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Abstract

A real case of a city tramcar in Milan generating very high curve squeal noise levels

has motivated research in this area considering the simultaneous presence of two

contact points. Along with this example another one from the British Railways

will also be explored. In this thesis available measurements are summarised in a

qualitative manner in order to highlight the most important frequencies involved

and a theoretical model in the frequency and time domain is developed with the

aim of predicting curve squeal tones. Results are presented from a frequency

domain point of view. Good matching is found between numerically predicted

and measured unstable frequencies and a peculiar shift toward higher frequencies

is found both in measurements and predictions.

Key words: Finite element model, numerical model for dynamics simulation,

friction model, self-excited vibration loop, curve squeal noise model, two contact

points, frequency domain, time domain.





Sommario

Un caso reale di tram circolante a Milano che genera livelli elevati di rumore di

stridio in curva ha motivato la ricerca in questa area considerando la contempo-

ranea presenza di due punti di contatto. Durante questo lavoro, è stato studiato

un altro caso proveniente dalla ferrovia Britannica. In questa tesi sono disponibili

misurazioni riassunte in maniera qualitativa allo scopo di evidenziare le più im-

portanti frequenze coinvolte. È stato sviluppato un modello teorico nel dominio

delle frequenze e del tempo con lo scopo di prevedere i toni di stridio in curva, i

risultati presentati sono nel dominio delle frequenze. È stata trovata una buona

corrispondenza sulle frequenze instabili, fra quelle misurate e quelle predette nu-

mericamente. Inoltre, un particolare spostamento verso alte frequenze è stato

osservato sia nelle misurazioni che in quelle previste.

Parole chiave: Modello a elementi �niti, modello numerico per simulazioni di-

namiche, modello di attrito, modello di rumore di stridio in curva, due punti di

contatto, dominio delle frequenze, dominio del tempo.





Estratto in lingua italiana

Il trasporto ferroviario fu la prima forma di trasporto meccanizzato su terra [1];

è una importante forma di trasporto e lo rimarrà nel prossimo futuro. Al giorno

d'oggi il trasporto su rotaia, oltre a garantire lunghi tratti di percorrenza, è in

grado di risolvere problemi di congestione in aree popolate come le città.

L'inquinamento acustico e le vibrazioni generate dal trasporto su rotaia, sfor-

tunatamente, ne limitano la promozione. Il rumore generato può essere causato

da due diversi principali meccanismi: vibrazioni strutturali dovute al contatto

ruota/rotaia e �uttuazioni aerodinamiche dovute alla turbolenza dell'aria, in par-

ticolare all'interazione tra vento e solidi. La prima è la principale fonte di disturbo

per treni che viaggiano a una velocità inferiore ai 300 km/h, mentre la seconda

domina il livello di rumore per treni che percorrono a velocità soperiori.

Thompson e Jones [2] divisero il rumore ferroviario in tre basilari categorie:

• Rolling noise è il principale contributo di vibrazione che si veri�ca sui retti-

linei, causato dalle ondulazioni della ruota e della rotaia (rugosità) le quali

inducono una vibrazione relativa verticale.

• Impact noise è una forma estrema di rolling noise dovuto alle discontinuità

super�ciali di ruota e rotaia.

• Squeal noise si veri�ca in curve strette e di solito è indotto da un meccanismo

di eccitazione laterale. Più stretta è la curva e maggiore è la possibilità che

l'emissione di stridio possa presentarsi. Ecco il motivo per il quale questo

tipo di inquinamento acustico si veri�ca principalmente nei centri urbani

dove la presenza delle strutture civili obbligano la messa a terra dei binari a

volte con curve a piccolo raggio. Questo tipo di rumore è spesso fastidioso

per la popolazione e qualche volta può diventare un vero e proprio problema

per le persone che vivono vicino alla carreggiata dei tram.
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L' oggetto di questo lavoro è una investigazione di quest'ultimo aspetto. I due

obbiettivi cardinali della tesi sono rivedere e aggiornare il modello squeal svilup-

pato da Zhenyu Huang [3] e utilizzarlo per cercare di comprendere un speci�co

caso di rumore di stridio in curva misurato a Milano nel 2010 [4] e di un secondo

esempio proveniente dalla �otta Sprinter della ferrovia britannica.

Il lavoro centrale di Huang fu quello di descrivere la generazione di stridio in

curva tramite un modello in anello chiuso autoeccitato rappresentante le relazioni

tra ruota/rotaia e le forze di contatto. Eseguendo l'analisi di stabilità nel dominio

delle frequenze, i possibili modi di vibrare della ruota coinvolti in stridio furono

evidenziati per una particolare combinazione ruota-rotaia, mentre l'integrazione

nel dominio del tempo dell'anello potrebbe fornire l'intensità dello stridio.

In questo modello la ruota è descritta tramite una rappresentazione a elementi

�niti mentre la rotaia attraverso modelli analitici so�sticati contenenti l'accoppiamento

laterale-torsionale che si veri�ca ad elevate frequenze. Il contatto è descritto in

termini di relazioni non-lineari tra coe�cienti d'attrito e pseudoslittamenti: par-

ticolare attrito adesivo nella zona di piccoli pseudoslittamenti a decadimento nella

regione di scorrimento. Il contatto tra ruota e rotaia fu permesso, all'inizio, sola-

mente in un'unica posizione di contatto, ma parte del lavoro di ricerca descritto

nella tesi è stato dedicato al miglioramento del modello originale per permettere

la contemporanea presenza di due punti di contatto.

Inoltre, siccome questo fenomeno è lontano dall'essere deterministico e parametri

come temperatura, umidità e sporcizia o particelle sulla rotaia possono avere un

forte e�etto sul suo veri�carsi, nel modello nel dominio del tempo con uno e

due punti di contatto, alcuni parametri di input sono, nella versione aggiornata

del softwere, de�niti come variabili incerte. Come risultato, il modello è usato

per dare valori di frequenza di possibili autovalori instabili del sistema mentre

l'intervallo dei parametri incerti è attraversato in modo casuale.

Come accennato in precedenza, due di�erenti casi sono stati investigati da un

punto di vista sperimentale allo scopo di veri�care la bontà del modello migliorato

con due punti di contatto. Il primo riguarda un tram con ruote elastiche indipen-

denti in curve molto strette (caso tram Sirio a Milano) mentre il secondo riguarda

treni in curve con `check-rail'(caso Class 150 Sprinter nel nord del Galles).

Il primo caso investigato è anche la motivazione di questa ricerca che ha attual-
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Estratto in lingua italiana

mente la sua origine in una campagna sperimentale svolta a Milano nel 2010-2011

coinvolgendo il Politecnico di Milano e i servizi locali di trasporto ATM. Questa

campagna mirava a investigare l'alto livello di rumore presente in diverse curve

strette attorno la città durante il passaggio del nuovissimo tram chiamato Sirio.

Questo tram è montato su ruote elastiche indipendenti. Prima di tutto, una pro-

cedura di analisi modale sperimentale ha permesso la caratterizzazione della ruota

in termini di quelle che sono state considerate le più importanti frequenze natu-

rali, rapporti di smorzamento e forme modali �no a 4 kHz. Successivamente, sono

state eseguite misurazioni simultanee di vibrazione del binario, della ruota e del

rumore irradiato durante il transito del tram lungo una curva stretta. Importanti

caratteristiche sono state osservate durante le misurazioni e vengono riassunte

in questa tesi nel Capitolo 2, comunque una semplice soluzione per attenuare

il fenomeno non è stata trovata, inoltre non è possibile spiegare alcuni aspetti

basandosi solo su questi risultati. Ciò che risultò chiaro �n dall'inizio fu la con-

temporanea presenza di più di un contatto, essendo, per la ruota anteriore interna,

la �angia interna spesso in contatto con la controrotaia e la �angia esterna della

ruota esterna in contatto con la testa della rotaia.

Gli scorsi anni, il dipartimento di ingegneria meccanica del Politecnico di Milano

fu intensamente coinvolto allo scopo di investigare il comportamento dinamico

del tram caratterizzato da diverse con�gurazioni strutturali, soluzioni progettuali

(per esempio, telaio del carrello articolato, ruote indipendenti) e condizioni oper-

ative (per esempio, raggio di curvatura e velocità operativa). Il modello numerico

sviluppato [5], [6] ha la capacità, per ogni particolare istante di tempo, di ripro-

durre il comportamento dinamico del veicolo in termini di stato stazionario e

transitorio (per esempio, dovuto all'inserimento in curva o all'eccitazione dovuta

all' irregolarità della rotaia). Siccome lo stridio prende forma sotto speci�che

condizioni operative, i parametri relazionati con il comportamento stazionario in

curva sono necessari per una corretta investigazione del fenomeno. Per questa

ragione, allo scopo di ottenere questi parametri, una simulazione di tram in curva

potrebbe essere eseguita usando l'implementato simulatore di tram sviluppato

a Milano. Parecchi e interessanti risultati potrebbero essere ottenuti da questa

simulazione, come la posizione dei punti di contatto tra ruota e rotaia, pseu-

doslittamenti longitudinali e laterali e la distribuzione di forze sulle diverse ruote

(vedere Capitolo 4). Questi sono stati utilizzati come input per il modello di

stridio adottato in questa tesi per predire il veri�carsi di questo fenomeno.
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Il secondo caso investigato riguarda le nuove unità Class 150 Sprinter. Quando

questo treno fu introdotto sulle tratte da Llandudno a Blaenau Ffestiniog nel nord

del Galles, un numero di reclami nacquero dall'intenso rumore di stridio generato

durante la curva. Per ragioni di sicurezza, alcune curve di queste rotaie furono

attrezzate con `check-rail'. Un programma di misurazione fu eseguito nel Mag-

gio del 1987 nel quale microfoni furono posizionati vicino ad ogni ruota dell'assile

anteriore [7]. Osservando l'analisi in frequenza risultò chiaro che le frequenze coin-

volte nello stridio erano correlate ai modi radiali della ruota. La causa di questo

particolare problema fu riconosciuta nelle forze verticali di adesione/scorrimento

agenti tra `check-rail'e �angia interna della ruota.

Perciò, lo scopo è di riprodurre questa particolare condizione di contatto tra �an-

gia interna e `check-rail'e veri�care tramite il modello con due punti di contatto

che le frequenze predette siano correlate a modi radiali.

Struttura della tesi

Questa tesi di divide in sette capitoli come segue:

Capitolo 1. Stridio in curva: stato dell'arte. In questo capitolo si riporta

una panoramica di cosa fu investigato e scoperto nei precedenti anni riguardo il

rumore di stridio.

Capitolo 2. Misurazioni del rumore di stridio. In questo capitolo le

misurazioni eseguite a Milano durante il transito del tram Sirio in curve strette

sono illustrate allo scopo di investigare quali frequenze sono coinvolte nella gener-

azione del rumore. L'ultima parte riguarda le misurazioni eseguite in Galles allo

scopo di investigare il veri�carsi dello stridio quando il treno Sprinter percorre

curve attrezzate con `check-rail'.

Capitolo 3. Modellazione della ruota ad elementi �niti. In questo

capitolo il modello a elementi �niti del tram Sirio e treno Sprinter sono descritti.

Capitolo 4. Modello numerico per simulazione dinamica del tram.

In questo capitolo un modello numerico sviluppato dal Politecnico di Milano è

descritto allo scopo ti ottenere i parametri necessari relazionati con il comporta-

mento stazionario in curva nel caso del tram Sirio.

Capitolo 5. Modello di attrito e vibrazioni autoeccitate. Nella prima
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Estratto in lingua italiana

parte di questo capitolo è descritto il modello di attrito adottato nella formulazione

di Huang, mentre nella seconda parte viene a�rontato un problema classico di

vibrazioni autoeccitate, una massa su un nastro in movimento.

Capitolo 6. Modello di stridio per singolo contatto ruota/rotaia.

In questo capitolo è stato descritto il modello di stridio in curva sviluppato da

Huang. Il modello in anello chiuso autoeccitato nel dominio delle frequenze è

usato per investigare la stabilità. Poi, l'anello di vibrazione autoeccitato in forma

di stato permette, tramite integrazione `step-by-step', di calcolare le risposte nel

dominio del tempo.

Capitolo 7. Modello di stridio per due punti di contatto. In questo

capitolo il modello di Huang aggiornato con due punti di contatto nel dominio

delle frequenze e del tempo è ampiamente descritto. I risultati ottenuti dal caso

Sirio e Sprinter sono presentati nel dominio delle frequenze.
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Introduction

Railways were the �rst practical form of mechanized land transport [1]. They

remain an important form of transport and will remain so in the near future.

Nowadays railways are the best solution to the problem of congestion in populated

areas.

Unfortunately, the environmental e�ects of noise and vibration work against

this promotion of railways. Railway noise can be generated by two main mech-

anisms: structural vibration due to the wheel and rail contact and aerodynamic

�uctuations due to the air turbulence when wind �ows over solid objects. The

�rst one is the main mechanism of noise source for trains running below the speed

of 300 km/h, while the second one dominates the noise level for trains running at

speeds above 300 km/h.

Thompson and Jones [2] divided railway noise into three main categories:

• Rolling noise is the main contribution on straight track and is caused by un-

dulations of the wheel and rail surfaces (roughness) which induce a vertical

relative vibration.

• Impact noise is an extreme form of rolling noise occurring at discontinuities

of the wheel or rail surface.

• Squeal noise, occurring on tight radius curves, is usually induced by a lateral

excitation mechanism. The shorter is the curve radius, the higher are the

possibilities that squealing emission may appear. Short radius curves are

present in urban tracks because of the presence of pre-existing buildings.

This kind of noise emission is often annoying for the people and sometimes

becomes a very important problem for people living near the tracks.

Indeed, curve squeal noise is the research area of this work. The two main

aims of the thesis are to review and update the curve squeal model developed

7



by Zhenyu Huang [3] and to use this model for bringing more understating in a

speci�c real case of tram curve squeal noise measured in Milan, Italy in 2010 [4].

Along with this example another one from the British Railways Sprinter �eet will

also be explored.

The central work of Huang's thesis was to describe curve squeal noise gener-

ation by means of a self-excited feedback loop model representing relations be-

tween wheel/rail motions and contact forces. By performing stability analysis

in the frequency domain the possible wheel vibration modes involved in squeal

were highlighted for a particular combination of wheel rail, while a time domain

integration of the loop could provide the intensity of squeal. In this model the

wheel is considered through a Finite Element representation while the rail through

advanced analytical models accounting for lateral-torsional coupling occurring at

high frequencies. The contact is described in terms of a nonlinear relationship

between friction coe�cients and creepage: in particular adhering friction at small

creepages and falling friction in sliding. Contact between wheel and rail was ini-

tially only allowed at one single position but part of the research work described

in this thesis has been devoted to improving the original model for allowing two

contact positions to occur at the same time.

Moreover, since it is known that the curve squeal phenomenon is far from be-

ing deterministic and parameters like temperature, humidity and even dirt and

particles on the rail can have a strong e�ect on its occurrence, in the frequency

domain model with one and two contact points, some input parameters are, in

the updated version of the software, de�ned as uncertain variables. As a result,

the model is used to give the frequency values of possible unstable eigenvalues of

the system while the range of uncertain parameters is randomly spanned.

As stated above, two di�erent cases have been investigated from an experi-

mental point of view in order to verify the suitability of the improved model with

two contact points. The �rst one considers a city tramway with independent re-

silient wheels on very sharp curves (case-Sirio tram in Milan) while the second one

considers train on a curve with check-rail (case-British Rail Class 150 Sprinter in

North Wales).

The �rst case investigated was also the original motivation of this research

that has its origin in an experimental campaign that took place in Milan in 2010-
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2011 involving Politecnico di Milano and the local transport service ATM. It was

aimed at investigating the high level of curve squeal noise present in several tight

curves around the city during the passages of the newest rolling stock tram named

Sirio. This tram is �tted with resilient independent wheels. Firstly, experimental

modal analysis procedures allowed characterising the wheel in terms of natural

frequencies, damping ratios and mode shapes up to 4 kHz that were believed to

be the most important. Afterwards, simultaneous measurements of rail vibration,

wheel vibration and radiated noise were performed during the tramcar transit in

a sharp curve. Many interesting features were captured during measurements and

they will be summarized later on in this thesis (see Chapter 2), however a simple

solution for mitigating the phenomenon was not found and moreover some details

could not entirely be explained by looking at the results. What was clear from

the beginning was the simultaneous presence of more than one contact point. For

the front inner wheel of a bogie, this was the �ange back often in contact with

the rail grooved head while the �ange of the outer wheel was in contact with the

rail running head.

During the last years, the Mechanical Engineering Department of Politecnico di

Milano was extensively involved in order to investigate the dynamic behaviour

of tramcars characterized by di�erent structural con�gurations, design solutions

(e.g., articulated bogie frames, independently rotating wheel) and operating con-

dition (e.g., curve radius and operation speed). The developed numerical model

[5], [6] has the capability, at each particular instant in time, to reproduce the ve-

hicle dynamic behaviour during the curve in terms of steady-state and transient

behaviour (e.g., due to curve negotiation or track irregularity excitation). Since

the squealing takes place under speci�ed operation conditions, the parameters

related with steady-state curving behaviour are needed for a correct investigation

of the phenomenon. For this reason, in order to obtain these parameters, a case

of a tramcar running in a curved track could be performed using the implemented

tramcar simulator developed in Milan. Many interesting results could be obtained

from this simulation, like the position of the contact points between wheel and

rail, longitudinal and lateral creepages and the force distribution on the di�er-

ent wheels (see chapter 4). These have been input into the curve squeal model

adopted in this thesis to predict the occurrence of this phenomenon.

The second case investigated regards the Class 150 Sprinter units in the UK.

When this train was introduced on the Llandudno to Blaenau Ffestiniog line
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in North Wales, a number of complaints arose from the intense squealing noise

generated during curving. The track on these curves was �tted with check rails. A

measurement programme was performed in May 1987 in which microphones were

placed adjacent to each wheel of the leading bogie of a Class 150 unit [7]. From

the frequency analysis it was clear that the frequencies involved in squeal were

correlated with radial modes of the wheel. The cause of this particular squeal

problem was believed to be due to vertical stick/slip forces acting between the

check rail and the wheel �ange.

Therefore, the aim is to reproduce this particular contact condition between �ange

back and check rail and verify by means of the model with two contact points

that the predicted frequencies are correlated to radial modes.

Structure of the thesis

This dissertation is divided into seven chapters as follows:

Chapter 1. Railway curve squeal: state of the art. In this chapter an

overview of what was investigated and discovered in previous years regarding the

squeal noise phenomenon is described.

Chapter 2. Squeal noise measurements. In this chapter the measure-

ments performed in Milan during the transit of a Sirio tram in a sharp curve are

illustrated in order to investigate which frequencies are involved for generating

squeal. The last part considers the measurements performed in Wales in order to

investigate the occurrences of squeal noise when a Sprinter train negotiates curves

�tted with check rails.

Chapter 3. Wheel �nite element modelling. In this chapter the �nite

element model of Sirio tram and Sprinter train wheels are described.

Chapter 4. Numerical model for tramcar vehicle dynamics simula-

tion. In this chapter a numerical model developed by Politecnico di Milano is

described in order to obtain the necessary parameters related with steady-state

curving behaviour in the case of the Sirio tram.

Chapter 5. Rolling friction model and self-excited vibration. First

part of this chapter describes the friction model adopted in the Huang's model.

In the second part the classic self-excited vibration problem, a mass on a moving
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belt, is studied.

Chapter 6. Squeal model for single wheel/rail contact. In this chapter

the curve squeal model developed by Huang is described. The frequency domain

self-excited feedback loop model is used to investigate the stability. Then, the

state-space self-excited vibration loop allows, by step-by-step integration, the time

domain responses to be calculated.

Chapter 7. Squeal model for two contact points. In this chapter the

improved Huang's model with two contact points in frequency and time domain

is described. Results obtained from the case of the Sirio tram and Sprinter train

are presented in terms of frequency domain.
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Chapter 1

Railway curve squeal: state of

the art

Curve squeal is a high-pitched noise that can disturb residents and occupants

of trains and trams. This phenomenon is induced when the tramcar negotiates

curved track but in particular it is generated from the unstable response of a

railway wheel and rail. In this coupling con�guration between bogie and rails,

the real velocity direction of the bogie is not equal to the motion direction. For

this reason a lateral relative velocity occurs which causes a sliding between wheel

and rail. The creepage can be used to describe this sliding within the contact

region and is de�ned as the ratio of the relative velocity between two bodies in

rolling contact and the rolling velocity. The stick/slip phenomenon generated

by the lateral sliding velocity induces a lateral creep force which originates the

excitation of the wheel and the rail. The sound radiation generated from the

wheel and rail vibrations is the reason for the squeal noise.

Von Stappenbeck [8] was the �rst to suggest, in 1954, that the lateral creep force is

the main reason for generating squeal noise. Then, he observed, by measurements,

that the high sound pressure levels of squealing noise can be assigned to the

natural frequencies of the wheel only and in particular at the inner front wheel.

Rudd [9], in 1976, proposed that the squeal noise might be excited by the

di�erent wheel/rail contact conditions: lateral creepage at the contact between

wheel tyre and rail tread, wheel �ange rubbing on the rail gauge face, and longi-

tudinal creepage at the contact on the wheel tyre due to di�erential slip. Despite

occasional con�icting results, almost all curve squeal noise experiments carried
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out reinforce the Von Stappenbeck's hypothesis [8] that the lateral creep forces

are responsible for generating squeal. Rudd also con�rmed, using a simple wheel-

rail model with measured impedances, that the sound radiation of the rail may

be neglected in comparison to the wheel [8].

Rudd gave little attention to di�erential slip or �ange rubbing as mechanisms

for squeal, but most of the work was focused on the lateral creepage excitation

mechanism. He was the �rst to indicate that the wheel response is unstable due

to the decreasing friction forces at large sliding velocities when the friction forces

are saturated. The slope of the friction curve in the falling regime is not constant

[10] and this nonlinearity limits the unstable response to a stable amplitude (limit

cycle).

Many of the subsequent models that appear in the literature adopt parts of Rudd's

approach to the theoretical modeling of squeal. Most of the models begin by as-

suming a characteristic of the creepage-dependent friction coe�cient. Van Ruiten

[11], for example, applied Rudd's model to trams.

In a review article, Remington [12] described the state of knowledge of railway

curve squeal up to 1985. Based on the analyses of published curve squeal literature

and related experimental results, he pointed out that to resolve questions on curve

squeal noise it would be necessary to develop a comprehensive analytical model

of squeal. He suggested that this model should include �nite element models of

railway wheel dynamics, numerical models for the dynamics of bogies in curves

and details of the friction coe�cient versus creepage. Since then, a number of

increasingly complex models for curve squeal, consisting of various sub-models,

have been published.

Fingberg's investigations [13] in 1990 were aimed at realizing wheel-rail noise

models for rolling and squealing noise, which describe the entire path from the

excitation up to the human ear.

The model takes into account dynamic behaviour of the bogie during curving

motion, details of the friction coe�cient versus creepage, wheel and rail vibration

characteristics and sound radiation characteristics.

The actual position of the contact and the actual creepages between the wheel

and the rail were determined by numerical simulations of the curving behaviour

of the bogie.

Kalker's theory [14] of rolling contact was adopted to consider the relations be-
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tween the tangential forces in the contact area and the creepages. Unfortunately,

this theory considers a constant sliding friction coe�cient which is not satis�ed in

respect to squealing noise. Experiments by Remington [12] showed that the fric-

tion coe�cient can decrease with increasing sliding velocity. Recently Fletcher's

measurements [15] added more understanding on how the friction characteristics

at large creepages depend on the contact point condition (dry or lubricated). Kraft

[10] interpreted the falling region theoretically and gave an analytical approxima-

tion for friction characteristics. For modelling curve squeal Kraft's representation

of friction coe�cient can be included in Kalker's theory.

A mathematical rail model with diagonal mass, damping and sti�ness matrices

was calculated, a so-called modal model. This modal model was approximated to

the calculated transfer function using a least-squares approximation.

The natural frequencies and the mode shapes of the railway wheel were calculated

by �nite elements. According to symmetry, only half of the wheelset had to be

modelled.

To calculate the sound radiation characteristics of the wheel, the boundary el-

ement method was used. Fingberg showed that for railway wheels, modal ex-

pansion techniques are applicable not only for the vibration analysis but also for

sound radiation investigations. Thus, the acoustical quantities such as sound �eld,

sound power and radiation e�ciency were calculated for the mode shapes only.

Some numerical results for the sound radiation were compared with measurements

using a steel model wheel at a scale of 1:5. The total sound power was calculated

from the vibration velocities of the wheel. A lateral creep of 2% and a longitudinal

creep of 0% were taken into account. The overall level of velocity at the wheel

contact point and the total sound power were shown as a function of the rolling

velocity. The overall level of velocity grew monotonically. The total sound power

showed some maxima and minima which were a consequence of the varying dom-

inant frequency in the sound power. Unfortunately, Fingberg's measurements of

squealing noise were not well-enough documented in detail for a direct comparison

of measurement and calculation. The numerical results, however, showed good

qualitative agreement with what was known from experiments.

Finally, the model was used to assess the level of damping required to eliminate

squeal under a range of creepage con�gurations.

Fingberg's work was extended further by Périard [16], who included a submodel

for the train body and considered more complicated wheel designs. Périard treated

curve squeal as a transient phenomenon with irregular motion as the train enters

15
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or leaves the curve.

Heckl [17] in 2000 modelled the squeal noise phenomenon by considering an

annular disc model which was excited at a point on the edge by an oscillating

lateral force. The disc had a uniform thickness and several out-of-plane modes.

This model is analogous to a railway wheel when traversing tight curves.

The numerical simulations using this model produced time histories for the disc

velocity with two distinct stages. In the �rst stage the lateral creep force was

linear and a slip condition was induced. The results showed an unstable growth

of the amplitudes. In the second stage the lateral force became non-linear and a

stick-slip oscillation was induced. A limit cycle oscillation arose with a velocity

amplitude which was equal to the lateral relative velocity. Heckl observed that

the limit cycle amplitude determines the intensity of the squeal: the slip section

is responsible for the instability, the stick section is responsible for the limit cycle.

Investigating the squeal noise phenomenon, Heckl observed that wheel modes may

play a relevant part in the stability behaviour and the limit cycle. She saw that

whether or not an individual mode is unstable depends strongly on the damping

of that mode.

The second part of Heckl's investigation [18] presented a frequency domain method

which uses the disc model to assess which modes would be unstable, but only for

the case of pure slip.

The �nal part of Heckl's investigation [19] studied active control to prevent the

instabilities associated with squeal noise generation.

De Beer [20] in 2003 presented a frequency domain model of curve squeal noise

due to lateral creepage. The model takes into account the contact mechanics, con-

tact dynamics, wheel dynamics and rail dynamics.

To describe the contact mechanics, he expressed the forces and displacements as a

quasi-static and a �uctuating part. Then, for very small vibration amplitude, the

non-linear creepage-dependent friction coe�cient µ(γ) was linearized. Therefore,

the lateral force was written as a result of vertical force and creepage following

the characteristics of the friction element.

The TWINS software package [21] was used to calculate the wheel, rail and con-

tact spring mobilities.

The Nyquist criterion was used to determine whether or not squeal noise occurs

and at which frequency. It was shown that squeal noise can occur at the fre-
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quencies of the axial wheel modes. De Beer saw that the lateral contact position

on the wheel tyre in�uences the occurrence of squeal noise and which resonance

frequency becomes dominant.

A laboratory test rig, which comprised a scale model of a wheel, was prepared to

generate squeal noise due to the lateral creepage. The measurements were per-

formed in a well-controlled environment. This test rig was used for validation of

the theoretical model.

The friction coe�cient of the rolling contact was measured as a function of the

rolling angle. This was performed for a situation in which squeal noise occurs and

in a situation without squeal noise. For the non-squealing case agreement between

experiment and calculations was good. For the squealing case, it was expected

from theory that the friction coe�cient would diminish. This was con�rmed in

the measurements, although the e�ect was much greater than indicated by the

calculations.

The model of De Beer was extended by Monk-Steel and Thompson [22] in

2003 by including the case of wheel �ange contact, which occurs at the leading

outer wheel (and possibly the trailing inner wheel) in sharp curves.

