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Abstract

This thesis has been developed during a six-month internship within the OPALE research
team at INRIA Méditerranée (Institut Nationale de Recherche en Informatique et Automa-
tique - Sophia Antipolis, France) under the supervision of Jean-Antoine Désidéri and Régis
Duvigneau. This work focuses on the research field of optimization. Moreover it deals with
topics related to numerical methods for the approximation of PDEs and applications to
computational mechanics.
This work faces some theoretical issues in the cooperative phase of multiobjective optimi-
zation and applies the resulting methodology to a shape optimization problem in linear
elasticity.
In the first part of this thesis, a general paradigm for the treatment of multiobjective op-
timization is presented, introducing the concepts of Pareto-optimal solutions and Pareto
fronts. Then we describe a methodology that extends classical Steepest-Descent Method to
the case of concurrent optimization of several criteria by means of the so-called Multiple-
Gradient Descent Algorithm.
Moreover we present an application to a linear elasticity problem, formulated using Iso-
Geometric Analysis. In particular, we propose to analyze a classical problem of shape opti-
mization in structural engineering within a multiobjective optimization framework. Thus
the following variants of Multiple-Gradient Descent Algorithm are tested: MGDA using
gradients approximated by Finite Difference Method; MGDA assisted by statistical-based
metamodels in order to predict the values of the objective functionals; MGDA enhanced by
the information contained in the gradients analytically extracted from the NURBS -based
formulation of the problem.
Some numerical simulations for a test case are presented and the results are cross-validated
using all the variants of this multiobjective optimization algorithm, a strategy based on
shape derivatives and a genetic algorithm widely used in the literature.
Eventually, an introduction to multiobjective competitive optimization is given and the
general framework to formulate a proper Nash game is established.

Keywords: Multiobjective optimization, Pareto-optimal solutions, gradient descent,
IsoGeometric Analysis, shape optimization, shape gradient, kriging models
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Sommario

Questo lavoro di tesi è stato sviluppato durante un periodo di stage di sei mesi svolto
all’interno del gruppo di ricerca OPALE presso INRIA Méditerranée (Institut Nationale de
Recherche en Informatique et Automatique - Sophia Antipolis, Francia). Sviluppato sotto
la supervisione del Prof. Jean-Antoine Désidéri e del Dr. Régis Duvigneau, questo lavoro
si inquadra nell’area di ricerca dell’ottimizzazione e tratta temi legati ai metodi numerici
per le equazioni a derivate parziali con applicazioni alla meccanica computazionale.
Il fulcro di questa tesi è costituito dalla trattazione teorica e algoritmica della fase coo-
perativa delle procedure di ottimizzazione multiobiettivo. La metodologia risultante è poi
applicata a un problema di ottimizzazione di forma formulato mediante l’analisi isogeome-
trica in un contesto di elasiticità lineare.
Nella prima parte di questo lavoro, si introduce un paradigma generale per la tratta-
zione dei problemi di ottimizzazione multiobiettivo, presentando i concetti di soluzioni
Pareto-ottimali e di fronti di Pareto. Successivamente si generalizza il classico algoritmo
di massima discesa per l’ottimizzazione di un singolo criterio al caso dell’ottimizzazione
contemporanea di molteplici funzionali tramite la strategia denominata Multiple-Gradient
Descent Algorithm.
Si presenta inoltre l’applicazione a un problema di elasitictà lineare formulato usando
elementi finiti isogeometrici. In particolare, proponiamo di analizzare un classico proble-
ma di ottimizzazione di forma in ingegneria strutturale ambientandolo in un contesto di
ottimizzazione multiobiettivo. Si testano pertanto le seguenti varianti dell’algoritmo di
ottimizzazione precedentemente descritto: MGDA accoppiato a una procedura per il cal-
colo approssimato dei gradienti mediante differenze finite; MGDA assistito da metamodelli
statistici per la predizione dei funzionali costo; MGDA potenziato dall’utilizzo delle infor-
mazioni sui gradienti estratte in maniera analitica dalla formulazione del problema basata
sulle NURBS.
Si forniscono i risultati di alcune simulazioni numeriche per un caso test e si esegue una
validazione degli stessi usando le varie versioni presentate per l’algoritmo di ottimizzazione
multiobiettivo, una strategia basata sulle derivate di forma e un algoritmo genetico larga-
mente impiegato in letteratura per la trattazione di questa categoria di problemi.
Infine, si presenta un’introduzione ai problemi di ottimizzazione multiobiettivo competitiva
e si fornisce l’ambientazione generale per la corretta formulazione del corrispondente gioco
di Nash.

Parole chiave: Ottimizzazione multiobiettivo, soluzioni Pareto-ottimali, metodo di
discesa, analisi isogeometrica, ottimizzazione di forma, gradiente di forma, modelli di
kriging
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Introduction

In recent years optimization has gained an increasing interest among scientists for the
interdisciplinary character of the topics it deals with, both from a theoretical point of view
and for the wide range of possible applications.
When dealing with real life problems, the first step one has to face is the mathematical
model of the phenomena under analysis. These problems are usually extremely complex
and involve several quantities of different nature. In general, a detailed study involves
the analysis of different aspects at the same time and issues on the possibility of properly
comparing and optimizing the relevant quantities arise.

Within this framework, classical single objective optimization presents several limita-
tions and a more general paradigm to analyze multiple objectives is necessary. Thus, in
this work we focus on multiobjective optimization and we present a general setting for the
treatment of complex optimization problems.

In the literature, multiobjective optimization problems have been classically treated by
means of penalty approaches or other methodologies strongly dependent on the calibration
of the parameters in the model and this limited their efficacy. An alternative approach relies
on the definition of the so-called Pareto-optimal solutions: these configurations optimize
the objective functionals with different orders of accuracy, thus leading to a set of optima
for the global problem. However, a ranking among the Pareto-optimal solutions cannot be
established since every configuration focuses on the optimization of one specific criterion
(or one subset of criteria) whereas the remaining ones could worsen or not improve. In
this scenario, the choice among the different final configurations can be performed only if
additional information on the nature of the problem or the user’s goal is known.

In this work we seek a deterministic approach for the treatment of optimization prob-
lems with multiple criteria and we start from the recent works of J.-A. Désidéri on Multiple-
Gradient Descent Algorithm (MGDA). We will extensively present this methodology which
is a generalization of the classical Steepest-Descent Method to the case of several objective
functionals. From a theoretical point of view, we present a detailed description of the
algorithm and some important results for the finite-dimensional case. An extension to
infinite-dimensional problems in Hilbert spaces is possible but some issues on the conver-
gence of the iterates of the method are still open.

From a computational point of view, a major drawback of the deterministic methods
for multiobjective optimization is the high number of different configurations that have to
be evaluated for every objective functionals. This can result in a bottleneck if the solver
invoked by the problem under analysis is very demanding, for example a code to simulate
turbulent Navier-Stokes equations in non-trivial three-dimensional geometries. For this
reason, the coupling of optimization algorithms with prediction methodologies has been
studied, especially focusing on statistical-based techniques for spatial data such kriging
models.

1



Contents

Concerning the applications, in this thesis we focus on the field of continuum mechanics
and we deal with a linear elasticity problem. In particular, we are interested in studying a
shape optimization problem arising from structural engineering. For the numerical approx-
imation of the problem, we use IsoGeometric Analysis (IGA), where the finite-dimensional
space used in the Galerkin method is constructed using Non-Uniform Rational B-Splines
(NURBS ). NURBS represent a de facto standard in Computer Aided Design and allow
to save the computational cost associated with the mesh generation in classical numerical
methods since the same parametrization is used for both geometry and unknown fields.
For the shape optimization problem, issues related to the differentiation with respect to
the domain are faced and an optimization procedure based on shape derivatives is tested.
The same problem is reformulated within a multiobjective optimization paradigm and is
solved by using several variants of MGDA: first, an optimization strategy is implemented
by using Finite Difference Method to approximate the gradients of the objective function-
als; then, the multiobjective descent strategy is coupled with a kriging model in order to
reduce the overall computational cost due to the evaluation of the functionals; eventually,
the information on the gradients of the objective functionals is extracted directly from the
isogeometric solver and MGDA is tested using analytical gradients.
The thesis is organized as follows:
Chapter 1: We present a brief overview of several topics in optimization that will be
later treated in this thesis. In particular, we present an introduction to multidisciplinary
optimization highlighting cooperative and competitive phases. Concerning the shape op-
timization problem, we recall some concepts of functional differentiation in Banach spaces
and we present a basic introduction to differentiation with respect to the domain.
Chapter 2: We introduce the general concepts of Pareto-optimality and Pareto-stationa-
rity for multiobjective optimization and we establish a Multiple-Gradient Descent Algo-
rithm to perform cooperative optimization. Then we state some major results of exis-
tence and convergence of the sequence of MGDA iterates and we provide some details on
the strategy for the numerical implementation of the procedure. Eventually metamodel-
assisted variants of the optimization algorithm are proposed, especially focusing on kriging
models.
Chapter 3: We introduce the linear elasticity problem and the isogeometric paradigm
for the formulation of a solver based on IsoGeometric Analysis. We recall the construction
procedure to obtain Non-Uniform Rational B-Splines and we write the differential problem
within this framework. Then we present a shape optimization problem widely studied in
structural engineering and several approaches to its analysis based on penalty parameters,
Lagrange multipliers and shape derivatives. Eventually we reformulate this problem in
order to be able to treat it within a multiobjective optimization paradigm.
Chapter 4: We combine the results from the previous chapters and we detail classical
MGDA procedure where the gradients of the functionals have to be numerically approxi-
mated as well as metamodel-assisted MGDA where we couple the optimization procedure
with the statistical information arising from kriging prediction models. Eventually we use
the isogeometric parametrization to extract the gradients of the objective functionals and
we improve classical MGDA by means of the analytical expressions of the gradients.
Chapter 5: We present some numerical results for a two dimensional test case well
described in the literature. We compare first the configurations obtained using different
variants of MGDA with the one arising from a Steepest Descent Method formulated using
shape derivatives. Then, we cross-validate the description of the Pareto front with the
results of a genetic algorithm widely used in the literature. Eventually some observations
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on the performance of these algorithms are presented.
A conclusive chapter summarizes the results of this thesis and highlights open issues and
future developments. Two additional appendixes contain further information not essential
to the understanding of this work but useful for the comprehension of some major issues
in multiobjective optimization. In particular, appendix A provides a brief introduction
to competitive optimization: we introduce the general framework to formulate a multiob-
jective optimization strategy using Nash games and we highlight the possible extension
of the discussed procedures, starting from the Pareto-optimal solutions given by MGDA.
Eventually, in appendix B, we report the proofs of the main theoretical results presented
for cooperative optimization.
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Chapter 1

Multiobjective optimization and
shape optimization

This work deals with several aspects related to the fields of numerical optimization, dif-
ferential geometry and scientific computing. From a theoretical point of view, this thesis
focuses on multiobjective optimization, that is the treatment of complex systems by con-
currently optimizing several criteria. For this reason in this section we present a brief
overview of main concepts in the field of multidisciplinary optimization and we describe
different approaches to the problem. In details, we will focus on the identification of the
quantities that describe the concept of optimality in a multiobjective optimization problem
and on the techniques to achieve this characterization (Sections 1.1 and 1.2). A very good
introduction to these topics is available in [Mie99] and [NW99].

Concerning the applications of multiobjective optimization, in this work we study a
shape optimization problem arising from structural engineering. First we parametrize the
domain and the boundary using Non-Uniform Rational B-Splines, then we solve an elas-
ticity problem by means of IsoGeometric Analysis. Thus the shape optimization problem
is set in a multiobjective optimization framework and the objective functionals are concur-
rently optimized. An introduction to NURBS will be given in chapter 3 whereas in sections
1.3 and 1.4 we present an overview of the most important results about functional differ-
entiation in Banach spaces and differentiation with respect to the domain, namely Fréchet
derivatives and shape derivatives. For more details on these topics we refer to [HM03]
and [DZ01].

1.1 Basic concepts of multiobjective optimization

In this section we introduce some basic notions in the field of multiobjective optimization.
For the general framework, we consider n objective functionals Ji(Ω) , i = 1, . . . , n; for the
sake of readibility we will restrict to the specific case of two functionals when the notation
of the general scenario is excessively complicated.

First of all we recall the definition of dominance of a design point within a multidisci-
plinary paradigm:

Definition 1.1 (Dominance). Let our problem be the concurrent minimization of n criteria
Ji(Ω) , i = 1, . . . , n. A design point Y(0) in the parameter space Ω ⊂ RN is said to dominate
the design point Y(1) ∈ Ω in efficiency if and only if

Ji(Y
(0)) ≤ Ji(Y

(1)) , ∀i = 1, . . . , n

4
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and for at least one criterion the inequality is strict.
Under these assumptions, we can write Y(0) ≻ Y(1), otherwise it holds

Y(0) ⊁ Y(1) and Y(1) ⊁ Y(0)

and the design points are said to be non-dominated.

The notion of dominance is essential for the definition of a sorting criterion within a
population of design points with respect to the objective functionals Ji(Ω) , i = 1, . . . , n.
Thus it is possible to identify the so-called Pareto fronts, that is, subsets of design points
which are non-dominated with respect to each other.

Figure 1.1: Different Pareto fronts in multiobjective optimization of functionals JA and JB .
Pareto-optimal solutions belong to the first Pareto front, namely the lowest set of points in the
space JA − JB . Figure from [Dés11].

In general, there exist multiple Pareto fronts (Fig. 1.1) and the aim of the optimization
procedure is to identify the first Pareto front, meaning the set of all design points dominated
by no others. For this reason we introduce the notion of Pareto-optimal solution as follows:

Definition 1.2 (Pareto-optimality). Let Y(0) be an admissible design point in Ω ⊂ RN .
Y(0) is said to be Pareto-optimal if it is not possible to reduce the local value of any
criterion without increasing at least one of the other criteria.

Definition 1.2 can be reformulated by means of the concept of first Pareto front: a
design point is said to be Pareto-optimal if it belongs to the first Pareto front.

1.2 MultiDisciplinary Optimization

In the literature, the expression MultiDisciplinary Optimization generally refers to the
optimization of complex systems where several objective functionals have to be considered.
For a general introduction to the methodologies to deal with these methods we refer to
[KN05] and [Ted07]. A common approach consists of strategies that first analyze and
locally minimize subsystems considering only one discipline at time, then integrate them in
a global coupled system by means of an appropriate combination of the results ( [SSH97]
and [SSAPS03]). Other approaches have been proposed by Y. Parte et al. ( [PAC+10]
and [AL99]) and are based on the idea of adding a non-linear equation to establish the
equivalent of a constitutive relationship among the design variables. Nevertheless, all these
strategies tend to increase both the theoretical difficulty and the computational cost of the
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optimization procedures due to the additional information they require in order to obtain
a problem that can be solved.

In general, MultiDisciplinary Optimization involves the evaluation of a large number
of different configurations of the design parameters and this leads to high computational
costs for which efficient approaches are required. Among the possibilities we recall the use
of hierarchical model adaptivity, geometrical shape parametrizations, high performance
implementations and efficient optimizers. In this work, we focus on the last field for which
we present a brief overview in this section.

A classical strategy to take into account several objective functionals Ji’s i = 1, . . . , n
consists of agglomerating them in a single criterion which is a convex combination achieved
by means of appropriate weights:

J =
n∑

i=1

αiJi , αi ≥ 0 ∀i = 1, . . . , n

As widely observed in the literature, this approach presents heavy limitations due to the
arbitrariness of the calibration required by the weight coefficients and in general provides
significant results only when the initial design point is close to be satisfactory and minor
improvements are sought.
An alternative approach consists of a two-step procedure. First the objective functionals
Ji’s i = 1, . . . , n are optimized alone within a single objective paradigm - possibly under
given constraints - and ∀i = 1, . . . , n an optimal solution J∗

i is identified; in a second step
the following minimization problem is established

min
s∈Sad

s

where Sad is said to be the set of admissible perturbations s such that ∀i = 1, . . . , n the
variations of the objective functional Ji’s are bounded by a small perturbation about the
optimal values J∗

i ’s:

Sad =
{
s ∈ R

∣∣∣ Ji ≤ J∗
i + αis , ∀i = 1, . . . , n

}
Thus we minimize the error introduced by the procedure of concurrent optimization as a
perturbation of the optimal values J∗

i ’s. As for the convex combination of the objective
functionals, this approach presents major issues of stability and robustness.

A totally different approach relying on an alternative formulation of the problem con-
sists of considering a two-phase optimization strategy where in the first place the objective
functionals are concurrently minimized (Cooperative phase) then a policy to optimize one
criterion without excessively worsening the others is established and performed (Competi-
tive phase) ( [DPAM00] and [Dés11]). We remark that this approach clearly holds only if
the analyzed criteria are antagonistic, that is, a global optimal solution does not exist and
we seek the design points that realize Pareto-optimal solutions as defined in the previous
section. On the contrary, if the problem under analysis admits a global optimum, the
Pareto front is degenerate and there exists one unique configuration that dominates all the
remaining ones. In this scenario, cooperative optimization is still feasible even if trivial
but the competitive phase can no longer be applied.
In the following subsections, we will present the general idea of this two-step algorithm
and during the rest of the thesis we will focus on the cooperative phase which is the main
subject of this work.
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1.2.1 Cooperative phase

Starting from a generic design point Y(0), first of all we are interested in optimizing all the
criteria, that is, we want to identify a new design point Y(1) such that Y(1) ≻ Y(0). In the
literature, this problem is often faced by means of genetic algorithms which are suitable
but have major drawbacks because of their computational costs.
Here we treat this problem by using a gradient-based approach that extendes the Steep-
est Descent Method to multiobjective optimization. In particular, this work focuses on
the phase of cooperative optimization, that is the procedure by which all the objective
functionals improve at the same time. We refer to section 2 for a detailed presentation of
Multiple-Gradient Descent Algorithm and to section 4 for the application of this method-
ology to a problem of shape optimization.

1.2.2 Competitive phase

Basic idea of the competitive optimization consists of simulating a dynamic game and
seeking a Nash equilibrium. In particular, a split of the territory is performed by identifying
complementary subsets of the design variables and each criterion to be optimized is assigned
to a virtual player as individual strategy. If an equilibrium point is achieved, it represents
a trade-off among the criteria, that is, a configuration where the objective functionals are
optimized and the values that do not improve do not suffer from excessive worsening either.
In a symmetrical Nash game ( [Nas51]), each player accomodates its own strategy to the
other players in order to optimize only the criterion he has been assigned.
A brief introduction to optimization based on Nash games is presented in appendix A. In
this work we focus on the cooperative phase during multiobjective optimization thus we will
not provide a detailed presentation of this topic. However, the design points arising from
cooperative optimization can be either interpreted as final configurations or starting point
for the competitive optimization strategy thus a a general overview is mandatory since
competitive optimization represents the second phase of the overall two-step optimization
strategy. Further details including some theoretical results on existence and performance
are available in [Dés11] and [AEM07].

1.3 Basic concepts of differential calculus in Banach spaces

Here we introduce the concepts of Gâteaux and Fréchet derivatives for given operators
in Banach spaces in order to extend classical notions of differentiability and directional
derivative to these spaces. For a detailed description of these topics we refer to [Sal08]
and [Eva10].
Let us consider two Banach spaces X,Y and an operator F : U ⊆ X → Y where U is an
open set.

Definition 1.3 (Gâteaux derivative). F is said to be Gâteaux differentiable in x0 ∈ U if
∀h ∈ X and ∀t such that x0 + th ∈ U , there exists an operator dGF ∈ L(X,Y ) such that

dGF (x0)h = lim
t↘0

F (x0 + th) − F (x0)

t
(1.1)

In particular, if F is G-differentiable in every point of U , the application dGF : U →
L(X,Y ) is unique and is said to be the Gâteaux derivative of F .
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Definition 1.4 (Fréchet derivative). F is said to be Fréchet differentiable in x0 ∈ U if
∀h ∈ X such that x0 + h ∈ U , there exists a bounded linear operator dF ∈ L(X,Y ) such
that

lim
h↘0

∥F (x0 + h) − F (x0) − dF (x0)h∥Y
∥h∥X

= 0 (1.2)

In particular, if F is F-differentiable in every point of U , the application dF : U → L(X,Y )
is unique and is said to be the Fréchet derivative of F .

If F (x) is Fréchet differentiable then it is also Gâteaux differentiable and its Fréchet and
Gâteaux derivatives are the same. However, Gâteaux differentiability is only a necessary
condition for Fréchet differentiability since the Gâteaux derivative may fail to be linear
or continuous. Moreover, it is even possible for the Gâteaux derivative to be linear and
continuous but for the Fréchet derivative not to exist. Here we recall a general result that
establishes a relationship between Gâteaux and Fréchet derivatives:

Theorem 1.5. If F : U ⊆ X → Y is Gâteaux differentiable in U and dGF is continuous
in x0 ∈ U , then F is Fréchet differentiable and dF (x0) = dGF (x0).

Remark 1.6 (Composition and chain rule). Let X,Y, Z be three Banach spaces and consider
two operators F : U ⊆ X → Y and G : V ⊆ Y → Z where U and V are open subsets. If F
is Gâteaux (respectively Fréchet) differentiable in x0 ∈ U and G is Gâteaux (respectively
Fréchet) differentiable in y0 = F (x0), then

dG(G ◦ F )(x0) = dGG(y0) ◦ F (x0) , d(G ◦ F )(x0) = dG(y0) ◦ F (x0)

Remark 1.7 (Functional case). Let us consider a functional F : U ⊆ X → R. Thus
dF (x0) ∈ X∗ and we get dF : U → X∗. If X is a Hilbert space with given internal product
(·, ·)X we get

dF (x0)h = (F , h)X = (∇F (x0), h)X (1.3)

where the element F ∈ X that satisfies equation (1.3) is said to be the gradient of F in
x0.

1.4 Basic concepts of shape optimization

In this section we present a general introduction to the concept of shape optimization
following [SZ92] and [BB05]. In particular, we deal with problems of optimization where the
design variable is the domain of the problem itself. Thus the optimization problem can be
read as the minimization of a vector of objective functionals J(D) = (J1(D), . . . , Jn(D))T

subject to some constraints that state the admissibility of the shapes under analysis. We
define the set of admissible shapes Oad and we seek a domain D̂ such that

D̂ = argmin
D ∈ Oad

J(D)

Using this formulation, the control variable of the problem is the domain D which
can be represented by means of different parametrizations depending on the nature of
the problem. In this work, we implemented a problem of shape optimization within an
isogeometric paradigm using a parametrization based on Non-Uniform Rational B-Splines.
Thus our design variable Y will be the vector of control points that define the NURBS
curves and surfaces.
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The forms of the objective functionals depend on the nature of the problem under
analysis. For example, in problems of Computational Fluid Dynamics, the aim usually is
to determine the optimal shape in order to reduce the drag subject to a lift constraint and
some structural limitations. In the field of elasticity, main goal is to reduce the compliance
given some volume constraints. Thus, the functionals usually depend on the domain D,
on an unknown field u(D) - for example the displacement, the deformation or the velocity
- and on its gradient ∇u(D) as follows:

J(D) = J(D,u(D),∇u(D))

In the following sections we will introduce the concept of deformation of the domain driven
by a given map and some basic techniques of differentiation in Banach spaces. Moreover
we will present an overview of the differentiation with respect to the domain in order to
be able to write the optimality conditions for a shape optimization problem.

1.4.1 Deformation of the domain

In [DZ01] J.-P. Zolésio et al. present the theoretical foundations of the concept of shape
derivative which has a major role in the context of shape optimization we will introduce
in the following sections.
Let T be the space of diffeomorfism transformations in Rd defined as

T =
{
T : Rd → Rd | (T − I) ∈ W 1,∞

(
Rd;Rd

)
, (T−1 − I) ∈ W 1,∞

(
Rd;Rd

)}
(1.4)

We introduce the space of the admissible shapes arising from a deformation of D

OT (D) =
{
D0

∣∣∣ ∃T ∈ T such that D0 = T (D)
}

(1.5)

Let v : Rd → Rd be an admissible vector field that defines a sufficiently smooth shape
deformation arising from the optimization process. Moreover, we define the transformation
that maps the initial domain D into the moving domain at time t as Tt : Rd → Rd such
that

Dt = Tt(v)(D) = D + tv(D) = (I + tv)(D) (1.6)

In general, equation (1.6) describes a map known as perturbation of the identity which takes
into account the transformation arising from a displacement field v and can be written as

Tt(v) = I + tv , v ∈ W 1,∞
(
Rd;Rd

)
(1.7)

The following lemma holds and for the proof we refer to [All06].

