(C

S)

Vics
ek

et
al.

95
(C

G)

Ja
db

ab
aie

, Lin
, an

d

 M

ors
e 03

(C
on

tro
l)

Robust rendezvous for
ile autonomous agents via Consensus and Cooperation

in Networked Multi-Agent Choosing a leader on a
complex network

 Information consensus in
multivehicle cooperative control

 On Synchronous Robotic
Networks; Part II: Time

 On Synchronous Robotic
Networks; Part I: Models, Tasks Distributed Kalman filtering
for sensor networks Using hierarchical

decomposition to speed up

 Notes on averaging over
acyclic digraphs and discrete

 Maintaining connectivity in
mobile robot networks Information spreading in
stationary Markovian evolving Hybrid control for
connectivity preserving flocking

 Energy-optimal distributed
algorithms for minimum

 LQG control over lossy
TCP-like networks with

 Flooding Time of
Edge-Markovian Evolving Distributed computation in
dynamic networks E cient Information

Aggregation Strategies for

 Parsimonious flooding in
dynamic graphs Decentralized observer with
a consensus filter for distributed Consensus Control of
Multiagent Systems

 Dynamic networks: models
and algorithms Distributed control of

multi-robot systems with global Distributed Anonymous
Discrete Function Computation

 The communication
complexity of distributed task

 Consensus Computation in
Unreliable Networks: A System Aggregation in dynamic
networks

 On the Cost of Deciding
Consensus

 Attack Detection and
Identification in Cyber-Physical

 Secure Control Systems: A
Control-Theoretic Approach to Distributed Computation in
Wireless and Dynamic Networks Coupled Distributed
Estimation and Control for

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

 Coordination of groups of
mobile autonomous agents Consensus problems in

networks of agents with Dynamic consensus on
mobile networks Stability of multiagent

systems with time-dependent

 Agreement over random
networks

 On synchronous robotic
networks Part I: Models, tasks Computation in networks of

passively mobile finite-state Flocking for multi-agent
dynamic systems: algorithms Randomized gossip

algorithms

 Robust rendezvous for
mobile autonomous agents via Consensus and Cooperation

in Networked Multi-Agent Choosing a leader on a
complex network

 Information consensus in
multivehicle cooperative control

 On Synchronous Robotic
Networks; Part II: Time

 On Synchronous Robotic
Networks; Part I: Models, Tasks Distributed Kalman filtering
for sensor networks Using hierarchical

decomposition to speed up

 Notes on averaging over
acyclic digraphs and discrete

 Maintaining connectivity in
mobile robot networks Information spreading in
stationary Markovian evolving Hybrid control for
connectivity preserving flocking

 Energy-optimal distributed
algorithms for minimum

 LQG control over lossy
TCP-like networks with

 Flooding Time of
Edge-Markovian Evolving Distributed computation in
dynamic networks E cient Information

Aggregation Strategies for

 Parsimonious flooding in
dynamic graphs Decentralized observer with
a consensus filter for distributed Consensus Control of
Multiagent Systems

 Dynamic networks: models
and algorithms Distributed control of

multi-robot systems with global Distributed Anonymous
Discrete Function Computation

 The communication
complexity of distributed task

 Consensus Computation in
Unreliable Networks: A System Aggregation in dynamic
networks

 On the Cost of Deciding
Consensus

Identification in Cyber-

Control-Theoretic Ap

Wireless and Dynamic

Estimation and Contr

Figure 2.1: A representative cross-section of the literature

10 State of the Art

2.1 Introduction

The first rigorous treatment of the distributed consensus problem is due
to Morris Degroot [27], a statistician studying decision-making under un-
certainty, in 1974. Degroot considers a network of discrete-time synchronous
agents exchanging opinions, each with an associated confidence: at each step,
agents update their opinion with a weighed average of their neighbors’ and
theirs. Degroot identifies necessary as well as sufficient conditions on node
weights for consensus to be achieved.

Chatterjee and Seneta [19] generalize Degroot’s results and, crucially,
explore the case in which node weights may change in time. They show a re-
lation between ergodicity of the matrices Pk representing the nodes’ weights1

and convergence of the average-based consensus procedure: for convergence
to be achieved, the matrix U =

∏∞
k=1 Pk must be U = 1′ · p, where 1′ is a

row vector of ones and p is a stochastic column vector.

J. N. Tsitsiklis’s 1985 Ph.D. thesis [114] proposes a model for decentral-
ized discrete-time asynchronous decision-making systems and explores fea-
sibility and complexity of a wide range of distributed decision problems as
a function of the communication pattern of the network, which determines
the information available to the agents. Tsitsiklis also proposes a distributed
optimization algorithm and characterizes the effect of communication delays
on the system’s convergence. Tsitsiklis’s work, which explicitly refrains from
focusing on specific applications and concentrates on the mathematical as-
pects of the consensus problem, represents a milestone in consensus theory: it
represents the basis of most modern research on consensus within the control
community.

After Tsitsiklis’s work, interest in decentralized decision-making systems
in the engineering community appeared to wane. At the same time, ad-
vances in parallel computing spurred interest in distributed computation in
the Computer Science community.

2.2 Computer Science

2.2.1 Distributed algorithms on wired networks

J. Burns’s 1980 report [17], which predates Tsitsiklis’s thesis by five years,
first proposes a formal model for computation on asynchronous networks of
deterministic agents. Burns’ model was widely adopted by the CS community

1At each time step k, the authors defines Pk = [p1k, p2k . . . pnk]′, where elements of the
column vector pik represent agent i’s confidence in his neighbors’ opinion at time k.

2.2 Computer Science 11

and is still the basis of modern models for distributed wired and wireless
networks.

In 1983, Gallager, Humblet and Spira [40] publish a seminal paper propos-
ing an algorithm for distributed minimum spanning tree construction: the
GHS algorithm still is a cornerstone of many complex distributed compu-
tation problems, including breadth-first search, leader election and, by ex-
tension, consensus. In 1984, Santoro [105] proves GHS to be worst-case
message-optimal (with O(n log n+ |E|) messages per execution) for spanning
tree and minimum spanning tree construction.

In 1987, Awerbuch [7] manages to reduce the time complexity of the
GHS algorithm from O(n log n) to O(n) while maintaining message optimal-
ity: Awerbuch’s improvement on GHS still remains the state of the art for
distributed MST construction.
Awerbuch states that his algorithm is time-optimal and even suggests that
it can solve the leader election problem optimally with respect to time and
message complexity. He supports his first claim by arguing that that the
worst-case diameter of a network, which gives a trivial lower bound on the
time complexity of any MST algorithm, can be as high as O(n); the second
claim follows from the observation that, at the time of writing, all leader
election algorithms are based on MST construction. In fact, Awerbuch’s
algorithm is only time-optimal for networks whose diameter is O(n): his al-
gorithm may require up to O(n) rounds even on a fully connected network,
whose diameter is trivially one. The second claim is empirical.
Awerbuch also shows that, if no a priori information is available, counting
the number of agents is as hard as computing a sensitively decomposable
function (whose definition we recall in Chapter 3) on a static, connected
network.

In the same years, Korach et al. [57] publish a comprehensive study of
lower bounds for a class of problems including leader election, spanning tree
construction and MST construction, on fully connected networks. Their main
contribution is twofold:

• a lower bound of O(n log n) messages for any problem that must use
the edges of a spanning subgraph of the fully connected network. This
includes any problem requiring all nodes to hear (directly or indirectly)
from all others, which encompasses all sensibly defined consensus prob-
lems. The authors also produce a matching O(n log n) leader election
algorithm.

• a lower bound of |E| − 1 messages for the same type of problems on
a class of “almost complete” graphs that are not fully connected but
have Θ(n(n− 1)/2) edges.

12 State of the Art

The last result is crucial: it shows that, unless the network is guaranteed to
be fully connected, the worst-case message complexity of consensus can be as
high as O(|E|). The GHS algorithm is therefore a message-optimal solution
to consensus problems on “almost complete” networks.

Failures Failures during consensus have always been a major concern in
the CS community2. Both edge and node failures are typically considered;
node failures are typically modeled either as stopping or as byzantine. In the
former case, a node suddenly stops working, possibly mid-message; in the
latter, a node arbitrarily updates its state and sends arbitrary messages to
its neighbors with potentially nefarious intents.

Gray [47] shows that, if arbitrary edge failures are allowed, no determinis-
tic algorithm can solve the consensus problem. Randomized algorithms fare
better: yet the same author shows that any synchronous algorithm converg-
ing in r rounds has probability of disagreement pd ≥ 1/(r + 1) on a fully
connected graph.

Stopping node failures are more benign: Lynch [63, ch. 6] shows that a
simple flooding algorithm can solve the consensus problem on a fully con-
nected network with f node failures in f + 1 rounds. The algorithm also
achieves optimal time complexity in the absence of failures. Message and
byte complexity are rather abysmal at O((f + 1)n2) and O((f + 1)n3 log(n))
respectively, although they can be improved on fully connected networks for
very simple consensus functions.

Exponential information gathering algorithms, first proposed by Lam-
port, Shostak and Pease [61, 96], sport the same time and message complexity
as flooding. The byte complexity is much worse at O(nf+1 log(n)). The main
advantage of EIG algorithms is their ability to solve the consensus problem
in presence of Byzantine failures if communications are authenticated, i.e. if
nodes are able to sign their tokens.

Non-authenticated Byzantine failures are beyond the scope of our work.

2.2.2 Wireless networks: challenges and opportunities

In recent years, the advent of wireless networks has spurred a new wave of
studies focusing on the peculiarities of these structures, including a focus on
time-varying topologies and new concern for energy optimality.

In 2006, Angluin et al. [5] first characterize the class of functions that
can be computed by agents subject to sporadic pairwise interactions and with

2In fact, consensus in absence of failures is not considered a very interesting problem:
Lynch states that When there are no failures of system components, consensus problems
are usually easy to solve, using a simple exchange of messages. [63, ch. 5].

2.2 Computer Science 13

small on-board storage space. While the paradigm adopted by the authors
is quite far from ours, their work is worth mentioning since it is one of the
first signs of an interest in computation on mobile networks within the CS
community.

In 2009, Khan et al. [56] propose an energy-optimal algorithm that builds
approximate minimum spanning trees on random geometric graphs. The
resulting tree can be cheaply rearranged under nodes insertions and deletions.
The interest of Khan’s work to our purposes is twofold. First, the authors
explore tradeoffs between the energy needed to build a spanning tree, a one-
off cost, and the quality of the resulting tree, which influences the cost of all
subsequent computations that use the tree structure. Second, the authors
concern themselves with reconfiguration of the network under node insertions
and deletions, while most previous works dealt with failures by building a
robust (and expensive) structure to passively respond to node failures.

In the same year, Choi et al. [20] publish an energy-optimal algorithm
for minimum spanning trees on random geometric graph. Choi’s algorithm
cleverly exploits known properties of random geometric graphs (discussed by
Penrose in [97]) to adapt the GHS algorithm to wireless applications.

In 2010, Kuhn, Lynch and Oshman [58] explore lower bounds on certain
distributed problems, including token dissemination (which is a prerequisite
for consensus), on time-varying network topologies. The authors assume the
network to be adversarial and agents to be unaware of their neighbors until
after they have sent them messages. They show that the token dissemination
problem can be solved in O(n+n2/T) rounds with messages of size O(log n)
if the network sports a stable spanning subgraph for T consecutive rounds.
Kuhn’s algorithm is shown to be optimal under certain restrictive assump-
tions about the nodes’ (lack of) knowledge of the network.
The same model and connectivity properties are applied to a wider range of
problems, including consensus, in Oshman’s Ph.D. thesis [90]. No parame-
ters other than time complexity are considered in these works: in fact, the
communication complexity of the algorithms proposed is typically very bad,
a direct result of the agents’ lack of knowledge of the network topology.

More recently, Kuhn and Oshman [59] have published a partial survey
of algorithms for distributed computation on dynamic networks. Their work
focuses on adversarial graphs with unceasing dynamic behavior and explicitly
avoids geographical networks: despite these limitations, their paper is among
the most complete surveys of distributed models and algorithms for wireless
networks to date.

Drucker, Kuhn and Oshman [30] study the problem of distributed task
allocation on wireless networks: their work proposes time and byte efficient
(O(log n) and O(n log n) respectively) algorithms for distributed task alloca-

14 State of the Art

tion in a shared memory setting, which models a fully connected, broadcast-
enabled network.

2.2.3 Parallel linear algebra

Parallel linear algebra has long been an active area of research in computer
science. While the algorithms employed in the field are very distant from
those used for consensus, the field holds a significant interest for our purposes:
PLA shares our concern with message and energy complexity and many of the
metrics developed for distributed linear algebra carry over to decentralized
consensus on hybrid networks.

Demmel’s book on parallel numerical linear algebra [29] still is a crucial
reference on the subject; recent publications by Ballard, Demmel and others
[9, 10, 28] propose cost metrics for distributed algorithms that our work
borrows from in Chapter 3.

2.3 Control Systems

Research on distributed consensus in the control community evolved quite
independently of developments in CS. After Tsitsiklis’s 1985 Ph.D. thesis,
theoretical work on the topic saw very little significant development until
the early 21st century.

In 2003, Jadbabaie et al. [53] published a seminal paper proposing a
theoretical explanation to a flocking phenomenon observed by Vicsek [117]
in numerical simulations. Jadbabaie and Vicsek consider average-based algo-
rithms: at each time step (or instant), nodes update their state according to
their neighbors’. Rigourously, in continuous networks, the system dynamics
is described by the switched system

ẋ(t) = −Atx(t)

where x = [xT1 x
T
2 . . . x

T
N]T is the collection of the agents’ states and At = [at,ij]

is the adjacency matrix of the underlying proximity graph, whose elements
aij are nonzero if and only if nodes i and j are neighbors at time t. Different
choices of aij lead to different average-based consensus algorithms.
In discrete networks, the system dynamics is described by

x(t+ 1) = L(t)x(t)

where L(t) = [lij(t)] is the Laplacian matrix of the proximity graph, defined
as

lij =

{
−aij if i 6= j∑

k 6=i aik if i = j

2.3 Control Systems 15

Consensus is defined as asymptotic convergence of all agents’ states to a
common value.

Jadbabaie shows that, if the set {At} obeys certain connectivity proper-
ties, then a discrete system will asymptotically achieve consensus. Specifi-
cally, if there exists an infinite sequence of continuous, nonempty, bounded
time intervals [ti, ti+1) starting at t0 = 0 such that the union of {Aj}, j ∈
[ti, ti+1) is connected for any i, then the system converges to a linear combi-
nation of the initial values.
Jadbabaie also shows that, if a leader node follows an independent trajectory,
other nodes will converge to the leader’s trajectory under the above assump-
tions. Moreover, continuous systems have the same behavior if a dwell time
is introduced between transitions, so as to discourage chattering.

As a note of color, Bertsekas and Tsitsiklis show [14] that Jadbabaie’s
results are a special case of those in Tsitsiklis’s 1985 thesis [114] and related
works from the late Eighties [15, 115]. Yet Jadbabaie has the unquestion-
able merit of bringing distributed consensus back into focus in the control
community: Olshevsky argues that

[Jadbabaie’s] paper has created an explosion of interest in aver-
aging algorithms, and the subsequent literature expanded in a
number of directions. It is impossible to give a complete account
of the literature since [Jadbabaie, Lin and Morse’s paper] in a
reasonable amount of space (A. Olshevsky, [89])

Our review of the literature will not be comprehensive: we prefer to focus
on a comparatively small selection of high quality works and paint a picture
of the control community’s approach to distributed consensus through these.
The reader may also be interested in the review papers by Olfati Saber [85],
which gives a good overview of findings in cooperative consensus, and Ren
[102] which focuses on distributed estimation. Both papers were published in
2007: the introduction to Acikmese’s work [1] gives a more recent, if succinct,
overview of key results in distributed estimation.

2.3.1 Models and fundamental limitations

In 2003, Olfati Saber and Murray propose a model for networks of dynamic,
acceleration-controlled agents and a protocol that implements Reynolds’s
rules of flocking [103], i.e. collision avoidance, velocity matching and flock
centering.

In 2004, Olfati Saber et al. [87] propose a set of consensus algorithms for
fixed and switching network topologies with or without time delays in directed

16 State of the Art

and undirected networks. The role of directed networks is especially impor-
tant, since it allows to introduce a hierarchy in the otherwise peer-to-peer
flocking model and generalizes Jadbabaie’s [53] results on leader following.
Olfati’s paper also establishes a crucial connection between the algebraic con-
nectivity of the network (represented by the second smallest eigenvalue of the
Laplacian, also known as the Fiedler eigenvalue [37, 38]) and the convergence
speed of an average-based consensus protocol. The same results are discussed
in further detail in a technical report by the same author [84].

A 2005 paper by Spanos et al. [108] presents average-based consensus
algorithm designed to work in presence of arbitrary time delays and splitting
and merging of the network [108].

Also in 2005, Moreau [71] extends and generalizes Jadbabaie’s results
on sufficient conditions for consensus to a wide class of (possibly nonlinear)
update schemes.

A 2006 paper by Boyd et al. [16] proposes gossip algorithms for averaging
on dynamic networks. Boyd also proposes a novel decentralized optimization
procedure to design the fastest possible gossip algorithm on the very network
it will be executed on; his work also relates the convergence rate of gossip
algorithms to the Fiedler eigenvalue of the network.

Two companion papers by Martinez et al. [64, 65] propose a rigorous
model for cyber-physical networks which draws inspiration from work in the
Computer Science community and especially from Lynch [63]. Martinez’s
model is then applied to rendezvous and deployment problems, discussed in
Section 2.3.5.

Benezit et al. [13] study the convergence rate of gossip-based consensus
algorithms: their paper proposes a geographic gossip algorithm that achieves
linear message complexity, as opposed to the quadratic message complexity
of nearest neighbor-based gossip. Their work is especially significant since
it is among the first to exhibit a concern for the message complexity of
average-based consensus algorithms.

In 2010, Olshevsky’s Ph.D. thesis [89] offers what is probably the most
exhaustive and comprehensive study of average-based consensus to date. Ol-
shevsky proposes an averaging algorithm whose convergence time scales as
O(n2) steps on a wide class of time-varying graph sequences on discrete
networks with bounded delays. He also shows this algorithm to be optimal
within a large class of linear and nonlinear update schemes. He then explores
the effect of communication quantization and shows that the convergence rate
of his algorithm is not affected if the message size is upper-bounded by c log n.
Finally, he turns his attention to algorithms that use a constant number of
bits per link, which are beyond the scope of our work.

2.3 Control Systems 17

2.3.2 Specific network topologies

In 2005, Hatano and Mesbahi [49] first study stability and rate of convergence
of a consensus protocol on random Erdős-Rényi [32] graphs. To the best of
the author’s knowledge, Hatano’s paper is the first to adopt a stochastic
description of the dynamic network exploited by the consensus protocol.

Epstein et al. [31] exploit existing hierarchical structures within the net-
work to speed up average-based consensus: their technique revolves around
the fact that smaller networks may have a larger Fiedler eigenvalue, which
leads to an higher rate of convergence. Epstein’s work is the first to intro-
duce the idea of using multilevel hierarchies within a network, although the
paper only concerns itself with exploiting an existing hierarchy and offers no
insight in how to best partition a network to improve performance.

2.3.3 Distributed filtering

Distributed Kalman filtering was first studied for continuous systems by Ol-
fati Saber in 2005 and 2007 [83, 88]. Olfati Saber proposes several distributed
Kalman filters and compares their performance numerically. The second ar-
ticle also estimates the byte complexity (per round) of a distributed Kalman
filter.

A 2005 paper by Spanos proposes an application of robust algorithms
presented in [108] to multivariable consensus, namely Kalman filtering [107].

In 2011, Ac, ıkmes,e [1] proposes a decentralized observer for discrete-time
linear systems.

2.3.4 Security of cyber-physical networks

Pasqualetti and Bullo’s research is devoted to byzantine failures in cyber-
physical network: their work characterizes the vulnerabilities of hybrid net-
works [92], explores fundamental limitations of attack detection and identi-
fication and proposes algorithms to detect such failures [93, 94]. Results by
this group are also summarized in Pasqualetti’s 2012 Ph.D. thesis [91].

2.3.5 Rendezvous, deployment and tracking

In 2006, Cortes et al. [24] propose an improved version of an existing circum-
center algorithm for rendezvous of multiple agents (i.e. a specific application
of consensus) and analytically prove its convergence under lax hypotheses on
the time evolution of the network.

A paper by Martinez et al. [65] applies the model developed in [64]
to rendezvous and deployment problems. The model allows for continuous

18 State of the Art

evolution of the network with asynchronous communication: the rendezvous
and deployment algorithms, on the other hand, are studied in a synchronous,
discrete-time setting.

The same group is responsible for a paper [41] that discusses the relation-
ship between continuous coverage control and average-based consensus on
select network topologies, which the authors term discrete Voronoi graphs.

Zavlanos et al. [123] first propose a connectivity preserving flocking al-
gorithm: Zavlanos’s procedure enforces connectivity conditions rather than
relying on their being verified.

Sabattini et al. [104] also propose a connectivity preserving algorithm
that works in presence of additional bounded control terms: they show how
their algorithm can be used to achieve rendezvous and formation control.

Olfati Saber proposes a coupled distribution, estimation and control al-
gorithm for mobile sensor networks in [86]: agents collaborate to estimate
the position of a target, then use flocking to track its position and improve
their estimate in a closed-loop process.

2.4 Autonomy and decentralization in space

exploration

Space exploration is a prime application for autonomous decision-making:
relativistic delays make it all but impossible for humans to directly control
space probes beyond LEO and time on the high-power Deep Space Network,
which guarantees communications with all probes outside Earth orbit, is an
extremely scarce and expensive resource. Despite this, only in recent years
has a shift from monolithic spacecraft requiring strong human interaction to
comparatively autonomous systems started to manifest itself; decentralized
architectures have been studied for many spaceborne applications but, at the
time of writing, they have seen extremely limited use in flight missions.

2.4.1 Autonomy

Algorithms deployed on Mars rovers Spirit, Opportunity and Curiosity repre-
sent the state of the art in autonomous decision-making for planetary explo-
ration [50, ch. 3]. Surprisingly, autonomy is mostly relegated to navigation
tasks and very limited in time. During typical operations, a set of instruc-
tions is sent to the rovers at the beginning of every Martian day; the rover
then proceeds to execute the instructions, which include collection of images
and data, placement of scientific instrument and driving instructions [68],
and reports back at the end of the sol. High-level planning is performed

2.4 Autonomy and decentralization in space exploration 19

offline daily by ground operators, helped by the dedicated Science Activity
Planner (SAP) software.

Rovers are able to drive autonomously, generating a terrain map from
stereoscopic images and performing path planning and obstacle avoidance
between gateways defined by mission controllers. Fully autonomous driving,
however, is used less than a quarter of the time on Spirit and Opportunity:
mission controllers feel that autonomous planning is inherently less reliable
than human-in-the-loop operations and visual odometry, required to precisely
estimate the position of the rovers in presence of wheel slip, is computation-
ally intensive and significantly slows down roving. Table 2.1 shows the usage
of different driving modes on MER rovers as of August 2005, eighteen months
after landing: fully autonomous driving was used 27% of the time on Spirit
and only 21% of the time on Opportunity.

Driving Mode
Terrain Path Visual

Spirit Opportunity
Assessment selection Odometry

Directed Driving no no no 451 m 9 % 1973 m 33%
VisOdom no no YES 410 m 8 % 561 m 9%
Blind Goto Waypoint no YES no 2196 m 46 % 1911 m 32%
VisOdom Goto Waypoint no YES YES 379 m 7 % 121 m 2%
Guarded Motion YES no no 36 m 1 % 117 m 1%
Guarded VisOdom YES no YES 0 m 0 % 0 m 0%
AutoNav YES YES no 1315 m 27 % 1262 m 21%
AutoNav with VisOdom YES YES YES 3 m 0 % 0 m 0%

4798 m 100 % 5947 m 100%

Table 2.1: MER driving mode usage as of 15 August 2005, counting 573 sols for Spirit
and 555 sols for Opportunity. [50, Ch. 3, Table 1]

In 2009, the AEGIS software was deployed on Opportunity [36]. AEGIS
allows autonomous identification of targets of scientific interest: after iden-
tifying promising targets via low-resolution, wide-angle cameras, the rover
autonomously images them with narrow-field, high-resolution instruments
and only sends the resulting images back to Earth, with significant time and
bandwidth savings. AEGIS remains ancillary to manually planned science
operations: it has seen comparatively little use since 2011 [79].

