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1 Sommario 

Introduzione 

Le variazioni nei segnali di skin conductance (SC) sono state proposte come misure di eccitazione neurofisiologica ed indicatori 

di attività del sistema nervoso simpatico (Wallin, 1981).  Quando si verifica un burst sudomotore (risultato della sommazione spaziale 

e temporale di spikes innescati da un nervo sudomotore) ne consegue un processo di sudorazione causato dall’attività delle cellule 

sudoripare (per la maggior parte eccrine) e una risposta elettrodermica (skin conductance response o SCR) visibile nel segnale di SC. 

Un aumento della frequenza (o ampiezza) di tali SCR viene interpretato come un aumento del livello di attività del sistema nervoso 

simpatico (Lidberg, et al., 1981) poichè le cellule sudoripare eccrine sono controllate esclusivamente da tale sistema. Il segnale 

sudomotore scatenante SCRs è composto da bursts discreti, separati e temporalmente brevi  ma le conseguenti SCR rilevate sulla cute 

spesso non sono più distinguibili per via di un problema di sovrapposizione, avendo una dinamica più lenta rispetto ai bursts. Esempi 

di algoritmi in letteratura che propongono una soluzione a tale problema sono, per citare i principali (Lim, et al., 1997), (Alexander, et 

al., 2005), (Benedek, et al., 2010) (with Ledalab software) nei quali comun denominatore è la tecnica deconvolutiva. Tale tecnica fa 

affidamento sull’esistenza di una risposta all’impulso stereotipata, attraverso cui è possibile stimare l’ampiezza e l’occorrenza dei 

bursts sudomotori generati dal nervo sudomotore. 

In questo elaborato di tesi descriviamo un metodo tuttora non pubblicato (Barbieri Citi  o BC) sviluppato presso MIT di Boston 

capace di risolvere il problema di sovrapposizione di SCRs senza affidarsi alla tecnica deconvolutiva quindi senza la necessità di 

conoscere la risposta all’impulso.  

Dopo aver descritto come tarare adeguatamente l’algoritmo BC ottimizzando le sue prestazioni tramite segnali SC simulati, le 

sue prestazioni nell’identificare bursts sudomotori sono state confrontate con quelle di Ledalab. Infine BC è stato applicato a segnali 

SC reali per studiare gli effetti prodotti da differenti emozioni (rabbia, paura, gioia, tristezza) su 35 soggetti sani.   

 

Materiali e metodi 

Taratura di BC e confronto tra algoritmi - Metodo 

Abbiamo generato 78 segnali realistici SC servendoci di un modello originale appositamente sviluppato per questa tesi: esso 

convolve una sequenza di spikes (impulsi) con una funzione risposta all’impulso(IRF) (Equazione 1– (Lim, et al., 1997)). Gli spikes 

simulano l’occorrenza e l’ampiezza dei bursts sudomotori e la IRF descrive la risposta elettrotermica (SCR) rilevabile nel segnale SC 

a seguito di un burst sudomotore. Precisamente, data una documentata variabilità inter ed intrasoggettiva della risposta all’impulso 



Sommario 

 

Carlo Ceriotti -765531 
3 

(Breault, et al., 1993), (Edelberg, et al., 1981), (Janes, et al., 1985), ogni spike è stato convoluto, per la sola creazione della 

componente fasica del segnale, utilizzando l’equazione proposta da Lim variando di volta in volta i parametri che la governano 

secondo una distribuzione Gaussiana. La Figura 1-1 mostra un esempio di 100 risposte all’impulso. 

 

Figura 1-1: Esempio di 100 risposte all’impulso 

 

   La componente tonica e fasica sono generate separatamente entrambe con tecniche di convoluzione, utilizzando per la parte 

tonica l’equazione proposta da Lim ma con parametri fissi. L’occorrenza temporale degli spikes e la loro ampiezza nelle sequenze 

sono state rispettivamente generate secondo una curva Gaussiana Inversa (dimostratasi empiricamente come la miglior 

approssimazione) e una distribuzione Guassiana. Al fine di rendere i segnali più realistici abbiano aggiunto un rumore (flicker noise) 

la cui natura del rumore è stata determinata empiricamente da segnali SC reali. 

Abbiamo generato diversi 4 dataset composti da 78 segnali simulati, ognuno con un rapporto S/N di 106, 105, 104, 103 .      

 

Equazione 1: Risposta all’impulso (Lim) 

 

Analizzando i segnali simulati con Ledalab e BC abbiamo ottenuto le sequenze di spikes che successivamente abbiamo 

confrontato con gli spikes usati per la generazione degli stessi segnali simulati. In questo processo possiamo distinguere i tre casi 

mostrati in Figura 1-2 da cui abbiamo ottenuto la sensitività (SE) e il valore predittivo positivo (VPP) per la costruzione delle curve 

ROC per ogni rapporto S/N. Le curve ROC quantificano le prestazioni di detezione degli spikes di entrambi i softwares, dove però 
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ogni coppia SE-VPP è stata ottenuta variando diversi parametri: per Ledalab variando la minima soglia di ampiezza ammessa per gli 

spikes forniti mentre per BC variando i due parametri interni all’algoritmo che determinano le frequenze di Cut-off dei filtri (Sw e Bw). 

Avendo così un quadro completo delle prestazioni al variare dei parametri per i due software, possiamo tarare BC scegliendo la 

coppia Sw e Bw  In Figura 1-3 due esempi di curve ROC per il dataset di con rapporto S/N di 105.  

 

Figura 1-2: Veri positive (FP), Falsi negative (FN) e Falsi Positivi (TP) 

 

 

Figura 1-3: (Sinistra) Curve ROC di BC per livello S/N di 105 ottenute variando Sw e Bw  

(Destra) Curve ROC per Ledalab con livello S/N di 105 variando la soglia di ampiezza degli spikes 

I cerchi neri indicano i punti di massima performance per ogni ROC 

 



Sommario 

 

Carlo Ceriotti -765531 
5 

 

Dataset Emozioni - Metodo 

I segnali SC sono stati acquisiti con Flexcomp Infinity™ encoder (Thought Technology Ltd.; Montreal, Canada). I segnali, 

dapprima acquisiti con una frequenza di campionamento di 2048 Hz sono stati poi sottocampionati a 256 Hz. L’acquisizione della SC 

è avvenuta posizionando due elettrodi su indice e anulare con metodo esosomatico (exosomatic).  

Ai soggetti non è permesso assumere sostante stimolanti (caffè, the o altro) il giorno dell’acquisizione così come il giorno 

precedente per non alterare il sistema simpatico. 35 soggetti sani sono stati volontariamente reclutati dal corpo studentesco 

dell’università IULM (Milano). Presso il Behavious and Brain Lab i soggetti vengono intervistati da uno psicologo al quale sono stati 

invitati a raccontare con ricchezza di particolari due recenti episodi relativi ad ognuna delle 4 emozioni target (Gioia, Paura, Rabbia, 

Tristezza). I soggetti non in grado di rievocare tutti gli episodi sono stati scartati dall’esperimento. Lo psicologo, dopo aver annotato 

con dovizia di particolari gli episodi, ha scelto un solo episodio per ogni emozione, giudicato più intenso, ricco di stimoli e vivido 

nella memoria del soggetto. E’ quindi fissato un secondo appuntamento dove il soggetto, firmata la liberatoria, viene fatto sedere, 

posizionati i sensori e l’acquisizione ha inizio. 

Dopo una fase di relax (baseline) della durata di 3 minuti nel quale viene invitato il rilassamento fisico e mentale, lo psicologo, 

privatamente con il soggetto, rievoca verbalmente un episodio descritto durante l’intervista; in questa fase il soggetto deve ascoltare 

attentamente e cercare di rivivere più intensamente possibile l’emozione (fase di Listening). La durata delle fasi di Listening è 

dipendente dal particolare episodio evocato. Al termine il soggetto, in silenzio, deve continuare a focalizzarsi cercando il massimo 

coinvolgimento per la durata continuativa di 3 minuti (fase di Focusing). Successivamente è prevista una fase di recovery prima di 

reiniziare con la seguente emozione. La sequenza delle emozioni rievocate è casuale per ogni soggetto permettendo così di non 

introdurre polarizzazioni nei risultati. La sessione di acquisizione dura dai 30 ai 50 minuti.  

Dalle sequenze di spikes ottenute con l’algoritmo BC (opportunamente tarato) abbiamo calcolato l’ampiezza media degli spikes, 

la frequenza media degli spikes (Hz) e l’area sottesa (AS) dalla curva di attività integrata (CAI) (indice continuo che condensa 

l’informazione di frequenza e ampiezza degli spikes) ottenuta sommando l’ampiezza degli spikes compresi in una finestra della 

lunghezza di 2 secondi che slitta, secondo dopo secondo sull’intera sequenza di spikes. Tali parametri sono stati calcolati per l’ultimo 

minuto della fase di Listening (List), per ognuno dei 3 minuti che compongono la fase di Focuging (Foc1, Foc2, Foc3 

riepsttivamente) e per il minuto centrale della fase di Baseline (Bl).   
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Per evidenziare possibili differenze statistiche esistenti un ANOVA a una via è stato eseguito considerando tutte le fasi per ogni 

parametro e successivamente dei t-tests: tra Bl e le successive List, Foc1, Foc2, Foc3 per ogni emozione, tra List, Foc1,Foc2,Foc3 e 

ognuno con se stesso in ogni emozione. Avendo effetuato t-test multipli, il livello di significatività è stato corretto con la correzione di 

Bonferroni, passando da 0.05 a αBonf stimato secondo la formula 0.05/n dove n è il numero di confronti che abbiamo effettuato, nel 

nostro caso 40, ottenendo un αBonf di 0.0013. 

 

Risultati 

 

Taratura di BC e Confronto 

L’algoritmo BC offre le sue massime performance eliminando, per ognuno dei 4 rapporti S/N, il filtro governato dal parametro 

Bw mentre Sw è 0.1, 0.2, 0.5, 0.9 rispettivamente per rapporti S/N di 106, 105, 104, 103. Per Ledalab invece le soglie ottimali per le 

massime performances sono 3.60 uS, 6.20 uS, 11 uS, 12.80 uS rispettivamente per rapporti S/N di 106, 105, 104, 103. 

In definitiva, l’algoritmo BC offre migliori performances (con la sola eccezione del rapporto S/N di 106) rispetto al metodo CDA 

di Ledalab come mostrato in Figura 1-4.  

 

Figura 1-4: Ledalab and BC comparison 
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DataSet Emozioni - Risultati 

 

ANOVA P-Value F (16,34) 

M.S.Ampl. 9,442E-11
(*)

 5,3916 

AUC 2,22E-16
(*)

 7,568 

M. Spike Freq 2,22E-16
(*)

 7,593 

αAnova=0.05  
(*) 

 

Tabella 1: Risultati di ANOVA a una via 

 

T-Test Bas_HappList Bas_HappFoc1 Bas_HappFoc2 Bas_HappFoc3 Bas_FearList Bas_FearFoc1 Bas_FearFoc2 Bas_FearFoc3 

M.S.Ampl. 1,57*10
-8 (*)

 0,0010
(*)

 0,0317 0,0036 1,9647*10
-7(*)

 2,84*10
-5(*)

 6,12*10
-5 (*)

 0,0019 

AUC 1,12*10
-7 (*)

 5.3*10
-4(*)

 0,0229 0,0044 9,2335*10
-8(*)

 2,4*10
-4 (*)

 5,6*10
-4

 
(*)

 8,2*10
-4

 
(*)

 

M Spike 

Freq 
1,42*10

-8 (*)
 0,1020 0,2724 0,1329 2,5032*10

-7(*)
 9,9*10

-4 (*)
 0,0120 0,0211 

         
T-Test Bas_RageList Bas_RageFoc1 Bas_RageFoc2 Bas_RageFoc3 Bas_SadList Bas_SadFoc1 Bas_SadFoc2 Bas_SadFoc3 

M.S.Ampl. 2,34*10
-9(*)

 8,87*10
-6(*)

 0,0011
(*)

 4,6*10
-4 (*)

 2,9387*10
-8(*)

 0,0164 0,0249 0,0445 

AUC 1,38*10
-8(*)

 2,03*10
-6(*)

 1,1*10
-4(*)

 5,97*10
-5(*)

 5,7321*10
-9(*)

 0,0118 0,028 0,0875 

M Spike 

Freq 
1,47*10

-8(*)
 9,6*10

-4 (*)
 1,6*10

-4(*)
 5,6*10

-4(*)
 8,3476*10

-8(*)
 0,2111 0,1188 0,1391 

       
αBonf=0.0013  

(*)
 

 

Tabella 2: Risultati T-Test tra Bl e le rimanenti fasi 

 

La Tabella 1 riporta i risultati del test ANOVA a una via dove abbiamo evidenziato le significatività. La Tabella 2 riporta invece 

i risultati dei t-test tra Bl e le rimanenti fasi.  Possiamo evidenziare differenze significative tra le fasi di  Baseline e Listening per tutte 

le emozioni, dimostrando così che lo psicologo ha operato efficacemente riuscendo a coinvolgere emotivamente i soggetti.  