Chiello et al. [23] in 2006 presented a curve squeal model including not only

tangential dynamics (friction force) but also normal dynamics on the wheel/rail

contact zone. The model can predict the unstable wheel modes and the cor-

responding squeal level and spectrum. The numerical results agreed with the

experimental results given in a companion paper [24], where a parametric study

on a 1/4 scale test rig was performed. In this experiment Koch et al. investi-

gated the following parameters: rolling speed, wheel/rail lateral position, angle

of attack and vertical load. The results showed that the squeal sound pressure

amplitudes increase in direct proportion to rolling speed and to angle of attack.

In addition, the in�uence of vertical load and lateral contact position were shown

to be negligible. These results were in accordance with the �eld experiments on

a metro system [25]. Furthermore, the results showed, in accordance with Von

Stappenbeck's experiments [8], that the inner wheel of the leading axle is the

major radiator of squeal noise. Koch also found that the curve squeal disappears

when the wheel �ange is in contact with the rail. This would appear in agree-

ment with Bleedorn's experiments [26], which showed that �ange rubbing alone

doesn't produce squeal. Finally, although the numerical results showed that only
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a friction coe�cient decreasing with increasing creepage is able to destabilize the

system and induce wheel vibrations, the measurement of the corresponding fric-

tion in dry condition was not able to identify this negative slope. A hypothesis

was proposed to explain this phenomenon that the instantaneous friction coe�-

cient may decrease with contact velocity whereas the average friction coe�cient

remains constant with the angle of attack, but this was not validated.

Zhenyu Huang [3] in 2007 developed a model, which can predict curve squeal.

The central work of this thesis was to build a self-excited feedback loop model,

representing relations between the wheel/rail motions and the contact forces (see

Figure 1.1). As in the other models described so far only one contact point be-

tween wheel and rail is considered.

In order to build this model, a FE model of the wheel and an analytical model

Figure 1.1: Sub-models in the general curve squeal model. Huang [3]

of the rail were adopted to describe the wheel/rail structural dynamics. Fur-

thermore, since squealing takes place under some speci�ed curving conditions,

a vehicle dynamics model was required to provide necessary parameters related

with steady-state curving behaviour. Finally, an acoustic radiation module was

adopted to predict the noise level. Thus, this curve squeal model contains four

sub-models: wheel and rail structural dynamics, wheel/rail rolling contact dy-
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namics including the friction, vehicle dynamics, and acoustic radiation. These

sub-models together constitute a loop, as shown in Figure 1.1.
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Chapter 2

Squeal noise measurements

This chapter describes the two available measurement campaigns that will be used

as terms of comparisons for the numerical models described later in Chapters 6

and 7. The �rst set of measurements was performed in Milan (Italy) between

2010 and 2011 and was aimed at characterising squeal noise of a city tramcar

negotiating sharp curves (18 m radius) [4]. Experimental modal analysis was

performed on the resilient wheel of the tram and rail vibration, wheel vibration

and noise were simultaneously measured during curving. Noise at 1.5 m from

the track centre showed that the dominant frequency was around 1550 Hz and

LFmax levels could reach 120 dBA. The second available case is from the mid-

1980s and deals with British Rail Class 150 Sprinter diesel multiple-unit trains

(DMUs) producing high squeal noise levels when curving on 200 m radius curves

in North Wales [7]. In this case the frequency dominating the noise was around

3.6 kHz and maximum recorded levels were 140 dB.

2.1 Sirio tram in Milan (Italy)

This tram was designed for the local transport service company and is �tted with

independently rotating resilient wheels that contain 24 rubber elements positioned

between the web and the tyre. It is available in four or seven coach con�gurations

and in both cases bogies are rigidly connected to the body of the vehicle. Figure

2.1 shows the Sirio tram.
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Figure 2.1: Photo of a Sirio tram. Reproduced from
http://www.milanotrasporti.org/

2.1.1 Experimental modal analysis of the wheel

An experimental modal analysis campaign, performed in order to characterize the

mode shapes of the wheel, was carried out twice: once with the wheel suspended

and then with the wheel laid down on the rail (see Figure 2.2(a)). In both cases

the wheel was mounted on a bogie frame through its own bearings. The measuring

grid was formed of two concentric circles, one on the tyre and the other on the

web, divided in 24 arcs that subtend angles of 15◦, for a total of 48 points (see

Figure 2.2(b)). For each point, �ve di�erent impacts were given by means of

a dynamic impact hammer, then the signals were post-processed and averaged

to obtain the frequency response function (FRF), complex ratio between output
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Figure 2.2: (a) Experimental modal analysis set-up, (b) The 48 measuring points
on the wheel, [4].

(acceleration) and input (force) of the system. Results in this Chapter are referred

to the suspended con�guration and represented in terms of receptance (complex

ratio between displacement and force); it was shown that FRF di�erence between

suspended and laid-on-track con�gurations was negligible [4]. Figure 2.3 shows

the axial receptance on the tyre for an axial input at the same point, Figure 2.4

shows the axial receptance on the web. Finally, to better understand the radial

behaviour, an accelerometer was positioned on the tread and the receptance is

shown in Figure 2.5; the clear presence in the radial receptance of the same peaks

depicted in the axial one demonstrates how in-plane (radial) and out-of-plane

(axial) modes are strongly coupled.
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Figure 2.3: Axial receptance measured at the tyre point 2 for an axial input at
the same point on the suspended wheel.

In Figures 2.3 and 2.4 a unique number is given to each mode to facilitate vi-

bration modes representation. By using an experimental modal analysis software

developed within the Mechanical Engineering Department at Polimi these modes

were identi�ed in terms of natural frequencies, damping ratios and mode shapes

(axial component only). The idea of the algorithm is to identify �rst the poles

of the system through the so called Least Squares Complex Exponential method

(LSQE) and then to re�ne the corresponding natural frequencies and damping

ratios and to identify the mode shapes by means of a curve �tting procedure in

the frequency domain. At the time the experimental campaign was performed

only seven vibration modes were identi�ed according to this procedure, while in

the present work the modal identi�cation procedure has been extended to all the

modes numbered in the Figures and depicted from Figure 2.6 to 2.22.

The mode shapes that involve the tyre vibration are shown in Figures 2.6 to 2.15,

the outer black dots represent the measuring point on the tyre while the inner

ones the measuring point on the web. These identi�ed modes are described as out-

of-plane or in-plane vibration depending on the direction of the highest vibration

24



Squeal noise measurements

0 1000 2000 3000 4000 5000 6000
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

 

 

Frequency (Hz)

W
he

el
 r

ec
ep

ta
nc

es
 (

m
/N

)
INPUT:Axial on the web    OUTPUT:Axial on the web

11 1312
14 15 16

Figure 2.4: Axial receptance measured at the web point 1 for an axial input at
the same point on the suspended wheel.

amplitude. This means that a pure radial, or axial, mode does not exist because

due to the characteristics of the resilient wheel, the in-plane (radial) vibration is

always coupled with the out-of-plane (axial) one and vice versa. For this reason,

each type of motion always occurs together with the other one. The identi�ed

damping ratio (named h in these �gures) is shown in the �gure title along with

the identi�ed natural frequency.

Finally, Figures 2.16 to 2.22 show the mode shapes that predominantly involve

the web �exure.
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Figure 2.5: Radial receptance measured at a point on the tyre tread for a radial
input at the same point on the suspended wheel.
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Figure 2.6: 1st peak 535 Hz, out-of-plane mode with 2 nodal diameters

Figure 2.7: 2nd peak 1273 Hz, out-of-plane mode with 3 nodal diameters

Figure 2.8: 3rd peak 1423 Hz, in-plane mode with 3 nodal diameters
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Figure 2.9: 4th peak 2230 Hz, in-plane mode with 4 nodal diameters

Figure 2.10: 5th peak 2479 Hz, out-of-plane mode with 4 nodal diameters

Figure 2.11: 6th peak 3367 Hz, in-plane mode with 5 nodal diameters
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Figure 2.12: 7th peak 3736 Hz, out-of-plane mode with 5 nodal diameters

Figure 2.13: 8th peak 4662 Hz, in-plane mode with 6 nodal diameters

Figure 2.14: 9th peak 5112 Hz, out-of-plane mode with 6 nodal diameters
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Figure 2.15: 10th peak 6040 Hz, in-plane mode with 7 nodal diameters

Figure 2.16: 11th peak 1353 Hz, web �exural mode with 2 nodal diameters

Figure 2.17: 12th(a) peak 1560 Hz, web �exural mode with 0 nodal diameters
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Figure 2.18: 12th(b) peak 1604 Hz, web �exural mode with 0 nodal diameters

Figure 2.19: 13th 1951 Hz, web �exural mode with 3 nodal diameters

Figure 2.20: 14th peak 2765 Hz, web �exural mode with 4 nodal diameters
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Figure 2.21: 15th peak 3678 Hz, web �exural mode with 5 nodal diameters

Figure 2.22: 16th peak 4585 Hz, web �exural mode with 6 nodal diameters
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Finally, in a later stage of the measurement campaign, some FRFs of the wheel

assembled on the tram were recorded with the vehicle in standstill condition on

the track. The idea was to observe any possible di�erence in terms of natural

frequency due to the load of the vehicle on the resilient wheel. Figure 2.23 shows

the receptances of the suspended wheel (as described above) compared with those

measured on the fully loaded wheel. It can be observed that in the frequency

region up to 6000 Hz the two curves, although di�erent, do not present a signi�cant

shift of the natural frequencies.
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Figure 2.23: Blue curve: axial receptance measured at the tyre point 2 for an
axial input at the same point considering only the suspended wheel. Red line:
axial receptance measured at the tyre point 4 for an axial input at the tyre point
22 considering the whole tram with the wheel resting on the rail.
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2.1.2 Noise and vibration measurements

An experimental campaign was performed to characterize the squeal noise phe-

nomenon when the tramcar negotiates curved track. This was performed in the

curve shown in Figure 2.24. On this curve, two di�erent sections 8 metres from

each other were instrumented (see Figure 2.25).

Figure 2.24: Curve used to perform the line test, [4].

Figure 2.25: The tramcar during line test, [4].

During the test, two di�erent measurement systems, one on-board and the other

on the ground, were employed to record the measurements of two di�erent groups

of transducers. Thus, two separate acquisition systems were used.
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In the case of the on-board system, di�erent transducers were used and in par-

ticular six accelerometers mounted on each wheel in turn of the front axle of the

second bogie were used to measure the wheel vibration. These accelerometers

(named WA) were positioned at precise locations as shown in Figure 2.26(a).

Four accelerometers were located on the tyre covering a quarter of the wheel and

measuring in the axial direction, one was mounted on the web (axial direction)

and �nally one was used to measure the radial acceleration of the tyre.

Regarding the ground system, two transducer types were adopted: accelerometers

and microphones. The accelerometers (named RA) were placed on the rails to

measure their vibration. Both the inner and the outer rails were instrumented

with three accelerometers: one on the �ange, one on the grooved head and one

on the rail web, as shown in Figure 2.26(b). Four microphones (named M) were

located on the tested curve as shown in Figure 2.26(c). The microphones were

moved to the outer part of the curve (their position is mirrored to respect of the

axis of the rail) when the instrumented wheel faced this side.

Figure 2.26: (a) Position and sensing direction of the wheel accelerometers, (b)
Position and sensing direction of the rail accelerometers, (c) Location and height
of the microphones, instrumented wheel on the left side. Dimensions in metres,
[4].

Two di�erent test sessions were carried out with the tram running along the left

sided curve at 10 km/h. The �rst one considered the instrumented wheel mounted

on the left bogie, front axle, inner side. In this case the �ange back of the wheel

was possibly in contact with the rail grooved head. The second one referred to

the con�guration with the instrumented wheel facing outward, in this condition

there could be a contact between the �ange and the running head. This nature

of the wheel/rail contact was suggested by the highly worn condition of the rail

head and of the grooved head.
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Some of the measurements obtained from WA2, WA3 and R1 sensors are re-

ported below along with an example of pass-by noise from microphone M1. In

particular the time history of the acceleration signals, the harmonic and spectro-

gram analysis of particular time ranges and the time evolution of the vibration

levels restricted to 1/3 octave frequency bands are shown in order to character-

ize the phenomenon. Note that the microphones registered the sound pressures

generated from all the wheels and the rail, but only one of the 16 wheels was

instrumented and only the vibration signals of this one are reported. Therefore

it is di�cult to draw exhaustive conclusions on the phenomenon by simply corre-

lating the vibration of the instrumented wheel with the measurements obtained

from the microphones. In this sense, a clearer indication of the tones involved in

squeal is given by the wheel vibration and it is better to focus on this signal if

a comparison with possible unstable frequencies from a numerical model is to be

made. However an example of a pass-by noise level is presented to show the most

important tonal components recorded in the campaign.

Before presenting a summary of the post-processing of the measurements it is

important to observe that at the time of the measurements the rail was showing

a very high level of wear indicating in particular that the back of the �ange of the

inner wheel was consistently in contact with the grooved head while, as typically

happens, the �ange of the outer wheel was in contact with the rail head.

In Figures 2.27 to 2.39 the post-processed signals obtained from the WA2, WA3,

R1 and M1 sensors are shown in terms of time histories, spectra, spectrogram

and rms levels per 1/3 octave band. The amplitude of the spectra is normalized

in such a way that a unit amplitude sinusoidal signal in the time domain would

have an amplitude one in frequency domain.
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Figure 2.27: Time history and harmonic analysis of the acceleration signals ob-
tained from the inner and outer WA2 sensor (axial direction).

Figure 2.28: Time-frequency analysis of the acceleration signals obtained from
the inner (left Figure) and outer (right Figure) WA2 sensor (axial direction).
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Figure 2.29: Vibration levels of the acceleration signals obtained from the inner
(left Figure) and outer (right Figure) WA2 sensor (axial direction).
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Figure 2.30: Time history and harmonic analysis of the acceleration signals ob-
tained from the inner and outer WA3 sensor (radial direction).
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Figure 2.31: Time-frequency analysis of the acceleration signals obtained from
the inner (left Figure) and outer (right Figure) WA3 sensor (radial direction).
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Figure 2.32: Vibration levels of the acceleration signals obtained from the inner
(left Figure) and outer (right Figure) WA3 sensor (radial direction).
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Figure 2.33: Time history and harmonic analysis of the acceleration signals ob-
tained from the inner and outer R1 sensor.

Figure 2.34: Time-frequency analysis of the acceleration signals obtained from
the inner (left Figure) and outer (right Figure) R1 sensor.
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Figure 2.35: Vibration levels of the acceleration signals obtained from the inner
(left Figure) and outer (right Figure) R1 sensor.
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Figure 2.36: Time history and harmonic analysis of the microphone signals ob-
tained from the inner and outer M1 sensor.

41



Chapter 2

Figure 2.37: Time-frequency analysis of the microphone signals obtained from the
inner (left Figure) and outer (right Figure) M1 sensor.
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Figure 2.38: Sound pressure levels obtained from the inner (left Figure) and outer
(right Figure) M1 sensor.
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Figure 2.39: Time history and harmonic analysis of the acceleration signals ob-
tained from the WA3, WA2 and R1 sensors. Left Figure: inner side. Right Figure:
outer side.

By observing Figures 2.29 and 2.32 it is evident that there are some frequency

bands that dominate the response (i. e. 1414-1728 Hz, 2245-2828 and 2828-3564

Hz). This suggests that there are at least three wheel natural frequencies that

may be involved in squeal, however a closer look at the spectra and spectrogram

(see Figures 2.27, 2.28, 2.30 and 2.31) indicate that several wheel modes are likely

to be involved. According to curve squeal theory each tone recorded during the

vehicle passage is expected to be related to a wheel mode. In this case this is not

always straightforward. In fact, it is peculiar to observe that the modes at 1270 Hz

and 1420 Hz seem to generate squeal at higher frequencies (1330 Hz and 1550 Hz)

and the mode at 2480 Hz has a similar behaviour. It is unlikely that the modes

dominated by wheel web de�ections (like mode 12 in Figure 2.4) are the reason for

the squeal due to their high damping levels. Rail vibration con�rms that one of

the most important frequencies involved in the phenomenon is in fact at 1550 Hz

(see Figure 2.33, 2.34 and 2.35) and the sound pressure level shown in Figure 2.38

is entirely dominated by the same frequency. In order to better understand this

behaviour, harmonic analyses focused on some short interval ranges are shown in

Figures 2.40 to 2.44. All the Figures are related to the inner front wheel.

43



Chapter 2

T = 13.74 - 13.86 s
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Figure 2.40: Time history and harmonic analysis of the acceleration signals in the
range 13.74 - 13.86 s. The last Figure represent the comparison between them.
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T = 14.68 - 14.8 s
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Figure 2.41: Time history and harmonic analysis of the acceleration signals in the
range 14.68 - 14.8 s. The last Figure represent the comparison between them.
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T = 20.12 - 20.18 s
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Figure 2.42: Time history and harmonic analysis of the acceleration signals in the
range 20.12 - 20.18 s. The last Figure represent the comparison between them.
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T = 23.4 - 23.6 s
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Figure 2.43: Time history and harmonic analysis of the acceleration signals in the
range 23.4 - 23.6 s. The last Figure represent the comparison between them.
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T = 24.5 - 24.54 s
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Figure 2.44: Time history and harmonic analysis of the acceleration signals in the
range 24.5 - 24.54 s. The last Figure represent the comparison between them.

Despite the microphone being often dominated by noise at 1550 Hz, Figures 2.40 to

2.44 have shown that the mode(s) involved vary with time and all the frequencies

listed in Tables 2.1 and 2.2 have been observed.

It is important to note that the microphone was �xed at a certain position along

the curve and it is sensitive to all the tram wheels and the rail. Therefore, in

order to compare measured data with a numerical model (see Chapters 6 and 7)

it is better to use the information contained in the wheel vibration.
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WA2 (Ax. tyre) WA3 (Rad. tyre) WA6 (Ax. web)

12 - 13.5 sec 522 1324 2520 2072 2535 538 1321 2637
13.5 - 14.5 sec 2478 2519 2520 2478 2520

14.5 - 16 sec
527 1503 2472 1503 2479 2519 1503 2472 2515
2518 3718 3725 3716

19 - 20 sec 1475 1526 2467 1475 1537 2475 1485 1538 2477

20 - 21 sec
1306 1400 1489 1389 1489 1534 1364 1489 1537
2467 3707 3720 2546 3706 3720 2487 3707 3720

21 - 22 sec 1315 1491 3717
1490 1525 2518 525 1311 1486
3728 1528 3717

22 - 23 sec 1516 2528 3716
1494 1517 2527

1493 1516 2530
3724

23 - 24 sec
527 1321 1462 1319 1465 1512 523 1322 1462
1500 2070 2468 2070 2459 2521 1506 2461

24 - 25 sec 90 1337 2533 1334 2068 2531 90 1312 2674

Table 2.1: Experimental frequencies involved in squeal phenomenon observed from
the WA2, WA3 and WA6 sensors of the inner front wheel for di�erent time ranges.
Values in Hz.

WA2 (Ax. tyre) WA3 (Rad. tyre) WA6 (Ax. web)

11 - 12 sec
90 527 1353 532 1530 2581 528 1354 1535
1537 2472 2652 2645 2471 2600 2644

12 - 13 sec
526 1056 1310 530 1537 2118

527 2464
2118 2474 2557 2466 2556

13 - 15 sec
1357 1505 1551

1362 1548 3084 1478 1505 1549
3085

15 - 17 sec
1355 1487 1537

1537 3066 3605 1355 1481 1535
3053 3605

17 - 18 sec 1534 3060 1535 3065 1537

18 - 19 sec
528 1543 2460 532 1552 2100 528 1553 2504
2574 2660 2458 2575 2659 2581 2653

19 - 20 sec
527 1303 1512 1301 1514 2083 1303 1512 2482
2610 2634 2507 2608 2634 2629

Table 2.2: Experimental frequencies involved in squeal phenomenon observed
from the WA2, WA3 and WA6 sensors of the outer front wheel for di�erent time
ranges. Values in Hz.
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2.2 British Rail Class 150 Sprinter in North Wales

In the mid-1980s new Class 150 Sprinter diesel multiple units (see Figure 2.45)

were introduced onto a wide variety of routes, replacing 1950s designs. A severe

squeal noise problem occurred on some curving routes, with high amplitude sus-

tained tones in the region 2 to 5 kHz. Particular problems arose on the Llandudno

to Blaenau Ffestiniog line in North Wales. The 14 km section from Betws-y-Coed

to Ffestiniog tunnel has many reverse curves of radius 160 to 240 m with no

transition curves. For safety reasons the track on these curves was �tted with

check rails. BR Research was asked to investigate these problems. A measure-

Figure 2.45: Photo of the Class 150 Sprinter diesel multiple unit train. Repro-
duced from http://en.wikipedia.org/

ment programme was performed in May 1987 in which microphones were placed

adjacent to each wheel of the leading bogie of a Class 150 unit [7]. The train

ran in normal passenger operation on the Llandudno to Blaenau Ffestiniog route

and measurements were taken over the course of several trips over the route. A

member of the team also rode in the cab to identify location and curve direction.
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Very high noise levels were recorded adjacent to the wheels as shown in Figure

2.46, in some cases as high as 140 dB. Frequency analysis showed that squeal oc-

curred in the radial modes of the wheels. This is in contrast to the usual situation

in curve squeal where axial modes are excited by lateral forces at the running

surface. In a given curve a single radial mode was excited and this sustained a

constant noise level. The radial modes with 2, 3, 4, 5 and 8 nodal diameters were

found to occur, with the mode with 4 nodal diameters at 3.6 kHz being the most

commonly found. These modes have natural frequencies between 2 and 8 kHz [7].

Figure 2.46: Example of noise spectra measured at each wheel right hand curve
of 240 m [7].

The cause of this particular squeal problem was believed to be due to vertical

stick/slip forces acting between the check rail and the wheel �ange. The validity

of this hypothesis was reinforced observing the mode shapes of this type of wheel

as will be described in section 3.2. The radial modes present a large radial com-

ponent of motion at the back of the �ange and a small radial component at the

tread near the �eld side. They could therefore be readily excited by the check

rail while not being restrained or damped by the contact with the running rail.

Moreover, the wheel �ange backs were observed to be shiny, indicating sustained

contact with the check rails.

In order to eliminate the curve squeal, a damping treatment was recommended.
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After laboratory testing at BR Research in Derby a constrained layer damping

treatment was designed and approval was obtained from DMEE for �tting this to

the vehicles. A trial took place in 1988 in which a unit �tted with these dampers

was run over the branch line and shown not to squeal. Since then all Class 150,

153 and 156 vehicles were �tted with these dampers.

In 2011, as part of same work for the vehicle owner, the mode shapes and

damping of the Class 15x wheels with and without dampers were studied 1. Here

the case of the Class 15x wheels without dampers is described.

Measurements of wheel frequency response functions were carried out at Pullmans

in Cardi� on 7 September 2011.

The wheelset was suspended from its axle so that the wheels were clear of the

ground (see Figure 2.47). The wheel was excited using an instrumented hammer

at four positions on the tread as shown in Figure 2.48. Position 2 was located at

the nominal running position, 70 mm from the �ange-back, while position 3 was

approximately 20 mm from the �eld side.

Figure 2.47: Photograph of the test set-up at Pullmans, Cardi�.

1Measurements were performed under contract and results are here reported after personal

communication with D. J. Thompson
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Figure 2.48: Diagram of measurement positions.

The response was measured using an accelerometer at positions adjacent to the

excitation point in each case. Due to the light damping of the wheels, the analysis

time had to be chosen to be long enough to avoid truncation of the signals.

The measured frequency response functions at each of the four positions are shown

in Figures 2.49 and 2.50, while the modal damping and natural frequencies iden-

ti�ed using a circle �tting technique are listed in Table 2.3. Finally, in Table 2.4,

the measured modal damping and natural frequencies of damped Class 15x wheel

are reported.
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Figure 2.49: Modal identi�cation for undamped Class 15x wheel (0-5 kHz).

Figure 2.50: Modal identi�cation for undamped Class 15x wheel (5-10 kHz).
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Table 2.3: Measured natural frequencies and damping ratios of undamped Class
15x wheel.

Table 2.4: Measured natural frequencies and damping ratios of damped Class 15x
wheel.
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Wheel �nite element modelling

Referring to the measurement campaigns described in Chapter 2 the �nite ele-

ment models of the two respective wheels are described here. Particular attention

is given to the resilient wheel of the Sirio tram whose model has been developed

within this thesis work. In this sense, in order to improve accuracy, several itera-

tive attempts have been made. To reduce computational time an axi-symmetric

representation of the wheel has been adopted and measured FRFs have been used

to tune and update model parameters.

A �nite element model of the Class 150 wheel was already available; it is sum-

marised in section 3.2.

3.1 Resilient wheel of Sirio tram

3.1.1 Procedure to determine the rubber parameters for the FE

model

To understand the squeal noise phenomenon better, an accurate �nite element

model of the wheel is needed. The fundamental characteristics to consider in de-

veloping the FE model of this wheel are: the correct geometry of the wheel and

parameters for the steel and rubber (Young's moduli, Poisson's ratios and den-

sities). The geometry, steel parameters, and density of the rubber are available.

Regarding the density of the rubber, from measurements, this value was found

to be around 1957kg/m3. However in the FE model this value of density for the

rubber as to be adjusted because the wheel in the experimental modal analysis

has 24 rubber elements that �ll the half of the total space available between the

web and the tyre, while the axi-symmetric FE model considers the rubber element
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as an elastic ring that �lls all the space available. So, the model has to adopt an

equivalent density of the rubber to maintain the total mass of the rubber and the

value used is 1000kg/m3. In addition the Young's modulus and Poisson's ratio

of the rubber are unknown and have to be `tuned'so that the numerical natural

frequencies of the model are close to the experimental ones. To assign appropriate

rubber parameters, a very simple equation is used that calculates the mean square

error, in terms of natural frequencies, between the FE model and experimental

data:

e(E, ν)i = (fn(E, ν)− fe)2i . (3.1)

where e(E, ν) and fn(E, ν) indicate the mean square error and the numerical

natural frequencies that depend on the Young's modulus and Poisson's ratio of

the rubber, fe indicates the experimental natural frequencies while the index i

indicates the considered mode. Below, an example is performed to explain how

Eq.(3.1) can be use to tune the rubber parameters.

First of all, the natural frequencies to be considered and a degree of detail of

the wheel geometry have to be chosen. Then, by varying the rubber parameters, a

modal analysis is performed up to 6000 Hz for each combination of Young's mod-

ulus and Poisson's ratio of the rubber. In this way, for each natural frequency

considered, a matrix composed of the natural frequencies calculated for each com-

bination of Young's modulus and Poisson's ratio is determined. To simplify the

example, only one natural frequency is considered here, in particular the out-of-

plane mode with 2 nodal diameters at 535 Hz (the mode labeled '1' in Figure

2.3). Figure 3.1 indicates the wheel geometry of the model considered to study

this example while matrix (3.2) shows the natural frequencies of the out-of-plane

mode with 2 nodal diameters for di�erent rubber parameters values. Each column

of the matrix represent results for a �xed Poisson's ratio while Young's modulus

is spanned within the interval of Eq.(3.3). Eq.(3.4) shows Poisson's ratio range

considered.

F1 =



535.21 535.59 535.97 536.34 536.70 537.06

536.31 536.68 537.05 537.42 537.78 538.13

537.52 537.89 538.25 538.61 538.97 539.32

538.85 539.22 539.58 539.93 540.28 540.63

540.34 540.70 541.05 541.37 541.71 542.05

541.99 542.34 542.69 543.00 543.34 543.67

543.84 544.18 544.52 544.82 545.15 545.47


, (3.2)
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Figure 3.1: Wheel geometry of the model considered to study this example.

E = [92 : 1 : 97] MPa, (3.3)

ν = [0.36 : 0.01 : 0.42]. (3.4)

where the subscript of F (1 in this case) indicates the mode number given in

Figures 2.3 and 2.4.

Then, by means of Eq.(3.1) with i = 1, the mean square error between each nat-

ural frequency described in matrix (3.2) and the experimental natural frequency

can be calculated obtaining the matrix of the mean square errors related to this

mode:

e1 =



0.04 0.34 0.94 1.79 2.89 4.24

1.71 2.82 4.20 5.85 7.72 9.79

6.35 8.35 10.56 13.03 15.76 18.66

14.82 17.80 20.97 24.30 27.87 31.69

28.51 32.49 36.60 40.57 45.02 49.70

48.86 53.87 59.13 64.00 69.55 75.16

78.14 84.27 90.63 96.43 103.02 109.62


. (3.5)

From matrix (3.5) it can be noted that for rubber parameters equal to:

E = 92 MPa,

ν = 0.36.

the mean square error between numerical and experimental natural frequency is
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minimum.