The Curiosity rover is a direct descendant of Spirit and Opportunity:
while its scientific package and mechanical subsystems are significantly im-
proved with respect to the MER mission, the high-level autonomy architec-
ture remains the same [80]. In fact Curiosity, remained stationary and per-
formed pre-planned experiments for over one month during the 2013 Mars
opposition, which made daily direct communications impossible. The AEGIS
software holds much promise on MSL-Curiosity, where it may be used to au-
tonomously target the ChemCam spectrometer as well as narrow-field cam-
eras [118]: software deployment on MSL is planned for 2013.

20 State of the Art

Many theoretical analyses and ground-based studies on autonomous plan-
ning for single-agent and multi-agent architectures have been proposed in
recent years: notable example include NASA’s CLARAty robotic framework
[119] and LAAS’s framework [52], while Zilberstein’s work [124] gives an ex-
cellent overview of mathematical methods for single-agent planning under
uncertainty. We refer the reader to the introduction to [43] for a compre-
hensive review of further theoretical work on autonomy and planning for
planetary exploration.

2.4.2 Decentralization and multiagent architectures

To date, no unmanned planetary exploration missions counting more than
two agents have been launched. Many two-agent missions have been de-
ployed: typical architectures include an orbiter and a lander experiencing
limited interactions to relay telecommunications to Earth.

Thanks to its scientific interest and relative ease of access, Mars has be-
come a testbed for multiagent interaction between vehicles independently
developed from different space agencies at different dates. The planet is cur-
rently host to two U.S. rovers, Curiosity and Opportunity, and three orbiters,
NASA’s Odyssey and Mars Reconnaissance Orbiter and ESA’s Mars Express.
All three orbiters are routinely used to relay information from both rovers to
Earth, allowing for operations even in absence of a direct link between the
Deep Space Network and the ground vehicles. However, no direct interaction
other than as a telecommunication relay is currently used or planned.

The GRAIL mission sported an innovative two-agent architecture: near-
twin spacecraft were flown on identical Moon orbits and the probes’ relative
position was measured to micrometer precision to obtain an accurate recon-
struction of our satellite’s gravity field. The measurement, however, was fully
passive: no interaction between the two spacecraft was required [125].

The A-Train also offers a fascinating example of multiagent (albeit not
autonomous) space exploration: six Earth observation satellites (GCOM-W1,
Aqua, CALIPSO, CloudSat, PARASOL, and Aura) from different agencies
observe our planet from an identical polar orbit with very small differences
in anomaly, offering multiple measurements of different geophysical quanti-
ties at virtually the same time and location. Satellites within the A-Train,
however, are managed independently and do not interact with each other in
flight: scientific data is merged after collection, on the ground.

Several ground-based studies have been carried out about the feasibility
of multiagent autonomous architectures for space exploration. A notable ex-
ample is NASA’s biomimetic ANTS architecture: ANTS consists of a set of
thousands of miniaturized, autonomous, self-similar, reconfigurable, address-

2.5 Conclusion 21

able components that can configure to form large structures with no external
intervention. Proposed missions include exploration of the Moon, asteroids
and Saturn’s rings. ANTS is currently a technology development platform:
while nonminiaturized prototypes are currently being tested, a full-scale de-
ployment for space exploration is not foreseen for the next two decades [25,
26].

Also of note is MIT’s SPHERES program. SPHERES is a robotic testbed
for high-risk formation flight, autonomous docking, rendezvous and reconfig-
uration algorithms: it consists of a cluster of small probes, currently located
within the International Space Station, used to test and validate control algo-
rithms for autonomous spacecraft. A promising application of control algo-
rithms developed on SPHERES is space-based interferometry, which would
exploit arrays of precisely spaced probes to improve the resolution of extra
atmospheric radar observations of deep space by several orders of magnitude
by increasing the radar array baseline from meters to kilometers. At this
time, SPHERES is a technology development program: no flight missions
outside the ISS are being actively planned [69].

2.5 Conclusion

Most aspects of decentralized decision-making on fixed, wired networks have
been studied in the CS literature.
Yet results in the field do not translate well to robotic networks. Most
existing algorithms are incapable of dealing with link or node failures; those
that do use inefficient redundancy rather than reconfiguring the network
on the fly. Furthermore, while message and byte complexity are typically
explored, emphasis is typically placed on time complexity: Lynch states that

The time measure is the more important measure in practice, not
only for synchronous distributed algorithms but for all distributed
algorithms. The communication complexity is mainly significant
if it causes enough congestion to slow down processing. [63, par.
2.6]

This contrasts deeply with robotic space exploration applications, where time
complexity, often measured in fractions of a second, is typically very sec-
ondary with respect to energy consumption.

In recent years, efforts have been made to develop algorithms for wireless
mobile networks. Yet the hypotheses underlying these efforts are typically
incompatible with our robotic networks: leading authors such as Kuhn and
Oshman typically assume agents to be completely unaware of their neighbors’

22 State of the Art

identity and of the overall number of agents participating in a computation.
These hypotheses are very relevant to cellular networks and wireless networks
of computers, where an user ID may be easily spoofed and the number of
agents is unknown a priori; on the other hand, they are far too restrictive for
robotic networks, where the number of nodes is upper-bounded and agents
can be trusted to have a unique identity.

In the control community, consensus is a synonym for average-based con-
sensus. Average-based algorithms have many advantages: they mimic the
natural flocking behavior of birds and schools of fish, are extremely robust
to variations in the network topology and require exchange of very simple
pieces of information among nodes. If agents are only aware of their neigh-
bors’ relative positions3, average-based algorithms are an excellent solution
to the consensus problem.

On the other hand, average-based algorithms are extremely inefficient:
they converge asymptotically, whereas CS algorithms typically reach a solu-
tion after a small, finite number of messages, and they send messages on all
available communication channels at each time step. Modern robotic agents
are able to sense, elaborate and communicate complex information: average-
based algorithm underexploit their capabilities and the resulting performance
suffers greatly.

Autonomous multi-agent architectures have seen extremely limited use
in space exploration. In principle, hardware is not a limitating factor: con-
versely, distributed architectures should afford significantly higher reliability
than monolithic ones. One of the reasons for this lack of adoption may there-
fore be the the relative immaturity of software architectures for multi-agent
coordination and decision-making: existing paradigms translate very poorly
to the constraints and opportunities typical of robotic space exploration.

In the next chapters, we will strive to bridge this gap by proposing CS-
inspired algorithms optimized to reach decisions on robotic networks for space
exploration.

3This could be the case if agents are only equipped with cameras or ranging sensors
and unable to otherwise communicate.

Chapter 3

Problem statement

In Chapter 1, we motivated the importance of decentralized consensus for
space exploration applications; after a review of the state of the art in Chap-
ter 2, we are ready to formalize considerations outlined in previous chapters
and rigorously define the consensus problem we wish to solve.

After introducing some definitions in Section 3.1, we formalize and mo-
tivate our mathematical hypotheses in Section 3.2; we introduce the metrics
used to assess the complexity of consensus problems and algorithms in Sec-
tion 3.3 . Finally, we formally define the problem we strive to solve in Section
3.4.

3.1 Preliminaries

3.1.1 Consensus, convex consensus, sensitively decom-
posable and locally computable functions

Consensus Our work borrows Nancy Lynch’s definition of consensus [63,
par. 5.1]. Agents are supposed to have an initial opinion on the value they
should agree on (which can be a scalar, a vector or a logic value) and exchange
messages to reach an agreement. An algorithm solves the consensus problem
if the three following properties hold.

• Agreement: No two processes decide on different values.

• Validity:

1. If all processes start with the same value k0, then k0 is the only
possible decision value.

2. If all processes start with the same value k and all messages are
delivered, then k is the only possible decision value.

24 Problem statement

• Termination: All processes decide in a finite number of steps.

Convex consensus We restrict our attention to convex consensus prob-
lems: here, the consensus value k̄ is further restricted to belong to the convex
hull of the agents’ initial values ki i = 1, . . . , n.

In other words, k̄ can be represented as a convex combination of the initial
values ki’s, i.e.:

k̄ :=
n∑
i=1

ci ki, where ci ∈ [0, 1], and
n∑
i=1

ci = 1,

where the weights ci, i = 1, . . . , n, are problem-dependent. The vector of
weights [ci]i parameterizes the convex consensus problem.

The above definition is redundant for boolean consensus problems. For
scalar and vector values, it encompasses most reasonable consensus problems,
including

• Computation of maxi ki, e.g., for leader election. This problem can
be represented with the weight choice (assuming there exists a unique
maximum): ci = 1 if ki = maxj(kj) and ci = 0 otherwise.

• Computation of of mini ki. This problem can be represented with the
weight choice (assuming there exists a unique minimum): ci = 1 if
ki = minj(kj) and ci = 0 otherwise.

• Average consensus, which can be employed to solve problems as di-
verse as distributed sensing and filtering [83], formation control [53],
rendezvous [24] and coverage control [41]. This problem can be repre-
sented with the weight choice: ci = 1/n.

• Weighed average consensus, which can be employed for data fusion
when information about the confidence of several measurements is
available. This problem can be represented with the weight choice:
ci = 1/[σi ·

∑
j(1/σj)], where σi is the uncertainty of each measure-

ment.

• Mode This problem can be represented with the weight choice: ci =
1/nmo if ki = Mode(kj) and ci = 0 otherwise. nmo is the number of
occurrences of the mode value.

• Median. This problem can be represented with the weight choice: ci =
1/nme if ki = Medianj(kj) and ci = 0 otherwise. nme is the number of
occurrences of the median value.

3.1 Preliminaries 25

• Any logical operation whose outcome lies within the hull of the nodes’
initial opinions of a policy to follow. If policies are mutually exclusive,
this problem can be represented with the weight choice (assuming only
one agent proposes the selected policy) ci = 1 if i is the selected policy,
ci=0 otherwise. If the problem admits a notion of mediation between
different policies, ci can assume values between 0 and 1.

Sensitively decomposable, hierarchically computable and locally
computable functions In [7], Awerbuch introduces the concept of sensi-
tively decomposable functions:

such functions are sensitive to every input, but the influence of
a set of arguments can be represented by a string whose size is
not much bigger than the size of a string needed to represent just
one argument. Examples of such functions are maximum, sum,
parity, majority, OR, AND.

Awerbuch’s definition, however, does not capture whether the consensus
function can be computed on a subset of opinions. We therefore introduce
the concept of hierarchically computable and locally computable functions.

A hierarchically computable function obeys the following property: given
the value of a function on a number of disjoint sets, it is possible to compute
the function of the disjoint union of these sets and store the result in a string
of the same order of magnitude as the size of the string needed to represent
an argument. Examples of such functions are average and weighed average:
given a subset of nodes, their contribution to the consensus value can be
represented by their (weighed) average and the associated weight. Major-
ity voting on a limited number of options also is a hierarchically computable
function: it is sufficient to store the number of votes obtained by each option.
The name is inspired by the observation that hierarchically computable func-
tions can be computed with messages of small size on a hierarchical structure
such as a tree.

A locally computable function, on the other hand, obeys the following
property: given the value of the function on a number of potentially overlap-
ping sets, it is possible to compute the function of the union of these sets
and store the result in a string not much bigger than the size of the string
needed to represent one argument. In other words,

S = ∪iSi; f(S) = f(f(S1), f(S2), . . .);

Examples of such functions are maximum and minimum. Note that mean,
weighed mean, median, mode and majority are not locally computable.

26 Problem statement

We restrict our complexity analysis to hierarchically computable func-
tions. We do not, on the other hand, specifically exclude locally computable
functions: we do, however, discuss the impact of local computability on the
byte complexity of a consensus algorithm.

3.1.2 Cyber-physical networks, graphs and automata

In this work, we model an asynchronous robotic network with n agents as a
connected, undirected graph G = (V,E), where the node set V = {1, . . . , n}
corresponds to the n agents, and the edge set E ⊂ V ×V is a set of unordered
node pairs modeling the availability of a communication channel. We will
henceforth refer to nodes and agents interchangeably. Two nodes i and j are
neighbors if (i, j) ∈ E. The neighborhood set of node i ∈ V , Ni, is the set of
nodes j ∈ V neighbors of node i.

Each node is internally modeled as a I/O automaton, which is essentially
a labeled state transition system commonly used to model reactive systems
(a more formal definition can be found in [63, ch. 8]). All nodes are identical
except, possibly, for a unique identifier (UID). The following key assumptions
characterize the time evolution of each node in G:

• Fairness [63, ch. 8]: the order in which transitions happen and messages
are delivered is not fixed a priori. However, any enabled transition will
eventually happen;

• Non-blocking [63, ch. 8]: every transition is activated within l time
units of being enabled and every message is delivered within d time
units of being dispatched.

We will sometimes refer to our robotic network as a cyber-physical network:
the term points to the coexistence of a physical, hardware component and a
cybernetic, logical component in the system.

Spanning trees and minimum spanning trees In the following we will
frequently deal with spanning trees and minimum spanning trees. We remind
the reader that a spanning tree on a graph G = (V,E) is an acyclic, connected
subgraph T = (V,E ′) of G such that all nodes in G belong to T and E ′ ∈ E.
If edges of G have a weight, we define a minimum spanning tree as a spanning
tree M = (V,E ′′) of G such that the sum of the weights of edges e′′ ∈ E ′′
belonging to M is minimal. It can be shown that, if the weights of edges
e ∈ E belonging to G are unique, G has an unique minimum spanning tree.

3.1 Preliminaries 27

3.1.3 Complexity and asymptotic notation

In this work, we focus our attention on the running time, number of messages
exchanged and number of bits exchanged by a class of consensus algorithms
on robotic networks. Borrowing from the CS literature, we define these three
quantities as time, message and byte complexity (or, interchangeably, cost).
Section 3.3 below gives a rigorous definition of the metrics employed to assess
these quantities.

In order to evaluate the complexity of an algorithm and its rate of growth
as the number of agents increases, we make ample use of Θ, O, and Ω nota-
tion.

Asymptotic notation Asymptotic notation, presented in [22], is a pow-
erful tool to evaluate and compare the rate of growth of complexity as a
function of the input size (in our case, the number of agents). It concen-
trates on the highest-order contributor to the complexity of an algorithm,
ignoring slower-growing terms and constant factors.

Asymptotic notation is widely used in the CS community: an asymptot-
ically more efficient algorithm is typically the best choice for all inputs but
very small ones, which usually bear no interest to a computer scientist.

We, on the other hand, must be careful to always verify the validity of
this approach: while a fifty element array may be trivially small in CS, a 20-
or 50-agent robotic network is quite large by current standards.
This does not mean that asymptotic notation should be scrapped altogether:
an algorithm with a complexity of 8n log n is significantly more efficient than
one requiring n2 operations for a 50-element network, despite the former’s
high constant factor; as the number of agents increases1, the performance
gap only widens. Yet we will take care not to neglect lower-order terms in
our analysis, so as to verify the validity of asymptotic notation whenever we
employ it.

Upper bounds: O and o notation Asymptotic upper bounds on the
rate of growth of a function are typically expressed with O and o notation.

The notation O(g(n)) denotes the set of functions f(n) that are asymp-
totically smaller than g(n): rigorously,

O(g(n)) = {f(n) : there exist positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

1For instance, NASA’s ANTS mission architecture concept may see up to a thousand
agents interacting to prospect Kuiper belt asteroids [25].

28 Problem statement

Figure 3.1a shows an example of O notation.
The notation o(g(n)) is used to express upper bounds that are known not

be tight. Rigourously, the set of functions f(n) = o(g(n)) obeys

o(g(n)) = {f(n) : for all positive constants c there exists n0 > 0 such that

0 ≤ f(n) < cg(n) for all n ≥ n0}

Lower bounds: Ω and ω notation Ω and ω notations are used to ex-
press lower bounds on the rate of growth of a function. ω notation is used
when a bound is known not to be tight, whereas Ω is used in all other case.
Rigorously, Ω(g(n)) and ω(g(n)) denote the following sets:

Ω(g(n)) = {f(n) : there exist positive constants c and n0 such that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0}

ω(g(n)) = {f(n) : for all positive constants c there exists n0 > 0 such that

0 ≤ cg(n) < f(n) for all n ≥ n0}

Figure 3.1b shows an example of a function f(n) = Ω(g(n)).

Θ notation When a function’s asymptotic upper and lower bounds coin-
cide, Θ notation is employed. Rigourously,

Θ(g(n)) = {f(n) : there exist positive constants c1, c2 and n0 such that

c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

Figure 3.1c shows an example of a function f(n) = Θ(g(n)).

Worst-case and average-case complexity The complexity of an execu-
tion of an algorithm is easy to compute: one can simply time the execution
or count the number of messages exchanged. Evaluating the complexity of
an algorithm, on the other hand, requires additional hypotheses on its in-
put values: in our case, we should specify the initial network topology, its
evolution in time and the agents’ initial values.

The two main approaches found in the literature are worst-case and
average-case analysis.
In the former, the complexity is defined as the worst possible cost required
by a successful execution of the algorithm for any input within a given set.
In the latter case, the algorithm’s performance is evaluated on an average-
case input. The definition of “average case” is strongly problem dependent:

3.1 Preliminaries 29
3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

(a) O notation

3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

(b) Ω notation

3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

(c) Θ notation

Figure 3.1: Graphic examples of the Θ, O, and Ω notations (from Cormen’s Introduc-
tion to Algorithms [22, fig. 3.1])

it typically follows from considerations about known statistical properties of
the input and/or on randomization occurring within the algorithm.

In this work, we mainly deal with analytical worst-case complexity. Aver-
age case complexity on select randomized network topologies is numerically
evaluated in Chapter 6.

3.1.4 Random geometric graphs

Throughout this work, we consider a number of network topologies. We ded-
icate special attention to random geometric graphs, which accurately model
many real-world wireless sensor networks (see e.g. [55]) and capture the
uncertainty inherent in many robotic networks with non fully deterministic
deployment mechanisms.

Nodes in a random geometric networks are uniformly distributed within
a d-cube of size one, where d is the number of dimensions of the problem.
For robotics applications, d ∈ {2, 3}. Nodes are neighbors if their Euclidean
distance is lower than a prescribed radius r̄(n), typically decreasing in n.

Random geometric networks have long been studied; for our purposes, it
is sufficient to highlight a few useful statistical properties.

• Connectivity. It can be shown that the number of isolated clusters
in a random geometric graph presents two sharp thresholds. Below
the first threshold, O(n) nodes have no neighbors; above the second
threshold, the graph is almost surely connected; in between, the graph
has one giant component containing O(n) nodes. It can be shown that
on a 2D random geometric graph the second (connectivity) threshold,

30 Problem statement

which especially interests us, is

rc ≈
(

lnn

πn

)1/2

This surprising property can be generalized: Goel et. al. [45] show that
all monotone increasing properties of the graph2 have sharp thresholds.

• Neighbors: it is easy to see that, given the uniform distributions of
nodes, the expected degree of each node E[D], i.e. is the average num-
ber of neighbors, is Vd(r(n)) · (n− 1), where Vd(r(n)) is the volume of
the d-sphere of radius r(n). For d = 2,

E[D] = πr(n)2 · (n− 1)

We refer the reader to Penrose [97] for a comprehensive treatment of the
subject.

3.2 Hypotheses

Chapter 2 shows how how slight changes in the problem’s hypotheses can lead
to largely different solutions and complexities.To this end, in this section we
lay out and motivate our hypotheses, showing their relevance to modern
multiagent systems for space exploration.

Knowledge of the order of magnitude of the number of agents In
[7], Awerbuch shows that, if no a priori information is available, counting the
number of agents is as hard as computing a sensitively decomposable function
on a static, connected network. Awerbuch’s improved GHS algorithm solves
both problems optimally under certain assumptions.

In this work, we do not assume that agents know the exact number of
participants in the network. We do, on the other hand, assume that they
know the order of magnitude of the number of agents O(n). This allows
us to formulate simple termination criteria that do not require an expensive
counting stage in Ch. 5.

The hypothesis is very relevant to robotic networks, especially in space-
borne applications: the number of deployed agents is well known a priori, yet
a small number of agents may fail to activate due to hostile environmental
conditions or uncertainties intrinsic in the deployment phase.

2A property P of a graph is monotone increasing if, whenever a subgraph H of G has
P, then G has P too.

3.2 Hypotheses 31

In practice, we require the maximum error in the number of agents to be
strictly smaller than t, a parameter defined by the designer. The relevance
of this parameter will be made clear in Chapter 5.

Identical agents with unique UIDs We model our agents as identical
nodes running the same logic code. Each agents, however, sports a unique
User ID, typically a natural number.

A hierarchical structure is intrinsically less robust than a “flat” one: while
a flat structure is able to tolerate the loss of any agent, a hierarchical archi-
tecture may have to undergo significant reconfigurations following the loss of
one (local or global) leader.

Depending on the mission, it may be advantageous to deploy agents with
different physical capabilities. On the other hand, it is sensible to refrain from
embedding a hardwired hierarchical structure or markedly different software
proficiency in the agents: the uncertainty of the environment, especially
in the deployment phase, suggests giving every node the same capabilities,
waiting until deployment is over before configuring them in a hierarchical or
semi-hierarchical structure.

Asynchronous network with asynchronous wakeup In a synchronous
network, all nodes evolve at once following a global clock: at each round nodes
simultaneously receive messages from their neighbors, update their internal
state, then place messages in their neighbors’ inboxes before proceeding to-
gether to the next round.

Asynchronous networks, on the other hand, do not offer such timing
guarantees. We assume communication links to be FIFO3: a partial ordering
between messages exchanged between two nodes is maintained. On the other
hand, no global ordering of messages is maintained and agents do not have
access to an exogenous global clock.

Synchronous networks are a special case of asynchronous networks: re-
sults on the latter directly translate to the former. On the other hand,
synchronous algorithms typically do not work on asynchronous networks out
of the box: significant effort has been spent on design of synchronizers that
distributely generate a global clock and make it available to all nodes. We
refer the reader to Raynal’s work [100] for details.

In this work, we model our network as an asynchronous network with
asynchronous node wakeup. Real networks are asynchronous: all synchronous
algorithms assume (more or less explicitly) the existence of a shared clock,
which must be enforced in design.

3First In, First Out, a natural assumption for direct wired or wireless TCP-like links

32 Problem statement

For terrestrial applications it is trivial to obtain very high precision time
measurements thanks to the GPS constellation of navigation satellites. Yet,
even barring security and availability considerations, a shared time it is not
enough to guarantee synchronism unless an hard upper bound on the tran-
sition time of each agent and the delivery time across each communication
link are known: this may lead to very conservative implementations with
extremely high real-world time complexity.
For space borne applications, guaranteeing availability of a shared clock is a
formidable task per se: it is more sensible to assume that no shared time is
available and, should the need arise, explicitly devise protocols to this end.

A consequence of the hypothesis above is that nodes will wake up asyn-
chronously: having no global time available, they will come online and start
running as they are available.

Unfortunately our algorithms do require nodes to wake up once they
are contacted by a neighbor: to this end, we introduce a dwell time at the
beginning of any distributed algorithm to guarantee that all agents are ready
to react to exogenous inputs when the first message is sent. This dwell time
does not help enforce synchronism among the agent: it simply guarantees
that no agent will ignore external inputs only to come online at a later time.

In synchronous networks, time complexity is often expressed in terms
of the number of rounds. This approach does not apply to asynchronous
networks: on the other hand, the non-blocking property presented in sec 3.1.2
can be used to impose upper bounds on the time complexity of a process.
In the following we will sometimes confuse the reader by referring to the
combined maximum time complexity of a transition and a message (l + d)
as a round, even though our work is set in an asynchronous setting unless
otherwise specified.

Unknown network topology, neighbor discovery protocol Our agents
have no global knowledge of the network topology. This is rather sensible: if
agents are dynamically deployed, the network topology is unknown, even to
a global observer, until deployment is over; furthermore, if all agents shared
knowledge of the entire network topology, it would be comparatively easy to
elect a leader based on a previously agreed-upon rule and with no inter-agent
communication, making the problem far less interesting.