Proposition 1.8. Let us consider v ∈ W 1,∞ (Rd;Rd
)

such that ∥v∥W 1,∞(Rd;Rd) < 1. Then
the map Tt(v) = I + tv belongs to the space T .
Moreover, if ∃α > 0 such that ∥v∥W 1,∞(Rd;Rd) ≤ 1 − α then

∥Tt(v)−1 − I∥W 1,∞(Rd;Rd) ≤ 1

α
.
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Figure 1.2: Transformation that maps the initial domain D into the moving domain at time t
Dt = (I + tv)D. Figure from [All06].

1.4.2 Differentiation with respect to the domain

Within the framework of problems of shape optimization, the domain changes during the
evolution of the optimization algorithm, thus a way to take into account these changes is
required. We introduce the concepts of shape gradient and shape derivative in order to
consider the way the objective functionals of the optimization problem change with respect
to the transformation of the domain.

Definition 1.9 (Shape gradient). Let J : OT (D) → R and Tt be as in equation (1.7). We
define the Eulerian derivative of J in the domain D along the direction v as

dJ(D;v) = lim
t↘0

J(Dt) − J(D)

t
= lim

t↘0

J((I + tv)(D)) − J(D)

t
(1.8)

If equation (1.8) holds ∀v ∈ D(Rd;Rd) and the map v 7→ dJ(D;v) is linear and continuous,
then J is said to be differentiable with respect to D and we get

dJ(D;v) = ⟨∇J(D) , v⟩D′(Rd;Rd)×D(Rd;Rd)

where ∇J(D) is known as shape gradient.

In the rest of this section we recall some theoretical results on the differentiation of
objective functionals with respect to the domain.

Theorem 1.10. Let D be a regular domain.

1. Let f ∈ W 1,1(Rd) and J : OT → R the objective functional defined as follows

J(D0) =

∫
D0

f(x)dx

Then J(D0) is differentiable with respect to D along the direction v and we get

dJ(D;v) =

∫
∂D

f(x)v · ndx ∀v ∈ W 1,∞
(
Rd,Rd

)
where n is the outward normal to the surface ∂D.
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2. Let f ∈ W 2,1(Rd) and J : OT → R the objective functional defined as follows

J(D0) =

∫
∂D0

f(σ)dσ

Then J(D0) is differentiable with respect to D along the direction v and we get

dJ(D;v) =

∫
∂D

(
∂f

∂n
+ Hf

)
v · ndσ ∀v ∈ C1

(
Rd,Rd

)
where n is the outward normal to the surface ∂D and H = divn is the mean curvature
of the surface ∂D.

Theorem 1.10 is a first statement concerning the differentiation of a functional J(D)
with respect to the domain but it is feasible only if the shape is fixed in time. Hence we
have to introduce additional concepts to take into account the case where the argument of
the integral function depends on the geometry of D as in shape optimization problems.

Definition 1.11 (Material derivative and shape derivative). Let y = y(D,x) be a function
in a suitable Sobolev space W (D) such that it depends both on the geometry of the domain
and on the element x within it.
We define ẏ = ẏ(D) the element in W (D) such that

ẏ(D) = lim
t↘0

y(Dt) − y(D)

t
= lim

t↘0

y((I + tv)D) − y(D)

t
(1.9)

and we name it material derivative of y.
We define y′ = y′(D) the element in W (D) such that

y′(D) = ẏ(D) − v · ∇y(D) (1.10)

and we name it shape derivative of y.

Thus theorem 1.10 can be extended by using the concept of shape derivative defined
in equation 1.10.

Theorem 1.12. Let D be a regular domain.

1. Let y : OT (D) → L1(Rd) such that y(D) ∈ W 1,1(Rd) and J : OT → R is the objective
functional defined as follows

J(D0) =

∫
D0

y(D0,x)dx

Then J(D0) is differentiable with respect to D along the direction v and we get

dJ(D;v) =

∫
D
y′(D)dx +

∫
∂D

y(D)v · ndx ∀v ∈ W 1,∞
(
Rd,Rd

)
(1.11)

where n is the outward normal to the surface ∂D.
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2. Let y : OT (D) → L1(Rd) such that y(D) ∈ W 2,1(Rd) and J : OT → R is the objective
functional defined as follows

J(D0) =

∫
∂D0

y(D0, σ)dσ

Then J(D0) is differentiable with respect to D along the direction v and we get

dJ(D;v) =

∫
∂D

y′(D)dσ +

∫
∂D

(
∂y(D)

∂n
+ Hy(D)

)
v · ndσ ∀v ∈ C1

(
Rd,Rd

)
(1.12)

where n is the outward normal to the surface ∂D and H = divn is the mean curvature
of the surface ∂D.

Eventually, under some additional assumptions well detailed in [DZ01], it is possible to
prove the following structure theorem due to J. Hadamard, which applies to a wide class
of functionals:

Theorem 1.13 (Hadamard’s structure theorem). Let D be a regular domain and J :

OT (D) → R an objective functional. Then there exists a scalar distribution g(D) with
support within ∂D such that g(D) ∈ D′(∂D) and

dJ(D;v) = ⟨g(D),v · n⟩D′(∂D)×D(∂D) ∀v ∈ D(Rd,Rd)

Moreover, if g(D) ∈ L1(∂D) the following result - known as Hadamard’s formula - stands

dJ(D;v) =

∫
∂D

g(D)v · ndσ (1.13)

For the proofs of these theorems and for a detailed presentation of these topics we refer
to [All06], [HM03] and [HP05].
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Chapter 2

Multiple-Gradient Descent
Algorithm

In this chapter we focus on the cooperative phase of the strategy previously presented for
the treatment of multiobjective optimization problems. In details, we describe an approach
for concurrent optimization based on gradient strategies, firstly proposed by J.-A. Désidéri
in [Dés09]. Basic idea of the method known as Multiple-Gradient Descent Algorithm is
to identify a direction common to all criteria along which the value of every functional
improves: thus, for a multiobjective minimization problem we seek a descent direction
common to all criteria leading to a strategy that generalizes the classical Steepest Descent
Method for single objective optimization problems.

As pointed out in section 1.1, in multiobjective optimation problems the concept of
optimal solutions is replaced by the notion of Pareto-optimal solutions, that is points
belonging to the first Pareto front. In general, there is not uniqueness for Pareto-optimal
solutions unless the objective functionals are dependent on each other; this is a trivial
situation since the problem under analysis results in a single objective optimization problem
and the whole approach to cooperative and competitive optimization does not make any
sense.

In the following sections we will focus on the description of Multiple-Gradient Descent
Algorithm, highlighting the main results about the existence of Pareto-optimal solutions
and the algorithmic strategy for the classical and metamodel-assisted procedures. The
proofs of the results presented in this section are available in appendix B and are all due
to the works of J.-A. Désidéri ( [Dés09], [Dés12a], [Dés12c] and [Dés12b]).

2.1 Introduction and general results

In this section, we focus on the concurrent phase of the optimization of n criteria Ji(Y) , i =
1, . . . , n. Let Ω ⊂ RN be the space of admissible design points, we suppose that ∀i =
1, . . . , n the Ji(Y)’s have enough regularity, meaning that they are smooth functions of
the design vector Y ∈ Ω:

Ji(Y) ∈ C1(Ω) , i = 1, . . . , n ≤ N

From now on, we consider the multiobjective optimization problem given by the concur-
rent minimization of n unconstrained criteria Ji(Y)’s in Ω ⊂ RN as our standard model
problem:

min
Y∈Ω

J(Y) , J(Y) = (J1(Y), . . . , Jn(Y))T (2.1)
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2.1.1 Pareto concepts

First of all we introduce the notion of Pareto-stationarity as in [Dés12c]:

Definition 2.1 (Pareto-stationarity). Let Y(0) be a design point at the center of an open
ball within the admissible domain Ω ⊂ RN . We assume that the n functional criteria
Ji(Y) , i = 1, . . . , n are smooth in Ω and we consider the vector of the local gradients
u = (u1, . . . ,un)T where ui = ∇Ji(Y

(0)) is the gradient of the i-th objective functional.
The design point Y(0) is said to be Pareto-stationary if and only if there exists a convex
combination of the gradient vectors ui’s that is equal to zero, that is

n∑
i=1

αiui = 0 , αi ≥ 0 ∀i = 1, . . . , n (2.2)

where the weights αi’s constitute a partition of the unity
∑n

i=1 αi = 1.

Now we can state the following result that establishes a relationship between Pareto-
stationarity and Pareto-optimality:

Proposition 2.2. Let Y(0) be an admissibile design point in Ω. If Y(0) is Pareto-optimal,
then it is Pareto-stationary.

Thus, for our model problem (2.1) and in general for smooth unconstrained criteria,
Pareto-stationarity is a necessary condition for Pareto-optimality. As a matter of fact, if
the design point Y(0) belongs to the Pareto set, by instinct we cannot find a new design
point that dominates it, that is the elements of the gradient vectors have opposite signs
and we can find a linear combination such that equation (2.2) holds.
On the other side, if a design point Y(0) is not Pareto-stationary for the smooth criteria
Ji(Y) , i = 1, . . . , n, then a descent direction ω common to all objective functionals exists
and by choosing a step size ρ small enough, the evaluations of the Ji’s at Y = Y(0) − ρω
will improve the values previously computed in Y(0).

2.1.2 Existence and uniqueness of the minimal-norm element

Let (·, ·) : RN × RN → R be the classical scalar product in RN and ∥ · ∥ : RN → R the
corresponding norm.
Finding the descent direction common to all criteria is equivalent to finding a vector ω ∈
RN such that

(ui,ω) ≥ 0 , ui = ∇Ji(Y
(0)) ∀i = 1, . . . , n

Thus −ω is one descent direction for our multiobjective optimization problem.
We notice that a normalization of the gradients leaves the problem unchanged, so we

generalize the previous form by introducing a family of strictly-positive scaling factors
Si , i = 1, . . . , n:

(ui,ω) ≥ 0 , ui =
1

Si
∇Ji(Y

(0)) ∀i = 1, . . . , n (2.3)

Using the gradient vectors ui , i = 1, . . . , n as defined in (2.3) we can construct the
following convex hull

U =

{
u ∈ RN

∣∣∣∣∣ u =
n∑

i=1

αiui , αi ≥ 0 ∀i = 1, . . . , n
n∑

i=1

αi = 1

}
(2.4)
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and by exploiting its properties we can establish a general result of existence and uniqueness
of a minimizing element in U .

Proposition 2.3. Let U be the convex hull defined in (2.4). There exists one realization
of a minimum in U and this minimal-norm element is unique.

Thanks to the characterization of ω as the minimal-norm element in U the following
result holds:

Proposition 2.4. For all u ∈ U : (u,ω) ≥ ∥ω∥2.

Thus a dichotomy result is established in theorem 2.5 stating whether a given design
point is Pareto-stationary or there exists a descent direction common to all criteria.

Theorem 2.5. Under the assumptions made in propositions 2.2 and 2.4, two cases are
possible:

(i) either ω = 0 and the design point Y(0) is Pareto-stationary;

(ii) or ω ̸= 0 and in correspondance of the design point Y = Y(0) the vector −ω defines
a descent direction common to all criteria.

Moreover, if (ii) holds and ω belongs to the interior U of U then the Fréchet derivatives
are all equal

(ui,ω) = ∥ω∥2 , ∀i = 1, . . . , n

and more generally for the scalar product it holds

(u,ω) = ∥ω∥2 , ∀u ∈ U .

2.1.3 Convergence of MGDA

Multiple-Gradient Descent Algorithm can either stop after a finite number of iterations
achieving a Pareto-stationary design point or generate an infinite sequence of iterates.
Here we present a general convergence result for that case:

Theorem 2.6. If the sequence of iterates {Y(k)} generated by the Multiple-Gradient
Descent Algorithm is infinite, then it admits a subsequence that converges to a Pareto-
stationary design point.

Remark 2.7. The statement of theorem 2.6 is extremely important when considering the
overall two-step optimization strategy introduced in section 1.2. Within this framework,
the existence of a Pareto-stationary limit point Y∗ such that Y(k) → Y∗ when k → ∞
guarantees the existence of an optimal starting point for the competitive optimization
phase. Hence, we expect that using final MGDA iterate as design point to construct a
Nash game as described in appendix A leads to a robust global strategy to deal with
multiobjective optimization problems. Additional information is available in appendix A
and in [Dés11].
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2.2 Practical implementation of MGDA

Starting from theorem 2.5, we can extract the standard formulation of Multiple-Gradient
Descent Algorithm as extension of the classical single objective Steepest Descent Method to
the case of multiobjective optimization. Here we propose the general procedure for MGDA
optimization algorithm:

Listing 2.1: Multiple-Gradient Descent Algorithm

1. Initialize the design point Y = Y(0)
;

2. Evaluate n objective functionals Ji(Y) , ∀i = 1, . . . , n;
3. Compute the gradient vectors ui = ∇Ji(Y)/Si , ∀i = 1, . . . , n;

4. Determine the minimal -norm element ω in the convex hull U;

5. If ω = 0 (or under a given tolerance), stop;

Else perform line search to determine the optimal step size ρ̃;
6. Update design point Y to Y − ρ̃ω.

From script 2.1, we notice that at each iteration of MGDA all the criteria decrease thus we
refer to this process as a cooperative optimization method; hence, as stated in the intro-
duction of this section, Multiple-Gradient Descent Algorithm is a gradient-based method
to perform the coooperative phase of a multiobjective optimization procedure.

In the following subsections we present some details about the computational strategies
to determine the descent direction ω and the line search algorithm to identify the optimal
step size that ∀i = 1, . . . , n guarantees the best improvement of the objective functionals
during the transition from Ji(Y) to Ji(Y − ρ̃ω).

2.2.1 Computing the descent direction

We recall that ω is the minimal-norm element in the convex hull U , that is

ω = argmin
u ∈ U

∥u∥

and that every element in this set can be written as a convex combination of the scaled
gradient vectors ui , i = 1, . . . , n. Thus the problem reads as the numerical minimization
of the quadratic form that expresses ∥ω∥2 in terms of the coefficients α = (α1, . . . , αn)T

of the convex combination subject to two constraints:

min
α∈Aad

∥∥∥∥∥
n∑

i=1

αiui

∥∥∥∥∥
2

(2.5)

where Aad ⊂ Rn is the set of the admissible vectors α such that their components are
non-negative and they constitute a partition of the unity:

A =

{
α ∈ Rn

∣∣∣∣∣ αi ≥ 0 ∀i = 1, . . . , n ,

n∑
i=1

αi = 1

}
(2.6)

From a practical point of view, the determination of the αi’s is performed by means of
a change of variables. To satify the positivity constraint αi ≥ 0 ∀i = 1, . . . , n, we con-
sider αi = σ2

i ; thus the coefficients σi have to be found on the unit sphere Rn which is
parametrized using n− 1 spherical coordinates:

σi = sinϕi−1

n−1∏
j=1

cosϕj
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Thus the parameters αi’s result

αi = (1 − ci−1) ·
n−1∏
j=1

cj ∀i = 1, . . . , n

where c0 = 0 and cj = (cosϕj)
2 and ω is computed by means of a search algorithm in

[0, 1]n−1.

Remark 2.8. In [ZDD11] the authors remark that as long as the gradient vectors ui , i =
1, . . . , n are known, problem (2.5) can be solved by means of classical evolution strategies
but some issues due to ill-conditioning may appear when dealing with high-dimensional
problems.

Basic MGDA strategy (n = 2)

In this section we analyze the specific case of two criteria (n = 2) since ω can be explicitly
expressed and our application to isogeometric structural shape optimization will focus on
the concurrent minimization of two objective functionals.

Figure 2.1: Different configurations of the gradient vectors v and w to determine ω ∈ U . On the
left, the angle θ is obtuse, in the center it is acute but superior to the limit angle and on the right
inferior to the limit angle. Figure from [Dés09].

To simplify the notation let the gradient vectors be u1 = v and u2 = w and the
coefficients for convex combination α1 = γ and α2 = 1 − γ. We consider the following
quadratic form

ℓ(γ) = ∥γv + (1 − γ)w∥2 = (γv + (1 − γ)w, γv + (1 − γ)w) (2.7)

so that the first-order derivative results

ℓ′(γ) = 2(v −w, γ(v −w) + w) (2.8)

Thus
ℓ′(γ) = 0 ⇔ γ∥v −w∥2 + w · (v −w) = 0

and beyond the trivial case where v = w, the minimum is achieved for

γ =
w · (v −w)

∥v −w∥2
=

∥w∥2 −w · v
∥v∥2 + ∥w∥2 − 2v ·w

(2.9)

Remark 2.9. From equation (2.9) we notice that if the vectors v and w are normalized,
that is ∥v∥ = ∥w∥ = 1 then the optimal values for the coefficients are γ = 1 − γ = 1

2 . On
the contrary, if the vectors are not normalized, then it is not sure that γ lies within the
interval [0, 1].
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Starting from equation (2.9) a condition on the angle θ = (̂v,w) can be established:

0 < γ < 1 ⇔ 0 < ∥w∥2 −w · v < ∥v∥2 + ∥w∥2 − 2v ·w

⇔ v ·w < min{∥v∥2, ∥w∥2} =
(

min{∥v∥, ∥w∥}
)2

⇔ cos θ <
min{∥v∥, ∥w∥}
max{∥v∥, ∥w∥}

⇔ θ > arccos

(
min{∥v∥, ∥w∥}
max{∥v∥, ∥w∥}

) (2.10)

Thus the angle θ between the two gradient vectors has to be at least equal to a certain
limit angle which is function of their norms. If the norms of the gradient vectors are very
different, then the limit angle is close to π

2 ; if they are close to one another, the limit angle
is small but the condition is still satisfied except if the directions of v and w are too close
(Fig. 2.1). Therefore a sufficient condition is for the angle θ to be obtuse, that is v ·w < 0.

In figure 2.1 we observe three different scenarios due to different values of the angle θ.
In the first two cases, ω ∈ U and not simply to U and the descent direction points strictly
in between v and w. Thus ω is orthogonal to the line that connects the extremities of v
and w (which is the convex hull U) and ∀u ∈ U the inner product is constant

(u,ω) = ∥ω∥2

Hence, for the two-dimensional case the descent direction common to all criteria is ω =
γv + (1 − γ)w, where the coefficients for the convex combination are 1 − γ and γ as in
expression (2.11).

γ =


w · (w − v)

∥v −w∥2
, v ·w <

(
min{∥v∥, ∥w∥}

)2
0 or 1 , otherwise, depending whether min{∥v∥, ∥w∥} = ∥v∥ or ∥w∥

(2.11)
Remark 2.10. If the gradients ui’s are not normalized, that is Si = 1 ∀i = 1, . . . , n,
the direction of the minimial-norm element ω is expected to be mostly influenced by the
elements ui , i = 1, . . . , n which have smaller norms. The two-dimensional case in figure
2.1 provides a simple visualization of that phenomenon.
Since during the optimization procedure, the gradient vectors with small values of the norm
are usually associated with criteria that have already achieved a fair degree of convergence,
the utility of considering these directions for a well-balanced multiobjective optimization
is questionable. This observation points out the necessity of properly setting the scaling
factors Si’s in order to construct a balanced strategy without excessively increasing the
computational cost.

2.2.2 Line search for the optimal step size

In multiobjective optimization, computing a step that improves all criteria and gives sig-
nificant evolution to the problem is not a trivial task. In general, an adaptive method to
compute the best step at every iteration would be convenient.
If the design point Y is not Pareto-stationary, the Fréchet derivatives of all criteria are
strictly negative (and equal if ω ∈ U). We proceed by defining ∀i = 1, . . . , n the functions
ji : R → R such that

ji(ρ) = Ji(Y − ρω)
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Figure 2.2: Line search to identify the best step size ρ along the common descent direction −ω
such that every criterion improves. Figure from [ZDD11].

Basic idea is to identify the optimal step size ρ such that ρ is the largest strictly positive
real number for which all functions ji(ρ) , i = 1, . . . , n are monotone descreasing over the
interval [0, ρ].
For this purpose each function ji(ρ) is evaluated at three different values of ρ and a sur-
rogate quadratic model is constructed. The optimal step size ρi related to ji(ρ) assumes
the value corresponding to the location of the minimum in the surrogate model. Then the
smallest ρi is set as the global optimal step ρ̃ as illustrated in figure 2.2:

ρ̃ = min
1≤i≤n

ρi

Thanks to the definition of ω, the positivity of the steps ρi and ρ̃ is guaranteed.

2.3 Alternative formulations of MGDA

In last years J.-A. Désidéri [Dés12b] proposed several variants of Multiple-Gradient De-
scent Algorithm focusing on the improvement of different aspects. He mainly focused on
optimizing the research of the descent direction common to all criteria and on studying
the sensitivity of the method to different initializations. In particular, main goal was to
identify the best basis to span the optimization space starting from the gradient of the
objective functionals.
Here we only report main ideas that could lead to improved formulations of the described
algorithm. First of all, the author observed that in the construction of the set U and in
the identification of the descent direction, smaller gradient vectors have major influence so
the idea is to rescale the gradients by means of appropriate factors in order to normalize
them.
The construction of an orthogonal basis starting from the ui’s represents a major issue in
the performance of the algorithm; moreover the sensitivity of the method to the ordering of
the vectors before the execution of the Gram-Schmidt procedure is still an open question.
Here we present a brief overview of the major results and we refer to [Dés12a] and [Dés12b]
for further details.
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2.3.1 A direct method for computing a descent direction

Starting from remark 2.10, we consider a given set of strictly positive scaling factors Si i =
1, . . . , n to properly normalize the gradient vectors. Thus we arbitrarly choose a gradient
vector as starting point, for example u1 and we scale it as follows

unew
1 =

u1

A1
, A1 = S1

and we recursively construct the remaining elements by performing a Gram-Schmidt or-
thogonalization process

unew
i =

ui −
∑

k<i ci,ku
new
k

Ai
(2.12)

where ∀k < i the coefficients ci,k are such that

ci,k =
(ui , unew

k )

(unew
k , unew

k )

and the scaling factors Ai have the form

Ai =

{
Si −

∑
k<i ci,k , if non-zero

ϵiSi , otherwise

being ϵi > 0 , 0 < |ϵi| ≪ 1 an arbitrary small parameter.
Thus the computation of the minimal-norm element ω in the convex hull defined by the
orthogonal vectors unew

i , i = 1, . . . , n is straightforward. Thanks to the orthogonality
property of the new gradient vectors, we get

∥ω∥2 =

n∑
i=1

α2
i ∥unew

i ∥2 (2.13)

We assume that ω belongs to the interior of the convex hull; hence by ignoring the inequal-
ity constraints over the αi’s which have to be non-negative ∀i = 1, . . . , n, the Lagrangian
function arising from the constrained optimization problem reads as

L(α, λ) = ∥ω∥2 − λ

(
n∑

i=1

αi − 1

)
=

n∑
i=1

α2
i ∥unew

i ∥2 − λ

(
n∑

i=1

αi − 1

)
(2.14)

The first-order optimality conditions are

0 =
∂L

∂αi
= 2αi∥unew

i ∥2 − λ ∀i = 1, . . . , n

0 =
∂L

∂λ
=

n∑
i=1

αi − 1
(2.15)

From the first line of (2.15) we get

αi =
λ

2∥unew
i ∥2

(2.16)

and from the equality constraint in the second line:

1 =

n∑
i=1

αi =

n∑
i=1

λ

2∥unew
i ∥2

⇒ λ

2
=

1∑n
i=1

1
∥unew

i ∥2
(2.17)
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thus ∀i = 1, . . . , n

αi =
1

∥unew
i ∥2

∑n
j=1

1
∥unew

j ∥2
=

1

1 +
∑n

j=1
j ̸=i

∥unew
i ∥2

∥unew
j ∥2

< 1 (2.18)

The result in equation (2.18) confirms our initial conjecture on ω belonging to the interior
of the convex hull. Thanks to theorem 2.5, ∀u ∈ U the scalar product (u , ω) is proved
to be equal to the constant value ∥ω∥2; moreover, by inserting (2.16) and (2.17) in (2.13)
we get

∥ω∥2 =
λ

2

Thus for all functionals Ji’s the Fréchet derivatives read as

(ui , ω) =

(
Aiu

new
i +

∑
k<i

ci,kuk , ω

)
=

(
Ai +

∑
k<i

ci,k

)
λ

2
= Si

λ

2
(2.19)

Remark 2.11. The proposed Gram-Schmidt orthogonalization process yields to a different
characterization of the subspace spanned by the original gradient vectors but allows an
explicit computation of the minimal-norm element ω.
Nevertheless from a numerical point of view, this variant - known as MGDA II - may
present some stability issues, due either to sign switch of some scaling factors Ai’s or
to strong correlation or linear dependence among the gradient vectors. Some details are
available in [Dés12b] but in these scenarios classical MGDA approach seems more robust
and reliable.