La Paura e la Rabbia, ma anche solo parzialmente la Gioia, sono emozioni in grado di attivare il soggetto per un tempo più lungo 

a differenza della Tristezza dove le 3 fasi di focusing non sono significative. Rabbia, Paura, Gioia e Tristezza sono elencate in 

quest’ordine da quella più attivante alla meno attivante in termini temporali. Probabilmente la ragione di questo risultato coinvolge 

innati istinti di sopravvivenza poiché Paura e Rabbia, al contrario di Tristezza e Gioia, sono emozioni idonee a favorire l’adattamento 

del soggetto in un ambiente ostile ed infatti il semplice pensiero (Focusing) di queste emozioni innalza il livello di allerta del soggetto 

facilitando meccanismi di “Flight or Fight” strettamente connessi alla sopravvivenza. Diversamente da Rabbia e Paura, la Tristezza 

tende ad essere meno coinvolgente e persistente nel soggetto, forse un meccanismo inconscio con lo scopo di allontanare nel soggetto 
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sensazioni dolorose. La Gioia è più attivante della Tristezza, forse per favorire la socializzazione tra individui diversi. Non ci sono 

differenze significative tra fasi di Listening e Focusing confrontate con loro stesse (risultati non mostrati). 
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2 Abstract 

Introduction 

Changes in skin conductance signals (SC) were proposed as neurophysiologic arousal measures and as indexes of sympathetic 

nervous system activity (Wallin, 1981). When 

When an outgoing sympathetic nervous burst occurs, resulting from temporal and spatial summation of spikes triggered by 

sudormotor nerve, a skin conductance responses (SCR) follow: an increase of thei frequency or amplitudes in SC signal is interpreted 

as an increase of sympathetic nervous system activity level (Lidberg, et al., 1981). The underlying sudomotor signal triggering SCRs 

is composed by separate, discrete and temporally short bursts whereas the resulting SCRs recorded on skin surface often are not 

anymore individually distinguishable due to overlapping problem. Examples of algorithms solving overlapping problem can be found, 

to cite main papers, by (Lim, et al., 1997), (Alexander, et al., 2005), (Benedek, et al., 2010) (with Ledalab software) in which 

deconvolution technique is a common tool. Deconvolution relies on the precondition that there exists a stereotyped and stable impulse 

response function (IRF) thanks to they can estimate underlying bursts in sudomotor signal. 

In the present thesis work we described a novel method (BC) still unpublished developed at MIT (Boston) able to solve 

overlapping SCRs estimating sudomotor bursts not relying on deconvolution techniques so without any IRF knowledge. After 

properly tuned up BC algorithm, its performances in identifying sudomotor burst were compared to Ledalab  performances. in 

conclusion BC was applied to real SC signals in order to study the effects of 4 different emotions (Rage, Fear, Happiness, Sadness) on 

35 healthy young subjects.   

 

Materials and Methods 

BC Tuning and algorithm comparison – Method 

We generated 78 realistic SC signals through an original model ad hoc for this thesis: this model convolves spike sequences 

(simulating sudomotor bursts sequences) with an IRF (Equation 1– from (Lim, et al., 1997)). More precisely, because of a well known 

inter and intra subjective variability of IRF (Breault, et al., 1993), (Edelberg, et al., 1981), (Janes, et al., 1985), each spike was 

convolved, for phasic signal component creation, using Lim equation (Equation 1) but varying from time to time the governing 

parameters. Figure 2-1 depicts a group of  100 IRFs. 

The tonic (slow varying) and phasic (fast varying) part of SC signals were generated separately both with convolution 

techniques.  
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Figure 2-1: Group of 100 IRF 

 

   The temporal spike occurrences and amplitudes in the sequences were respectively generated according to an Inverse Gaussian 

Distribution (empirically proved to be the best approximation) and a Gaussian Distribution. In order to make the signals more realistic 

we added noise (flicker noise). This noise type was determined empirically from the mean spectra from 10 real SC signals. We 

generated 4 datasets each composed by 78 simulated signals, each one with S/N ratio level of 106, 105, 104, 103.      

 

Equation 1: IRF proposed by Lim 

 

By analyzing the simulated signals with Ledalab and BC we obtained the spike sequences which at a later stage we compared to 

the spike sequences used to generate selfsame SC signals. In this process we can distinguish three cases depicted in Figure 2-2. 

Thanks to them we determined Sensibility (SE) and Positive Predictive Value (PP) used to generate ROC curves for each S/N ratio 

level considered. The ROC curves quantify spike detection performances of both Ledalab and BC algorithms in which coordinates 

SE-PP was obtained by changing different parameters in the algorithms: by varying the minimum spike amplitude threshold to output 

spike sequences for Ledalab whereas varying internal algorithm parameters (Sw e Bw) which determine filters cut-off frequencies for 

BC.  
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Figure 2-2: True Positive (FP), False Negative (FN) and False Positive (FP) 

 

Figure 2-3 depicts BC ROC curves (more than 1 because by varying 2 parameters) and Ledalab ROC curve for the 78 simulated 

signals from dataset with S/N ratio level 105. 

 

Figure 2-3: (Left) ROC curves from BC for S/N ratio level of 105 obtained by varying Sw and Bw 

(Right) ROC curves from Ledalab for S/N ratio level of di 105 varying minimum spike amplitude threshold. 

Black circles indicate best performances for each ROC 
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Emotion dataset - Method 

SC signals were recorded continuously using Flexcomp Infinity™ encoder (Thought Technology Ltd.; Montreal, Canada) with a 

sampling rate of 2048 Hz, while subjects sitting; then it  was resampled at 256 Hz. SC was recorded using two electrodes placed on 

different fingers of a hand (forefinger and ringfinger) using the exosomatic method.  

It was not allowed for the subjects to drink coffee, tea or other stimulating substances on the recording day as well as the day 

before in order not to alter the sympathetic system. 35 normal healthy subjects were voluntarily recruited from the student body of 

IULM University of Milan. Students were scheduled to come at the Behavior and Brain Lab for an interview were they had to let the 

researcher know whether they could recall two recent episodes where they felt each of the 4 target emotions: joy, sadness, rage and 

fear. If positive, the researchers asked them to recall verbally while a psychologist took notes about all the episodes. After the 

psychologist chose the most vivid and intense episodes between the two, they were scheduled for a second appointment to participate 

to the recording session. All the people who could not recall a vivid recent episode for each of the four emotions were asked not to 

participate in the research. Once subjects came at the lab for the experiment, they were asked to fill in a consent form, and sit down. 

Then a researcher located all the sensors, and the recording started. After a baseline (relax) period of 3 minutes, the psychologist 

privately with the subject helped him to recall the episode he/she described in the interview while he/she is supposed to listen and 

focus on the emotion (listening phase). The duration of each of those is variable depending on the episode evoked. Once subject felt 

the emotion, the researcher asked to stay silent and try to focus intensely on the emotion without moving for 3 minutes (focusing 

phase). After the emotion recall, a rest of 3 minutes (recovery time) was provided before re-starting with the next emotion. The 

sequence of emotion recalled was randomly assigned for each subject in order not to bias the results. The recording sessions lasted 

approximately from 30 to 50 minutes. On the obtained spikes sequences we calculated mean spike amplitude, mean spike frequency 

(Number of spikes / s = Hz) and area under “Integrated Activity Curve (IAC)” curve (AUC) (continuous index comprising frequency 

and amplitude information of spikes) obtained by sliding a 2 seconds window second by second over the spike sequence summing 

spike amplitudes within it.  

The 3 parameters were obtained for listening phases last minute (List), for each of the 3 minutes composing the focusing phases 

(Foc1,Foc2 and Foc3 respectively) and the central minute of baseline (Bl).  To investigate whether existed statistical differences t-

tests were performed between Bl and successive List, Foc1, Foc2, Foc3 of each emotion as well as for List , Foc1, Foc2, Foc3 and 

each one with itself for the four emotions. Because of multiple comparisons are performed, the significance level was corrected with 
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Bonferroni correction, passing from 0.05 to αBonf calculated according to 0.05/n where in our case parameter n is the number of all 

considered comparisons, precisely 40. αBonf is 0.0013 which will be considered as new significant level. 

 

Results 

 

BC Tuning and Comparison 

 

We found that maximized performances is obtained eliminating, for all S/N levels, the filter governed by Bw whereas Sw should 

be 0.1 , 0.2 , 0.5 or 0.9 respectively for S/N levels of 106, 105, 104, 103. Ledalab minimum threshold to be applied to output spike 

sequences is 3.60 uS, 6.20 uS, 11 uS, 12.80 uS respectively for S/N levels of 106, 105, 104, 103. 

The BC algorithm shows better performances (only exception SE for S/N level 106) compared to CDA method by Ledalab as 

depicted in Figure 2-4 where best sensibility and positive predictive values are shown varying S/N level.  

 

Figure 2-4: Ledalab and BC comparison 
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Emotion dataset - Results 

 

ANOVA P-Value F (16,34) 

M.S.Ampl. 9,442E-11
(*)

 5,3916 

AUC 2,22E-16
(*)

 7,568 

M. Spike Freq 2,22E-16
(*)

 7,593 

αAnova=0.05  
(*) 

 

Table 2-1: ANOVA results 

 

T-Test Bas_HappList Bas_HappFoc1 Bas_HappFoc2 Bas_HappFoc3 Bas_FearList Bas_FearFoc1 Bas_FearFoc2 Bas_FearFoc3 

M.S.Ampl. 1,57*10
-8 (*)

 0,0010
(*)

 0,0317 0,0036 1,9647*10
-7(*)

 2,84*10
-5(*)

 6,12*10
-5 (*)

 0,0019 

AUC 1,12*10
-7 (*)

 5.3*10
-4(*)

 0,0229 0,0044 9,2335*10
-8(*)

 2,4*10
-4 (*)

 5,6*10
-4

 
(*)

 8,2*10
-4

 
(*)

 

M Spike 

Freq 
1,42*10

-8 (*)
 0,1020 0,2724 0,1329 2,5032*10

-7(*)
 9,9*10

-4 (*)
 0,0120 0,0211 

         
T-Test Bas_RageList Bas_RageFoc1 Bas_RageFoc2 Bas_RageFoc3 Bas_SadList Bas_SadFoc1 Bas_SadFoc2 Bas_SadFoc3 

M.S.Ampl. 2,34*10
-9(*)

 8,87*10
-6(*)

 0,0011
(*)

 4,6*10
-4 (*)

 2,9387*10
-8(*)

 0,0164 0,0249 0,0445 

AUC 1,38*10
-8(*)

 2,03*10
-6(*)

 1,1*10
-4(*)

 5,97*10
-5(*)

 5,7321*10
-9(*)

 0,0118 0,028 0,0875 

M Spike 

Freq 
1,47*10

-8(*)
 9,6*10

-4 (*)
 1,6*10

-4(*)
 5,6*10

-4(*)
 8,3476*10

-8(*)
 0,2111 0,1188 0,1391 

       
αBonf=0.0013  

(*)
 

 

Table 2-2: T-Test results Baseline versus all remaining phases 

 

Table 2-2 reports significant differences between Baseline and Listening phases for all emotions, so it is demonstrated that the 

psychologist’s goal was successfully reached managing to involve emotionally the subjects; moreover we can observe that Fear, Rage 

and only partially Happiness activate the subjects for longer time whereas Sadness is not significant for any of Focusing phases. Rage, 

Fear, Happiness and Sadness, in this order, are listed from the most activating to least activating emotion. Probably the reason 

involves innate survival instincts since rage and fear, opposed to sadness and happiness are more appropriate to promote subject 

adaptation to hostile environment so only focusing on memories involving those feelings increase the alertness level facilitating 

survival mechanisms. Only Rage and Fear create a more lasting alertness state in the subjects. Sadness tends to be the most short 

lasting emotion (being significant only Listening phase); the subject behave in this way probably due to psychological mechanisms 
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that aims to avoid painful or stressful memories. Happiness is less activating than rage and fear but more than sadness: it may be that 

this emotion facilitates socialization being useful for human survival as well. 

There are no significant difference between Listening and Focusing phases with themselves (data not shown). 
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3 The Galvanic Skin Conductance 

 

Since the 1880s, when psychological factors related to electrodermal phenomena were first observed, electrodermal recording 

has become one of the most frequently used biosignals in psychophysiology. The main reason for its popularity is the ease of 

obtaining a clear and distinct electrodermal response (EDR), the intensity of which seems apparently related to stimulus intensity 

and/or its psychological significance. Moreover, electrodermal recording is possible with rather inexpensive equipment, not only in 

the laboratory but also under less controlled conditions. Originating in neurology and physiology, it progressively became a tool able 

to explore psychophysiological human domain (Boucsein, 2011).  

Electrodermal phenomena offers a wide window for the evaluation of a number of psychiatric disorders such as schizophrenia 

(Williams, et al., 2004) hyperactivity and attention deficit (Hermens, et al.), post traumatic stress disorder (Bryant, et al.) and sensory-

autonomic neuropathy (Polo, et al., 2000) and allows also the comprehension of brain mechanisms about sleeping  (Akane, et al.) 

decision making (Nasir, et al.), emotional arousal (Fahrenberg, 1988), autism (Schoen, et al., July–September 2008) and so on. 

Moreover it has been used to evaluate the reaction to pain, central nervous system injuries and peripheral neuropathies (Gladman, et 

al., 1990), (Gutrech, 1994). Despite the widespread use of it in research and application, electrodermal recording mechanism is not 

still fully understood but the research has intensified in the last four or five decades and scientific papers and reviews concerning EDA 

are spread over a wide variety of journals and books. However, a tradition of joint research is lacking in the related disciplines of 

anatomy, physiology, physics, and psychology, that surely will be developed in future (Boucsein, 2011). 

Since GSR is strongly related to the emotions (as we will see), one of the first applications of this technique was done in 1936 by 

Walter Summer, in the development of methods for “deception detection”, also called “Lie Detection”. However, though the use of 

electrodermal activity (EDA) as a major variable in the detection of deception is well established, the possible influence of mental, 

physical, physiological and pharmacological factors, impairs the generalized acceptation of this test in the forensic context. 