On the other hand, agents do know the number of their neighbors and
their distance: if the number and identity of neighbors is unknown, all non-
broadcast-based protocols, which are the focus of this work, are inapplicable.

For wired networks, knowledge of local neighbors is trivial: an agent
should be well aware of the number of outgoing physical communication
channels. In wireless networks, on the other hand, such knowledge is not

3.2 Hypotheses 33

guaranteed a priori.
Throughout this work, we assume our network to be equipped with a low-

power network discovery protocol that allows agents to precisely determine
the number and the distance of its neighbors upon startup. Such a proto-
col can be implemented in several ways: for spaceborne applications, where
atmospheric attenuation is typically not an issue, the power of an agent’s
broadcast as it is received by another could be used as a very precise proxy
for the distance among the two. Neighbor discovery is even easier for terres-
trial applications: location-aware agents could broadcast their position and
locally compute neighbors’ distance as they receive their broadcasts.

Directional communication In this work we assume agents to use an
unicast protocol to communicate with their peers: broadcast communications
are not forbidden but, when an agent communicates with m neighbors, the
associated communication cost is m times higher than if a single agent had
been contacted.

One of the main concerns of this work is to devise energy-efficient algo-
rithms for cyber-physical networks: we therefore believe it is safe to assume
that hardware solutions for directional communication will be included in
the design of any multiagent system where energy consumption is a major
concern, such as those used in space exploration applications.

Directional communication can be achieved with mechanically or elec-
tronically steerable antennas. Mechanical steering is simple and effective, but
it has significant drawbacks, including reliability, comparatively high main-
tenance requirements and potentially slow actuation. Mechanical solutions
are also strongly discouraged in space applications because of their weight
and inherently low reliability. Electronic steering, which can be achieved via
beamforming, overcomes most of these limitations: phased array antennas
achieve double-digit gains with no moving parts in a light and compact pack-
age. Beamforming has long been studied [6, 116] and used [11] in commercial
terrestrial applications; phased array antennas are starting to see adoption
in space applications , starting with the MESSENGER mission to Mercury
[120].

TCP-like communication protocol We assume the inter-agent protocol
to be TCP-like. In particular, we require the protocol to have the following
two properties:

• No incomplete or incorrect messages are delivered across a nonfaulty
communication link.

• Each successfully sent message is acknowledged.

34 Problem statement

A TCP-like protocol allows agents to automatically detect link failures and
ensures that no partial or incorrect messages are delivered. This is coherent
with our hypotheses of reliable FIFO communication channels with potential
stopping failures, introduced in the next paragraph.

Link failures We allow inter-agent links to experience stopping failures.
Links may go offline but not come back: messages across the link at the time
of failure are dropped. Agents on both sides of the link are notified of the
failure when they try to send a message: in practice, agents note that a link
is down when their messages are not acknowledged for a given, low number
of times.

We do not allow new links to be added to the network during execution.

Throughout this work, we assume that the network graph stays connected
despite link failures. Links can not come back online after they fail: once
disconnected, a network never achieves connectivity again and it is trivial to
observe that no algorithm can solve the consensus problem on a disconnected
network.

Our hypotheses are coherent with a set of stationary agents, e.g. plane-
tary penetrators, that experience link failures because of network equipment
degradation, electronic or mechanical failures or nontransient environmental
conditions. Our results can be applied to slow-moving agents too. Current
planetary exploration rovers have top speeds in the order of hundreds of me-
ters per day : their low speed makes such agents essentially stationary for our
purposes.

Many link failure modes, especially electrical failures, are accurately mod-
eled by a Poisson process parametrized with parameter λ. In Chapter 5 we
discuss the effect of a link’s mean time to failure (which is trivial to com-
pute, given λs for all potential failure modes) on the tuning parameter of the
hybrid algorithm we propose.

Note that an agent stopping failure can be modeled as the simultaneous
failure of all links comprising that node.

Message size Most of the computer science literature on consensus consid-
ers message size as a constraint: messages are often not allowed to be larger
than a given amount, typically O(log n) or just enough to store a constant
number of User IDs.

We see no reason to artificially limit the size of a message: while send-
ing large (e.g. O(n)) messages may be impractical as a network gets very
large, this is less of a concern for small to medium networks counting up to
thousands of agents usually found in robotics applications.

3.3 Performance metrics 35

We do not, however, disregard message size completely: to this end, we
take message size into account when computing byte complexity, introduced
in Section 3.3.

Edge weights Each edge in the graph representing the cyber-physical net-
work has an associated weight, representing the distance between the end
nodes.

We assume edge weights to be unique. This hypothesis is merely technical:
while multiple nodes may indeed be at the same distance, it is trivial to assign
unique weights to congruent edges by appending the end nodes’ IDs to their
distance. Lexicographic ordering can then be used to rank edges in a strict
total order.

3.3 Performance metrics

Let P be a problem to be solved by the nodes in G; more formally, P rep-
resents the task of computing a computable function of the initial values of
the I/O automata in the network G. Let A be the set of algorithms im-
plementable on the I/O automata in G, G be a set of graphs with node set
V = {1, . . . , n}, K be the set of initial conditions for the I/O automata (in-
dependent of algorithm), and F(a, k) be the set of fair executions for a ∈ A
and k ∈ K.

The following definitions naturally capture the notions of time complexity,
communication complexity, and are widely used in the theory of distributed
algorithms [63, ch. 8].

3.3.1 Time complexity of a problem

Time complexity is defined as the infimum worst-case (over initial values
and fair executions) completion time of an algorithm. Rigorously, the time
complexity for a given problem P with respect to the class of graphs G as

TC(P,G) = inf
a∈A

sup
G∈G

sup
k∈K

sup
α∈F(a,k)

T (a, k, α,G),

where T (a, k, α,G) is the first time when all nodes have computed the correct
value for problem P and have stopped

3.3.2 Communication complexity of a problem

Communication complexity is defined as the infimum worst-case (over initial
values and fair executions) number of messages exchanged by an algorithm

36 Problem statement

before its completion. Rigorously, the communication complexity for a given
problem P with respect to the class of graphs G as

CC(P,G) = inf
a∈A

sup
G∈G

sup
k∈K

sup
α∈F(a,k)

M(a, k, α,G),

where M(a, k, α,G) is the number of messages exchanged between the initial
time and T (a, k, α).

The type of message exchanged depends on the algorithm. In average-
based consensus algorithms, nodes typically exchange their state, a real num-
ber. In algorithms such as GHS, a wide range of logical commands estab-
lishing hierarchical relationships, informing neighbors about the progress of
the algorithm and requiring them to perform edge searches is exchanged: we
refer the reader to [40] and [7] for details. The key point is that a message
“counts the same” regardless of its type and size.

3.3.3 Byte complexity of a problem

In many communication protocols, message size plays an important role in
the energy consumption of a problem. Communication complexity, however,
fails to capture this effect.

The byte complexity of a message is proportional to its size in bytes.
The byte complexity of a problem is defined as the infimum worst-case (over
initial values and fair executions) overall size of all messages exchanged by
any algorithm before its completion. Rigorously, the byte complexity for a
given problem P with respect to the class of graphs G as

BC(P,G) = inf
a∈A

sup
G∈G

sup
k∈K

sup
α∈F(a,k)

B(a, k, α,G),

where B(a, k, α,G) is the overall size (in bytes) of all messages exchanged
between the initial time and T (a, k, α).

3.3.4 Complexity of an algorithm

The definitions of time, communication and byte complexity of an algorithm
follow directly from the definitions of the same quantities for a problem.

The time complexity of an algorithm is the worst-case (over initial values
and fair executions) completion time of the algorithm; the communication
complexity is the worst-case number of messages exchanged by the algorithm
before its completion; the byte complexity is the worst-case overall size of
messages exchanged by the algorithm before its completion.

3.3 Performance metrics 37

Rigorously,

TC(P,G, a) = sup
G∈G

sup
k∈K

sup
α∈F(a,k)

T (a, k, α,G)

CC(P,G, a) = sup
G∈G

sup
k∈K

sup
α∈F(a,k)

M(a, k, α,G)

BC(P,G, a) = sup
G∈G

sup
k∈K

sup
α∈F(a,k)

B(a, k, α,G)

3.3.5 Discussion of complexity measures

Power consumption is a limiting factor in many modern distributed systems,
including multiagent robotic systems; mobility (if applicable), communica-
tion and thermal control are typically the three major contributors to power
depletion on robotic platforms for space exploration. Yet most of the research
on distributed algorithms for robotic networks focuses on time complexity,
with little attention to the energy required for their execution.

This thesis strives to explore the “energy complexity” of the distributed
consensus problem. Communication complexity is a reasonable proxy for the
energy cost of a problem in settings where

• the energy cost of a message is independent of the receiver’s distance
(although the neighborhood of the sender can be a function of the range
of the communication equipment);

• the cost of a message is independent of the payload size;

• the cost of sending the same piece of information to k agents is k times
the cost of a single message (which is in general not true for broadcast
communication models);

Independence of the cost on the payload size holds true for protocols in which
constant-length or short messages are exchanged: in the second case, the cost
of the message is dominated by the fixed cost to establish the connection,
handshake, exchange connection parameters and frame the payload.

Byte complexity, on the other hand, is an appropriate proxy for the en-
ergy cost of a problem in settings where the message cost depends linearly
on the message size and the number of receivers but is independent of the
receiver’s distance. Linear dependence of the cost on payload size holds true
for lightweight protocols whose handshakes, headers and acknowledgements
are small with respect to the actual payload.

Throughout this thesis, we will study both message complexity and byte
complexity; we will favor the latter in presence of large messages.

38 Problem statement

3.3.6 Hybrid metrics

Thus far, research has strived to produce algorithms that optimize one of the
metrics above, typically favoring time complexity. Yet real-world application
often call for optimization of hybrid metrics.

Consider for instance a low-power wireless sensor network observing a
transient phenomenon. Examples could include a network of penetrators
observing the geophysical evolution of a SSSB after an artificially induced
shock or a temperature change as they cross the body’s terminator. Here,
low power consumption is paramount, yet the algorithm has to be faster
than the phenomenon under observation to correctly sample it. A relevant
hybrid metric would minimize energy consumption (which we model via byte
complexity for simplicity) under the constraint that time complexity be lower
than a given amount TC. Rigourously, we seek

argmina[BC(P,G, a) s.t. (TC(P,G, a) < TC)]

Other non space-based applications may call for different metrics. Con-
sider a search and rescue application. Examples may include a swarm of
drones looking for a survivor at sea or a low-power sensor network deployed
over an avalanche. Here, time complexity is paramount; yet, if the agents
are battery-powered, the batteries’ capacity gives an hard upper bound on
the energy consumption. We therefore seek a time-optimal algorithm under
the constraint that energy consumption be lower than a given amount EC.
Let us assume once again byte complexity to be an accurate proxy for energy
complexity: rigorously, we require

argmina[TC(P,G, a) s.t. (BC(P,G, a) < BC)]

3.3.7 Robustness

The robustness of an algorithm relates to the number and type of failures
it can withstand while still being able to successfully solve the problem it
addresses. To this end, we define two metrics for robustness. As previously
stated, we address link failures throughout this work.

Single points of failure The number of single points of failure, or SPF,
is defined as the number of links whose failure requires significant recon-
figuration of the algorithm and temporarily or permanently stops nominal
execution.

3.4 Problem statement 39

Time to recovery The time to recovery, or TTR, is the time required for
the algorithm to reconfigure after a major failure and resume computation.
If reconfiguration is impossible, the TTR may be infinite.

3.4 Problem statement

We are finally ready to state the two main problems we wish to solve in this
thesis.

The first problem concerns optimality with respect to time complexity,
message complexity and byte complexity separately ;

Problem 1 (Convex consensus with maximal set of graphs):
— Let G be the set of all graphs with node set V . Find the order
of growth for TC(P,G), CC(P,G) and BC(P,G) where P is the
convex consensus problem with a hierarchically computable con-
sensus function. Find, is possible, an algorithm that achieves the
order of growth of TC(P,G), an algorithm that achieves the order
of growth of CC(P,G) and an algorithm that achieves the order
of growth of BC(P,G) (i.e., a time-optimal algorithm, a message-
optimal algorithm and a byte-optimal algorithm, not necessarily
coincident).

In the second problem, we seek an algorithm that can satisfy tradeoffs
between time complexity and energy consumption, achieving optimal byte
complexity or optimal time complexity depending on a parameter and tran-
sitioning smoothly between the two.

Problem 2 (Parametrized convex consensus algorithm):
— Let G be the set of all graphs with node set V . Find a
parametrized algorithm a(τ), τ ∈ [0, 1] that solves the convex con-
sensus problem P with optimal order of growth of TC(P,G, a) =
TC(P,G) for τ = 0, optimal order of growth of BC(P,G, a) =
BC(P,G) for τ = 1, and orders of growth TC(P,G, a(τ)) <
TC(P,G, a(τ = 1)) and BC(P,G, a(τ)) < BC(P,G, a(τ = 0))
for τ ∈ (0, 1).

3.5 Conclusion

This chapter presents and motivates the mathematical hypotheses that will
guide our work towards a solution of Problems 1 and 2 in Chapters 4 and 5

40 Problem statement

respectively. After presenting a formal definition of the consensus problem
and introducing the notions of convex consensus, hierarchically computable
and locally computable consensus function, we show how to describe a cyber-
physical network of stationary or slow-moving robotic agents as a graph of
I/O automata with constrained time evolution. We then list and motivate
our hypotheses regarding the network:

• Each agent knows the order of magnitude of the overall number of
nodes;

• Agents are identical except for a unique User ID;

• Agents share no global clock and evolve asynchronously;

• Agents are aware of their neighbors;

• Communications are directional and exploit a TCP-like protocol;

• Link failures are modeled by a Poisson process;

• Edge weights are proportional to the inter-agent distance;

Each hypothesis is relevant to the space exploration applications we consider.
We introduce three performance metrics: time, message and byte com-

plexity. The first metric is the only performance parameter typically con-
sidered in current consensus algorithms, while message and byte complexity
relate to the energy required to solve a problem on a cyber-physical network.

We also quantify robustness of the algorithm to link failures through
through two metrics, the number of single points of failure and the time to
recovery.

Finally, we formally state the two problems we wish to solve. First, we
want to identify attainable lower bounds for the time, message and byte
complexity of the consensus problem; we also wish to find algorithms that
achieve these bounds.

However space exploration applications often require good message or
byte complexity with constraints on the maximum time complexity; more-
over, as we will show in the following, low message complexity often relates
to lack of robustness. We therefore wish to identify an hybrid algorithm that
achieves time-optimal or byte-optimal behavior and seamlessly move from
the former to the latter according to a tuning parameter.

Chapter 4

Fundamental limitations

In this Chapter, we explore the first problem outlined in Section 3.4: we
look for lower bounds on the rate of growth of the time, message and byte
complexity of the consensus problem as a function of the number of agents
and algorithms that achieve these lower bounds.

4.1 A lower bound on time complexity

4.1.1 A lower bound on the time complexity of con-
sensus

We define the distance between two nodes as the length of the shortest path
connecting these nodes. The diameter of the network is the maximal distance
between any given pair of nodes belonging to the network.

Consensus problems with hierarchically computable consensus functions
require that nodes hear from all others, directly or indirectly, before making a
decision. A trivial lower bound on the time complexity of consensus problems
is therefore given by the diameter of the graph representing the network:
information from a node on one end of the diameter of the graph requires at
least Diam(G) rounds to reach the node on the other end of the diameter.

The lower bound is reachable under certain hypotheses: a simple flooding
algorithm achieves optimal time complexity in absence of failures if the exact
number of nodes is known.

4.1.2 A time-optimal flooding algorithm

In a flooding algorithm, every node sends all information it has ever received
to each of its neighbors until convergence. A simple optimization is possible:

42 Fundamental limitations

a node can only send information once after it learns it, significantly reducing
the message and byte complexity.

Flooding is time-optimal on any connected network.

Lemma 4.1.1 (Time complexity of the simple flooding algorithm). In ab-
sence of failures, nodes at distance d from a given node i learn i’s opinion at
round d.

Proof. By induction on the number of rounds.
Basis At Round 1, information from node i is sent to each of its neighbors.
Inductive step Let us assume nodes at distance r from node i have learned

about node i’s opinion at round r. At round r + 1, these nodes send their
neighbors all information they have received at round r. Nodes at distance
r+1 from i therefore learn about its opinion at round r+1, if they exist.

From Lemma 4.1.1 it follows that all nodes receive information from all
other nodes within Diam(G) rounds.

Termination If nodes know the exact number of agents participating in
the computation and the function being computed is not locally computable,
termination is trivial: a node stops once it has received n pieces of infor-
mation. If, however, n is unknown to the agents or the function of inter-
est is locally computable, making it hard to count the number of pieces of
information received, termination is less trivial. If the diameter of the net-
work is known, nodes can terminate after Diam(G) rounds (equivalently,
Diam(G)(l + d) time units in an asynchronous setting). If the diameter is
unknown but the function is not locally computable and the network is syn-
chronous, a simple termination criterion can be devised: once a round passes
without an agent receiving any new pieces of information, the agent can be
sure that it has collected information from every other node.

Lemma 4.1.2 (Termination of flooding on synchronous networks). Consider
a synchronous network of agents executing a flooding algorithm reaching con-
sensus on a non locally computable function. If an agent receives no new
pieces of information during one round, then the agent has heard from all
other nodes in the network.

Proof. By contradiction. Let us assume that a node j receives no information
at round r but receives information from node i for the first time at round
r + 1. By Lemma 4.1.1, node i is at distance r + 1 from node j. Then there
exists a node k at distance r from node j; by the same Lemma, node j hears
from node k at round r.

4.2 A lower bound on communication complexity 43

In an asynchronous setting, the Alpha synchronizer presented by Lynch
in [63, par. 16.4] can be used to obtain the same result with no asymptotic
increase in the time complexity.

If nodes have access to an upper bound n̄ of the number of agents, they
can wait n̄ rounds (n̄(l+ d) time units on an asynchronous networks) before
terminating. Note that agents are able to correctly compute the consensus
value after Diam(G) rounds: they just don’t know it.

Message and byte complexity Each edge is crossed by information
about each node at most once: the byte complexity is therefore O(|E|nb),
where b is the size of information held by each node. If nodes attach their ID
to the information they send, typically b = Ω(log n) since the UID requires
at least log n bytes.

At each time step, at most |E| messages are sent: the message complexity
of flooding is therefore O(Diam(G)|E|). Note that, if the function of inter-
est is locally computable, this bound on the message complexity allows to
establish a tighter lower bound on byte complexity at O(Diam(G)|E|b): no
message is larger than b bytes.

In an asynchronous setting, implementation of the Alpha synchronizer
requires exactly 2 ·Diam(G)|E| additional messages of constant size.

Failures Gray [47] shows that, if arbitrary edge failures are allowed, no
algorithm can solve the consensus problem. On the other hand, if perma-
nent edge failures are allowed that leave the network connected, the flooding
algorithm outlined above converges: the proofs presented above do not make
any specific assumptions about the shape of the network. Note that the con-
vergence time is upper-bounded by the diameter of the network after failures
occur.

4.2 A lower bound on communication com-

plexity

4.2.1 Dense networks

In [57], Korach et al. show that any problem that requires use of a spanning
subgraph of the network requires use of up to |E| − 1 edges (and therefore
Ω(|E| − 1) messages) on a certain class of almost complete graphs. It is easy
to see that any consensus algorithm whose consensus function depends on
all nodes’ initial values needs to use a spanning subgraph of the network: in

44 Fundamental limitations

absence of a spanning subgraph, information can’t travel from a given node
to all other nodes.

It follows that the order of growth of the communication complexity of
consensus on the maximal set of graphs is lower-bounded by |E|.

Lemma 4.2.1. Let G be the set of all graphs with node set V , then CC(P,G) ∈
Ω(|E|).

Proof. Consider an “almost complete” network with Θ(n2) edges but fewer
than n(n−1)/2 edges, i.e. not fully connected. Then Korach [57] shows that,
in order to solve the consensus problem on this network, messages must be
sent across |E| − 1 edges. Therefore there exist G ∈ G s.t. CC(P,G) =
Ω(|E|). If follows that CC(P,G) = Ω(|E|).

A message-optimal algorithm on dense networks Gallager, Humblet
and Spira’s algorithm builds a rooted minimum spanning tree on an arbitrary
network with O(n log n + |E|) messages. Once a rooted spanning tree is in
place, the consensus problem is trivially solved: the root can collect infor-
mation from all other nodes via a broadcast followed by a convergecast on
the tree, with an overall communication complexity of 2n. If the consensus
function is hierarchically computable, the byte complexity of this phase is
2nb.

GHS is therefore message-optimal on almost complete networks, where
|E| = Ω(n log n).

4.2.2 Sparse networks

In the previous section, we show that there exist network topologies where
Ω(|E|) messages are required to solve the consensus problem.

Furthermore, if |E| = Ω(n log n), the GHS algorithm offers an asymptot-
ically message-optimal solution to the consensus problem.

In the following, we show that there exist network topologies with O(n)
edges where any asynchronous algorithm solving a convex consensus problem
requires Ω(n log n) messages.

The proof technique leverages the results in Lynch [63], which shows that
leader election on a ring of size n requires at least Ω(n log(n)) messages. The
proof assumes that the network size is a power of two: extension to natural
numbers is straightforward.

The proof for the lower bound requires two preliminary lemmas.

Lemma 4.2.2 (I/O limitations). Consider an infinite set S of I/O automata
running a convex consensus algorithm. Then all but at most one of them can
send a message without first receiving any messages.

4.2 A lower bound on communication complexity 45

Proof. By contradiction. Let us assume that there exist agents ∃p, q ∈ S
that can’t send a message without first receiving any.

Let us consider the single-agent network shown in fig. 4.1a. p can not
send any message, since it receives none. Yet it must reach consensus on a
convex combination of the values of nodes in the ring, i.e. its initial value.

Let us now consider the network shown in fig. 4.1b. With the same
reasoning as above, q reaches consensus on its initial value.

Let us now arrange p and q them in a ring, as shown in fig. 4.1c. Neither
p nor q can send messages without first receiving a message; the ring is
therefore silent. The execution of the algorithm on this network is therefore
indistinguishable from the previous two cases for both p and q: p decides on
its initial value and so does q. These two values are, in general, different: we
have thus reached a contradiction.

(a) (b) (c)

Figure 4.1: All but one of the automata must be able to send a message before
receiving any.

Lemma 4.2.3 (Communication complexity on a line). For any r, there exist
infinite pairwise disjoint lines of I/O automata L ∈ Lr such that L ∈ Lr →
|L| = 2r with communication complexity CC(L) ≥ r · 2r−2.

Proof. We prove the claim by induction on r.
Basis r = 0: the claim is trivial.
r = 1: Lemma 4.2.2 shows that at least one of the two participating

nodes can send a message before receiving any. Therefore there exists one
execution in which at least one message is sent.

Inductive step We want to show that, provided we have a set Lr−1 with
|L| = 2r−1 and C(L) ≥ (r− 1) · 2(r−3) ∀L ∈ Lr−1, we can build a set Lr with
analogous properties.

Let us call n = 2r. The communication cost is thus ≥ n/4 · log(n).

46 Fundamental limitations

We proceed by contradiction. Let us consider four lines A, B, C, D
belonging to Lr−1 and four executions α, β, γ, δ of a consensus algorithm
on these lines. By the inductive hypothesis, the communication cost of each
execution is higher than (n/8) · log(n/2) = (n/8) · (log(n)− 1)

Let us now arrange A and B in a line, as shown in fig. 4.2, and consider
an execution of the convex consensus algorithm in which all messages going
through the junction are delayed until A and B reach a silent state. It is easy

Figure 4.2: Junction of lines A and B

to see that, in this scenario, A and B follow executions α and β respectively,
with an overall communication cost of 2 · n/8 · (log(n) − 1). The delayed
messages are then delivered.

If more than n/4− 1 messages are generated at this point, we reach the
contradiction that we sought. Let us therefore assume that at most n/4− 1
messages are generated. This means that information about the junction
does not reach either the midpoint of A or the midpoint of B and does not
propagate beyond either. All nodes before the midpoint of A and after the
midpoint of B are unaware of (and therefore unaffected by) the junction. Yet
the nodes reach an agreement.