2.3.2 A Gram-Schmidt procedure to order the vectors

In presence of high-dimensional problems, trends may emerge within the directions of
several gradient vectors as shown in figure 2.3. In this scenario, we aim at taking into

(a) Bunch of initial gradient vectors. (b) Identification of ω.

Figure 2.3: Identification of ω within a bunch of initial unordered gradient vectors starting from
the extreme elements.

account the leading direction of a subgroup of vectors by means of a unique element of
the orthogonal basis previously constructed by using the Gram-Schmidt orthogonalization
process (see remark 2.10). Thus we use only ñ < n gradient vectors in order to determine
a descent direction common to all criteria. To achieve this purpose the computation of a
new orthogonal gradient vector is performed by choosing among those not yet accounted
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for, the gradient for which the scalar product with the current value of ω is algebrically
smallest.
In this way, we select the vector for which the current configuration is the least satisfac-
tory. Hence we expect the overall computational cost to decrease since the order in which
the gradient vectors are used for the Gram-Schmidt procedure should lead to a quick
interruption of the process.

We consider the usual family of the gradient vectors ∇Ji(Y) i = 1, . . . , n. Let us
introduce a new family gi i = 1, . . . , n and the family of the scaled gradient vectors
J′
i i = 1, . . . , n defined as

J′
i =

1

Si
∇Ji(Y

(0))

where Si i = 1, . . . , n are user-supplied scaling factors.
We set

u1 = g1 = argmax
i=1,...,n

min
j=1,...,n

j ̸=i

(J′
j ,J

′
i)

(J′
i,J

′
i)

(2.20)

and we build a n×n lower triangular matrix C = [ci,j ] such that the main diagonal contains
the cumulative row sums and ci,j = 0 , ∀i ≥ j. By looping over the index of the columns,
we compute the coefficients of the columns

cj,i−1 =
(gj ,ui−1)

(ui−1,ui−1)
∀j = i, . . . , n

and we update the cumulative row-sums

cj,j = cj,j + cj,j−1 =
i−1∑
k=1

cj,k ∀j = i, . . . , n

In order to compute the new orthogonal vector ui, first we have to identify the element
whose scalar product with current ω is smallest:

ℓ = argmin
j=i,...,n

cj,j

Then we swap the information contained in rows i and ℓ of the matrix C and in the
corresponding elements gi’s and we compute

ui =
gi −

∑i−1
k=1 ci,kuk

Ai
, Ai = 1 − ci,i (2.21)

Remark 2.12. From a numerical point of view, we have to verify that the elements Ai’s
are non-zero ∀i = 1, . . . , n. For this purpose we fix a cut-off constant a such that cj,j >
a , ∀j = i, . . . , n thus we get Ai ≥ 1 − a > 0.

If the new gradient vector ui computed in (2.21) is non-zero, we can proceed by com-
puting the next element of the family of the ui , i = 1, . . . , n, otherwise we generate the
corresponding element gi such that

gi =
i−1∑
k=1

ci,kuk =
i−1∑
k=1

c′i,kgk (2.22)

where the coefficients c′i,k are computed by backward substitution.
Thus the computation of the descent direction ω is reduced to the computation of the
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minimal-norm element in the convex hull generated by the gradient vectors ui , i = 1, . . . , ñ
where ñ < n. In particular, we consider all the ui’s of the form (2.21) such that they are
non-zero and the corresponding coefficients αi’s belong to the open interval (0, 1):

ω =

ñ∑
i=1

αiui ̸= 0 , αi =
1

∥ui∥2
∑ñ

j=1
1

∥uj∥2
· 1

1 +
∑ñ

j=1
j ̸=i

∥ui∥2
∥uj∥2

(2.23)

The algorithm stops when a Pareto-stationary design point is achieved, that is if the c′i,k’s
are non-positive ∀k = 1, . . . , i − 1. Nevertheless, this variant of MGDA - the so-called
MGDA III - may present some issues if this condition on the coefficients is not fulfilled:
if there exists at least one index k ∈ [1, i − 1] such that c′

i,k
> 0, an ambiguity arises and

the descent direction common to all criteria has to be determined by means of classical
Multiple-Gradient Descent Algorithm as described in section 2.2.1.
Remark 2.13. If ñ = n the Gram-Schmidt process is performed completely and the algo-
rithm is equivalent to the second variant of MGDA discussed in section 2.3.1. We remark
that in the case of the incomplete Gram-Schmidt procedure, that is ñ ̸= n, the Fréchet
derivatives of the functionals satisfy different bounds from the ones previously computed.

• The first ñ Fréchet derivatives are such that (gi,ω) = (ui,ω) = ∥ω∥2 > 0.

• For the estimate of the remaining elements gi , i = ñ + 1, . . . , n, we recall that ω is
given by (2.23) thus we get

gi =

ñ∑
k=1

ci,kuk + vi

where the vi’s are orthogonal to the space ⟨u1, . . . ,uñ⟩ and consequently the following
bound holds

(gi,ω) =

ñ∑
k=1

ci,k(uk,ω) =

ñ∑
k=1

ci,k∥ω∥2 = ci,i∥ω∥2 > a∥ω∥2 > 0

2.3.3 An Hessian-based approach to properly scale the gradients

Let us assume that the objective functionals J1(Y), . . . , Jn(Y) are of class C2 in order to
be able to compute the associated Hessian matrices Hi(Y)’s. Starting from the idea of
the Newton method for single objective optimization, we aim at extending the concept of
preconditioning to realize an optimal scaling of the gradient vectors as follows

Hi(Y)pi = ∇Ji(Y
(0)) , ∀i = 1, . . . , n

and then project the resulting vector pi over the plane identified by the gradient direction
itself:

qi =
(pi,∇Ji(Y

(0)))

∥∇Ji(Y(0))∥2
∇Ji(Y

(0)) (2.24)

The final so-called MGDA IV strategy corresponds to the previous MGDA III procedure
where the scaled gradients are defined as in equation (2.24):

J′
i = qi (2.25)

This is equivalent to defining the scaling constants Si’s as

Si =
∥∇Ji(Y

(0))∥2

(pi,∇Ji(Y(0)))
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Remark 2.14. If the Hessian matrices are not known exactly, an approximation may be com-
puted by using an iterative procedure, for example a Broyden-Fletcher-Goldfarb-Shanno
(BFGS ) inspired algorithm ∀i = 1, . . . , n:

H̃
(0)
i = Id

H̃
(k+1)
i = H̃

(k)
i − 1

s(k)T H̃
(k)T

i s(k)
H̃

(k)
i s(k)s(k)

T
H̃

(k)T

i +
1

z
(k)T

i s(k)
z
(k)
i z

(k)T

i

(2.26)

where k is the index of the MGDA iterate and the variables that appear in (2.26) are

s(k) = Y(k+1) −Y(k) , z
(k)
i = ∇Ji(Y

(k+1)) −∇Ji(Y
(k))

2.4 Metamodel-assisted MGDA optimization

A major drawback of the optimization algorithms described so far is the high computational
cost due to the evaluation of the functionals and their gradients in correspondance of a
large number of different configurations. In complex problems such the ones arising in
Computational Fluid Dynamics or computational mechanics this may result in an excessive
demand of computational resources. For this reason in [ZDD12] A. Zerbinati et al. propose
to couple MGDA with a surrogate model to estimate the objective functionals rather than
actually computing them. Basic idea of the global optimization procedure is reported in
figure 2.4.

During an initial phase, some simulations are performed for different design points in

Figure 2.4: Global optimization procedure for metamodel-assisted MGDA optimization. Figure
from [ZDD12].

order to construct a data set of values and consequently formulate a metamodel starting
from it. After a training of the data set, the statistical model is used to predict the values
of the objective functionals corresponding to a new configuration point that lies in the
region where the improvement of the criteria is expected to be the most significant.
The entries of the data set are also used as initial starting points for MGDA iterations. The
execution of the algorithm is performed until convergence is achieved and the metamodel-
predicted values are used as objective functionals in the optimization strategy. Final
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MGDA points are non-dominated, thus they belong to the first Pareto front associated
with the problem under analysis. Eventually each configuration is reevaluated using the
numerical solver of the problem and the resulting entry is added to the data set. In order
to mantain the dimension of the problem as small as possible, a filter is applied and new
design points are discarded if too close to already existing entries. At completion of the
enrichment process, the metamodel is updated and training is performed again in order to
refine the information carried by the surrogate model.

Remark 2.15. In our implementation, the control loop for metamodel-assisted Multiple-
Gradient Descent Algorithm is repeated an a priori fixed number of times but more accu-
rate strategies could be considered. For example, introducing an error estimate in a feasible
norm could help evaluating the changement of the data set among subsequent iterations
thus allowing to stop the refinement procedure when a given tolerance is fulfilled.

2.4.1 Kriging-based metamodel

Here we provide a general overview of kriging-based metamodel for the prediction of the
objective functionals in correspondance of a given design point. For more details on this
topic and on the application of kriging models to optimization procedures we refer to
[DC12]. To improve the readibility, given a functional Ji(Ω) we define j = Ji(Y) , Y ∈ Ω
as the function that assumes the values of one of the criteria to optimize.

Basic idea of kriging models relies on treating the response of an experiment (in our
case, the value of the objective functional JN = {j1, . . . , jN} computed in correspondance
of a set of design points

{
Y(1), . . . ,Y(N)

}
) as if it were a realization of a multivariate

Gaussian stochastic process with joint probability density

P(JN ) =
1√

(2π)N |ΣN |
exp

{
−1

2
JT
NΣ−1

N JN

}
(2.27)

where ΣN is the N × N covariance matrix that expresses the correlation among the re-
alizations associated to different design points. We suppose that the value JN+1 of the
objective functional obtained when adding a new design point Y(N+1) to the model is itself
a realization of a (N +1)-dimensional Gaussian process with joint probability density equal
to the one arising from substituting N + 1 to N in equation (2.27).
Thus we can write the probability density for the unknown function value jN+1 given the
data JN as

P(jN+1 | JN ) =
P(jN+1 ∩ JN )

P(JN )
=

P(JN+1)

P(JN )

We perform an appropriate splitting of the covariance matrix ΣN+1 as follows

ΣN+1 =

[
ΣN k
kT κ

]
where

k = [σ(Y(1),Y(N+1)), . . . , σ(Y(N),Y(N+1))] , κ = σ(Y(N+1),Y(N+1)) (2.28)

Then we introduce the concept of prediction of the kriging model at the new point Y(N+1)

as
ĵN+1 = kTΣ−1

N JN
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whereas to measure the uncertainty of the prediction we define the variance

σ2
N+1 = κ− kTΣ−1

N k

We obtain that the probability density for the new functional value is given by

P(jN+1 | JN ) ∝ exp

{
−(jN+1 − ĵN+1)

2

2σ2
N+1

}
(2.29)

Thus the probability density for the objective functional j at the new design point Y(N+1)

is also Gaussian with mean ĵN+1 and standard deviation σN+1. We remark that this
statistical approach introduces an additional error in the evaluation of the functional and
this uncertainty is taken into account by the estimation of the standard deviation σN+1.

From a practical point of view, the construction of the kriging model counts two major
steps. First, a function that describes the dependency among the data has to be determined
by estimating the spatial correlation with respect to a particular stochastic process. In the
literature, all the proposed models depend on a set of parameters that have to be properly
calibrated in order to make the description the most consistent with the observed data. In
particular, this results in the minimization of the log-likelihood function

L = JT
NΣ−1

N JN + log |ΣN |

by means of a Particle Swarm Optimization technique ( [VSS05]) that is robust and not
sensitive to local minima which could represent an issue since L is a multi-modal function.
Then the iterative prediction model is constructed as previously described in this section
and further details are available in [Cre93]. The predicted value is constructed from the
linear combination of the previously known functional values; the parameters arising in
this formulation are obtained by minimizing the mean square error under the constraint
of unbiasedness. Several variants of kriging models have been proposed during the years
and we refer to [Wil97] for further details.

Remark 2.16. Kriging models may gain in accuracy if additional information is introduced
by means of a set of adjoint variables, leading to the so-called co-kriging models. In
particular, in the literature several solutions have been proposed in order to enclose the
information carried by the gradients of the functionals into the original kriging model to
make the description even more consistent with the observed data.
A general introduction to co-kriging is available in [Mye82] whereas we refer to [AC02] for
a specific description of the use of gradients to build co-kriging strategies.

Eventually, in table 2.1 we present a comparative summary of the MGDA-based opti-
mization algorithms described so far, highlighting their specifics and their properties.

2.5 MGDA for constrained optimization

The formal theory presented so far is true under the assumption of dealing with an uncon-
strained optimization problem. In presence of constraints, previous results can be extended
by means of minor changes. Basic idea is projecting ∀i = 1, . . . , n the gradients ui of the
functionals Ji’s onto the subspace tangent to the constraint surfaces.

We consider a constrained optimization problem of the following form

min
Y∈Uad

J(Y) , J(Y) = (J1(Y), . . . , Jn(Y))T (2.30)
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Algorithm Specifics Properties
MGDA - Construction based on the - Convergence to Pareto-stationary

identification of the mini- points
mal-norm element in the - Insensitivity to Pareto front
convex hull of the convexity
gradients

Kriging- - Coupling with a statistical - Works on a set of design points
assisted model to reduce - Iterative enrichements of the data set
MGDA computational costs - More efficient (Lower CPU time)
MGDA II - Direct computation of a - Applies only to linearly

descent direction (GSP) independent gradients
- Possibility of automatic - More efficient (Larger Fréchet

rescaling if ∃i : Si < 0 derivatives)
- n! possible orderings

MGDA III - Specific ordering in GSP - Not limited to linearly
- Incomplete GSP independent gradients
- Fallback to MGDA if - More efficient (Even larger

ambiguties arise Fréchet derivatives)
MGDA IV - Scaling driven by Hessian - Higher rate of convergence

matrices
- BFGS to approximate

Hessian matrices when
analytical computation
is not possible

Table 2.1: Comparison of several variants of Multiple-Gradient Descent Algorithm presented so
far.

where the admissible domain Uad is given by the restriction to the subspace of RN where
the equations of the constraints are satisfied:

Uad =

{
Ω ⊂ RN

∣∣∣ gk(Y) = 0 ∀k = 1, . . . , K̃ ∀Y ∈ Ω

}
(2.31)

Suppose that the active scalar constraints at Y = Y(0) are

gk(Y) = 0 , k = 1, . . . ,K ≤ K̃

thus we identify the direction orthogonal to the surface P defined by equation gk(Y) = 0
as

vk = ∇gk(Y) , k = 1, . . . ,K (2.32)

By applying the Gram-Schmidt orthogonalization process, we get the family of the wk , k =
1, . . . ,K of orthogonal vectors that collectively span the same subspace. After a proper
normalization procedure we obtain that the projection onto the orthogonal space is given
by the operator

Q : RN → RN , Q =
K∑
k=1

[wk][wk]T
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where the bracketed vector stands for the column vector of its components viewed as a
N × 1 matrix. Thus we can define the projection matrix from RN to the subspace UY

ad of
the admissible solutions considering the active constraints at Y = Y(0) as follows

P : RN → RN , P = IN −
K∑
k=1

[wk][wk]T (2.33)

Hence, previous MGDA procedures are modified by replacing the original scaled gradi-
ents ui’s with their projections onto the subspace tangent to the constraint surfaces, that is
Pui’s. Then the projected gradients Pui , i = 1, . . . , n are used to find the minimal-norm
element ω ∈ U which is now a descent direction for all criteria Ji(Y) , i = 1, . . . , n subject
to the active constraints gk(Y) = 0 , k = 1, . . . ,K.
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Chapter 3

Shape optimization using
IsoGeometric Analysis

In this chapter we introduce the equations governing a problem of linear elasticity and we
present the IsoGeometric Analysis paradigm to provide an accurate parametrization of the
geometry of the domain and an efficient approximation of the differential problem. After a
brief introduction to Non-Uniform Rational B-Splines we provide the discrete formulation
for the approximation of the linear elasticity problem within this framework. We refer
to [PT97] as general reference in the literature for NURBS whereas more details on the
numerical approximation of PDEs within that framework are available in [HCB05].

Moreover we present a shape optimization problem arising in structural engineering
and we describe the analytical and functional framework in which the analysis has to be
set. Several approaches to the numerical solution of the problem are proposed, arising
both from classical methods in optimization and from gradient-descent algorithms: in
particular, first we present the approaches based on penalty formulations and Lagrange
multipliers ( [NW99]); then we focus on descent methods arising from shape derivatives,
that is techniques of differentiation with respect to the domain ( [All06] and [BDVS12]).

Eventually we propose to set the shape optimization problem within a multiobjective
optimization framework. Thanks to the NURBS -based approach, we get the same charac-
terization for both the space of parameters Ω of the optimization problem and the domain
D of the differential problem in continuum mechanics. In particular, the domain D can
be represented as a NURBS surface whose control points are the design variables for the
shape optimization problem under analysis. Thus from now on, we refer to Ω as both the
physical domain of the linear elasticity problem and the variable of the shape optimiza-
tion problem: we provide the general formulation of the overall resulting problem and we
analyze it by using Multiple-Gradient Descent Algorithm (Chapter 4).

3.1 Linear elasticity problem in structural engineering

We consider an open domain Ω ⊂ Rd d = 2, 3 which describes the solid object we are
analyzing whose boundary ∂Ω is composed by three disjoint parts ΓD, ΓN and Γ such
that ∂Ω = ΓD ∪ ΓN ∪ Γ and ΓD ∩ ΓN = ∅, ΓN ∩ Γ = ∅ and Γ ∩ ΓD = ∅.
This object is deformable and subject to external forces: in particular, a Dirichlet boundary
condition representing imposed displacements is prescribed on ΓD; on ΓN we impose the
value for the stress tensor by means of a Neumann condition whereas Γ is a free boundary
where we prescribe a homogeneous Neumann boundary condition. Thus Γ is a moving
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boundary within our domain and from now on we will treat it as the optimization variable
for the shape optimization problem.

We introduce the second-order Cauchy stress tensor σ(u) which assumes the following
formulation based on Hooke’s elasticity law

σ(u) = 2µϵ(u) + λtr(ϵ(u))Id (3.1)

In this context, u represents the displacement field, ϵ(u) the Green-Lagrange strain tensor
and µ and λ are the Lamé parameters of the material.
The general form of the strain tensor is

ϵ(u) =
1

2

(
∇u + ∇uT + ∇uT · ∇u

)
but under the assumption of small deformations a linearization is possible:

ϵ(u) =
1

2

(
∇u + ∇uT

)
The governing equations for our problem are the classical linear elasticity equations based
on the assumption of small deformations ( [All06]). For the sake of simplicity we assume
zero distributed body forces, focusing our study on the static equilibrium of an isolated
system: 

−divσ(u) = 0 , Ω

u = 0 , ΓD

σ(u) · n = g , ΓN

σ(u) · n = 0 , Γ

(3.2)

where n is the outward unit normal vector.

3.1.1 Variational formulation

In this section we introduce the variational formulation of the linear elasticity problem
(3.2) and we state a general result for existence and uniqueness of the weak solution.
Let us introduce the functional space

V = {φ ∈ (H1(Ω))d , φ = 0 on ΓD}

The variational form of problem (3.2) reads as follows: we seek a displacement field u ∈ V
such that ∫

Ω
(2µϵ(u) : ϵ(v) + λdiv(u)div(v))dω =

∫
ΓN

g · vdσ ∀v ∈ V (3.3)

A result of existence and uniqueness of the solution for the variational linear elasticity
problem can be established and we report here the statement:

Theorem 3.1. Let g ∈ L2(ΓN ). If the measure of ΓD is positive, then there exists a
unique solution u ∈ V for the variational form of the linear elasticity problem. Moreover,
it holds

∥∇u∥L2(Ω) ≤
C

µ
∥g∥L2(ΓN ) (3.4)
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The proof is based on the classical framework of Lax-Milgram theorem and to verify
the coercivity we use Korn’s inequality. Further details are available at [Hor95] and [Sal08].

Remark 3.2. The variational formulation of the linear elasticity problem corresponds to the
virtual work principles where the test function v in equation (3.3) is a virtual displacement.
The weak solution u is also solution of the minimization problem

min
v∈V

E(v) , E(v) =
1

2

∫
Ω

(2µ|ϵ(v)|2 + λ|div(v)|2)dω

where the functional E represents the deformation energy. Thus the variational formulation
of the linear elasticity problem corresponds to the Euler equation for the functional E and
the weak solution u is equal to the equilibrium of the deformation energy among all possible
displacement fields.

3.2 Introduction to Non-Uniform Rational B-Splines

Let Ω0 be a parametric domain. NURBS basis functions are defined in Ω0 as functions of
the variable ξ and can be represented in the physical domain Ω by introducing a transfor-
mation F that maps Ω0 to Ω (Fig. 3.1).

F : Ω0 → Ω , F (ξ) = y(ξ) (3.5)

Here we describe the formal derivation of the basis functions in one dimension and the ex-
tension to the d-dimensional case is straightforward by means of d-variate tensor products.

Figure 3.1: Transformation map F from the parametric domain Ω0 to the physical domain Ω.
Figure from [BDVS12].

3.2.1 B-Spline basis functions and geometry representation

Let us define a knot vector Ξ = (ξ0, . . . , ξa)T ∈ Ra , a = n + p + 1: it consists of non-
decreasing real numbers which describe the general geometrical structure of the curve.
Using this notation, p is the polynomial order of the basis functions and n is the number
of functions considered.
In the literature ( [PT97]) p = 0 stands for piecewise constant polynomials, p = 1 for
linear ones and so on. To make a parallelism with Finite Element Method, B-Splines order
corresponds to Lagrangian basis degree whereas patches play the role of subdomains like
FEM elements.

Definition 3.3 (Uniform knots and non-uniform knots). Equally-spaced knots in the
domain Ω0 are said to be uniform. On the contrary we name non-uniform the knots that
are unequally-spaced in the domain.
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Figure 3.2: NURBS basis functions of order 0, 1, 2 for uniform knot vector Ξ = {0, 1, 2, 3, 4, . . .}.
Figure from [HCB05].

Definition 3.4 (Repeated knots and open knot vector). Knots located at the same coor-
dinates in the parametric space are known as repeated knots. A knot vector is said to be
open if its first and last knots are repeated p + 1 times.

Remark 3.5. Open knot vectors are tipically used in CAD applications. Main advantage
consists in basis functions being interpolatory at the ends of the parametric space interval
(in several dimension this property equals to being interpolatory at the corners of the
patches). We remark the importance of this property since in general basis functions are
not interpolatory at interior nodes which is one of the main differences among approaches
based on IsoGeometric Analysis and Finite Element Method.