Considering more than one mode in the tuning algorithm leads Eq.(3.1) to be

modi�ed as:

e(E, ν)tot =
∑
i

(fn(E, ν)− fe)2i , i = 1, 2, 3, (3.6)

and the matrix of the total mean square error is:

etot =



318.62 282.47 244.98 213.49 184.85 157.24

213.41 182.19 156.61 131.69 110.28 91.60

122.71 102.20 84.88 70.80 59.81 50.87

60.07 50.85 45.22 43.84 45.19 49.38

45.08 51.62 61.69 75.02 91.47 112.39

113.86 140.20 170.65 203.06 239.33 283.32

329.10 380.12 437.92 493.88 560.23 628.10


. (3.7)

Observing this last matrix, the rubber parameters that minimize the mean square

error between numerical and experimental natural frequencies change, in fact the

values are:

E = 95 MPa,

ν = 0.39.

Note it is more sensitive to E than it is to ν.

In order to understand if a good calibration has been done, a modal model is

needed to allow a comparison between numerical and experimental receptances.

In this way, the matching of the curves and the correspondence between numerical

and experimental peaks can be checked and evaluations regarding new updates

can be done. This modal model contains the modal frequencies, modal masses and

mode shapes obtained from the structural dynamics of the wheel calculated from

the FE model but it also allows the modal damping of each mode to be considered.

To perform this comparison a software produced for the Franco-German project

STARDAMP has been adopted [27], see Figures 3.2 for screenshot example. The

software calculates the wheel receptances at the nominal contact point (in the

three directions and rotations around the three axes) and the lateral receptance

at six selected points on the web. Finally, by means of the comparison between

numerical and experimental receptance, the modal damping of each mode can be

manually 'tuned.'
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Figure 3.2: Example of screenshot of the software [27].
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3.1.2 First model

The �rst model attempted considers only the wheel. Figure 3.3 shows the CAD

model of the Sirio wheel and it can be noticed that the web is composed of two

parts assembled by means of a bolted connection. Figure 3.4 shows the FE model

of the Sirio wheel obtained using the ANSYS software. The rubber is constrained

between the web and tyre, and the web is composed of a single part. Looking at

Figure 3.4 the red line indicates the presence of a rigid constraint, while the red

and blue vectors identify the positions where the FRFs have been calculated.

Figure 3.3: CAD model of the Sirio wheel

In order to have the numerical natural frequency very close to the experimental

ones, the rubber parameters have been identi�ed as described in section 3.1.1.

Six experimental natural frequencies related to six tyre modes have been taken

into account. The mode shapes of the �rst �ve natural frequencies are shown in

Figures 2.6, 2.7, 2.8, 2.9, 2.10 while the sixth is a mode obtained by means of

the comparison between the peak at 733 Hz in the radial experimental receptance

in Figure 2.5 and the corresponding numerical natural frequency found close to

experimental one. This numerical mode shape describes an in-plane mode with 2

nodal diameters. The experimental mode shape of this radial mode could not be

identi�ed due to a lack of accelerometer positions in the radial direction.

So, considering these six natural frequencies to calibrate the rubber parameters,
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Figure 3.4: FE model of the Sirio wheel: axi-symmetric model. The coloured
vectors indicate the positions where the FRFs are calculated.

modal analysis is performed up to 6000 Hz while the Young's modulus and Pois-

son's ratio of the rubber are chosen in the following range:

E = [92 : 1 : 97],

ν = [0.36 : 0.01 : 0.42].

These values are coherent with the parameters of the resilient wheel model used

by Jones and Thompson to study rolling noise generated by railway wheels with

visco-elastic layers [28].

The rubber parameters obtained are:

E = 96MPa, ν = 0.37.

The comparison between experimental and numerical wheel receptance at the

considered points (see Figure 3.4) are shown in Figures 3.5, 3.6 and 3.7. When

available, experimentally identi�ed damping ratios have been used, the best �tting

ones have been adopted otherwise.

Figures 3.5 and 3.6 are related to the wheel tyre and they show that the numerical

FRF is very close to the experimental one while Figure 3.7 (web) shows that the

two curves are distant from one another. In this last curve, the modal damping is

not modi�ed in order to show clearly the correspondence between numerical and

experimental peaks (black arrows).
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Figure 3.5: Radial receptance at a point on the tyre tread for a radial input at
the same point.
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Figure 3.6: Axial receptance at a tyre point for an axial input at the same point.
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Figure 3.7: Axial receptance at a web point for an axial input at the same point.

3.1.3 Second model

The second model attempted has the aim to reproduce the wheel with all the

details that can observe in reality. In this sense, the new model considers not

only the wheel but also other components such as hollow axle, axle and bearings

(see Figure 3.8).

Figure 3.9 shows the CAD model of the complete Sirio wheel. The lower web and

the hollow axle are linked by means of bolted connections, while two tapered roller

bearings are positioned between the axle and the hollow axle to allow the rotation

of the wheel around the axle. The FE model, shown in Figure 3.8, corresponds

to the CAD model. Both sides of the lower web are constrained at the hollow

axle (see the green lines), while the tapered roller bearings are constrained at the

hollow axle and the axle. The red line indicates the presence of a rigid constraint

on the axle.

The modal analysis is performed with the same rubber parameters used in the

�rst model. The radial and the axial receptances remain similar to those obtained

from the �rst model, therefore they are not shown here, while the axial receptance

on the web is shown in Figure 3.10. In this last Figure, the modal damping is not
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Figure 3.8: FE model of the complete Sirio wheel: axi-symmetric model.

Figure 3.9: CAD model of the complete Sirio wheel
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Figure 3.10: Axial receptance at a web point for an axial input at the same point.

modi�ed and the black arrows indicate the correspondence between the numerical

and experimental peaks. This receptance is similar to the receptance obtained

from the �rst model, rather, the natural frequencies have increased slightly. The

constraint between the web and the hollow axle is therefore too sti�.

For this reason the second model is modi�ed considering a less sti� constraint

between the axle and the hollow axle. The red line, in Figure 3.11, shows that

the constraint between the two parts takes place where the bolt is located (see

Figure 3.9).

The rubber parameters are again those from the �rst model. The radial and the

axial receptances do not change, therefore they are not shown here, while the

axial receptance on the web, in Figure 3.12, shows that the natural frequencies

are slightly lowered.
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Figure 3.11: Bond between the hollow axle and the axle.
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Figure 3.12: Axial receptance at a web point for an axial input at the same point.
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3.1.4 Third model

In order to investigate the e�ect of a possible modi�cation of sti�ness connection,

the model in Figure 3.13 is considered. The web is linked to the hollow axle in

the same way as shown in the last model developed. Then, the hollow axle is not

constrained at the axle, but is free. This is the case in which the sti�ness of the

bearing is neglected.

By comparing the natural frequencies of this model with the natural frequencies

of the same model rigidly constrained at the bearings, it has been observed that

(results not shown here) the frequencies related to the web modes do not change.

Particularly, they do not vary for modes with two or more nodal diameters.

Observing the web modes from the FE model, these modes involve only the web

movements. The axle, hollow axle and bearing movements seem to be involved

for modes at low frequencies (0 or 1 nodal diameter).

In conclusion, the rubber parameters should be the reason of the low correspon-

dence between the experimental and numerical web modes.

Figure 3.13: FE model of the wheel with hollow axle.
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3.1.5 Fourth model

The second model with the reduced sti�ness constraint between axle and hollow

axle is adopted and the rubber parameters are calibrated considering not only the

six natural frequencies considered in the �rst model but also �ve web modes with

nodal diameters from 2 to 6. In this case values obtained for the rubber are:

E = 36MPa, ν = 0.475.

Corresponding receptances are shown in Figures 3.14, 3.15 and 3.16.
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Figure 3.14: Radial receptance at a point on tyre tread for a radial input at the
same point.

The radial and axial receptances on the tyre show a good correspondence between

the experimental and numerical natural frequencies, while the axial receptance on

the web shows that the correspondence of frequencies is improved but the curves

do not present a good match. Observing these Figures it can be noted that if

the rubber parameters change, the web receptance changes much more than the

tyre receptance. Therefore, the rubber parameters remain di�cult to obtain and

the model developed up to now is not su�cient to describe correctly the axial
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Figure 3.15: Axial receptance in a tyre point for an axial input in the same point.
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Figure 3.16: Axial receptance at a web point for an axial input at the same point.
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behaviour on the web. It is possible that a 3D model of the wheel along with

more sophisticated model updating algorithm can give better results at the web.

However this is beyond the scope of the thesis. In fact, the web modes are un-

likely to be responsible for squeal due to their high damping levels and a correct

description of the tyre is assumed to be su�cient at this stage of the research.

In Table 3.1 the experimental natural frequencies, damping ratios and mode

shapes of the wheel are summarized and compared with the numerical ones. The

Table is composed of four columns: the �rst gives the number of nodal diameters

of each mode, the second one the experimental data in terms of natural frequen-

cies and damping ratio while the third, in the same way, the numerical data. The

last column shows the experimental and numerical mode shapes. Observing this

Table, it can be noted that some numerical or experimental modes cannot be

identi�ed and in some cases both. When the damping ratio is written in red, it

means that the numerical damping ratio is taken from experiments.

This last model is used to study the unstable frequencies of the wheel/rail system,

therefore, the modal model is used to generate a text �le [27] that will be the most

important input of the Huang model [3]. This �le contains the modal frequencies,

modal mass and mode shapes of the FE model and the selected damping ratios.
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Table 3.1: Experimental natural frequencies, damping ratio and mode shapes of
the wheel in comparison with the numerical ones.
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3.2 Class 15x wheel

After the 1987 tests it was hypothesised by BR Research that the radial modes

of the Class 15x wheel, as discussed in section 2.2, were largely una�ected by

contact with the running rail. They therefore had very light damping and could

be easily excited by the check rail contact. The damping treatment applied on

this wheel increased the damping of the radial and 1-nodal-circle modes and this

was su�cient to eliminate the squeal problem.

In 2011, as discussed in section 2.2, the mode shapes and damping of the Class 15x

wheels with and without dampers were studied. Moreover, �nite element anal-

ysis of the wheel was performed and used to produce a model of the frequency

response behaviour. Here the �nite element model of the undamped 15x Class

wheel is described 1.

To reduce the computation time, an axi-symmetric representation, shown in Fig-

ure 3.17, was adopted. Example of mode shapes of Class 15x wheel obtained by

means of the modal analysis are shown in Figure 3.18 while all the calculated nat-

ural frequencies are listed in Table 3.2. Moreover, Table 3.3 lists the percentage

di�erences between the measured and predicted natural frequencies. It can be

seen that the predictions for the wheels are close to the measured results.

Figure 3.17: FE model of cross-section of the Class 15x wheel.

1Measurements were performed under contract and results are here reported after personal

communication with D. J. Thompson
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Figure 3.18: Example of mode shapes of Class 15x wheel with n=2.

Table 3.2: Calculated natural frequencies of Class 15x wheel.
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Table 3.3: Di�erences between measured and predicted natural frequencies of
Class 15x wheel.

In order to assess the propensity to squeal due to excitation at the �ange-back,

a simple calculation was performed. The wheel was assumed to be excited by a

harmonic force at the �ange-back in the radial direction while it is connected to

the running rail. The connection to the rail was assumed to be in the vertical

direction through a contact spring at a position 15 mm from the �eld side of the

wheel tread. This is shown schematically in Figure 3.19.

Figure 3.20 shows the frequency response predicted for a Class 15x wheel with

and without the connection to the running rail. The locations of the radial modes

are shown as vertical dotted lines. It can be seen that the modes at 2.2, 2.9 and

3.6 kHz (radial modes with 2, 3 and 4 nodal diameters) experience very little

additional damping due to connection with the running rail. These modes are

therefore likely to be susceptible to squeal. This agrees qualitatively with the

results in [7] where radial modes with 2, 3, 4, 5 and 8 nodal diameters were found

to squeal.
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Figure 3.19: Diagram of calculation model showing radial excitation at �ange-
back and running rail connected through contact spring at wheel tread.

Figure 3.20: Calculated radial receptance of undamped Class 15x wheel at �ange-
back. (red line) free wheel, (black line) wheel coupled to rail, (blue dotted lines)
natural frequencies of radial modes.
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Numerical model for tramcar

vehicle dynamics simulation

Urban rail vehicles, especially tramcars, are characterized by structural con�gu-

ration and design solutions (e.g., articulated bogie frames, independently rotating

wheels) which can signi�cantly di�er from those of traditional rail vehicles. More-

over, the operating conditions in tramways present peculiar characteristics, di�er-

ent from those typical of railways: low radius curves, frequent departures/stops,

and low operational speed. For these reasons, a numerical model (named Mon-

stram), speci�c for urban vehicles, was developed at Politecnico di Milano [5], [6]

to reproduce the vehicle dynamic behaviour during the curve in terms of steady-

state and transient behaviour. In particular, it comprises a detailed contact force

schematization that takes into account the out of plane contacts which occur as

a consequence of the non-negligible wheel-rail yaw angle in low radius curves and

accounts for combined longitudinal, lateral and vertical vehicle dynamics.

In the curve squeal phenomenon modelled by Huang [3], some steady-state curv-

ing parameters, such as creepages, contact positions and normal contact forces,

are required. The dedicated steady-state curving model developed by Politecnico

di Milano can provide these parameters. This Chapter describes the Monstram

softwere and shows the results obtained for the speci�c case relating to the Sirio

tram measurement campaign described in Chapter 2.
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4.1 The vehicle model

All the results presented in this Chapter are carried out by means of a multi-body

mathematical model of the vehicle [5], [29]; large displacement schematization

and kinematic non-linearities are considered. This allows the dynamic behaviour

of a tramcar to be analyzed, running in tangent and curved track with variable

speed, in terms of steady-state and transient behaviour.

The most common con�gurations of modern tramcars can be reproduced by the

combination of two types of basic modules:

• Module A, which is made up of one car body and one bogie.

• Module B, which is a single car body, suspended between two type A mod-

ules.

The modules are implemented in the simulation software adopting the following

sequence: A-B-A-B-A-B-A (see Figure 4.1).

Figure 4.1: Low-�oor articulated tramcar (four type A modules and three type B
modules). [6]

These di�erent modules are linked to one another by means of kinematic con-

straints and/or elastic and viscous elements, which reproduce the actual connec-

tions between car bodies. The equations of motion are written using di�erent

frames of reference: the ideal track centreline is de�ned with respect to a �xed

global coordinate system, while di�erent auxiliary frames of reference are consid-

ered to describe the motion of A and B modules.

82



Numerical model for tramcar vehicle dynamics simulation

The equations of motion of each type B module are written by considering the

gross motion of a car body coordinate system with respect to the global coordi-

nate system. The origin of the car body coordinate system is rigidly attached

to the centre of gravity and its axes are the car body principal axes (see Figure

4.2(a)).

The equations of motion of each A module are written with respect to an auxil-

iary moving frame of reference (track frame of reference), travelling with variable

speed along the ideal track centreline and following the car body centre of grav-

ity (see Figure 4.2 (b)). The second and third A modules present the carbody

centre of gravity in the same place as the bogie centre of gravity, but in the �rst

and last this is not the case, therefore this leads to have a di�erent dynamic

behaviour if compared with the dynamic behaviour of the second and third A

modules. The relative motion of the A module components (carbody, bogie and

wheelsets) with respect to this moving reference frame is described through the

modal superposition approach: the equations of motion are written in terms of the

generalized coordinates corresponding to the rigid and �exible natural modes of

each module component (car body, bogie, and wheelset), considered free from any

mutual/global constraint. Finally, the total motion of each A module is obtained

by superimposing the small displacements of the single components on the gross

motion of the overall module, as it results from the motion of the track frame of

reference.

Figure 4.2: (a) Frames of reference adopted for each type B module. (b) Frames
of reference adopted for each type A module. [6]
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4.2 Wheel-rail contact model

The contact model adopted for the calculation of the forces acting at the wheel-

rail interface is suitable for reproducing the contact phenomena which are typical

of tramcar operation. In particular, it is designed to account for the out of plane

contacts which occur as a consequence of the non negligible wheel-rail yaw angle

in low radius curves, as well as the presence of multiple contact points on the

tread and the �ange, and also in the case of the presence of an edge rail.

The normal forces are evaluated through a multi-Hertzian model [30], while Shen-

Hedrick-Elkins [31] formulation is used to calculate those forces acting in the tan-

gential plane. This choice allows a limited number of contact parameters to be

considered, without in�uencing the accuracy of the results. Contact parameters

are evaluated beforehand outside the simulation procedure. Therefore, as a pre-

liminary step, a geometrical analysis is carried out in order to obtain the contact

parameters which are necessary to solve the contact problem.

The inputs to the geometrical analysis are wheel and rail pro�les, which are de-

�ned through discrete points, thus allowing measured pro�les to be considered as

well as theoretical ones. The pro�les are then coupled, for given values of relative

lateral displacement and yaw angle between wheel and rail, in order to �nd the

geometrical contact points. When a contact point is found, it is possible to deter-

mine its longitudinal position with respect to the wheel centre. The �nal results

of the geometrical analysis are multidimensional tables which contain contact pa-

rameters for each potential contact point, as a function of both the relative lateral

displacement and the yaw angle between the wheel and rail.

Then, at each integration step during time domain dynamic simulation, the actual

relative lateral displacement and yaw angle between the generic wheel and the rail

are derived from the system state variables, thus allowing the interpolation of the

precalculated contact tables, so that the actual contact parameters as well as the

number of the actual potential contact points can be obtained.

Finally, by means the multi-Hertzian model, for each contact point the Hertz

problem is solved and the normal contact forces are calculated. Then, by means

of the longitudinal and lateral creepages at each contact area, the lateral and lon-

gitudinal contact forces are determined trough the heuristic Shen-Hedrick-Elkins

contact model.
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4.3 Steady-state behaviour

Before showing the results of time domain multibody simulations, some prelimi-

nary considerations concerning the typical behaviour of tramway bogies in a curve

are introduced.

Considering the tram in steady-state full curving condition (see Figure 4.3), each

of the two axles will show a certain yaw angle with respect to the curve radial

direction. This yaw angle is the result of two di�erent contributions. The �rst

one is the 'geometric' contribution σg (see Figure 4.3(a)); by indicating with 2p

the bogie wheelbase and with R the curve radius, it follows that:

σg =
p

R
. (4.1)

Note that the angles σg on the two axles have opposite signs and this results

in the front axle being understeered, while the rear one is oversteered. For this

reason, each wheel velocity is formed not only by the longitudinal component,

but also by the transverse velocity (see the red arrows in Figure 4.3(a)). This last

component is the origin of the transverse creepage on each wheel and therefore the

transverse creep forces occur, which are directed outwards on the front axle and

inwards on the rear axle (see the blue arrows in Figure 4.3(a)). As a consequence,

a counter-steering yaw moment arises which makes the bogie rotate until the front

outer wheel reaches �ange contact condition and a �ange contact force takes place,

which tends to balance the e�ect of the creep forces mentioned above (see the blue

and black arrows in Figure 4.3(b)). It is worth remarking that, in sharp curves,

the �ange contact condition can be reached also on the rear inner wheel. The

mechanism described is responsible for the second contribution to the axle-track

relative yaw angle, that will be labelled the `clearance'contribution σc (see Figure

4.3(b)). Since the maximum wheel-rail relative displacement is that corresponding

to the lateral clearance (±c) between the wheelset and the track, if both the front

outer wheel and the rear inner wheel reach �ange contact condition, the angle σc
is given by:

σc =
c

p
. (4.2)

While the overall axle-track relative yaw angle on the front axle is given by the

sum of σg and σc, in the case of the rear axle the two contributions subtract. In

sharp curves, typical of urban tramways, the curve radius is small, therefore the
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Figure 4.3: Yaw angles of the two axles of a tramway bogie with respect to the
track: (a) `geometric contribution'associated with the ratio between wheelbase
and curve radius; (b) `clearance'contribution corresponding to the lateral clear-
ance (±c) between the wheelset and the track [32].
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`geometric'contribution is predominant over the `clearance'one and the rear axle

turns out to be oversteered.

The �nal outcome is that, when dealing with sharp curves, the wheel-rail lateral

contact forces on the four wheels of a tramway bogie are typically directed as

shown in Figure 4.4(a), no matter what the bogie architecture is (solid axles or

independently rotating wheels).

Figure 4.4: (a) Typical distribution of the lateral contact forces on the four wheels
of a tramway bogie. (b) Longitudinal contact forces on a bogie with solid axles:
the forces indicated in black and in grey respectively correspond to the e�ect of
the inner rail radius being smaller than that of the outer one and to the e�ect of
a wheelset lateral displacement (with respect to the centred position) [32].

While in the case of independently rotating wheels longitudinal forces are nearly

absent, in the case of a bogie equipped with solid axles longitudinal creep forces

(see Figure 4.4(b)) are added to the lateral ones (see Figure 4.4(a)).

Longitudinal forces occur because of the solid axle, which imposes the angular

speed of the two wheels to be equal, and they are a consequence of two di�erent

mechanisms. First, the radius of the inner rail is smaller than the outer one and,

consequently, the inner wheel travels at a speed lower than the outer wheel (see

black arrows in Figure 4.4(b)). Second, whenever the wheelset is displaced from

the centred position, the rolling radii on the two wheels become di�erent (see

grey arrows in Figure 4.4(b)). Both these e�ects lead to opposite creepages and

consequently opposite longitudinal forces on the two wheels of an axle (see Figure

4.4(b)).
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4.4 Numerical results - Simulation with gauge of 1445

mm

The analysis, reported here, refers to the second module A because this presents a

symmetric geometry, therefore the dynamic behaviour is easier to study. A tram

with independently rotating wheels is analyzed in a steady-state left curve with

track gauge 1445 mm. The curve radius is set to be 17.5m, the curve length 32m

and the tramway velocity 10km/h, while all the outputs will be shown considering

the system of reference adopted for each module, as shown in Figure 4.2.

4.4.1 Lateral displacements

When the bogie enters the curve, the front axle moves to the right, while the rear

one moves to the left and both the outer front and the inner rear wheel remain

in �ange contact during the whole curve. The relative wheel-rail lateral displace-

ment on each wheel are shown in Figure 4.5.
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Figure 4.5: Relative wheel-rail lateral displacement of the second module A.

Considering the adopted reference system, the displacement has positive sign if
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directed towards the left. Observing Figure 4.5, when the bogie fully enters the

curve, the lateral displacement signs are coherent with the adopted reference sys-

tem: the outer and inner front wheel have negative sign as the front axle moves

to the right, while the outer and inner rear wheel, which move to the left, have

positive sign. It can also be observed that the �anging wheel displacement is

smaller than the opposite one because elastic deformation of the resilient wheel

occurs.
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Figure 4.6: Relative wheel-rail lateral displacement of the �rst module A.

Considering Figure 4.6 about the relative wheel-rail displacement of the �rst mod-

ule A, it can be noted that, when the curve is �nished, the bogie does not go back

to the centred position due to the fact that in the case of independently rotating

wheels no self-aligning yaw moment acts on the axle.

4.4.2 Vertical forces

The vertical forces on each wheel are distributed as shown in Figure 4.7. Observing

this Figure the vertical loads on each wheel are partially transferred from the inner

to the outer wheels. For example, the outer front wheel is more loaded than the

opposite one. In addition, transient oscillations take place during entrance and
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exit of the curve, which are governed by the carbody natural modes. Finally, the

input axle loads are coherent with the output of the simulation before entering

the curve.
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Figure 4.7: Vertical forces on each wheel of the second module A.

4.4.3 Lateral forces

Considering the creep forces and the �ange contact forces, the lateral forces on

each wheel are distributed as shown in Figure 4.8.

The curves show that the outer front wheel presents a positive lateral force because

the �ange contact force, directed to the left, is bigger than the creep force that

is directed to the right. The same thing occurs for the inner rear wheel which is

in �ange contact condition, but presents a negative lateral force. In contrast, the

inner front and outer rear wheel do not present the �ange contact condition and

therefore the lateral forces are caused mainly from creep forces. The inner front

wheel presents a negative force while the outer rear one a positive force. Figure

4.4(a) shows the distribution of the lateral contact forces on the four wheels

mentioned above.
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Figure 4.8: Lateral forces on each wheel of the second module A.
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4.4.4 Longitudinal forces

The longitudinal forces on each wheel are distributed as shown in Figure 4.9. The

loads are very small and negligible if compared with the lateral and vertical loads

because independently rotating wheels are used. The only longitudinal forces
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Figure 4.9: Longitudinal forces on each wheel of the second module A.

di�erent from zero are the loads in �ange contact condition. These forces are

generated from creepage phenomena that occur because there are two di�erent

contact points and therefore two di�erent rolling radii.

4.4.5 Numerical results at the contact points

Although wheel and rail pro�les are considered rigid in the geometrical analysis,

besides the geometrical contact points, 'potential' contact points are also taken

into account. Contact may occur at these points as a consequence of the local

deformation of the pro�les under load. In this case, the simulation takes into

account six 'potential' contact points.

The results will show that for the outer front and inner rear wheels a contact
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occurs on the tread and between the �ange and the rail running head while for

the inner front and outer rear wheels only a contact on the tread occurs.

All the outputs will be represented considering the system of reference for each

contact point as shown in Figure 4.10 for the nominal contact point.

Figure 4.10: System of reference adopted in the nominal contact.

Tangents at the contact points

The tangents at the contact points, as shown in Figure 4.11, are fundamental to

understand if the forces are on the tread or on the �ange. Observing this Figure,

the `potential'contact points identi�ed on the outer front and inner rear wheels,

are on the tread (green curve) and between the �ange and the rail running head

(red curve). Instead, in the case of inner front and outer rear wheels, there is one

identi�ed on the tread (green curve) and another between the �ange back and the

rail grooved head (blue curve).

Normal, transverse and longitudinal contact forces

The normal contact forces are shown in Figure 4.12. The curves of this Figure

show that for the outer front and inner rear wheels a contact point occurs on the

tread and between the �ange and the rail running head while for the inner front

and outer rear wheels only a contact on the tread occurs and no contact between

the �ange back and rail grooved head happens, in fact the normal contact force

in that point is equal to zero (blue line).

The transverse contact forces are shown in Figure 4.13, while Figure 4.14 repre-

sents the normal and transverse contact forces on the front wheelset at 15 seconds

into the simulation. It can be seen that the lateral and vertical forces from the

decomposition are equal to the lateral and vertical forces obtained from the sim-

ulation (see Figures 4.8 and 4.7).

Finally, the longitudinal contact forces are shown in Figure 4.15.

93



Chapter 4

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Tangent inner front wheel

[s]

[ta
n]

 

 

1
2
3
4
5
6

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

[s]

[ta
n]

 

 
Tangent outer front wheel

1
2
3
4
5
6

0 5 10 15 20 25 30
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

[s]

[ta
n]

 

 
Tangent inner rear wheel

1
2
3
4
5
6

0 5 10 15 20 25 30
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

[s]

[ta
n]

 

 
Tangent outer rear wheel

1
2
3
4
5
6

Figure 4.11: Tangents at the contact points of the second module A.
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Figure 4.12: Normal contact forces on the wheels of the second module A.
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Figure 4.13: Transverse contact forces on the wheels of the second module A.

Figure 4.14: Distribution of the normal and transverse contact forces on the front
wheelset of the second module A at 15 seconds into the simulation.
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Figure 4.15: Longitudinal contact forces on the wheels of the second module A.
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Longitudinal, transverse and spin creepages

In Figures 4.16 and 4.17 are shown the longitudinal and transverse creepages.

The longitudinal ones, as seen with longitudinal forces, are nearly absent.
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Figure 4.16: Longitudinal creepages on the wheels of the second module A.

The results of the spin creepages in time domain are not reported here. To have

an idea of this value the spin creepages at the contact points of the inner and

outer front wheel at 15 seconds into the simulation are calculated as:

γ60 =
sin(θ)

Rw
. (4.3)

where θ is the angle of the tangent in the contact point while Rw is the radius of

the wheel. The values are reported in Table 4.1.
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Figure 4.17: Transverse creepages on the wheels of the second module A.