The same holds if we join B and C, C and D or D and A.
Let us now join A, B, C and D in a ring, as shown in fig. 4.3.
Let us consider an asynchronous execution of the consensus algorithm in

which all messages at the junctions are delayed until the four segments have
run through α, β, γ and δ. Then the delayed messages are delivered. We
wish to show that, for an appropriate choice of the initial data, the consensus
space reduces to the empty set.

We showed that information carried by the delayed messages across the
junction of two segments does not travel beyond the midpoint of each involved
segment. Therefore the network follows the same evolution as the disjoint
segments AB, BC, CD and DA and each node agrees on the same value as
in the disjoint segments scenario.

We now call kA the set of initial values of nodes in A, kB the set of
initial values of nodes in B and so on. Let us choose initial values so that
kAi < kBj < kCl < kDm ∀i, j, l,m, as shown in fig. 4.4. Now, k̄ must lie in
Hull(ki). For the aforementioned initial values, it must lie in at most two
among Hull(kA, kB), Hull(kB, kC) and Hull(kC , kD), since the intersection of

4.2 A lower bound on communication complexity 47

Figure 4.3: Four lines of automata arranged in a ring

Figure 4.4: Distribution of initial values

all three is the empty set.

Let us assume that k̄ lies in Hull(kA, kB) ∩ Hull(kB, kC). Now, let us
choose a new set of initial values kA′ for nodes in A such that kA′i ≥ KDj ∀i, j.
Nodes belonging to C are unaware of the initial values of nodes in A: they
therefore choose the same k̄. All other nodes have to agree. Yet k̄ can not
belong to the part of Hull(kA, kB) that is not a part of Hull(kB, kC): therefore
k̄ ∈ Hull(kB, kC).

Let us now substitute kB with kB′′ such that kB′′i ≥ KA′j ∀i, j. Nodes
in D are unaware of this change: they will pick the same k̄ as before. Yet
Hull(kB, kC) \ Hull(kC) does not belong to the hull of the new values k′′i
anymore: therefore k̄ ∈ Hull(kC).

Finally, let us substitute kC with kC′′′ such that kC′′′i ≥ kB′′j∀i, j. Nodes
in A are unaware of this substitution and pick k̄ again. Yet Hull(kC) does
not belong to Hull(ki′′′) anymore: the consensus algorithm fails and a con-
tradiction is obtained.

If the initial k̄ belongs to Hull(kB, kC) ∩ Hull(kC , kD), the same proof

48 Fundamental limitations

holds substituting progressively smaller initial values in D, C and B respec-
tively.

The next lemma present a lower bound for the growth order of commu-
nication complexity.

Lemma 4.2.4 (Lower bound for communication complexity). Let G be the
set of all graphs with node set V , then CC(P,G) ∈ Ω(n log n).

Proof. Consider an execution of the algorithm on a ring in which all messages
passing through a given communication channel are delayed until the rest of
the network becomes silent. Lemma 4.2.3 shows that at least n/4 log(n)
messages are required to reach consensus on this network.

We are now in a position to characterize the growth order for communi-
cation complexity.

Lemma 4.2.5 (Lower bound on the order of growth of communication com-
plexity). Let G be the set of all graphs with node set V . The communica-
tion complexity of the convex consensus problem is Ω(n log n + |E|), i.e.,
CC(P,G) ∈ Ω(n log n+ |E|).

Proof. Lemma 4.2.1 shows that CC(P, (G)) = Ω(|E|); Lemma 4.2.4 shows
that CC(P, (G)) = Ω(n log n). The claim follows.

Theorem 4.2.6 (Order of growth for communication complexity). Let G be
the set of all graphs with node set V . The communication complexity of the
convex consensus problem is Θ(n log n + |E|), i.e., CC(P,G) ∈ Θ(n log n +
|E|).

Proof. We show that there exists an algorithm a ∈ A such that

sup
G∈G

sup
k∈K

sup
α∈F(a,k)

M(a, k, α,G) = CC(P,G)

The GHS algorithm achieves a communication complexity of O(n log n+
|E|) [40].Therefore the GHS algorithm achieves the lower bound on commu-
nication complexity.

Time complexity The time complexity of the GHS algorithm isO(n log n)
[40]. An improved version of the GHS algorithm, proposed by Awerbuch,
achieves O(n) time complexity [7]. Once a rooted tree has been established,
the root can contact all nodes in O(n) rounds using the tree, receive their
replies in O(n) more rounds, compute the consensus function and inform all
nodes in further O(n) rounds.

4.3 A lower bound on byte complexity 49

Byte complexity The GHS algorithm exchanges messages of sizeO(log n):
messages contain at most a constant number of UIDs. The byte complexity
of GHS is therefore O[(n log n + |E|) log n]. If the consensus function is hi-
erarchically computable, convergecasting information to the leader requires
n messages with payload size b, where b is the number of bytes required to
store one agent’s opinion.

One-time complexity and recurring complexity The GHS algorithm
requires O(n log n+ |E|) messages to build a rooted minimum spanning tree
on the network. Once a tree has been established, further rounds of consensus
can be completed with just 2n messages each.

Resilience The GHS algorithm exploits a tree to convergecast information
to a leader. Trees are inherently fragile: a single failure of a branch of the
tree is enough to disrupt the algorithm, even on a fully connected network,
and a spanning tree has n − 1 single points of failure. Strategies can be
devised to reconnect the tree without rebuilding it from scratch: we discuss
one such strategy in Chapter 5. The time to rebuild a tree after a failure,
however, may be significant: the strategy we propose requires up to n time
steps before normal operations can resume.

4.3 A lower bound on byte complexity

In Section 4.2 we show that the communication complexity of the convex
consensus problem is CC(P,G) ∈ Θ(n log n + |E|). It follows that the byte
complexity of convex consensus has at least the same order of growth, cor-
responding to constant message size.

BC(P,G) ∈ Ω(n log n+ |E|)

In wireless communication protocols it is natural to append unique sender
and receiver identifier to all messages: this ensures that a message is not
misdelivered or misidentified in case multiple agents are physically aligned.
The unique receiver identifier may be the receiver’s UID or a local identifier;
in both cases, it must lie in the [1, n] range, since agents may have up to
n− 1 neighbors. Storing a value in [1, n] requires at least log n bits.

As a result, if the communication protocol requires specifying the sender
or the receiver’s ID, the size of any message is Ω(log n). The following Lemma
follows:

50 Fundamental limitations

Lemma 4.3.1 (Lower bound on the order of growth of byte complexity).
Let G be the set of all graphs with node set V . If the communication protocol
requires that all messages carry a sender or a receiver ID, the byte complexity
of the convex consensus problem is Ω[(n log n + |E|) log n], i.e., BC(P,G) ∈
Ω[(n log n+ |E|) log n].

Proof. By Lemma 4.2.5, the communication complexity of any convex con-
sensus algorithm is O(n log n+ |E|). Furthermore, log n bits are required to
store a unique ID in the [1, n] range. The claim follows.

Next we show that the bound presented in Lemma 4.3.1 is tight.

Theorem 4.3.2 (Order of growth for byte complexity). Let G be the set of
all graphs with node set V . If the communication protocol requires that all
messages carry a receiver ID, the byte complexity of the convex consensus
problem is Θ[(n log n+ |E|) log n], i.e., BC(P,G) ∈ Θ[(n log n+ |E|) log n].

Proof. We show that there exists an algorithm a ∈ A such that

sup
G∈G

sup
k∈K

sup
α∈F(a,k)

B(a, k, α,G) = CC(P,G)

The GHS algorithm achieves a byte complexity of O[(n log n+ |E|) log n]
(sec. 4.2).Therefore the GHS algorithm reaches the lower bound on byte
complexity.

Table 4.1: Time, message and byte complexity of a time-optimal and a message-byte-
optimal algorithm

Time Message Byte
Flooding O(Diam(G)) O(Diam(G)|E|) O(|E|nb)

GHS O(n log n) O(n log n+ |E|) O[(n log n+ |E|) log n]

4.4 Conclusion

In this chapter, we prove three lower bounds on the time, message and byte
complexity of convex consensus on multi-agent networks. The lower bound on
time is unconditional; the lower bound on the number of messages requires
the consensus function to be convex (as discussed in Chapter 3) and the
bound on byte complexity holds under the further assumption that agents
attach their or their destination’s unique ID to messages.

4.4 Conclusion 51

These bounds are tight: we show that a simple flooding algorithm achieves
optimal time complexity, while the well-known GHS MST construction algo-
rithm is message and byte-optimal.
The time-optimal flooding algorithm is also resilient to failures: on the other
hand, its message and byte complexity are extremely high.
The message-optimal GHS algorithm has comparatively good time complex-
ity. Its resilience, on the other hand, is questionable: it sports n − 1 single
points of failure, even on a fully connected network.

These results are dissatisfying: typical space exploration applications of-
ten require a combination of low energy complexity and high resilience, pos-
sibly coupled with requirements about the convergence time if a time-varying
quantity is being observed. Neither flooding nor GHS are therefore gener-
ally suitable to reach agreement on networks of robotic rovers, hoppers or
penetrators.

It is natural to wonder whether it is possible to find a compromise between
these conflicting metrics, trading time complexity for message complexity and
message complexity for resilience. The next chapter introduces an algorithm
that achieves these goals.

52 Fundamental limitations

Chapter 5

An hybrid algorithm for
distributed consensus in
presence of sporadic failures

In Chapter 4, we discussed fundamental limitations of distributed consen-
sus on cyber-physical networks, introduced a message-optimal and a time-
optimal algorithm and explored the role of link failures. In Chapter 3, we
presented the importance of hybrid metrics in space exploration applications.

Here we introduce a tunable algorithm that seamlessly moves from time-
optimal to message-optimal behavior according to a user-defined parameter.
The algorithm allows to trade time complexity for energy complexity and
energy complexity for resilience; its worst-case performance is in no case
worse than the byte complexity of flooding and the time complexity of MST;
its average-case complexity on random geometric graphs, explored through
numerical simulation in the next chapter, is significantly better than either.

In Sections 5.1 and 5.2 we discuss the inspiration for the algorithm and
sketch its high-level structure; in Section 5.3 we explore the details of each
phase and prove its correctness, while we prove performance properties in
Section 5.4. Section 5.5 gives a physical interpretation for the algorithm’s
structure and discusses ways of choosing the tuning parameter; finally, in
Section 5.6 we explore analytical performance of the algorithm on select
network topologies.

5.1 Inspiration

The structure of the algorithm is inspired by the Gamma synchronizer pro-
posed by B. Awerbuch [8]. The purpose of the Gamma synchronizer is to

54 An hybrid algorithm

establish logical time in an asynchronous network: to this end, each node
delays a transition until it is sure that all other nodes have caught up. More
formally, each node outputs an acknowledgement (ok) after performing a
transition and waits for an authorization (go) before proceeding any further.
This behavior can be implemented in many ways, e.g. by explicitly contact-
ing all neighbors or by exploiting an existing hierarchical tree structure.

Awerbuch’s Gamma algorithm assumes the existence of a forest of m
trees (also called clusters). Once a node in a tree has performed a transition
and is sure that all children have done the same, it sends ok to its father.
When a root learns that descendants have performed the transition, it sends
ok to neighbor trees: to this end, it asks all nodes in the tree to forward the
ok message to neighbors outside the tree.

When a node receives a message from another tree, it forwards it up the
tree until it reaches the root. Once the root is sure that all neighbor clusters
are ok, it sends go to nodes in the tree, who proceed to the next transition.

We refer the reader to Awerbuch [8] and Lynch [63] for details.

16.4. SAFE SYNCHRONIZER IMPLEMENTATIONS 549

at the top. Algorithm Gamma uses a version of Beta to synchronize
within each of the k-node trees, and a version of Alpha to synchronize
among the p trees.

Since Gamma is a combination of two algorithms, we begin with a high-
level decomposition of SafeSynch into two kinds of automata, which we call
ClusterSynch and ForestSynch automata. There is a ClusterSynchk automaton
for each cluster Ck, and a single ForestSynch automaton. See Figure 16.6 for the
architecture.

~ . . .

/ '
Cluster 9 9 .

ForestSynch

F i g u r e 16.6" Decomposition of SafeSynch into ClusterSynch and ForestSynch au-
tomata.

For each cluster Ck and any round r, the automaton ClusterSynchk has two
jobs. First, after it receives oki inputs for all nodes i in Ck, it outputs a single
cluster-okk to ForestSynch. And second (in a completely independent task), after
a cluster-gok input arrives from ForestSynch, ClusterSynchk produces a go~ for
each node i in Ck. This combination of jobs is a lot like the activities of Beta.
Written as an abstract automaton:

Figure 5.1: Gamma synchronizer implementation with I-O automata (from [63, fig.
16.6])

5.2 The high-level structure 55

5.2 The high-level structure

Our algorithm has a similar structure.
First, it builds a forest of minimum weight trees (shown in fig. 5.2a) of

height O(n/m). The value of m is the algorithm’s tuning parameter.
Once a tree is in place, the root collects information from its descendants.
Each tree then establishes a certain number of connections with neighbor
clusters, as shown in fig. 5.2b. Clusters flood information across these con-
nections until they have heard from all others, as shown in fig. 5.2c.

If a link failure breaks one of the trees (as in fig. 5.2d), the two halves
evaluate their size and, if it is below a certain threshold, they join another
cluster. They then inform neighbor clusters, who update their inter-cluster
routing tables.

(a) Phase 1 and 2: forest building (b) Phase 3: establishment of inter-
cluster links

(c) Phase 4: inter-cluster flooding (d) Phase F: recovery from failure

Figure 5.2: Schematic representation of the algorithm behavior

56 An hybrid algorithm

5.3 The details

5.3.1 Phase 1: tree building

In Phase 1, all nodes run a modified version of the GHS algorithm [40].
The GHS algorithm builds a minimum spanning tree in stages: it grows a

forest of minimum weight trees by incrementally merging clusters until they
span the entire network. At each stage, every node in a cluster identifies its
minimum weight outgoing edge and relays this information to the root: the
root identifies the cluster ’s minimum weight outgoing edge and adds it to
the tree structure, rejoining the cluster across it. The algorithm terminates
when the root is unable to identify a minimum weight outgoing edge because
all nodes belong to the same cluster: it then informs all descendants, who
stop.

We modify GHS’s stopping criterion. At each stage, the root keeps track
of the number of nodes in its cluster: when the cluster size exceeds bn/mc,
the root stops the tree-building phase and informs its descendants.

At this point, other smaller groups may try and join the cluster: they
are allowed to do so immediately, at which point they inherit the cluster’s
identity and they are notified that the tree-building phase is complete.

When a node discovers that Phase 1 is over, it contacts all neighbors,
excluding its father and children, to inquire whether they are done. When
all have replied, it switches to Phase 2.

Correctness

Lemma 5.3.1 (Minimum weight tree structure). At the end of Phase 1, each
cluster is a tree and only contains edges belonging to the graph’s minimum
spanning tree.

Proof. The claims follows from correctness of Awerbuch’s algorithm, which
eventually produces a minimum spanning tree, and from the observation that
the algorithm never removes edges. Therefore a) at no point in time does any
of the cluster contain a cycle and b) at any given time, only edges belonging
to the graph’s MST are present in any of the clusters.

Lemma 5.3.2 (Cluster size). At the end of Phase 1, all clusters contain at
least bn/mc nodes.

Proof. The algorithm only terminates if either the size of the cluster is larger
than bn/mc or there are no outgoing edges left. In the latter case, the cluster
includes all nodes: its size is n.

5.3 The details 57

Lemma 5.3.3 (Participation). All nodes eventually join a cluster.

Proof. Once a node wakes up, it declares itself root of an unary tree and
executes the algorithm until either the size of the cluster is greater than or
equal to bn/mc or there are no outgoing edges left.

Nodes wake up either spontaneously or when they receive a message from
another node. At the end of Phase 1, each node contacts all of its neighbors
(except its father and children, who are known to be awake). The network is
connected: it follows that, as long as at one agent wakes up spontaneously,
all agents are eventually contacted and therefore wake up.

Lemma 5.3.4 (Termination of Ph. 1). All nodes are eventually informed of
the end of Phase I.

Proof. The algorithm terminates when the size of a cluster is greater than
or equal to bn/mc. When this happens, the root of the cluster informs all
its offspring.

Until then, each cluster at least doubles it size at each stage unless all
nodes belong to the same cluster [7, 40]. Cluster size therefore monotonically
increases until it exceeds bn/mc.

Cluster size and height Trees thus obtained are guaranteed to be strictly
larger than bn/mc. Yet this is not sufficient: we wish to bound the num-
ber of clusters and the height of each tree. Despite being a good heuristic,
the stopping criterion does not offer worst-case guarantees: certain network
topologies and weight distributions can give rise to a single tree spanning the
whole network.

Example 5.3.5 (Phase 1 may give rise to a single spanning tree). Let us
consider a fully connected network G(V,E). The weight wij of the edge
connecting nodes i and j is

wij =

{
1 if j = i+ 1
1 + ε otherwise

with ε > 0. It is trivial to see that an edge belongs to the MST of the graph if
and only if its weight is one; the resulting spanning tree has diameter n− 1,
whereas the original network has diameter one.

5.3.2 Phase 2

Overview In Phase 2, we bound the height of each tree by splitting over-
grown clusters.

58 An hybrid algorithm

This phase of the algorithm starts at the leaves of each tree. From there,
it counts the number of descendants of each agent moving up towards the
root; when an agent discovers that it has more than bn/mc offspring, it
declares itself a root and cuts the connection with its father. This may
leave the last tree, containing the original root, with too few nodes: the root
can therefore undo one cut to guarantee that all clusters contain at least a
minimum number of nodes.

Detailed structure Before executing Phase 2 of the algorithm, each node
waits to be sure that all neighbors (excluding his father and children) are in
Phase 2.

Leaves (childless nodes) then send a message to their fathers. The algo-
rithm proceeds recursively from here: once a node has heard from all of its
children and made sure that all neighbors are in Phase 2, it computes the
number of its offspring by adding its children’s offspring to the number of its
own children. It then sends this information to its father.

If a node learns that it has more than bn/mc offspring, it cuts the con-
nection with its father after letting him know and tentatively declares itself
a root (but waits to notify its offspring). The estranged father makes a local
note of this. Information about the cut which removed the least number of
children (i.e. the new root UID, the estranged father’s UID and the number
of removed children) is relayed towards the root during the counting process.

The procedure eventually reaches the cluster’s original root. If the num-
ber of remaining offspring is higher than a lower bound t < n/m, t =
Θ(n/m), the root switches to Phase 3 and informs its offspring. These,
in turn, inform removed children that the cuts survive and switch to Phase
3. Removed children (now bona fide roots) do the same with their offspring.
Each child records the UID of its tree’s root, which is used as the cluster’s
identifier.

If the root is unhappy with the size of its mutilated tree, it asks its
offspring to undo the cut that removed the least number of children (identified
by the UIDs of father and child), then switches to Phase 3. The estranged
father asks the removed child to rejoin him and switches to Phase 3; the child
notifies its offspring; all other nodes behave as in the previous case.

Correctness

Lemma 5.3.6 (Cluster height). At the end of Phase 2, trees all have height
lower than (bn/mc+ t) + 2 = Θ(n/m).

Proof. It is easy to see that the procedure outlined in the previous paragraphs
correctly counts the number of descendants of each node as long as cuts are

5.3 The details 59

not mended. When a node’s offspring exceed bn/mc, the node cuts the
connection with its father: all children of a node therefore have fewer than
bn/mc offspring. The height of a tree is upper-bounded by the number of
nodes in the tree: the height of any tree before cuts are mended is therefore
lower than bn/mc+1.

A cut can only be mended if the root agent determines that it has fewer
than t offspring. The mending procedure joins a tree counting fewer than
t + 1 nodes to a tree of height lower than bn/mc+ 1: the resulting tree is no
taller than t + bn/mc+ 2

Lemma 5.3.7 (Number of clusters). At the end of Phase 2, there are at
most n/t = O(m) clusters.

Proof. The splitting procedure guarantees that all trees but one per original
cluster are larger than bn/mc. If the remaining tree is smaller than t, it
rejoins another cluster, resulting in a tree larger than n/m > t. Therefore
no tree can be smaller than t. It follows that, at the end of Phase 2, there
are no more than (n/t) trees.
Furthermore, t = Θ(n/m): therefore the number of trees is O(n/t) = O(m).

Lemma 5.3.8 (Termination of Ph. 2). All nodes are eventually notified of
the end of Phase 2

Proof. In Phase 2, each node sends a message to its father, either to inform
it of the number of children or to cut the connection, as soon as it has heard
from all children and all neighbors are in Phase 2. All nodes eventually enter
Phase 2 by Lemma 5.3.4: the algorithm therefore behaves like a convergecast
[63, par. 15.3] and reaches the root.

Then each father, starting from the root, contacts all children to a) an-
nounce the Cluster ID, b) confirm that a cut survives or c) ask to undo it.
All three messages cause the child to switch to Phase 3. For termination
purposes, the algorithm is therefore a simple broadcast and terminates by
[63, par 15.3].

5.3.3 Phase 3

In Phase 3, nodes explore inter-cluster connections and build internal routing
tables.

Overview When a node switches to Phase 3, it contacts all neighbors
except for its father and children, inquiring about their cluster ID. Upon

60 An hybrid algorithm

reception of an inquiry, a node replies as soon as it enters Phase 3 (and is
therefore sure of its cluster ID).

Information is then covergecast on the tree, starting from the leaves: each
node informs the father of which clusters it is connected to (either directly
or through its children) and how many connections per cluster are available.
When the root receives the information, it switches to Phase 4.

Detailed structure Each node waits until it has heard from all children
(if any) and all neighbors before informing its father.

Nodes maintain two local routing tables: one (the neighbor routing table),
relates non-tree neighbors and their cluster, whereas the other (the children
routing table) records which clusters each child is connected to (directly
or indirectly) and how many connections are available per cluster. When
informing its father, a node only denotes which clusters it is connected to and
how many connections are available, making no distinction between direct
and children-mediated connections.

Correctness

Lemma 5.3.9 (Termination of Ph. 3). Each node is eventually informed
of the correct number of neighbor clusters connected either to it or to its
offspring;

Proof. Consider an execution α of the algorithm where a) no node contacts
its neighbors until all nodes are in Phase 3 and b) the convergecast of routing
information does not start until all nodes have learned their direct neighbors’
ClusterIDs.

It is easy to see that any execution of Phase 3 of the algorithm is similar
to execution α: two rounds after the last node enters Phase 3, the neighbor
routing table of each node is identical to α’s in any execution; moreover, r+2
rounds after the last node enters Phase 3, the children routing table of any
node closer than r to the farthest leave among their offspring is identical to
α’s in any execution.

The correctness of execution α is easy to verify: discovery of neighbors’
Cluster IDs is trivial if all nodes are in Phase 3 and correctness of children
routing tables follows from correctness of the convergecast algorithm [63, par.
15.3].

5.3.4 Phase 4

In Phase 4, cluster roots communicate with each other through the connec-
tions discovered in the previous stage.

5.3 The details 61

Overview Conceptually, this phase of the algorithm is simply flooding
across clusters. Each root sends a message containing its cluster’s informa-
tion to each of its neighbor trees through the connections built in Phase
3. Each message is replicated a few times as a protection against link fail-
ures. When a root learns new information, it forwards it once to its neighbor
clusters (sender excluded) via the same mechanism.

Detailed structure The root of each tree generates a message for each of
its neighbor clusters with its cluster’s piece of information. Each message is
replicated k times, where k is a user-defined parameter. The root then sends
as many copies of each message as is possible through its direct connections,
stored in its local neighbor routing table. Unsent copies of the message are
distributed to children proportionally to the number of links available, stored
in the children routing table.

Children do the same: when required to forward a message to a cluster,
they send as many copies as possible through their direct connections and
divide the rest among their own children according to the number of links
available.

When a node receives a message for its cluster, it checks whether it has
already received this information, either from a non-cluster neighbor or from
a child. If this is not the case, it just forwards the message up the tree;
otherwise, it discards the information. The first time the root hears new
information, it broadcasts it to neighbor clusters via the same mechanism as
above, generating and forwarding k copies of a new message with the new
information and the origin cluster’s ID.