We can introduce B-Spline basis functions starting from the following expression for
the piecewise constant one (p = 0)

Ni,0(ξ) =

{
1 , ξi ≤ ξ < ξi+1

0 , otherwise
(3.6)

and then we recursively define them for p as

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (3.7)

where the quotient 0/0 is assumed to be zero.
In figure 3.2 we observe that for p = 0 and p = 1 B-Spline basis functions are the

same as for standard piecewise constant and linear Finite Element. Increasing the order
we notice that all basis functions are identical and they only are shifted along the knot
vector giving a homogeneous pattern to the spatial representation of the domain.
In general, basis functions of order p have p − 1 continuous derivatives and if a knot is
repeated k times, the regularity of the function decreases generating a function of class
Cp−k in correspondance of that specific knot. When the multiplicity of a knot is exactly
p the basis function is interpolatory: in figure 3.3 knot number 4 has multiplicity k = 2
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Figure 3.3: Quadratic NURBS basis functions for open non-uniform knot vector Ξ =
{0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}. Figure from [HCB05].

s and the resulting curve parametrized using quadratic B-splines is of class C0 whereas in
the other internal knots the regularity is C1.
Eventually we outline some major properties of B-Spline basis functions:

1. They constitute a partition of unity: ∀ξ ,
∑n

i=1Ni,p(ξ) = 1.

2. The support of Ni,p is compact and contained in the interval [ξi, ξi+p+1].

3. Each basis function is non-negative, meaning Ni,p(ξ) ≥ 0 ∀ξ; thanks to this property
all coefficients of a mass matrix computed from a B-Spline basis are non-negative.

Remark 3.6. The partition of unity represents the most important property for the B-
splines since it allows to construct a basis for the functions of this parametrization. More-
over the compact supports of the basis functions allow to assemble sparse matrices in the
algebraic formulation of the differential problem. However we notice that the matrices have
a less sparse pattern than the ones arising from classical Finite Element Method. From
a computational point of view, this results in lower efficiency of the numerical solver but
this drawback is compensated by the lower number of degrees of freedom necessary for a
detailed description of the geometry.

3.2.2 Grid generation and refinement strategies

In this section we briefly introduce the concepts of knot insertion and order elevation to
refine the representation of B-spline curves. For further details we refer to [HCB05] and to
the more extensive introduction to NURBS and computational geometry by L. Piegl and
W. Tiller ( [PT97]).

h-refinement: knot insertion

The process of knot insertion described in figure 3.4 is analogue to Finite Element Method
h-refinement. Starting from a knot vector Ξ = (ξ0, . . . , ξa)T , we want to add a new knot
ξ within the interval [ξk, ξk+1). We remark that knots have to be inserted without geo-
metrically or parametrically changing a curve and here we present the process to correctly
update the knot vector, the control points and the basis functions in order to leave the
curve intact.

The knot vector resulting from previous insertion reads as

Ξnew = (ξ1, . . . , ξk, ξ, ξk+1, . . . , ξa)T
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and by using the geometrical information in Ξnew the new n+ 1 basis functions are recur-
sively constructed by means of (3.6) and (3.7). At the same time, the new n + 1 control
points B = (B1, . . . , Bn+1)

T are generated as linear combination of the previous ones
according to expression (3.8):

Bi = αiBi + (1 − αi)Bi−1 (3.8)

where the coefficients αi’s are

αi =


1 , 1 ≤ i ≤ k − p
ξ−ξi

ξi+p−ξi
, k − p + 1 ≤ i ≤ k

0 , k + 1 ≤ i ≤ a + 1

To preserve the continuity of the curve, the control points have to be chosen as in (3.8);
repeated knots cause the regularity of the curve to decrease and a unique internal knot
cannot appear more than p times if we want to avoid the curve to become discontinuous.

The h-refined curve is geometrically and parametrically identical to the original one but
the solution space is enriched with more basis functions: as a matter of fact, the insertion
of a knot is responsible for the insertion of a new control point and the creation of a new
basis function. Thus the subdivision process generated by the knot insertion is analogous
to the classical Finite Element Method h-refinement strategy.

p-refinement: order elevation

As for h-refinement, the geometrical and parametrical properties of B-Spline curves have
to be preserved if the polynomial order of the basis functions is increased. Thus the space
spanned by the original functions is contained in the span of the basis functions of the order-
elevated case. To leave the parametrization of the curve intact, first of all we perform a
subdivision of the curve into Bézier curves by inserting new knots; then we elevate every
individual segment and we remove the unnecessary knots to combine the segments into
one order-elevated B-spline curve. The result of this procedure is presented in figure 3.5.

We remark that for actually preserving the geometry of the curve - that is the regularity
in every knot - each unique knot value ξi has to be conveniently repeated. For this reason,
the number of control points after the refinement depends on the multiplicity of the original
knots. The location of the control points changes from the original curve to the order-
elevated one and the results are different from the ones obtained from previous h-refinement
strategy. Hence, T.J.R. Hughes et al. proposed to properly combine the approaches of knot
insertion and order elevation to obtain the so-called k-refinement strategy.

k-refinement

In [HCB05] the authors notice that the processes of knot insertion and order elevation do
not commute. If we consider a unique knot value ξ to be inserted in a curve of order p, the
basis functions at this point will be of class Cp−1; elevating the order of the new curve to
q, the multiplicity of every knot is increased so that the regularity properties in the curve
are preserved, that is in ξ the basis remains of class Cp−1. On the contrary, by elevating
the order of the original curve to q and inserting a unique knot value, then the basis would
have q− 1 continuous derivatives at ξ. The latter procedure is known as k-refinement and
there is no such strategy in Finite Element Method since h-refinement and p-refinement
commute in that framework.
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Figure 3.4: Algorithm for h-refinement: knot insertion and resulting changes in the control points.
Figure from [HCB05].

Figure 3.5: Algorithm for p-refinement: order elevation and resulting changes in the control
points. Figure from [HCB05].
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Figure 3.6: Algorithms for refinement strategies: comparison between hp-refinement (b) and
k-refinement (c). Figure from [HCB05].
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In figure 3.6 we present a comparative study by T.J.R. Hughes et al. of the number
and the regularity of the basis functions when either a hp-refinement or a k-refinement is
preformed. In particular, we consider an initial curve with one non-zero knot span in an
open knot vector and p + 1 basis functions. We perform h-refinement until we have n− p
elements and n basis functions; then we elevate the order mantaining continuity at p − 1
level: for this purpose, we have to replicate each distinct knot and consequently add a basis
function in each element. Hence the resulting number of basis functions is 2n− p. After a
total of r p-refinements we get (r + 1)n− rp basis functions of class Cp. Thus the number
of functions that have to be considered is very large, especially in practical applications
where the number of elements is by far larger than the order of the basis.
Now, we consider the same initial domain and we proceed by k-refinement. We order elevate
r times adding one basis function at each refinement and then we perfom h-refinement until
we get n − p elements. The resulting scenario counts n + r basis functions, each of class
Cr+p−1. The overall computational saving in terms of degrees of freedom is substantial
since (r+ 1)n− rp ≪ n+ r. Moreover, when dealing with problems in d dimensions, these
quantities are raised to the d power and this difference increases even more.

Hence in k-refinement there is a homogeneous structure within the patches and the
number of control variables inserted during the refinement process is limited. Moreover,
other advantages may arise due to the higher regularity of the functions involved in the
computation: for example, more accurate representations of physical quantities are ex-
pected and this results in better descriptions of boundary layers in Computational Fluid
Dynamics and strains and stresses in computational mechanics.

3.2.3 Non-Uniform Rational B-Splines representation

In general, a geometric object in Rd can be obtained by means of a projective transfor-
mation of a B-spline entity embedded in a d + 1 space. As a matter of fact, starting from
piecewise quadratic curves we can represent circles and ellipses using projective transfor-
mations. From an analytical point of view, by applying a projective transformation to a
B-spline curve we get a rational polynomial

CR(ξ) =
f(ξ)

g(ξ)

where f and g are piecewise polynomial functions.
Let Bw

i ’s be the control points for a B-spline curve described in Rd+1 by the knot vector
Ξ. The control points in Rd are obtained from the following expressions:

(Bi)j =
(Bw

i )j
wi

wi = (Bw
i )d+1 , j = 1, . . . , d (3.9)

where (Bi)j is the j-th component of the vector Bi, (Bw
i )j is the corresponding component

of the projective vector of control points and wi ∈ R is the weight associated to the i-th
function.
Considering the set I = {0, . . . , n}, the one-dimensional rational basis functions of degree
p are given by

Rk,p(ξ) =
wkNk,p(ξ)∑
i∈I wiNi,p(ξ)

(3.10)

Two- (respectively three-) dimensional NURBS basis functions are defined as the bi-
variate (respectively trivariate) tensor product of the one-dimensional basis functions pre-
sented in (3.10). Here we introduce two sets I = {0, . . . , n} and J = {0, . . . ,m}, two
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B-spline basis functions N and M and we define two knots vectors Ξξ = (ξ0, . . . , ξa)T and
Ξη = (η0, . . . , ηb)

T where a = n + p + 1 and b = m + q + 1; thus the rational surfaces of
degrees p and q can be expressed as

Rkl,pq(ξ, η) =
wklNk,p(ξ)Ml,q(η)∑

i∈I
∑

j∈J wijNi,p(ξ)Mj,q(η)
(3.11)

The extension to three dimensional basis functions is straightforward after defining a new
knot vector, a new degree and a new B-spline basis function; for the sake of readibility we
omit the degrees p and q from the formulations of NURBS surfaces and volumes.

Starting from the general form of the transformation (3.5), we provide some additional
details for the two-dimensional case: let Ω0 be the square (0, 1) × (0, 1), any point y =
(x, y)T in the physical domain Ω is mapped back to a point ξ = (ξ, η)T in the parametric
domain as described in figure 3.1. Thus we associate a control point to each basis function
and we can explicitly describe the relationship in equation (3.5) as follow

y(ξ, η) =
∑
i∈I

∑
j∈J

Rij(ξ, η)Yij (3.12)

where Yij ∈ R2 are the coordinates of the control point of indices (i, j) in the parametric
domain. Using this representation, we can express the domain Ω as a single NURBS patch
and the geometrical description is fully provided by the control points, the weights, the
knot vectors and the degrees of the basis functions.

As previously done for B-spline functions, we outline some major properties and we
recall [PT97] for further details.

1. NURBS basis functions constitute a partition of unity: ∀ξ ,
∑n

i=1Ri,p(ξ) = 1.

2. The continuity and the support of NURBS basis functions are the same as for B-
splines.

3. NURBS are affine-covariant, that is affine transformations in the physical space are
obtained by applying the transformation to the control points.

4. If the weights are all equal, then NURBS functions are B-spline functions.

5. NURBS surfaces and volumes are piecewise polynomial entities arising from the
projective transformations of tensor products.

3.3 IsoGeometric Analysis

Classical numerical methods for the approximation of the elasticity problem firstly rely
on the construction of a discrete domain Ωh which is a polygonal approximation of the
continuous object we are studying. Major drawbacks of this approach consist in the high
computational cost required by the mesh generation process and in the numerical errors
introduced by the geometrical approximation.
To avoid this problem, T.J.R. Hughes et al. ( [HCB05]) propose a new approach to
better integrate Finite Element Analysis and Computer Aided Design by means of a unique
representation suitable for both the geometry and the discrete solution: Non-Uniform
Rational B-Splines are a de facto standard for geometrical modelling in CAD thus main
idea of IsoGeometric Analysis consists of employing this parametric representation both
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for exactly describing the computational domain and for solving the governing equations
without previously approximating the domain by means of a piecewise linear grid.

We recall the general framework for the treatment of differential problems using IsoGe-
ometric Analysis and we refer to [CHB09] for a detailed introduction to IGA-based Finite
Element Method:

1. The mesh for a NURBS patch is defined by the product of knot vectors, that is
Ξξ × Ξη in two dimensions.

2. Knot spans subdivide the domain into elements which correspond to FEM elements.

3. The support of each basis funtion is a patch containing a small number of elements.

4. The geometry is defined by the control points associated to the basis functions.

5. The description of the problem is isoparametric since the unknown fields are repre-
sented using the same parametrization of the geometry and the degrees of freedom
are the coefficients of the basis functions.

6. Mesh refinement known as k-refinement is obtained from a combination of order
elevation and knot insertion.

7. Global matrices for the resolution of the algebraic problem associated to the isogeo-
metric formulation can be assembled starting from local matrices constructed from
NURBS patches. Compatibility conditions among different patches are imposed
by employing the same NURBS representations for NURBS edges and surfaces on
both sides of the interfaces. Hence, the refinement propagates from patch to patch
and a continuous Galerkin method for IsoGeometric Analysis arises ( [CHR07]).
The scenario involving non-conforming patches can be handled by either formulat-
ing a discontinuous Galerkin method or imposing additional constraint equations to
attain pointwise compatibility at patch interfaces as described by P. Kagan et al.
in [KFBY03].

8. Direct methods for local refinement are not available using B-splines and Non-
Uniform Rational B-Splines. For a general overview of this topic we refer to [VGJS11].
Moreover, to account for local refinements, M. Scott et al. introduce the concept of
Analysis-suitable T-splines and we refer to [DJS10] and [SLSH12] for further details.

9. Dirichlet boundary conditions are imposed by applying them to the control variables.
In the case of homogeneous Dirichlet conditions, this procedure results in exact point-
wise satisfaction. In the case of inhomogeneous Dirichlet conditions, the boundary
values have to be approximated by functions lying in the NURBS space.

10. Neumann boundary conditions are naturally satisfied by performing the integration
over the boundary of the domain in the same way as in standard Finite Element
formulations.

Eventually, we present a summary of similarities and differences between Finite Element
Method and IsoGeometric Analysis by means of tables 3.1 and 3.2.
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Finite Element Method
IsoGeometric Analysis

Partition of unity
Compact support
Affine covariance
Patch tests satisfied
Isoparametric concept

Table 3.1: List of the main similarities between the Finite Element Method paradigm and the
IsoGeometric Analysis frameowrk based on NURBS.

Finite Element Method IsoGeometric Analysis
Nodal points Control points
Nodal variables Control variables
Mesh Knot vectors
Basis interpolates nodal points and Basis does not interpolate control
variables points and variables
Approximated geometry Exact geometry
Polynomial basis NURBS basis
Subdomains Patches

Table 3.2: Comparison of the main differences between the Finite Element Method paradigm
and the IsoGeometric Analysis frameowrk based on NURBS.

3.3.1 Galerkin formulation

The starting point to build an IsoGeometric Analysis Galerkin method is the variational
formulation (3.3) of the problem whose strong form is defined by equation (3.2).
Let us introduce a family of two-dimensional NURBS basis functions R̂ij ’s defined in the
physical domain such that

R̂ij(y) = R̂ij(x, y) = R̂ij ◦ F (ξ, η) = Rij(ξ) (3.13)

Thus the discretized unknown displacement field uh(y) is constructed as convex combina-
tion of the NURBS functions that describe the geometry

uh(y) =
∑
i∈I

∑
j∈J

Rij(ξ)Uij =
∑
i∈I

∑
j∈J

R̂ij(y)Uij (3.14)

The unknown values Uij ’s are two-dimensional vectors and are comparable to control
points. In general, they do not stand for diplacements in specific nodes since NURBS
functions are not interpolatory in the knots; however in our problem we employed open
knot vectors thus forcing NURBS functions to be interpolatory on the boundary. Thanks
to this property, we can easily impose zero Dirichlet boundary conditions on ΓD by setting
to zero the coefficients Uij that belong to the corresponding knots on the boundary ΓD.

Thinking of boundary conditions as a constraint over the degrees of freedom of the
problem, we can write the unknown field eliminating the basis functions that are required to
enforce the zero Dirichlet boundary conditions; renumbering the remaining basis functions
and unknowns with an index ℓ spanning 1 to L, equation (3.14) reads as

uh(y) =

L∑
ℓ=1

Nℓ(y)Uℓ = N(y)U (3.15)
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where U ∈ RL contains the unknown displacement coefficients Uij ’s corresponding to the
unconstrained control points, that is, the ones where we do not impose Dirichlet boundary
conditions. The assembled matrix N(y) ∈ R2×L is constructed from the NURBS basis
functions Rij ’s in a way that each column Nℓ(y) : R2 → R2 splits Uℓ in its components
along the xy-directions.
Thus the finite-dimensional subspace Vh ⊂ V where we set the isogeometric paradigm for
the numerical approximation of the elasticity problem is given by the span of the NURBS
basis functions previously described:

Vh = ⟨N1, . . . ,NL⟩ (3.16)

Imposition of the boundary conditions

As observed in point 9 and 10 of section 3.3 on the properties of IsoGeometric Analysis, a
critical aspect is represented by the correct imposition of the boundary conditions. From
a modelling point of view, Dirichlet conditions correspond to fixing the displacement over
the boundary: this is trivial when dealing with homogeneous conditions; otherwise the
situation is more complex because we have to properly approximate the data by means of
NURBS basis functions, thus introducing additional numerical errors. On the other hand,
Neumann boundary conditions naturally arise from the formulation of the linear elasticity
problem and have the physical meaning of imposing a stress over the boundary of the
structure in analysis.

Moreover, special configurations of the geometry may lead to the imposition of sym-
metrical boundary conditions in order to decrease the number of degrees of freedom in the
problem, thus reducing the overall computational effort. This is the case we analyze in this
work when dealing with an application on computational mechanics; additional details on
the analytical and numerical treatment of this problem will be provided in chapter 5.

Discrete algebraic problem

Using the space Vh defined in (3.16) we can build a stiffness matrix K ∈ RL×L and a force
vector F ∈ RL. The algebraic formulation of the elasticity problem is straightforward:

KU = F (3.17)

The elements of the stiffness matrix and the force vector arising from the discretization of
the variational formulation are described in equation (3.18); in particular, these entries are
computed using classical quadrature rules and the integration is performed using Gaussian
quadrature points in the parametric domain. An overview of more efficient quadrature
techniques is available in [HRS10].

Kij =

∫
Ω

(2µϵ(Ni) : ϵ(Nj) + λdiv(Ni)div(Nj))dω , Fℓ =

∫
ΓN

g ·Nℓdσ (3.18)

Since the support of the NURBS basis functions is larger than the one of classical La-
grangian Finite Element basis functions, the pattern of the IGA stiffness matrix is gener-
ally less sparse. For the solution of the linear system (3.17), several strategies are available.
Since K is a symmetric positive definite matrix and the dimension of the problem is moder-
ate, we choose a classical sparse direct solver such as the multi-frontal method implemented
in the UMFPACK Library.

41



Shape optimization using IsoGeometric Analysis

3.3.2 Convergence properties of IsoGeometric Analysis

First of all, we recall the definition of energy norm for the problem (3.3):

∥u∥2E :=

∫
Ω

(2µϵ(u) : ϵ(u) + λdiv(u)div(u))dω

Existence and uniqueness of a solution for the linear elasticity problem are guaranteed by
the results stated in section 3.1.1. Thus the classical best approximation property holds
for the discrete solution uh:

|u− uh|H1(Ω) ≤ C inf
v∈Vh

|u− v|H1(Ω)

Moreover we observe that the semi-norm |u|H1(Ω) is equivalent to the energy norm in
H1(Ω) and the previous statement also reads as

∥u− uh∥E ≤ ∥u− v∥E ∀v ∈ Vh

The proof of the convergence of the solution computed by using IsoGeometric Analysis
is very complex and here we only report the convergence estimate for our case, where we
focus on the H1-seminorm of the solution. For further details, including the extension to a
generic Hk Sobolev space and the proof of these results we refer to the work of Y. Bazilevs
et al. [BBdVC+06].
We assume that the geometrical parametrization F which maps an element Q in the
parametric space into an element K in the physical space is at least of class C0: let
Q denote the cartesian product of d non-empty knot spans, thus we have K = F (Q).
Moreover if the degree of the NURBS basis used to describe the problem is p, then we can
write the element-wise estimate

|u− uh|H1(K) ≤ Chp
p+1∑
i=0

∥∇F∥i−p−1

L∞(Q̃)
|u|

Hi(K̃)
(3.19)

where C is a constant that depends on the geometry of Ω and on the size of Q but not on
the meshsize parameter h; Q̃ (respectively K̃) denote the extended supports of elements
Q (respectively K) grouping the supports of all the basis functions that are non-zero over
Q (respectively K). Again we can infer the main difference of sparsity between Finite
Element Method and IsoGeometric Analysis by observing the broader support of NURBS
basis functions and the consequent less sparse pattern of the stiffness matrix.

By summing up (3.19) over all elements, we can establish a convergence estimate of
order p with respect to the H1-seminorm. We remark that this estimate requires bounds
for the i-th order seminorm of the solution u unlike the Finite Elements case. Also, the
parametrization enters the error bound and thus has a clear effect on the quality of the
solution. If we measure the error in the Hk-seminorm where k > 1 and if the smoothness of
the parametrization is less than Ck−1, the global error estimate requires the introduction
of the so-called bent Sobolev spaces to take into account the reduced smoothness of the
parametrization along specific knot lines. For more details, we refer again to [BBdVC+06].

Remark 3.7. From a computational point of view, we observe that uh approaches the
energy norm of the exact solution from below, that is ∥uh∥E ≤ ∥u∥E . Moreover, when
refining a discretization it must hold ∥uh1∥E ≤ ∥uh2∥E where h1 stands for the fine grid
and h2 for the coarse one. This property is often used to cross-check the numerical solution
from a practical point of view.
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3.4 Shape optimization problem in structural engineering

A classical problem of shape optimization in structural engineering concerns the optimiza-
tion of the shape of a hole within a squared plate subject to external traction ( [Kir81]).
From a mathematical point of view, this corresponds to studying the configuration of the
free boundary Γ while minimizing the compliance of the structure subject to a constant
mass constraint.
The objective functional J(Ω) depends on the shape of the domain Ω and represents the
compliance of the structure which by intuition is the inverse of the stiffness and describes
its deformability. In the literature it is defined as

J(Ω) =

∫
ΓN

g · udσ (3.20)

thus minimizing the compliance corresponds to making the structure more rigid.
Let us introduce the functional G(Ω) as the integral form of the volume of the object

G(Ω) =

∫
Ω
dω (3.21)

Therefore we can write the constrained shape optimization problem in the following form:

min
Ω∈Uad

J(Ω) , Uad =

{
Ω ⊂ Rd , G(Ω) = V0

}
(3.22)

where Uad is the set of admissible shapes for the domain Ω and V0 is the initial volume
which represents the reference value for G(Ω).

3.4.1 Existence and uniqueness of the optimal shape

We recall the definition in equation (1.5) of the space of admissible shapes arising as
deformations of a domain Ω. All the shapes in OT (Ω) have the same topology as Ω thus
this approach does not allow the topological optimization of the domain, that is no change
in the number of connected components of the boundary is possible. A general reference
for the treatment of shape and topological optimization is [dGAJ08].
Let us introduce a pseudo-distance in OT (Ω) as follows

d(Ω1,Ω2) = inf
T∈T

T (Ω1)=Ω2

[
∥T − I∥W 1,∞(Rd,Rd) + ∥T−1 − I∥W 1,∞(Rd,Rd)

]
(3.23)

The following existence result may be stated and a complete proof is available in [MS76]:

Theorem 3.8. Let us restrict the set of admissible shapes Uad to small variations of the
reference shape Ω0 according to the distance (3.23). Thus the shape optimization problem
(3.22) reads as

min
Ω∈Ud

ad

J(Ω) , Ud
ad =

{
Ω ∈ Uad

∣∣∣ d(Ω,Ω0) ≤ R , R > 0

}
(3.24)

and has at least one minimum point, that is an optimal shape exists.

Remark 3.9. Uniqueness of the optimal shape may only be conjectured in a general case
and additional assumptions and restrictions have to be made to prove it in specific cases.
As a matter of fact, many topological and geometrical issues arise and we refer to [Cha03],
[Che75] and [Pir84] for further details on these topics.
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3.4.2 Penalty formulation

Classically, problems in constrained optimization have been treated by constructing a new
functional with an additional penalty term such that the value of the functional worsens
in the region where the constraint is not satisfied. Thus we can write the optimization
problem in the form

min
Ω∈Rd

F (Ω, β) , F (Ω, β) = J(Ω) + β
(
G(Ω) − V0

)2
(3.25)

where β is a penalty parameter as big as the user wants (usually β ≃ O(106)) that allows
to enforce the value of the functional F to worsen where the constraint is not satisfied.

Since this work focuses on gradient-based optimization methods, we require that the
functionals have sufficient regularity in order to ensure the existence of point-wise gradients
within the region of admissible solutions. For this reason we construct the penalty term
as a quadratic power to get at least C1 regularity for F . Under this assumption, for every
point of the domain we are able to compute the first-order partial derivatives with respect
to all the variables.