Wheel Contact point Name Unit Value

Outer front wheel Contact on the tread γ60 [1/m] 0.16
Outer front wheel Contact on the �ange γ60 [1/m] 2.95
Inner front wheel Contact on the tread γ60 [1/m] -0.13

Table 4.1: Spin creepages at the contact points of the inner and outer front wheel
at 15 seconds into the simulation.

Contact point positions

Figure 4.18 shows the di�erence in radius between the nominal contact point and

the new contact point of each wheel. In this way the vertical position with respect

to the nominal contact point can be determined but not the lateral position. For

this reason the lateral position with respect to the nominal contact point is needed.

This result is not reported here, but the lateral position at 15 seconds into the

simulation is obtained and reported in Figure 4.19.
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Figure 4.18: Di�erence in radius of the wheel contact points.

Considering the frame of reference at the nominal contact point, as shown in

Figure 4.19, the contact point positions of the inner and outer front wheel with

respect to the nominal contact point are shown in Figure 4.19 and reported in

Table 4.2.

Figure 4.19: Contact point positions on the front wheelset of the second module
A at 15 seconds into the simulation.
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Wheel Contact point Name Unit Value

Outer front wheel Contact on the tread [x y z] [mm] [-0.15 0 2.8]
Outer front wheel Contact on the �ange [x y z] [mm] [-7.65 50.65 19.8]
Inner front wheel Contact on the tread [x y z] [mm] [0.35 0 7.45]

Table 4.2: Contact point positions of the inner and outer front wheel at 15 seconds
into the simulation

Finally, using the geometry of the rail in Figure 4.20 and the contact points

on the wheels shown in Figure 4.19 the contact points on the rails with respect

to the system of reference shown in Figure 4.21 are visually estimated. They are

shown in Figure 4.21 and listed in Table 4.3.

Figure 4.20: Geometry of the rail (grooved rail Ic UNI 3142) adopted for the
experimental campaign [33].
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Figure 4.21: Contact point positions on the rails at 15 seconds into the simulation.

Rail Contact point Name Unit Values

Outer rail Contact on the tread [x y z] [mm] [0.5 0 -3.5]
Outer rail Contact on the �ange [x y z] [mm] [-7 50.65 13]
Inner rail Contact on the tread [x y z] [mm] [1.5 0 8]

Table 4.3: Contact point positions of the inner and outer rail at 15 seconds into
the simulation

4.5 Numerical results - Simulation with gauge of 1447

mm

Since, in the previous simulation, only contact points on tread and between the

�ange and the rail running head occur, a simulation with a widered track gauge

has been performed in order to obtain contact points between the �ange back and

rail grooved head. For this reason, a simulation with the same input parameters

mentioned before and gauge of 1447 mm have been investigated.

4.5.1 Numerical results at the contact points

In this case only the numerical results regarding the contact points of the inner

and outer front wheels have been taken into account. All the outputs will be

represented considering the system of reference for each contact point as shown

in Figure 4.10 for the nominal contact point.

Tangents and normal, transverse and longitudinal forces at the contact

points

By looking at Figures 4.22 and 4.23, the results show that, for the inner front

wheel, a contact point occurs on the tread (green line) and between the �ange

back and rail grooved head (blue line). For the outer front wheel, a contact point
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occurs on the tread (green line) and between the �ange and rail running head

(red line).
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Figure 4.22: Tangents and normal, transverse and longitudinal forces at the con-
tact points of the inner front wheel.
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Figure 4.23: Tangents and normal, transverse and longitudinal forces at the con-
tact points of the outer front wheel.

Longitudinal, transverse and spin creepages

In Figure 4.24 the longitudinal and transverse creepages at the contact points of

the inner and outer front wheels are shown. The longitudinal ones, as seen with

the longitudinal force, are nearly absent.

Then, the value of the spin creepages at 15 seconds into the simulation are calcu-

lated by means of Eq.(4.3) and reported in Table 4.4.

Wheel Contact point Name Unit Values

Inner front wheel Contact on the tread γ60 [1/m] -0.15
Inner front wheel Contact on the �ange back γ60 [1/m] 2.82
Outer front wheel Contact on the tread γ60 [1/m] 0.15
Outer front wheel Contact on the �ange γ60 [1/m] 2.87

Table 4.4: Spin creepage at the contact points of the inner and outer front wheel
at 15 seconds into the simulation.
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Figure 4.24: Longitudinal and transverse creepages at the contact points of the
inner and outer front wheels.

Contact point positions

Finally, considering the frame of reference at the nominal contact point, as shown

in Figure 4.25, the contact point positions of the inner and outer front wheels

and inner and outer rails with respect to the nominal contact point are shown in

Figure 4.25 and reported in Table 4.5.
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Figure 4.25: Contact point positions on the inner and outer front wheels and
inner and outer rails.

4.6 Numerical results - Simulation with gauge of 1450

mm

The last simulation analyzed has 1450 mm track gauge. In this case the contact

point between the �ange back and rail grooved head remains but the contact point

between the �ange and the rail running head disappears.

4.6.1 Numerical results at the contact points

Only the numerical results regarding the contact points of the inner and outer

front wheels have been taken into account. All the outputs will be represented

considering the system of reference for each contact point as shown in Figure 4.10

for the nominal contact point.

Tangents and normal, transverse and longitudinal forces at the contact

points

By looking at Figures 4.26 and 4.27, the results show that, for the inner front

wheel, a contact point occurs on the tread (green line) and between the �ange

back and rail grooved head (blue line). For the outer front wheel, a contact point

occurs only on the tread (green line).
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Wheel/Rail Contact point Name Unit Values

Inner wheel Contact on the tread [x y z] [mm] [0.22 0 4.5]
Inner wheel Contact on the �ange back [x y z] [mm] [-10.4 50.65 -40.2]
Inner rail Contact on the tread [x y z] [mm] [0 0 0]
Inner rail Contact on the �ange back [x y z] [mm] [-10 50.65 -48]

Outer wheel Contact on the tread [x y z] [mm] [-0.2 0 4.1]
Outer wheel Contact on the �ange [x y z] [mm] [-8 50.65 19.9]
Outer rail Contact on the tread [x y z] [mm] [0.5 0 -3.5]
Outer rail Contact on the �ange [x y z] [mm] [-7 50.65 13]

Table 4.5: Contact point positions of the inner and outer front wheels and inner
and outer rails at 15 seconds into the simulation.
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Figure 4.26: Tangents and normal, transverse and longitudinal forces at the con-
tact points of the inner front wheel.
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Figure 4.27: Tangents and normal, transverse and longitudinal forces at the con-
tact points of the outer front wheel.

Longitudinal, transverse and spin creepages

In Figure 4.28 the longitudinal and transverse creepages at the contact points of

the inner and outer front wheel are shown. The longitudinal ones, as seen with

longitudinal force, are nearly absent.

Then, the value of the spin creepages at 15 seconds into the simulation are calcu-

lated by means of Eq.(4.3) and reported in Table 4.6.

Wheel Contact point Name Unit Values

Inner front wheel Contact on the tread γ60 [1/m] -0.15
Inner front wheel Contact on the �ange back γ60 [1/m] 2.83
Outer front wheel Contact on the tread γ60 [1/m] 0.147

Table 4.6: Spin creepage at the contact points of the inner and outer front wheel
at 15 seconds into the simulation.
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Figure 4.28: Longitudinal and transverse creepages at the contact points of the
inner and outer front wheel.

Contact point positions

Finally, considering the frame of reference at the nominal contact point, as shown

in Figure 4.29, the contact point positions of the inner and outer front wheel and

inner and outer rail with respect to the nominal contact point are shown in Figure

4.29 and reported in Table 4.7.
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Figure 4.29: Contact point positions on the inner and outer front wheel and inner
and outer rail.

Wheel/Rail Contact point Name Unit Values

Inner wheel Contact on the tread [x y z] [mm] [0.13 0 2.66]
Inner wheel Contact on the �ange back [x y z] [mm] [-9.9 50.65 -40.3]
Inner rail Contact on the tread [x y z] [mm] [0 0 0]
Inner rail Contact on the �ange back [x y z] [mm] [-10 50.65 -48]

Outer wheel Contact on the tread [x y z] [mm] [-0.16 0 3.3]
Outer rail Contact on the tread [x y z] [mm] [0.5 0 -3.5]

Table 4.7: Contact point positions of the inner front wheel and inner rail at 15
seconds into the simulation.

4.7 Conclusion

For the squeal noise analysis, the results obtained from the inner front wheel with

a gauge of 1445 mm and the outer front wheel with a gauge of 1450 mm that

present a contact point on the tread will be used as input parameters to analyze

the squeal noise phenomenon by means of the model with one contact point.

The case with a gauge of 1447 mm, for which the inner and outer front wheels

have two contact points, is closer to the reality and the results will be used as

input parameters to analyze the squeal noise phenomenon by means of the model

with two contact points.

However it is important to remark that the contact conditions are variable along
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the curve and a deterministic approach may be not fully representative of the

phenomenon. Therefore, in the following, a certain degree of variability will be

added to some of the parameters calculated here.
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Rolling friction model and

self-excited vibration

The curve squeal noise generated by the tramcar during curve negotiation is de-

scribed as a form of self-excited vibration of the wheels due to the stick/slip phe-

nomenon generated at the contact points between wheels and rail. This stick/slip

mechanism is described by a negative damping coe�cient that varies with vibra-

tion amplitude and that can be related with the negative slope of the friction

characteristics at large sliding velocity. Rudd [9] was the �rst to suggest this the-

ory applied to this topic, then, many other authors, such as De Beer et al. [20],

Huang [3] and Koch et al. [24], con�rmed this hypothesis performing experiments

on a scale test rig with dry contact conditions, changing the yaw angle between

wheel and rail from negative to positive to produce the corresponding lateral

creepage. The �rst two observed that the squeal occurs when the friction forces

decrease at large lateral creepages, while the third also observed the occurrence

of the squeal at large sliding velocities but the friction force curve did not show

any region of negative slope.

Despite this last con�icting result, for the curve squeal model, only a friction

coe�cient decreasing with increasing creepage is able to destabilize the system

and induce wheel vibration. Therefore, for the application of squeal analysis,

the phenomenon of falling friction in sliding had to be considered in the friction

model.

In the �rst part of this chapter the friction model adopted in Huang's model

is described, while in the second part an idealized mass-on-moving-belt model

113



Chapter 5

is established to provide an interpretation of the possible self-excited vibration

due to the stick/slip phenomenon generated in the wheel/rail contact system.

McMillan [34] was one of many authors that studied this simple system.

5.1 Rolling friction model

5.1.1 Friction curve

The schematic diagram of the friction curve in Figure 5.1 relates the friction

force and sliding velocity. This relation is involved in steady-state rolling contact.

For small sliding velocity, the friction force increases linearly from zero, until it

saturates at the Coulomb friction limit. This is the adhering zone where microslip

occurs in part of the contact. After this zone, the rolling contact is under gross

sliding. For most cases, the friction force is a function of sliding velocity. Often,

the friction curve slopes down from the Coulomb friction limit and then may

reach a constant value. In Figure 5.1 (b) the in�uence of the normal force is

eliminated, while the sliding velocity is changed in to creepage. So, Figure 5.1 (a)

is changed into a curve in terms of non-dimensional friction force and creepage.

The non-dimensional friction force µi, i = 1, 2, 6, represents the non-dimensional

ratio between the friction force (moment) in the i direction and the nominal force.

Figure 5.1 (b), indicates also that the direction of the friction force is opposite to

the sliding velocity.

Figure 5.1: Schematic diagram of friction curve, (a) friction force with respect to
the sliding velocity, (b) non-dimensional friction force with respect to the creepage.
Huang [3]
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5.1.2 Theoretical model adopted for the friction curve in ad-

hering

To describe the friction curve in the adhering zone two methods can be adopted.

For cases with creepages and spin, Kalker's FASTSIM algorithm [35] can pro-

vide good computational speed with small cost in terms of accuracy. The Shen-

Hendrick-Elkins formula [31] is an appropriate analytical model for cases with

creepages and small spin.

Kalker's FASTSIM algorithm is adopted in Huang's model. Since this algorithm

needs the dimensions of the contact area to determine the relation between the

friction force and sliding velocity, Hertz's theory [36] is adopted to calculate this

quantity. Hertz showed that two curved solids in contact touch initially at a single

point, then, under the action of the lightest load, they deform in the vicinity of

their point of �rst contact with the consequence that they touch over an area.

This theory allows the dimensions of the contact area and the distribution of the

normal contact pressure to be obtained.

Kalker's FASTSIM algorithm allows the determination, from given Coulomb fric-

tion coe�cient µ0, of creepages, spin, Kalker's coe�cients and dimensions of the

contact area, the surface condition (stick or slip at any contact point) and the

local Coulomb friction. It also allows the total tangential forces to be calculated

in the steady-state rolling contact problem.

The results from FASTSIM show that the spin may not in�uence the longitudi-

nal friction, but it can have a large in�uence on the lateral friction. Considering

the lateral friction curve, the adhering zone can be in�uenced by the sign and

magnitude of the spin.

5.1.3 Heuristic formula for falling friction in sliding

The friction curve in gross sliding can only be partly explained in terms of tri-

bology. To describe the falling region, a heuristic approach is adopted in Huang's

model, which was �rst proposed by Kraft [10]. The falling function used in

Huang's model is slightly di�erent:

τ(γ) = 1− λe
(
−κ
|γ|

)
, (5.1)
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where λ is termed falling ratio, de�ned as:

λ ≡
µ0 − |µk(γ)|

µ0
, γ →∞, (5.2)

and κ is the saturation coe�cient which determines how quickly the friction falls

and indirectly this a�ects the point of saturation. The results from the heuris-

tic formula show that the falling ratio λ in�uences the friction curve at large

creepages, while the saturation coe�cient κ mainly in�uences the friction curve

at small creepages, close to the saturation zone.

5.1.4 Hertz contact spring

When any �uctuation of the two contacting bodies takes place in the normal direc-

tion, they will approach each other in the direction normal to the contact surface

without penetration. Due to the sti�ness of the material, an additional normal

force will be generated and added to the nominal load. The relation between the

normal force P > 0 and the normal approach δH > 0 can be represented by the

sti�ness of the Hertz spring kH which is non-linear but a linearised form is used

in the Huang's model.

5.2 Self-excited vibration

5.2.1 Equations of motion

Figure 5.2: Mass-on-moving-belt system, (a) friction driven mass-spring-damper
system, (b) schematic diagram of the forces acting on the mass. Huang [3]
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In the mass-spring-damper system shown in Figure 5.2 the belt is assumed

to move with a constant speed Vb. The mass m1 has a velocity of ẏtot. So, the

sliding velocity between the mass and belt is:

vsytot ≡ ẏtot − Vb. (5.3)

If the normal contact force N0 is known, the sliding friction force acting on the

mass can be obtained:

fytot = N0µ(vsytot), (5.4)

where the non-dimensional friction force µ includes a sign opposite to that of the

sliding velocity.

If the system is under equilibrium conditions, the mass m1 has a velocity of

ẏtot = 0. Thus, the equilibrium sliding velocity vsy0, given from Eq.(5.3), becomes

related only to the velocity of moving belt:

vsy0 = −Vb. (5.5)

Consequently, the equilibrium friction force fy0 given from Eq.(5.4) is:

fy0 = N0µ(vsy0). (5.6)

In these conditions, to balance the equilibrium friction force fy0, the spring k1
must stretch an equilibrium length ytot = y0 from its relaxed position, giving:

fy0 = N0µ(vsy0) = k1y0. (5.7)

If a transient force moves the mass from its steady-state position, the mass

will start to oscillate. The displacement of the mass can be written as the sum of

an equilibrium part y0 and a dynamic part y:

ytot ≡ y0 + y, (5.8)

and the velocity and acceleration are:

ẏtot = ẏ, (5.9)

ÿtot = ÿ, (5.10)
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Considering Eqs.(5.9) and (5.5), the sliding velocity, given from Eq.(5.3), can be

rewritten as a sum of an equilibrium part vsy0 and a dynamic part ẏ:

vsytot = vsy0 + ẏ. (5.11)

The friction force fytot can also be written as the sum of an equilibrium part fy0
and a dynamic part fy:

fytot ≡ fy0 + fy. (5.12)

The governing equation of this mass-spring-damper system is:

m1ÿtot + c1ẏtot + k1ytot = fytot. (5.13)

Combining Eqs.(5.7), (5.8), (5.9), (5.10) and (5.12) the equilibrium part in Eq.(5.13)

can be eliminated giving:

m1ÿ + c1ẏ + k1y = fy. (5.14)

Substituting Eqs.(5.11), (5.4) and (5.6) into Eq.(5.12) the dynamic friction force

can be related to the vibration of the mass, ẏ:

fy = fytot − fy0 = N0(µ(ẏ + vsy0)− µ(vsy0)). (5.15)

Thus, the equation of motion, considering the friction force in Eq.(5.15), can be

rewritten as:

m1ÿ + c1ẏ + k1y = N0(µ(ẏ + vsy0)− µ(vsy0)). (5.16)

5.2.2 Self-excited vibration

The equation of motion (5.16) describes the interaction between the sliding ve-

locity and the friction force in the mass-on-moving-belt system. This interaction

can also be described as a positive feedback loop, see Figure 5.3. The input of the

loop is a disturbance, while the output is the vibration of the mass. The block

in the forward route is a linear mass-spring-damper system. The block in the

feedback route can be considered as a generator for the friction force.

To study the stability of the mass-on-moving-belt system at one possible equi-

librium sliding velocity vsy0, the linearized system around this equilibrium point

can be considered. Eq.(5.16) shows that only the dynamic friction force fy is
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Figure 5.3: Feedback loop of the mass-on-moving-belt system. Huang [3]

non-linear:

fy(ẏ) = fytot − fy0 = N0(µ(ẏ + vsy0)− µ(vsy0)). (5.17)

Thus, the dynamic friction force evaluated in the equilibrium point, given from

the �rst order Taylor series approximation, is:

fy ≈ ẏ
∂fy

∂ẏ

∣∣∣∣∣
vsy0

= ẏN0

∂µ

∂ẏ

∣∣∣∣∣
vsy0

. (5.18)

Since the derivative of the dynamic friction force with respect to the dynamic slid-

ing velocity is similar to the de�nition of viscous damping, an equivalent damping

coe�cient about vsy0 can be de�ned as follows:

ce(v
s
y0) = − ẏ

∂fy

∂ẏ

∣∣∣∣∣
vsy0

. (5.19)

Therefore the dynamic friction force can be written as:

fy = −ceẏ. (5.20)

The linearized equation of motion can be obtined substituting Eq.(5.20) into

Eq.(5.14):

m1ÿ + (ce + c1)ẏ + k1y = 0. (5.21)

Thus, the stability of the mass-on-moving-belt system is judged by the following
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criterion: {
c1 ≥ 0, for ce > 0

c1 > |ce|, for ce ≤ 0
, (5.22)

which means the structural damping can keep the system stable if the equivalent

damping of the friction force is not negative, or the structural damping should

be greater than the value of the negative equivalent damping. In Figure 5.4, two

Figure 5.4: Equivalent damping e�ects of the friction force. Huang [3]

possible equilibrium points, AAA and BBB, are chosen on a friction curve with falling

zone. At point AAA, the friction curve has a negative ce. It is found that the dynamic

friction force fy = fytot − fy0 is always in the same direction as the increment of

dynamic sliding velocity ẏ = vsytot − vsy0. This will tend to increase the amplitude

of vibration and in turn increase the friction force. Therefore, the system may be

unstable at point AAA. However, at point B, the friction force has a positive ce. In

this case, the direction of dynamic friction force fy is always opposite to that of

the increment of dynamic sliding velocity ẏ. Thus, the dynamic friction force will

tend to decrease the vibration and maintain the system at the equilibrium point

BBB.

5.2.3 Self-excited vibration in a single-mode wheel

The mass-on-moving-belt model can be used directly to simulate the self-excited

behaviour of one of the modes of a curving wheel sliding on a rigid rail in one

direction. So, the mass-damper-spring system can be adopted to represent the

wheel with one mode. The rail with rigid surface is represented by the belt. The
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possible equilibrium lateral sliding velocity between the wheel and rail can be

represented by the belt velocity Vb.

As the rail is assumed to be motionless, the equilibrium sliding velocity vsy0
corresponds to the lateral component of rolling speed of the wheel, which is eval-

uated from its creepage. The total lateral creepage is de�ned as:

γ2tot =
vsytot

V0
. (5.23)

The lateral creepage in steady-state curving is quasi-static. Hence, the possible

equilibrium sliding velocity can be expressed in terms of the steady-state lateral

creepage:

vsy0 = γ20V0. (5.24)

Substituting Eq.(5.24) into Eq.(5.18) gives:

fy ≈ ẏN0

dµ

dẏ

∣∣∣∣∣
vsy0

= ẏ
N0

V0

dµ

d(ẏ/V0)

∣∣∣∣∣
vsy0/V0

= ẏ
N0

V0

dµ

dγ

∣∣∣∣∣
γ20

= ẏ
N0

V0
µ′(γy0). (5.25)

The equivalent damping coe�cient de�ned in Eq.(5.19) can thus be expressed as:

ce(γy0) = −
N0

V0
µ′(γ20). (5.26)

Since the curve of non-dimensional friction force is non-linear, the minimum damp-

ing ratio needed to make the unstable wheel into a stable one is dependent on

the steady-state creepage and the friction curve. To ensure the stability of the

wheel, a damping coe�cient is required that is as large as the maximum value of

the equivalent damping coe�cient of the friction force:

cc =
N0

V0
|µ′(γp)|, (5.27)

where the peak value of the derivative of friction force is at the creepage of γp.
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Squeal model for single

wheel/rail contact

The mass-on-moving-belt model, as discussed in Chapter 5, can explain well the

phenomenon of self-excited vibration of a single-mode wheel/rail system where the

excitation force (friction) sustaining the vibration is determined by the vibration

(sliding velocity) itself. This self-excited vibration loop can provide important

insights into the squeal noise phenomenon in terms of falling friction force that can

be considered as a negative equivalent damping, which may result in instability

of the contact system if it is greater than the structural damping. However, the

mass-on-moving-belt model is too simple to describe the squeal analysis in the

practical wheel/rail rolling contact system, therefore, a new model that considers

more than one degree of freedom is needed.

In this chapter Huang's model [3] is described. A general self-excited vibration

loop is established by including models of the wheel/rail rolling contact dynam-

ics and wheel and rail structural dynamics in state-space form. This will allow

the stability of the self-excited vibration loop to be calculated in the frequencies

domain that can show which wheel modes are prone to squeal, while an analysis

in the time domain allows vibration and noise levels to be estimated.
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6.1 Wheel/rail rolling contact dynamics

6.1.1 Wheel/rail rolling contact dynamics in the time

domain

The general wheel/rail rolling contact system is shown in Figure 6.1.

Figure 6.1: Forces and velocities of the wheel/rail contact system: (a) schematic
diagram of the wheel/rail contact system, (b) forces acting on the wheel and rail
in the contact area, (c) velocities of the wheel and rail. Huang [3]

The reference frame, given in Figure 6.1, shows that there are four degrees of

freedom. The longitudinal and lateral directions (with index 1 and 2) are located

in the contact plane. The vertical direction (with index 3) is normal to the

contact plane. The spin (with index 6) rotates around the vertical direction. The

massless Hertz contact spring is adopted to represent local dynamic behaviour

of the contact zone in the normal direction. Figures 6.1(b) and 6.1(c) show the

dynamic contact forces and the dynamic velocities.

The dynamic contact forces are the dynamic part of the friction forces. They can
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be represented in vector form as:

f ≡
{
f1 f2 f3 f6

}T
. (6.1)

Wheel and rail forces have opposite direction and equal magnitude. Therefore:

f
w ≡ −f, (6.2)

f
r ≡ f. (6.3)

The dynamic velocity vectors of wheel vw and rail vr are represented as:

vw ≡
{
vw1 vw2 vw3 vw6

}T
, (6.4)

vr ≡
{
vr1 vr2 vr3 vr6

}T
. (6.5)

The relation between the dynamic sliding velocities and dynamic friction forces

at the contact point is formulated as follows.

In the vertical direction, sliding does not exist because the wheel and the rail

maintain contact due to the vertical load. The local behaviour of the contact zone

can be described as the compression of the contact spring:

dc3 ≡ −(dr3 − dw3 ) = −
∫ t

0
(vr3 − vw3 )dt, (6.6)

where the compression of the contact spring is assumed to be positive. Conse-

quently, the relative velocity of the contact spring is:

vc3 ≡ −(vr3 − vw3 ). (6.7)

From Eq.(6.8), the vertical sliding velocity can then be determined, and must be

equal to zero:

vs3 ≡ (vr3 − vw3 ) + vc3 = 0. (6.8)

In the longitudinal, lateral and spin directions, the dynamic sliding velocities exist
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and are de�ned as the relative velocities between wheel and rail:
vs1
vs2
vs3
vs6

 ≡

vr1
vr2
vr3
vr6

−

vw1
vw2
vw3
vw6

+


0

0

vc3
0

 . (6.9)

For a general situation, during steady-state curving for a rolling speed V0, the

longitudinal sliding vs1tot, lateral sliding v
s
2tot and spin vs6tot are present simultane-

ously.

The spin sliding velocity is the component of the wheel rotation vector in the

direction normal to the contact patch:

vs6tot =
V0

r0
sin θ, (6.10)

where θ is the angle between the plane of the contact and the ground plane and r0
is the nominal radius of the wheel. The sliding velocities are normally evaluated

in terms of the creepages: 
γ1tot

γ2tot

γ6tot

 ≡ 1

V0


vs1tot
vs2tot
vs6tot

 , (6.11)

where γ1tot, γ2tot, γ6tot are the longitudinal, lateral, and spin creepages. These

sliding velocities and corresponding creepages can be split into a steady-state

component and a dynamic component:


γ1tot

γ2tot

γ6tot

 ≡ 1

V0


vs10 + vs1
vs20 + vs2
vs60 + vs6

 =



γ10 +
vs1

V0

γ20 +
vs2

V0

γ60 +
vs6

V0


. (6.12)

The steady-state components are determined by the steady-state curving be-

haviour. The dynamic components are determined by the dynamic sliding ve-

locities of the wheel and the rail at the contact patch, as given in Eq.(6.9)

The longitudinal and lateral friction force and the spin moment can be written

126



Squeal model for single wheel/rail contact

as the product of the normal contact force and corresponding non-dimensional

friction forces: 
f1tot

f2tot

f6tot

 =


µ1(γ1tot, γ2tot, γ6tot, f3tot)

µ2(γ1tot, γ2tot, γ6tot, f3tot)

µ6(γ1tot, γ2tot, γ6tot, f3tot)

 f3tot, (6.13)

where the non-dimensional friction forces are non-linear functions of all three

creepages and the normal contact force. These creepages can be calculated using

Kalker's FASTSIM algorithm [35]. The contact spring compresses and extends.

Therefore, the normal contact force �uctuates and can be considered as the sum

of a nominal contact force and a dynamic vertical force:

f3tot ≡ N0 + f3. (6.14)

The sti�ness of the contact spring kH is a non-linear function of the normal

contact force f3tot. It can be linearised around the steady-state point dc30 due to

normal load N0. So, for small vertical �uctuations around this point, the dynamic

vertical force is:

f3 = kHd
c
3 = −kH

∫ t

0
vs3dt. (6.15)

Using Eq.(6.13), the friction forces and spin moment at the steady-state point

can be expressed as:
f10

f20

f60

 =


µ1 (γ10, γ20, γ60, N0)

µ2 (γ10, γ20, γ60, N0)

µ6 (γ10, γ20, γ60, N0)

N0. (6.16)

These steady-state components of friction forces and moment are balanced by the

vehicle suspension forces, which means only the dynamic components are directly

related to squealing. Considering Eq.(6.13) and Eq.(6.16) the dynamic friction

forces can be written as: 
f1

f2

f6

 =


f1tot

f2tot

f6tot

−

f10

f20

f60

 =
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=



µ1

(
γ10 +

vs1

V0
, γ20 +

vs2

V0
, γ60 +

vs6

V0
, N0 + f3

)

µ2

(
γ10 +

vs1

V0
, γ20 +

vs2

V0
, γ60 +

vs6

V0
, N0 + f3

)

µ6

(
γ10 +

vs1

V0
, γ20 +

vs2

V0
, γ60 +

vs6

V0
, N0 + f3

)


(N0 + f3)−

+


µ1 (γ10, γ20, γ60, N0)

µ2 (γ10, γ20, γ60, N0)

µ6 (γ10, γ20, γ60, N0)

N0. (6.17)

These non-linear friction equations are used in the state-space wheel and rail

models.