Roots include the number of their children in their cluster’s information.
When a root has heard from n− t + 1 nodes, it terminates: after forwarding
new information one last time, it computes the consensus value and informs
it offspring.

Correctness

Lemma 5.3.10 (Diffusion of information). In absence of failures, all clusters
eventually hear from each other

Proof. Let us abstract Phase 4 by building a network Gc containing one
node for each of the existing clusters in G. Nodes in Gc are connected if the
corresponding clusters are “neighbors”, as discovered in Phase 3.

Now, thanks to the correctness of the routing tables (Lemma 5.3.9) Phase
4 of the algorithm reduces to flooding on Gc, whose correctness follows from
[63, par. 4.1].

62 An hybrid algorithm

Lemma 5.3.11 (Termination of Phase 4). Phase 4 of the algorithm eventu-
ally terminates.

Proof. By Lemma 5.3.10, the roots of all cluster eventually hear from each
other. By Lemma 5.3.7, no tree is smaller than t. Messages from one cluster
to another carry the number of nodes in the cluster at the time of dispatch:
It follows that, once a tree has heard from n−t+1 nodes, it must have heard
from all clusters.

5.3.5 Phase F (recovery from in-tree failure)

Overview A failure within one of the clusters formed in Phase 1 and 2
splits the cluster in two. If either of the two halves is too small, it initiates
a search for its minimum weight outgoing edge and rejoins the cluster across
it; a splitting procedure guarantees that tree height stays bounded. After
the failure, all nodes in the affected cluster contact their neighbors to update
their routing tables.

Detailed structure Upon being notified of a severed connection with a
child, a node notifies its root. Conversely, upon being notified of a severed
connection with its father, a node declares itself a root. If either root has
fewer than t offspring, it sends them a unique cut identifier and initiates
a search for the cluster’s minimum weight outgoing edge. If the number of
offspring is high enough, the root just sends offspring the cut identifier, which
includes the old cluster ID, the IDs of the two nodes immediately upstream
and downstream of the cut and a local timestamp1.

The presence of a failure complicates the search for a minimum weight
outgoing edge: nodes downstream of the cut, who receive a new Cluster ID,
may mistakenly accept a connection with a node in the same cluster if they
do not know about the cut yet. To avoid this, nodes disclose the unique
cut identifier when looking for the minimum weight outgoing edge: if a node
sports the old Cluster ID but does not hold the cut identifier, it delays the
reply until it is informed of the cut by its father.

Once a small cluster finds its minimum weight outgoing edge, it rejoins
the cluster on the other side. A splitting procedure, akin to the one outlined
in Phase 2, is then initiated to maintain tree height bounded. The procedure
is initiated by the node rejoining the cluster and proceeds up to the root:
nodes outside this path see no change in the number of their offspring and
are therefore unaffected.

1No global time is assumed to exist. On the other hand, neighbors are assumed to share
a local partial ordering of time, e.g. based on the number of messages they exchanged.

5.3 The details 63

As nodes learn their final Cluster ID, either at the end of the splitting
procedure or because the post-failure cluster is large enough, they inform all
non-cluster neighbors. Neighbors, in turn, update their routing tables and
inform their fathers, as in Phase 3. When an unaffected node is contacted by
a non-cluster neighbor, it does not immediately notify its father, since this
may lead to many expensive incremental updates: the node waits to hear
from all offspring who were connected to the affected cluster (recorded in the
children routing table) before sending an update. This way, routing tables
are updated in a convergecast.

When a root learns about a variation in the topology of neighbor clusters
(either because a new cluster is formed or because the number of connections
to an existing cluster decreases) it crafts a message with all information it
holds and sends it to the updated clusters as in Phase 4. The roots of clusters
born or modified because of the cut collect information from their children
and craft messages for all their neighbors, too.

Correctness

Lemma 5.3.12 (Cluster height). At the end of Phase F, trees all have height
lower than (bn/mc+ t + 2) = Θ(n/m).

Proof. The proof is identical to Lemma 5.3.6’s and follows from correctness
of the splitting procedure.

Lemma 5.3.13 (Number of clusters). At the end of Phase F, there are at
most n/t = O(m) clusters.

Proof. The proof is identical to Lemma 5.3.7 and follows from the lower
bound imposed by the splitting procedure on the size of each tree.

Lemma 5.3.14. All nodes in the tree affected by the cut eventually learn
about the cut

Proof. Nodes below the failure are informed of the cut via a simple broadcast.
The node above the cut informs its father, who does the same until the
message reaches the root. The root then proceeds with a broadcast. The
lemma therefore follows from the correctness of broadcast.

Lemma 5.3.15 (Inter-cluster connections). Each node is eventually informed
of the correct number of neighbor clusters connected to it either directly or
through its offspring.

64 An hybrid algorithm

Proof. Before a failure occurs, routing tables are correct by Lemma 5.3.9.
When a failure occurs, nodes in the affected cluster are informed by Lemma
5.3.14. Once informed, nodes in the affected cluster contact all their neigh-
bors at once. These, in turn, update their routing tables with a convergecast.
Nodes formerly belonging to the broken cluster rebuild their routing tables
ex novo: the correctness of the procedure follows from Lemma 5.3.9.

5.3.6 Phase OF (recovery from out-of-tree failure)

When a link outside a tree fails, nodes on the two sides of the failure up-
date their routing tables and notify their fathers, who do the same until the
information reaches the root.

Note that up to k − 1 simultaneous, adversarial failures can occur while
the algorithm updates its routing tables without disrupting cluster flooding:
routing within the trees distributes messages proportionally to the number of
available links so that, even if a node is unable to forward a message because
it is no more connected to a cluster, other nodes in different branches will be
able to do so.

Correctness

Lemma 5.3.16 (Termination of Ph. OF). At the end of Phase OF, all
nodes’ routing tables are correct.

Proof. The proof is identical to that of Lemma 5.3.9.

Lemma 5.3.17 (Resilience to inter-cluster failures). Phase 4 of the algo-
rithm correctly terminates even in presence of k−1 simultaneous adversarial
failures.

Proof. Phase 4’s routing strategy ensures that, if two clusters are connected
by at least k edges, any message among the two clusters will be sent across k
distinct edges. Up to k − 1 failures of inter-cluster links can therefore occur
without invalidating the similarity between Phase 4 and flooding outlined in
Lemma 5.3.10.

5.4 Complexity analysis

The overall time and message complexity of the algorithm are reported in
table 5.1.

5.4 Complexity analysis 65

Phase 1

Time complexity The GHS algorithm proceeds in stages, each requiring
at most O(n) rounds. At each phase, the size of the smaller cluster at least
doubles. Phase 1 terminates when every cluster is larger than n/m: its time
complexity is therefore upper-bounded by (n log n/m).

Message complexity and size At each stage, communications within
the clusters require O(n) messages. Furthermore, 2n test-accept messages
are sent at each stage: each node accepts exactly one connection. Each edge
is also rejected once during the algorithm. The overall message complexity
of the algorithm is therefore O(n log n/m+ |E|). Messages carry one cluster
ID at most: their size is upper-bounded by log n.

Phase 2

Message complexity and size Each non root node sends exactly one
message to its father, either to notify it of the number of its children or to
sever the connection. It receives exactly one message to notify that Phase
2 is over, authorize a cut or revert it. The message complexity is therefore
upper bounded by 2n.

Each upstream message contains the number of offspring of a node. Down-
stream messages contain a cluster ID (typically the root node’s UID) and may
also identify a cut to be restored by carrying two extra UIDs. Both the num-
ber of offspring and the nodes’ UIDs can be represented in any reasonable
encoding format with log n bytes. The message size in Phase 2 is therefore
upper-bounded by 3 log n.

Time complexity The algorithm proceeds from the leaves of the trees
formed in Phase 1 to their roots and vice versa, akin to a convergecast fol-
lowed by a broadcast. The time complexity is therefore upper-bounded by
twice the height of the trees formed in Phase 1, which is itself upper bounded
by 2n.

Phase 3

Message complexity and size Each non-tree edge is crossed by two mes-
sages: an inquiry about the cluster ID and a reply. Each edge belonging to
a tree is charged with one convergecast messages. The overall message com-
plexity is therefore upper bounded by 2(|E| − n) (inter-cluster) + n (intra-
cluster).

66 An hybrid algorithm

Inquiries on non-tree edges have constant size and replies, which carry
a cluster’s ID, have size log n. Messages relayed over the tree carry the
number of connections with each neighbor cluster: their size is therefore
upper bounded by m log n. The byte complexity of Phase 3 is O(2(|E| −
n) log n+ nm log n).

Time complexity Once all nodes are in Phase 3, nodes discover their
neighbors’ clusters in two rounds at most: in the first round inquiries are
sent on all non root-channels, in the second round replies are collected. The
subsequent convergecast requires as many steps as the height of the tree,
which is upper bounded by bn/mc+ t. The overall time complexity is there-
fore O(bn/mc+ t + 2) = O(n/m).

Phase 4

Time complexity Let us abstract Phase 4 by building an artificial net-
work Gc composed of O(m) nodes, each corresponding to one of the existing
clusters in G and labeled accordingly. Nodes in Gc are connected if at least
one edge exists between the corresponding clusters in G. Let us also define
a stage time complexity as the time required for information to travel from
the root of one cluster to the root of its neighbor.

Phase 4 is simply flooding on Gc: the algorithm is therefore guaranteed
to terminate in Diam(Gc) stages. Note that Diam(Gc) = O(Diam(G)) and
Diam(Gc) = O(m)

Now, the time complexity of one stage is upper bounded by 2(bn/mc+t)+
1: in each stage, information travels away from the root across the cluster,
then hops from a cluster to the next and is finally convergecast to the root.

The overall time complexity of Phase 4 is therefore Diam(Gc)(2(bn/mc+
t) + 1)=O(Diam(G)(n/m)).

Message complexity and size In absence of failures, each of the O(n)
edges belonging to a tree is crossed by information about one cluster at most
twice: once when the cluster learns about the information, once when infor-
mation is relayed to neighbors. The overall byte complexity of intra-cluster
messages in Phase 4 is therefore upper-bounded by (2mn log n): information
about each of the m clusters is stored in log n bits.

Each of the k|Ec| inter-cluster connections is also crossed by informa-
tion about each cluster once: clusters send new information once after they
receive it. The associated byte complexity is (k|Ec|m log n). The overall
byte complexity is therefore O(m(n + k|Ec|) log n). Note that, if nodes are

5.4 Complexity analysis 67

reaching consensus on a locally computable function of the initial states2, the
size of inter-cluster messages is reduced by a factor of m: information about
several clusters can be relayed in log n bits even in absence of a hierarchical
structure.

Messages can be as small as log n if they carry information about a sin-
gle cluster; larger message may contain multiple cluster’s opinions of the
consensus value. The worst-case message complexity is upper-bounded by
(2mn+ k|Ec|m).

Phase F (recovery from in-tree failure)

Time complexity All nodes within a tree are informed of a link failure
within 2(bn/mc+t) rounds of the failure. The node downstream of the failure
broadcasts the information to its offspring directly, whereas the upstream
node informs the root who, in turn, broadcasts information to other nodes.

If a tree is found to be too small, a search for the minimum weight out-
going edge is initiated. Any node can be rejected by O(t) other nodes in the
same group at most; furthermore, the first reply may be delayed by as much
as (bn/mc+ t) as nodes are informed of the cut.

The time complexity of splitting is upper-bounded by twice the height
of the tree, as in Phase 2. In Phase F, the maximum height of a tree is
(bn/mc+ 2t): before the failure, no tree can be taller than (bn/mc+ t) and
only trees smaller than t perform a MWOE search.

Once the tree has been reformed, it updates its neighbors about its cluster
ID and rebuilds internal routing tables. Neighbors update their own routing
tables, too. As in Phase 3, the time complexity is upper bounded by bn/mc+
t + 2 = O(n/m).

Message complexity and size The number of messages required to in-
form all nodes in a broken cluster of a failure is O(n): one message is charged
to each node in the cluster, and cluster size (as opposed to cluster height) has
no nontrivial upper bound. The corresponding byte complexity is O(n log n):
messages carry a unique Cut ID containing two node IDs and one cluster ID.

If a MWOE search is initiated, each of the O(t) nodes is rejected by
at most t − 2 siblings and accepted by one neighbor: O(t2) messages are
exchanged. The subsequent convergecast requires O(t) messages.

The splitting procedure requires up to 2n messages, i.e. twice the size of
a cluster.

2Max and min are examples of locally computable function; for a rigorous definition,
we refer the reader to Section 3.1.1.

68 An hybrid algorithm

Finally, exploring connections with neighbor clusters can require up to
2|E| messages (which dominates the message complexity of Phase F) and
updating routing tables in the broken node and its neighbors requires up to
n messages with a convergecast.

Messages informing nodes of a failure and exploring neighbor clusters
carry a cluster ID and a unique node identifier, which includes two node IDs,
a cluster ID and a timestamp. Nodes unaffected by the failure must update
their routing tables by adding or removing information about three clusters
at most: the original cluster may disappear and its two halves may join two
existing trees. The size of all these messages is therefore O(log n).

On the other hand, clusters containing nodes affected by the failure must
update their routing tables thoroughly: connections to many clusters may
have been lost in the cut and, if nodes join an existing tree, their ancestors
must be notified of newly available connections. Up to n messages of size
m log n may therefore be sent.

If nodes are performing multiple consensus rounds or tracking a time-
varying quantity, no further messages are required: once the routing tables
have been restored, the newly formed clusters just wait until the next round
of consensus. If, on the other hand, consensus on a single, static value is to be
performed, neighbor clusters have to update new or mutilated clusters, who
may have lost messages because of the failure: the corresponding message
complexity is the same as one stage of Phase 4 of the algorithm.

Phase OF (recovery from out-of-tree failure)

Time complexity When an inter-cluster link failure occurs, nodes on both
sides of the failure update their routing table and inform their fathers, who
do the same until the information reaches the root. The associated time
complexity is upper-bounded by the height of a tree, bn/mc+ t = O(n/m).
Note that cluster flooding (Phase 4) does not stop while Phase OF is executed
unless more than k−1 failures occur while routing tables are being updated.

Message complexity and size Each node along the path between the
nodes next to the failure and their roots send exactly one message to its fa-
ther. The overall message complexity is therefore upper bounded by 2(bn/mc+
t) = O(2n/m). Each message carries updated information about one cluster:
message size is therefore O(log n).

5.5 Physical insight and tuning parameters 69

Table 5.1: Time, message and byte complexity of our hybrid algorithm

Time Message Byte
Phase 1 O(n log(n/m)) O(|E|) O(|E| log n)
Phase 2 O(2n) O(2n) O(2n log n)
Phase 3 O(n/m) O(2|E|) O(2|E| log n+ nm log n)
Phase 4 O(Diam(Gc)n/m) O(2mn+ k|Ec|m) O(m(n+ k|Ec|) log n)
Phase F O(n/m) O(|E|) O(|E| log n+ nm log n)

Phase OF O(n/m) O(2n/m) O(2n/m log n)

5.5 Physical insight and tuning parameters

5.5.1 Node clustering and selective redundancy

In our applications, link weight is typically proportional to the cube of the dis-
tance between nodes to represent the transmission power required for error-
free communication. The algorithm builds a forest of minimum weight trees:
qualitatively, nodes are clustered according to their proximity3.

Clusters then build redundant long-range links with neighbor trees. If a
link was not included in a tree in Phase 1, it weighs more than any link within
the tree: Phase 1 iteratively expands a cluster by annexing the minimum
weight outgoing edge. Most inter-cluster links created in Phase 3 therefore
have a longer range than intra-cluster links: the sole exception are links
deleted in Phase 2, which used to belong to a tree structure.

The algorithm links nearby nodes with a lean, nonredundant tree struc-
ture; redundancy (up to k times) is reserved to long range, inter-cluster links.
Our algorithm’s approach trades energy for resilience, consistently with the
hypothesis that long-range links are more susceptible to failure and more
expensive to replace than short-range ones.

5.5.2 Error isolation

Dividing the network in O(m) trees with robust intra-cluster connections
allows to isolate in-tree failures: modulo some (unfortunately expensive)
rewiring of inter-cluster connections, only nodes belonging to a tree need
to be informed of a failure.

A crucual advantage of controlling tree height is the ability to quickly
reconfigure the network topology following a failure. The time complexity

3Rigourously, this is not always true: the exact composition of the clusters depends
nontrivially on the order in which nodes wake up, and Phase 2 splitting is concerned with
tree height as opposed to tree weight.

70 An hybrid algorithm

of Phase F is O(n/m); if a single spanning tree had been employed, up to
O(n) time steps would have been required to inform all nodes of a failure
and safely resume a search for the minimum weight outgoing edge.

5.5.3 Reducing single points of failure

A spanning tree has n − 1 single points of failure: if any link belonging to
the tree fails, an expensive reconfiguration is required. In our algorithm, on
the other hand, n−m edges belong to tree structures: the number of single
points of failure therefore decreases.

5.5.4 Failure frequency

Our algorithm requires O(m/n) time steps to recover from a failure. An
in-tree failure stops Phase 4, since the tree structure is broken, whereas up
to k− 1 inter-cluster failures can be tolerated before routing fails. This gives
insight in a potential driver for the choice of the tuning parameter m: if
the expected time to fail of a short-range link is O(τ) and the MTTF of a
long-range link is O(τ̃), it is advisable to choose m and k so that n/m � τ
and n/(mk)� τ̃ .

5.5.5 Consensus on time-varying parameters

Our algorithm can be used to perform multiple decisions in sequence, a crucial
capability when observing a time-varying quantity. Once the basic structure
of the algorithm is in place, tree roots can collect information from their
offspring at regular intervals4 and issue messages to neighbor clusters.

If the clusters share a global time, inter-cluster messages can be times-
tamped and synchronized: roots can then compute the consensus value at a
predetermined sequence of points in time.

Even in our asynchronous setting, the algorithm guarantees a certain
degree of synchronization. It is easy to show that, if tree roots collect new
opinions from their offspring via a broadcast-convergecast just after they have
reached consensus on the previous reading, our algorithm behaves similarly
to the Gamma synchronizer it takes inspiration from. The synchronizer
guarantees sequencing of readings: collection of a new set of readings or
opinions only begins once every agent has broadcast its previous reading or
manifested its opinion.

4A broadcast-convergecast protocol with a time complexity of O(n/m), a message
complexity of O(n−m) and a byte complexity of O((n−m) log n) is trivial to implement.

5.6 Analytical performance on select network topologies 71

To guarantee reliable tracking, the consensus algorithm should be much
faster than the phenomenon under observation : rigorously, if the character-
istic time of the observed phenomenon is τ̄ , we require [Diam(Gc)n/m]� τ̄ .

5.6 Analytical performance on select network

topologies

In this section, we analytically evaluate the performance of our algorithm on
select network topologies.

As stated in previous chapters, performance of any asynchronous con-
sensus algorithm is strongly influenced by the network topology, the nodes’
wakeup sequence and the distribution of edge weights. The purpose of this
section is not to assess our algorithm’s performance in real-world applica-
tions but rather to demonstrate its mechanisms on simple, intuitive network
topologies. We therefore introduce four simplifying assumptions:

• The network evolves synchronously. Recall that synchronous realiza-
tions of an algorithm are admissible in an asynchronous setting.

• Nodes all wake up at the first round.

• Edge weights are assigned according to a lexicographic (dictionary)
ordering: the weight of each edge is determined by the UIDs of its end
nodes, lowest first.

• Nodes are numbered from 0 to n. In a star structure, node 0 is the core
of the star. In a line structure, node i (i ∈ [2, n − 1]) has neighbors
i− 1 and i+ 1.

5.6.1 Star

0

1

2n

...n-1

Figure 5.3: Star network topology

72 An hybrid algorithm

A star (represented in figure 5.3) is a tree structure with diameter 2. It
is easy to see that, if t > 2, Phase 1 and 2 of the algorithm leave all nodes
in the same tree, which contains all edges in the graph:

• During Round 1, all nodes except from the core (node 0) connect to it,
since they only have it as a neighbor. The core connects to node 1. n
small (O(log n)) messages are exchanged

• In Round 2, nodes 0 and 1 acknowledge each other. Node 1 declares
itself a leader; node 0 silently acknowledges node 1 as its leader and
father and informs all remaining neighbors. n − 2 small messages are
exchanged.

• In round 3, nodes 2 to n join node 1’s group and enter Phase 2. They
immediately start the splitting procedure.

• The splitting procedure reaches Node 1 at Round 5 after n − 1 small
messages. The tree remains as it is.

• The root realizes that all nodes are in the same cluster. It initiates
Phase 3 anyway, so as to collect information from its children.

• Nodes 2 to n enter Phase 3 in Round 7 and immediately contact Node
0. Node 1 receives a function of all other agents’ information through
node 0 in Round 9. 2n − 2 small messages message are exchanged in
rounds 6 through 9.

• Node 0 is informed that the procedure is over in Round 10. Nodes 2 to
n are informed in Round 11. n− 1 small messages are sent.

The overall time complexity is 11 rounds. The message complexity is
6n− 6 small messages.

As a comparison, a flooding algorithm requires two rounds and 2n small
messages during the first round, followed by n−1 large (O(n log n)) messages
sent by node 0 to all neighbors during the second round.

The GHS algorithm requires 3n−3 small messages and four rounds to es-
tablish the tree and verify termination; two rounds and (2n-2) small messages
are required to relay information to the root and n − 1 small messages are
sent over two rounds to inform all nodes of the decision value. Foregoing the
unneeded splitting procedure makes GHS faster than our hybrid algorithm
in this specific configuration.

Any link failure is bound to disconnect the network: Phases F and OF
are therefore not relevant in this case.

5.6 Analytical peformance 73

5.6.2 Line

A line, represented in figure 5.4, is a tree structure with diameter n. Let us
assume for simplicity that n/m is an integer s.

0 1 n-1 n.........

Figure 5.4: Line network topology

• In Round 1, nodes 1 to n connect to their left neighbor. Node 0 connects
to node 1. n small messages are exchanged.

• In Round 2, node 1 declares itself a leader and informs node 2. Node
0 silently acknowledges node 1 as a leader. One small message is sent.

• Rounds 3 through n are devoted to informing nodes 3 to n to switch
to Phase 2. n− 2 small messages are exchanged.

• In Round n, node n finally switches to Phase 2 and start the splitting
procedure, which reaches node 1 at Round 2n−2, after n−2 messages.

• Node 1’s acknowledgement reaches node 0 in round 2n − 1 and node
n in round 3n − 4. n − 1 small messages are sent. The line is now
partitioned in m segments, each of size s, with a leader at its left end
(see fig. 5.5).

R R R

Figure 5.5: Hybrid algorithm: clusters line partition

• Each segment discovers connections to their left and right neighbor
clusters in 2s+2 time steps. Overall, 2n small messages are exchanged.
At Round 3n+2s-2 routing tables are established and cluster roots know
their children’s opinions of the consensus value.

• Cluster roots prepare messages containing their cluster’s opinion and
send it to neighbor segments. Each root (except for the leaders of
the first and last cluster) sends exactly one message directly to its left
neighbor and one message to the cluster to its right through its children.
Both messages reach the neighbor’s root after s rounds. In the process,
2n small messages are exchanged.

74 An hybrid algorithm

• The flooding process goes on for m− 1 flooding stages, each requiring
s rounds. Note that ms = n. Each cluster learns about one or two
clusters from one neighbor at each flooding stage and, unless it is an end
cluster, forwards information to its other neighbor at the next stage.
Overall, each of the m clusters learns about m−1 other clusters exactly
once with an expense of s small messages each. Overall, m(m− 1)s =
n(m− 1) small (O(log n)) messages are exchanged.

• Once every root has learned from all other clusters, it informs its off-
spring. This last step requires s rounds and n−m messages.

Overall, the algorithm has a time complexity of 4n+ 3s−m− 2 rounds and
message complexity of n(m+ 6)−m+ 4 small messages.

A flooding algorithm requires n rounds on the same network. Each node
learns about each other node’s opinion once and forwards it to a neighbor:
overall, n2 small messages are exchanged.

The GHS algorithm requires 2n rounds and 2n − 1 small messages to
establish a tree. A further 2n rounds and 2n− 2 small messages are required
to collect information from the leaves.