In the literature several works deal with a comparative study of penalty methods and
other classical optimization approaches such as barrier or Lagrangian formulations. A
major drawback of the approaches based on penalty parameters is the difficulty of correctly
calibrating the value of β to ensure an effective penalization of the objective functional:
if β is too small, then the algorithm will consider also inadmissible configurations; on the
contrary, if β is too big this method will discard feasible solutions even in presence of minor
variations of the volume which could be a priori admissible.

The critical role of the penalty parameter and the sensitivity of the optimization meth-
ods to its value increase when dealing with multiobjective optimization. As a matter of
fact, the presence of the same penalty parameter in the formulation of different function-
als Fi(Ω, β)’s - for example in the case of functionals arising from different configurations
of the boundary conditions - may generate conflicts during the calibration process if the
span of the value of the Fi’s is very broad for different realizations of i. Moreover, the
mathematical problem could become even more complex if different penalty parameters
associated to several constraints appear: this is the case of local strain constraints, where
possible correlations among the constraints could lead to non-trivial dependencies of the
parameters βj ’s j = 1, . . . ,M where M represents the total number of restrictions to be
imposed.
In this scenario, identifying the real relationships among mathematical and physical quan-
tities and constructing a robust algorithm is not affordable because of the builtin uncer-
tainties which are not easy to estimate and control.

3.4.3 Lagrangian formulation

A finer approach to the treatment of the constraints is based on the formulation of an
unconstrained optimization problem by means of the Lagrangian functional L(Ω, λ)

min
Ω∈Rd

L(Ω, λ) , L(Ω, λ) = J(Ω) + λ
(
G(Ω) − V0

)
(3.26)

where λ > 0 is a positive Lagrange multiplier.
Main drawback of the formulation of the optimization problem using the Lagrangian

L(Ω, λ) is due to the nature of the optimal solution (Ω∗, λ∗) which is a saddle point. As a
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matter of fact, Ω∗ represents the geometrical configuration that minimizes L(Ω, λ) whereas
the optimal Lagrange multiplier λ∗ is a maximum for the Lagrangian functional.

Moreover if we extend the Lagrangian formulation to the case of multiobjective op-
timization, other issues arise because of the nature of the pair (Ω∗, λ∗). Let g1 and g2
be two different configurations of the Neumann boundary conditions, then we introduce
the Lagrangian functionals L1(Ω, λ) and L2(Ω, λ) for the minimization of the compliances
J1(Ω) and J2(Ω) subject to the volume constraint. Within the multiobjective optimization
paradigm associated to Multiple-Gradient Descent Algorithm, this results in a two-steps
procedure where we first minimize Li , i = 1, 2 with respect to the state variable Y ∈ Ω

Listing 3.1: MGDA for Lagrangian multiobjective optimization - Step 1

1. Fix λ;
2. Compute the gradient vectors ∇YLi , i = 1, 2;
3. Identify ω as a convex combination of ∇YLi;

4. Determine an optimal step size ρ̃;
5. Update the design point Y to Y − ρ̃ω;

6. Perform MGDA until convergence.

then we maximize them with respect to the adjoint variable λ

Listing 3.2: MGDA for Lagrangian multiobjective optimization - Step 2

1. Fix Y ∈ Ω;

2. Compute the gradient vectors ∇λL1;

3. Identify a descent direction ω′
for ∇λL1;

4. Determine an optimal step size ρ;
5. Update the design point λ to λ+ ρω′

;

6. Perform Steepest Descent Method until convergence.

We remark that ∇λL1(Ω, λ) = ∇λL2(Ω, λ) since these terms represent the constraint
over the volume variation: as a matter of fact, we are seeking a shape Ω such that both
the configurations of the boundary conditions are satisfied, thus the domain has to be
the same when minimizing L1(Ω, λ) and L2(Ω, λ). However this formulation presents
several drawbacks, first of all the necessity to perform an hybrid multi-single objective
optimization strategy. Moreover it is well known in the literature that this formulation
of the optimization algorithm is not stable and convergence issues may arise under some
circumstances. A possible solution comes from the coupling of the processes to identify a
descent direction at each time step, giving the so-called Uzawa algorithm:

Y(k+1) = Y(k) − ρ̃(k)∇YL1(·, λ(k))

Y(k+1) = Y(k) − ρ̃(k)∇YL2(·, λ(k))

λ(k+1) = λ(k) + ρ(k)∇λL1(Y
(k), ·)

(3.27)

Further details about the theoretical foundations of this approach can be found in [BPV97].
However, the complexity of the mathematical formulation of the problem and the compu-
tational cost arising from the optimization procedure based on a system of fully coupled
PDEs make this approach not particularly appealing. Hence we choose not to deal with
this topic in this work but a detailed analysis could be interesting for future investigations.
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3.4.4 Shape gradient for the linear elasticity problem

The problem of shape optimization in structural engineering is widely treated in [All06]
where G. Allaire proves some major results about the differentiation of the compliance
with respect to the domain. Moreover the author presents a numerical algorithm to per-
form shape optimization starting from the concept of shape derivative. In particular, the
author remarks that the problem is self-adjoint and this restricts the solution of the adjoint
problem to the solution of the primal one.

Under the assumptions g,u ∈ H2(Ω) we can differentiate equation (3.20) with respect
to the domain Ω as described in section 1.4. We remark that the map Tt : Ω 7→ Ωt in
equation (1.7) tracks the deformation of the domain at time t and is different and a priori
independent from the map F : Ω0 7→ Ω in equation (3.5) that describes the mechanical
deformation of the system within the isogeometric paradigm.
Remark 3.10. In this context, a major advantage of the isogeometric paradigm relies on
the use of a unique basis for the representation of the geometry of the domain and for the
computational procedure: as a matter of fact, both the structural displacement field arising
from the linear elasticity problem and the deformation field for the shape optimization
algorithm may be written by means of NURBS basis functions leading to a global procedure
that uses only one parametrization.

Here we only report the main result of the form of the shape derivative of the compliance
for a given deformation v:

dJ(Ω;v) = −
∫
Γ

(
2µ|ϵ(u)|2 + λ|div(u)|2

)
v · ndσ (3.28)

In next sections we will formulate different optimization procedures based on the informa-
tion carried by (3.28).

3.5 Shape optimization procedures

First we present the algorithm proposed by L. Blanchard et al. in [BDVS12] for the
construction of an optimization procedure starting from the concepts of descent direction
and shape derivative. Then we describe the idea of setting the optimization problem (3.22)
in a multiobjective optimization framework in order to apply Multiple-Gradient Descent
Algorithm to compute the Pareto-optimal solutions as discussed in 2.

3.5.1 Shape optimization using shape-based Steepest Descent Method

As for the differentiation of the compliance functional in equation (3.28), we can compute
the shape derivative for the Lagrangian functional (3.26) as follows:

dL(Ω;v) =

∫
Γ

(
λ−

(
2µ|ϵ(u)|2 + λ|div(u)|2

) )
v · ndσ (3.29)

Thus an extension of the Steepest Descent Method in terms of shape deformations is
straightforward

Ωk+1 = (I + vk)(Ωk)

where vk describes a deformation such that

vk =

{
(2µ|ϵ(uk)|2 + λ|div(uk)|2 − λk)nk , Γ

0 , ΓD ∪ ΓN

(3.30)

46



Shape optimization using IsoGeometric Analysis

As L. Blanchard et al. point out in [BDVS12], equation (3.30) defines a shape deforma-
tion of the boundaries ∂Ω = Γ∪ΓD ∪ΓN but to define a map that is a perturbation of the
identity (Section 1.4.1) we are interested in a deformation field involving the whole domain.
Classical approaches in the literature rely either on transfinite interpolation ( [BF10]) or
on regularization procedures that extend the function defined over the boundary inside
the domain by solving an additional differential problem. Following the intuition of G.
Allaire et al. in [AJT04], a displacement field vk defined over the whole domain Ωk is
sought by means of an armonic extension formulated using a Laplacian operator. For the
sake of simplicity, in our problem we choose to use the same isotropic operator previously
introduced for the linear elasticity problem, thus we seek vk such that

−divσ(vk) = 0 , Ω

vk = 0 , ΓD ∪ ΓN

σ(vk) · nk = (2µ|ϵ(uk)|2 + λ|div(uk)|2 − λk)nk , Γ

(3.31)

We notice that the deformation field vk on the boundary Γ is not imposed as a Dirichlet
condition but instead we consider a Neumann condition. It is well known in the literature
that the algorithms based on shape derivatives may suffer from a loss of regularity thus
the use of a Neumann boundary condition works as a smoothing operator that enables to
increase the regularity of the deformation field vk. Moreover, from the numerical point
of view, the field vk is defined by using NURBS basis functions but the deformation in
equation (3.30) usually does not belong to the NURBS space whereas the one arising from
equation (3.31) does.

Eventually, we use the basis functions of the discrete space Vh in equation (3.16) to
introduce a definition of the deformation field in terms of displacements of the control
points:

vk(y) =

L∑
ℓ=1

Nℓ(y)Vℓ

where the components Vℓ represent the motion of the control points. By recalling the form
of the stiffness matrix in equation (3.18), a discrete formulation similar to the one in (3.17)
is obtained also for the deformation field:

KV = C1 − λC2

C1
ℓ =

∫
Γ
(2µ|ϵ(u)|2 + λ|div(u)|2)Nℓ · ndσ , C2

ℓ =

∫
ΓN

Nℓ · ndσ (3.32)

The vectors C1 and C2 include the information of the shape derivative of the compliance
and the constant volume constraint. From a practical point of view, the system above
is solved twice to compute K−1C1 and K−1C2; then for any Lagrange multiplier λ, the
deformation can be easily computed without any extra cost:

V = K−1C1 − λK−1C2

In script 3.3 we report the workflow of the Steepest Descent Method for the shape
optimization procedure based on the shape derivative.

Listing 3.3: Shape optimization procedure using Steepst-Descent Method with shape derivative

1. Read data file:

(a) Detect knot vectors and degree of the basis functions to define the

47



Shape optimization using IsoGeometric Analysis

isogeometric paradigm;

(b) Detect the control points and the weights to define the exact geometry;

(c) Set refinement options;

2. Generate initial geometry;

3. Run IGA solver to compute the structural displacement defined by

the control points U(k)
;

4. Run IGA solver to compute the shape deformation defined by the control

points V(k)
;

5. Initialize step length t(k)

6. Compute the Lagrange multiplier λ(k)
such that the domain

Y(k+1) = Y(k) + t(k)V(k)
is admissible;

7. Run IGA solver for the domain described by control points Y(k+1)
yielding

to structural displacement defined by control points U(k+1)
;

8. Compute the compliance for the domain defined by Y(k+1)
;

9. If the compliance does not decrease , t(k) is reduced and go to step 6;

otherwise the step length is retained;

10. If ∥J(k+1) − J(k)∥ ≥ tol, go to step 3 and update k = k + 1; otherwise the

procedure has converged and the optimization loop may be arrested.

3.5.2 Shape optimization within a multiobjective optimization paradigm

An alternative method is based on the idea of formulating the optimization problem in
(3.22) as a multiobjective optimization problem and applying Multiple-Gradient Descent
Algorithm to identify the first Pareto front.

First of all, we have to identify two antagonistic criteria in order to describe a proper
functional space where the competition for optimization takes place. From equation (3.28)
we notice that dJ(Ω;v) ≤ 0 if v · n > 0, that is, the compliance can always be decreased
by enlarging the domain.

In details, since (3.20) and (3.21) define two quantities whose improvement/worsen-
ing respectively depend on the worsening/improvement of the other, we can employ the
functionals J(Ω) and G(Ω) as the criteria to identify the Pareto-optimal solutions of the
problem. Thus the information carried by the shape derivative allow us to choose the
compliance and the volume constraint as criteria for formulating the problem within the
paradigm of multiobjective optimization as follows

min
Ω⊂Rd

J(Ω) , J(Ω) = (J(Ω), G(Ω) − V0)
T (3.33)

In the following chapter we will focus on the study of problem (3.33) by applying
several variants of Multiple-Gradient Descent Algorithm as discussed in chapter 2. We aim
at implementing a strategy for concurrent optimization, that is, finding a descent direction
common to all criteria such that at every iteration of MGDA both the compliance and the
volume constraint functional decrease. This procedure allows to identify a set of Pareto-
optimal solutions starting from which competitive optimization algorithms can proceed to
identify a subset of optimal solutions based on the nature of the problem.
Competitive optimization has not been treated in this thesis but we refer to appendix A for
a general introduction to the topic since it represents a very promising field of investigation
for MultiDisciplinary Optimization.

Remark 3.11. A more complex and general case of shape optimization problem treated
within the framework of multiobjective optimization arises from aeronautical engineering:
in this context, we want to minimize both the drag and the compliance of a given object -
for example a wing - subject to a lift constraint. Basic idea is to employ a variation of the
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classical procedure named Projected Multiple-Gradient Descent Algorithm as presented in
section 2.5: the gradients of the drag functional D(Ω) and the compliance J(Ω) are pro-
jected on the subspace of Rd where the constraint due to the lift coefficient is satisfied;
then we seek a descent direction using the modified gradients.
Some applications to more complex problems are discussed in [Dés11] where the two-
step global procedure of cooperative and competitive optimization is applied to a shape
optimization problem of compressible fluid dynamics. Again, the author highlights the
interest of Multiple-Gradient Descent Algorithm both as standalone gradient-based op-
timization technique and as initial deterministic procedure to determine Pareto-optimal
configurations to be used as starting points in a dynamic Nash game.
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Chapter 4

Multiple-Gradient Descent
Algorithm for isogeometric structural
shape optimization

In this chapter we focus on merging the optimization procedures described in chapter 2 with
the parametrization techniques presented in chapter 3 to construct an efficient framework
for the resolution of optimization problems using exact geometry description.
Our main application is related to the linear elasticity problem in equation (3.2) where
the optimization variable is the free boundary Γ. The geometry of the problem is treated
by means of the NURBS parametrization previously introduced whereas the optimization
algorithm aims at finding a descent direction that concurrently minimizes the compliance
and the variation over the volume constraint.

In the following sections we present the different algorithms implemented for the study
of the optimization procedures focusing on their strengths and weaknesses and highlighting
feasible improvements. Table 4.1 summarizes the strategies investigated: on one hand, we
compare the methods used to compute the objective functionals and their gradients; on
the other hand, we compare the dimension of the space of the optimization variables in
order to quantify the computational cost of the implemented variants of MGDA.

Algorithm Computation of J Computation of ∇J Variables Applies to
MGDA Exact through Approximated Control points Single

IGA solver by FD on fine on the coarse grid design
surrogate mesh (Low number) point

Kriging- Predicted using Approximated Control points Set of
assisted kriging model by FD on fine on the coarse grid design
MGDA surrogate mesh (Low number) points
MGDA Exact through Extracted from Control points Single
using IGA solver NURBS after design
analytical parametrization k-refinement point
gradients in IGA solver (High number)

Table 4.1: Comparison of three main strategies for shape optimization within a multiobjective
optimization framework using IsoGeometric Analysis.
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4.1 MGDA using numerical approximated gradients

The standard procedure for Multiple-Gradient Descent Algorithm has been presented in
script 2.1. Concerning the linear elasticity problem in equation (3.2), the boundary is
parametrized by means of Non-Uniform Rational B-Splines thus the optimization variables
are the control points describing the NURBS curve Γ.

In particular, the algorithm starts by evaluating the objective functionals J(Ω) and
G(Ω) − V0 invoking the IsoGeometric Analysis solver once. Then the optimization loop
starts: a surrogate conforming mesh is built using a very fine spatial step and the gradients
of the criteria are computed by means of a second order centered Finite Difference scheme.
We remark that to perform this operation the values of the functionals J(Ω) and G(Ω)
have to be computed in correspondance of two adjacent spatial nodes, thus the IGA solver
have to be invoked 2q times where q is the global number of the control points used to
describe Γ.

Since we are working on a two-dimensional optimization problem, the values of the
coefficients for the convex combination can be computed analitically as in (2.11) thus
leading to the identification of the descent direction −ω common to all criteria. Then a
bisection-based line search procedure is performed to identify the optimal step size ρ̃ that
guarantees the minimization of both the compliance and the volume variation.

Eventually the design point is updated using the step size ρ̃ along the direction −ω and
the iterative loop ends when the point under analysis is Pareto-stationary, that is when
∥ω∥ is smaller than an a priori fixed tolerance.

Optimization algorithm

Here we present the overall strategy for shape optimization based on classical Multiple-
Gradient Descent Algorithm. The routine listed in script 4.1 describes the evolution of a
single design point towards a Pareto-stationary configuration; thus it has to be repeated
for an adequate set of design points in order to obtain a good description of the Pareto
front.

Listing 4.1: Shape optimization procedure using classical MGDA

1. Read data file:

(a) Detect the knot vectors and the order of the basis functions to define

the isogeometric paradigm;

(b) Detect the control points and the weights to define the exact geometry;

(c) Set the refinement options;

2. Generate the initial geometry;

3. Run the IGA solver to compute the objective functionals:

(a) Solve the displacement field;

(b) Compute the compliance and the volume;

(c) Export the objective functionals;

4. Compute the gradients of the criteria:

(a) Generate a surrogate FD mesh with stepsize sh = 10−6
;

(b) Generate a new geometry by vertically and horizontally perturbing each

component of the design vector alone adding ±sh;
(c) Run IGA solver as in step 3;

(d) ∀i = 1, . . . , 2q compute ∂
∂Yi

J(Y) = 1
2h

(J(Y+
i )− J(Y−

i )) and ∂
∂Yi

G(Y) = 1
2h

(G(Y+
i )−G(Y−

i ))

where Y+
i = [Y1, . . . , Yi−1, Yi + sh, Yi+1, . . . , Yq] and Y−

i = [Y1, . . . , Yi−1, Yi − sh, Yi+1, . . . , Yq];
5. Identify the coefficients α and 1− α as in equation (2.11) and identify

the minimal -norm element ω as convex combinations of the gradient

vectors ∇J(Y) and ∇G(Y);
6. Perform line search by means of a bisection algorithm to determine ρ̃ as
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described in section 2.2.2;

7. Update the design vector Y to Y − ρ̃ω;

8. If ∥ω∥ ≥ tol, go to step 2; otherwise a Pareto -stationary design point has

been achieved and the optimization procedure is stopped.

Remark 4.1. A satisfactory description of the Pareto front requires 20 to 40 design points,
each of which is obtained after 30 to 50 iterations of MGDA procedure. Since for ev-
ery run of the optimization algorithm, the solver is invoked 2q + 1 times to perform the
evaluation of the functionals and compute the components of the gradients, the resulting
computational cost is very demanding. For this reason in the following section classical
Multiple-Gradient Descent Algorithm is enhanced by the use of a kriging-based metamodel
that strongly reduces the computational cost of the overall procedure by substituting the
exact computation of the functionals with their prediction using statistical techniques for
spatial data.

4.2 Kriging-assisted MGDA optimization

Metamodel-assisted MGDA procedure relies on the idea of skipping the exact computation
of the functionals and their gradients by means of the numerical solver related to the
problem and estimating these quantities using a statistical approach.

An initial data set of design points is generated using Latin Hypercube Sampling to uni-
formly map the whole domain of computation. A surrogate model based on this database
is trained and is used to predict the values of the objective functionals in correpondance
of new points as described in section 2.4.1. Initial design points are also used as starting
points for the application of classical Multiple-Gradient Descent Algorithm until a Pareto-
stationary point is achieved; in this case, the objective functionals are not computed by
using the IGA solver but they are predicted by means of the surrogate model we just
trained.

From previous theoretical results we know that each MGDA final point belongs to the
Pareto front arising from the concurrent minimization of the two criteria in analysis. A
set of non-dominated design points is obtained from the coupling of MGDA strategy with
the surrogate kriging model; then each configuration is re-evaluated by means of the IGA
solver and is added to the data set coming from the previous iteration.

We remark that a filter has to be applied in order to avoid the excessive increase of
design points too close to one another. In particular, if the new entries of the database are
too close to already existent elements, these new elements are neglected since the additional
information they provide is quite poor with respect to what is already known.

After the enrichment process is over, the metamodel is updated and a more accurate
surrogate model is obtained. This allows to increase the precision of the information and
consequently to better predict the following entries of the data set, that is the objective
functionals corresponding to the new design points.

Remark 4.2. In [ZDD12] the authors highlight the importance of an adimensionalization
process in order to rescale the objective functionals and reduce the antagonism due to the
different nature of the quantities in analysis. Same idea has to be applied to the design
points in order to map them back to the interval [−1, 1]; under this assumption the LHS
procedure initially performed to map the domain with uniformly distributed random points
finds an a posteriori justification.
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Optimization algorithm

As previously pointed out, metamodel-assisted optimization strategies are based on the
joint use of deterministic and statistical approaches. A simple visualization of the work-
flow of the kriging-based Multiple-Gradient Descent Algorithm is available in figure 2.4 and
the overall shape optimization procedure is detailed in scripts 4.2 and 4.3.
Again, the computation of the gradients of the functionals is performed by means of second
order centered Finite Difference schemes on a surrogate conforming mesh. However the
values of the objective functionals in correspondance of adjacent spatial nodes are not com-
puted invoking the IGA solver but instead are predicted using the kriging metamodel. Thus
the IGA solver is invoked only when a Pareto-stationary design point is achieved whereas
the intermediate steps are handled by performing a Maximum Likelihood prediction.

A major role is played by the definition of the initial data set (Script 4.2) that will be
later used both for the prediction of the values of the functionals by means of the kriging
model and as starting point for the computation of MGDA iterates.

Listing 4.2: Shape optimization procedure using Kriging-assisted MGDA - Construction of the
initial data set

1. Build an initial data set using Latin Hypercube Sampling in R2q
where 2q

is the number of components in the design vector;

2. For each entry of the data set build a data file for the linear

elasticity problem;

3. Read the data file:

(a) Detect the knot vectors and the order of the basis functions to define

the isogeometric paradigm;

(b) Detect the control points and the weights to define the exact geometry;

(c) Set the refinement options;

4. Generate the initial geometry;

5. Run the IGA solver to compute the objective functionals:

(a) Solve the displacement field;

(b) Compute the compliance and the volume;

(c) Export the objective functionals;

6. Store the values of the functionals in the data set.

Remark 4.3. A critical step in the construction of the initial data set is represented by the
compatibility that has to be enforced between the physical problem and its discrete numer-
ical representation since initial control points are generated using statistical techniques in
order to uniformly map the whole domain. In particular, repeated control points or control
points very close to one another may generate singularities in the control polygon: for this
reason, kinks and singularities may appear in the representation of curves and surfaces
using the exact geometry paradigm. Hence inaccurate initial control points can lead to
the definition of singular geometries, thus causing non-physical scenarios in the analysis of
stresses and displacements in a linear elasticity problem to appear.

In script 4.3 we focus on the optimization procedure performed starting from the pre-
viously defined data set. We remark that for this process the number of initial entries of
the data set has to be fixed a prori and for each element the routines of the IGA solver
have to be invoked. Moreover the metamodel-assisted optimization strategy is performed
an a priori fixed number of times that have to be properly calibrated in order to obtain a
robust method.
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Listing 4.3: Shape optimization procedure using Kriging-assisted MGDA - Metamodel-assisted
optimization

1. Acquire the data set;

2. Perform the training of the data set:

(a) Compute the log -likelihood associated with the model;

(b) Calibrate the parameters that describe the correlation among the data

in order to minimize the log -likelihood;

3. Perform kriging -based prediction of the functional values

(a) Compute the correlation among the data in the data set;

(b) Compute the prediction of the values;

(c) Compute the variance of the predicted values;

4. Compute the gradients of the criteria:

(a) Generate a surrogate FD mesh with stepsize sh = 10−6
;

(b) Generate a new geometry by vertically and horizontally perturbing each

component of the design vector alone adding ±sh;
(c) Perform kriging -based prediction as in step 3;

(d) ∀i = 1, . . . , 2q compute ∂
∂Yi

J(Y) = 1
2h

(J(Y+
i )− J(Y−

i )) and ∂
∂Yi

G(Y) = 1
2h

(G(Y+
i )−G(Y−

i ))

where Y+
i = [Y1, . . . , Yi−1, Yi + sh, Yi+1, . . . , Yq] and Y−

i = [Y1, . . . , Yi−1, Yi − sh, Yi+1, . . . , Yq];
5. Identify the coefficients α and 1− α as in equation (2.11) and identify

the minimal -norm element ω as convex combinations of the gradient

vectors ∇J(Y) and ∇G(Y);
6. Perform line search by means of a bisection algorithm to determine ρ̃ as

described in section 2.2.2;

7. Update the design vector Y to Y − ρ̃ω;

8. If ∥ω∥ ≥ tol, go to step 3; otherwise a Pareto -stationary design point has

been achieved and the optimization procedure is stopped.