The use of EDA recording in psycho-physiological research has been mainly considered as a tool to find differences among 

specific groups of subjects (e.g. control and pathological). To this aim a widely used stimulation protocol is usually a train of punctual 

acoustic stimuli of various intensity and frequency. Some studies also use visual stimuli (affective picture), yet presented for a short 

time (few seconds). Nowadays the precise cerebral mechanisms involved in skin conductance events are still not well-known and 

understood, but more and more is being discovered by means of fMRI (Nagai, et al., 2004) and brain injured patients. Conversely the 

knowledge about anatomical, physiological and functional phenomena of peripheral body is deeper and more accurate. 
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3.1 Historical frame  

 
The first experiment that showed a connection between sweat gland activity and current flow in skin was performed in 

Switzerland by (Hermann, et al., 1878), who observed that an electrical stimulation of the sciatic nerve in the curarized cat resulted in 

sweat secretion as well as an electric current in the footpad on the same body side. Three years later, Hermann repeated the voluntary 

movement experiment performed more than 30 years earlier by DuBois-Reymond in 1849 and he found that areas with stronger 

sweating such as palms and fingers showed greater skin current than other body sites such as the wrist and elbow regions, and this 

pointed to the importance of human sweat glands in electrodermal phenomena (Neumann, et al., 1970). The observation that first 

related psychological factors to EDA is traditionally attributed to Vigouroux (1879), an electrotherapist working in France. He 

observed an electrodermal activity that paralleled changes in the amount of anesthesia in hysterical patients and supposed that both 

phenomena were dependent upon central processes. However, he did not believe that the sudden changes in EDA he observed could 

be produced by local processes in the skin itself. Instead, he presumed a change in vascular conductivity, which was in line with the 

developing research on autonomic nervous control of blood flow at that time. We can state that the fundamental discovery of 

electrodermal phenomena is, however, attributed to two researchers who might not have been aware of each other, the French 

neurologist (Féré, 1888) and the Russian physiologist (Tarchanoff, 1889).  

Féré observed that hysterical subjects showed a greater current flow (measured with galvanometer) between two electrodes 

placed on skin surface when patients were presented emotional or sensory stimuli. Moreover he noted that normal subjects in 

condition of reduced stimulation, for example by closing the eyes, showed a decrease in current flow corresponding to an increase in 

skin resistance. Later soon those phenomena were labeled as “psychogalvanic reflex” and later “galvanic skin response”. It must be 

noted that Féré measured, with his method, the skin resistance (SR) signal, that is imposing a fixed small current flowing between the 

two electrodes on the skin surface and measuring the electrical resistance. 

One year later, Tarchanoff’s (1890) obtained similar galvanometer deflections observing considerable electrical potential (SP) 

changes between two electrodes on skin surface following sensory stimulation, imagination, mental arithmetic, expectation, and 

voluntary muscle contractions. Tarchanoff published his observations in 1889 (just one year after Féré).       
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3.2 Physiology 

3.2.1 Skin 

 

Figure 3-1: Skin anatomical structure. 

 (http://courses.washington.edu/bioen327/Labs/Lit_SkinStruct_Bensouillah_Ch01.pdf) 

 

 

We can briefly summarize the skin functions as follow: 

 

1. Helps thermo-regulation: it maintains a constant body temperature through changing blood flow in the cutaneous 

vascular system and evaporation of sweat from skin surface. 

2. It protects against mechanical, chemical stress, certain types of radiation (UV) and infections. 

3. Act as a sensory organ sensing touch by mechanoreceptors, heat by thermoreceptors, pressure by      baroreceptors, 

and pain by nocireceptors.  

4. Prevents loss of moisture. 

5. Plays a role in immunological surveillance: it normally contains all the elements of cellular immunity with the 

exception of B cells 

6. Regulates perspiration (by controlling emission of body fluid by sweating, preventing the body from drying out). 

7. Regulates blood pressure (by modifying blood vessels volume);  
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8. Wound healing (skin tissue is auto-repairing); 

 

As abovementioned, skin’s function is mainly protective, forming a physical barrier to the environment, allowing and limiting 

the inward and outward passage of water, electrolytes and various substances while providing protection against micro-organisms, 

ultraviolet radiation, toxic agents and mechanical insults.  

Skin is a dynamic organ in a constant state of change, as cells of the outer layers are continuously shed and replaced by inner 

cells moving up to the surface. Although structurally consistent throughout the body, skin varies in thickness according to anatomical 

site and age of the individual. 

As we will discuss later, the EDA signal is caused by sweat gland activity from specific glands located in some areas of the skin. 

The secretory part of the sweat glands (see Chapter 3.3) is between dermis and subcutis and their ducts cross both dermis and 

epidermis. Nerves and blood vessels are in the subcutis and the bigger vessels that supply the skin start the ramification of small 

vessels that supply the sweat glands, the hair follicles, and the subpapillary capillary nets. The lymphatic vessels form nets in the 

dermis and in the subcutis and the main portion of the lymph flows away via subcutaneous lymph vessels. Blood as well as interstitial 

fluids and the lymph, with their ionic contents, contribute to the relatively high electrical conductivity of the inner strata of the skin.  

3.3 Sweat glands 

 

An average person has 2.6 million sweat glands in her skin. Sweat glands are distributed over the entire body, excepts for the 

lips, inner ear channels, nipples and external genital organs. The mean numbers of sweat glands per cm2 of the adult skin are: 233 on 

the palms, 620 on the soles, 360 on the forehead and 120 on the thighs (Boucsein, 2011). It is interesting to note that the total number 

of sweat glands in the body is always the same, from birth to death, thus only the surface density lowers with body development. The 

palmar sweat glands develop in the fetus between the third and fourth month, whereas those on other body sites do not become visible 

until the fifth month. It is important to highlight the two categories of sweat glands: “eccrine” glands and “apocrine” sweat glands. 

The classification of apocrine and eccrine was made for the first time by (Schiefferdecker, 1917) describing different mode of 

secretion. 

3.3.1 Apocrine sweat glands  

In the apocrine sweat glands, part of the secretion process involves breakdown of secretory cells and the liberation of their 

contents into the lumen of the gland by means of a necrobiotic process. They are larger, the ducts of which empty out into the hair 

follicles. They are mainly present in the axillae, ano-genital region, areolae and are basically under thermal control. They become 
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active at puberty, producing an odourless protein-rich secretion which, when acted upon by skin bacteria, gives out a characteristic 

odour. The apocrine glands are of little relevance for the electrodermal activity because they only partially react to emotions and stress 

stimuli, being overall controlled by environment temperature. Only few of them possess an ANS innervation (those in the axilla) and 

may be partly or even mainly under the control of circulating adrenaline in blood stream (Weiner, et al., 1960). In this thesis work, we 

will basically deal with eccrine glands because they are more interesting under psychoneulogical aspect, showing fiber innervations 

from ANS. 

3.3.2 Eccrine sweat glands  

Contrarily to the apocrine sweat glands, eccrine glands are mainly under psychological and only partially under thermal control 

(only in condition of higher than normal temperature). The watery fluid they secrete contains chloride, lactic acid, fatty acids, urea, 

glycoproteins and mucopolysaccharides and this fluid passes across an intact membrane from secretory cells into the lumen 

(Venables, et al., 1973). Being the secretory outcome conductive, the EDA can be recorded. 

Eccrine glands are supplied by widely ramified sympathetic sudomotor nerves fibers (Fowles, 1986) with the greatest density 

being found on the palms, soles, forehead and the least density on the arms, legs and trunk (Kuno, 1956). The eccrine cells on the 

palmar, plantar and forehead surfaces are mostly involved in emotional sweating, meaning an augment of sweating activity correlated 

with psychological as well as emotional states which appear for instance in stressing situation or high arousal. Generally eccrine sweat 

glands respond to orienting responses (OR1), described by (Sokolov, 1960) as a generalized arousal state following unexpected and 

novel stimuli. Aversive situations causing alert states causes sweat glands activation bringing about an improved grasping ability 

(associated with the “flight or fight” reflex (Edelberg, 1972), making skin flexible for better sensory discrimination. Sweating reaction 

on OR is probably the outcome of a survival evolution mechanism. 

 

 

 

 

 

 

                                                           
1 The OR is either elicited by external stimuli (called specific OR) or internal mental events (unspecific OR). Specific stimuli include stimuli that can be 

perceived by body sensors (sounds, images, strong tastes, pain, temperature and so forth) whereas internal stimuli include the outcomes from high level cortex 

elaborations such as emotions.  
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3.4 Neurology  

3.4.1 Brain areas 

All findings concerning the central innervation of sweat glands activity point to several centers, located at different levels of the 

CNS, and partly independent of one another (Boucsein, 2011). 

Much of what is known about the origin of electrodermal phenomena stems from studying the effects of lesions and stimuli in 

animals (mainly monkeys and cats). Yet, in the last years also the human brain structures involved in EDA have been studied, thanks 

to the new non-invasive techniques used in brain imaging research, like fMRI (Asahina, et al., 2002), (Williams, et al., 2000) or PET. 

Tranel (Tranel, et al., 1994) established that amygdala, hippocampus, hypothalamus, brain stem reticular substance, premotor cortex 

and sympathetic preganglions play an active role. The role of hypothalamus is to control all vegetative functions including human 

thermoregulation and to play a major role in sudomotor activity. The established influences from the limbic system, especially from 

hippocampus and amygdala (Edelberg, 1973) on sudomotor hypothalamic areas has been considered as the neurophysiological basis 

for emotional sweating, appearing the limbic system as the primarily responsible for emotional life. Nevertheless not only the limbic-

hypothalamic structures can elicit EDA responses: also cortical areas interacting with the limbic system can influence EDA in humans 

and primates. In fact, it has been proved (Luria, et al., 1970) that skin conductance orienting responses were diminished, or abolished, 

in subjects with lateral frontal lesions as compared with lesions in other cortical areas. Thus, the “emotional sweating” seems to be 

completely under the control of the limbic system2 and related cortical structures (the amygdala and the hippocampus). Their action 

controls the hypothalamic area associated to palmar and plantar sweating. 

Moreover experimental evidences show that EDA responses are elicited also by movements, deep inspiration and others. Thus, 

there are at least other two EDA sources, outside the limbic system and related cortical areas, which can elicit electrodermal 

responses: the premotor-basal ganglia and the reticular system.  

The first is made up of premotor cortical areas (Brodmann area 6) whose fibers for the transmission of skeletal muscle impulses 

are in close connection with sudorisecretory fibers. When these last areas are naturally or electrically stimulated, or removed, massive 

sweating is observed.   

 

  

                                                           
2 The Limbic System, considered as the center of emotional phenomena, influences the hypothalamic function producing EDA responses when an emotional 

stimulus is coming, by means of the excitatory and inhibitory actions of amygdala and hippocampus, respectively.  

In particular, the amygdala, which is a brain structure critical for memory associated with emotional conditions, emotional behaviour, social behaviour, 

neuroendocrine, and autonomic functions, is thought to play a key role in emotional sweating.  
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Finally, the “reticular formation” (RF) itself, that is a network of nuclei and fibers in the central core of the brain, important in 

arousing the cortex and maintaining alertness, in processing incoming sensory stimulation, and in adjusting spinal reflexes, can have 

eliciting as well as modulating influence on EDA.  

3.4.2 Periferal innervations 

 

The nervous fibers present in the skin, which innervate sweat glands, belong to the Autonomic Nervous System (ANS) which is 

composed by two branches: sympathetic and parasympathetic. The sweat glands, being in the subcutis, are highly vascularized and 

diffusely innervated by a dense net of nerve terminals, both cholinergic and adrenergic. In particular, the secretion of the apocrine 

glands is stimulated by circulating adrenaline, whereas innervation of secretory part of the eccrine sweat glands is solely via the 

sympathetic branch of the ANS, which also reaches the dermal part. It is well known that for eccrine glands the postganglionic 

synapse is cholinergic, having acetylcholine as synaptic transmitter (Venables, et al., 1973). 

The sympathetic fibers gather in the skin nerve fascicles of the peripheral nerve. Each skin nerve fascicle exists a mixture of 

sudomotor, cutaneous vasomotor, and pilomotor nerves. The activity of sweat glands is triggered by postganglionic sudomotor fibers. 

Each sweat gland is innervated by many different sudomotor fibers (Kennedy, et al., 1994), and each sudomotor fiber innervates a 

skin area of about 1.28 cm2. Changes in palmar and plantar skin conductance (SC) are due to outgoing bursts in the postganglion 

efferent sympathetic cholinergic fibres, which respond to changes in central arousal state (Storm, et al., 2000). 

It has been found that sweat glands receive only excitatory sympathetic nerve impulses and there is no need to assume the 

existence of a sweat-inhibiting innervation, since in absence of sudorisecretory impulses the sweat vaporize so quickly that additional 

sweat inhibition would not reduce the amount of sweat significantly (Boucsein, 2011). 