Similarly to the previous case, any link failure is bound to disconnect the
network: Phases F and OF are not relevant in this case.

5.6.3 Ring

In absence of failures, our algorithm behaves almost identically on a ring,
shown in fig. 5.6a, and on a line: nodes arrange in a set of segments con-
nected at the tips exactly as in the previous example, then use flooding to
communicate with each other. dm/2e flooding stages are required to com-
plete flooding; each stage lasts s rounds.

Let us now assume a link failure occurs midway through a segment, as
shown in figure 5.6b, at round r. Let us also assume that s/2 < t.

• Node j immediately asks its offspring to look for the minimum weight
outgoing edge; node k informs node i, who learns of the cut at round
r + (s/2)− 1 after (s/2)− 1 small messages.

• Node l receives word of the cut at round r + (s/2)− 1, after (s/2)− 1
messages: it exchanges two messages with the cluster to its left and
receives a reply at round r+(s/2)+1. Node j learns about the cluster’s
sole outgoing edge at round r + s with s/2− 1 messages.

• Node j asks node l to join the cluster; node l complies at round r +
3/2s− 1, after a chain of s/2− 1 messages.

5.6 Analytical peformance 75

R

R

R

R

(a) Ring partition in clusters

i

j

k

l

R

R

R

(b) Link failure within a cluster

Figure 5.6: Ring network topology

• Node l’s neighbor is the root of the adjacent cluster: it immediately
authorizes the merging. Node l rejoins the cluster to its left at round
r + 3/2s+ 1 after an exchange of two messages.

• Node l’s sibling join the cluster to their left in the next s/2− 1 rounds
with s/2 − 1 messages. Node j is the last to join the cluster at round
r + 2s.

• In the meantime, node i asks its offspring to look for an outgoing edge
and contacts the cluster above it at round r + s/2. The cluster above
replies at the next round. Two inter-cluster messages are exchanged.

• After s − 2 messages, at round r + 3/2s − 2 node i’s offspring report
that they have found no outgoing edges . Node i therefore joins the
cluster above it.

• The cluster above node i starts a splitting procedure along the path
between i and the cluster root at the top of the ring. After 2s rounds
and as many messages, node i joins the cluster. Node i’s offspring join
the same cluster in the next s/2 − 1 rounds with s/2 − 1 messages.
Node k is the last to join the cluster at round r + 6s− 3.

• No new clusters appear in routing tables and no new connections are
established: the flooding procedure therefore continues. The leaders of
the trees who harbored nodes i, j, k, l and their siblings collect infor-
mation from all offspring and craft new messages to their neighbors.

76 An hybrid algorithm

The reconfiguration procedure terminates after 6s − 3 rounds; 11/2s + 1
messages are exchanged.

A flooding algorithm does not require any reconfiguration after a failure.
On the other hand, its message complexity on this network topology is O(n2)
regardless of failures.

The GHS algorithm is not designed to reconfigure after a link failure.
On the other hand, any algorithm that tries to reconnect the two halves
of a tree after a failure requires O(n) rounds and O(n) messages just to
inform all nodes of the cut and ask them to look for the new minimum
weight outgoing edge. Our algorithm, on the other hand, achieves a time
complexity of O(n/m) and a message (and byte) complexity of O(n/m) on
this lightweight network topology.

5.6.4 Fully connected network

In absence of link failures and with lexicographic edge ordering, our algorithm
behaves identically on a star and on a fully connected network, shown in fig.
5.7a. Note that, however, a different choice of edge weights (such as the one

0

1

2n

...n-1

(a) Tree structure after Phase 1 and 2

0

1

2n

...n-1

(b) Link failure within the tree structure

Figure 5.7: Fully connected network topology

presented in Example 5.3.5) may lead to the formation of a very tall tree in
Phase 1, which would then be subdivided in compact clusters in Phase 2.

Let us walk through recovery from a failure of the link between agents
0 and 2 in a fully connected network with lexicographic edge ordering, as
shown in fig. 5.7b. The failure occurs at round r.

5.7 Conclusion 77

• At round r, nodes 0 and 2 are notified of the failure. Agent 1, the
cluster leader, is informed by Agent 0 at round r + 1 with one small
message.

• Agent 2’s cluster is too small, with a node count of one. Node 2 there-
fore starts looking for its minimum weight outgoing edge: it contacts
node 1, who receives the message at round r + 1.

• Node 1 is now aware of the failure: it therefore promptly accepts node
2’s request. Node 2 is notified at round r + 2, with one message.

• In parallel, node 1 informs all its offspring of the link failure. Node 0
receives the information at round r + 2 and nodes 3 to n are informed
at round r + 3. Overall, n− 2 small messages are exchanged.

• Node 2 initiates a splitting procedure at round r + 3. The procedure
reaches node 1 at round r + 4 and stops. At round r + 5, node 2 joins
node 1’s cluster for good.

5.7 Conclusion

This chapters presents an hybrid algorithm whose behavior smoothly moves
from time-optimal flooding to message and byte-optimal GHS according to
a user-defined parameter. The algorithm partitions the network in a set of
hierarchically organized clusters: clusters then communicate with each other
with a “flat”, leaderless communication pattern.

Theoretical analysis shows that the worst-case time and byte performance
of our algorithm is intermediate with respect to GHS and flooding.

Time complexity The time complexity of our algorithm is dominated by
Phase 1 and Phase 4.

• Phase 1, which only needs to be executed once, sports time complexity
lower than GHS by O(n logm).

• The time complexity of Phase 4 is worse than flooding’s by a factor of
(n/m). It is also upper-bounded by O(n), since Diam(Gc) = O(m).

• Recovery from a intra-tree failure can be achieved in O(n/m) time
steps. The same failure recovery protocol requires Ω(n) rounds on the
spanning tree built by GHS: all nodes must be informed of a failure
before new edges are added to ensure that no cycles are created.

78 An hybrid algorithm

Message complexity Our algorithm’s message complexity is unspectac-
ular: it is dominated by Phase 4’s O(2mn + k|Ec|m), which can be even
higher than flooding’s. Our algorithm is therefore unsuitable whenever mes-
sage complexity, as opposed to byte complexity, is a good proxy for energy
cost.

The higher message complexity, however, is compensated by significantly
smaller message size: our hybrid algorithm never exchanges messages larger
than m log n, while flooding uses messages as large as n log n. This helps our
algorithm achieve byte complexity significantly lower than flooding’s.

Byte complexity The byte complexity of our algorithm is dominated by
the cost of Phase 4, with O(m(n+ k|Ec|) log n) bytes exchanged.

• Flooding can require as many as O[n|E| log n] bytes: our algorithm’s
byte complexity is lower than flooding’s by a factor of n/(mk) at least.

• our algorithm’s worst-case byte complexity is at least m/ log n times
higher than GHS, which requires O[(n log n+ |E|) log n] bytes.

• The recurring byte cost of consensus on GHS, once a tree has been
established, is O(2n log n): our algorithm, on the other hand, requires
O(m(n + k|Ec|) log n) bytes for each agreement, over m times more
than consensus, even after a structure has been established.

Our hybrid algorithms solves the second problem presented in Chapter 3:
it can be tuned to emulate flooding as well as GHS and it predictably scales
from the former’s behavior to the latter, degrading time performance and
robustness (as measured both by the time required to recover from a failure
and by the number of single points of failure) to reduce byte complexity and
vice versa.

The algorithm is ideal to satisfy hybrid metrics relevant to space explo-
ration applications, where optimal nominal energy consumption typically
doesn’t justify low robustness and bad time performance while, conversely,
extremely high energy consumption can not be accommodated even when it
affords an high degree of robustness and near-instantaneous recovery from
failures.

In this chapter, we analyzed the worst-case complexity of our hybrid
algorithm; it is now natural to wonder whether its advantages with respect
to GHS and flooding also hold true in real-world applications. In the next
chapter, we strive to answer this question by evaluating performance of the
procedure on a real-world space exploration scenario.

Chapter 6

Numerical investigation of a
SSSB sampling scenario

In Chapter 5 we propose an hybrid algorithm that is able to trade time
complexity for byte complexity and byte complexity for resilience; we prove
its worst-case performance properties on generic network topologies, propose
criteria for selection of the tuning parameter and run through the workings
of the algorithm on select simple network topologies.

This chapter is dedicated to exploration of the algorithm’s performance
in a real-world space exploration scenario. We show that the algorithm does
gracefully transition from a flooding-like behavior to a fully hierarchical con-
duct, achieving time and byte complexities bounded by GHS and flooding
respectively. The hybrid algorithm’s consistently performs faster than GHS
and exchanges significantly fewer bits than flooding; different choices of the
tuning parameter lead to behaviors closer to the former or the latter, respec-
tively.

6.1 Sampling of Small Solar System Bodies

Consider the following scenario: a significant number of low-mass, low-cost
battery-powered penetrators are deployed on a small Solar System body,
e.g. Phobos. The penetrators land in different regions, anchor themselves
to the ground and start collecting measurements about its composition. For
simplicity, let us consider a single, scalar measurement, e.g. ground hardness
or temperature: extension of our results to multiple measurements and vector
values is trivial.

Individual measurements are of little interest; furthermore, they may be
noisy and influenced by local conditions (e.g. the presence of rocks). What
interests scientists is a global measure of the body’s average composition

80 SSSB sampling

or temperature over geologically uniform areas. It is therefore pointless to
broadcast readings from every probe back to Earth, wasting precious on-
board power and time on the Deep Space Network: a better approach would
be for agents to filter data and send back the result through one agent. The
same holds true even in presence of an orbiting mothership: the complex and
poorly understood gravity field of SSSBs makes it unadvisable for an orbiter
to approach the body too closely, at least during the initial phases of an
exploration mission (see e.g. Tricarico’s work on the dynamic environment
of Vesta in [111]).

In principle, a hierarchical structure may be established prior to deploy-
ment of the agents on the SSSB. The irregular gravity field of SSSBs, however,
is generally poorly understood1: the dynamics of the deployment phase are
very uncertain and, even in absence of agent failures, any predetermined hi-
erarchical structure may reveal itself to be far from optimal in the light of the
agents’ actual landing positions. It is therefore best for agents to establish a
communication pattern after touchdown.

Once agents have collected their individual measurements, they need to
agree on two issues: what value to send back to Earth (or to the orbiting
mothership) and which agent should send it.

Both problems are easily cast in our consensus framework. The value of
the physical quantity to report to Earth can be estimated via a weighed aver-
age, a hierarchically computable function. Leader election can be performed
by picking the agent located in the most favorable position with respect to
the receiver (if such information is available) or simply the agent with the
largest unique ID: both options require distributedly computing a maximum,
a locally computable function.

We explore this scenario via numerical simulations on random geometric
graphs, presented in Chapter 3. Random geometric graphs are a good model
for many real-world distributed robotic systems: in the absence of further
information about the deployment mechanism, it is natural to assume that
each agent will independently assume a random position in a bidimensional
plane. The agents’ communication radius is selected to be slightly higher
than the connectivity threshold discussed in Section 3.1.4, so as to ensure
connectivity of almost all networks under examination (a basic requirement
for consensus) while simulating a comparatively lean topology.

We assume agents to be aware of their neighbors’ number and location, as
discussed in Chapter 3; for simplicity, we consider no failures during execution
of the consensus protocol. We consider a variable number of agents, ranging

1In fact, study of the internal composition of SSSBs and its influence on the body’s
gravity field is a strong scientific driver for the exploration of asteroids, comets and small
moons.

6.2 Simulation methodology 81

from 10 to 750: while near-term distributed space missions may only involve
comparatively few agents, future architecture such as NASA’s ANTS foresee
deployment of hundreds or thousands of autonomous vehicles.

We evaluate the execution time, message complexity and byte complexity
of flooding, GHS and our hybrid algorithm applied to this consensus problem.
The aforementioned metrics are discussed in Chapter 3: byte complexity and
message complexity are proxies for the energy required by wireless telecom-
munications, while time complexity may be a concern if a time-varying quan-
tity (e.g. the rate of change of temperature as agents move across the body’s
terminator) is measured.

The example we consider concerns static planetary penetrators. However
we remark that our algorithm does not necessarily require agents to be static:
in practical applications it is sufficient for them to move much more slowly
than the characteristic execution time of the algorithm. The real-world time
performance of our agreement procedure is measured in seconds at most,
whereas current rovers exploring Mars have a top speed measured in hundreds
of meters per day : our results are very applicable to swarms of slowly moving
vehicles, including current planetary rovers.

6.2 Simulation methodology

The algorithm was implemented with an object-oriented software architec-
ture. Agents are created by a central supervisor, which also generates the
network topology before each execution; agents are informed of their imme-
diate neighbors by the supervisor before waking up.
At this time, the software architecture is synchronous, although our algo-
rithm is capable of asynchronous operation: the central supervisor acts as a
global clock for all agents.

Agents communicate through a mailman process: the mailman oversees
message collection and delivery and enforces timing constraints. It is also
able to selectively or probabilistically drop messages, although this feature
is not currently used.

Visualization is handled through an external open-source application,
Gephi (available at [42]): the supervisor and mailman interface with a ded-
icated process which relays agents’ IDs, positions and neighbors as well as
messages exchanged to a Gephi streaming server running on a local or remote
machine.

The modular architecture is specifically designed so as to facilitate future
deployment on hardware agents: we discuss a potential implementation in
Chapter 7.

82 SSSB sampling

Figure 6.1 shows a scheme of the software architecture.

Outbox
...

Mailman

Inbox

Agent Agent Agent

OutboxInbox OutboxInbox

NetGenTimer

Supervisor

To Gephi

Figure 6.1: Simulation software architecture

Our hybrid algorithm, GHS and flooding are executed on random geomet-
ric graphs counting 10 to 750 agents, in increments of 10. For each number of
agents, 100 executions on randomly generated networks are considered. The
hybrid algorithm, GHS and flooding are run on the same networks2 to ensure
consistency of results. The hybrid algorithm is executed with four different
values for m, decreasing from m = n/10 to m = 3 through m = n/ log n and
m = log n. We evaluate three performance parameters:

• Time complexity, measured by the number of rounds to completion.

• Message complexity, measured by the number of messages exchanged
before the algorithm converges.

• Byte complexity, measured by the overall size of messages exchanged
before the algorithm converges. Small messages such as the ones ex-
changed by GHS contribute to byte complexity with a constant value;
large messages such as those used by flooding algorithm contribute
proportionally to the number of agent or cluster values they carry.

2Networks are randomly generated. The random number generator’s seed is univocally
determined by the date (but not the time) of execution, the number of agents and the
execution number. All simulations were run on the same day.

6.2 Simulation methodology 83

All three algorithms terminate when all nodes stop after computing the con-
sensus value: nodes are required to be aware that they hold the consensus
value.

Source code for all simulations is available at the following URL:
http://stanford.edu/~frossi2/HybridCons/MSCThesis_code.zip .

http://stanford.edu/~frossi2/HybridCons/MSCThesis_code.zip

84 SSSB sampling

6.3 Results

6.3.1 Time complexity

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

Number of agents

#
 r

o
u
n
d
s

Flooding

GHS

Hybrid (m=3)

Hybrid (m=logN)

Hybrid (m=N/logN)

Hybrid (m=0.1N)

Figure 6.2: Rounds to completion of our hybrid algorithm compared to GHS and
flooding

Figure 6.2 shows the number of rounds different algorithms require by
the three algorithms to reach consensus. As expected, flooding achieves the
best time complexity and GHS is by far the worst. Our algorithm gracefully
scales from the former’s behavior to the latter: as the tuning parameter m
decreases from n/10 to n/ log n, log n and finally 3, tree size, proportional to
n/m, increases and so does the number of rounds required to reach consensus.

Intuitively, two effects come into play:

• As m increases and the maximum size of trees decreases, generally
smaller trees are created in Phase 1, which has very high time com-
plexity.

• The recurring time complexity of Phase 4 grows with Diam(G)n/m:

6.3 Results 85

performance degradation with respect to optimal time behavior is upper-
bounded by n/m.

Surprisingly, the choice of m = n/ log n consistently yields results closer to
flooding than m = n/10. In fact, for low values of n, n/ log n is lower than
10: the difference between the two methods is significantly less marked and
well within experimental error for higher numbers of agents, as shown in fig.
6.5a.

Besides this small anomaly, results are extremely consistent, even for
small number of agents: clear trends are already evident in simulations in-
volving as few as 50 nodes.

6.3.2 Byte complexity

0 100 200 300 400 500 600 700 800
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Number of agents

B
y
te

 c
o
m

p
le

x
it
y

Flooding

GHS

Hybrid (m=3)

Hybrid (m=logN)

Hybrid (m=N/logN)

Hybrid (m=0.1N)

Figure 6.3: Bytes exchanged by our hybrid algorithm, GHS and flooding

Figure 6.3 reports the overall number of bytes exchanged by GHS, flood-
ing and our hybrid algorithm for four different values of m. As expected, GHS
and all instances of our hybrid algorithm perform significantly better than
flooding; as the size of clusters decreases, the hybrid algorithm’s behavior

86 SSSB sampling

approaches flooding’s and the byte complexity increases. Routing informa-
tion on lean tree structures, which guarantee no duplication, contributes to a
large reduction in time complexity: the overall amount of information being
flooded among the clusters is also upper bounded by the number of clusters,
governed by m.

Once again, simulations with m = n/ log n consistently yields results
closer to flooding than m = n/10: we believe the reason for this phenomenon
is the same as in the previous paragraph.

Trends are extremely clear even for very small (sub-50) numbers of agents.

6.3.3 Message complexity

0 100 200 300 400 500 600 700 800
10

2

10
3

10
4

10
5

10
6

Number of agents

#
 m

e
s
s
a
g
e
s

Flooding

GHS

Hybrid (m=3)

Hybrid (m=logN)

Hybrid (m=N/logN)

Hybrid (m=0.1N)

Figure 6.4: Messages exchanged by our hybrid algorithm compared to GHS and flood-
ing

The message complexity of our flooding algorithm is strongly dependent
on the selection of the tuning parameter. Unsurprisingly, no choice of m
yields better performance than the message-optimal GHS algorithm; it is
more interesting to note that, for high m, the number of messages exchanged

6.3 Results 87

by our hybrid algorithm significantly exceeds even that of notoriously inef-
ficient flooding. Yet, while the message complexity of our algorithm is far
from stellar, the size of exchanged messages is much smaller than in flood-
ing, as discussed in section 6.3.2: our algorithm is a better choice whenever
a parsimonious communication protocol with low overhead is employed.

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

Number of agents

#
 r

o
u
n
d
s

Flooding

GHS

Hybrid (m=3)

Hybrid (m=logN)

Hybrid (m=N/logN)

Hybrid (m=0.1N)

(a) Rounds to completion

0 100 200 300 400 500 600 700 800
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Number of agents

B
y
te

 c
o
m

p
le

x
it
y

Flooding

GHS

Hybrid (m=3)

Hybrid (m=logN)

Hybrid (m=N/logN)

Hybrid (m=0.1N)

(b) Bytes to completion

0 100 200 300 400 500 600 700 800
10

2

10
3

10
4

10
5

10
6

Number of agents

#
 m

e
s
s
a
g
e
s

Flooding

GHS

Hybrid (m=3)

Hybrid (m=logN)

Hybrid (m=N/logN)

Hybrid (m=0.1N)

(c) Messages to completion

Figure 6.5: Variance (1σ) of numerical results

88 SSSB sampling

6.3.4 Tradeoffs between time and byte complexity

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of rounds

B
y
te

s
 e

x
c
h

a
n

g
e

d

Flooding

GHS

Hybrid (m=3)

Hybrid (m=logN)

Hybrid (m=N/logN)

Hybrid (m=0.1N)

Figure 6.6: Pareto front formed by executions of our hybrid algorithm for several values
of m compared to time-optimal flooding and byte-optimal GHS. n = 300.

Figure 6.6 shows a Pareto front formed by executions of our algorithm,
GHS and flooding for n = 300. While we do not claim optimality of our
algorithm with respect to hybrid metrics, the results highlight the smooth
scaling between optimal time and optimal byte complexity offered by our
hybrid algorithm: our protocol offers mission designers the opportunity to
intuitively trade time complexity and robustness for byte complexity and
thus energy efficiency according to mission requirements.

6.3.5 Recurring complexity

The simulations presented up to now refer to one-shot consensus: penetrators
build a semi-hierarchical (or, in the case of GHS, fully hierarchical) struc-

6.3 Results 89

ture from scratch, then use it to exchange information until they reach an
agreement.

In absence of failures or other significant changes in the network topology,
however, the same structure can be used for several consensus rounds, with
evident savings in terms of time and power consumption.

We estimate the recurring cost of consensus as follows:

• Flooding does not build a routing structure within the network: each
new round of consensus incurs in the same time and energy cost, irre-
spective of previous executions.

• Once GHS has built a spanning tree, subsequent consensus rounds are
easily performed: the root contacts all nodes through a broadcast across
the spanning tree, then collects values through a convergecast and in-
forms all nodes of the consensus value via a second broadcast. The
message complexity of the procedure is 3(n− 1): each edge of the tree
is crossed by three messages. Each message has size O(log n). The time
complexity is three times the height of the spanning tree, which can be
evaluated numerically.

• Our hybrid algorithm uses different message types to build the hier-
archical structure and to exchange information among nodes: it is
therefore easy to numerically assess the recurring message and byte
complexity of consensus once a structure has been built by only count-
ing messages belonging to the second class.
Assessing time complexity is less trivial: clusters enter recurring Phase
4 at different times and progression of inter-cluster communication may
be hindered by a single slow cluster. Despite these limitations, we con-
sider the average amount of time spent by nodes in Phase 4 as an
estimator of the recurring time complexity of our hybrid algorithm:
while imperfect, this estimator gives a simple, synthetic assessment of
the time complexity of recurring operations and its value agrees well
with theoretical worst-case results.

90 SSSB sampling

Recurring time complexity

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

Number of agents

#
 r

o
u
n
d
s

Flooding

GHS

Hybrid (m=5)

Hybrid (m=log n)

Hybrid (m=n/log n)

Hybrid (m=0.1 n)

Figure 6.7: Recurring rounds to completion of our hybrid algorithm compared to GHS
and flooding

Figure 6.7 shows the recurring number of rounds required by our al-
gorithm, GHS and flooding to solve the consensus problem. While flood-
ing remains time-optimal, the performance gap with hierarchical and semi-
hierarchical algorithms decreases considerably: for high n, the recurring run-
ning time of our hybrid algorithm is as much as one order of magnitude lower
than the one-shot running time. The same trends observed in 6.2 are evident
here: decreasing m yields worse time performance.

6.3 Results 91

Recurring byte complexity

0 100 200 300 400 500 600 700 800
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of agents

B
y
te

 c
o
m

p
le

x
it
y

Flooding

GHS

Hybrid (m=5)

Hybrid (m=log n)

Hybrid (m=n/log n)

Hybrid (m=0.1 n)

Figure 6.8: Recurring overall bytes exchanged by our hybrid algorithm compared to
GHS and flooding

Figure 6.8 reports the recurring number of bytes exchanged by our algo-
rithm, GHS and flooding to solve the consensus problem. Algorithms with
strong hierarchical structures, namely GHS and our algorithm with low m,
exhibit excellent performance, up to an order of magnitude better than in the
one-shot case. On the other hand, algorithms with mainly nonhierarchical
structures (e.g. flooding and our hybrid algorithm with high m) see little
benefit in reusing an existing hierarchy.

92 SSSB sampling

Recurring message complexity

0 100 200 300 400 500 600 700 800
10

1

10
2

10
3

10
4

10
5

10
6

Number of agents

#
 m

e
s
s
a
g
e
s

Flooding

GHS

Hybrid (m=5)

Hybrid (m=log n)

Hybrid (m=n/log n)

Hybrid (m=0.1 n)

Figure 6.9: Recurring number of messages exchanged by our hybrid algorithm com-
pared to GHS and flooding

We show the recurring message complexity of GHS, flooding and our al-
gorithm in figure 6.9. Surprisingly, flooding has the worst recurring message
performance: our hybrid algorithm may use more messages than flooding
during set up but, once a structure has been established, it performs con-
siderably better than flooding for any value of m even if message size is not
taken into account.