6.1.2 Wheel/rail rolling contact dynamics in the frequency do-

main

In the quasi-steady condition, the dynamic forces and velocities can be converted

into the frequency response by assuming they are harmonically oscillating at fre-

quency ω:

fi = Fie
jωt, vwi = V w

i e
jωt, vri = V r

i e
jωt, vc3 = V c

3 e
jωt, vsi = V s

i e
jωt (6.18)

i = 1, 2, 3, 6.

In the frequency domain, the ratio between the velocity amplitude Vi at a location

i and the force amplitude Fk at a location k is called mobility Yik(ω). Hence,

the dynamic velocities and the dynamic forces can be connected by the mobility

matrix.

Wheel/rail mobilities are �rst calculated at the nominal contact point while a rigid

translation and rotation at the actual contact point is performed in a subsequent

stage.
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For the wheel this gives:
V w
1

V w
2

V w
3

V w
6

 = −


Y w
11 Y w

12 Y w
13 Y w

16

Y w
21 Y w

22 Y w
23 Y w

26

Y w
31 Y w

32 Y w
33 Y w

36

Y w
61 Y w

62 Y w
63 Y w

66



F1

F2

F3

F6

 . (6.19)

In this case, the mobilities can be calculated adopting the modal parameters

obtained by the FE model of the wheel (see chapter 3) as a sum of the response

at each mode [37]:

Y w
ik (ω) =

∑
n

jωφinφkn

mn(ω2
n − ω2 + 2jζnωωn)

, (6.20)

i = 1, 2, 3, 6,

k = 1, 2, 3, 6,

where φin and φkn are the mode shape amplitudes of mode n in direction i and

k, mn is the modal mass, ζn is the modal damping ratio and ωn is the natural

circular-frequency.

For the rail, Eq.(6.19) can be rewritten as:
V r
1

V r
2

V r
3

V r
6

 =


Y r
11 Y r

12 Y r
13 Y r

16

Y r
21 Y r

22 Y r
23 Y r

26

Y r
31 Y r

32 Y r
33 Y r

36

Y r
61 Y r

62 Y r
63 Y r

66



F1

F2

F3

F6

 . (6.21)

In this case, the railway track is reasonably represented by an in�nite structure,

so an FE model is not straightforward to be adopted. Therefore analytical models

are preferred. These can also represent di�erent kinds of tracks simply by chang-

ing a small number of parameters and largely reduce computational time.

The vertical mobility Y r
33 can be calculated using two types of beams: Euler-

Bernoulli beam [38] or Timoshenko beam on double elastic layer [38]. The �rst

one is based on the assumption that plane sections of the beam remain plane and

perpendicular to the neutral axis and can be adopted for low frequencies. In the

rail, when the frequencies are above 500 Hz, shear deformation and rotational in-

ertia play a role and should be included in the description of the beam. Therefore,
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to consider these e�ects, the Timoshenko beam model is adopted.

The lateral mobility Y r
22, the torsional mobility around x-axis Y r

44 and the cross-

lateral mobility Y r
24 are obtained using a multiple-beam model [39], [40], [41]. In

this model the whole rail is divided into three parts as shown in Figure 6.2: the

head and the foot are represented by two in�nite Timoshenko beams, and the web

is replaced by numerous beams which connect the head and foot. This con�gura-

tion allows account to be taken of the cross-sectional deformations which become

signi�cant for the lateral vibration of a rail at high frequencies.

Figure 6.2: Multiple beam model for lateral and torsional vibration of rail [39].

The spin mobility Y r
66, around the vertical direction, is calculated using the Tim-

oshenko beam or the Euler-Bernoulli beam [3], while the Lurcock's investigation

[42] regarding the longitudinal vibration properties of a railway track is taken

into account to calculate the longitudinal mobility Y r
11. The other mobilities are

considered equal to zero.
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Squeal model for single wheel/rail contact

For the contact spring the vertical velocity can be expressed as:

V c
3 = Y c

33F3, (6.22)

where the mobility of vertical contact spring Y c
33 is:

Y c
33 =

jω

kH
. (6.23)

According to Eq.(6.9), the amplitudes of the sliding velocities are:
V s
1

V s
2

V s
3

V s
6

 ≡

V r
1

V r
2

V r
3

V r
6

−

V w
1

V w
2

V w
3

V w
6

+


0

0

V c
3

0

 . (6.24)

Substituting Eq.(6.19), Eq.(6.21) and Eq.(6.22) into Eq.(6.24), the relation be-

tween the dynamic sliding velocities and the dynamic forces is:
V s
1

V s
2

V s
3

V s
6

 =


Y11 Y12 Y13 Y16

Y21 Y22 Y23 Y26

Y31 Y32 Y33 Y36

Y61 Y62 Y63 Y66



F1

F2

F3

F6

 , (6.25)

where Yik = Y w
ik + Y r

ik + Y c
ik is the sum of mobilities of wheel, rail, and contact

spring.

Rigid translation and rotation are performed to consider mobilities of wheel and

rail separately at the actual contact point as:

[Y w
ik ] = [Twtot][Y

w
ik ]0[T

w
tot]

T , (6.26)

[Y r
ik] = [T rtot][Y

r
ik]0[T

r
tot]

T . (6.27)

The rotation and translation matrices and the validity of this approach are de-

scribed in Appendix A.

Considering Eq.(6.25), the vertical sliding velocity is equal to zero:

V s
3 = Y31F1 + Y32F2 + Y33F3 + Y36F6 = 0. (6.28)
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Therefore, the vertical dynamic force can be expressed in terms of the other three

dynamic friction forces:

F3 = −

{
Y31

Y33

Y32

Y33

Y36

Y33

}
F1

F2

F6

 . (6.29)

This allows V s
3 to be eliminated from Eq.(6.25):

V s
1

V s
2

V s
6

 =

Y11 Y12 Y16

Y21 Y22 Y26

Y61 Y62 Y66



F1

F2

F6

+


Y13

Y23

Y63

F3. (6.30)

Substituting Eq.(6.29) into Eq.(6.30) gives:


V s
1

V s
2

V s
6

 =



Y11 −
Y13Y31

Y33
Y12 −

Y13Y32

Y33
Y16 −

Y13Y36

Y33

Y21 −
Y23Y31

Y33
Y22 −

Y23Y32

Y33
Y26 −

Y23Y36

Y33

Y61 −
Y63Y31

Y33
Y62 −

Y63Y32

Y33
Y66 −

Y63Y36

Y33



F1

F2

F6

 . (6.31)

So the dynamic relationship of the wheel/rail contact system can be written as:

V
s

= [G]F
f
, (6.32)

where the vector of dynamic sliding velocities is:

V
s ≡

{
V s
1 V s

2 V s
6

}
, (6.33)

the vector of dynamic friction forces is:

F
f ≡

{
F1 F2 F6

}
, (6.34)
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and the mobility matrix is:

[G] =



Y11 −
Y13Y31

Y33
Y12 −

Y13Y32

Y33
Y16 −

Y13Y36

Y33

Y21 −
Y23Y31

Y33
Y22 −

Y23Y32

Y33
Y26 −

Y23Y36

Y33

Y61 −
Y63Y31

Y33
Y62 −

Y63Y32

Y33
Y66 −

Y63Y36

Y33


. (6.35)

The friction equation in Eq.(6.17) can be linearized relative to the steady-state

point (γ10, γ20, γ60, N0) by assuming that the dynamic quantities are small and

ignoring terms of second order in small quantities:


f1

f2

f6

 =
N0

V0



∂µ1

∂γ1

∂µ1

∂γ2

∂µ1

∂γ6

∂µ1

∂f3

∂µ2

∂γ1

∂µ2

∂γ2

∂µ2

∂γ6

∂µ2

∂f3

∂µ6

∂γ1

∂µ6

∂γ2

∂µ6

∂γ6

∂µ6

∂f3




vs1
vs2
vs6
V0f3

+


µ1

µ2

µ6

 f3. (6.36)

To convert the last relationship into the frequency domain, the dynamic forces

and dynamic sliding velocities are assumed to be in harmonic form. So, Eq.(6.36)

can be rewritten as:


F1

F2

F6

 =
N0

V0



∂µ1

∂γ1

∂µ1

∂γ2

∂µ1

∂γ6

∂µ1

∂f3

∂µ2

∂γ1

∂µ2

∂γ2

∂µ2

∂γ6

∂µ2

∂f3

∂µ6

∂γ1

∂µ6

∂γ2

∂µ6

∂γ6

∂µ6

∂f3




V s
1

V s
2

V s
6

V0F3

+


µ1

µ2

µ6

F3. (6.37)

The terms related to F3 can be collected together to give:


F1

F2

F6

 =
N0

V0



∂µ1

∂γ1

∂µ1

∂γ2

∂µ1

∂γ6

∂µ2

∂γ1

∂µ2

∂γ2

∂µ2

∂γ6

∂µ6

∂γ1

∂µ6

∂γ2

∂µ6

∂γ6



V s
1

V s
2

V s
6

+



µ1 +N0

∂µ1

∂f3

µ2 +N0

∂µ2

∂f3

µ6 +N0

∂µ6

∂f3


F3. (6.38)

133



Chapter 6

Substituting Eq.(6.29) into this last equation, the dynamic friction forces can be

rewritten as:


F1

F2

F6

 =
N0

V0



∂µ1

∂γ1

∂µ1

∂γ2

∂µ1

∂γ6

∂µ2

∂γ1

∂µ2

∂γ2

∂µ2

∂γ6

∂µ6

∂γ1

∂µ6

∂γ2

∂µ6

∂γ6



V s
1

V s
2

V s
6

−


µ1 +N0

∂µ1

∂f3

µ2 +N0

∂µ2

∂f3

µ6 +N0

∂µ6

∂f3



{
Y31

Y33

Y32

Y33

Y36

Y33

}
F1

F2

F6

 .

(6.39)

This relationship between the dynamic friction forces and dynamic sliding veloc-

ities can be written as:

F
f

= [H1]V
s

+ [H2]F
f
, (6.40)

where the frictional impedance matrix [H1] is formed from the derivatives of non-

dimensional friction force with respect to creepages:

[H1] =
N0

V0



∂µ1

∂γ1

∂µ1

∂γ2

∂µ1

∂γ6

∂µ2

∂γ1

∂µ2

∂γ2

∂µ2

∂γ6

∂µ6

∂γ1

∂µ6

∂γ2

∂µ6

∂γ6


=



∂f1

∂vs1

∂f1

∂vs2

∂f1

∂vs6

∂f2

∂vs1

∂f2

∂vs2

∂f2

∂vs6

∂f6

∂vs1

∂f6

∂vs2

∂f6

∂vs6


, (6.41)

and the matrix [H2] determines the in�uence from the �uctuation of the vertical

force on the friction forces:

[H2] = −



µ1 +N0

∂µ1

∂f3

µ2 +N0

∂µ2

∂f3

µ6 +N0

∂µ6

∂f3



{
Y31

Y33

Y32

Y33

Y36

Y33

}
. (6.42)
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6.2 Self-excited vibration loop in the frequency

domain

From Eq.(6.32), the wheel/rail dynamic equation gives the relationship between

the dynamic friction forces and the dynamic sliding velocities:

V
s

= [G]F
f
, (6.43)

where F
f
is formed of the friction forces and spin moment, and V

s
includes the

dynamic sliding velocities in the longitudinal, lateral and spin directions.

Similarly, the linearized dynamic friction forces in Eq.(6.40) give the relationship

between the dynamic sliding velocities and the dynamic friction forces:

F
f

= [H1]V
s

+ [H2]F
f
. (6.44)

These two relationships can establish a MIMO (Multi-Input Multi-Output) sys-

tem, as shown in �gure 6.3. Substituting Eq.(6.43) into Eq.(6.44), the relation-

Figure 6.3: Frequency-domain self-excited vibration loop of the wheel/rail contact
system. Huang [3]

ship between the dynamic sliding velocities and the dynamic friction forces can

be rewritten as:

F
f

= ([H1][G] + [H2])F
f
. (6.45)

Thus, the open-loop transfer function is:

F
f

= [Q]F
f
, (6.46)

where [Q] = [H1][G] + [H2] is the open-loop transfer function matrix (TFM).
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6.3 Stability analysis for the frequency domain loop

6.3.1 Stability analysis for the lateral motion

If the input to a linear system is sinusoidal, the output is sinusoidal with the same

frequency but with a di�erent amplitude and phase. Therefore, in a SISO (Single-

Input Single-Output) linear system, the open-loop response to a sinusoidal input

at varying frequencies is represented by a transfer function with respect to the

frequency. The open-loop transfer function can be used to predict the behaviour

of the closed-loop system via classic frequency-domain techniques, e.g. Nyquist

stability criterion, Bode plot and root locus.

For a case where only lateral creepage is of interest the wheel/rail dynamic equa-

tion from Eq.(6.31) can be rewritten as:

V s
2 =

(
Y22 −

Y23Y32

Y33

)
F2 = GF2, (6.47)

and the linearized friction force from Eq.(6.39) is:

F2 =
N0

V0

∂µ2

∂γ2
V s
2 −

(
µ2 +N0

∂µ2

∂f3

)
Y32

Y33
F2 = H1V

s
2 +H2F2. (6.48)

In this case, the general system described in Figure 6.3 is reduced to a SISO

system with open loop:

F2 = (H1G+H2)F2, (6.49)

where the open-loop transfer function is:

Q = H1G+H2. (6.50)

If a system is stable, the response of the system to a disturbance will asymp-

totically tend to the equilibrium. For a SISO system, if an open-loop system is

stable, the stability analysis of its closed-loop system can be considered using its

open-loop Bode plot. The Bode plot is introduced here to illustrate the condi-

tions for instability of the corresponding closed feedback loop. According to the

Nyquist criterion, instability occurs in the closed loop system if the polar plot of

the open loop frequency response crosses the real axis beyond the critical point

(−1/k, j0), where for a positive feedback, k = −1. This means, in the Bode plot,

if the amplitude of the open loop transfer function H1G+H2 exceeds unity when
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the phase angle is 0◦, the positive feedback loop is unstable.

The physical meaning can be explained intuitively as follow. Only if the feedback

signals are in phase with the reference input, will the output amplitude increase

steadily.

Thus, the closed loop of the positive feedback system in Figure 6.3 will be unsta-

ble if the open loop frequency response has a gain q(ω) greater than unity at the

frequency giving an open loop phase of 0◦. Therefore, the unstable frequencies

must satisfy the following condition:

Re{q(ω)} > 1, (6.51)

Im{q(ω)} = 0. (6.52)

6.3.2 Stability analysis for the general system

For a general MIMO loop, the open-loop responses are represented by a transfer

function matrix (TFM) (see section 6.2). So, the techniques for the SISO system

may not be appropriate and need to be generalized for MIMO problems. The

Nyquist stability criterion was developed using eigenloci of the open-loop TFM

[43][44][45][46].

The system will be closed-loop stable if and only if the net sum of anti-clockwise

encirclements of the critical point (−1/k+ j0) by the set of eigenloci of the open-

loop TFM is equal to the total number of right-half plane poles of the TFM,

where for a positive feedback k = −1. Thus, the eigenloci of the open-loop TFM

must not encircle the critical point (1+j0) to make sure the closed-loop system is

stable, when the frequency is varied from zero to in�nity.

However, although this mathematical generalization of the classic Nyquist stabil-

ity criterion is possible, the application of this method has some limitations. So,

for predicting the possible unstable frequencies in the squeal loop, only the eigen-

value with maximum modulus at each frequency is chosen to judge the stability

by means of Eqs.(6.51) and (6.52).

6.4 Wheel/rail structural dynamics for time domain

model

In modelling squeal, the wheel and the rail are assumed to have linear dynamics,

but the excitation forces acting on them are non-linear. Thus, the method of step-
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by-step integration in the time domain is appropriate. This requires the dynamic

properties of the wheel and rail to be described in the state-space form.

6.4.1 Wheel structural dynamics

The Sirio wheel modelled by �nite element analysis (see Chapter 3) provides the

modal parameters (damping ratios, natural frequencies and mode shapes).

For the step-by-step simulation, the modal analysis method can be adopted to

describe the state-space response of the wheel and is built as follows.

Consider a wheel with nmodes, four input dynamic forces f
w

= {fw1 , fw2 , fw3 , fw6 }T

and four output dynamic velocities vw = {vw1 , vw2 , vw3 , vw6 }T de�ned in longitudinal,

lateral, vertical and spin direction. This can be represented by a state equation,

Eq.(6.53), and an output equation, Eq.(6.54):

ẇ = [Aw]w + [Bw]f
w
, (6.53)

vw = [Cw]w, (6.54)

where the 2n-order state-variable vector consists of the modal velocity q̇r and the

modal displacement qr of modes r (1 to n):

w =
{
q̇1 q̇2 . . . q̇n q1 q2 . . . qn

}T
=
{
w1 w2 . . . w2n

}T
. (6.55)

The system matrix [Aw] is:

[Aw] =



−2ζ1ω1 −ω2
1

−2ζ2ω2 −ω2
2

−2ζ3ω3 −ω2
3

. . . . . .

−2ζnωn −ω2
n

1

1

1 [0]
. . .

1



,

(6.56)

where ζr is the damping ratio of mode r (1 to n) and ωr is the natural frequency

(in radians/sec) of mode r. The input matrix [Bw] transforms external forces into
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modal forces for each mode, while the output matrix [Cw] sums modal velocities

of each mode into external velocities. Both matrices are formed of the mode shape

displacements at the contact point of the wheel:

[Bw] =


φ11 φ12 . . . φ1n 0 0 . . . 0

φ21 φ22 . . . φ2n 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

φk1 φk2 . . . φkn 0 0 . . . 0


T

, (6.57)

k = 1, 2, 3, 6

[Cw] =


φ11 φ12 . . . φ1n 0 0 . . . 0

φ21 φ22 . . . φ2n 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

φi1 φi2 . . . φin 0 0 . . . 0

 , (6.58)

i = 1, 2, 3, 6,

where φir and φkr are the mass-normalized mode shapes of mode r in the i and

k directions.

6.4.2 Rail structural dynamics

The point mobility curves (with force and response at the same point) of the track

in the longitudinal, lateral, vertical and spin directions are available (see section

6.1.2). For each mobility curve, it is possible to �nd an equivalent system with a

transfer function expressed in the form of a ratio of two polynomials:

H(s) ≡
B(s)

A(s)
=

b1s
m−1 + b2s

m−2 + · · ·+ bm

sm + a1sm−1 + a2sm−2 + · · ·+ am
, (6.59)

where the order of the denominator is one order higher than that of numera-

tor. Determining the coe�cients in this transfer function is actually a process

of system identi�cation. These coe�cients are not unique but depend on how

much error is allowed in the application. Normally, the higher the order of the

equivalent system assumed, the less is the error of the system identi�cation re-

sults. However, if the order of the system is very high, the performance of the

equivalent system is sensitive to the coe�cients and may be unstable. To seek

appropriate coe�cients, the `invfreqs'function provided by the Signal Processing
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Toolbox of MATLAB [47] can be adopted.

For any particular input force f rk and output response vri , their dynamic rela-

tionship can be described in the frequency domain by a mobility function Y r
ik.

A corresponding equivalent system with the form in Eq.(6.59) can be calculated,

with coe�cients aik,j and bik,j , j = 1, . . . ,m. Then, the state-space model can be

written as:

ṙik = [Arik]rik + [Br
ik]fk, (6.60)

vri = [Crik]rik + [Dr
ik]fk, (6.61)

where the vector of state variables is:

rik ≡
{
rik,1 rik,2 . . . rik,m

}T
. (6.62)

The system matrix is:

[Arik] ≡



−aik,1 −aik,2 . . . . . . −aik,m
1 0 . . . . . . 0

0 1 . . . 0
...

. . .
...

...

0 0 . . . 1 0


, (6.63)

the input matrix is:

[Br
ik] ≡

[
1 0 . . . 0

]T
, (6.64)

and the output matrix is:

[Crik] ≡
[
bik,1 bik,2 . . . bik,m

]
. (6.65)

The direct output matrix is zero:

[Dr
ik] = 0. (6.66)

The whole rail model is a multiple-input, multiple-output (MIMO) system. The

sub-models corresponding to each force input and each velocity output can be

assembled to give the complete state-space model. It is not necessary to include

all the possible FRFs, because the rail is normally much more damped than the

wheel and consequently has much lower response than it. Four point FRFs and no

cross FRF are retained to describe the dynamic properties at the contact point.
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These FRFs are longitudinal, lateral, vertical and spin, Y r
ik, i = k = 1, 2, 3, 6.

The complete state-space model of the rail, with four input forces

f
r

= {f r1 , f r2 , f r3 , f r6}T and four output velocities vr = {vr1, vr2, vr3, vr6}T , is obtained

by assembling these sub-models as follows:

ṙ = [Ar]r + [Br]f
r
, (6.67)

vr = [Cr]r, (6.68)

where the vector of state variables is:

r ≡
{
r11 r22 . . . r66

}T
, (6.69)

the system matrix is:

[Ar] ≡


[Ar11]

[Ar22]

[Ar33]

[Ar66]

 , (6.70)

the input matrix is:

[Br] ≡


[Br

11]

[Br
22]

[Br
33]

[Br
66]

 , (6.71)

and the output matrix is:

[Cr] ≡


[Cr11]

[Cr22]

[Cr33]

[Cr66]

 . (6.72)

6.5 Self-excited vibration loop in the time domain

A general self-excited vibration model can be developed by combining wheel/rail

structural models and the wheel/rail rolling contact model in a loop as shown in

Figure 6.4. This loop is running on a set of steady-state conditions. If some small
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transient disturbances f
′
are introduced, the wheel and rail will produce dynamic

responses vw and vr , which can give dynamic sliding velocities vs and the dy-

namic velocity of the contact spring vc3. In the contact area, the dynamic friction

forces may be produced due to either the dynamic sliding velocities or the normal

�uctuating force. Consequently, the contact forces f , including friction forces and

normal �uctuating force, are updated and fed back to the wheel and rail system.

For the simulation in the time domain, the general loop can be realized in state

space, as shown in Figure 6.5.

In the state-space model of the wheel, the state variables w are the dynamic dis-

placement and velocity of each mode. For the wheel, according to the de�nition of

wheel forces f
w
in Eq.(6.2), the contact forces f are reversed in sign and applied

to the wheel. To obtain the sliding velocities vs de�ned in Eq.(6.9), the velocities

of the wheel vw need to be reversed again. Hence, these negative signs can be

eliminated.

In the state-space model of the rail, the state variables r are derived from the

coe�cients of equivalent systems, so they have no clear physical meaning. Ac-

cording to the de�nition in Eq.(6.3), the forces acting on the rail are the same as

the contact forces f . The velocities of rail vr can be used directly to calculate

the sliding velocities vs, as given in Eq.(6.9).

The dynamic friction forces f1, f2, f6 can be calculated in Eq.(6.17), with creepage-

dependent non-dimensional friction forces µ1, µ2, µ6 and steady-state conditions

γ10, γ20, γ60, N0, V0, kH . The vertical �uctuating force f3 is updated by the dy-

namic vertical approach velocity vc3, as given in Eq.(6.15).

The whole state-space feedback loop includes the non-linear relationship between

the sliding velocities and the friction forces as well as the linear relationships in

the wheel/rail contact system. The time domain simulation is implemented by

the step-by-step integration from any small disturbance f
′
.
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Figure 6.4: General self-excited vibration loop of the wheel/rail contact system.
Huang [3]

Figure 6.5: State-space self-excited vibration loop of the wheel/rail contact sys-
tem. Huang [3]
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6.6 Results

The stick/slip phenomenon generated at the contact points between wheels and

rail, as discussed in this Chapter, is the reason for the self-excited vibration of the

wheels and therefore of the squeal noise generation. This stick/slip mechanism is

described by a negative damping coe�cient that varies with vibration amplitude

and that can be related to the negative slope of the friction characteristics at large

sliding velocities. For the curve squeal model, only a negative slope of the friction

coe�cient is able to destabilize the system and induce wheel vibration, therefore,

the parameters that describe this falling region are very important in order to

provoke the squeal noise. Unfortunately, the detailed description of the friction

curves are not available from the experimental campaign performed in Milan and

they are also very di�cult to estimate and discover in the literature. For this

reason, considering part of the outputs obtained from the numerical model simu-

lation of the bogie during the curve, a parametric study of these values has been

performed in order to �nd parameters values that can induce squeal noise.

Moreover, it is known that curve squeal noise is far from being deterministic and

parameters like temperature, humidity and even dirt and particles on the rail can

have a strong e�ect on curve squeal occurrence. For this reason in the frequency

domain model presented hereafter, parameters of friction characteristics and other

input parameters have been de�ned as uncertain variables and, as a result, the

model is used to give the frequency values of possible unstable eigenvalues of the

system while the range of uncertain parameters is randomly spanned.

Finally, to have an idea of which frequencies are really involved in the squeal phe-

nomenon and estimate noise levels, a time domain simulation has been performed.

In this case, since the time domain simulation is much longer than the frequency

domain one, only one combination of input parameters has been selected.

Despite the rail having a negligible e�ect in generating squeal noise, the analytical

model of the rail has been modi�ed considering the geometric properties of the

cross section of the grooved rail for modelling the urban track case.

6.6.1 Friction curve

Before showing the results, the lateral friction coe�cient versus lateral creepage

is shown in order to explain how the parameters κ and λ in�uence the falling

region. As discussed in Chapter 5 the equation that describes this region can be
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written as:

τ(γ) = 1− λe
(
−κ
|γ|

)
, (6.73)

where λ is the falling ratio while κ is the saturation coe�cient.

In Figure 6.6 friction curves are plotted for di�erent values of κ and λ. In the

�rst one, κ is �xed at 0.05 while λ is varied between 0.1 and 1. In the second one

the chosen value of λ is 0.5 and κ is varied between 0.005 and 1.
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Figure 6.6: Lateral friction coe�cient versus lateral creepage for di�erent value
of λ and κ. In the �rst graph, the κ value is �xed at 0.05. In the second graph
the λ value is �xed at 0.5.

The results of the heuristic formula show that the falling ratio λ in�uences

the friction curve at large creepages while the saturation coe�cient κ mainly

in�uences the friction curve at small creepages, close to the saturation zone.

In this case the friction characteristics in longitudinal and spin directions are not

shown or taken into account because they do not have a great contribution in

squeal generation, rather the falling zone of the friction curve is attenuated or

even eliminated if these values are large enough, and therefore, the squeal noise

could be attenuated.

6.6.2 Analysis in frequency domain

Analysis of the inner front wheel - case with gauge of 1445 mm

The outputs obtained simulating a left curve with a track gauge of 1445 mm, for

the inner front wheel, show a contact point on the tread. In Table 6.1, the results

obtained at 15 seconds into the simulation and other parameters are listed and

converted considering the frames of reference shown in Figure 6.7. By looking

145



Chapter 6

at this Table, most of the values are de�ned in a range of values with a uniform

distribution (U) to make, as discussed before, the input parameters for the squeal

model non-deterministic. The following approximation is used for spin around

direction normal to contact plane:

γ60 =
sin(θ)

Rw
, (6.74)

where θ is the contact angle between wheel and rail, while Rw the nominal radius

of the wheel. Since θ is de�ned in a uniform distribution, γ60 varies accordingly.

Description Name Unit Values

Normal contact force N0 [kN] U(20.6, 31)
Contact position on the wheel [x y z] [mm] [0 U(-12.5, -2.5) -0.35]
Contact position on the rail [x y z] [mm] [0 -8 -1.5]

Contact angle between wheel/rail θ [◦] U(2.1, 3.1)
Longitudinal creepage γ10 - U(-0.0006, -0.0004)

Lateral creepage γ20 - U(-0.0642, -0.0428)
Spin creepage γ60 [1/m] Eq.(6.74)

Curving velocity V [m/s] U(1.9, 3.6)
Nominal radius of the wheel Rw [m] 0.33

Transverse curve radius of the wheel Rwt [m] 0
Transverse curve radius of the rail Rrt [m] 0.230

Coloumb coe�cient µ0 - 0.4
Falling ratio λ - U(0.04, 0.06)

Saturation coe�cient κ - 0.8

Table 6.1: Input parameters at contact point on the tread of the inner front wheel.