A regional specificity in the innervation of sweat glands also exists, since, for example, the mechanism of thermoregulation, 

emotional sweating (most important in electrodermal research), or other physiological sweating, are quite different from each other. In 

fact, for example, the thermoregulatory function of the eccrine sweat glands is normally seen on the forehead or axilla, but at palmar 

and plantar sites the glands are activated only when the ambient temperature exceeds 30°C. On the contrary, these sweat glands show 

a greater response only to psychic stimuli (emotions, pain and others, which are mediated by cerebral structures involved in emotional 

processing), or particular physiological stimuli (movements, deep breathing, etc…). Thus, the eccrine glands in all locations do have 

the capacity to respond to psychic and thermal stimulation, but there are differences in the thresholds of response: glands of palms and 

soles respond to psychic stimuli, but intense thermal stimulation is needed to elicit the sweating in these areas; glands in the axilla and 

forehead occupy an intermediate position, in that they respond to moderate levels of both psychic and thermal stimulation, while those 

of the remaining areas are exclusively thermoregulatory (Venables, et al., 1973). 
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3.4.3 Sweat Secretion Mechanism 

 
Figure 3-2: sweat expulsion mechanism and  

its relation with skin conductance (SC) signal 

 

According to Edelberg 1993, Figure 3-2 shows the sequence of events occurring in a sweat gland epidermal duct during an 

eletrodermal response 

1) At the start of the response, if the superficial layer of the corneum is well hydrated, the sweat pore and the distal portion of the 

sweat duct are closed under the effect of the pressure exerted by the surrounding corneum (about 20mmHg). Thus, the 

conductance is not increasing.  

2) If sweat fills the duct, both laterally and axially, a more conductive path through the relatively resistant corneum (made of dry 

died cells) is provided, causing a slight increase in conductance.  

3) If the secretion rate is strong enough, it may generate an intraductal pressure greater than the tissue pressure of 20 mmHg of 

the corneum. In that case there will be an opening of the duct and sweat pore, which become filled of sweat. As the terminal 

portion of the duct opens, the conductance increase will be augmented. Sweat will be forced out through the sweat pore but 

will also continue to move laterally into the corneum as well. The increasing hydration (laterally in the corneum and axially 

through the duct) is the leading factor that contributes to the fast rise of conductance and is supposed to be responsible of the 

“phasic components” of electrodermal signal. 

4) As sweat leaves the ducts, unless secretory rate can keep up with the loss volume, intraductal pressure will fall down. If it falls 

below the external tissue pressure, the pore and the terminal duct will again collapse, causing a rapid fall of conductance along 

with sweat evaporation. 

 

(Ogawa, et al., 1993) and (Nicolaidis, et al., 1972) observed in their experiment that sweat flow by eccrine sweat glands in not 

continuous but pulsatile, that is rhythmically secreted. According to (Ogawa, et al., 1993), pulsatile discharge of sweat can be 
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interpreted in two ways: sweat may be squeezed out by means of rhythmic contraction of myoepithelial cells (muscular cells around 

the sweat glands), or secretory cells may produce sweat in a pulsatile manner, or both processes may occur concomitantly. It has been 

demonstrated (Hurley, et al., 1960) that myoepithelial contraction is involved in discharge of sweat in the apocrine glands. However 

the function of the myoepithelium in eccrine sweating has not been unanimously understood, though the most classical is pulsatile 

ejection of sweat by its contraction as in the apocrine glands (Rothman, 1954), (Nicolaidis, et al., 1972), (Ogawa, et al., 1993).  

Figure 3-3 shows the hypothetical localization of myoepithelial cells responsible of pulsatile discharge (Nicolaidis, et al., 1972)). 

 

Figure 3-3: Schematic presentation of spiral chains of myoepithelial elements(CME)extending along 

 gland (Ac) from nerve endings (FN) to the tube (T) and its pore (P). Arrows indicate hypothesized  

direction of propagation of released transmitter before salutatory transmission (Nicolaidis, et al., 1972). 

 

 (Nicolaidis, et al., 1972), with hygrophotographic recordings obtained the demonstration of a high-frequency (12-21 cycles/s) 

pulsatile expulsion of sweat to the cutaneous surface by each eccrine unit. Parallel to this individual expulsion mechanism there is 

evidence of synchronous fluctuations or waves of increasing-decreasing overall sweat excretion with a period approximating 11-13 

seconds in most of the glands observed. In order to explain the pulsatory individual discharge, they suggested the following model: 

the transmitter is released by the free endings of the sudomotor nerve into the periglandular space and it triggers in a “saltatory” 

manner the contraction  of the myoepithelial cells arranged regularly along the length of the chain. The time of propagation between 

two consecutive elements of the spiral is between 0.1 sec and 0.05 sec, as the hygrophotographic recordings showed in the form of 

excretory pulsations. Rhythmic contractions of the myoepithelia, surrounding not only the secretory but also the ductal part of the 

sweat gland like a helix, finally are regarded as the source of the pulse (Nicolaidis, et al., 1972).   

Contrarily, according to (Sato, 1977) sweat can be observed rising and falling in a micropipette brought into the lumen at a 

frequency of 0.5–2 Hz during low sweating rates. He followed (Kuno, 1956) in arguing that this phenomenon should be due to neural 

stimulation rather than to myoepithelial contraction. However, the nature of an appropriate innervation remains unclear (Boucsein, 

2011) and nowadays the real mechanism is not completely understood yet.  
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3.4.4 Sudomotor nerve bursts 

Probably the most common reason for assessing SC is to obtain an indicator of phasic sympathetic activity (i.e. sudomotor nerve 

activity SMNA). Changes in palmar and plantar skin conductance (SC) are due to outgoing bursts in the postganglion efferent 

sympathetic cholinergic fibres, which respond to changes according to central arousal state (Storm, et al., 2000). Human eccrine 

glands are innervated by postganglionic cholinergic fibers and the sympathetic fibers gather in the skin nerve fascicles of the 

peripheral nerve. (Ogawa, et al., 1993) inserted a microelectrode3 into the fascicle so recording directly the neural activity of these 

fibers. Since a mixture of sudomotor, cutaneous vasomotor and pilomotor nerve activities is usually obtained from a specified 

intrafascicular site where a microelectrode is held, sudomotor, vasomotor, and pilomotor fibers are considered to be intermingled in 

the fascicle. The authors found that in general skin sympathetic nerve activity consists of multi-unit bursts containing sudomotor, 

vasomotor (vasoconstrictor) and pilomotor impulses. These bursts occur spontaneously or in response to  arousal or mental 

stimulation with various amplitude and duration.  

In literature a number of physiological studies have shown that SCR responses are preceded by discrete bursts of the sudomotor 

nerves that control the sweat glands (Macefield, et al., 1996) , (Nishiyama, et al., 2001).. (Benedek, et al., 2010) identify a nerve burst 

as the outcome of the temporal concurrence in the firing of multiple fibers in the integrated nerve record and it corresponds to an 

observable SCR. Thereby, the nerve bursts are the causes of the sweat responses and are the result of the spatial and temporal 

integration of the spikes triggered by many different fibers that constitutes the sudomotor nerve. The spike density (as reflected by the 

amplitude of the nerve burst in the integrated nerve record) is linearly related to the number of recruited sweat glands and to the 

amplitude of the corresponding SCR. These bursts have a mean duration of 638 ms, much shorter than the duration of the SCR. In 

addition, the large bursts that produce an SCR are temporally discrete episodes, that is, they are separated by large intervals relative to 

the duration of the bursts themselves (Nishiyama, et al., 2001). The SCR amplitude can therefore be considered as an index of 

sympathetic activity. The integrated SMNA (Sudomotor Nerve Activity) thus is conceived as a continuous measure reflecting the 

spike density of relevant sudomotor neurons and was found to show a stable baseline activity with quite compact peaks of increased 

activity (see Figure 3-4) .  

 

                                                           
3 This technique is called “Microneurography” 
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Figure 3-4: Sweating pattern on the dorsal foot and integrated neurogram of skin sympathetic nerve activity (SSA) in the peroneal nerve obtained in 

mild thermal condition. (A) spontaneous sweating . (B) sweating evoked by a loud noise. (C) sweating evoked by electrical painful stimulation of the skin. You 

may notice that sweat expulsions ( the onset of which are indicated by numerals 1-10), are always preceded by sympathetic bursts, which are shown by the 

same numerals. 

 

SC is thought to basically reflect SMNA to some extent, but the original signal properties of SMNA are blurred, presumably 

amongst other things by the influence of slow sweat diffusion processes. Therefore SC no longer shows distinct peaks of phasic 

activity, but rather is characterized by the superimposition of extended responses, which eventually complicates the assessment of 

responses (Boucsein, 1992). 

The opening of sweat-gland follows in lockstep to these bursts of sudomotor activity (Nishiyama, et al., 2001). The SCR 

response is delayed in respect the sudomotor burst and this depends on a number of factors, including the slow conduction of 

unmyelinated axons, neuroeffector transmission, activation of sweat glands, production of sweat and duct filling (Kunimoto, et al., 

1991) (Macefield, et al., 1996). The average time for electrical neuroeffector transfer in sweat glands is estimated to be 348 ms 

(Kunimoto, et al., 1991). This latency is comprised of delays in sweat gland activation and sweat production. Individual sweat glands 

responding to a sudomotor burst do not operate simultaneously, but vary in activation times within a range of about a second 

(Nishiyama, et al., 2001).  

 

Figure 3-5: Relationship between sudomotor nerve signal and skin conductance signal. Discrete spikes in nerve activity are followed by 

slower time-constant changes in the skin conductance signal (Macefield, et al., 1996). 
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Sudomotor nerve activity brings about sweat secretion and consequently changes in skin conductivity. In mathematical terms, 

sudomotor nerve activity can be considered as a driver composed by a sequence of mostly distinct impulses (i.e. sudomotor nerve 

burst) which trigger a specific impulse response (Impulse Response Function [IRF]). The process can be represented as: 

 

 

 

Figure 3-6: An ideal impulse (Dirac Delta) causes an Impulse Response Function (IRF) 

 

 

Figure 3-7: Quantitative neuro-effector relationship. Each parameter of (A) the rate of rise of sweat expulsion, (B) the amplitude of 

sweat expulsion, and (C) the sweat output produced by the expulsive process is plotted to the amplitude of sudomotor burst. 

 

A quantitative relation between sweat expulsions and the corresponding sudomotor bursts has also been analized by (Ogawa, et 

al., 1993). They found that the mean voltage amplitude of a sudomotor burst (an indicator of intensity of the burst) is linearly related 
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to the rate of rise (Rise time) of the corresponding sweat expulsion, to its amplitude (Response amplitude) or to the sweat output (area 

under the curve) produced by the expulsive process, when sweat rate is moderate or mild and the fusion of sweat expulsions is 

minimum. The exact origin of burst discharge of sudomotor drive has not been identified yet. (Wang, 1964) suggested that the central 

mechanism of synchronizing sweat expulsions on cat’s footpads is situated in the striopallidum.  

3.5 EDA elicitation 

 

Although the major function of sweating is the regulation of the body temperature, it is well known that sweating on the palms 

of hands and feet is independent of the ambient temperature (under neutral condition), and is elicited by emotional (fear, pleasure, 

agitation), physiological (inspiration, tactile stimulations, movements) and stressful (mental exercises) stimuli.  

(Ogawa, et al., 1993) claims that the frequency of sweat expulsion (Fsw) in thermal equilibrium is a linear function of ambient 

temperature (Ta)Figure 3-8. Fsw is also highly correlated with mean body temperature, when the latter is appropriately estimated as 

combination of core temperature and mean skin temperature. It is therefore considered that Fsw reflects sudomotor neural activity 

derived from the central thermoregulatory mechanism. 

 

Figure 3-8: Plots of frequency of synchronous sweat expulsion (Fsw) of spontaneous sweating (solid symbols) 

and of pilocarpine-induced local sweating (open symbols) against ambient temperature Ta. 

 

For a deeper knowledge about the relation between thermal sweating and temperature may read the whole article (Ogawa, et al., 

1993) where the authors claims more quantitative and analytic relations about variables.  Finally, it is clear the thermoregulation 

function of sweating because the more the temperature rises, the more the frequency and thus the amount of sweat augment, 

attempting to cool the body by evaporation mechanism. Besides the thermal sweating described in the previous section, (Schliack, et 

al., 1979) gave evidence for an additional five kinds of sweating which are classified according to the stimuli eliciting them. Every 

type uses the postganglionic sympathetic neuron, which has its origin in the sympathetic trunk and travels via the peripheral cutaneous 

nerve to the sweat gland as a final common terminal path. However, their mechanisms of CNS elicitation differ in part. 
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“Emotional sweating” means increased sweat gland activity as a concomitant of psychological and, especially, emotional states 

which appear, for example, in high arousal or under stress. It is likely to be elicited via hypothalamic-limbic connections. Emotional 

sweating is observed mainly on palmar and plantar sites but also in the axillary and genital regions (Millington, et al., 1983), as well 

as on the forehead (Schliack, et al., 1979). However, (Allen, et al., 1973) reported increased sweating at other body sites during 

emotional strain induced by arithmetic exercises. They observed the amount of sweating as being directly proportional to the number 

of sweat glands per region, thus indicating no regional differences in emotional sweating. (Shields, et al., 1987) also considered the 

possibility of the specific reactivity of palmar and plantar sweating to psychological stimulation as being dependent on the greater 

sweat gland density on these sites. Thus, the specific role of palms and soles in emotional sweating remains to be considered further 

(Boucsein, 2011). 

“Gustatory sweating” appears when food is consumed which is especially sour, highly salted, or spicy. There are marked 

interindividual differences with respect to the sites included. Gustatory sweating mainly appears on the face (e.g., on the forehead and 

the upper lip (Schliack, et al., 1979)) and on the wings or the top of the nose. Its intensity can be irritating without being pathological. 

However, pathological gustatory sweating may appear after sympathetic nerve lesions. The sweating response can also be elicited in 

the absence of gustatory stimuli – it does not even require intact gustatory sensation – via chewing and olfactory as well as 

psychological stimulation (Boucsein, 2011). 