6.4 Conclusion 93

6.4 Conclusion

Flooding exhibits time-optimal performance within the class of algorithms
under consideration: the number of messages and byte exchanged, on the
other hand, is extremely high. This makes flooding generally unsuitable for
space exploration applications, where power consumption is a concern: only
when time performance is paramount (which is typically never the case in
space exploration) should a flooding algorithm be considered.

On the other end of the spectrum, GHS is message and byte-optimal
among the algorithms under study; its power consumption is the lowest in
its class, no matter which metric is used. The price to pay for this is an
execution time consistently higher than all other algorithms and one to two
orders of magnitude away from the theoretical optimum. Furthermore, GHS
is fragile: a single failure in one of n − 1 separate points can bring the
algorithm to a halt and as many as O(n) time steps may be required to
resume operations. GHS is the algorithm of choice if power consumption is
paramount and reliability is not a concern: while the first condition is typical
of space exploration applications (except when time-varying quantities are
being estimated), the second is typically not verified.

Our hybrid algorithm smoothly moves from time-optimal to byte-optimal
behavior, with results in between GHS and flooding: its performance can eas-
ily be tuned to best suit constraints imposed by the specific consensus prob-
lem under consideration and by environmental conditions. As we expected,
the number of messages exchanged by the hybrid algorithm, can be worse
than flooding’s for certain tuning parameters: our algorithm is generally un-
suitable for applications where the “cost” of one message is independent of
the size of its payload.

As long as this is not the case, our algorithm offers designers great flex-
ibility: it can be optimized to maximize a given hybrid performance metric
over the set of possible tunings, offering satisfactory time performance and
robustness without compromising power consumption. It is trivial, for in-
stance, to tune the algorithm so as to guarantee meeting an “hard” time
constraint (e.g. to ensure that sampling of a temperature gradient is per-
formed at a sufficiently high rate) while minimizing energy complexity or to
choose the most energy-efficient architecture that can withstand a given link
failure rate.

As long as the network topology does not change significantly, the hier-
archical structure built by our hybrid algorithm and GHS can be reused for
multiple decisions: mostly hierarchical procedures (i.e. GHS and our hybrid
algorithm for low values of m) significantly benefit from reuse of the exist-
ing structure, while mostly nonhierarchical algorithms such as flooding and

94 SSSB sampling

our hybrid algorithm for high m see little appreciable benefit. On the other
hand, mostly hierarchical structures are more fragile: they are more likely to
be frequently and significantly disrupted by intra-cluster failures, requiring
significant power and a nontrivial amount of time to recover.

These tradeoffs are the same as we observed in Chapter 4. Now, how-
ever, the designer is not faced with a binary choice: our algorithm can be
optimally tuned to reach an adequate compromise between execution time,
energy consumption and resilience to failures.

Chapter 7

Conclusions and future
research directions

7.1 Conclusions

In Chapter 1, we showed how distributed consensus on robotic networks is a
key technology required to explore small Solar System bodies and, through
them, better understand the origin of our Solar System.

Unfortunately, while consensus has long been studied in the Computer
Science and Control Theory communities, current paradigms are unsuitable
for robotic networks: existing algorithms either concern themselves with time
complexity alone, are designed for mobile computer networks or grossly un-
derexploit the communication capabilities of modern robotic agents.

This thesis strives to fill the gap between the existing body of knowledge
on consensus theory and modern robotic space exploration applications. We
rigorously explore fundamental limitations of consensus on robotic networks
of stationary or slow-moving agents and show how existing algorithms can
achieve optimal performance with respect to time and energy-based met-
rics. Results are not satisfying: optimal performance with respect to one
parameter typically causes a strong degradation of other metrics. We there-
fore design an hybrid algorithm that autonomously builds a semi-hierarchical
structure to achieve intermediate performance between time optimality and
energy optimality. The algorithm can be tuned: we offer insight in how tun-
ing affects execution time, energy consumption and robustness and show that
extreme values of the tuning parameter allow to recover either time-optimal
or energy-optimal behavior. Finally, we explore the real-world performance
of the algorithm on a real-world ground sampling scenario on a small solar
system body: as expected, the algorithm smoothly trades execution time for
energy consumption, moving on a Pareto front (although our algorithm is

96 Conclusions and future research directions

not proven to be optimal with respect to hybrid metrics) from time-optimal
to message-optimal behavior.

While our simulations concern a simple data fusion application, our al-
gorithm is designed to work with any hierarchically computable function,
including leader election, majority voting and mediation between different
policies. The procedure is comparatively easy to implement and tuning is
extremely intuitive: system-level tradeoffs can readily translate in a single
numerical parameter.

It is our hope that our hybrid algorithm will enable mission designer to
devise bolder space missions, embracing massively distributed and highly
autonomous architectures for the exploration of small Solar System bodies:
through these, we may finally be able to answer fundamental questions about
the origin of our Solar System, our home among the stars.

7.2 Future research directions

Our theoretical lower bounds and our hybrid algorithm are just steps towards
a better understanding of the consensus problem on robotic networks. Future
research direction include an extension of our results to quickly time-varying
networks, which are representative of moving agents such as fast hoppers, and
especially to networks whose topology depends on the information exchanged
between the agents; lower bounds for broadcast-based communication proto-
cols commonly used in legacy and low-cost robotic applications; handling
of malicious failures for LEO and ground-based applications; and complex
decision-making on hybrid networks via linear temporal logic.

Applications of our work go well beyond space exploration performed by
stationary and slow-moving agents: potential future applications include con-
sensus on swarms of fast-moving agents such as NASA’s Tet Walker, airborne
patrolling, distributed conflict resolution in air traffic control management
and sensor fusion for demanding ground-based application such as Search
and Rescue.

7.2.1 Application to moving networks

In typical rendezvous, deployment and formation flying applications, the
time evolution of the agents’ position, and therefore the network topology,
depends on the information exchanged between the agents: rovers and probes
perform closed-loop control of their position and velocity based on their and
their neighbor’s physical and logical state.

7.2 Future research directions 97

Despite significant research on the issue, the closed-loop interaction be-
tween the logical flow of information among agents and the evolution of the
underlying physical network is not sufficiently understood. Algorithms have
been proposed that guarantee connectivity maintenance while performing
rendezvous and deployment tasks. These algorithms, however, sport the typi-
cal drawbacks of average-based protocols: namely, convergence is asymptotic
and the procedure has very demanding requirements in terms of inter-agent
communication.

Our hybrid algorithm does work on slowly moving networks: if the link
failure frequency is slower than n/m, the algorithm manages to rearrange
the network between changes in topology. New links generated when agents
come within range of one another are simply added to inter-cluster routing
tables with no interruption in the consensus procedure.
The algorithm, however, does not preserve minimum weight clusters. As
new links appear, it may be convenient to rearrange nodes in a more efficient
configuration; our procedure, on the other hand, simply preserves existing
trees as long as no intra-cluster link fails.

Future research will focus on design of algorithms optimized for networks
of fast, actively moving agents, maintaining minimum-weight (local) clus-
ters through reactive and preemptive action. Reactive action involves main-
taining minimum weight clusters as new links appear and the weight (i.e.
the distance) of existing links varies; preemptive action exploits the agents’
knowledge of the algorithm and their neighbors’ state to anticipate link fail-
ures caused by agents receding from one another, thus minimizing downtime.

In certain sensing applications, agents have no means to control their own
position: the time evolution of the network is rapid yet uncontrollable and
unpredictable by the nodes. As a motivating example, consider be a swarm of
weather balloons deployed in Venus’s atmosphere: the aggressive and poorly-
understood dynamic environment would cause an unpredictable evolution of
the network topology, with agents would have no way to control. We will
address fundamental performance limitations on a simplified yet expressive
probabilistic model of these networks, extending results by Clementi et al.
[21] on edge-Markovian evolving graphs.

7.2.2 Broadcast communication protocols

Metrics introduced in Chapter 3, fundamental limitations presented in Chap-
ter 4 and upper bounds on complexity discussed in Chapters 5 and 6 are tai-
lored to directional communication protocols. In Chapter 3 we show how this
hypothesis is very relevant for modern space-based applications; yet many
low-cost ground-based and airborne robotic networks still use off-the-shelf

98 Conclusions and future research directions

omnidirectional telecommunication equipment.

Future research will address the issue of optimality on these networks,
where the cost of sending a message to all neighbors is no higher than the
cost of communicating with a single node: we will explore fundamental per-
formance limitations and seek optimal and hybrid algorithms with broadcast-
based performance parameters.

7.2.3 Distributed tuning

Our hybrid algorithm’s tuning parameter is selected during the design phase,
prior to execution. On the other hand, the algorithm’s very goal is to reach
decisions efficiently on networks of agents: it is natural to imagine agents
using it to agree on a change of the tuning parameter, possibly in reaction to
new environmental conditions or to an external input perceived by certain
nodes. Research will focus on design of routines that allow for fast, incre-
mental post-retuning reconfiguration without undergoing a complete rebuild
of the network.

7.2.4 Handling of byzantine failures

Byzantine failures, in which one or more agents may act maliciously to dis-
rupt the network’s global behavior, are not a significant concern in space
exploration: the telecommunication power required to communicate with a
probe beyond Earth orbit puts malicious endeavors well outside the reach
of any entity unable to secure access to the Deep Space Network. On the
other hand, byzantine failures on cyber-physical networks are a major issue
in critical ground infrastructures such as power distribution grids, ground-
based telecommunication networks and large industrial plants. We refer the
reader to Pasqualetti’s work [91] for further information. Even LEO satellites
are not completely immune to malicious failures: at least two instances of
malicious entities gaining unrestricted, unauthorized access to LEO satellites
have been recorded in recent years [101, p. 215].

Significant effort has been poured into studying fundamental limitations
of failure detection, identification and mitigation on networks: current stud-
ies, however, focus on detection on fixed cyber-physical networks where com-
munication and computational resources are not a limiting factor. We hope
to extend and adapt results by Pasqualetti and Bullo [94] to robotic network
and to design energy-efficient failure detection, identification and mitigation
algorithms.

7.2 Future research directions 99

7.2.5 Complex decision-making via LTL

This thesis concentrates on how to build efficient communication structures
to achieve consensus on robotic networks. Yet the actual function agents
should agree on is almost secondary: throughout this work, we merely require
it to be hierarchically computable. In Chapter 3, we list some hierarchically
computable functions and their applications, which include majority voting
and mediation among different options.

Future research will explore the possibility of performing complex decision
making on robotic networks via Linear Temporal Logic: the expressivity of
LTL allows to naturally and compactly represent complex logic issues and
should lend itself to the semi-hierarchical decision-making inherent in our
architecture.

7.2.6 Earth-based applications

Space exploration is a prime application of our research; yet many of the
concerns that motivate our work are shared by ground-based applications.

Our research group is actively exploring an application of our research to
deployment, coordination and connectivity maintenance of swarms of UAVs
patrolling the Galapagos natural reserve. The project, in collaboration with
Universidad San Francisco de Quito, aims at discouraging illegal shark finning
in the Galapagos natural reserve with low-cost, purpose-built autonomous pa-
trolling planes; challenges include guaranteeing continuous communications
with an existing ground station with unfavorable topography, autonomously
deploying planes to maximize continuous coverage and reacting to observa-
tions and potential threats with no supervisor input.

Further potential applications of our research include automated conflict
resolution in aircraft traffic control [110] and autonomous data filtering on
low-power, quick deployment sensor networks for disaster response.

7.2.7 A reference hardware implementation

The object-oriented architecture of the simulator presented in Chapter 6
was specifically designed to facilitate deployment on real-world decentralized
hardware.
Stanford’s Autonomous Systems Laboratory is equipped with sixteen Pololu
m3pi autonomous rovers controlled by a central PC-based dispatcher via
off-the-shelf WiFi hardware. The rovers’ position is estimated by a Vicom
motion capture system interfacing with the dispatcher computer.
Implementation of our hybrid algorithm on this platform is underway; given

100 Conclusions and future research directions

the centralized nature of the existing WiFi communication protocol, the se-
lected architecture uses a centralized mailman protocol, hosted on the current
dispatcher, to handle inter-agent communication. The agents’ logic code is
executed by the agents themselves; on the other hand, message delivery is
transparently mediated by the dispatcher, which also keep agents up-to-date
about their position and heading. Figure 7.1 shows a schematic representa-
tion of the selected architecture, while figure 7.2 shows the current setup of
the robotic agents.

SM

Telecom

SM

Telecom

SM

Telecom

...

Telecom

Servos Servos Servos

Mailman MC

Figure 7.1: Software architecture of a distributed implementation of our hybrid algo-
rithm on ASL’s robotic testbed

Figure 7.2: Stanford University Autonomous Systems Lab’s multiagent robotic plat-
form

Bibliography

[1] B. Acikmese and M. Mandic. “Decentralized observer with a consen-
sus filter for distributed discrete-time linear systems”. In: American
Control Conference (ACC), 2011. IEEE. 2011, pp. 4723–4730.

[2] M. F. A’Hearn et al. “Deep Impact: Excavating Comet Tempel 1”.
In: Science 310.5746 (2005), pp. 258–264. doi: 10.1126/science.
1118923. url: http://www.sciencemag.org/content/310/5746/
258.abstract.

[3] Ross Allen et al. “Internally-Actuated Rovers for All-Access Surface
Mobility: Theory and Experimentation”. In: Proc. IEEE Conf. on
Robotics and Automation. 2013.

[4] T. P. Andert et al. “Precise mass determination and the nature of
Phobos”. In: Geophysical Research Letters 37 (2010).

[5] D. Angluin et al. “Computation in networks of passively mobile finite-
state sensors”. In: Distributed Computing 18.4 (2006), pp. 235–253.

[6] Thierry Asté et al. “Downlink beamforming for cellular mobile com-
munications (gsm system)”. In: Annales Des Télécommunications 53.11-
12 (1998), pp. 435–448. doi: 10.1007/BF02998590. url: http://dx.
doi.org/10.1007/BF02998590.

[7] B. Awerbuch. “Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems”. In:
Proceedings of the nineteenth annual ACM symposium on Theory of
computing. ACM. 1987, pp. 230–240.

[8] Baruch Awerbuch. “Complexity of network synchronization”. In: Jour-
nal of the ACM (JACM) 32.4 (1985), pp. 804–823.

[9] Grey Ballard et al. “Graph Expansion and Communication Costs of
Fast Matrix Multiplication”. In: Journal of the ACM (2012).

[10] G. Ballard et al. “Minimizing communication in numerical linear al-
gebra”. In: SIAM Journal on Matrix Analysis and Applications 32.3
(2011), pp. 866–901.

http://dx.doi.org/10.1126/science.1118923
http://dx.doi.org/10.1126/science.1118923
http://www.sciencemag.org/content/310/5746/258.abstract
http://www.sciencemag.org/content/310/5746/258.abstract
http://dx.doi.org/10.1007/BF02998590
http://dx.doi.org/10.1007/BF02998590
http://dx.doi.org/10.1007/BF02998590

102 BIBLIOGRAPHY

[11] Beamforming Boosts the Range and Capacity of WiMAX Networks
- White Paper. 2008. url: http://www.fujitsu.com/downloads/
MICRO/fma/formpdf/WiMAXbeamform.pdf.

[12] Jeffrey F. Bell, Fraser Fanale, and Dale P. Cruikshank. “Chemical and
physical properties of the Martian satellites”. In: Resources of Near
Earth Space (1993), pp. 887–901.

[13] Florence Benezit et al. “Reaching consensus about gossip: convergence
times and costs”. In: Information Theory and Applications (2008).

[14] Dimitri P Bertsekas and John N Tsitsiklis. “Comments on “Coordi-
nation of groups of mobile autonomous agents using nearest neighbor
rules””. In: Automatic Control, IEEE Transactions on 52.5 (2007),
pp. 968–969.

[15] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed
computation: numerical methods. Available: http://hdl.handle.net/1721.1/371.
1989.

[16] S. Boyd et al. “Randomized gossip algorithms”. In: Information The-
ory, IEEE Transactions on 52.6 (June 2006), pp. 2508–2530. issn:
0018-9448. doi: 10.1109/TIT.2006.874516.

[17] James E Burns. A formal model for message passing systems. Com-
puter Science Department, Indiana University, 1980.

[18] Julie C Castillo-Rogez et al. “Expected science return of spatially-
extended in-situ exploration at small Solar system bodies”. In: 2012
IEEE Aerospace Conference. IEEE. 2012, pp. 1–15.

[19] S. Chatterjee and E. Seneta. “Towards Consensus: Some Convergence
Theorems on Repeated Averaging”. English. In: Journal of Applied
Probability 14.1 (1977), pages. issn: 00219002. url: http://www.
jstor.org/stable/3213262.

[20] Yongwook Choi et al. “Energy-optimal distributed algorithms for min-
imum spanning trees”. In: Selected Areas in Communications, IEEE
Journal on 27.7 (2009), pp. 1297–1304.

[21] A.E.F. Clementi et al. “Flooding Time of Edge-Markovian Evolv-
ing Graphs”. In: SIAM journal on discrete mathematics 24.4 (2010),
pp. 1694–1712.

[22] T.H. Cormen et al. Introduction to algorithms. 3rd edition. MIT press,
2009.

http://www.fujitsu.com/downloads/MICRO/fma/formpdf/WiMAXbeamform.pdf
http://www.fujitsu.com/downloads/MICRO/fma/formpdf/WiMAXbeamform.pdf
http://dx.doi.org/10.1109/TIT.2006.874516
http://www.jstor.org/stable/3213262
http://www.jstor.org/stable/3213262

BIBLIOGRAPHY 103

[23] Alejandro Cornejo, Seth Gilbert, and Calvin Newport. “Aggregation
in dynamic networks”. In: Proceedings of the 2012 ACM symposium
on Principles of distributed computing. PODC ’12. Madeira, Portugal:
ACM, 2012, pp. 195–204. isbn: 978-1-4503-1450-3. doi: 10.1145/

2332432.2332468. url: http://doi.acm.org/10.1145/2332432.
2332468.

[24] J. Cortes, S. Martinez, and F. Bullo. “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions”. In:
Automatic Control, IEEE Transactions on 51.8 (Aug. 2006), pp. 1289–
1298. issn: 0018-9286. doi: 10.1109/TAC.2006.878713.

[25] Steven A Curtis et al. “ANTS for human exploration and development
of space”. In: Aerospace Conference, 2003. Proceedings. 2003 IEEE.
Vol. 1. IEEE. 2003, pp. 1–261.

[26] S. Curtis et al. “Tetrahedral Robotics for Space Exploration”. In:
Aerospace and Electronic Systems Magazine, IEEE 22.6 (2007), pp. 22–
30. issn: 0885-8985. doi: 10.1109/MAES.2007.384077.

[27] Morris H. Degroot. “Reaching a Consensus”. In: Journal of the Ameri-
can Statistical Association 69.345 (1974), pp. 118–121. doi: 10.1080/
01621459.1974.10480137. eprint: http://www.tandfonline.com/
doi/pdf/10.1080/01621459.1974.10480137. url: http://www.
tandfonline.com/doi/abs/10.1080/01621459.1974.10480137.

[28] James Demmel et al. Perfect strong scaling using no additional energy.
Tech. rep. UCB/EECS-2012-126. EECS Department, University of
California, Berkeley, Feb. 2011. url: http://www.eecs.berkeley.
edu/Pubs/TechRpts/2011/EECS-2011-13.html.

[29] J.W. Demmel, M.T. Heath, and H.A. Van Der Vorst. Parallel numer-
ical linear algebra. Computer Science Division (EECS), University of
California, 1993.

[30] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. “The commu-
nication complexity of distributed task allocation”. In: Proceedings
of the 2012 ACM symposium on Principles of distributed computing.
ACM. 2012, pp. 67–76.

[31] M. Epstein et al. “Using hierarchical decomposition to speed up av-
erage consensus”. In: Proceedings of the 17th IFAC World Congress,
2008. 2008, pp. 612–618.

[32] P. Erdős and A. Rényi. “On the evolution of random graphs”. In:
Publications of the Mathematical Institute of the Hungarian Academy
of Sciences (1961), pp. 17–61.

http://dx.doi.org/10.1145/2332432.2332468
http://dx.doi.org/10.1145/2332432.2332468
http://doi.acm.org/10.1145/2332432.2332468
http://doi.acm.org/10.1145/2332432.2332468
http://dx.doi.org/10.1109/TAC.2006.878713
http://dx.doi.org/10.1109/MAES.2007.384077
http://dx.doi.org/10.1080/01621459.1974.10480137
http://dx.doi.org/10.1080/01621459.1974.10480137
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1974.10480137
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1974.10480137
http://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10480137
http://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10480137
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-13.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-13.html

104 BIBLIOGRAPHY

[33] ESA. BepiColombo. url: http://sci.esa.int/bepicolombo (vis-
ited on 06/22/2013).

[34] ESA. Giotto. Mar. 2006. url: http://sci.esa.int/giotto/ (visited
on 06/23/2013).

[35] ESA. Venus Express. url: http://sci.esa.int/venus-express/
(visited on 06/22/2013).

[36] Tara A Estlin et al. “AEGIS Automated Science Targeting for the
MER Opportunity Rover”. In: ACM Transactions on Intelligent Sys-
tems and Technology (TIST) 3.3 (2012), p. 50.

[37] Miroslav Fiedler. “Algebraic connectivity of graphs”. In: Czechoslovak
Mathematical Journal 23.2 (1973), pp. 298–305.

[38] Miroslav Fiedler. “Laplacian of graphs and algebraic connectivity”.
In: Combinatorics and graph theory 25 (1989), pp. 57–70.

[39] A. Fujiwara et al. “Hayabusa at Asteroid Itokawa (Special Issue)”. In:
Science 312.5778 (2006), pp. 1327–1353.

[40] R.G. Gallager, P.A. Humblet, and P.M. Spira. “A distributed algo-
rithm for minimum-weight spanning trees”. In: ACM Transactions on
Programming Languages and systems (TOPLAS) 5.1 (1983), pp. 66–
77.

[41] Chunkai Gao, Jorge Cortés, and Francesco Bullo. “Notes on averag-
ing over acyclic digraphs and discrete coverage control”. In: Automat-
ica 44.8 (2008), pp. 2120–2127. issn: 0005-1098. doi: 10.1016/j.
automatica.2007.12.017.

[42] Gephi.org. Gephi - The Open Graph Viz Platform. url: https://
gephi.org/ (visited on 06/22/2013).

[43] Giovanni Giardini. “Multi-Agent Intelligent System for Planetary Space
Exploration”. PhD thesis. Politecnico di Milano - Dipartimento di In-
gegneria Aerospaziale, 2007.

[44] M. Giuranna et al. “Compositional Interpretation of PFS/MEx and
TES/MGS Thermal Infrared Spectra of Phobos”. In: European Plan-
etary Science Congress Abstracts 2010-2011. Vol. 5. 2010.

[45] Ashish Goel, Sanatan Rai, and Bhaskar Krishnamachari. “Sharp thresh-
olds for monotone properties in random geometric graphs”. In: Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of com-
puting. STOC ’04. Chicago, IL, USA: ACM, 2004, pp. 580–586. isbn:
1-58113-852-0. doi: 10.1145/1007352.1007441. url: http://doi.
acm.org/10.1145/1007352.1007441.

http://sci.esa.int/bepicolombo
http://sci.esa.int/giotto/
http://sci.esa.int/venus-express/
http://dx.doi.org/10.1016/j.automatica.2007.12.017
http://dx.doi.org/10.1016/j.automatica.2007.12.017
https://gephi.org/
https://gephi.org/
http://dx.doi.org/10.1145/1007352.1007441
http://doi.acm.org/10.1145/1007352.1007441
http://doi.acm.org/10.1145/1007352.1007441

BIBLIOGRAPHY 105

[46] Rodney Gomes et al. “Origin of the cataclysmic Late Heavy Bombard-
ment period of the terrestrial planets”. In: Nature 435.7041 (2005),
pp. 466–469.

[47] J. N. Gray. “Notes on data base operating systems”. In: Operating
Systems: An Advanced Course. Ed. by R. Bayer, R. M. Graham, and
G. Seegmüller. Vol. 60. Lecture Notes in Computer Science. New York:
Springer-Verlag, 1978. Chap. 3.F, p. 465.

[48] David M Harland. Mission to Saturn: Cassini and the Huygens Probe.
Springer, 2002.