9. Run the IGA solver to compute the objective functionals:

(a) Solve the displacement field;

(b) Compute the compliance and the volume;

(c) Export the objective functionals;

10. Enrich the data set with the computed final MGDA points and the

functional values corresponding to the new configurations;

11. Filter the data set to eliminate the design configurations similar to

entries already present in the database in order to keep only additional

information;

12. If the number of iterates of metamodel -assisted MGDA is not over , go to

step 2; otherwise a set of Pareto -stationary solutions have been found

and the overall procedure is stopped.

From a computational point of view, main advantage of metamodel-assisted MGDA is
the reduction of the computational effort. As a matter of fact, the method applies to a
set of design points at the same time but invokes the IGA solver only to evaluate last
MGDA iterate. This results in the parallel evolution of several design points, thus leading
to a complete description of the Pareto front in 10 to 15 runs of the global optimization
strategy. Moreover, the iterative enrichment of the data set and its filtering are responsible
for the improvement of the information at every iteration. Hence this procedure may be
considered a sort of predictor-corrector optimization strategy.
Remark 4.4. The application of a statistical-based prediction strategy introduces addi-
tional error in the approximation of the problem. However the evaluation of the variance
associated with the model allow to monitor the uncertainties due to the kriging strategy
and to control them.
Remark 4.5. The strategy listed in 4.3 can be extended in order to consider a more general
surrogate model that takes account for both the objective functionals themselves and a set
of adjoint variables, namely their derivatives. The overall procedure remains the same and
just steps 2 and 3 are rivisited: the information contained by the gradients is used to force
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the model to better fit the data. Once the MGDA procedure achieves a Pareto-stationary
point, the solver is invoked (step 9) to evaluate the new configuration and again the objec-
tive functionals and their gradients are exported and used to enrich the original data set.
In our application this approach seems very promising since we can directly extract the
information related to the gradients from the numerical solver thanks to the isogeometric
parametrization previously introduced. However this topic has not been treated in this
work but the extension is straightforward and we expect good results from this improve-
ment of the overall methodology.

4.3 Obtaining analytical gradients in the parametric space

The aim of this section is to extract the information on the gradients ∇G and ∇J in
the parametric space from the IGA solver. In particular, we know that the isogeometric
parametrization from section 3.2.3 allows to conveniently express the domain boundaries
in terms of control points and NURBS basis functions. This approach has been widely
treated in the literature and we refer to these works [WFC08], [HTM11] and [CH09] for
further details.

We recall the form of the transformation F (3.5) that maps the parametric domain Ω0

into the physical one Ω:

F (ξ) = y(ξ) = y(ξ, η) =
∑
i∈I

∑
j∈J

Rij(ξ, η)Yij

where the components of the control points in the parametric and physical domains are
respectively Yij = (Xij , Yij) and yij = (xij , yij).
Thus the Jacobian matrix arising from the transformation F is given by

J =
∂

∂ξ
F (ξ) =

∂

∂ξ
y(ξ) =

[
x,ξ y,ξ
x,η y,η

]
(4.1)

and thanks to equation (3.12) the Jacobian reads as

J =

[ ∑
i,j Rij,ξXij

∑
i,j Rij,ξYij∑

i,j Rij,ηXij
∑

i,j Rij,ηYij

]
(4.2)

where i ∈ I, j ∈ J and the NURBS basis functions are Rij = Rij(ξ, η).
In the following subsections we derive the gradients of the functionals G(Ω) and J(Ω) with
respect to the control points Ykl used for the geometrical parametrization of the domain
by means of Non-Uniform Rational B-Splines. For a general reference about differentiation
with respect to knots and control points of NURBS, we refer to [dB72] and [PT98].

4.3.1 Gradient of the volume in the parametric space

We notice that the volume functional G(Ω) only depends on the geometrical information of
the domain. Thus it is straightforward to differentiate with respect to the control variables
and the computation can be executed starting from the integral formulation in equation
(3.21). In particular, we employ the transformation F and its Jacobian (4.2) to map Ω
back to Ω0 and perform the integration over the parametric domain by means of Gaussian
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quadrature points. The volume functional can be expressed as follows:

G(Ω) =

∫
Ω
dω =

∫∫
ξ,η

|J|dξdη =

=

∫∫
ξ,η

(∑
i,j

Rij,ξXij ∗
∑
i,j

Rij,ηYij −
∑
i,j

Rij,ξYij ∗
∑
i,j

Rij,ηXij

)
dξdη

(4.3)

Hence, to compute the partial derivatives of (4.3) with respect to the control points Ykl’s,
we use the linearity of the operator Ykl 7→ G(Ω) that allows us to write

∂

∂Xkl
G =

∫∫
ξ,η

(∑
i,j

Rij,ξδikδjl ∗
∑
i,j

Rij,ηYij −
∑
i,j

Rij,ξYij ∗
∑
i,j

Rij,ηδikδjl

)
dξdη (4.4)

where δik is the classical Kronecher delta, that is

δik =

{
1 , i = k

0 , otherwise

Eventually the gradient ∇G with respect to control points Ykl = (Xkl, Ykl) reads as

(∇G)kl =

[
∂

∂Xkl
G ,

∂

∂Ykl
G

]T
∂

∂Xkl
G =

∫∫
ξ,η

(
Rkl,ξ ∗

∑
i,j

Rij,ηYij −
∑
i,j

Rij,ξYij ∗Rkl,η

)
dξdη (4.5)

∂

∂Ykl
G =

∫∫
ξ,η

(∑
i,j

Rij,ξXij ∗Rkl,η −Rkl,ξ ∗
∑
i,j

Rij,ηXij

)
dξdη (4.6)

Remark 4.6. We notice that the volume functional G(Ω) only depends on the geometry
of the domain. From a computational point of view, this results in a routine that can be
extracted from the IGA solver and performed independently from the calculation of the
displacement field.

4.3.2 Gradient of the compliance in the parametric space

The computation of the gradient of the compliance functional with respect to the control
points Ykl relies on the ability to express the shape derivative dJ(Ω;v) as a duality product
between the operator ∇J(Ω) and the vector v, that is dJ(Ω;v) = ⟨∇J,v⟩.

The formulation of the shape derivative of the compliance is known from equation
(3.28) and can be expressed in the following general form

dJ(Ω;v) =

∫
Γ
Bv · ndγ , B = −

(
2µ|ϵ(u)|2 + λ|div(u)|2

)
(4.7)

Starting from the works of J.-P. Zolésio ( [Zol82]) and J. Cea ( [Cea86]), a procedure to
compute the gradient ∇J(Y) from the above expression of the shape derivatives dJ(Ω;v)
is implemented.

Thanks to the parametrization introduced in section 3.2.3, the domain Ω can be ex-
pressed as a NURBS surface whose control points are of the following form

y =
∑
i∈I

∑
j∈J

Rij(ξ, η)Yij
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The admissible deformation v applied to Ω is a NURBS surface itself thus we can write it
as

v =
∑
k∈I

∑
l∈J

Rkl(ξ, η)Vkl =
∑
k∈I

∑
l∈J

Rkl(ξ, η)
(
V

(1)
kl , V

(2)
kl

)T
The vector n that appears in equation (4.7) represents the normal direction to the NURBS
surface y and is identified by the expression n = y,ξ × y,η which in the two-dimensional
case reads as

n =
1

|J|
∑
i∈I

∑
j∈J

Rij,ξ(ξ, η) (Yij , −Xij)
T

where |J| is the determinant of the Jacobian of the transformation F and assumes the same
formulation as in equation (4.3).

Moreover we notice that the boundary over which the integration is performed can be
expressed as a NURBS curve, thus Γ is a set of points whose characterization is again the
one previously presented. Hence the term v · n can be expressed as follows

v · n =
1

|J|
∑
k,l

∑
i,j

(
RklV

(1)
kl Rij,ξYij −RklV

(2)
kl Rij,ξXij

)
(4.8)

where the indices i and k belong to the set I whereas j and l belong to J . For the sake of
readibility, the dependency of the basis functions Rkl and their derivatives Rij,ξ from the
parametric variables (ξ, η) is omitted.
From equation (4.7) we know that

dJ(Ω;v) =

∫
Γ
Bv · ndγ =

∫∫
ξ,η

Bv · n|J|dξdη

and thanks to the expression (4.8), the following result is derived:

dJ(Ω;v) =
∑
k,l

∑
i,j

aklij (Yij ,−Xij )
(
V

(1)
kl , V

(2)
kl

)T
, aklij =

∫∫
ξ,η

BRklRij,ξdξdη (4.9)

In equation (4.9) it is straightforward to isolate the term which represents the gradient of
the compliance with respect to the control points, that is

dJ(Ω;v) = ⟨∇J , V⟩

Hence the components of the gradients of the functional J(Ω) read as

(∇J)kl =

[
∂

∂Xkl
J ,

∂

∂Ykl
J

]T
(4.10)

where
∂

∂Xkl
J =

∑
i,j

aklijYij ,
∂

∂Ykl
J = −

∑
i,j

aklijXij (4.11)
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4.4 MGDA using analytical gradients

Thanks to the boundary parametrization and to the expressions of the gradients introduced
in the previous section, the algorithm for the concurrent optimization of several criteria can
be modified. In particular, we propose to use the information contained in the analytical
gradients extracted from the IGA solver in order to avoid their numerical approximation.

Thus classical MGDA procedure is performed by replacing the numerical computation
of the gradients within the optimization process with the extraction of the same information
from the IGA solver: in this way, the computation of the gradients by means of Finite
Difference routines can be avoided and the partial derivatives of the objective functionals
with respect to the control points are given by equations (4.5), (4.6) and (4.11).

For this purpose, Multiple-Gradient Descent Algorithm routines are extended in order
to be able to process the information about user-supplied gradient vectors. Moreover, the
global shape optimization procedure is modified to properly deal with spaces of design
points of different dimensions. This is due to some theoretical and technical issues con-
cerning the projection of the design variables of the enriched space back to the original set
of control points.

Remark 4.7. The k-refinement procedure to enrich NURBS space as described in section
3.2.2 modifies the location of the control points in order to mantain the geometrical and
parametrical representation of the surface after oder elevation and knot insertion. If a
linear relationship between the original control points vector Bin and the enriched one B∗

holds, a projection onto the subspace of original control points would be straightforward:

∇Ji(Ω)
∣∣∣
Bin

= AT∇Ji(Ω)
∣∣∣
B∗

, B∗ = ABin (4.12)

We remark that a linear dependency of this type usually stands between the original knot
vector and the enriched one whereas a priori this is neither sure nor trivial to prove for
control points.

Thus the problem of correctly retrieving the gradient of the functionals with respect to
the control points is solved by applying the optimization algorithm on the control points
in the enriched space rather than in the original one. Main drawback of this strategy is
the resulting higher dimension of the optimization problem that causes the computational
cost to increase. Nevertheless this approach avoid the definition of the projection operator
in equation (4.12) and leads to good results that can actually compete with the one given
by the variants of MGDA presented so far.

Optimization algorithm

The overall strategy for shape optimization based on the enhanced variant of Multiple-
Gradient Descent Algorithm is presented. During the execution of the isogeometric solver
an enrichement of the initial grid is performed by means of k-refinement. For this reason,
the numerical simulations are executed using a different set of control variables than the
initial one. As previously pointed out, the definition of a projection operator that maps
the control points in the enriched space back to the initial ones is not trivial: to overcome
this difficulty, the refined geometry as well as the analytical gradients is exported and the
optimization routines are executed in a higher dimensional space.
Thus the shape optimization procedure has to properly manage the information related to
the description of the geometry (Step 2) in order to correctly update the computational
domain by using the deformation driven by Pareto-stationary design points.
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Listing 4.4: Shape optimization procedure using MGDA with user-supplied gradients

1. Read data file:

(a) Detect the knot vectors and the order of the basis functions to define

the isogeometric paradigm;

(b) Detect the control points and the weights to define the exact geometry;

(c) Set the refinement options;

2. Generate the initial geometry:

(a) Construct the coarse grid;

(b) If the routine is running within the optimization loop , import the

updated position of the control points; otherwise perform k-refinement;

3. Export the information about the geometry:

(a) Export the control points in the coarse space;

(b) Export the control points in the refined space;

4. Run the IGA solver to compute the objective functionals:

(a) Solve the displacement field;

(b) Compute the compliance and the volume;

(c) Export the objective functionals;

(d) Extract the gradients from NURBS parametrization and export them;

5. Identify the coefficients α and 1− α as in equation (2.11) and identify

the minimal -norm element ω as convex combinations of the gradient

vectors ∇J(Y) and ∇G(Y);
6. Perform line search by means of a bisection algorithm to determine ρ̃ as

described in section 2.2.2;

7. Update the design vector Y to Y − ρ̃ω;

8. If ∥ω∥ ≥ tol, go to step 2; otherwise a Pareto -stationary design point has

been achieved and the optimization procedure is stopped.

Remark 4.8. As the algorithm presented in section 4.1, this variant of MGDA applies to
single design points. Thus, a complete description of the first Pareto front requires several
runs of the optimization algorithm. However, in this case the IGA solver is invoked only
once per run because the objective functionals have to be evaluated only in the current
configuration whereas the extraction of the components of the gradients is straightforward
in the NURBS -based code.
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Chapter 5

Numerical simulations

In this chapter we study a problem of computational mechanics using the tools of shape
optimization and multiobjective optimization described so far. In particular, we focus
on a two-dimensional problem well known in the literature and we use it to validate our
optimization strategies.

After presenting the analytical solution of the problem, we solve it by means of a single
objective Steepest Descent Method based on shape derivatives. The obtained final con-
figuration is used to check the results given by the different variants of MGDA tested on
this problem: as a matter of fact, the shapes associated with final MGDA iterates should
represent perturbations of the analytical optimal shape.
Eventually, to cross-validate the ability of Multiple-Gradient Descent Algorithm to de-
scribe the first Pareto front, we use the so-called Pareto Archived Evolutionary Strategy to
simulate the same problem and we compare the resulting Pareto sets.

5.1 Setup of the problem

We consider a two-dimensional squared flat plate with a hole located at its center, subject
to external normal forces (Fig. 5.2b). The problem can be decomposed in a simpler one
by using a symmetry property and considering only a quarter of the geometry (Fig. 5.2a).
Let us assume that the traction applied on the boundary of the domain is constant. Thus
the goal is to determine the shape of the boundary that minimizes the compliance for a
constant plate area. For this case the solution is known analitically and is represented by

Figure 5.1: Analytical optimal shape of a two-dimensional flat squared plate with a central hole
subject to uniform traction.
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(a) Configuration of the problem. (b) Imposed stress on the boundary.

Figure 5.2: Configuration of the free boundary problem and initial configuration of external
stresses imposed as boundary conditions.

an arc of circumference as illustrated in figure 5.1.
In the following sections we provide several numerical approximation of the shape

optimization problem arising from structural engineering and we analyze the optimal con-
figurations generated by the variants of the algorithms described so far.

5.2 Steepest Descent Method using shape derivatives

We define the computational domain by means of a single bi-quadratic patch which ex-
hibits a singular point at the top-left corner. For the NURBS representation we choose
quadratic basis functions, thus the singularity is obtained by introducing a control point of
multiplicity two. Additional geometrical constraints are introduced to force the extremities
of the moving boundary to stay on the symmetry axes.

In figure 5.3a we can observe the distribution pattern for the control points noticing
that they do not look like a common Finite Element mesh nor a linear polygonal grid.
As a matter of fact this depends on the use of Non-Uniform Rational B-Splines and the
transfinite map generated by this basis functions.

The linear elasticity problem is approximated by means of a 12×7 net of control points;
the optimization problem counts 24 variables that correspond to the coordinates of the 12
control points defining the moving boundary.

In details, in figure 5.3a the highlighted points on the free boundary are the control
points that define the NURBS parametrization of Γ and will act as design variables for the
shape optimization problem. To prevent the optimization algorithm to investigate non-
physical solution some precautions are necessary: the first and last point on Γ can only
slide respectively horizontally or vertically and a slight penalization is imposed to keep
design points inside the domain, that is, when they excessively approach the symmetry
lines the values of the functionals tend to worsen.
We recall that the analytical solution of this problem is an arc of circumference, as verified
in the literature ( [BDVS12]) thus we expect the configurations arising from Pareto-optimal
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(a) Initial configuration of the structure. (b) Final configuration of the optimal shape.

Figure 5.3: Comparison between the initial and the final shape of the structure.

(a) Initial shape gradient. (b) Final shape gradient.

Figure 5.4: Comparison between the initial and the final shape gradient on the moving boundary.
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Figure 5.5: Convergence of the algorithm based on the shape gradient.

points to generate shapes which are perturbations of the exact one.
In [BDVS12] some information about the shape gradient for the two-dimensional squared

plate are available. In figure 5.4 we observe the changes in the shape gradient while the
moving boundary evolves towards a circle which is the final configuration depicted in figure
5.3b. Eventually in figure 5.5 we report the graphic of the convergence of the optimization
procedure and we observe that in a small number of iterations the a priori fixed tolerance
is fulfilled.

5.3 MGDA optimization

In this section we present the results of the multiobjective shape optimization problem
obtained using the previously introduced variants of MGDA coupled with the IGA solver
as discussed in chapter 4.

We recall that within a multiobjective optimization paradigm we seek the Pareto-
optimal solutions thus we expect to find final configurations similar but not identical to
the analytical optimal one from section 5.2.
This consideration is actually reasonable since the new problem as formulated in section
3.5.2 aims at concurrently minimizing both the compliance and the variation of the volume
whereas in the original problem the latter was treated as a constraint not as an objective
functional. Moreover, within the framework of multiobjective optimization a global optimal
solution does not exist and we seek configurations representing a trade-off between the
minimization of two antagonistic criteria. For this reason, in the following subsections we
present the graphics of the Pareto fronts identified using several variants of MGDA and
we highlight the non-dominance of the final configurations. Eventually, we propose some
snapshots of the resulting optimal shapes and we verify that they can be interpreted as
perturbations of the optimal arc determined in the analytical case.
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5.3.1 Multiple-Gradient Descent Algorithm

Main goal of MGDA is to identify a complete characterization of the Pareto front that
for this kind of problems requires 20 to 30 points. We consider the previously introduced
NURBS parametrization and we choose a design point in R6 that accounts for the coordi-
nates of the control points of the boundary Γ as described in table 5.1. Starting from an
admissible design point, MGDA evolution assures that all criteria concurrently improve.
In figure 5.6 we report MGDA evolution from a given design point randomly chosen among
a set of admissible values (top-right) and we observe that both the compliance and the
volume variation decrease at each iteration until a final Pareto-stationary point is achieved
(bottom-left). Moreover we notice that after a small number of iterations, the variations
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Figure 5.6: Evolution of the functional values in the space J−G using classical Multiple-Gradient
Descent Algorithm. Starting point on the top-right corner and final point on the bottom-left one.

over the functional values are very small thus we conjecture that the algorithm almost
converged. As a matter of fact, figure 5.7 shows the evolution of ω with respect to the
iterations and it is straightforward to observe that after few iterations its value fulfills a suf-
ficiently small tolerance. This respects the scenario from theorem 2.5 since we can identify
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Figure 5.7: Evolution of values of ω using classical Multiple-Gradient Descent Algorithm.

a descent direction common to all criteria until a Pareto-stationary point is achieved.
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The analysis discussed so far has to be performed for every configuration, thus we ap-
ply Multiple-Gradient Descent Aalgorithm strategy as many times as the number of initial
design points we are considering for our optimization problem. In particular, in figure 5.8
we show the convergence of MGDA iterates towards some Pareto-stationary points start-
ing from several feasible initializations. Moreover figure 5.9 describes the corresponding
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Figure 5.8: Evolution of the functional values in the space J − G starting from several initial
design points and using classical Multiple-Gradient Descent Algorithm.

evolution of the minimal-norm element ω starting from different initial design points. We
notice that in every scenario the minimal-norm element decreases at each iteration and
eventually converges to a Pareto-stationary design point as expected from the theory and
from the single case presented in figure 5.7.
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Figure 5.9: Evolution of the values of ω starting from several initial design points and using
classical Multiple-Gradient Descent Algorithm.

Remark 5.1. It is important to notice that final MGDA points do not depend only on the
initial data configuration under analysis. A major role within the optimization algorithm
is played by the optimal step size ρ̃. As a matter of fact, even if the step size is adaptively
updated by means of the computational strategy presented in section 2.2.2, the initial value
of ρ could strongly influence the value of the iterates at early steps driving the evolution
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of the design points away from the closest available Pareto point.
Moreover, if the problem requires the imposition of compatibility conditions (such as the
symmetry condition introduced in section 5.1), additional issues may arise. As a matter
of fact, the abrut change of direction in the evolution of the green design point on the
bottom-right of figure 5.8 can be explained in this sense: along the previously analyzed
direction the risk of violating the symmetry condition is particularly high, thus a penalty
term causes the optimization procedure to identify an alternative descent direction that
fulfills the constraint. Hence these scenarios highlight a sensitivity of the method to ini-
tial parameter calibration and have to be carefully managed in order to avoid unwanted
spurious oscillations of ω.

Eventually we present the complete Pareto front generated by using the classical version
of Multiple-Gradient Descent Algorithm (Fig. 5.10) whereas the analysis of the shapes
associated with the final configurations is postponed to the end of this section when we
will compare them with the ones generated by the other variants of the shape optimization
procedure discussed so far.
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Figure 5.10: Pareto front in the space J −G using classical MGDA procedure.

5.3.2 Kriging-assisted MGDA

As pointed out during the description of the algorithm in section 2.4.1, kriging-assited
MGDA procedure differs from the classical Multiple-Gradient Descent Algorithm because
it couples the descent method with a surrogate statistical-based prediction model. In this
way, the overall strategy performs less computations by directly invoking the IGA solver
and estimates the values of the objective functionals by means of the kriging model.

An initial data set of 20 design points constituting a Latin Hypercube in R6 (see table
5.1) is considered. Figure 5.11 depicts the initial data set and the final enriched version
after the application of the kriging-based prediction strategy. A remarkable improvement of
both criteria is achieved and a Pareto front begins to form. From a computational point of
view, kriging-assisted MGDA is responsible for a significant reduction in computing efforts
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Figure 5.11: Database enrichment as consequence of the combined application of Multiple-
Gradient Descent Algorithm and kriging-based prediction strategy.

since the IGA solver has to be invoked only when MGDA iterates already converged, that
is once for every blue cross in figure 5.11. Moreover, a proper description of the Pareto
front can be achieved by means of subsequent applications of the metamodel strategy as
summarized in table 4.1.

In figure 5.12 we observe the Pareto front generated by means of this version of the
algorithm and we notice that it is less extended than the one in figure 5.10. In particular,
it seems that the extreme values of the front are not achieved by this version of the
algorithm. This issue is not likely related to the initial distribution of the design points,
since a strategy to generate uniformly distributed random points is performed: design
points associated with Latin Hypercube Sampling are thought to map the whole domain
thus we conjecture that the limited extension of the Pareto front described by final MGDA
iterates is due to a limitation in the kriging-based algorithm. However further investigation
should be performed on the parameters involved in the model in order to obtain a better
tuning able to account for the builtin sensitivities.

Even if we conjecture that kriging-based metamodels tend to underestimate the tail
values of the Pareto front, the information contained in final MGDA points is sufficient to
provide a trend of the first Pareto set.
Moreover the reduced computational effort is significant since this strategy applies to a set
of design points thus is able to provide a complete description of the Pareto front after 10
to 15 runs of the algorithm. In particular, for this problem in computational mechanics,
the computing time for the kriging-assisted procedure is comparable with the one required
for the evolution of two single points in classical MGDA. Hence the overall strategy is still
competitive with respect to computing times.
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Figure 5.12: Pareto front in the space J − G using kriging-based metamodel-assisted MGDA
procedure.
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Figure 5.13: Pareto front in the space J − G using MGDA combined with the information on
the gradients extracted from the IGA linear elasticity solver.
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5.3.3 MGDA using analytical gradients

As in previous sections, first of all we present the Pareto front generated by classical
Multiple-Gradient Descent Algorithm enhanced by the use of the information provided by
the analytical gradients in the parametric space extracted from the IGA solver.