During resting conditions (relax), “ubiquitous spontaneous sweating” can be observed on plantar and palmar sites maybe as an 

expression of a resting tonus (Schliack, et al., 1979) comparable to the resting muscle tonus of motor units whereas (Jänig, et al., 

1983) could not find spontaneous sweat gland activity, at least at temperatures below the thermoregulatory neutral zone. (Nicolaidis, 

et al., 1972) reported an empirical observation demonstrating fast sweat discharge on forehead with frequencies up to 21 Hz. However 

the existence of such a resting tonus discharge remains debatable and the problem still remains unsolved (Boucsein, 2011). 

Ubiquitous spontaneous sweating can be observed on palmar and plantar sites, even by a simple magnifying glass. Even in mild 

thermal environment, where thermal sweating is absent in a resting man, sweat expulsion are recognized on a record of drug induced 

localized sweating, though low in frequency and amplitude, and are synchronous among different skin areas (Ogawa, et al., 1993). 

“Reflex sweating” is an expression that describes sweat gland activity at sites which are innervated from spinal cord segments 

distal to the locus of certain damage (e.g., paraplegia). The expression is also used for a confined, local sweating following 

stimulation of an area with radiation, heat, needle punctures, or electricity. It is assumed to be mediated through the so-called axon 

reflexes. 

Pharmacologically produced sweating is a local sweat secretion elicited through either subcutaneous or intracutaneous injection, 

as well as through iontophoresis with cholinergic substances (e.g., nicotine or pilocarpine). 
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There is also a special mechanism of sweating which underlies the so-called cold sweat. Startle responses and other strong 

emotionally tinted responses, as well as deep breathing and coughs – all situations associated with a sudden elicitation of adrenaline – 

also lead to sweat secretion. Free circulating adrenaline, however, acts in a vasoconstrictory manner similar to a cold stimulus. At the 

same time, sweat secretion may be activated via hypothalamic centers. Both responses result in cold sweat, which seems to be 

paradoxical with respect to thermoregulation.  

3.6 GSR signal 

 

The terms Galvanic Skin Response (GSR) or Electrodermal Activity (EDA) refer to the time changes of the electrical properties 

of the skin, occurring under various stimulating conditions or not.  With this we mean changes in various electrical properties like 

conductance (SC), resistance (SR), potentials (SP), impedance (SZ), admittance (SY). These changes can be observed in different 

parts of the body, although, the most interesting ones occur in the volar part of the hands and palms, and are due almost exclusively to 

variations in the ionic content of the various skin layers, depending upon the amount of sweat, and hence upon the sweat glands 

activity. From the analysis of the time changes of the skin’s electrical properties, direct information may be obtained on the activity of 

the autonomic nervous systems (ANS). In fact, the whole secretory part of the exocrine sweat glands, including the myoepitelial layer 

that surrounds the sweat duct in the dermis, is completely innervated by the sympathetic branch of the ANS (with acetylcholine as a 

synaptic transmitter). 

The terms used to describe EDA have changed over the years; as a matter of fact the term used at the turn of the nineteenth 

century was "psychogalvanic reflex" but later the term "galvanic skin response" was used. Nowadays most psychophysiologists favor 

the term electrodermal activity (Boucsein, 2011). In 1967 a proposal for EDA terminology standardization made by a commission of 

the Society of Psychophysiological Research had been published (Brown, 1967) which is now generally accepted. (Table 3-1) 

(Boucsein, 2011). 
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The electrical activity of the skin can be measured in two ways. 

external source between two electrodes and the resistance to the passage of current 

recording. Methods of exosomatic recording apply either direct

measurement, if voltage is kept constant, EDA is recorded directly in skin conductance (SC) units, while

obtained when current is kept constant. The exosomatic method

(SC), the reciprocal of skin resistance. On the other hand,

conductance recording is mainly used today by most researchers.

The study of “skin conductance” has some advantages as compared with other pa

example, Thomas and Korr, in 1957, obtained an essentially linear relationship between the number of active sweat glands per 

area and the measures of skin conductance (Thomas, et al., 1957)

simpler time course, as compared with skin potential. In fact, the SC can be recorded with just two active electrodes on the 

two fingers, whereas SP measurements need two electrodes inserted into the skin, and may show multiphasic time courses

difficult to interpret (Boucsein, 2011).  

In this thesis work we will focus only on skin conductance.
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Table 3-1: EDA complete terminology (Boucsein, 2011) 

in can be measured in two ways. First, a small current can be passed through the skin from an 

and the resistance to the passage of current is then measured.

Methods of exosomatic recording apply either direct current (DC) or alternating current (AC) to the skin. In DC 

ept constant, EDA is recorded directly in skin conductance (SC) units, while

The exosomatic method has been modified today into the measurement of skin conductance 

On the other hand, endosomatic method is still used to measure skin potential (SP), but skin 

by most researchers.   

The study of “skin conductance” has some advantages as compared with other parameters, like skin resistance or potential. For 

example, Thomas and Korr, in 1957, obtained an essentially linear relationship between the number of active sweat glands per 

(Thomas, et al., 1957). Moreover, skin conductance is simpler to measure, and shows a 

simpler time course, as compared with skin potential. In fact, the SC can be recorded with just two active electrodes on the 

d two electrodes inserted into the skin, and may show multiphasic time courses

In this thesis work we will focus only on skin conductance. 

 

a small current can be passed through the skin from an 

then measured. This is called exosomatic 

current (DC) or alternating current (AC) to the skin. In DC 

ept constant, EDA is recorded directly in skin conductance (SC) units, while skin resistance (SR) units are 

has been modified today into the measurement of skin conductance 

measure skin potential (SP), but skin 

rameters, like skin resistance or potential. For 

example, Thomas and Korr, in 1957, obtained an essentially linear relationship between the number of active sweat glands per unit 

Moreover, skin conductance is simpler to measure, and shows a 

simpler time course, as compared with skin potential. In fact, the SC can be recorded with just two active electrodes on the surface of 

d two electrodes inserted into the skin, and may show multiphasic time courses, often 
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Figure 3-9: Preferred palmar recording areas for exosomatic EDA recording (Boucsein, 2011) 

 

3.6.1 Tonic and Phasic 

As a general feature, GSR signal (both SR and SC) is constituted by two different (and quasi-independent) superimposing 

components: a slowly habituating measure of arousal activity (SCL or skin conductance level) called “tonic component”, and a fast 

varying component (skin conductance response SCR) called “phasic component”. The two components originate at the peripheral 

level, but are directly mediated by the central nervous system (CNS) and hence drive different information. In fact, the tonic 

component is supposed to be related to the broad level of brain activation, (“arousal”) and the properties of the skin(e.g. factors such 

as degree of moisture in the stratum corneum, membrane permeability etc) (Storm, et al., 2000), whereas the phasic component, small 

waves superimposed to the tonic part showing a steep incline to the peak and a slow decline to the baseline, may reflect stimulus-

specific responses or non-specific responses. SCL and SCR are also assumed to be linked together by some non-linear interactions at 

the peripheral level.  

 

Figure 3-10:  Skin conductance signal example 
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In literature (Ishchenko, et al., 1989) affirmed that “the signal of the tonic and phasic components are not periodic, their spectra 

are continuous and overlap[…]. The bulk of the energy of the tonic component of the signal is in the frequency band from 0 Hz to 

0.05 Hz, and the energy of the phasic component is in the band from 0.05 Hz to 1-2 Hz (Butkevich, et al., 1978)”. According to 

(Boucsein, 1992), the signal consists of two components: a tonic one that represents a low frequency baseline (0-0.05 Hz), and a fast 

changing phasic component (0.05 Hz-1.5 Hz) superposed on the tonic part. It is common in literature to find that beyond 3 Hz 

maximum there is no useful SC signal.  

3.6.2 SCR – Specific and non-specific responses 

The term SCR (EDR or electrodermal response in general) is usually associated with an evident change in EDA signal as a result 

of a stimulation (called specific or elicited responses) but there are often phasic parts of EDA which cannot be traced to any specific 

stimulation. The SCRs are the most commonly used measure of orienting responses (OR) (Graham, 1973), defined by (Sokolov, 

1960) as a generalized arousal state following an unexpected stimulus. The OR emitted by stimuli are called specific SCRs, whereas 

the OR induced as a consequence of internal or mental events are called non-specific SCRs and the typical activity is 1-3 events/min 

when the subject is at rest (Dawson, et al., 2001). Hence, they are called “spontaneous” or “nonspecific” EDRs which are 

characterized by the prefix “NS” (e.g., NS.SCR is used as an abbreviation for nonspecific skin conductance response).  

3.6.3 Phasic SC parameters 

Skin conductance parameters which can be found in literature are more or less standardized (Lykken, 1971). SCR responses can 

be broken down in to a number of component measures: Onset Time, Rise Time, Amplitude, Recovery Time, Recovery Half Time. 

 

 

Figure 3-11: Typical skin conductance response (SCR) curve 
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3.6.3.1 Amplitude 

 

The amplitude parameter (EDR.amp) it is the most common parameter to describe en electrodermal response. The amplitude 

assessment should be done fixing a minimum amplitude threshold (such as to discard unnecessary information i.e.noise) as well as 

deciding a criterion to manage supersimposed close EDRs (Boucsein, 1992). A common minimum response amplitude used in SCR 

research is 0.05 µS (Dawson, et al., 2001). 

As it is possible to notice from Figure 3-11, the amplitude is defined as difference between the conductance values during 

latency time and the maximum peak. Nevertheless this evaluation might not be easy in case of superimposing EDRs. This situation is 

often encountered in subjects showing high level of arousal (stressed, anxious…). It is possible to observe that the distortion grade of 

the second response in case of superimposition depends on the grade of proximity with the previous response (Grings, et al., 1969). 

(Boucsein, 2011). 

 

Figure 3-12: Different proposed methods for calculating superimposed SCRs (Boucsein, 2011) 

 

In case of superimposition, literature propose some criteria (Figure 3-12): with “EDR type 2, evaluation method A” the 

amplitude of the second response is obtained measuring the vertical distance from the peak of the second response to the extrapolated 

line drawn starting from the decay of the previous response. “EDR type 2, evaluation method B” is easier to calculate and it is the 

most common in literature (the amplitude of the second peak is obtained as vertical distance from second peak value to the previous 

trough). (Edelberg, 1967) was able to demonstrate that this leads to correct results in most of the situations.  However the amplitude 

assessment is more problematic in those cases on the right side. In “EDR type 3, evaluation method C” the first response is ignored 

whereas in “EDR type 3, evaluation method B” no (the latter recommended in (Edelberg, 1967)). Lately they have been developed 

more sophisticated computer based methods to separate superimposed responses whom we will discuss later. 
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3.6.3.2 Latency time 

 

The latency time is the time necessary for the signal to start the deflection. EDRs show long latency times if compared with the 

ones of other biosignals, for example evoked potentials (ERP)  or HR variations. The latencies in a exosomatic recording range 

normally from 1 to 2 seconds (Boucsein, 2011). The temperature alter the latency time, in fact (Edelberg, 1967) reported a latency 

time of 5 seconds recorded in environment below room temperature: the temperature should always be recorded if different 

experiments should have been compared, because the latency time depends on the acetylcholine transportation speed, depending on 

the temperature. After a stimulus delivered to a subject, the most common value of the expected latency time found in literature  is 1 

to 4-5 seconds, with an average time of 2.3 seconds between the instant of the stimulus presentation till the peak of the phasic 

response.  

A further problem in calculating latency time is due to the impossibility to obtain an accurate and not ambiguous onset time 

(time instant of the response beginning). In this case it is common calculating the derivative in order to identify it (Boucsein, 2011). 

3.6.3.3 Recovery Time 

Often it is difficult to determine the exact instant of time where the electrodermal response ends its asymptotic descend, and also 

usually there’s a tonic activity varying during the response not permitting the response to reach the prestimulus value. Thereby, such 

as to determine the recovery time, (Darrow, 1937) used the half-life time used with radioactive materials: it is defined as the time 

taken by these materials to half their mass. In a similar way, Darrow expressed the “Half-life time” (HLT) as the time necessary for 

the electrodermal response to reach 50% of the response amplitude (EDR.amp). Similarly, it is defined EDR Rec.tc the time to reach 

63% of EDR.amp. 

It is not always possible to measure HLT or Rec.tc because a second EDR may occur before the first decays enough 

(superimposition). In this cases, (Fletcher, et al., 1982)  proposed to use HLT/2, because they reported a correlation of about 90% 

between log(Rec.tc) and log(Rec.tc/2). This way they managed to rise the percentage of skin conductance responses of 23%. 

However, nowadays it must still be demonstrated that these recovery time evaluation techniques of rapid and superimposed responses 

provide valid, reliable and homogeneous information. At least it is advisable to make sure that the individual response shapes, 

superimposed, correspond to individual response shapes not superimposed; this could be obtained with a recording period without 

superimpositions. (Boucsein, 2011). Mathematical solutions with the aim to solve superimposition cases have been proposed recently, 

mainly based on deconvolution techniques. 
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3.7 SCR Mathematical models 

 

Figure 3-13: SCR modeled using 3 exponential functions  

 

Figure 3-13 depicts a SCR reconstructed using 3 exponential functions, one for the rising part (τ = 0.1 sec) and two for the 

descending part (τ1 = 0.2 sec and τ2=6 sec); the simulated curve shows Rec.t/2 of 4.4 sec and Rec.t.c. of 1.8 seconds, values 

representing a good approximation of a real curve. (Edelberg, 1971) reported a range of values of 1 to 15 seconds, with mean values 

between 4 sec and 6 sec for the time constants of the descending traits. 