[49] Y. Hatano and M. Mesbahi. “Agreement over random networks”.
In: Automatic Control, IEEE Transactions on 50.11 (Nov. 2005),
pp. 1867–1872. issn: 0018-9286. doi: 10.1109/TAC.2005.858670.

[50] Ayanna M Howard and Edward W Tunstel. Intelligence for space
robotics. TSI Press, 2006.

[51] Scott Hubbard. Exploring Mars: Chronicles from a decade of discov-
ery. University of Arizona Press, 2012.

[52] Félix Ingrand et al. “Decisional autonomy of planetary rovers”. In:
Journal of Field Robotics 24.7 (2007), pp. 559–580.

[53] A. Jadbabaie, Jie Lin, and A.S. Morse. “Coordination of groups of mo-
bile autonomous agents using nearest neighbor rules”. In: Automatic
Control, IEEE Transactions on 48.6 (June 2003), pp. 988–1001. issn:
0018-9286. doi: 10.1109/TAC.2003.812781.

[54] Nicholas R. Jennings. “On agent-based software engineering”. In: Ar-
tificial Intelligence 117.2 (2000), pp. 277–296. issn: 0004-3702. doi:
http://dx.doi.org/10.1016/S0004-3702(99)00107-1.

[55] Xingde Jia. “Wireless networks and random geometric graphs”. In:
Parallel Architectures, Algorithms and Networks, 2004. Proceedings.
7th International Symposium on. 2004, pp. 575–579. doi: 10.1109/
ISPAN.2004.1300540.

[56] Maleq Khan, Gopal Pandurangan, and VS Anil Kumar. “Distributed
algorithms for constructing approximate minimum spanning trees in
wireless sensor networks”. In: Parallel and Distributed Systems, IEEE
Transactions on 20.1 (2009), pp. 124–139.

[57] Ephraim Korach, Shlomo Moran, and Shmuel Zaks. “Tight lower and
upper bounds for some distributed algorithms for a complete network
of processors”. In: Proceedings of the third annual ACM symposium
on Principles of distributed computing. ACM. 1984, pp. 199–207.

http://dx.doi.org/10.1109/TAC.2005.858670
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/http://dx.doi.org/10.1016/S0004-3702(99)00107-1
http://dx.doi.org/10.1109/ISPAN.2004.1300540
http://dx.doi.org/10.1109/ISPAN.2004.1300540

106 BIBLIOGRAPHY

[58] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. “Distributed com-
putation in dynamic networks”. In: Proceedings of the 42nd ACM
symposium on Theory of computing. STOC ’10. Cambridge, Mas-
sachusetts, USA: ACM, 2010, pp. 513–522. isbn: 978-1-4503-0050-6.
doi: 10.1145/1806689.1806760. url: http://doi.acm.org/10.
1145/1806689.1806760.

[59] Fabian Kuhn and Rotem Oshman. “Dynamic networks: models and
algorithms”. In: SIGACT News 42.1 (Mar. 2011), pp. 82–96. issn:
0163-5700. doi: 10.1145/1959045.1959064. url: http://doi.acm.
org/10.1145/1959045.1959064.

[60] John Hopkins University Applied Physics Laboratory. Discovery is
NEAR. url: http://near.jhuapl.edu/index.html (visited on
06/23/2013).

[61] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine
generals problem”. In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 4.3 (1982), pp. 382–401.

[62] Ralph Lorenz and Jacqueline Mitton. Lifting Titan’s Veil: Exploring
the Giant Moon of Saturn. Cambridge University Press, 2002.

[63] Nancy A. Lynch. Distributed Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1996. isbn: 1558603484.

[64] S. Martinez et al. “On Synchronous Robotic Networks; Part I: Models,
Tasks and Complexity”. In: Automatic Control, IEEE Transactions
on 52.12 (Dec. 2007), pp. 2199–2213. issn: 0018-9286. doi: 10.1109/
TAC.2007.908301.

[65] S. Martinez et al. “On Synchronous Robotic Networks; Part II: Time
Complexity of Rendezvous and Deployment Algorithms”. In: Auto-
matic Control, IEEE Transactions on 52.12 (Dec. 2007), pp. 2214–
2226. issn: 0018-9286. doi: 10.1109/TAC.2007.908304.

[66] Howard E. McCurdy. Low-Cost Innovation in Spaceflight - The Near
Earth Asteroid Rendezvous (NEAR) Shoemaker Mission. Monographs
in Aerospace History 36. NASA History Division, 2005.

[67] Michael Meltzer. Mission to Jupiter: A History of the Galileo Project.
NASA STI/Recon Technical Report SP-2007-4231. NASA History Di-
vision, 2007.

[68] Andrew H Mishkin et al. “Working the Martian night shift-the MER
surface operations process”. In: Robotics & Automation Magazine,
IEEE 13.2 (2006), pp. 46–53.

http://dx.doi.org/10.1145/1806689.1806760
http://doi.acm.org/10.1145/1806689.1806760
http://doi.acm.org/10.1145/1806689.1806760
http://dx.doi.org/10.1145/1959045.1959064
http://doi.acm.org/10.1145/1959045.1959064
http://doi.acm.org/10.1145/1959045.1959064
http://near.jhuapl.edu/index.html
http://dx.doi.org/10.1109/TAC.2007.908301
http://dx.doi.org/10.1109/TAC.2007.908301
http://dx.doi.org/10.1109/TAC.2007.908304

BIBLIOGRAPHY 107

[69] MIT Space Systems Laboratory. SPHERES. url: http://ssl.mit.
edu/spheres/ (visited on 06/23/2013).

[70] A Morbidelli et al. “Chaotic capture of Jupiter’s Trojan asteroids in
the early Solar System”. In: Nature 435.7041 (2005), pp. 462–465.

[71] L. Moreau. “Stability of multiagent systems with time-dependent com-
munication links”. In: Automatic Control, IEEE Transactions on 50.2
(Feb. 2005), pp. 169–182. issn: 0018-9286. doi: 10.1109/TAC.2004.
841888.

[72] Scott L. Murchie et al. The Scientific Rationale for Robotic Explo-
ration of Phobos and Deimos. White Paper. John Hopkins University
Applied Physics Laboratory, 2009.

[73] NASA. Juno - Unlocking Jupiter’s Mysteries. url: http://www.

nasa . gov / mission _ pages / juno / main / index . html (visited on
06/21/2013).

[74] NASA. MESSENGER - Mission to Mercury. url: http : / / www .

nasa.gov/mission_pages/messenger/main/index.html (visited
on 06/22/2013).

[75] NASA. Solar System Exploration. 2012. url: http://solarsystem.
nasa.gov/index.cfm (visited on 06/22/2013).

[76] NASA Goddard Space Flight Center. Lunar Reconnaissance Orbiter.
url: http://lro.gsfc.nasa.gov/ (visited on 06/21/2013).

[77] NASA Goddard Space Flight Center. NASA’s HEASARC: Observa-
tories. May 2010. url: http://heasarc.gsfc.nasa.gov/docs/

heasarc/missions/isee3.html (visited on 06/23/2013).

[78] NASA Goddard Space Flight Center. Soviet Missions to the Moon.
url: http://nssdc.gsfc.nasa.gov/planetary/lunar/lunarussr.
html (visited on 06/22/2013).

[79] NASA Jet Propulsion Laboratory. Autonomous Exploration for Gath-
ering Increased Science. url: http://aegis.jpl.nasa.gov/ (visited
on 06/23/2013).

[80] NASA Jet Propulsion Laboratory. Mars Science Laboratory Curiosity
Rover - Mobility. 2013. url: http://mars.jpl.nasa.gov/msl/

mission / technology / insituexploration / planetarymobility/

(visited on 06/23/2013).

[81] NASA Jet Propulsion Laboratory. Stardust: NASA’s Comet Sample
Return mission. 2013. url: http://stardust.jpl.nasa.gov/home/
index.html (visited on 06/23/2013).

http://ssl.mit.edu/spheres/
http://ssl.mit.edu/spheres/
http://dx.doi.org/10.1109/TAC.2004.841888
http://dx.doi.org/10.1109/TAC.2004.841888
http://www.nasa.gov/mission_pages/juno/main/index.html
http://www.nasa.gov/mission_pages/juno/main/index.html
http://www.nasa.gov/mission_pages/messenger/main/index.html
http://www.nasa.gov/mission_pages/messenger/main/index.html
http://solarsystem.nasa.gov/index.cfm
http://solarsystem.nasa.gov/index.cfm
http://lro.gsfc.nasa.gov/
http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/isee3.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/isee3.html
http://nssdc.gsfc.nasa.gov/planetary/lunar/lunarussr.html
http://nssdc.gsfc.nasa.gov/planetary/lunar/lunarussr.html
http://aegis.jpl.nasa.gov/
http://mars.jpl.nasa.gov/msl/mission/technology/insituexploration/planetarymobility/
http://mars.jpl.nasa.gov/msl/mission/technology/insituexploration/planetarymobility/
http://stardust.jpl.nasa.gov/home/index.html
http://stardust.jpl.nasa.gov/home/index.html

108 BIBLIOGRAPHY

[82] NASA Jet Propulsion Laboratory. Voyager - The Interstellar Mission.
url: http://voyager.jpl.nasa.gov/ (visited on 06/22/2013).

[83] R. Olfati-Saber. “Distributed Kalman filtering for sensor networks”.
In: Decision and Control, 2007 46th IEEE Conference on. Dec. 2007,
pp. 5492–5498. doi: 10.1109/CDC.2007.4434303.

[84] R. Olfati-Saber. “Flocking for multi-agent dynamic systems: algo-
rithms and theory”. In: Automatic Control, IEEE Transactions on
51.3 (Mar. 2004), pp. 401–420. issn: 0018-9286. doi: 10.1109/TAC.
2005.864190.

[85] R. Olfati-Saber, J.A. Fax, and R.M. Murray. “Consensus and Coop-
eration in Networked Multi-Agent Systems”. In: Proceedings of the
IEEE 95.1 (Jan. 2007), pp. 215–233. issn: 0018-9219. doi: 10.1109/
JPROC.2006.887293.

[86] R. Olfati-Saber and P. Jalalkamali. “Coupled Distributed Estimation
and Control for Mobile Sensor Networks”. In: Automatic Control,
IEEE Transactions on 57.9 (Sept. 2012).

[87] R. Olfati-Saber and R.M. Murray. “Consensus problems in networks of
agents with switching topology and time-delays”. In: Automatic Con-
trol, IEEE Transactions on 49.9 (Sept. 2004), pp. 1520–1533. issn:
0018-9286. doi: 10.1109/TAC.2004.834113.

[88] Reza Olfati-Saber. “Distributed Kalman filter with embedded con-
sensus filters”. In: Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC’05. 44th IEEE Conference on. IEEE.
2005, pp. 8179–8184.

[89] Alexander Olshevsky. “Efficient Information Aggregation Strategies
for Distributed Control and Signal Processing”. PhD thesis. MIT -
Department of Electrical Engineering and Computer Science, Sept.
2010.

[90] Rotem Oshman. “Distributed Computation in Wireless and Dynamic
Networks”. PhD thesis. MIT - Computer Science and Artificial Intel-
ligence Laboratory, Sept. 2012.

[91] F. Pasqualetti. “Secure Control Systems: A Control-Theoretic Ap-
proach to Cyber-Physical Security”. PhD thesis. Mechanical Engi-
neering Department, University of California at Santa Barbara, Sept.
2012.

http://voyager.jpl.nasa.gov/
http://dx.doi.org/10.1109/CDC.2007.4434303
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1109/TAC.2004.834113

BIBLIOGRAPHY 109

[92] F. Pasqualetti, A. Bicchi, and F. Bullo. “A graph-theoretical char-
acterization of power network vulnerabilities”. In: American Con-
trol Conference (ACC) 2011. San Francisco, CA, USA, June 2011,
pp. 3918–3923.

[93] F. Pasqualetti, A. Bicchi, and F. Bullo. “Consensus Computation in
Unreliable Networks: A System Theoretic Approach”. In: Automatic
Control, IEEE Transactions on 57.1 (2012), pp. 90–104.

[94] F. Pasqualetti, F. Dorfler, and F. Bullo. “Attack Detection and Iden-
tification in Cyber-Physical Systems”. In: Automatic Control, IEEE
Transactions on (Aug. 2012). Submitted.

[95] Marco Pavone et al. “Spacecraft/Rover Hybrids for the Exploration
of Small Solar System Bodies”. In: IEEE Proceedings. Vol. 2425. 2013.

[96] Marshall Pease, Robert Shostak, and Leslie Lamport. “Reaching agree-
ment in the presence of faults”. In: Journal of the ACM (JACM) 27.2
(1980), pp. 228–234.

[97] Mathew Penrose. Random Geometric Graphs. Department of Mathe-
matical Sciences, Durham University: Oxford University Press, 2003.
url: http : / / www . oxfordscholarship . com / 10 . 1093 / acprof :

oso/9780198506263.001.0001/acprof-9780198506263.

[98] V. G. Perminov. The Difficult Road to Mars. Monographs in Aerospace
History 15. NASA History Division, July 1999.

[99] Planetary Society. Missions to Venus and Mercury. url: http://
www.planetary.org/explore/space-topics/space-missions/

missions-to-venus-mercury.html (visited on 06/22/2013).

[100] Michel Raynal. Networks and distributed computation: concepts, tools,
and algorithms. MIT Press, 1988.

[101] William A. Reinsch et al. 2011 Report to Congress. Tech. rep. U.S.-
China Economic and Security Review Commission, Nov. 2011.

[102] Wei Ren, R.W. Beard, and E.M. Atkins. “Information consensus in
multivehicle cooperative control”. In: Control Systems, IEEE 27.2
(Apr. 2007), pp. 71–82. issn: 1066-033X. doi: 10.1109/MCS.2007.
338264.

[103] Craig W Reynolds. “Flocks, herds and schools: A distributed behav-
ioral model”. In: ACM SIGGRAPH Computer Graphics. Vol. 21. 4.
ACM. 1987, pp. 25–34.

http://www.oxfordscholarship.com/10.1093/acprof:oso/9780198506263.001.0001/acprof-9780198506263
http://www.oxfordscholarship.com/10.1093/acprof:oso/9780198506263.001.0001/acprof-9780198506263
http://www.planetary.org/explore/space-topics/space-missions/missions-to-venus-mercury.html
http://www.planetary.org/explore/space-topics/space-missions/missions-to-venus-mercury.html
http://www.planetary.org/explore/space-topics/space-missions/missions-to-venus-mercury.html
http://dx.doi.org/10.1109/MCS.2007.338264
http://dx.doi.org/10.1109/MCS.2007.338264

110 BIBLIOGRAPHY

[104] L. Sabattini, N. Chopra, and C. Secchi. “Distributed control of multi-
robot systems with global connectivity maintenance”. In: Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Confer-
ence on. Sept. 2011, pp. 2321–2326. doi: 10 . 1109 / IROS . 2011 .

6094818.

[105] Nicola Santoro. “On the message complexity of distributed problems”.
English. In: International Journal of Computer & Information Sci-
ences 13.3 (1984), pp. 131–147. issn: 0091-7036. doi: 10 . 1007 /

BF00979869. url: http://dx.doi.org/10.1007/BF00979869.

[106] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algo-
rithmic, game-theoretic, and logical foundations. Cambridge Univer-
sity Press, 2009.

[107] Demetri P Spanos, Reza Olfati-Saber, and Richard M Murray. “Dis-
tributed sensor fusion using dynamic consensus”. In: IFAC World
Congress. 2005.

[108] D.P. Spanos, R. Olfati-Saber, and R.M. Murray. “Dynamic consensus
on mobile networks”. In: The 16th IFAC World Congress, Prague,
Czech. 2005.

[109] Peter Thomas. Optical shape models of 9 planetary moons and aster-
oids, derived from spacecraft imaging. June 2000. url: http://sbn.
psi.edu/pds/resource/oshape.html (visited on 05/16/2012).

[110] Claire Tomlin, George J Pappas, and Shankar Sastry. “Conflict reso-
lution for air traffic management: A study in multiagent hybrid sys-
tems”. In: Automatic Control, IEEE Transactions on 43.4 (1998),
pp. 509–521.

[111] P. Tricarico and M.V. Sykes. “The dynamical environment of Dawn at
Vesta”. In: Planetary and Space Science 58.12 (2010), pp. 1516–1525.
issn: 0032-0633. doi: http://dx.doi.org/10.1016/j.pss.2010.
07.017. url: http://www.sciencedirect.com/science/article/
pii/S0032063310002199.

[112] W.F. Truszkowski et al. “Autonomous and autonomic systems: a
paradigm for future space exploration missions”. In: Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transac-
tions on 36.3 (2006), pp. 279–291. issn: 1094-6977. doi: 10.1109/
TSMCC.2006.871600.

[113] Kleomeris Tsiganis et al. “Origin of the orbital architecture of the gi-
ant planets of the Solar System”. In: Nature 435.7041 (2005), pp. 459–
461.

http://dx.doi.org/10.1109/IROS.2011.6094818
http://dx.doi.org/10.1109/IROS.2011.6094818
http://dx.doi.org/10.1007/BF00979869
http://dx.doi.org/10.1007/BF00979869
http://dx.doi.org/10.1007/BF00979869
http://sbn.psi.edu/pds/resource/oshape.html
http://sbn.psi.edu/pds/resource/oshape.html
http://dx.doi.org/http://dx.doi.org/10.1016/j.pss.2010.07.017
http://dx.doi.org/http://dx.doi.org/10.1016/j.pss.2010.07.017
http://www.sciencedirect.com/science/article/pii/S0032063310002199
http://www.sciencedirect.com/science/article/pii/S0032063310002199
http://dx.doi.org/10.1109/TSMCC.2006.871600
http://dx.doi.org/10.1109/TSMCC.2006.871600

BIBLIOGRAPHY 111

[114] John N Tsitsiklis. “Problems in decentralized decision making and
computation”. PhD thesis. Massachusetts Institute of Technology.
Dept. of Electrical Engineering and Computer Science., 1985. url:
http://hdl.handle.net/1721.1/15254.

[115] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. “Distributed
asynchronous deterministic and stochastic gradient optimization algo-
rithms”. In: Automatic Control, IEEE Transactions on 31.9 (1986),
pp. 803–812.

[116] George Tsoulos. “Adaptive Antennas and MIMO Systems for Mobile
Communications”. In: Adaptive Antenna Array. Ed. by Sathish Chan-
dran. Signals and communication technology. Springer Berlin Heidel-
berg, 2004, pp. 3–26. isbn: 978-3-642-05775-5. doi: 10.1007/978-3-
662-05592-2_1. url: http://dx.doi.org/10.1007/978-3-662-
05592-2_1.

[117] Tamás Vicsek et al. “Novel Type of Phase Transition in a System of
Self-Driven Particles”. In: Phys. Rev. Lett. 75 (6 Aug. 1995), pp. 1226–
1229. doi: 10.1103/PhysRevLett.75.1226. url: http://link.aps.
org/doi/10.1103/PhysRevLett.75.1226.

[118] Richard Volpe. “Rover functional autonomy development for the mars
mobile science laboratory”. In: Proceedings of the 2003 IEEE Aerospace
Conference. Vol. 2. 2003, pp. 643–652.

[119] Richard Volpe et al. “The CLARAty architecture for robotic au-
tonomy”. In: Aerospace Conference, 2001, IEEE Proceedings. Vol. 1.
IEEE. 2001, pp. 1–121.

[120] R.E. Wallis and Sheng Cheng. “Phased-array antenna system for the
MESSENGER deep space mission”. In: Aerospace Conference, 2001,
IEEE Proceedings. Vol. 1. 2001, 1/41–1/49 vol.1. doi: 10.1109/AERO.
2001.931694.

[121] Mathijs de Weerdt and Brad Clement. “Introduction to planning in
multiagent systems”. In: Multiagent and Grid Systems 5.4 (2009),
pp. 345–355.

[122] Michael Wooldridge. An introduction to multiagent systems. Wiley,
2008.

[123] M.M. Zavlanos et al. “Hybrid control for connectivity preserving flock-
ing”. In: Automatic Control, IEEE Transactions on 54.12 (2009),
pp. 2869–2875.

http://hdl.handle.net/1721.1/15254
http://dx.doi.org/10.1007/978-3-662-05592-2_1
http://dx.doi.org/10.1007/978-3-662-05592-2_1
http://dx.doi.org/10.1007/978-3-662-05592-2_1
http://dx.doi.org/10.1007/978-3-662-05592-2_1
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://link.aps.org/doi/10.1103/PhysRevLett.75.1226
http://link.aps.org/doi/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1109/AERO.2001.931694
http://dx.doi.org/10.1109/AERO.2001.931694

112 BIBLIOGRAPHY

[124] Shlomo Zilberstein et al. “Decision-Theoretic Control of Planetary
Rovers”. In: Advances in Plan-Based Control of Robotic Agents. Ed.
by Michael Beetz et al. Vol. 2466. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2002, pp. 270–289. isbn: 978-3-540-00168-
3. doi: 10.1007/3-540-37724-7_16. url: http://dx.doi.org/10.
1007/3-540-37724-7_16.

[125] Maria T. Zuber et al. “Gravity Recovery and Interior Laboratory
(GRAIL): Mapping the Lunar Interior from Crust to Core”. In: Space
Science Reviews (2013), pp. 1–22. issn: 0038-6308. doi: 10.1007/
s11214-012-9952-7. url: http://dx.doi.org/10.1007/s11214-
012-9952-7.

http://dx.doi.org/10.1007/3-540-37724-7_16
http://dx.doi.org/10.1007/3-540-37724-7_16
http://dx.doi.org/10.1007/3-540-37724-7_16
http://dx.doi.org/10.1007/s11214-012-9952-7
http://dx.doi.org/10.1007/s11214-012-9952-7
http://dx.doi.org/10.1007/s11214-012-9952-7
http://dx.doi.org/10.1007/s11214-012-9952-7

	Summary
	Introduction
	Robotic exploration of the Solar System
	On small solar system bodies
	The advantages of an autonomous multiagent architecture
	Challenges
	Contributions of this thesis

	State of the Art
	Introduction
	Computer Science
	Distributed algorithms on wired networks
	Wireless networks: challenges and opportunities
	Parallel linear algebra

	Control Systems
	Models and fundamental limitations
	Specific network topologies
	Distributed filtering
	Security of cyber-physical networks
	Rendezvous, deployment and tracking

	Autonomy and decentralization in space exploration
	Autonomy
	Decentralization and multiagent architectures

	Conclusion

	Problem statement
	Preliminaries
	Consensus, convex consensus, sensitively decomposable and locally computable functions
	Cyber-physical networks, graphs and automata
	Complexity and asymptotic notation
	Random geometric graphs

	Hypotheses
	Performance metrics
	Time complexity of a problem
	Communication complexity of a problem
	Byte complexity of a problem
	Complexity of an algorithm
	Discussion of complexity measures
	Hybrid metrics
	Robustness

	Problem statement
	Conclusion

	Fundamental limitations
	A lower bound on time complexity
	A lower bound on the time complexity of consensus
	A time-optimal flooding algorithm

	A lower bound on communication complexity
	Dense networks
	Sparse networks

	A lower bound on byte complexity
	Conclusion

	An hybrid algorithm for distributed consensus in presence of sporadic failures
	Inspiration
	The high-level structure
	The details
	Phase 1: tree building
	Phase 2
	Phase 3
	Phase 4
	Phase F (recovery from in-tree failure)
	Phase OF (recovery from out-of-tree failure)

	Complexity analysis
	Physical insight and tuning parameters
	Node clustering and selective redundancy
	Error isolation
	Reducing single points of failure
	Failure frequency
	Consensus on time-varying parameters

	Analytical performance on select network topologies
	Star
	Line
	Ring
	Fully connected network

	Conclusion

	Numerical investigation of a SSSB sampling scenario
	Sampling of Small Solar System Bodies
	Simulation methodology
	Results
	Time complexity
	Byte complexity
	Message complexity
	Tradeoffs between time and byte complexity
	Recurring complexity

	Conclusion

	Conclusions and future research directions
	Conclusions
	Future research directions
	Application to moving networks
	Broadcast communication protocols
	Distributed tuning
	Handling of byzantine failures
	Complex decision-making via LTL
	Earth-based applications
	A reference hardware implementation

	Bibliography