We observe that the general distribution pattern of the Pareto points in figure 5.13
is the same as in the case of classical MGDA, meaning that the approximation of the
gradients using a second order centered Finite Difference scheme is sufficiently accurate.
Thus we can infer that classical MGDA procedure is an accurate tool for the treatment of
multiobjective optimization problems.

On one hand the classical algorithm requires more computational power to approximate
the gradients but on the other hand, it considers a lower number of optimization variables.
This is due to the difficulties faced in the definition of a proper projection operator as in
equation (4.12). To avoid this problem, the optimization routines are executed directly
in the enriched space whose dimension is higher than the original one (see table 5.1).
Thus, even if the global optimization algorithm presented in section 4.4 reduces the com-
putational cost of the single iteration of MGDA, the additional number of control points
increases the computing time. Hence the final procedures are comparable with respect to
the CPU time required for the execution. Eventually in figure 5.14 and 5.15 we present
four final configurations for each described algorithm. We highlight that the final shapes
of the free boundary Γ of the plate are physically consistent with the imposed external
forces; moreover, the shapes can be interpreted as perturbations of the arc of circumfer-
ence expected from the analytical results in the literature.
Most of the differences among the final configurations in figure 5.14 and 5.15 are due to
the choice of fostering a better optimization for one criterion rather than the other, that is
minimizing first the compliance or the variation over the volume constraint. In particular,
in the first figure we report the final shapes corresponding to some design points where the
minimization of the compliance is fostered and consequently the domain is larger. On the
contrary, the second set describes the case where the minimization of the volume is fostered
thus we expect larger value of the compliance functional. Nevertheless, the recurrent arc
shape and the limited variations of the volume make all the optimal shape acceptable.

Algorithm Applies to N. optimization variables N. execution CPU time
MGDA 30 single 6 (2 moving points 40 MGDA runs 8 hours

design 1 horizontally sliding per design per design
points 1 vertically sliding) point point

Kriging- Data set of 6 (2 moving points 10 kriging-assisted 15 hours
assisted 20 design 1 horizontally sliding runs each of which per data
MGDA points 1 vertically sliding) performs 60 MGDA set

iterations
MGDA 30 single 34 (16 moving points 40 MGDA runs 6 hours
using design 1 horizontally sliding per design per design
analytical points 1 vertically sliding) point point
gradients

Table 5.1: Comparison of the computational cost of the different strategies based on Multiple-
Gradient Descent Algorithm for shape optimization using IsoGeometric Analysis.
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(a) Example of final shape using MGDA. (b) Example of final shape using MGDA.

(c) Example of final shape using metamodel-assisted
MGDA.

(d) Example of final shape using metamodel-assisted
MGDA.

(e) Example of final shape using exact gradients-
enhanced MGDA.

(f) Example of final shape using exact gradients-
enhanced MGDA.

Figure 5.14: Final configurations generated by the described variants of Multiple-Gradient De-
scent Algorithm. Optimal shapes corresponding to design points in the top part of the Pareto
front.
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(a) Example of final shape using MGDA. (b) Example of final shape using MGDA.

(c) Example of final shape using metamodel-assisted
MGDA.

(d) Example of final shape using metamodel-assisted
MGDA.

(e) Example of final shape using exact gradients-
enhanced MGDA.

(f) Example of final shape using exact gradients-
enhanced MGDA.

Figure 5.15: Final configurations generated by the described variants of Multiple-Gradient De-
scent Algorithm. Optimal shapes corresponding to design points in the bottom part of the Pareto
front.
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Remark 5.2. To maintain physically meaningful domains, overlapping of the patches have
to be avoided. In the vicinity of the hole, one can notice a crossing of some control points
that could generate issues from a numerical point of view. However, the parameterization
remains injective which enables to solve the resulting algebraic systems.
As pointed out in the previous chapter, close adjacency of control points or swapping control
points may lead to singularities in the solution constructed using IsoGeometric Analysis
and in figure 5.16 we report two non-physical solution resulting from these scenarios. This
confirms the necessity of applying a filter to the set of design points arising from MGDA
iterates to avoid non-physical configurations.

(a) Adjacency of control points. (b) Swapping control points.

Figure 5.16: Non-physical final configurations due to singularities in the control polygon.

5.4 Comparison with the optimization results based on ge-
netic algorithms

A detailed introduction to evolutionary strategies and genetic algorithms for multiobjective
optimization is available at [KC00] and [FF98]. As proposed in [ZDD11], here we compare
the results produced by the gradient-based approach Multiple-Gradient Descent Algorithm
with the ones obtained with a classical genetic algorithm widely known in the literature,
the Pareto Archived Evolutionary Strategy. In particular, we present the description of the
Pareto front produced by Pareto Archived Evolutionary Strategy and we compare it with the
result of the computation performed using classical MGDA with numerical approximated
gradients, kriging-assisted MGDA and MGDA using analytical gradients.

In figure 5.17 we report the final population generated by the genetic algorithm and
we highlight the elements that belong to the Pareto front. It is straightforward to observe
that the number of configurations to be evaluated is extremely large and the actual set we
are looking for is just a minor fraction of it.
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Figure 5.17: Pareto front in the space J −G using Pareto Archived Evolutionary Strategy.

Nevertheless, the output of PAES computations is a detailed description of the Pareto
set and is comparable with the ones provided in figures 5.10, 5.12 and 5.13. As a matter
of fact, PAES results show a wider range for the Pareto points than the MGDA-based
outputs thus we conjecture that the evolutionary strategy tends to provide a more complete
description of the front than the gradient-based approaches.

Thus we can conclude that genetic algorithms are usually able to detect almost the
totality of the minimima even in presence of multimodal functionals to be optimized and
their main drawback is the high computational cost required by the simulations.
On the contrary, Multiple-Gradient Descent Algorithm and its variants showed themselves
to be extremely effective converging to Pareto-optimal design points. Thus a good approx-
imation of the Pareto front is achieved and the overall performances strongly improved.
However, the discussed strategies may present some issues when dealing with multimodal
functionals or initial design points not uniformly distributed over the domain: in these sce-
narios, MGDA iterates may get trapped within the domain of attraction of a given design
point, not being able to provide a full description of the Pareto set anymore.

Properly calibrating the initial population to run the genetic algorithm represents a
major issue for evolutionary strategies. Thus, in order to reduce the computational effort
required to run full PAES, we choose as initial population a set of Pareto-optimal points
provided by MGDA iterations.
On one hand we use PAES as a tool to cross-validate the accuracy of Multiple-Gradient
Descent Algorithm and figure 5.18 confirms the good results previously highlighted for the
variants of MGDA tested in section 5.3. On the other hand, MGDA is used to speed Pareto
Archived Evolutionary Strategy up reducing the overall time to run the simulations and
thus enhancing its efficiency.
For this reason, the results arising from the gradient-based strategy and the evolutionary
algorithm are not independent but it is well known in the literature that the velocity
of these approaches is not comparable. Eventually, a summary of the complexity of the
implemented strategies and the corresponding computational costs is reported in table 5.1.
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Figure 5.18: Comparison among the Pareto fronts generated by MGDA-based methods and the
genetic algorithm known as Pareto Archived Evolutionary Strategy in the space J −G.

From these observations, we infer that an hybrid approach able to combine gradient-
based algorithms with evolutionary strategies could represent a good trade-off among the
procedures discussed so far. Moreover, we expect this approach to have better performances
than other multiobjective optimization strategies commonly used in the literature.
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Conclusion

We carried out a methodological work that aims at formulating a shape optimization prob-
lem using a multiobjective optimization paradigm; moreover, we treated it by means of
deterministic algorithms that employ gradient-based strategies in MultiDisciplinary Op-
timization. Some theoretical results are stated and a detailed description of the steps to
properly formulate the problem is given.

Main achievement of this work is the successful analysis of a shape optimization problem
in computational mechanics within a multiobjective optimization framework. In particu-
lar, both Multiple-Gradient Descent Algorithm and kriging-assisted MGDA provided good
results in identifying the Pareto front for the problem under analysis. Moreover, the accu-
racy of classical MGDA procedure based on the numerical approximation of the gradients
of the objective functionals was confirmed by means of the implementation of a variant of
the algorithm that uses user-supplied information for the gradient vectors. In particular,
starting from shape derivatives we extracted the information on the gradients in the para-
metric space and we were able to check our previous results. However this procedure did
not result in high computational advantages since the new optimization problem had to
be set in a higher dimensional space.

Then we applied the implemented methods to a linear elasticity problem formulated
using IsoGeometric Analysis. On one hand, NURBS -based formulations allowed us to
obtain a higher regularity on the domain parametrization and on the solution; nevertheless
some issues arose due to critical topics in differential geometry. As a matter of fact,
using control points as design variables for global optimization procedures, we noticed that
deformations incompatible with the space of admissible solutions could appear. Further
analysis should focus on the role of filtering strategies in order to prevent the presence
of design points too close to one another or design points with multiplicity higher than 1
which may cause regularity to decrease and singularities to appear within an isogeometric
paradigm.

Concerning kriging-assisted optimization, we observed that the range of description of
the Pareto front was actually narrower than the one generated by classical MGDA. We
conjecture that kriging-based methods tend to underestimate the importance of extreme
values in Pareto sets but further investigations should be carried on to examine this topic.
Knowing the information related to the gradients in the design space could enhance pre-
viously presented metamodel: for example, by means of a co-kriging strategy, a surrogate
model could be generated by using the information from both the objective functionals
and their gradients.

Eventually we checked the results given by MGDA-based methods. On one hand, we
verified the consistency of the optimal shapes from MGDA simulations with the ones given
by the single objective shape-based Steepest Descent Method. Moreover the Pareto fronts
arising from MGDA were cross-validated by using Pareto Archived Evolutionary Strategy.
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Final descriptions of the Pareto fronts were consistent and a further development could
face the formulation of an hybrid method able to take advantage of the best properties of
the two strategies, that is extending the range of Pareto points generated as evolutionary
strategies do and reducing the computational cost as gradient-based methods do.

Future developments

First of all, we remark the importance of deepening the investigation on the topics of
competitive optimization since great advantages are expected from the implementation of
robust strategies able to meet user specific goals and deal with uncertainties in the data.

Beside this and other possible developments already highlighted, here we propose some
more general extensions that could represent leading investigation lines in the field of com-
putational mechanics and optimization.
Within the framework of IsoGeometric Analysis, main interests focus on local refinement
and integration. The former topic has already been treated in several works and major
prospectives focus on the topics of Analysis-suitable T-splines and Hierarchical B-splines.
For the latter, several issues are still open and interesting results are expected to arise from
the investigation of IGA collocation methods.
Improvements in these fields would have a major impact in every application in computa-
tional mechanics, starting from the one we studied in this thesis.

From a modelling point of view, the problem we dealt with was quite elementary. An
interesting extension would rely on modelling more realistic and general situations, for
example non-linear elasticity problems and non-local interactions in structural mechanics.
We expect several points of contact to arise with the research topics related to fracture
mechanics and a promising extension could focus on IGA XFEM methods.

Concerning the field of optimization, on one hand some issues related to Multiple-
Gradient Descent Algorithm are still open, especially for the infinite dimensional case.
On the other hand, from a computational point of view, a generalization of statistical
metamodels in order to take into account adjoint variables could be performed. Thus
the implementation of optimization strategies assisted by co-kriging models and massively
parallelization are expected to strongly reduce the overall computational cost of the algo-
rithms.

Eventually, further problems could be treated by means of MGDA variants, for example
in the field of three-dimensional compressible fluid dynamics: in this framework, a struc-
tural criterion and an aerodynamic one are set to be the objective functionals and a volume
constraint and a lift constraint define the matrix for the projection onto the subspace of
admissible solutions. All the results stated in this work hold and a more complex problem
arising from industry could be treated within a multiobjective optimization paradigm.
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Appendix A

Nash games for competitive
optimization

In this appendix, we present a short introduction to competitive optimization. Basic idea
of this optimization strategy relies on seeking a configuration that improves one or more
criteria flagged as important or critical without excessively worsening the others.
Starting point is a Pareto-stationary design point Y(0) where (2.2) is verified. If the
performance of the design point is already satisfactory the procedure can be interrupted.
Otherwise a Nash game can be established by means of an appropriate split of the variables.
The splitting process is a critical step of this strategy: in the case of two disciplines, it
may be guided by the analysis of the spectral properties of local Hessian matrices whereas
higher dimensional problems may require the development of alternative approaches.

Definition and properties of Nash equilibria

Let us assume that we have two players controlling the subvectors Y1 and Y2 such that
the global vector of design variables reads as Y = (Y1 , Y2)

T .

Definition A.1 (Nash equilibrium). The vector Y = (Y1,Y2)
T is said to realize a Nash

equilibrium of the criteria J1(Y) and J2(Y) if and only if
Y1 = argmin

Y1

J1(Y1,Y2)

Y2 = argmin
Y2

J2(Y1,Y2)
(A.1)

In script A.1 we present an evolutionary strategy to compute this equilibrium point. We
notice that the split of the design variables into two subspaces allows to easily parallelize
the algorithm and this is very promising since it represents a good starting point for the
implementation of computationally efficient optimization procedures.

Listing A.1: Evolutionary strategy of a Nash game

1. Initialize the subvectors Yi = Y
(0)
i , i = 1, 2;

2. Assign each subvector to a different player as exclusive strategy:

(a) Player 1: Set Y2 = Y
(0)
2 and perform K1 optimization steps of J1(Y1,Y

(0)
2 )

by iterating on Y1 alone. The optimal result is Y
(K1)
1 ;

(b) Player 2: Set Y1 = Y
(0)
1 and perform K2 optimization steps of J2(Y

(0)
1 ,Y2)

by iterating on Y2 alone. The optimal result is Y
(K2)
2 ;

3. Update both subvectors Y
(0)
i = Y

(Ki)
i , i = 1, 2 and go to step 2; otherwise a
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Nash equilibrium is achieved and the competitive optimization procedure

is stopped.

Remark A.2. Assume that Y = (Y1,Y2) realizes a Nash equilibrium of the criteria J1(Y)
and J2(Y). Let Φ and Ψ be two arbitrary smooth and strictly-monotone increasing func-
tions, then Y also realizes a Nash equilibrium of the criteria Φ[J1(Y)] and Ψ[J2(Y)]. Thus
the notion of Nash equilibrium is not only independent of the physical units used for the
criteria but also of the possible changes in scales. The invariance of the Nash equilibrium
solution to units and scales is an interesting property that allows to formulate robust au-
tomatic optimization algorithms. As a matter of fact, this is in contrast with classical
approaches in MultiDisciplinary Optimization (Section 1.2) where the penalty parameters
have to be defined by the user. Thus this strategy results in more robust methods where
the sensitivity to a priori unknown parameters is minimized.

From the property stated in remark A.2 we conclude that the equilibrium solution -
either unique or not - is only influenced by the split of the design vector, which is commonly
referred to as split of territory. As a matter of fact, the value of Nash equilibrium only
depends on the strategy by which each virtual player is allocated a subspace of action and
in the algorithm this results in different choices for the subdivision of the vector of design
variables Y = (Y1 , Y2)

T .

Split of territory

Let J1(Y) be the primary functional with respect to which sub-optimality should be main-
tained and J2(Y) the secondary functional to be optimized under possible constraints.
First of all we perform the optimization of the principal criterion J1(Y) alone and we
denote by Y∗

1 the corresponding optimal solution computed with respect to the totality of
the design variables N under K active constraints. Then we perform a multiobjective and
competitive optimization step to determine a Nash equilibrium between J1(Y) and J2(Y).

We introduce a splitting matrix S of dimension N × N and we define the subvectors
U = (u1, . . . ,uN−p)

T ∈ RN−p and V(vp, . . . ,v1)
T ∈ Rp as strategies or territories of two

virtual players whom the exclusive optimization of J1(Y) and J2(Y) is assigned.

Y = Y(U,V) = Y∗
1 + S

[
U
V

]
(A.2)

In particular, the subspace spanned by the first N − p column vectors of S can be viewed
as the territory assigned to the first player in charge of minimizing the primary criterion
J1(Y) and the subspace spanned by the remaining p columns as the territory assigned to
the second player to minimize the secondary functional J2(Y).

Starting from equation (A.1) we can write the Nash game as a coupled optimization
problem (here we consider only minimization problems):

min
U∈Nad

J1
[
Y(U,V)

]
min
V∈Rp

J2
[
Y(U,V)

] (A.3)

The first problem is a constrained minimization in which the effect of the active constraints
gk(Y) = 0 , k = 1, . . . ,K is taken into account by introducing the set of admissible
solutions

Nad =
{
U ∈ RN−p

∣∣∣ gk
[
Y(U,V)

]
= 0 , ∀k = 1, . . . ,K

}
(A.4)
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whereas the second one is an unconstrained minimization problem.
The dimension p of the subvector V which controls the subspace of action of the second

player is adjustable, that is p ≥ 1; on the other hand, the dimension of the subvector U
must be at least equal to 1 and to the number of active constraints K:{

N − p ≥ 1

N − p ≥ K
⇒ 1 ≤ p ≤ N − max{K, 1}

In the limiting case when N−p = K, the minimization of J1(Y) under the given constraints
reads as the correction of the K components of the subvector U in order to satisfy the K
scalar constraints.

We analyze the procedure to perform the split of the territory after the initial optimal
design point Y∗

1 for the primary criterion is achieved. The splitting strategy is driven by
the analysis of sensitivity of J1(Y), that is the study of the the admissible infinitesimal
perturbations of the parameters about Y∗

1: we seek among the perturbations that lie in
the subspace identified as the territory of the secondary criterion, the one which causes the
least possible degradation of the primary criterion with respect to the minimum previously
achieved. Given ϵ ∈ [0, 1], we consider a perturbation in the direction of unit vector
ω ∈ RN :

J1(Y
∗
1 + ϵω) = J1(Y

∗
1) + ϵ∇J1(Y

∗
1) · ω +

ϵ2

2
ω ·H1(Y

∗
1)ω + O(ϵ3) (A.5)

Based on the previous idea, the first N − p components of ω are dedicated to the first
player whereas the remaining p are associated with the second player. Moreover we recall
that the direction of maximum sensitivity of J1(Y) is given by its gradient at Y = Y∗

1,
that is ∇J1(Y

∗
1).

Thus the following two conditions should be satisfied by the basis ω = (ω1, . . . ,ωN )T :

1. the first N − p elements of ω should span the gradient ∇J1(Y
∗
1);

2. the difference |J1(Y∗
1+ϵω)−J1(Y

∗
1)| should be as small as possible when the direction

is a tail element of the basis.

When Y = Y∗
1 the optimality condition on the Lagrangian functional implies that the

gradient of the primary functional is a linear combination of the K active constraint gra-
dients:

∇YL(Y,λ) = 0 ⇔ ∇J1(Y
∗
1) +

K∑
k=1

λk∇gk = 0

Thus the first condition is achieved by enforcing the first K elements of the basis to have
the same span as the gradients of the K active constraints. For this reason, the ωk’s
k = 1, . . . ,K are obtained by applying the Gram-Schmidt orthogonalization procedure to
the projected gradients as described in section 2.5. In [Dés11] the best choice for ωk’s
k = 1, . . . ,K is proved to be the set of the eigenvectors of the matrix H ′

1 = PH1(Y
∗
1)P

where H1 is the Hessian matrix and P the projection matrix as in equation (2.33): these
eigenvectors contain the null space of the projection matrix P , thus the first condition
is satisfied if the ordering is such that these vectors appear first; moreover the basis is
orthogonal thus the tail elements are orthogonal to the first K, that is they are orthogonal
to ∇J1(Y

∗
1) and also the second condition is satisfied.

Under the assumptions made above and within the described framework, some general
results may be prooved. In particular, in his work, J.-A. Désidéri proves the optimality of
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the orthogonal decomposition of the Hessian matrix for the splitting strategy; moreover he
characterizes the properties of Nash equilibria and establishes a relationship with Pareto-
optimality. For further details about this theorem and its proof we refer to [Dés07].
Here we just recall two major achievements related to Nash equilibria in competitive opti-
mization.
An existence result
Let us introduce a continuation parameter ζ ∈ [0, 1] in order to define a concurrent opti-
mization problem

min
U∈Nad

J1
[
Y(U,V)

]
min
V∈Rp

J1,2
[
Y(U,V)

] , J1,2(Y) =
J1(Y)

J1(Y∗
1)

+ ζ

(
θ
J2(Y)

J2(Y∗
1)

− J1(Y1)

J1(Y∗
1)

)
(A.6)

where Nad is defined in equation (A.4), θ is a strictly-positive relaxation parameter (θ > 1
for over-relaxation and θ < 1 for under-relaxation) and Y = Y(U,V) is the corresponding
Nash equilibrium point.
This allows to modify the optimal configuration for J1(Y) by gradually and smoothly
introducing a competition with the secondary functional J1,2(Y) in a Nash game. For ζ = 0
the original optimal solution Y∗

1 is a Nash equilibrium point of the trivial game where only
one objective functional is present. By continuity, the Nash equilibrium solution exists, at
least for sufficiently small values of ζ.
A performance result
This procedure allows to identify an orthogonal decomposition of the parameter space
such that the p tail elements of the basis correspond to the directions of least variation
of the primary functional J1(Y) about its minimum under the active constraints. These
eigenvectors span the subspace of dimension p in which the primary functional is the
most insensitive to small variations of the design vector; thanks to this information, a
second phase of optimization to reduce the secondary functional J2(Y) without excessively
worsening the first one can be performed.

Competitive optimization for two-disciplines problems

Let us consider two objective functionals J1(Y) and J2(Y). The initial design point Y(0)

is Pareto-stationary that is

α∇J1(Y
(0)) + (1 − α)∇J2(Y

(0)) = 0 , α ∈ [0, 1]

Three cases are possible:

• Pareto-stationarity of type I: ∇J1(Y
(0)) = ∇J2(Y

(0)) = 0;

• Pareto-stationarity of type II: ∇J1(Y
(0)) = 0 and ∇J2(Y

(0)) ̸= 0 or vice versa;

• Pareto-stationarity of type III: ∇J1(Y
(0)) + γ∇J2(Y

(0)) = 0 , γ = 1−α
α > 0.

We propose to examine the different scenarios arising after the algorithm achieves a Pareto-
stationary point for (J1, J2). For the sake of simplicity, first we consider the case of convex
functionals then we extend our observations to the non-convex case.
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Convex case

Pareto-stationarity of type I
At Y = Y(0) both criteria achieve local minima J1(Y

(0)) and J2(Y
(0)) of their own. Hence

the configuration cannot be improved and the optimization process is over.
Pareto-stationarity of type II
Since ∇J1(Y

(0)) = 0, the functional J1(Y) has achieved a local minimum whereas J2(Y)
can still be improved. The algorithm can either be stopped because the corresponding
configuration is acceptable or proceed towards a competitive optimization phase. In this
framework, a Nash equilibrium is sought starting from a hierarchical split of the variables
in the orthogonal basis obtained by the eigenvectors of the Hessian matrix H1(Y

(0)).
Pareto-stationarity of type III
The achieved design point Y(0) realizes a Pareto-optimal solution and in absence of addi-
tional criteria to improve the results, the optimization procedure is stopped.

If we relax the hypothesis on the local convexity of the functionals, the strategy is more
delicate and we discuss different scenarios according to several assumptions that can be
made on the eigenvalues of the Hessian matrices H1(Y

(0)) and H2(Y
(0)).

Non-convex case

Pareto-stationarity of type I
For i = 1, 2 let us consider the variations δJi(Y) of the criteria Ji’s arising from a pertur-
bation δY of the design vector Y about Y(0).

δJi(Y
(0)) = Ji(Y

(0) + δY) − Ji(Y
(0)) = ∇Ji(Y

(0)) · δY + δY ·Hi(Y
(0))δY , i = 1, 2

Under the hypothesis of Pareto-stationarity of type I, the principal terms of the expansions
δJi’s are quadratic. Since we are dealing with the non-convex case, at least one of the
Hessian matrices is not positive-definite.