More sophisticated models were proposed by (Hunt, 1977), who developed a curve equation based on superimposed gaussian 

distributions fitting the typical curve, and by (Schneider, 1987), who fitted the real skin conductance response curve with a three 

compartments model capable to describe the physical properties of sweat ducts, the behavior of the active membrane on sweat duct 

walls and corneal hydration. He also showed how a typical EDR could be described considering a triangular impulse and as impulse 

response the sum of two exponentials with time constants of 2 and 20 seconds. 

(Ahlberg, et al., 1967), instead, proposed the idea that an alternative way to describe an EDR was using a cubic spline passing 

through the onset instant time, the peak value and the rest of descending available points. 

Although many mathematical models have been proposed, for the practical goal of this thesis, we focus our attention only on 

certain models we are going to describe below.  

(Lim, et al., 1997) proposed in their paper a model of SCR based on 4 parameters controlling every aspect of the curve. The 

equation is  

 

Equation 3-1: Lim’s equation 
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Where where g1=gain, Tos=response onset time, Tr=rise time constant and Td=decay time constant. 

 

The equation is composed combining two functions that is a sigmoid function (describing the rising part) and an exponential 

decay function for the decay part: the result is a sigmoid-exponential function modeled with 4 parameters. They reports in (Lim, et al., 

1997) the mean values of parameters (Table 3-2). 

 

Table 3-2: Mean parameters (Lim, et al., 1997) 

 

 

Figure 3-14: Lim’s IRf 

 

The model proposed by (Alexander, et al., 2005) is based on a bi-exponential function. This equation has been previously used 

to model the effects of individual nerve impulses  on synaptic activation of the neuronal membrane  
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The larger time-constant (taken to be τ0) describes the decaying tails of the SCRs, whilst the shorter time-constant (τ1) governs 

the rise time in response to a peak in the driver.  

 

 

Equation 2: Alexander function 

 

 

Figure 3-15: Alexander IR function 
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4 Algorithms  

 

Spontaneous and elicited changes in skin conductance signals have been proposed as a measure of neurophysiologic arousal 

followed by activity in the sympathetic nervous system (Wallin, 1981) so as an indicator of sympathetic activity. These physiological 

changes in SC can provide an objective method for evaluating a person’s state of arousal and will help detect covert changes that may 

escape subjective evaluation or direct observation (Storm, et al., 2000). When an outgoing sympathetic nervous burst occurs, a wave 

of skin conductance will follow so during spontaneous skin conductance changes, increased number per second (and amplitude) of the 

waves is interpreted as increased activity in the sympathetic nervous system (Lidberg, et al., 1981). Measuring parameters relative to 

SCRs with CTTP method creates problem when SCRs overlap, a problem that becomes endemic in experimental paradigms that use 

short inter stimulus intervals. Short ISI paradigms, such as those usually employed in cognitive research, confound measurement of 

each discrete phasic SCR. The overlapping SCRs introduces distorsions into all SCRs measured distorting amplitude and locations. 

The least affected is response frequency (Dawson, et al., 2001), but even this can be distorted if temporally near-contiguous SCRs are 

scored as a single event. We describe the methods in literature and a novel algorithm to assess the sudomotor bursts triggered by ANS 

causing SC responses that permit to solve overlapping problems. 

As we will see with (Alexander, et al., 2005), (Benedek, et al., 2010a), (Benedek, et al., 2010) the deconvolution technique is a 

common tool. Deconvolution relies on the precondition that there exists a stable impulse response function (IRF): if the IRF shows a 

too slow recovery process the driver (burst activity signal) may become negative for some SCRs and a negative driver cannot be 

interpreted in terms of sudomotor activity. On the other hand, if the recovery process of IRF is chosen too fast, the deconvolution 

analysis results in less compact impulses in the driver function.  

It can be easily be shown that deviations of the SC data from a model IRF result in implausible driver responses (Benedek, et al., 

2010). 

4.1 Classic trough to peak method (CTTP)  

 

The algorithm was designed for analyzing spontaneous and external elicited SC changes for infants and adults (Storm, et al., 

2000).  It calculates the number and mean amplitude of the waves as well as the mean basal level in the SC signal analyzed by means 

of detecting the characteristics of SC fluctuations (waves). The program analysis was carried out using a number of different values 

for the minimum amplitude, maximum slope and minimum width of the spontaneous waves for infants and adults, and the results 
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were compared with those obtained with manual counting of the waves. The program was used also to perform coherent averaging of 

repeated elicited SC changes, assessing the latency time, response amplitude and recovery time of the mean elicited skin conductance 

response.  

4.1.1 Method  

The program records and counts the number of waves per second by defining the valleys and peaks and calculates the mean 

waves amplitudes as well as the mean basal level in the studied period of the spontaneous skin conductance activity. The valley and 

peaks were established when the derivative of the wave was zero (Storm, et al., 2000). This is the most intuitive and simple way to 

assess amplitude, as we can find for example in (Boucsein, 1992) and (Edelberg, 1967). 

The amplitude of waves is here calculated from the bottom of the valley prior to the peak to the height of the peak (Storm, et al., 

2000). The slope of an SCR is defined as the mean distance valley to the peak / time to reach peak. The width of the wave defines the 

number of measured data points following directly after a valley. Broad widths can reduce the apparent amplitude of peaks and alter 

the apparent location. The program is based on an algorithm that fits a quadratic polynomial to sequential groups of data points. The 

number of data points used in the width is specified by width. For each peak or valley, the quadratic fit was tested against the 

threshold level: peaks with heights below threshold or valleys with troughs above threshold are ignored (Storm, et al., 2000). The 

amplitude and width threshold are set in order to eliminate eventual noise influences,  the slope threshold to eliminate noise from 

electrode slipping. For external elicited skin conductance changes, the program can perform a coherent averaging in order to calculate 

the reaction in time (for example to a medicine) providing mean amplitude, mean latency time and mean recovery time. 

The present program does not mention at all a preprocessing method as additional smoothing or filtering, thus they probably 

perform their algorithm on SC raw signal directly. 

 

4.1.2 Results 

The authors proposed a 0.02 µS as the optimum threshold to discriminate genuine waves (physiological) from waves due to 

noise. The authors set a maximum limit value for the calculated slope as 2 µS/s for infants and adults, value able to separate 

physiological waves from motion artifact waves and electrode slipperying. The width of the waves should be at least 1 s for adults, 

and unlimited for infants. The coherent average method was found to be a satisfactory method for revealing whether a subject 

responded to stimuli, and is recommended, especially for infants (Storm, et al., 2000). 

 

 

 



4.Algorithms 

 

Carlo Ceriotti -765531 

49 

4.1.3 CTTP method drawbacks 

The CTTP method is affected by drawbacks and it should be used only to roughly estimate the number of fluctuations. However 

can fail in presence of overlapping SCRs, when also manual counting can fail due to the superimposition phenomenon. 

 

Figure 4-1: Two superimposed blackman windows 

 

In Figure 4-1 there are two blackman windows (cyan and blu) and their sum (red curve). The detection as performed in (Storm, 

et al., 2000) is not reliable because the right trough-to-peak amplitude detected is only 0.0045 µS but the window is of  0.4 µS so this 

algorithm distorts SCRs amplitudes.  

4.2 The Lim Method 

A possible solution for a computer-based treatment of overlapping SCRs has been suggested by (Lim, et al., 1997). Their 

modeling was based on the assumption of the stereotypical nature of the SCR waveform within each subject, so a unique SCR shape 

within each subject. This hypothesis has been objected by many authors, being a radical assumption and a simplification.  

The model proposed by (Lim, et al., 1997) performs a curve fitting adopting a four to eight parameter sigmoid-exponential SCR 

model describing the entire response (SCR) accounting for the SCL, the slope of preceding SCR and the shape of one or two 

overlapping SCRs. This method aims to split the SC signal into a phasic and a tonic component actually obtaining the “true” SCR 

shape getting rid of SCL (tonic component) and any other distortion due to SCRs in proximity of it. 
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4.2.1 Method 

Individual SCRs are fitted with a function based on an asymmetrical sigmoid and an exponential function, and the method 

iteratively optimizes the model parameters to minimize the mean-squared difference between the fitted and actual curve. Equation 4-1  

reports the four parameter model of ‘pure’ SCR (excluding SCL) based on a combination of an asymmetrical sigmoid and an 

exponential function. The pure SCR (excluding SCL) is comprised in the so called “Case1”, the most simple case. 

 

Equation 4-1:  g1=gain, Tos=response onset time, Tr=rise time constant and Td=decay time constant. 

 

This model and its extensions can characterize a wide variety of response waveforms, size and combinations. The algorithm can 

decompose the SC activity into its components, namely, the residual from the previous SCR tail, the pure SCR and SCL. Different 

terms have to be added to Equation 4-1 if a single SCR is superimposed on a fixed SCL, if a SCR occurs on a decaying limb of a 

previous response or if two overlapping SCRs occur on a decaying slope (Lim, et al., 1997).   

The authors visually inspected and categorized SC segments into 3 cases deriving from “Case 1” in Equation 4-1 and modeled 

incrementally the SC signals in 3 cases of increasing complexity. The reader may notice that Case1 requires 4 parameters. 

 

• Case 2: “Pure” SCR on a flat baseline, described with a 5 parameters model (Case 1 + flat baseline) 

• Case 3: as Case 2 but with a sloping baseline (mainly the tail of the previous response), described with 6 parameters 

model (Case 2 + sloping baseline) 

• Case 4: the most complex, containing two overlapped SCRs on a sloping baseline, described with an 8 parameters 

model (Two time Case 3). 

 

Specifically, a computer program is used to automatically scan the entire date file and to detect SC trough- and peak-latencies 

and their amplitudes for a rough estimate of the initial model parameters. Thereafter, the waveforms are visually inspected, providing 

the opportunity to accept or modify the automatically generated initial values before curve fitting process (using a standard non-linear 

least squares method) is committed. After 10–30 iterations, success of the fit should be apparent by visual inspection. If not, the initial 

values may be modified again until a satisfactory fit is achieved. Then, a reminder (residual between the fitted curves and the SCR 

data), reflecting the not-perfect fitting model, is obtained and in most of cases is less than 5%. The fitted curves were demonstrated to 
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be almost indistinguishable from their respective raw response complexes. Now the SCRs are free from superimpositions and 

analyzed. 

4.2.2 Results 

The method was applied by Lim et al. (1997) to more than 60 SC segments, each containing one SCR or two overlapping SCRs 

on a sloping baseline elicited by 80 dB tones with ISIs as short as to 1.32 s, obtained from 20 normal participants and recorded with 

standard methodology CTTP  (Storm, et al., 2000) as depicted in the next Figure 4-2. 

 

Figure 4-2: two overlapping SCRs 

 

In comparison with CTTP, their decomposition methodology yielded a significant mean amplitude increase of 14% and an 

increase in peak latencies of 140 ms. The latency increase can be regarded as a consequence of removing the disguising effect of the 

preceding SCR’s tail on the onset of the subsequent SCR.  

The four parameter values (adding also a0 : the initial SC value at stimulus and c:SCL value) emerging from this experiment 

were used to calculate the across-subject parameters means, Standard deviation (SDs), coefficients of variations and maxima values as 

well as mean peak latencies and amplitudes obtained with CTTP and Lim’s method. 

 

Table 4-1: Lim’s mean values for SCR modeling 
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The mean and SDs of the four parameters are used to reconstruct a family of curves which demonstrate the influence of the 

parameters on SCR shape. Figure 4-3 shows the influence of the 4 parameters on SCR shape.

  

Figure 4-3: Parameters influence shape 

 

The Lim method has been applied later by (Williams, Brown & Das, 2004)  studying 22 non pathological subjects viewing four 

blocks of fearful alternated with four blocks of emotional neutral faces. Despite the quite short ISI (0.75 s), fear and neutral stimuli 

could have been significantly differentiated by means of SCR amp, leading to some hint about the validity of this evaluation method.  

4.3 The Alexander Method  

 

An evolution of (Lim, et al., 1997) method was reported (Alexander, et al., 2005) which overcomes the necessity of a judicious 

choice of initial parameters and visual inspection of curve fitting. As Lim, they describe a method designed to overcome the problem 

of overlapping skin conductance responses. They proposed an automated method for scoring individual SCR by converting the SC 

signal into a time series with a shorter time constant, relying on the assumption that the underlying sudomotor nerve signal has a 

shorter time constant than skin conductance signal and that the sudomotor bursts arrive as discrete, separated peaks. The algorithm 

performs a deconvolution of SC data with an appropriate impulse response function (IRF also called transfer function): the IRF 

represents the basic SCR shape that would result from a unit impulse. They claim to be able to extract the separated peaks and 
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estimating the underlying driver signal. The separated driver peaks are then used to re-estimate each individual skin conductance 

response. 

 

 

Figure 4-4: Relationship between sudomotor nerve signal and skin conductance 

signal. Discrete spikes in nerve activity are followed by slower time-constant 

changes in the skin conductance signal. 

 

The method scoring individual SCRs described in this paper relies on two key assumptions: 

1. Sweat activity results from discrete episodes of bursting of the sudomotor nerves 

2. The apparent time-constant of the bursting episodes is much shorter than the measured SCR. 

Those assumptions allow that, even where individual SCRs are highly overlapping, the estimated underlying burst time-series 

shows discrete, separate events. We can say that it is a sort of SC signal transformation into an approximation of the original bursting 

episodes. 

The authors makes use of a Bateman function (biexponential function) to model the relationship between the driver and the 

SCRs. (Schneider, 1987) originally proposed a physiological rationale for the biexponential shape based on a two-compartment 

diffusion process. The following is considered by the authors the differential equation relation governing the SC time series. 