Figure 6.7: Contact point position on the inner front wheel and inner rail.

Values λ and κ have been selected to have a negative slope at the creepages

considered. Figure 6.8 shows the range of friction curves range related to κ and

146



Squeal model for single wheel/rail contact

λ of Table 6.1.
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Figure 6.8: Lateral friction versus lateral creepage for λ equal to 0.8 and κ values
of 0.04, 0.05 and 0.06.

In order to produce a single set of inputs and to run a single case, uncertain

parameters are randomly extracted from the uniform distributions and, for each

case, the eigenvalues of the open loop are calculated for all frequencies.

Figure 6.9 summarizes the results for the inner leading wheel depicting black

dots at the unstable frequencies for each case run; in the background the wheel

mobility at the contact point in tangential and normal directions is also shown

for reference. A total of 450 cases have been calculated giving an idea of the

variability of the phenomenon. The model predicts unstable frequencies that are

close to measured ones, see Figure 6.10 although not all of them are present in

the wheel vibration spectrograms of Figure 6.10. One of the two most important

frequencies involved in squeal noise at 2550 Hz is found to be one of the more

likely to be unstable in the model as well. Also other frequencies that, although

present in the measurements, have less importance in terms of levels and persis-

tence, are also found in the predictions, like 530, 1330, 2100, 2250, 3600 and 3700

Hz. Interestingly also the model �nds that unstable eigenvalues can have higher
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frequencies than the corresponding natural mode. For example the mode at 1271

Hz would generate squeal at around 1330 Hz. It has been veri�ed that the mode

at 1271 Hz is the one responsible for possible squeal at 1330 Hz by adding �cti-

tious damping to it; as a consequence the unstable frequencies at around 1330 Hz

disappeared. The same thing has been done for the other frequencies possibly in-

volved in squeal noise and they are summarized in Table 6.2. Further comments

and explanations for this shift between wheel natural frequencies and unstable

frequencies will be given below in Section 6.6.3.

By looking at Figure 6.9 and Table 6.2, it can be noted that the predominately

axial modes (528 Hz and 1271 Hz) have been predicted to be unstable with a

certain persistence. This is due to the fact that the contact condition selected is

such as to readily excite the axial modes as the friction force is acting on the tread

in the axial direction (contact angle is in fact in between 2◦ and 3◦). Conversely

by looking at Figure 6.10 a frequency at around 1530 Hz is persistent and it is

not predicted by the model. This frequency is likely to be correlated with the

predominantly radial mode at 1423 Hz possibly excited by a friction force acting

on the �ange back; therefore, to predict this mode in the model, a contact point

on the �ange back may be needed as well. This will be discussed in the results

obtained from the model with two contact points later in Chapter 7.

Finally, it is interesting also to observe that the predicted unstable frequencies

in the range 2501-2537 Hz are connected with two modes, at 2475 Hz and 2536

Hz (see Table 6.2). In this sense, it has been veri�ed that if one of the two is

suppressed the other one is still capable of causing instabilities. On the one hand

Figure 6.11 shows the curve squeal occurrences adopting a wheel modal model

which does not include the mode at 2536 Hz and it is clear how the other mode,

at 2475 Hz, is still responsible for possible curve squeal in this frequency range.

On the other hand Figure 6.12 shows that the mode at 2536 Hz alone can give

instability as well. Both these modes again have a strong axial component at the

contact point.

To conclude, this example can be used to understand what are the most im-

portant factors in the appearance of unstable frequencies in the numerical model.

In fact, provided that the slope of the friction curve is negative and the modal

damping ratio of the wheel is relatively low, in order for unstable eigenvalues to

appear these other factors need to be taken into consideration:

• mode shape at contact point in axial and radial direction;
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• direction of friction force (i.e. tangent at contact point).

Only a wheel mode having an important mode shape component in the same

direction as the friction force can be readily responsible for curve squeal; in fact

the axial-to-radial mode shape ratio, combined with direction of friction force,

will be found to be important to explain the frequency shift mentioned above (see

section 6.6.3).
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Figure 6.9: Curve squeal occurrences diagram for the inner front wheel.
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Figure 6.10: Spectrogram of inner front wheel vibration acceleration during tram
pass-by.

Numerical modes Frequency range Experimental frequencies
involved in squeal predicted by model involved in squeal

242 Hz 237 - 242 Hz
529 Hz 529 - 531 Hz around 530 Hz
1271 Hz 1292 - 1311 Hz around 1330 Hz
2078 Hz 2072 - 2077 Hz around 2100 Hz
2224 Hz 2249 - 2276 Hz around 2250 Hz

2475 Hz, 2536 Hz 2501 - 2537 Hz around 2550 Hz
3346 Hz 3362 - 3376 Hz
3569 Hz 3565 - 3571 Hz around 3600 Hz
3680 Hz 3674 - 3687 Hz around 3700 Hz
4697 Hz 4699 - 4709 Hz
4934 Hz 4929 - 4933 Hz

Table 6.2: Numerical modes involved in squeal compared with the experimental
frequencies involved in squeal and frequency range predicted by the model.
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Figure 6.11: Curve squeal occurrences diagram for the inner front wheel with the
mode at 2536 Hz suppressed.
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Figure 6.12: Curve squeal occurrences diagram for the inner front wheel with the
mode at 2475 Hz suppressed.
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Analysis of the outer front wheel - case with gauge of 1450 mm

The same analysis performed before has been done for the outer front wheel in the

case of a simulation with a track gauge of 1450 mm. The results obtained from the

left curve steady-state numerical simulation show a contact point occurrence on

the tread; in Table 6.3 the uncertain and deterministic input parameters for the

squeal model are summarized and converted considering the frames of reference

shown in Figure 6.13.

Description Name Unit Values

Normal contact force N0 [kN] U(21.5, 32.3)
Curving velocity V [m/s] U(1.9, 3.6)

Nominal radius of the wheel Rw [m] 0.33
Transverse curve radius of the wheel Rwt [m] 0
Transverse curve radius of the rail Rrt [m] 0.230
Contact position on the wheel [x y z] [mm] [0 U(-8.3, -1.7) 0.16]
Contact position on the rail [x y z] [mm] [0 3.5 -0.5]

Contact angle between wheel/rail θ [◦] U(-3.3, -2.3)
Longitudinal creepage γ10 - U(-0.00025, -0.00016)

Lateral creepage γ20 - U(-0.0638, -0.0425)
Spin creepage γ60 [1/m] Eq.(6.74)

Coloumb coe�cient µ - 0.4
Falling ratio λ - U(0.04, 0.06)

Saturation coe�cient κ - 0.8

Table 6.3: Input parameters at contact point on the tread of the outer front wheel.

Figure 6.13: Contact point position on the outer front wheel and inner rail.

Also in this case, the model predicts unstable frequencies (see the black dots

in Figure 6.14) that are close to measured ones (see Figure 6.15). The same

consideration as before can be proposed again here in a similar way. The only

thing that changes from before is the shift of some frequencies that is more visible.
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In this sense, it is peculiar to observe that the predicted frequency range 1320-

1353 Hz is correlated to the modes 1271 Hz and 1417 Hz. It has been seen that if

one of the two modes is highly damped the unstable frequency still appears (see

Figure 6.16 and 6.17), but if one of the two modes is suppressed the predicted

frequency disappears (see Figure 6.18 and 6.19). Therefore, since the two modes

are close, it is possible that it is a coupling between them that will result in

unstable eigenvalues. Also this coupling between modes may play an important

role in explaining the frequency shift.

Furthermore, Table 6.4 highlights the presence of two predicted unstable fre-

quency ranges that seem not to be correlated with any mode shape (2359-2424 Hz

and 3630-3634 Hz). To understand this, while considering the range 2359-2424

Hz the following tests have been done. A wheel with increased damping ratio at

2224 Hz has been �rst considered and the predicted frequencies are reported in

Figure 6.20. It is interesting to observe that the frequency range 2303-2358 Hz

related to the mode at 2224 Hz and the range 2359-2424 Hz have disappeared.

Considering a wheel with increased damping ratio at 2475 Hz the predicted fre-

quencies are reported in Figure 6.21. In this case, it is peculiar to observe that

the predicted frequency range 2484-2503 Hz related to the modes 2475 and 2536

Hz is shifted to a range 2527-2542 Hz because the mode 2536 Hz persists, but

that the range 2359-2424 Hz has disappeared. Therefore, this suggests that the

frequency range 2359-2424 Hz occurs only if the frequencies at 2224 Hz and 2475

Hz are predicted by the model. To understand better what happens in this sit-

uation, from an eigenvalues point of view, a particular set of input parameters

from Table 6.3 has been chosen and Nyquist plots of the eigenvalues of the open

loop transfer function are shown in Figure 6.22. Note that since the model con-

siders more than one degree of freedom at the contact, only the eigenvalue with

highest magnitude is used to perform the Nyquist plot; the response would be

dominated by this eigenvalue. The �rst part shows the real and imaginary part

of highest magnitude eigenvalue for all the frequency steps. Red crosses indicate

the possible instabilities. The second part is a zoom of the �rst one in a frequency

range between 2200 Hz and 2500 Hz. From this last graph, it can be observed

that there are three unstable points, one identi�ed with the circle created by the

mode at 2224 Hz, one identi�ed with the circle created by the mode at 2475 Hz

and the third crossing point between these two. This is the reason why there is

a predicted unstable frequency in the range 2359-2424 Hz that is not correlated

with any mode shape.
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In the same way, it can be said that the frequencies in range 3630-3635 Hz occur

only if the modes at 3569 Hz and 3680 Hz are excited.
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Figure 6.14: Curve squeal occurrences diagram for the outer front wheel.
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Figure 6.15: Spectrogram of outer front wheel vibration acceleration during tram
pass-by.

Numerical modes Frequency range Experimental frequencies
involved in squeal predicted by model involved in squeal

242 Hz 242 - 250 Hz
529 Hz 530 - 534 Hz around 530 Hz

1271 Hz, 1417 Hz 1320 - 1353 Hz around 1330 Hz
2078 Hz 2075 - 2082 Hz around 2100 Hz
2224 Hz 2303 - 2358 Hz around 2300 Hz

2359 - 2424 Hz
2475 Hz, 2536 Hz 2484 - 2503 Hz around 2550 Hz

3346 Hz 3418 - 3460 Hz
3569 Hz 3565 - 3581 Hz around 3600 Hz

3630 - 3634 Hz
3680 Hz 3656 - 3669 Hz around 3700 Hz
4697 Hz 4739 - 4760 Hz
4934 Hz 4928 - 4939 Hz

Table 6.4: Numerical modes involved in squeal compared with the experimental
frequencies involved in squeal and frequency range predicted by the model.
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Figure 6.16: Curve squeal occurrences diagram for the outer front wheel in case
with increased damping ratio at 1271 Hz.
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Figure 6.17: Curve squeal occurrences diagram for the outer front wheel in case
with increased damping ratio at 1417 Hz.
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Figure 6.18: Curve squeal occurrences diagram for the outer front wheel in case
with the mode at 1271 Hz suppressed.
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Figure 6.19: Curve squeal occurrences diagram for the outer front wheel in case
with the mode at 1417 Hz suppressed.
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Figure 6.20: Curve squeal occurrences diagram for the outer front wheel in case
with increased damping ratio at 2224 Hz.
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Figure 6.21: Curve squeal occurrences diagram for the outer front wheel in case
with increased damping ratio at 2475 Hz.
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Figure 6.22: Nyquist plots of the eigenvalues.
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6.6.3 On understanding the shift in frequency

In order to understand the visible shift in frequency mentioned before, it has been

veri�ed that neither the high damping values related to the resilient wheel nor

the presence of the rail in the model can be considered responsible. Moreover it

has also been measured that the position of the peaks in the wheel FRF is hardly

in�uenced by the vehicle load (see Figure 2.23); therefore this also cannot explain

the shift in frequency.

Focusing on the numerical results obtained from the outer front wheel of the

Sirio with gauge of 1450 mm, di�erent tests have been performed in order to

understand the shift in frequency related to the mode at 1271 Hz. By looking

at the results in Figure 6.14, it can be seen that the mode excited at 529 Hz

does not present a shift in predicted unstable frequency. The �rst hypothesis to

explain this it is that the displacement direction of the mode shape occurs along

the same direction of the tangent at the contact point (see numerical mode at

529 Hz in Figure 6.23) along which the friction force works. For this reason, by

�ctitiously changing the contact angle following exactly the mode shape direction

of the modes at 1417 Hz and 1271 Hz, no frequency shift is expect for those

modes. Figure 6.23 reports the contact angle used to assess frequency shift for

modes at 1271 Hz and 1417 Hz. The former has a ratio between radial and axial

modal displacement that will result in an angle equal to 30◦ while the latter will

give an angle of nearly -45◦. It is important to note that in reality these contact

angles cannot physically appear at the contact point shown in the drawings but

they can be used to understand better the results shown so far.

Predicted frequencies are reported in Figures 6.24 and 6.25 for the case with

contact angle at 30◦ and -45◦, respectively. In each case only the mode displacing

with the contact angle is excited and no shift in frequency appears.

By looking at Figure 6.24, it is interesting also to observe that the mode at

529 Hz remains excited but the predicted unstable frequencies vary within 536-

541 Hz, slightly shifted compared with the one represented in Figure 6.14. In the

same way, since the mode at 2224 Hz has a mode shape similar to the mode at

1271 Hz, it is expected that the predicted frequency range reported in Figure 6.14

becomes smaller and equal to the mode at 2224 Hz. Figure 6.24 con�rms. In

contrast, in Figure 6.25, the unstable frequency at 529 Hz disappears while a new

predicted frequency related to a mode at 740 Hz arises. Of course this mode has

a mode shape at the contact point more aligned with the direction of the contact

force.
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Figure 6.23: First one: numerical mode at 529 Hz. Second one: numerical mode
at 1271 Hz. Third one: numerical mode at 1417 Hz.
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Figure 6.24: Curve squeal occurrences diagram for the outer front wheel with
contact angle between wheel and rail of 30◦.
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Figure 6.25: Curve squeal occurrences diagram for the outer front wheel with
contact angle between wheel and rail of -45◦.
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The modes at 1270 Hz and at 1420 Hz are likely to be excited together, the

peaks are close and the predicted unstable frequency range is due to both.

In order to understand better the shift in frequency in terms of eigenvalues, a

particular set of input parameters from the Table 6.3 has been chosen and Nyquist

plots of the eigenvalues of the open loop transfer function are now discussed for the

three cases of Figure 6.23. Figure 6.26 refers to the case with the real contact angle

between wheel and rail, while Figures 6.27 and 6.28 refer to the cases with contact

angle of 30◦ and -45◦, respectively. Each of the �gures presents two Nyquist plots.

The �rst one shows the real and imaginary part of highest magnitude eigenvalue

for all frequencies. Red crosses indicate the possible instabilities. The second

is a zoom of the �rst one in a frequency range between 1000 Hz and 2000 Hz.

Only the modes at 1270 Hz and 1420 Hz are highlighted and the position of

their natural frequencies is marked with green circles. The case with contact

angle of -2.8◦ (Figure 6.26) shows that the two modes contribute to create the

circle that is crossing the real axis at 1334 Hz (red cross). The shift in frequency

happens because the two modes behave as coupled when the contact force acts

in a direction which does not support just one speci�c mode. On the other hand,

Figure 6.27 shows that if the direction of the contact force is meant to excite just

one speci�c mode (1270 Hz in this case), the other mode is not contributing to

modify the circle of the Nyquist plot; natural frequency and unstable frequency

are very close one to another. Exactly the same happens with the mode at 1420

Hz in Figure 6.28.

Finally, Figure 6.29 shows the Nyquist plots of eigenvalues for the case with the

real contact angle between wheel and rail and the mode at 1417 Hz suppressed.

By looking the Figure, the circle created by the mode at 1271 Hz crosses the real

axis at a frequency shifted from the real frequency of this mode (marked with

green circles) because the contact force acts in a direction which does not support

the mode. Moreover, since the contribution of the mode at 1417 Hz is suppressed,

the mode at 1271 Hz alone is not able to be unstable, in fact the circle crosses

the real axis before the real value 1.
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Figure 6.26: Nyquist plots of the eigenvalues in the case with the real contact
angle between wheel and rail.
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Figure 6.27: Nyquist plots of the eigenvalues in the case with contact angle of 30◦
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Figure 6.28: Nyquist plots of the eigenvalues in the case with contact angle of
-45◦
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Figure 6.29: Nyquist plots of the eigenvalues in the case with the real contact
angle between wheel and rail and the mode at 1417 Hz suppressed.
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6.6.4 Analysis in time domain

As discussed before, since a time domain simulation needs more computation time

than a frequency-domain simulation, only one case has been calculated to have an

idea which frequency is really involved in the squeal phenomenon and to estimate

vibration and noise levels. To perform the simulation, a set of input parameters

has been chosen from the sets of parameters listed in Table 6.1 used to analyze

the occurrences of squeal noise in the frequency domain for the inner front wheel

of the Sirio with a gauge of 1445 mm.

In order to run a time domain simulation, the dynamic properties of the

wheel and rail described in state space form are required. In particular, the state

space matrices of the rail, as discussed before, have previously been determined

considering only the direct terms of the mobilities (longitudinal, lateral, vertical

and spin direction), but this is not consistent with the mobilities matrix of the

rail used in the time domain simulation where also the cross mobilities have been

taken into account. Therefore, in order to have the time and frequency domain

more coherent from a coupling terms point of view, before running the simulation

a small improvement has been taken into account in order to consider the e�ect

of the cross mobilities in the state space matrix of the rail. To do that, for each

mobility curve described in Eq.(6.21), it is possible, to �nd an equivalent system

with a transfer function expressed in the form of ratio of two polynomials (see

Eq.(6.59)). Then, after having collected the obtained transfer functions in matrix

form:

[G(s)] =


H11 H12 H13 H16

H21 H22 H23 H26

H31 H32 H33 H36

H61 H62 H63 H66

 , (6.75)

by means of the `ss'function of MATLAB, it is possible, from the transfer function

matrix [G(s)], calculate the system matrix [Ar] and the input and output matrices

[Br] and [Cr] to represent the complete state space model of the rail.

Considering the improved state space matrices of the rail, a time domain sim-

ulation has been performed and the results are shown in Figures 6.30, 6.31 and

6.32. By looking at the �rst two, it is evident that the most important frequency

involved in squeal noise is related to the axial mode at 529 Hz. To understand

this better, the Nyquist stability analysis is reported in Figure 6.33. This Figure
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Figure 6.30: Lateral responses of the wheel and rail at the contact position, First
Figure: lateral dynamic velocities of the wheel, rail and sliding velocity between
wheel and rail, normalized by the vehicle speed V0, Second Figure: spectra of the
lateral responses of the wheel and rail.
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Figure 6.31: Vertical responses of the wheel and rail at the contact position,
First Figure: vertical de�ection between wheel and rail; Second Figure: spectra
of vertical responses of the wheel and rail.
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Figure 6.32: Noise radiation from the wheel: A-weighted SPL.

shows, as discussed in section 6.3.2, the Nyquist contour of eigenvalues, the max-

imum modulus of the eigenvalues calculated for each frequency (Bode diagram)

and the predicted unstable frequencies (indicated with red points). By looking at

the Figure, it is evident that the modulus of the eigenvalue related to 529 Hz is

higher than the other ones; therefore, this may be the reason for the fact that the

frequency at 529 Hz is dominant in the time domain simulation.

By looking at Figure 6.30, it is interesting also to observe that the other contri-

butions at 1056, 1588, 2116, 2644, 3172 and 3700 Hz are likely to be harmonic

multiples of 529 Hz which appear due to the non-linearity of the phenomenon.

The reason why the most important frequency involved in squeal noise is related

to the axial mode at 529 Hz, is due to the fact that the particular contact con-

dition of the wheel is such as to excite the axial modes. In particular, this axial

mode at 529 Hz is the most likely to be excited because the displacement direction

of the mode shape occurs along the same direction of the contact tangent between

wheel and rail (see Figure 6.23).

The acoustic radiation of the wheel can be calculated using the method intro-

duced by Thompson and Jones [48] as used by Huang [3]. In calculating the
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Figure 6.33: Nyquist stability analysis. First �gure: Nyquist plots of the eigen-
values. Second �gure: modulus of the Bode diagram of eigenvalues. Red points:
unstable frequencies.

sound pressure, the wheel is assumed to be a point source and the directivity of

sound radiation is not considered here. The sound pressure level (SPL) is evalu-

ated at a position 7.5 metres from the sound source. The radiation from the rail

is neglected.

The noise radiation in Figure 6.32 shows that the dominant frequency at 530 Hz

determines the overall SPL.

Finally, another time domain simulation has been performed with the con-

tact angle �ctitiously changed following exactly the mode shape direction of the

mode at 1271 Hz (see Figure 6.23). From the simulation, it is expected that the

eigenvalue related at the predicted unstable frequency at 1271 Hz is higher than

the other ones, and therefore that this frequency is dominant in the time domain

results. The reason why the mainly frequency involved in squeal noise is expected

to be related to the mode at 1271 Hz, is due to the fact that the displacement di-

rection of the mode shape occurs along the same direction of the contact tangent

between wheel and rail (see Figure 6.23).
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Squeal model for two contact

points

The squeal noise phenomenon, as discussed in Chapter 6, can be described as a

general self-excited vibration loop that takes into account the wheel/rail rolling

contact dynamics and wheel and rail structural dynamics. Basically, it allows

the squeal noise phenomenon to be predicted at two di�erent levels: an analysis

in the frequency domain studies the stability of the self-excited vibration loop

identifying which wheel modes are prone to squeal, while an analysis in the time

domain identi�es the frequencies that are actually involved in the squeal noise

generation estimating then vibration and noise levels.

The model developed by Huang [3] considers only one contact point between

wheel and rail. However there are several examples where the simultaneous pres-

ence of more than one contact point happens. Typically the front outer wheel

of a bogie goes into contact with the rail running head, while the �ange back of

the front inner wheel can be in contact with the rail grooved head (or check rail);

and this can happen when the wheel tread is still in contact with the rail running

head. This Chapter describes how, within the research work developed for the

present thesis, the model described in Chapter 6 has been extended to consider

the simultaneous presence of two contact points.
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7.1 Analysis in frequency domain

In order to predict the squeal noise phenomenon the relation that de�nes the mo-

bilities as the ratio between the dynamic sliding velocities and the dynamic friction

forces at the considered contact point (see Eq.(6.25)) and the equation that ex-

presses the dynamic friction force as a function of the creepages (see Eq.(6.17))

are fundamental to obtain the self-excited vibration loop necessary to analyze the

stability in the frequency domain.

The mobility matrices have to be extended considering the mobilities at the sec-

ond contact point and the cross-mobilities between the two contact points, while

the relation between the friction forces and creepages, as described in Eq.(6.17),

has to be obtained separately at the two contact points. Below the procedure to

obtain the extended self-excited vibration loop is described.

Figure 7.1: Typical wheel/rail contact position: (a) nominal contact position P0,
(b) �ange (P2) and tread (P1) contact positions during left curve negotiation

Adopting the reference frame in the nominal contact point shown in Figure

7.1(a) and considering the wheel/rail contact condition described in Figure 7.1(b)

in quasi-steady condition, the dynamic forces and velocities at these two contact

points in lateral, longitudinal, vertical and spin directions can be converted into

frequency responses assuming that they are harmonically oscillating at frequency

ω:

fi,1 = Fi,1e
jωt, vwi,1 = V w

i,1e
jωt, vri,1 = V r

i,1e
jωt, vc3,1 = V c

3,1e
jωt, vsi,1 = V s

i,1e
jωt,

(7.1)

fi,2 = Fi,2e
jωt, vwi,2 = V w

i,2e
jωt, vri,2 = V r

i,2e
jωt, vc3,2 = V c

3,2e
jωt, vsi,2 = V s

i,2e
jωt,

(7.2)

i = 1, 2, 3, 6.

To describe the relation between the dynamic sliding velocities and the dynamic
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friction forces at the two contact points, the mobilities of the wheel, rail and con-

tact spring of each contact point have to be determined.

For the wheel this gives:{
V
w
1

V
w
2

}
= −

[Y w
ik,11

] [
Y w
ik,12

][
Y w
ik,21

] [
Y w
ik,22

]{F 1

F 2

}
, (7.3)

which in expanded form can be rewritten as:

V w
1,1

V w
2,1

V w
3,1

V w
6,1

V w
1,2

V w
2,2

V w
3,2

V w
6,2



= −



Y w
11,11 Y w

12,11 Y w
13,11 Y w

16,11 Y w
11,12 Y w

12,12 Y w
13,12 Y w

16,12

Y w
21,11 Y w

22,11 Y w
23,11 Y w

26,11 Y w
21,12 Y w

22,12 Y w
23,12 Y w

26,12

Y w
31,11 Y w

32,11 Y w
33,11 Y w

36,11 Y w
31,12 Y w

32,12 Y w
33,12 Y w

36,12

Y w
61,11 Y w

62,11 Y w
63,11 Y w

66,11 Y w
61,12 Y w

62,12 Y w
63,12 Y w

66,12

Y w
11,21 Y w

12,21 Y w
13,21 Y w

16,21 Y w
11,22 Y w

12,22 Y w
13,22 Y w

16,22

Y w
21,21 Y w

22,21 Y w
23,21 Y w

26,21 Y w
21,22 Y w

22,22 Y w
23,22 Y w

26,22

Y w
31,21 Y w

32,21 Y w
33,21 Y w

36,21 Y w
31,22 Y w

32,22 Y w
33,22 Y w

36,22

Y w
61,21 Y w

62,21 Y w
63,21 Y w

66,21 Y w
61,22 Y w

62,22 Y w
63,22 Y w

66,22





F1,1

F2,1

F3,1

F6,1

F1,2

F2,2

F3,2

F6,2



,

(7.4)

where V
w
1 , V

w
2 and F 1, F 2 are respectively the velocities and the friction forces

at the two contact points while [Y w
ik,11] and [Y w

ik,22] are the mobilities at the two

contact points and [Y w
ik,12] the cross-mobilities between them.

In order to obtain the mobilities that link together the dynamic sliding velocities

with the dynamic friction forces, the modal matrices in the two new contact points

have to be determined.

If [φ]0 is the matrix that contains the mode shapes at the nominal contact point,

the two equivalent matrices [φ]1 and [φ]2 at the two actual contact points can be

expressed as:

[Φ]1 = [Trot]1[Toff ]1[Φ]0 ≡ [Ttot]1[Φ]0, (7.5)

[Φ]2 = [Trot]2[Toff ]2[Φ]0 ≡ [Ttot]2[Φ]0, (7.6)

where the translation matrices [Toff ]1 and [Toff ]2, de�ned in Eq.(A.3), are the

matrices that translate the modal matrix [Φ]0 at point P0 to the new positions P1

and P2. Similarly the rotation matrices [Trot]1 and [Trot]2, de�ned in Eq.(A.4),

represent the matrices that rotate, by an angle θ1 and θ2, the reference frame at

the positions P1 and P2 around the local x1-axis and x2-axis to give the new modal
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matrices [Φ]1 and [Φ]2, while the total transformation matrices are indicated as

[Ttot]1 and [Ttot]2.

Once the mode shape amplitudes at the two contact points have been obtained,

Eq.(6.20), used to calculate the wheel mobilities for the case of one contact point,

can be rewritten considering two contact points as:

Y w
ik,ab(ω) =

∑
n

jωφin,aφkn,b

mn(ω2
n − ω2 + 2jζnωωn)

, (7.7)

a = 1, 2, b = 1, 2,

i = 1, 2, 3, 6,

k = 1, 2, 3, 6,

where φin,a is the mode shape amplitude of mode n at the contact point a (1 or 2)

in direction i, φik,b is the mode shape amplitude of mode n at the contact point b

(1 or 2) in direction k, mn is the modal mass, ζn is the modal damping ratio and

ωn is the natural frequency.