If H1(Y
(0)) is positive-definite and only H2(Y

(0)) has some negative eigenvalues, J1
has achieved a minimum whereas J2 can still be improved. The optimization procedure
can either stop or proceed to seek a Nash equilibrium by means of a hierarchical split of
the variables based on the eigensystem of matrix H1(Y

(0)).
If both H1(Y

(0)) and H2(Y
(0)) have some negative eigenvalues, we define two families of

linearly independent eigenvectors associated with these eigenvalues:

F1 = {u1, . . . ,up} F2 = {v1, . . . ,vq} (A.7)

Given the vector of coefficients (α1, . . . , αp, β1, . . . , βq)
T ̸= 0, if the family F1∪F2 is linearly

dependent, that is
p∑

i=1

αiui −
q∑

j=1

βjvj = 0

then a descent direction for both criteria exists and can be written as

ωr =

p∑
i=1

αiui =

q∑
j=1

βjvj

Thanks to the linear independence of the families F1 and F2 separately, ωr is not equal
to zero and an optimization step along this direction can be performed.
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Nash games for competitive optimization

If the spaces spanned by the two families in equation (A.7) are independent, the global
procedure can either stop or proceed by splitting the territories respectively related to F1

and F2 in order to seek a Nash equilibrium.
Pareto-stationarity of type II
In this scenario, only the gradient vector associated with one criterion is zero. If the Hessian
matrix - namely H1(Y

(0)) - is positive-definite, J1(Y) has achieved a local minimum and
again we propose a hierarchical split based on the structure of the eigenvectors of H1(Y

(0))
to seek a Nash equilibrium for the problem.
Otherwise, if H1(Y

(0)) has some negative eigenvalues we consider the family of associated
eigenvectors

F1 = {u1, . . . ,up}

Under these hypotheses, if ∇J2(Y
(0)) is not orthogonal to the space spanned by F1, a de-

scent direction common to both criteria exists and can be used to improve all the objective
functionals. If ∇J2(Y

(0)) ⊥ ⟨u1, . . . ,up⟩, we propose to seek a Nash equilibrium using F1

as strategy for player one and the remaining eigenvectors of H1(Y
(0)) as strategy for the

other player.
Pareto-stationarity of type III
Let us consider the direction defined as follows

u1,2 =
∇J1(Y

(0))

∥∇J1(Y(0))∥
= − ∇J2(Y

(0))

∥∇J2(Y(0))∥
(A.8)

Along u1,2, the two criteria vary in opposite ways and no rational decision can be made in
the absence of other information. We analyze the feasible movements within the hyperplane
orthogonal to u1,2 and we define a projection matrix

P1,2 = I − [u1,2][u1,2]
T

Thus the reduced Hessian matrices are given by

H ′
1(Y

(0)) = P1,2H1(Y
(0))P1,2 H ′

2(Y
(0)) = P1,2H2(Y

(0))P1,2 (A.9)

and by orthogonality to the gradient vectors this case can be analyzed within the framework
of Pareto-stationary points of type I in a subspace of dimension N − 1.

Competitive optimization for multi-disciplines problems

Eventually we consider the case of n different criteria Ji(Y) , i = 1, . . . , n. In order
to mantain the Pareto-stationarity condition as much as possible we define the following
functionals

JA(Y) =

n∑
i=1
i̸=k

αiJi(Y) JB(Y) = Jk(Y) (A.10)

Under this assumption, we restrict our original problem to a two disciplines case where
∇JA(Y(0)) = 0. We notice that the choice of k is critical for the formulation of the problem
and may be strongly influenced by the designer’s bias to improve a specific criterion. In
general, we propose to choose the index k in order to maximize the orthogonal projection
of the gradient ∇JB(Y(0)) onto the subspace assigned to the second virtual player.
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Nash games for competitive optimization

From the previous section, we know that this subspace is entirely defined by the diag-
onalization of the reduced Hessian matrix H ′

1(Y
(0)) as in (A.9). Thus for each fixed k we

get

u
(0)
k = ∇Jk(Y(0)) =

N∑
i=1

β
(0)
i ωi

where β
(0)
i = (u

(0)
k ,ωi) by orthogonality. Since the subspace assigend to the second player

is described by the tail elements of the vector ω, the index k is chosen in order to maximize
the following quantity

R(ω) =

√√√√ N∑
i=N−p+1

(β0
i )2

By means of this procedure, we approximately mantain the Pareto-optimality of the so-
lution while maximizing the potential payoff that can be achieved by a sequence of com-
petitive optimization problems where the improvement of the criterion Jk(Y) is sought
alone.

A general introduction to Nash games is available in [Nas51]. For a detailed treatment
of optimization problems by means of competitive strategies we refer to [AEM07], [Dés07]
and [Dés11].
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Appendix B

Proofs of the main results

Here we propose an overview of the proofs of the major results about Multiple-Gradient
Descent Algorithm as in the works of J.-A. Désidéri. We refer to [Dés12c] for the original
proofs by the author.

Relationship between Pareto-optimality and Pareto-stationarity

Proof. (Proposition 2.2) Let r be the rank of the familiy of gradient vectors {ui}ni=1 where
ui = ∇Ji(Y

(0)):
r = rank{ui}ni=1 = dim⟨u1, . . . ,un⟩

We analyze the scenarios arising from different values of r.
If r = 0 all the gradient vectors are equal to zero thus a convex combination equal to zero
exists and the result is trivial.
If r = 1, the gradient vectors are colinear, that is ui = βiu where u denotes a unit vector;
the βi’s are the coefficients of the convex combination and they are not all equal to zero.
We consider a perturbation δY = −ϵu in a working ball centered in Y(0) and we compute
the corresponding variations over the functionals Ji’s:

Ji(Y
(0) + δY) = Ji(Y

(0)) + ∇Ji(Y
(0)) · δY + O((δY)2)

Thus given a sufficiently small value of the parameter ϵ > 0, the perturbation of the
functional Ji reads as

δJi = Ji(Y
(0) + δY) − Ji(Y

(0)) = ∇Ji(Y
(0)) · δY + O((δY)2) =

= βiu · (−ϵu) + O(ϵ2u · u) = −βiϵ + O(ϵ2)

Let us assume that all coefficients βi’s are of the same sign. On one hand, if βi > 0 ∀i =
1, . . . , n, at least one criterion would diminish whereas the other ones would remain un-
changed to O(ϵ2) but this is a contradiction since Y(0) is supposed to be Pareto-optimal.
On the other hand, if βi < 0 ∀i = 1, . . . , n, at least one criterion increases whereas the oth-
ers do not and again this scenario is not possible due to the hypothesis of Pareto-optimality
of Y(0). Hence, both positive and negative coefficients exist and zero coefficients are ad-
missible too.
Let β1 and β2 be such that β1β2 < 0; we can compute the coefficients for the convex
combination in equation (2.2) as follows

α1 = − β2
β1 − β2

, α2 =
β1

β1 − β2
(B.1)
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Proofs of the main results

and we notice that the coefficients in equation (B.1) fulfill the requirements of positivity
and partition of the unit, that is

α1 > 0 , α2 > 0 , α1 + α2 = 1

Under previous assumptions we get

α1u1 + α2u2 = − β2
β1 − β2

β1u +
β1

β1 − β2
β2u = 0

thus the Pareto-stationarity is established for r = 1.
Now we consider the general case where r ∈ [2, n− 1]. We can find a convex combination
of r+ 1 gradient vectors that is equal to zero and by means of a permutation of the indices
we can write it as the combination of the first r + 1 elements:

u1 +

r+1∑
k=2

µkuk = 0 (B.2)

We claim that µk ≥ 0 ∀k ≥ 2. To prove that, let us assume instead that µ2 < 0 and define
V as the span identified by the remaining r − 1 gradient vectors as follows:

V = ⟨u3, . . . ,ur+1⟩

Hence dimV ≤ r − 1 ≤ n− 2 ≤ N − 2 and dimV ⊥ ≥ 2.
Let ω be an arbitrary element of V ⊥ and consider the scalar product of (B.2) with ω:(

u1 +
r+1∑
k=2

µkuk , ω

)
=
(
u1 , ω

)
+
(
µ2u2 , ω

)
= 0

that yields to the following relationship among the Fréchet derivatives

dJ1(Ω;ω) = −µ2dJ2(Ω;ω) ∀ω ∈ V ⊥

If we obtain the identity 0 = −µ2 ·0 ∀ω ∈ V ⊥, the gradient vectors u1 and u2 both belong
to V and consequently the whole family {ui}ni=1 belongs to V as well since by assumption
its rank is r. However this is not possible because dimV ≤ r − 1 < r, thus there exists an
element ω ∈ V ⊥ such that

dJ1(Ω;ω) = −µ2dJ2(Ω;ω) ̸= 0

Let us suppose that dJ1(Ω;ω) > 0. Then an infinitesimal perturbation of the design point
Y in the direction −ω causes a reduction of both criteria J1(Y) and J2(Y) and leaves
the others unchanged to second order. Hence the initial design point Y(0) is not Pareto-
optimal which is in contradiction with our hypothesis. Hence µ2 ≥ 0 and by performing a
similar procedure we can prove that all the µk’s have to be non-negative ∀k ≥ 2.
By setting µ1 = 1 and αi = µi∑n

k=1 µk
∀i = 1, . . . , n we get the relationship we were seeking

for r ∈ [2, n− 1]:

n∑
i=1

αiui = 0 , αi ≥ 0 ∀i = 1, . . . , n

n∑
i=1

αi = 1
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Proofs of the main results

Eventually we analyze the case where r = n, that is the gradient vectors are independent.
In this scenario the Pareto-optimal design point Y(0) is the solution of a family of optimiza-
tion problems where we minimize a given functional Ji(Y) within a region of admissible
perturbations for the other Jk’s k ̸= i:

min
Y∈Uad

i

Ji(Y) , Uad
i =

{
Y ∈ RN

∣∣∣ gk(Y) = Jk(Y)−Jk(Y(0)) ≤ 0 ∀k = 1, . . . , n k ̸= i

}
(B.3)

In details, the minimization problem subject to inequality constraints in equation (B.3)
stands for all the functionals. Thus the Lagrangian functional associated with the problem
(B.3) reads ∀i = 1, . . . , n

Li(Y,λ) = Ji(Y) +

n∑
k=1
k ̸=i

λkgk(Y)

where λ = (λ1, . . . , λi−1, λi+1, . . . , λn)T are the non-negative Lagrange multipliers asso-
ciated with the constraints gk’s. Since Y(0) is the solution of the previously described
optimization problem, it is a stationary point for Li(Y,λ) ∀i = 1, . . . , n:

0 =
∂Li

∂Y
(Y(0),λ) = ui +

n∑
k=1
k ̸=i

λkuk

This result is in contradiction with the hypothesis r = n over the rank of the family of
gradient vectors ui , i = 1, . . . , n which has to be rejected. Therefore r ≤ n−1 and all the
possible cases have been examinated. Hence we evince that a Pareto-optimal design point
is Pareto-stationary.

Existence and uniqueness of the minimal-norm element ω ∈ U

Proof. (Proposition 2.3) As defined in equation (2.4), U is a closed set, closure of its
interior U which is made of the elements of U associated to the strictly-positive coefficients
α = (α1, . . . , αn)T . Hence the norm admits at least one realization of a minimum in U
and we define ω the minimal-norm element in the convex hull (2.4):

ω = argmin
u ∈ U

∥u∥ (B.4)

We established the existence of a minimal-norm element in U and we suppose that there
are two realizations ω1 and ω2 such that ∥ω1∥ = ∥ω2∥. Since U is convex, ∀ϵ ∈ [0, 1] the
element z = (1 − ϵ)ω1 + ϵω2 belongs to U . We can rewrite z as follows

z = ω1 + ϵ(ω2 − ω1) = ω1 + ϵω2,1 , ω2,1 = ω2 − ω1

Since z ∈ U and ω1 is the minimal-norm element in the convex hull, we have

(ω1 + ϵω2,1,ω1 + ϵω2,1) = ∥z∥2 ≥ ∥ω1∥2 = (ω1,ω1)

thus we obtain
2ϵ(ω1,ω2,1) + ϵ2(ω2,1,ω2,1) ≥ 0 (B.5)
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Proofs of the main results

We notice that the inequality (B.5) has to stand even for small values of ϵ when the first
term is dominant, so we get the following condition

(ω1,ω2,1) ≥ 0

If we choose ϵ = 1, we get z = ω2 thus ∥ω2∥2 ≥ ∥ω1∥2; moreover the inequality (B.5)
is strict unless ω2,1 = 0. From the initial hypothesis on ω1 and ω2 we know that the
equality between the norms should hold; thus the only possibility is that ω2,1 = 0 and the
uniqueness of the minimal-norm element in U is established.

Proof. (Proposition 2.4) Let v = u−ω. Since U is convex, by using the hypothesis u ∈ U
and the definition of ω as in (B.4) we deduce that v belongs to U too.
Moreover

∀ϵ ∈ [0, 1] ω + ϵv ∈ U

and since ω is the minimal-norm element in U we get

∥ω∥2 + 2ϵ(ω , v) + ϵ2∥v∥2 = (ω + ϵv , ω + ϵv) ≥ (ω , ω)

Thus 2ϵ(ω , v) + ϵ2∥v∥2 ≥ 0 and this result has to hold even for sufficiently small values
of the parameter ϵ, that is (ω , v) ≥ 0. From the definition of v we get

(ω , u− ω) ≥ 0 ⇔ (u , ω) ≥ ∥ω∥2

Given the arbitrary of u ∈ U the result follows straightforward.

Establishment of Multiple-Gradient Descent Algorithm

Proof. (Theorem 2.5) Let us consider a generic design point Y(0) and the convex hull
U . Proposition 2.3 states that the minimal-norm element exists and is unique. Thus we
can update our initial design point by computing Y = Y(0) − ρ̃ω, where ρ̃ is a properly
determined step size that assures that all the criteria improve.
Let ui = ∇Ji(Y

(0)); if ω = 0, from the definition of U we get

n∑
i=1

αiui = 0 , αi ≥ 0 ∀i = 1, . . . , n ,
n∑

i=1

αi = 1

that is, Y = Y(0) is Pareto-stationary.
Otherwise, computing the Fréchet derivatives of the functionals Ji , i = 1, . . . , n along the
direction −ω we get

dJi(Y
(0);−ω) = ∇Ji(Y

(0)) · (−ω) = (ui , −ω) = −(ui , ω) ≤ 0

where the last inequality holds thanks to proposition 2.4. Since this is true ∀i = 1, . . . , n,
the vector −ω defines a descent direction common to all criteria.
Now we consider the case of ω ∈ U , that is none of the inequality constraints is saturated
(∀i = 1, . . . , n αi > 0). Under these assumptions, the element ω has the following form

ω = u =

n∑
i=1

αiui
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Proofs of the main results

where the vector α = (α1, . . . , αn)T ∈ Rn is the solution of the finite-dimensional mini-
mization problem

α = argmin
u ∈ U

p(u) , p(u) = (u , u)

subject to the following constraint:
n∑

i=1

αi = 1

Thus the Lagrangian functional to take into account the constraint in the original problem
writes as

L(α, λ) = p(u) + λ

(
n∑

i=1

αi − 1

)
where α is the optimization variable and λ is a positive Lagrange multiplier. The first-order
optimality conditions read as

∂

∂λ
L(α, λ) = 0

∂

∂αi
L(α, λ) = 0 , ∀i = 1, . . . , n

The second line implies ∀i = 1, . . . , n

∂

∂αi
p(u) + λ = 0

Computing the derivative of p(u) with respect to a given αi we get:

∂

∂αi
p(u) =

∂

∂αi
(u , u) = 2

(
∂u

∂αi
, u

)
= 2

(
∂

∂αi

 n∑
j=1

αjuj

 , u

)
= 2(ui , ω)

thus the Fréchet derivatives (ui , ω) are equal ∀i = 1, . . . , n and independently of i it holds

2(ui , ω) = −λ ⇔ (ui , ω) = −λ

2

Eventually, any arbitrary element u ∈ U can be written in the following form

u =
n∑

i=1

µiui , µi ≥ 0 ∀i = 1, . . . , n
n∑

i=1

µi = 1

Since the coefficients µi , i = 1, . . . , n constitute a partition of the unity, the scalar product
equals are equal to a constant value

(u , ω) =

(
n∑

i=1

µiui , ω

)
=

n∑
i=1

µi(ui , ω) = (ui , ω) = −λ

2

By setting u = ω we deduce that −λ/2 is exactly the value of ∥ω∥2 which is our thesis.
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Convergence of Multiple-Gradient Descent Algorithm iterates

Proof. (Theorem 2.6) Let us assume that the objective functionals Ji(Y) , i = 1, . . . , n
are strictly positive and are infinite whenever ∥Y∥ → ∞.
The sequence of values defined by MGDA for any criterion {Ji(Y(k))}∞k=1 is positive and
monotone-decreasing, thus it is bounded. Moreover ∀i = 1, . . . , n

Ji(Y) → ∞ , ∥Y∥ → ∞

thus the sequence of iterates {Y(k)}∞k=1 is bounded too.
This implies the existence of a subsequence {Y(k)

j } that converges to a limiting design-point
Y∗. In particular, Y∗ is necessarily Pareto-stationary; otherwise, if ω ̸= 0 a new iteration
of MGDA could be performed improving all criteria of a finite amount and a better design
point would be determined.

Now we consider the scenario in which the assumption on the strictly positivity of the
Ji’s ∀i = 1, . . . , n does not hold. We prove that a scaling procedure of the functionals is
possible without loss of generality. Let BR = B(Y(0), R) an open ball centered in Y(0) with
radius R; by assuming Ji(Y) ∈ C2(Ω) ∀i = 1, . . . , n we propose the following substitution
based on the Hessian computation

J i(Y) = exp

{
αi

∥Hi(Y
(0))∥

∥∇Ji(Y(0))∥2
(Ji(Y) − Ji(Y

(0)))

}
(B.6)

where the αi’s are dimensionless constants, ∇Ji’s represent as usual the gradient vectors
of the functionals and Hi’s the Hessian matrices. ∥Hi(Y

(0))∥ is the Frobenius norm of the
Hessian matrix, that is

∥Hi(Y
(0))∥ =

√
tr[Hi(Y(0))THi(Y(0))]

New criteria (B.6) are dimensionless and vary as the original ones. In particular ∀i =
1, . . . , n we choose the constants αi’s such that

αi
∥Hi(Y

(0))∥
∥∇Ji(Y(0))∥

=
γ

R
∼ 1

and we get
J i(Y

(0)) = 1 ∇Ji(Y
(0)) =

γ

R

As previously pointed out, it is important to assure the value of the functionals to be
infinite whenever ∥Y∥ is infinite. Thus we introduce the function Φ(x) : R → R such that
Φ ∈ C∞(R) and Φ(x) ∼ x , x → +∞:

Φ(x) =

{
0 , x ≤ 0

xexp
{
− 1

x2

}
, x > 0

By introducing a new strictly positive constant ϵ, we can reformulate (B.6) as

J i(Y) = J i(Y) + ϵΦ

(
∥Y −Y(0)∥2

R2
− 1

)
(B.7)
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We notice that inside the open ball BR, J i(Y) is identical to J i(Y) and it grows like ∥Y∥2
outside. Moreover, at the boundary of the open ball, the matching of the new functionals
with the original ones is infinitely smooth and we get

lim
∥Y∥→∞

J i(Y) = ∞

By substituting J i(Y) to Ji(Y), we restrict ourselves to a case where the assumptions of
the first part of the proof are satisfied. Thus all scenarios are considered and this concludes
the proof.

Remark B.1. Most of the results presented so far can be extended to the infinite-dimensional
case. Here we highlight the similarities and the differences in the major steps of the strategy
previously described for the finite-dimensional case:

• The functional setting for the problem is a Hilbert space H, possibly a subspace of
L2.

• The concept of gradient operator extends the notion of gradient vector to the infinite-
dimensional case.

• Definition 2.1 holds for the infinite-dimensional case and the result of proposition 2.2
is straightforward.

• In proposition 2.4, the set defined by the convex combination of the gradient op-
erators is no more closed when dealing with infinite dimension but the extension
is straightforward if the minimal norm element is sought in the convex hull of the
family of U ’s.

• Theorem 2.5 that establishes MGDA procedure holds also in the infinite-dimensional
case.

• Some issues appear in the convergence result 2.6 that is extended to the infinite-
dimensional case by theorem B.2.

Theorem B.2. If the sequence of iterates {Y(k)} generated by Multiple-Gradient Descent
Algorithm is infinite, it admits a weakly convergent subsequence. We conjecture that the
limit Y∗ is a Pareto-stationary design-point.

Remark B.3. When dealing with MGDA variants that use the information carried by the
Hessian operator (Section 2.3.3), additional issues may arise in the infinite-dimensional
case. For instance, an a priori analysis of the regularity of the operators has to be per-
formed in order to identify specific conditions on the Hessian operators to assure the
existence of the Hilbert-Schmidt norm, which is an extension of the Frobenious norm to
the infinite-dimensional case.
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and Numerical Analysis, 20(3):371–402, 1986.

91



Bibliography

[CH09] S. Cho and S.-H. Ha. Isogeometric shape design optimization: exact geome-
try and enhanced sensitivity. Structural and Multidisciplinary Optimization,
38:53–70, 2009.

[Cha03] A. Chambolle. A density result in two-dimensional linearized elasticity, and
applications. Arch. Ration. Mech. Anal., 167(3):211–233, 2003.

[CHB09] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis: To-
ward Integration of CAD and FEA. Wiley, 2009.

[Che75] D. Chenais. On the existence of a solution in a domain identification problem.
J. Math. Anal. Appl., 5:189–289, 1975.

[CHR07] J.A. Cottrell, T.J.R. Hughes, and A. Reali. Studies of refinement and con-
tinuity in isogeometric structural analysis. Comp. Meth. Appl. Mech. Eng.,
196(41-44):4160 – 4183, 2007.

[Cre93] N.A.C. Cressie. Statistics for Spatial Data. Wiley, Revised edition, 1993.

[dB72] C. de Boor. On calculating with B-Splines. J. Approximation Theory, 6:50–
62, 1972.

[DC12] R. Duvigneau and P. Chandrashekar. Kriging-based optimization applied to
flow control. Int. J. Numer. Meth. Fluids, 69(11):1701–1714, 2012.

[Dés07] J.-A. Désidéri. Split of Territories in Concurrent Optimization. Research
Report RR-6108, INRIA, 2007.

[Dés09] J.-A. Désidéri. Multiple-Gradient Descent Algorithm (MGDA). Research
Report RR-6953, INRIA, 2009.

[Dés11] J.-A. Désidéri. Cooperation and competition in multidisciplinary optimiza-
tion - Application to the aero-structural aircraft wing shape optimization.
Comp. Opt. and Appl., 2011.

[Dés12a] J.-A. Désidéri. MGDA II: A direct method for calculating a descent direction
common to several criteria. Research Report RR-7922, INRIA, 2012.

[Dés12b] J.-A. Désidéri. MGDA variants for multi-objective optimization. Research
Report RR-8068, INRIA, 2012.

[Dés12c] J.-A. Désidéri. Multiple-Gradient Descent Algorithm (MGDA) for multiob-
jective optimization. Comptes Rendus Mathematique, 350(5-6):313 – 318,
2012.

[dGAJ08] F. de Gournay, G. Allaire, and F. Jouve. Shape and topology optimiza-
tion of the robust compliance via the level set method. ESAIM: Control,
Optimisation and Calculus of Variations, 14:43–70, 0 2008.
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Antipolis. Merci Antoine et Régis pour toutes les réponses, les idées et pour les dessins au
tableau. Merci Adrien pour les pause-cafés passés dans le bureau à m’expliquer le code et
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Gracias a todos los compañeros, merci a tous mes amis, thanks to all my friends.
Grazie a Mirco, Noemi, Zambo, Massi, Mike, Ste, Nico, Albe, Anna, Manu, Frap, Gio,
Luca, Cami, Marta, Simo Rosso, Bia, Giada, Ali, Giacomo, Mattia, Cecio, Paso, Elvio e
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