 

Equation 4-2: Alexander’s equation 

 

In Equation 4-2,  τ0 and τ1 are time-constants, y(t) the skin conductance and q(t) the driver function, which the authors interpret 

as being representative of the activity of the sudomotor nerve. The larger time-constant (taken to be τ0) describes the decaying tails of 

the SCRs, whilst the shorter time-constant (τ1) governs the rise time in response to a peak in the driver. In the limit τ0 ---> 0, the 

previous equation becomes equivalent to an RC circuit. So an impulse spike in the driver at t=0 generates a biexponential function 

form as below: 
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Equation 4-3: Alexander impulse response 

 

Equation 4-2 defines the SC signal (y(t)) as the convolution of the driver function q(t) with a biexponential function: as a matter 

of fact by deconvolving the signal with Equation 4-2 it is possible to obtain the driver where now the peaks are well separated and can 

be easily detected. This evaluation method consists of 3 steps: 

 

1. Performing a deconvolution of the SC signal so as to obtain the driver signal.  

2. Isolating single peaks, now well separated (as in Figure 4-4) in the driver signal 

3. Convolution of the peaks recognized in the driver function with Equation 4-3 in order to reconstruct the individual 

SCRs and so being able to assess parameters about SCR shape. For a minority of SCRs, i.e., where the driver does not 

conform to the standard function or where the driver signal contains overlapping peaks, an iterative procedure is applied 

to the sequence of potential peak intervals, until no further changes occur. 

 

The mathematical symmetry underlying the deconvolution/convolution means that altering τ0 and τ1 values changes the driver 

time-series, but not the re-estimated SCRs. So long as τ0 and τ1 are chosen such as the peaks in the driver signal are fully separated by 

a relatively long baseline between them, the exact values do not make a major difference to the scoring of the peaks (Lim, et al., 

1997).  

4.3.1 Results 

Using surrogated data, they were able to distinguish SCRs till a distance of 1.3 seconds. At offsets of less than 1.3 seconds, the 

two SCRs appear as single SCR upon qualitative observation. 

In order to verify their method, the authors set up an experiment in which 735 subjects were presented auditory stimuli with ISI 

of 1 s in an odd-ball paradigm4 originally designed for ERP recordings. They found that optimal values for time constants were 

respectively 2.0 s and 0.75 s for τ0 and τ1, which work well for all time series in the database, moreover verifying that the present 

method is not excessively sensitive to the values of parameters involved in phasic and tonic separation. This method was also applied 

                                                           
4 The oddball paradigm is a technique used in evoked potential research in which trains of stimuli that are usually auditory or visual are used to assess the neural 

reactions to unpredictable but recognizable events. The subject is asked to react when a target stimulus is detected, the latter being hidden as rare occurrences amongst a 

series of more common stimuli, that often require no response. 
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by (Davis, et al., 2009) in a learning task experiment, in which about 40 subjects were asked to classify beetles pictures according to a 

complicated set of category structures, finally being able to study the relations between stimuli and anticipatory SCR. In conclusion 

the method was found to be useful and effective in experimental settings were tight sequences of stimuli are presented, extracting 

individual ‘bursts’ so as to reconstruct the individual SCRs. 

CTTP method is unable, they claim, to handle SCRs temporally contiguous in a satisfactory fashion, because CTTP 

underestimates the true amplitude, onset time, rise-times and number of SCRs. The underlying assumptions are also simpler than the 

method of (Lim, et al., 1997) and no function fitting is required. Scoring is completely automated, requiring not human supervision 

once parameters setting have been chosen. 

 

4.4 The Ledalab Software 

 

It is a Matlab-based software for the analysis of skin conductance data (SC; i.e., EDA, GSR). It can import various file formats 

(including BioPac, Biotrace, CassyLab, PortiLab, PsychLab, VarioPort, VisionAnalyzer, VitaPort) and provides many preprocessing 

functions. It can performs event-related analysis relative to events/marker and returns various parameters of phasic and tonic activity. 

It can be used via an interactive GUI or in an efficient batch-mode via the Matlab command window. It currently provides two EDA 

analysis methods:  

 

1. The Continuous Decomposition Analysis (CDA) performs a decomposition of SC data into continuous signals of phasic 

and tonic activity. This method takes advantage from retrieving the signal characteristics of the underlying sudomotor 

nerve activity (SNA). It is beneficial for all analyses aiming at unbiased scores of phasic and tonic activity. 

2. The Discrete Decomposition Analysis (DDA) perfroms a decomposition of SC data into distinct phasic components and 

a tonic component by means of Nonnegative Deconvolution. This method is especially advantageous for the study of 

the SCR shape. 

 

Ledalab has been used at more than 60 universities and research facilities and is licensed under the GNU General Public License.  

(www.ledalab.de). 
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Figure 4-5: Ledalab screenshot 

 

4.4.1 The Continuous Decomposition Analysis (CDA) 

 

The outcome of this algorithm is a continuous tonic and phasic signal constituting SC signal. The resulting driver shows a zero 

baseline and overlapping SCRs represented by predominantly distinct, positive, compact impulses showing an average duration of 

less than 2 sec. A time integration of the continuous driver activity is proposed a straightforward indicator of event-related 

sympathetic activity (Benedek, et al., 2010a).  

This is based on a standard deconvolution algorithm. By employing inter-individually adjusted IRFs with short time constants 

combined with a technique for the estimation and subtraction of tonic activity, one continuous estimate of phasic activity is obtained, 

which is compatible with a stable IRF. This approach is different because it abandons the concept of single, discrete responses in 

favor of a continuous measure of phasic activity. The advantage in obtaining a continuous phasic activity is the assessment of a 

straightforward indicator of event-related activity by means of response window integration. The extraction process is based on 3 

steps:  
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1. Deconvolution of SC data 

2. Estimation of Tonic activity 

3. Estimation of phasic activity. 

1. Deconvolution of SC data 

 

The deconvolution process is performed initially using a predefined parameter set (τ1=0.75 s , τ2=2 s), parameters which 

characterize the shape of the IRF. After the first iteration of deconvolution, a performance parameter describing the goodness of the 

IRF applied to the signal under analysis is determined. The performance parameter takes into consideration the rate of negativity (neg) 

of the phasic driver (undesired condition) and the indistinctness (ind) of the impulses in the phasic driver (situation of distinct, 

compact (short support) impulses). By rerunning all 3 steps for each new parameter set, the model goodness is brought to its optimum. 

Hence, it has been obtained the total driver signal. 

The rationale under their algorithm is represented by the next formulas (Equation 4 and Equation 5): 

 

 

Equation 4: Decomposition of SC in parts  

 

 

Equation 5: SC expression 

 

The SC signal is conceived to be composed by the tonic and phasic signals. As phasic signal, the tonic signal activity can equally 

be represented as the convolution of some sort of tonic driver function convoluted with the same IRF used for estimating the phasic 

driver. Although mathematically correct, this procedure is not physiologically motivated but this is not relevant because the tonic 

signal will be re-obtained by means of convolution process when phasic driver will be estimated. The phasic driver and tonic driver 

are represented in the second plot in Figure 4-6.  
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2. Estimation of tonic activity 

It must be noted that the total driver signal shows time intervals of inactivity between the compact distinct phasic driver bursts. 

Those time intervals can be used to estimate the tonic activity. After a threshold on amplitude of phasic driver peaks and a specific 

smoothing operation on the entire driver signal, a cubic spline interpolation procedure is applied in order to extend the estimation of 

the tonic driver to the total time range. The slow varying parts of the total driver signal corresponding to the time intervals 

characterized from the absence of phasic peaks is conceived as the tonic driver. Hence, the tonic driver is interrupted by the 

occurrence of distinct, positive and compact phasic activity peaks. The cubic spline is used to estimate the tonic driver  discarding the 

phasic driver activity. The spline passes by the points of the total driver signal between the phasic peaks on a grid made of 10 seconds 

spacing points. The obtained tonic driver is then convolved with the IRF and the tonic signal is estimated. 

 

3. Estimation of phasic activity 

 

The phasic driver is then obtained subtracting the tonic driver (estimated by the cubic spline) by the total driver signal. Hence it 

should be obtained a phasic driver with zero baseline an positive deflections (last plot in Figure 4-6). 

 

Figure 4-6: (Top) SC signal with estimated tonic signal, (Middle) Sum of tonic and phasic driver, (Bottom) Phasic driver 

 

In contrast to non-negative deconvolution, the phasic drive may assume negative values. These negativities may arise from the 

selection of a sub-optimal IRF or from artifacts in the recorded SC data. In contrast to non-negative deconvolution (Benedek, et al., 

2010), the phasic drive may assume negative values. These negativities may arise from the selection of a sub-optimal IRF or from 

artifacts in the recorded SC data. Hence this could be an information on the quality of the extraction algorithm and of the original SC 
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data. Again, phasic SC data could be retrieved by convolution of the phasic driver with IRF. Adding phasic and tonic data perfectly 

adds up to the original SC data. 

 

4.4.2 Nonnegative deconvolution (DDA) (Benedek, et al., 2010)  

 

A new approach has been recently published by (Benedek, et al., 2010), attempting to decompose superimposed SCRs not only 

by a mathematical modified deconvolution method (non-negative) but as well taking into account a particular model of the 

electrodermal system, i.e. the “poral valve model” (Edelberg, 1993). 

Actually we can synthesize it as a “two-compartment diffusion model”. The innovation introduced by those authors, consisted in 

affirming that SCR shape could be described by contribution of two different underlying physiological processes:   

 

 

1. an unconditional slow diffusion process which would cause a rather flat SCR 

2. a pore-opening process, having the property bring about a steep peak to this basic SCR shape.  

 

Thereby now we have two different processes involved in creating the SCR shape. Their quantitative approach to the slow 

process (1) is based on a diffusional model describing the dynamics of sweat concentration in the corneum, supposed to be ruled by 

the laws of diffusion (Schneider, 1987), (Edelberg, 1993). To describe the aforementioned model dynamics, they use the “Batemat 

function”, well known from pharmacokinetics area, where a biexponential function has been used to quantitatively describe the course 

of the drug concentration observed in a body compartment, being a result of its firt-order invasion into this compartment and its first-

order evasion out of it (Boucsein, 2011). An equivalent assumption explaining pore-opening component has not been made. By means 

of SC signal can be decomposed into a tonic component and a number of separate phasic components.  

The authors addressed the problem of the possible negative driver signal values and put forward the decomposition of SC data 

by means of non-negative deconvolution. This method claims non-negativity of the driver and maximal compactness of the impulses. 

It offers a technique for the estimation of the tonic activity based on a fit of the inter-impulse intervals of the driver resulting from 

standard deconvolution. Phasic acitivity can then be extracted by subtracting the SCL from the SC data. Non-negative deconvolution, 

applied to the phasic SC data, results in two phasic signals, a non-negative phasic driver and a remainder. The phasic driver is found 

to exhibit  a zero baseline intermitted by predominantly distinct peaks whereas the reminder signal captures all deviations from the 

standard SCR shape. These deviations  were found to show a specific pattern contingent to  the SCR peak and the authors 

hypothesized that they reflect a pore opening process. This method accounts  for inter-individual differences in the SCR shape and 
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selects the most adequate τ parameters for the IRF in the course of an optimization procedure. The slow recovery process revealed by 

this method seems to  correspond closely to the sweat diffusion from the skin. This approach is based on the assumption that 

variations of the shape of the SCR are due to pore opening processes occurring in close temporal vicinity to the SCR peaks. 

 

4.5 Conclusion 

 

To sum up, the various based deconvolution methods offer considerable progress in the evaluation of overlapping SCRs which 

are very common to stimulus sequences with short ISIs. However, they all have in common that – once the basic evaluation procedure 

has been determined – EDA data are parameterized fully automatically. This surely saves evaluation time compared with the 

traditional evaluation of superimposed EDRs, but it also bears the disadvantage of losing the contact to the original EDA signal, thus 

overlooking critical events such as types of artifacts which cannot be automatically detected. Therefore, for the time being, 

semiautomatic interactive evaluation procedures should be at least applied in parallel to highly automated evaluation procedures.  

4.6 Novel algorithms – BC method 

 

Barbieri-Citi algorithm estimates the spike sequences underlying SC signals providing spike amplitudes and temporal 

occurrences. This algorithm has been developed by Citi Luca and Barbieri Riccardo, from MIT laboratory in 2010. Till now (June 

2013) it is unpublished. In chapter  6.1 the determination of Sw and Bw parameters.   

 

Figure 4-7: Spike sequence from BC algorithm 
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4.6.1 Method 

Hanning window (Hsw) with a number of coefficients equal to twice the product between the sample frequency of SC and a 

chosen Sw parameter is obtained and then normalized dividing it by half the number of coefficients. This is an area normalization 

which makes unitary the area under Hsw. The filtered SC first derivative (FD) by Hsw provides FDsw . A second hanning window (Hbw) 

is obtained as for Hsw but using Bw instead of Sw. FDsw is then filtered by Hbw and the result (FDswbw) is subtracted from FDsw 

obtaining Q signal.  

After the negative Q signal part is suppressed (Q+), the first derivative is calculated (DD2) and its zero crossing with negative 

first derivative (positive to negative) and positive first derivative (negative to positive) are obtained (Max and Min respectively). The 

first and last Min values must be respectively lower than the first and last Max values. The spike amplitudes correspond to Q+ signal 

values calculated at Max indexes whereas they are located according to Min indexes. 