For the rail, Eqs.(7.3) and (7.4) can be rewritten as:

{
V
r
1

V
r
2

}
=

[Y r
ik,11

] [
Y r
ik,12

][
Y r
ik,21

] [
Y r
ik,22

]{F 1

F 2

}
, (7.8)



V r
1,1

V r
2,1

V r
3,1

V r
6,1

V r
1,2

V r
2,2

V r
3,2

V r
6,2



=



Y r
11,11 Y r

12,11 Y r
13,11 Y r

16,11 Y r
11,12 Y r

12,12 Y r
13,12 Y r

16,12

Y r
21,11 Y r

22,11 Y r
23,11 Y r

26,11 Y r
21,12 Y r

22,12 Y r
23,12 Y r

26,12

Y r
31,11 Y r

32,11 Y r
33,11 Y r

36,11 Y r
31,12 Y r

32,12 Y r
33,12 Y r

36,12

Y r
61,11 Y r

62,11 Y r
63,11 Y r

66,11 Y r
61,12 Y r

62,12 Y r
63,12 Y r

66,12

Y r
11,21 Y r

12,21 Y r
13,21 Y r

16,21 Y r
11,22 Y r

12,22 Y r
13,22 Y r

16,22

Y r
21,21 Y r

22,21 Y r
23,21 Y r

26,21 Y r
21,22 Y r

22,22 Y r
23,22 Y r

26,22

Y r
31,21 Y r

32,21 Y r
33,21 Y r

36,21 Y r
31,22 Y r

32,22 Y r
33,22 Y r

36,22

Y r
61,21 Y r

62,21 Y r
63,21 Y r

66,21 Y r
61,22 Y r

62,22 Y r
63,22 Y r

66,22





F1,1

F2,1

F3,1

F6,1

F1,2

F2,2

F3,2

F6,2



,

(7.9)

where V
r
1, V

r
2 and F 1, F 2 are respectively the velocities and the friction forces

at the two contact points while [Y r
ik,11] and [Y r

ik,22] are the mobilities at the two

contact points and [Y r
ik,12] the cross-mobilities between them.
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In this case, since only the mobilities at the nominal contact point but not the

mode shapes are available, the mobilities [Y r
ik,11], [Y r

ik,22] and [Y r
ik,12] can only be

obtained in terms of a mobility transformation.

Considering the case shown in Figure 7.1, the relation between the dynamic ve-

locities and the dynamic friction forces at the nominal contact point P0 can be

written as: 
V r
1

V r
2
...

V r
6


0

=


Y r
11 Y r

12 . . . Y r
16

Y r
21 Y r

22 . . . Y r
26

...
...

. . .
...

Y r
61 Y r

62 . . . Y r
66


0


F1

F2

...

F6


0

, (7.10)

V
r
0 = [Y r

ik,0]F 0, (7.11)

where the matrix [Y r
ik,0] contains the rail mobilities at the nominal contact point

P0. Adopting the total transformation matrices [Ttot]1 and [Ttot]2, obtained in

Eqs.(7.5) and (7.6), the dynamic velocities and the dynamic friction forces used

in Eq.(7.10) can be transformed and rede�ned at the two new contact points of

the rail as:

V
r
1 = [Ttot]1V

r
0, V

r
2 = [Ttot]2V

r
0, ⇒ V

r
0 = [Ttot]

−1
1 V

r
1 = [Ttot]

−1
2 V

r
2, (7.12)

F 1 = [Ttot]
−T
1 F 0, F 2 = [Ttot]

−T
2 F 0, ⇒ F 0 = [Ttot]

T
1 F 1 = [Ttot]

T
2 F 2. (7.13)

Now, if the forces F 1 and F 2 at the two contact points are known, by means

Eq.(7.13), the equivalent force F0 can be written as the sum of the transformation

of F 1 and F 2 at the nominal contact point:

F 0 = [Ttot]
T
1 F 1 + [Ttot]

T
2 F 2. (7.14)

Substituting Eqs.(7.12) (considered one at a time) and (7.14) in Eq.(7.11), it is

possible to obtain the dynamic velocities at point P1 and P2 considering the e�ect

of the forces at the two contact points:

V
r
1 = [Ttot]1[Y

r
ik]0[Ttot]

T
1 F 1+[Ttot]1[Y

r
ik]0[Ttot]

T
2 F 2 = [Y r

ik,11]F 1+[Y r
ik,12]F 2, (7.15)

V
r
2 = [Ttot]2[Y

r
ik]0[Ttot]

T
1 F 1+[Ttot]2[Y

r
ik]0[Ttot]

T
2 F 2 = [Y r

ik,21]F 1+[Y r
ik,22]F 2, (7.16)
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where the matrices [Y r
ik,11], [Y r

ik,22], [Y r
ik,12]:

[Y r
ik,11] = [Ttot]1[Y

r
ik,0][Ttot]

T
1 = [Ttot]1


Y r
11 Y r

12 . . . Y r
16

Y r
21 Y r

22 . . . Y r
26

...
...

. . .
...

Y r
61 Y r

62 . . . Y r
66


0

[Ttot]
T
1 , (7.17)

[Y r
ik,22] = [Ttot]2[Y

r
ik,0][Ttot]

T
2 = [Ttot]2


Y r
11 Y r

12 . . . Y r
16

Y r
21 Y r

22 . . . Y r
26

...
...

. . .
...

Y r
61 Y r

62 . . . Y r
66


0

[Ttot]
T
2 , (7.18)

[Y r
ik,12] = [Y r

ik,21] = [Ttot]1[Y
r
ik,0][Ttot]

T
2 = [Ttot]1


Y r
11 Y r

12 . . . Y r
16

Y r
21 Y r

22 . . . Y r
26

...
...

. . .
...

Y r
61 Y r

62 . . . Y r
66


0

[Ttot]
T
2 ,

(7.19)

indicate the mobilities at the two contact points ([Y r
ik,11] and [Y r

ik,22]) and cross-

mobilities between them ([Y r
ik,12]). These matrices describe the total relation

between sliding velocities and friction forces de�ned in Eq.(7.9).

Finally, for the contact spring the vertical velocities at the two contact points

can be expressed as:

V c
3,1 = Y c

33,11F3,1, (7.20)

V c
3,2 = Y c

33,22F3,2. (7.21)

The mobilities of the vertical contact springs Y c
33,11 and Y

c
33,22 can be written as:

Y c
33,11 =

jω

kH,1
, (7.22)

Y c
33,22 =

jω

kH,2
, (7.23)

where kH,1 and kH,2 indicate the sti�ness of the two contact springs.

According to Eq.(6.24), the amplitudes of the sliding velocities considering
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two contact points are:

V s
1,1

V s
2,1

V s
3,1

V s
6,1

V s
1,2

V s
2,2

V s
3,2

V s
6,2



≡



V r
1,1

V r
2,1

V r
3,1

V r
6,1

V r
1,2

V r
2,2

V r
3,2

V r
6,2



−



V w
1,1

V w
2,1

V w
3,1

V w
6,1

V w
1,2

V w
2,2

V w
3,2

V w
6,2



+



0

0

V c
3,1

0

0

0

V c
3,2

0



. (7.24)

Substituting Eqs.(7.4), (7.9), (7.20) and (7.21) into Eq.(7.24), the total relation

between the dynamic sliding velocities and the dynamic forces considering two

contact points can be written as:{
V
s
1

V
s
2

}
=

[
[Yik,11] [Yik,12]

[Yik,21] [Yik,22]

]{
F 1

F 2

}
, (7.25)

which in expanded form can be rewritten as:

V s
1,1

V s
2,1

V s
3,1

V s
6,1

V s
1,2

V s
2,2

V s
3,2

V s
6,2



=



Y11,11 Y12,11 Y13,11 Y16,11 Y11,12 Y12,12 Y13,12 Y16,12

Y21,11 Y22,11 Y23,11 Y26,11 Y21,12 Y22,12 Y23,12 Y26,12

Y31,11 Y32,11 Y33,11 Y36,11 Y31,12 Y32,12 Y33,12 Y36,12

Y61,11 Y62,11 Y63,11 Y66,11 Y61,12 Y62,12 Y63,12 Y66,12

Y11,21 Y12,21 Y13,21 Y16,21 Y11,22 Y12,22 Y13,22 Y16,22

Y21,21 Y22,21 Y23,21 Y26,21 Y21,22 Y22,22 Y23,22 Y26,22

Y31,21 Y32,21 Y33,21 Y36,21 Y31,22 Y32,22 Y33,22 Y36,22

Y61,21 Y62,21 Y63,21 Y66,21 Y61,22 Y62,22 Y63,22 Y66,22





F1,1

F2,1

F3,1

F6,1

F1,2

F2,2

F3,2

F6,2



,

(7.26)

where [Yik,11] and [Yik,22] are the mobilities at the two contact points, [Yik,12] the

cross-mobilities between them while each term Yik,ab of these submatrices can be

described as the sum of mobilities of wheel, rail, and contact spring:

Yik,ab = Y w
ik,ab + Y r

ik,ab + Y c
ik,ab,

a = 1, 2, b = 1, 2.

V
s
1, V

s
2 and F 1, F 2 are respectively the sliding velocities and the friction forces

at the two contact points.
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In this relation, the vertical sliding velocities at the two contact points are equal

to zero:

V s
3,1 = Y31,11F1,1 + Y32,11F2,1 + Y33,11F3,1 + Y36,11F6,1+ (7.27)

+Y31,12F1,2 + Y32,12F2,2 + Y33,12F3,2 + Y36,12F6,2 = 0,

V s
3,2 = Y31,21F1,1 + Y32,21F2,1 + Y33,21F3,1 + Y36,21F6,1+ (7.28)

+Y31,22F1,2 + Y32,22F2,2 + Y33,22F3,2 + Y36,22F6,2 = 0,

therefore this allows V s
3,1 and V s

3,2 to be eliminated from Eq.(7.26) that can be

rewritten as:

V s
1,1

V s
2,1

V s
6,1

V s
1,2

V s
2,2

V s
6,2

︸ ︷︷ ︸
V
s

=



Y11,11 Y12,11 Y16,11 Y11,12 Y12,12 Y16,12

Y21,11 Y22,11 Y26,11 Y21,12 Y22,12 Y26,12

Y61,11 Y62,11 Y66,11 Y61,12 Y62,12 Y66,12

Y11,21 Y12,21 Y16,21 Y11,22 Y12,22 Y16,22

Y21,21 Y22,21 Y26,21 Y21,22 Y22,22 Y26,22

Y61,21 Y62,21 Y66,21 Y61,22 Y62,22 Y66,22


︸ ︷︷ ︸

[C]



F1,1

F2,1

F6,1

F1,2

F2,2

F6,2

︸ ︷︷ ︸
F

+

+



Y13,11

Y23,11

Y63,11

Y13,21

Y23,21

Y63,21

︸ ︷︷ ︸
d1

F3,1 +



Y13,12

Y23,12

Y63,12

Y13,22

Y23,22

Y63,22

︸ ︷︷ ︸
d2

F3,2 = (7.29)

= [C]F + d1F3,1 + d2F3,2. (7.30)

From Eqs.(7.27) and (7.28) it is possible to express the vertical dynamic forces

F3,1 and F3,2 in terms of the other six dynamic friction forces. Below, the steps

to de�ne these forces are described.

First of all, the force F3,1 is obtained from the Eq.(7.27), while the force F3,2 is
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expressed from Eq.(7.28):

F3,1 = −

{
Y31,11

Y33,11

Y32,11

Y33,11

Y36,11

Y33,11

Y31,12

Y33,11

Y32,12

Y33,11

Y36,12

Y33,11

}
︸ ︷︷ ︸

aT1



F1,1

F2,1

F6,1

F1,2

F2,2

F6,2

︸ ︷︷ ︸
F

−
Y33,12

Y33,11
F3,2 =

= −aT1 F −
Y33,12

Y33,11
F3,2, (7.31)

F3,2 = −

{
Y31,21

Y33,22

Y32,21

Y33,22

Y36,21

Y33,22

Y31,22

Y33,22

Y32,22

Y33,22

Y36,22

Y33,22

}
︸ ︷︷ ︸

aT2



F1,1

F2,1

F6,1

F1,2

F2,2

F6,2

︸ ︷︷ ︸
F

−
Y33,21

Y33,22
F3,1 =

= −aT2 F −
Y33,21

Y33,22
F3,1. (7.32)

Substituting the Eq.(7.32) into Eq.(7.31), the force F3,1 can be expressed as:

F3,1 =
Y33,11Y33,22

Y33,11Y33,22 − Y 2
33,12

(
−aT1 +

Y33,12

Y33,11
aT2

)
︸ ︷︷ ︸

b
T
1

F = b
T
1 F , (7.33)

while substituting the Eq.(7.31) into Eq.(7.32) the force F3,2 can be obtained:

F3,2 =
Y33,11Y33,22

Y33,11Y33,22 − Y 2
33,12

(
−aT2 +

Y33,21

Y33,22
aT1

)
︸ ︷︷ ︸

b
T
2

F = b
T
2 F . (7.34)

Finally, substituting Eqs.(7.33) and (7.34) into Eq.(7.30) it is possible to obtain

the relation between the dynamic sliding velocities and dynamic friction forces
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without considering the vertical sliding velocities V s
3,1 and V

s
3,2:

V
s

= [C]F + d1b
T
1 F + d2b

T
2 F =

=
(

[C] + d1b
T
1 + d2b

T
2

)
︸ ︷︷ ︸

[E]

F = [E]F , (7.35)

where F is formed of the friction forces and spin moment at the two contact

points, V
s
includes the dynamic sliding velocities in the longitudinal, lateral and

spin directions at the two contact points, while [E] is the mobilities matrix.

Having obtained the matrix that links together sliding velocities and friction

forces, in order to obtain the extended self-excited vibration loop, the relations

between the friction forces and creepages have to be taken into account separately

at the two contact points.

In accordance with Eq.(6.17), the relation between friction forces and creepages

at the two contact points can be written as:
f1,1

f2,1

f6,1

 =


f1tot,1

f2tot,1

f6tot,1

−

f10,1

f20,1

f60,1

 =

=



µ1,1

(
γ10,1 +

vs1,1

V0
, γ20,1 +

vs2,1

V0
, γ60,1 +

vs6,1

V0
, N0,1 + f3,1

)

µ2,1

(
γ10,1 +

vs1,1

V0
, γ20,1 +

vs2,1

V0
, γ60,1 +

vs6,1

V0
, N0,1 + f3,1

)

µ6,1

(
γ10,1 +

vs1,1

V0
, γ20,1 +

vs2,1

V0
, γ60,1 +

vs6,1

V0
, N0,1 + f3,1

)


(N0,1 + f3,1)−

+


µ1,1 (γ10,1, γ20,1, γ60,1, N0,1)

µ2,1 (γ10,1, γ20,1, γ60,1, N0,1)

µ6,1 (γ10,1, γ20,1, γ60,1, N0,1)

N0,1, (7.36)


f1,2

f2,2

f6,2

 =


f1tot,2

f2tot,2

f6tot,2

−

f10,2

f20,2

f60,2

 =
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=



µ1,2

(
γ10,2 +

vs1,2

V0
, γ20,2 +

vs2,2

V0
, γ60,2 +

vs6,2

V0
, N0,2 + f3,2

)

µ2,2

(
γ10,2 +

vs1,2

V0
, γ20,2 +

vs2,2

V0
, γ60,2 +

vs6,2

V0
, N0,2 + f3,2

)

µ6,2

(
γ10,2 +

vs1,2

V0
, γ20,2 +

vs2,2

V0
, γ60,2 +

vs6,2

V0
, N0,2 + f3,2

)


(N0,2 + f3,2)−

+


µ1,2 (γ10,2, γ20,2, γ60,2, N0,2)

µ2,2 (γ10,2, γ20,2, γ60,2, N0,2)

µ6,2 (γ10,2, γ20,2, γ60,2, N0,2)

N0,2, (7.37)

where the end of each term described in these equation is marked with the number

1 or 2 to indicate if it corresponds to the �rst or the second contact point. The

meaning of each term is explained in section 6.1.1.

The friction equations obtained before can be linearized at the steady-state points

(γ10,1, γ20,1, γ60,1, N0,1) and (γ10,2, γ20,2, γ60,2, N0,2) by assuming that the dy-

namic quantities are small and ignoring terms of second order in small quantities.

Then assuming that the dynamic forces and dynamic sliding velocities are in

harmonic form the relationships obtained can be converted into the frequency

domain.

So, Eqs.(7.36) and (7.37) linearized at the steady-state points and converted into

the frequency domain can be rewritten as:


F1,1

F2,1

F6,1

 =
N0,1

V0



∂µ1,1

∂γ1,1

∂µ1,1

∂γ2,1

∂µ1,1

∂γ6,1

∂µ1,1

∂f3,1

∂µ2,1

∂γ1,1

∂µ2,1

∂γ2,1

∂µ2,1

∂γ6,1

∂µ2,1

∂f3,1

∂µ6,1

∂γ1,1

∂µ6,1

∂γ2,1

∂µ6,1

∂γ6,1

∂µ6,1

∂f3,1




V s
1,1

V s
2,1

V s
6,1

V0F3,1

+


µ1,1

µ2,1

µ6,1

F3,1, (7.38)


F1,2

F2,2

F6,2

 =
N0,2

V0



∂µ1,2

∂γ1,2

∂µ1,2

∂γ2,2

∂µ1,2

∂γ6,2

∂µ1,2

∂f3,2

∂µ2,2

∂γ1,2

∂µ2,2

∂γ2,2

∂µ2,2

∂γ6,2

∂µ2,2

∂f3,2

∂µ6,2

∂γ1,2

∂µ6,2

∂γ2,2

∂µ6,2

∂γ6,2

∂µ6,2

∂f3,2




V s
1,2

V s
2,2

V s
6,2

V0F3,2

+


µ1,2

µ2,2

µ6,2

F3,2. (7.39)
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The terms related to F3,1 and F3,2 can be collected together to give:


F1,1

F2,1

F6,1

 =
N0,1

V0



∂µ1,1

∂γ1,1

∂µ1,1

∂γ2,1

∂µ1,1

∂γ6,1

∂µ2,1

∂γ1,1

∂µ2,1

∂γ2,1

∂µ2,1

∂γ6,1

∂µ6,1

∂γ1,1

∂µ6,1

∂γ2,1

∂µ6,1

∂γ6,1


︸ ︷︷ ︸

[K1,a]


V s
1,1

V s
2,1

V s
6,1

+



µ1,1 +N0,1

∂µ1,1

∂f3,1

µ2,1 +N0,1

∂µ2,1

∂f3,1

µ6,1 +N0,1

∂µ6,1

∂f3,1

︸ ︷︷ ︸
[K2,a]

F3,1 =

= [K1,a]


V s
1,1

V s
2,1

V s
6,1

+ [K2,a]F3,1, (7.40)


F1,2

F2,2

F6,2

 =
N0,2

V0



∂µ1,2

∂γ1,2

∂µ1,2

∂γ2,2

∂µ1,2

∂γ6,2

∂µ2,2

∂γ1,2

∂µ2,2

∂γ2,2

∂µ2,2

∂γ6,2

∂µ6,2

∂γ1,2

∂µ6,2

∂γ2,2

∂µ6,2

∂γ6,2


︸ ︷︷ ︸

[K1,b]


V s
1,2

V s
2,2

V s
6,2

+



µ1,2 +N0,2

∂µ1,2

∂f3,2

µ2,2 +N0,2

∂µ2,2

∂f3,2

µ6,2 +N0,2

∂µ6,2

∂f3,2

︸ ︷︷ ︸
[K2,b]

F3,2 =

= [K1,b]


V s
1,2

V s
2,2

V s
6,2

+ [K2,b]F3,2, (7.41)

where the matrices [K1,a] and [K1,b] are formed of the derivatives of non-dimensional

friction force with respect to creepages, while matrices [K2,a] and [K2,b] determine

the in�uence from the �uctuation of vertical forces on the friction forces.

Eqs.(7.40) and (7.41) can be rewritten together in matrix form obtaining:

F =



F1,1

F2,1

F6,1

F1,2

F2,2

F6,2


=

[
[K1,a] [0]

[0] [K1,b]

]
︸ ︷︷ ︸

[K1]



V s
1,1

V s
2,1

V s
6,1

V s
1,2

V s
2,2

V s
6,2


+

[
[K2,a] [0]

[0] [K2,b]

]
︸ ︷︷ ︸

[K2,c]

{
F3,1

F3,2

}
= (7.42)
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= [K1]V
s

+ [K2,c]

{
F3,1

F3,2

}
. (7.43)

Substituting Eqs.(7.33), (7.34) and (7.35) into Eq.(7.43) the relationship between

the dynamic sliding velocities and dynamic friction forces can be rewritten as:

F = [K1][E]F + [K2,c]

{
b
T
1

b
T
2

}
︸ ︷︷ ︸

[K2]

F = (7.44)

= ([K1][E] + [K2])︸ ︷︷ ︸
[R]

F = [R]F , (7.45)

where [Q] = ([K1][E] + [K2]) is the new open-loop transfer function matrix of the

MIMO system shown in Figure 7.2.

Figure 7.2: Frequency domain self-excited vibration loop of the wheel/rail contact
system with two contact points.

Finally, in order to study the stability analysis in the frequency domain, the same

method described in Chapter 6 is adopted.

189



Chapter 7

7.2 Analysis in the time domain

During the development of the extended curve squeal software within this research

work the possibility of solving the self-excited loop in the time domain has been

explored and the theoretical model is described in this section. However, for the

reasons explained below, a stable solution has not been found and the time domain

results with two contact points cannot therefore be presented.

The method of step-by-step integration, as discussed in Chapter 6, is appropriate

to study the squeal noise phenomenon in the time domain. This requires the

dynamic properties of the wheel and rail to be described in state-space form.

In accordance with section 6.4.1, considering the modal parameters (damping

ratio, natural frequencies and mode shapes) of the wheel obtained by means of

the �nite element model, the state-space model of the wheel can be determined by

means of the modal analysis method. It can be represented by a state equation,

Eq.(7.46), and an output equation, Eq.(7.47):

ẇ = [Aw]w + [Bw]f
w
, (7.46)

vw = [Cw]w, (7.47)

where each term is described in section 6.4.1. The only thing that changes, if

compared with the state-space model of the wheel considering only one contact

point, are the input dynamic forces f
w
and the output dynamic velocities vw

that have to be extended to consider the presence of the second contact point.

Considering the longitudinal, lateral, vertical and spin directions for each contact

point the new input and output vectors can be described by 8 components:

f
w

=
{
fw1,1 fw2,1 fw3,1 fw6,1 fw1,2 fw2,2 fw3,2 fw6,2

}T
, (7.48)

vw =
{
vw1,1 vw2,1 vw3,1 vw6,1 vw1,2 vw2,2 vw3,2 vw6,2

}T
. (7.49)

For this reason also the input and output matrices [Bw] and [Cw] have to be

extended considering the mode shape displacements at the second contact point
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of the wheel:

[Bw] =



φ11,1 φ12,1 . . . φ1n,1 0 0 . . . 0

φ21,1 φ22,1 . . . φ2n,1 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

φk1,1 φk2,1 . . . φkn,1 0 0 . . . 0

φ11,2 φ12,2 . . . φ1n,2 0 0 . . . 0

φ21,2 φ22,2 . . . φ2n,2 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

φk1,2 φk2,2 . . . φkn,2 0 0 . . . 0



T

, (7.50)

k = 1, 2, 3, 6,

[Cw] =



φ11,1 φ12,1 . . . φ1n,1 0 0 . . . 0

φ21,1 φ22,1 . . . φ2n,1 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

φi1,1 φi2,1 . . . φin,1 0 0 . . . 0

φ11,2 φ12,2 . . . φ1n,2 0 0 . . . 0

φ21,2 φ22,2 . . . φ2n,2 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

φi1,2 φi2,2 . . . φin,2 0 0 . . . 0


, (7.51)

i = 1, 2, 3, 6,

where φir,1, φir,2 and φkr,1, φkr,2 are the mass-normalized mode shapes of mode r

in the i and k directions at the �rst and second contact points.

For the rail, as discussed in section 6.4.2, an analytical model is adopted.

The procedure to determine the �nal state-space model of the rail changes when

compared with the state-space model obtained considering one contact point.

The mobility matrix that relates the velocities and the friction forces at the two

contact points of the rail is available and described in Eq.(7.9) where the directions

taken into account for each contact point are always longitudinal, lateral, vertical

and spin. For each mobility curve, it is possible to �nd an equivalent system with

a transfer function expressed in the form of a ratio of two polynomials:

H(s) ≡
B(s)

A(s)
=

b1s
m−1 + b2s

m−2 + · · ·+ bm

sm + a1sm−1 + a2sm−2 + · · ·+ am
, (7.52)

191



Chapter 7

where the order of the denominator is one order higher than that of the numera-

tor. Normally, the higher the order of the equivalent system assumed, the less is

the error of the system identi�cation results. However, if the order of the system is

very high, the performance of the equivalent system is sensitive to the coe�cients

and may be unstable. To seek appropriate coe�cients, the `invfreqs'function

provided by the Signal Processing Toolbox of MATLAB [47] can be adopted.

Then, by means of another MATLAB routine `tf ', the transfer function in Eq.(7.52)

can be determined to represent the equivalent system of each mobility where the

coe�cients a1, a2, ..., am and b1, b2, ..., bm are the parameters obtained by means

the `invfreqs'function. The transfer functions obtained can be collected and

represented in matrix form:

[G(s)] =



H11,11 H12,11 H13,11 H16,11 H11,12 H12,12 H13,12 H16,12

H21,11 H22,11 H23,11 H26,11 H21,12 H22,12 H23,12 H26,12

H31,11 H32,11 H33,11 H36,11 H31,12 H32,12 H33,12 H36,12

H61,11 H62,11 H63,11 H66,11 H61,12 H62,12 H63,12 H66,12

H11,21 H12,21 H13,21 H16,21 H11,22 H12,22 H13,22 H16,22

H21,21 H22,21 H23,21 H26,21 H21,22 H22,22 H23,22 H26,22

H31,21 H32,21 H33,21 H36,21 H31,22 H32,22 H33,22 H36,22

H61,21 H62,21 H63,21 H66,21 H61,22 H62,22 H63,22 H66,22


.

(7.53)

Finally, by means of the `ss'function of MATLAB, it is possible, from the transfer

function matrix [G(s)], to calculate the system matrix [Ar] and the input and

output matrices [Br], [Cr] to represent the complete state-space model of the

rail:

ṙ = [Ar]r + [Br]f
r
, (7.54)

vr = [Cr]r, (7.55)

where the vector of the state variables is:

r =
{
r1 r2 . . . rl

}T
, (7.56)

with l the total system order, while the input dynamic forces f
r
and the output

dynamic velocities vr are de�ned as:

f
r

=
{
f r1,1 f r2,1 f r3,1 f r6,1 f r1,2 f r2,2 f r3,2 f r6,2

}T
, (7.57)
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vr =
{
vr1,1 vr2,1 vr3,1 vr6,1 vr1,2 vr2,2 vr3,2 vr6,2

}T
. (7.58)

Now, in accordance with section 6.5, a general self-excited vibration model can

be developed by combining the wheel/rail structural models and the wheel/rail

rolling contact model in a loop as shown in Figure 6.4. For the consideration

regarding the self-excited vibration loop see section 6.5 keeping in mind that all

the system extended with the second contact point has to be considered.

To conclude the explanation of the attempt made to have two contact points in the

time domain model it is important to point out that the reason for the solution

not being convergent is believed to be in the usage of ratios of polynomials to

describe the rail frequency responses. In fact, the analytical models of the rail are

quite complicated and can not always easily be represented in terms of poles and

zeros in the frequency range considered. MATLAB routine `invfreqs'estimates

polynomial coe�cients according to a speci�c order given by the user; although

a stability check can be performed on each estimated transfer function there is

no a-priori guarantee that the solution of the self-excited loop that adopts these

transfer functions will converge. Further research is recommended in this direction

by either following through the identi�cation problem to get stable aaaaaa solution

of the time domain loop or exploring the usage of di�erent rail models like 2.5 D

[49] and/or �nite element models with opportune tapered and damped elements

at the ends [50].

7.3 Results

In order to verify the model in the frequency domain a comparison between nu-

merical results and experimental ones is necessary. From a numerical point of

view, the same analysis performed for the model with one contact point has been

performed for the model with two contact point as well.

As discussed in Chapter 6, to understand better and represent the dependence

of the results on input parameters, some variables are de�ned as uncertain. In

practice it is found that small changes in humidity, in the contact positions, in

the velocity or in the normal forces at the contact can cause the squeal noise

to change. Since the reality is a�ected by such uncertainty and variability, a

deterministic model may be too simple to describe this complex phenomenon.

The most important input parameters of the model have been de�ned in a range

using a uniform distribution and for each case a random combination of these
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parameters is extracted and the eigenvalues of the open loop are calculated for

all frequencies.

Both the examples described in Chapter 2 are addressed below. First that of

the Sprinter trains in North Wales have been taken into account and reproduced

with this model. Then, the case analyzed with the Sirio tram in Milan has been

modelled as well.

Considering its structural dynamics, the monobloc wheel mounted on the Sprinter

shows clearly separated and lightly damped natural modes. This fact may be

helpful in interpreting curve squeal model results and this is the reason why the

Sprinter case is presented �rst.

The resilient wheel of the Sirio tram represents an example of grater complexity

and is addressed later in section 7.3.2

7.3.1 Case of British Rail Class 150 Sprinter

The problem with this train, as discussed in section 2.2, was the severe squeal

noise occurred on some curving routes, with high amplitude sustained tones in

the region 2 to 5 kHz. For safety reasons the track on these curves was �tted with

check rails and the vertical stick/slip forces acting between the check rail and the

wheel �ange back was believed to be the cause of this particular squeal problem.

The radial modes with 2, 3, 4, 5 and 8 modal diameters were found to occur, with

the mode with 4 nodal diameters at 3.6 kHz being the most commonly found.

The aim of this investigation is to reproduce with this model the contact condition

believed to occur in reality and to compare unstable frequencies of the model with

the tones recorded during tests.

Considering a right curve run in steady-state, a contact point between �ange back

and check rail occurs on the inner front wheel. In Figure 7.3 the contact condition

between wheel and rail/check rail is shown. Since only analytical models of rails

are available, the UIC 60 one has been used to reproduced the e�ect of the check

rail in contact with the wheel �ange back and the e�ect of the bullhead rail in

contact with the wheel tread (see Figure 7.3). In this case the rail mobilities at

the two contact points can be considered decoupled and the cross rail mobilities

can be considered equal to zero (see Eq.(7.9)).

In this case, from a dynamic point of view, a numerical model to simulate this

kind of train in a curve was not available, therefore the input parameters for the

model have been estimated and are summarized in Table 7.1.
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Figure 7.3: Contact condition between wheel and rail/check rail.
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Description Name Unit Values

Normal contact force
N0,1 [kN] U(40, 60)
N0,2 [kN] U(24, 36)

Curving velocity V [m/s] U(8.4, 15.6)
Nominal radius of the wheel Rw [m] 0.42

Transverse curve radius of the wheel
Rwt1 [m] 0
Rwt2 [m] 0.01

Transverse curve radius of the rail
Rrt1 [m] 0.3
Rrt2 [m] 0.013

Contact position on the wheel
[x y z]1 [mm] [0 U(32, 52) 0]
[x y z]2 [mm] [0 -70 U(12, 18)]

Contact position on the rail
[x y z]1 [mm] [0 0 0]
[x y z]2 [mm] [0 36 14]

Contact angle between wheel/rail
θ1 [◦] 0
θ2 [◦] U(74, 88)

Longitudinal creepage
γ10,1 - U(0, 0.005)
γ10,2 - U(-1.5, -0.5)

Lateral creepage
γ20,1 - U(0.0075, 0.0125)
γ20,2 - Eq.(7.60)

Spin creepage
γ60,1 [1/m] 0
γ60,2 [1/m] Eq.(7.61)

Coloumb coe�cient µ - 0.4

Falling ratio
λ1 - 0
λ2 - 0.65

Saturation coe�cient
κ1 - 0
κ2 - U(0.03, 0.3)

Table 7.1: Input parameters at contact points for outer front wheel.
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For the lateral creepage on the tread the approximation:

γ20,1 =
b

R
∼= 0.01, (7.59)

can be used, where b, equal to 2.5 m is the distance between the two wheelset

while R is the curve radius (200 m). Variability is added to this parameter in a

uniform range distribution as shown in Table 7.1.

For the lateral and spin creepage on the �ange back, the following approximation

equation can be used:

γ20,2 =
γ20,1

cos(θ2)
, (7.60)

γ60,2 =
sin(θ2)

Rw
, (7.61)

where θ2 is the contact angle between wheel �ange back and check rail, while Rw is

the nominal radius of the wheel. Since γ20,1 and θ2 are de�ned in a uniform range

distribution, γ20,2 and γ60,2, that are dependent on γ20,1 and θ2, will consequently

be variable.

In order to focus on the excitation in the radial direction, the values of κ1 and λ1
regarding the friction characteristics at the tread contact point, have been, in a

�rst attempt, chosen equal to zero in such a way as to obtain a slope of friction

curve in the falling region equal to zero and avoid, therefore, that axial modes

are excited. Introducing a negative slope at the tread contact point would simply

result in an increased number of possible unstable frequencies.

In Figures 7.4, 7.5, 7.6 and 7.7 four examples are reported of noise measure-

ments recorded at the inner and outer front wheels. In each case the leading

inner wheel showed the highest levels. The noise measured at the outer wheel

may be due to sound radiated by the inner wheel. The model predicts unstable

frequencies (see Figure 7.8) that are very close to measured ones. In particular

the most important frequency involved in squeal noise 3.6 kHz is the most likely

to be unstable in the model as well. Also other frequencies that, although present

in the measurements, have less importance in terms of levels and persistence are

found in the predictions, like 2.2, 2.8 and 4.4 kHz. Moreover, from Table 7.2 it

can be noticed that all the predicted frequencies are very close to the natural

mode, apart from the frequencies in range 4465 - 4478 Hz that are slightly lower

than the corresponding natural mode at 4517 Hz.

By modifying damping ratios in the wheel modal model the e�ect of damping
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Figure 7.4: Example of squeal at 2.2 kHz measured on leading left and right
wheel. Left hand curve [7].

Numerical modes Frequency range Experimental frequencies
involved in squeal predicted by model involved in squeal

2220 Hz (2 ND) 2222 - 2229 Hz around 2200 Hz
2880 Hz (3 ND) 2882 - 2891 Hz around 2800 Hz
3645 Hz (4 ND) 3637 - 3646 Hz around 3600 Hz
4517 Hz (5 ND) 4465 - 4478 Hz around 4400 Hz
4948 Hz (Circum) 4947 - 4948 Hz

Table 7.2: Numerical modes involved in squeal compared with the experimental
frequencies involved in squeal and frequency range predicted by the model.
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Squeal model for two contact points

Figure 7.5: Example of squeal at 2.8 kHz measured on leading left and right
wheel. Left hand curve [7].

can be readily analyzed. Figure 7.9 shows the curve squeal occurrences diagram in

the case of a damped wheel. The measured damping ratios used in the model are

those measured on the damped wheel described in Chapter 2 and listed in Table

2.4. It can be seen that the highest damping value corresponds to the prevalent

radial mode found in experimental data at 3.6 kHz. The predicted frequencies

reported in Figure 7.9 con�rm that the frequency at 3645 Hz occurs much less

often than in the undamped wheel case. Interestingly can also be observed that

the occurrences at this frequency are now lower than at 2220 Hz and 2880 Hz;

the damping ratio is 3-4 times larger.

Commenting on Figure 7.9 it can be argued that, with the increased damping,

curve squeal is expected to disappear completely, as it was measured with the

damped wheel. However the variability of the input parameters chosen is likely

to produce combinations of inputs that are too severe to represent the reality.

The model in the frequency domain with variable inputs is not expected to give

deterministic results but can be useful to understand the likelihood of curve squeal.

In this sense it is possible to say that, according to the model and within the input

parameter range, a wheel with increased damping would squeal in much less cases
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Figure 7.6: Example of squeal at 3.6 kHz measured on leading left and right
wheel. Right hand curve [7].
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Figure 7.7: Example of squeal at 4.4 kHz measured on leading left and right
wheel. Left hand curve [7].
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Figure 7.8: Curve squeal occurrences diagram for the undamped outer front wheel.
Occurrences of the most predicted frequency: more than 60 % of the 450 cases
considered.
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(for each predicted frequency less than 8 % of the 450 cases considered) than the

undamped one but this may not be enough to stop the phenomenon. However

some parameters de�ning the friction curve (the biggest unknown of the problem)

can be modi�ed to allow the model simulate a series of cases closer to reality (i.e.

with no curve squeal on the damped wheel).
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Figure 7.9: Curve squeal occurrences diagram for the damped outer front wheel.
Occurrences of the most predicted frequency: less than 8 % of the 450 cases
considered

Therefore, 450 cases have been simulated with the same input parameters

listed in Table 7.1 but with λ equal to 0.6. Figures 7.10 and 7.11 report the curve

squeal occurrences diagram for undamped and damped wheel. It is interesting to

observe that when the λ value decreases the slope of the friction characteristic

in the falling region decreases as well; therefore, the occurrences of the predicted

unstable frequencies decrease. In particular the case with the undamped wheel

predicts that the occurrences of the most common frequencies are less than 60

% of the 450 cases considered while for the case with the damped wheel are less

than 6 %.

Finally, in Figure 7.12 the same case reported in Figure 7.10 is shown and
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Figure 7.10: Curve squeal occurrences diagram for the undamped outer front
wheel with λ equal to 0.6. Occurrences of the most predicted frequency: less than
60 % of the 450 cases considered

the frequency range is extended up to 10 kHz. In fact during the measurement

campaign the presence of a tone between 7 and 7.5 kHz was recorded and the

radial mode with 8 nodal diameters was believed to be responsible. The model

can be pushed to higher frequency range in order to assess the presence of higher

frequency modes. Focusing on the frequencies above 5 kHz it can be observed that

the �rst clear instability is at around 6.5 kHz. By varying damping ratios it has

been found that there are two modes that are squealing here. One is the 7 nodal

diameters radial mode at 6500 Hz and the other is the 4 nodal diameters and 2

nodal circles (predominately) axial mode at 6495 Hz. It is important to point

out that considering the value of the contact angle and the mode shape also axial

mode (though not as easily as radial ones) can be excited with a contact point on

the �ange. In some cases measurements have shown squeal at this frequency.

At around 7.3 kHz instabilities are due to the axial mode with 2 nodal circles

and 5 nodal diameters. This is in contrast to what was deduced when the mea-

surement campaign was performed but is consistent with the results of the model
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Figure 7.11: Curve squeal occurrences diagram for the damped outer front wheel
with λ equal to 0.6. Occurrences of the most predicted frequency: less than 6 %
of the 450 cases considered.

and now believed to be correct.

There are other possible contributions for squeal at 8.3 kHz and 9.4 kHz.

Although these appear to be components present in the microphone measurements

of Figures 7.7 they are harmonics of lower frequency modes.
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Figure 7.12: Curve squeal occurrences diagram for the undamped outer front
wheel with λ equal to 0.6.

206



Squeal model for two contact points

7.3.2 Case of Sirio tram in Milan

The Sirio tram case has been reproduced with this model and the predicted fre-

quencies have been compared with the experimental ones. What was clear from

the beginning, by looking at the measurements, was the simultaneous presence of

more than one contact point. For the front inner wheel of a bogie, the �ange back

was often in contact with the rail grooved head while the �ange of the outer wheel

was in contact with the rail running head. From a steady-state vehicle dynamic

numerical simulation for a left curve with gauge of 1447 mm, the results showed

contact conditions similar to those observed in reality (see Figure 7.13). In Table

7.3 the uncertain and deterministic input parameters for the squeal model are

summarized considering the system of reference in the wheel and rail nominal

contact point shown in Figure 7.13.

Figure 7.13: Contact points position on the inner and outer front wheel and inner
and outer rail.

Figures 7.14 and 7.16 show the curve squeal occurrences diagrams for the inner

and outer front wheel, while Figures 7.15 and 7.17 show the spectrograms of inner

and outer front wheel vibration acceleration measured during the tram pass-by.

By looking at these Figures, it can be seen that the predicted frequencies are very

close to the measured ones. In particular, as found from the predicted frequencies

of the model with one contact point (see Chapter 6), the important frequency at

2550 Hz is unstable in the model as well. Moreover, since the contact point occurs
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Description Name Unit
Values

Inner Outer

Normal contact force
N0,1 [kN] U(17, 25) U(14.5, 21.7)
N0,2 [kN] U(0, 6.5) U(0, 12)

Curving velocity V [m/s] U(1.9, 3.6) U(1.9, 3.6)
Nominal radius of the wheel Rw [m] 0.33 0.33

Transverse curve radius of the wheel
Rwt1 [m] 0 0
Rwt2 [m] 0 0

Transverse curve radius of the rail
Rrt1 [m] 0.230 0.230
Rrt2 [m] 0.006 0.006

Contact position on the wheel
[x y z]1 [mm] [0 U(-9.5, 0.5) -0.22] [0 U(-9.1, 1) 0.2]
[x y z]2 [mm] [50.1 40.2 10.4] [50.6 -20 8]

Contact position on the rail
[x y z]1 [mm] [0 0 0] [0 3.5 -0.5]
[x y z]2 [mm] [50.1 48 10] [50.6 -13 7]

Contact angle between wheel/rail
θ1 [◦] U(2.4, 3.4) U(-3.4, -2.4)
θ2 [◦] U(-73, -63) U(-76, -66)

Longitudinal creepage
γ10,1 - U(0.0038, 0.0057) U(0.0067, 0.0101)
γ10,2 - U(-0.0310, -0.0207) U(-0.0193, -0.0128)

Lateral creepage
γ20,1 - U(-0.0651, -0.0434) U(-0.0651, -0.0434)
γ20,2 - U(-0.1587, -0.1058) U(-0.2000, -0.1334)

Spin creepage
γ60,1 [1/m] Eq(6.74). Eq(6.74).
γ60,2 [1/m] Eq(6.74). Eq(6.74).

Coloumb coe�cient µ - 0.4 0.4

Falling ratio
λ1 - 0.8 0.8
λ2 - 0.8 0.8

Saturation coe�cient
κ1 - U(0.04, 0.06) U(0.04, 0.06)
κ2 - U(0.12, 0.17) U(0.12, 0.17)

Table 7.3: Input parameters at contact points 1 and 2 for the inner and outer
front wheel.
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on the �ange and �ange back, it is expected that the radial modes are involved in

squeal. In fact, the radial mode at 1417 Hz is excited and found to be unstable

in the model and the predicted frequency at 1550 Hz is very close to measured

one. Also other frequencies that, although present in the measurement, have less

importance in terms of levels and persistency are found in the predictions, like

2100 Hz, 2300 Hz, 3600 Hz and 3700 Hz.

As shown in the results for the model with one contact point (see Chapter 6),

also in this case the model �nds that, often, unstable eigenvalues have higher

frequencies than the corresponding natural mode. In order to understand which

predicted frequency corresponds to which excited mode, �ctitious damping has

been added to each mode in turn; as a consequence the analyzed unstable fre-

quency disappears. In order to understand better the shift in frequency, as seen

with the model with one contact point, the contact angles between wheel and rail

can be changed in an unrealistic way in order to excite the direction of the mode

of interest. The presence of two contact points will make the reasoning proposed

for one contact point more complicated but it is still useful for explaining the

reason for the shift in the model.

Finally, it is interesting also to observe that the predicted range for unstable fre-

quency is wide (see Tables 7.4 and 7.5), as can also be observed in the wheel

vibration spectrogram. This may indicate that in reality where contact condi-

tions are variable along the curve, unstable frequency will not always appear at

the same value.

209



Chapter 7

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

M
ob

ili
ty

, m
/s

/N

 

 

Tangent
Normal

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

300

350

400

450

Frequency, Hz

C
as

e 
no

.

Figure 7.14: Curve squeal occurrences diagram for the inner front wheel.

Numerical modes Frequency range Experimental frequencies
involved in squeal predicted by model involved in squeal

529 Hz 552 - 674 Hz around 530 Hz
740 Hz 718 - 803 Hz
1271 Hz 1302 - 1447 Hz around 1330 Hz
1417 Hz 1569 - 1640 Hz around 1550 Hz
2078 Hz 2079 - 2106 Hz around 2100 Hz
2224 Hz 2261 - 2304 Hz around 2300 Hz

2475 Hz, 2536 Hz 2534 - 2620 Hz around 2550 Hz
3346 Hz 3374 - 3391 Hz
3569 Hz 3568 - 3580 Hz around 3600 Hz
3680 Hz 3685 - 3723 Hz around 3700 Hz
4697 Hz 4707 - 4723 Hz
4934 Hz 4931 - 4939 Hz

Table 7.4: Numerical modes involved in squeal compared with the experimental
frequencies involved in squeal and frequency range predicted by the model (inner
front wheel).
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Figure 7.15: Spectrogram of inner front wheel vibration acceleration during tram
pass-by.

Numerical modes Frequency range Experimental frequencies
involved in squeal predicted by model involved in squeal

1417 Hz 1355 - 1575 Hz around 1550 Hz
2475 Hz 2488 - 2521 Hz around 2550 Hz
2536 Hz 2528 - 2675 Hz around 2550 Hz
3680 Hz 3671 - 3745 Hz around 3700 Hz
4934 Hz 4935 - 4975 Hz

Table 7.5: Numerical modes involved in squeal compared with the experimental
frequencies involved in squeal and frequency range predicted by the model (outer
front wheel).
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Figure 7.16: Curve squeal occurrences diagram for the outer front wheel

Finally, by modifying the damping ratios in the wheel modal model, those

values capable of decreasing the chances of instabilities can be sought. In this

case, multiplying the damping ratios of the modes by factors reported in Table

7.6, respectively, would largely decrease the occurrence of squeal. By repeating

the same analysis that generated Figures 7.14 and 7.16 it has been found that,

with this amount of added damping, these modes are likely to be involved in

squeal in less than 6 % of the 450 cases considered (see Figures 7.18 and 7.19). It

is interesting to observe that the damping ratio of the mode at 2475 Hz has been

increased by a factor larger than the mode at 1417 Hz. This is due to the fact

that the mode at 1417 Hz was already more highly damped so needed a smaller

factor.
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Figure 7.17: Spectrogram of outer front wheel vibration acceleration during tram
pass-by.

Numerical modes
Damping ratio Multiplicative Damping ratio

of undamped wheel factor of damped wheel

529 Hz 0.8 % 4 3.2 %

1271 Hz 0.72 % 8 5.76 %

1417 Hz 1.19 % 6 7.14 %

2224 Hz 0.5 % 6 3 %

2475 Hz 0.42 % 15 6.3 %

2536 Hz 0.59 % 6 3.54 %

3680 Hz 0.78 % 4 3.12 %

Other modes 3

Table 7.6: Damping ratio of the damped wheel.
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Figure 7.18: Curve squeal occurrences diagram for the damped inner front wheel.
Occurrences of the most predicted frequency: less than 6 % of the 450 cases
considered
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Figure 7.19: Curve squeal occurrences diagram for the damped outer front wheel.
Occurrences of the most predicted frequency: less than 3 % of the 450 cases
considered
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Conclusions

The motivation of this research has its origin in an experimental campaign that

happened in Milan in 2010-2011 involving Politecnico di Milano and the local

transport service ATM. It was aimed at investigating the high level of curve

squeal noise present in several tight curves around the city during the passages of

the newest rolling stock tram named Sirio. What was clear from the beginning

was the simultaneous presence of more than one contact point. For the front inner

wheel of a bogie, the �ange back was often in contact with the rail grooved head

while the �ange of the outer wheel was in contact with the rail running head.

Then, the Class 150 Sprinter units has been investigated. When this train was

introduced in North Wales, a number of complaints arose from the intense squeal-

ing noise generated during curving. In this case it was clear that the frequencies

involved in squeal were correlated with radial modes of the wheel. The cause of

this particular squeal problem was believed to be due to vertical stick/slip forces

acting between the check rail and the wheel �ange.

Despite the relatively low interest in the railway noise literature in squeal due

to �ange contact, these two cases have demonstrated that curve squeal can also

occur due to �ange contact; moreover, when a grooved rail or a check rail is �tted

to the track, the �ange back contact can also have a signi�cant role.

From a modelling point of view, contact between wheel and rail was initially

only allowed at a single position but part of the research work described in this

thesis has been devoted to improving the original model of Huang [3] to allow

two contact positions at the same time. Moreover, since it is known that the

curve squeal phenomenon is far from being deterministic and parameters like

temperature, humidity and even dirt and particles on the rail can have a strong

e�ect on its occurrence, in the frequency-domain model with one and two contact

points, some input parameters have been de�ned as uncertain variables in the

updated version of the software. As a result, the model has been used to give the
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frequency values of possible unstable eigenvalues of the system while the range of

uncertain parameters has been randomly spanned.

Qualitative comparison with measurements showed that the most important

tones recorded during the tram pass-by can be found in the predictions.

Regarding the Sprinter case, it is interesting to observe that no shift in frequency

occurs at the radial modes predicted by the model. This is probably due to the

fact that the contact points between wheel and rail are in a good conditions to

excite predominantly the radial mode. This is reinforced by the fact that the

radial modes, in this case, present a predominantly vertical displacement without

particular coupling with lateral displacement.

Regarding the Sirio case, since the tram dynamic behaviour changes during the

curve, it is expected that the tram passes between conditions with one and two

contact points continuously, therefore, both results, obtained from the model

with one and two contact points, are useful to be compare with experimental

ones. Noticeably, the same frequency shift between wheel natural frequency and

unstable frequency value as measured is found in the predictions. In order to

understand this visible shift in frequency, it has been veri�ed that neither the

high damping values related to the resilient wheel nor the presence of the rail in

the model can be considered responsible. Moreover it has also been measured that

the position of the peaks in the wheel FRF is hardly in�uenced by the vehicle load

(see Figure 2.23); therefore this also cannot explain the shift in frequency. From

a model point of view, as discussed in section 6.6.3, the reason for this shift has

been shown to be due to the fact that the direction of the contact angle between

wheel and rail is not the same as the displacement direction of the excited mode

shape. Moreover, it is reinforced by the fact that the axial and radial modes are

more coupled than in the Sprinter case and the peaks are close together.

In order to verify which of the predicted unstable frequencies would actually

appear as squeal and what the noise levels would be, a time domain solution of

the same loop is being developed and will be presented in the near future.
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Appendix A

Rigid transformation of dynamic

properties

Figure A.1: Typical wheel/rail contact position: (a) nominal contact position
P0, (b) �ange contact position P1 and the relative relation between two frames.
Huang [3]

When the bogie is under curving conditions, the contact position between

wheel and rail shifts from the nominal position to the �ange position. Conse-

quently, the contact plane rotates by a large contact angle, as shown in Figure

A.1. The dynamic properties of a structure may be di�erent from one position to

another. Therefore, the wheel and rail mobilities obtained at the nominal contact

point cannot be applied for the analysis of other positions. Hence, a method is

required to make the transformation of the dynamic properties possible for both

wheel and rail models.

For vibration in steel with a frequency up to 5000 Hz, the minimum wavelength

of shear waves is about 640 mm. Since the distance between the nominal contact

point and the �ange contact point is about 50 mm (about 1/12 of the wavelength

at the highest frequency vibration), the structural motion between them can be

considered as rigid. Thus, the assumption of a rigid transformation is valid for
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the wheel and railhead below at least 5000 Hz, which is the upper limit of the

current curve squeal analysis. The application of this method is as follows.

Figure A.2: Rigid transform: translating from P0 to P1 and then rotating about
the x-axis. Huang [3]

The mode shapes of the wheel system, modelled by FE analysis, are available.

So, the modal matrix can be created with the mode shapes of all modes:

[Φ] =


φ1,1 φ1,2 . . . φ1,n

φ2,1 φ2,2 . . . φ2,n
...

...
...

φ6,1 φ6,2 . . . φ6,n

 , (A.1)

where n is the total modes number.

The modal matrix [Φ]0 at point P0 in the frame x0, y0, z0 can be translated to

the new position P1 in the frame x1, y1, z1 by distances (l1, l2, l3). Then, it is

rotated by an angle θ1 around the x1-axis to give the new modal matrix [Φ]2 in

the frame x2, y2, z2, as shown in Figure A.2. The total transform is expressed as:

[Φ]2 = [Trot][Toff ][Φ]0 ≡ [Ttot][Φ]0, (A.2)
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where the translation matrix [Toff ] is:

[Toff ] =



1 0 l3 −l2
1 −l3 0 l1

1 l2 −l1 0

1

[0] 1

1


, (A.3)

the rotation matrix [Rrot] is

[Trot] =



1 0 0

0 cos θ1 sin θ1 [0]

0 − sin θ1 cos θ1

1 0 0

[0] 0 cos θ1 sin θ1

0 − sin θ1 cos θ1


, (A.4)

and the total transformation matrix [Ttot] is:

[Ttot] =



1 0 0 0 l3 −l2
0 cos θ1 sin θ1 −l3 cos θ1 + l2 sin θ1 −l1 sin θ1 l1 cos θ1

0 − sin θ1 cos θ1 l3 sin θ1 + l2 cos θ1 −l1 cos θ1 −l1 sin θ1

1 0 0

[0] 0 cos θ1 sin θ1

0 − sin θ1 cos θ1


.

(A.5)

Now, the modal matrix de�ned in the Eq.(A.2) can be used to calculate the wheel

mobilities in the new contact point using the Eq.(6.20).

For the rail system, since only the mobilities but not the mode shapes are available,

the transformation must be performed in terms of mobilities.

Considering the case shown in Figure A.2, the relation between the dynamic

velocities and the dynamic forces at point P0 in the frame x0, y0, z0 can be

written as: 
V r
1

V r
2
...

V r
6


0

=


Y r
11 Y r

12 . . . Y r
16

Y r
21 Y r

22 . . . Y r
26

...
...

. . .
...

Y r
61 Y r

62 . . . Y r
66


0


F1

F2

...

F6


0

, (A.6)
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V
r
0 = [Y r

ik]0F 0. (A.7)

where the matrix [Y r
ik]0 indicate the rail mobilities at point P0 in the frame x0,

y0, z0. The dynamic velocities and the dynamic forces used in Eq.(A.6) can be

transformed and rede�ned at point P1 in the frame x2, y2, z2 using the total

transformation matrix [Ttot]:

V
r
2 = [Ttot]V

r
0, ⇒ V

r
0 = [Ttot]

−1V
r
2, (A.8)

F 2 = [Ttot]
−TF 0 ⇒ F 0 = [Ttot]

TF 2. (A.9)

Substituting the Eqs.(A.9) and (A.8) in Eq.(A.7), it is possible to obtain the

relation between the dynamic velocities and the dynamic forces at point P1 in the

frame x2, y2, z2:

V
r
2 = [Ttot][Y

r
ik]0[Ttot]

TF 2 = [Y r
ik]2F 2, (A.10)

where the matrix [Y r
ik]2:

[Y r
ik]2 =


Y r
11 Y r

12 . . . Y r
16

Y r
21 Y r

22 . . . Y r
26

...
...

. . .
...

Y r
61 Y r

62 . . . Y r
66


2

= [Ttot]


Y r
11 Y r

12 . . . Y r
16

Y r
21 Y r

22 . . . Y r
26

...
...

. . .
...

Y r
61 Y r

62 . . . Y r
66


0

[Ttot]
T , (A.11)

indicates the rail mobilities at point P1 in the frame x2, y2, z2.

The transformation performed in terms of mobilities can also be adopted to trans-

form the mobilities of the wheel from the nominal contact point to the new contact

point.

In order to verify the rotation and translation, the mobility calculated in a

particular contact point with a FE model is compared with that calculated by

means of the rotation/translation procedure from the nominal contact point. The

results in Figures A.3 and A.4 show that the agreement between the two curves

is good in the frequency range considered.
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Figure A.3: Comparison between the mobility and phase de�ned in a contact
point with that ones obtained by means of rotation/translation from the nominal
contact point (vertical direction).

223



Appendix A

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−10

10
−5

10
0

Frequency (Hz)

M
ob

ili
ty

 (
m

/s
/N

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−100

−50

0

50

100

Frequency (Hz)

P
ha

se
 (

°)

 

 

roto−translated
defined in that point

Figure A.4: Comparison between the mobility and phase de�ned in a contact
point with that ones obtained by means of rotation/translation from the nominal
contact point (lateral direction).
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