4.6.2 Appendix 

 

In Figure 4-8 some normalized hanning windows as described in chapter 4.6.1 

 

Figure 4-8: Hanning Windows 

 

The SC signal is processed with a cascade of three filters. The Derivative Filter, Hsw , Hbw  and cascade filter frequency responses 

are depicted in Figure 4-9.  
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Figure 4-9: Filter frequency responses 

 

It must be noted (Figure 4-9) the dependence of the hanning windows cut-off frequencies on hanning shapes (Figure 4-8) so that 

the more the number of coefficients the lower the cut-off frequency. The cascade is a band-pass filter. In Figure 4-10 a schematic of 

the three filter frequency responses. The first derivative excludes continuous frequency (0 Hz) whereas Sw and Bw determine the band 

pass cut-off frequencies. To obtain Cutoff Bw minor than Cutoff Sw (Figure 4-10) Bw must necessarily be greater than Sw (Figure 4-10) 

if not their positions would be switched. Figure 4-10 agrees with this. They must be inevitably different to design a bandpass filter but 

their relation is not imposed.  

 

Figure 4-10: Schematic of the three filter frequency responses 

The algorithm relies on the proper Sw and Bw values and we will investigate them as described in chapter 6.1. 
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5 Surrogate SC signal  

 

In this chapter we will describe how we generated the surrogate SC signals. We aimed at obtaining a surrogate SC signal which 

mimics as close as possible the real one. Therefore, we modeled both phasic and tonic parts, which were generated separately.  

To model the phasic part of the SC signal, we started by generating a sequence of spikes (imitating the sequence of the 

sudomotor nerve bursts underlying the skin conductance responses) and then convolving them with a properly chosen impulse 

response function (IRp). In doing this we had to select the spike probability distribution and select the most appropriate IR.  

To model the tonic part we used the spike sequence already used for the phasic part and then convolving them with a properly 

chosen response function called IRt.  

Finally, a realistic noise was added to the surrogate SC signal. The property of the noise was derived from real recordings. 

Details about the procedures are described above. 

5.1 Method 

5.1.1 Choice of the probability distribution governing spike time occurrences 

 

This probability distribution depicted in Figure 5-1 rules the occurrence (time instant) of the spikes in the sequences. We chose 

an inverse Gaussian distribution and the reason of this choice is depicted in Figure 5-1: 

 

Figure 5-1: Mean ISI histogram 
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Gaussian probability distribution function. The theoretical inverse Gaussian distribution is depicted in 

5.1.2 Choice of the proper IR function

 

We focused our attention on two candidates for IR function: the first one was proposed by 

second by (Lim, et al., 1997), which were presented in 
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depicts the mean histogram obtained from 11 different histograms. Each of them is estimated from real SC data by 

calculating the time (in seconds) existing between two successive local minima in the signal. We assumed that each local minimum is 

approximately the time instant where a sudomotor burst starts. In Figure 5-1 we can observe a curve approximating an inverse 

ction. The theoretical inverse Gaussian distribution is depicted in 

Figure 5-2: Inverse Gaussian. (Wikipedia) 

Choice of the proper IR function 

We focused our attention on two candidates for IR function: the first one was proposed by (Alexander, et al., 2005)

, which were presented in chapters 3.7. Between them we  selected the Alexander’s one because the 

underlying model  allows a better control on several IR properties including IR magnitude, rising time, decaying time and ons

more realistic. In Figure 5-3 the two functions are shown. 

5-3:Lim’s (top) and Alexander’s (bottom) impulse response.

We notice the lack of control in onset time in Alexander’s curve (bottom).
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we can observe a curve approximating an inverse 

ction. The theoretical inverse Gaussian distribution is depicted in Figure 5-2. 

 

(Alexander, et al., 2005), and the 

we  selected the Alexander’s one because the 

underlying model  allows a better control on several IR properties including IR magnitude, rising time, decaying time and onset time.  
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5.1.3 Choice of the probability distribution governing spike amplitudes 

The amplitude of the spikes in the sequences is chosen randomly according to a Gaussian distribution with mean of 20 a.u. and 

STD 19 a.u. with a suppression of sign is applied to the outcome in order to avoid negative amplitude values. In Figure 5-4 an 

example of a sequence of 100 spikes is depicted. 

 

Figure 5-4: An example of spike sequence: the spikes time instants are governed by an inverse Gaussian distribution whereas the 

amplitudes are chosen with a Gaussian probability distribution. 

 

5.1.4 Creation of the phasic part of the signals 

We are now able to obtain the phasic part of the SC signal by convolving the spikes of the sequences with the selected IR 

function; in the convolution process for each spike is used a slightly different IR shape: this was obtained by varying the Lim’s IR 

function parameters for each spike.  

This choice was motivated because of research results on differences in SCR rise-time and recovery-time indicate that SCR 

shape shows not only a significant inter-individual variability but also a significant intra-individual variability (Breault, et al., 1993), 

(Edelberg, et al., 1981), (Janes, et al., 1985).  

In details, the IR variability was obtained by randomly changing the governing parameters by means of a Gaussian distribution 

with a selected mean and SD for each parameter. In the following the list of modified parameters and the indication of their range.  

 

• Onset time parameter= mean 0.001 s, STD 0.001 s  

• Magnitude= mean 2, STD 0.01 s 

• Rising time = mean 1.59 s, STD 0.09 s  

• Decaying time=mean 3 s, STD 0.25 s 
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An example of 100 generated IRs is shown in Figure 5-5 

 

Figure 5-5: Group of 100 IR curves 

 

 

 

Figure 5-6:SCR part 

 

Figure 5-6 shows an example of signal, obtained convolving the sequence of spikes in Figure 5-4 with the IR curve in Figure 5-5. 

Figure 5-7 depicts the relation between a spike and the subsequent skin conductance response: the latency time between a spike 

and the subsequent SCR in a exosomatic recording range normally from 1 to 2 seconds (Boucsein, 2011), and in the surrogate signal 

this requirement is accomplished. 
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Figure 5-7: Spike and SCR 

5.1.5 Tonic signal 

In order to obtain the tonic part, we computed the convolution between the same spike sequences used for the phasic part and a 

fixed IR properly chosen. We used Lim’s IR function this time with a low value for Tr parameter (rising time constant) and a high 

value for Td (decaying parameter) according to the following proportion Tr/Td =1/55. In this way, the rising part of the curve is steep 

compared to the decaying part (tail) which is  much slower. It can be observed that the rising part is much more steep than the tail 

(decaying part). 

 

Figure 5-8: IR of tonic signal 
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Figure 5-9: Tonic signal 

 

Wwe obtained a slow varying signal, typical of a tonic signal. The reason why we adopted this technique (using a convolution to 

obtain the tonic part) is because it is well-known that the phasic and tonic activity in a SC signal are not completely independent: 

when the phasic part increase its activity (more frequency of sudomotor spikes) the tonic part increases as well, so that an higher 

sudomotor activity (simulated with many spikes packed together in time) generate an higher activity both in phasic and tonic part, as 

depicted in Figure 5-10 and Figure 5-11 where phasic and tonic parts have been superimposed. The red curve is the phasic part 

whereas the green one is the tonic part. In blue the final result.  

 

Figure 5-10: Summing of phasic part (red) and tonic one (green). Outcome in blue 

 

Figure 5-11: Magnification of a section in Figure 5-12 
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5.1.6 Adding realistic noise 

 

In order to make our surrogate signals as realistic as possible we also added a noise contribute. Choosing the proper noise 

characteristics is not such straightforward because real SC signals might be influenced by external or internal stimuli acting as noise 

sources (see Chapter 3.5 EDA elicitation at pag. 36) such as deep breathing, cough or movements due to psychological and physical 

stress. 

We determined the noise  features by calculating the mean spectrum obtained from 10 real SC signals chosen from the Emotion 

DataSet. Figure 5-13 depicts the mean spectrum in a log-log scales. It has to be noticed that at high frequencies the spectrum power 

falls 10 dB/decade according to the characteristic pattern of a Pink noise (also known as 1⁄f noise or flicker noise) whose power 

spectral density is inversely proportional to the frequency. It occurs in many physical, biological and economic systems and some 

researchers describe it as being ubiquitous [3].  

 

Figure 5-13: Pink Noise obtained as the mean spectra of 10 realistic SC signals  

from “Emotion Dataset” (see chapter 7) 

 

Figure 5-14 depicts an  example of flicker noise with mean 0 and variance 1. 
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Figure 5-15: Example of pink noise with mean = 0 and variance = 1 

 

To obtain the proper flicker noise to add to the signals, it is necessary to calculate the variance of the final SC signal (from now 

“SC_clean” to distinguish it from the noisy signals) and then create a flicker noise with a variance calculated according to a specified 

signal-noise ratio (S/N ratio). To achieve this goal we calculated the variance of the surrogate SC signal after having discarded the 

beginning 20% and final 10% sections of signal length, to avoid the transients epoch at the beginning and end of surrogate data To 

demonstrate the effect of the noise, Figure 5-16 depicts the same interval of a chosen surrogate affected from noise but with varying 

S/N ratio (read titles of the plots). 

 

Figure 5-16: Same interval of signal affected with different noise level.  

The bottom plot is the most noisy. 
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5.1.7 Final SC signal 

In Figure 5-17 and Figure 5-18 are shown two examples of surrogate signals and in Figure 5-19 a real SC signal from Emotion 

DataSet (see chapter 7) is depicted. 

 

Figure 5-17: Surrogate SC signal with SN noise equals to 105 

 

 

Figure 5-18: Example of surrogate SC signal with S/N ratio 105 
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Figure 5-19: Example of real SC signal 

5.1.8 Creation of the datasets 

 

We created, starting from a noiseless dataset (SC_clean) 4 datasets containing the same surrogate SC at different S/N levels: 

103,104,105,106 respectively. SC_clean was created according to the following specifications: 

 

• The inverse gaussian distribution mean (determining the temporal occurrence of the spikes) is fixed for each generated 

sequence and ranges between 6 s and 15 s according to a uniform distribution.  

• The inverse gaussian distribution variance (determining the temporal occurrence of the spikes) is fixed in each 

generated sequence and ranges between 7 s2 and 12 s2 according to a uniform distribution. 

• Number of spikes for each sequence is set to 100. 

• Total number of surrogate signals is 78. 

• The sample frequency is 10 Hz. 
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6 Comparison of Methods using simulated data 

 

We estimated the detection performances by comparing the True Spikes (TS) sequences generating the surrogate SC signals with 

the Spikes (GS) sequences as output by BC and CDA Ledalab algorithms. The software matches the sequences of TSs and GSs 

distinguishing three cases (Figure 6-1) 

 

Figure 6-1: False Positive, False Negative, True Positive 

 

A GS is recognized as True Positive (TP) when it is closer than 1.5 seconds backwards or afterwards to a TS and in case of 

detection of many GSs the closer one is counted as TP ignoring the others. Before proceeding further this GS is deleted from the 

sequence in order not to interfere with successive detections. When it is not possible to detect a GS in correspondence of a TS (within 

the temporal window), a False Negative (FN) is counted. The GSs not marked as TP and FN are marked as False Positive (FP) .  

In case of fixed shift in GSs sequence causing a skew between the spikes of the two sequences, an iterative process of detection 

is performed each loop shifting GS sequence. It is then chosen the delay that maximize the number of TP.   

After calculating the FPs, FNs  and TPs from each surrogate signal in a dataset, we obtained the total number of FP, FN and TP 

of the dataset. The Sensitivity (SE) and Positive Predictive (PP) Value are obtain as follow. 
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Equation 6: SE and PP formulas 

    

6.1 Tuning Barbieri Citi Algorithm 

 

We tested the performances of BC algorithm on with various S/N ratio on the 78 surrogate signals of DataSet10Hz  and at the 

same time we tuned up the parameters governing the algorithm to make it reach the best performances. We estimated its performances 

in detecting burst activities by means of ROC curves.  

The algorithm is characterized by two parameters Sw and Bw, both determining the cut off frequencies of two low-pass filters. 

We tested the algorithm in various working conditions  by varying Sw=[0.1:0.1:1.3] and Bw=[0:5:100] and examining the output for 

every possible combinations of those parameters. Here it is important to highlight that when Bw is equal to zero then the filter 

governed by Bw is not applied in BC algorithm. 

As a result, we have a SE and PP value for each Sw and Bw combination, which are used to build the ROC curves. In order to 

assess the best combination of parameters the closest (in terms of euclidean distance) point of the ROC to the point 

(SE,PP)=(100%,100%) is determined. This procedure is repeated for each S/N level. 

The ROC curves are plotted by fixing Bw values while varying Sw values according to the above mentioned ranges. Figure 6-2 

shows the results obtained with S/N ratio equals to 106. 
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Figure 6-2: ROC curve (left) and Euclidean Distance (right) 

 

The ROC curves of Figure 6-2 (left) move from bottom to top as the Bw value increases. On each ROC curves, the black thick 

circles indicate the closest points (in terms of Euclidean distance) to (SE,PP)=(100,100). The value of the Euclidean distance is 

plotted in Figure 6-2 (right). It can be clearly observed that the more Bw value increases, the more the distances diminish 

asymptotically. This asymptote has been determined and plotted. Before explaining how we assessed it, it is necessary to observe 

Figure 4-10 in chapter4.6.2. 

The consequence of increasing Bw value is a progressive shift of “Cutoff Bw” towards zero. When lim Bw�+∞ this would be 0+ 

Hz and we can reproduce this condition not applying this filter. Thus the asymptote depicted in Figure 6-2 (right) is obtained for not 

applying the lowpass filter governed by Bw and the corresponding ROC curve is the very top one in Figure 6-2 (left). 

In conclusion, for this S/N ratio (equals to 106), the best performance are obtainable when  the Bw filter is not present and Sw is 

0.1. The best performances are SE = 87.61% and PP = 97.83%. The result for S/N level of 105 is depicted in Figure 6-3: 
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Figure 6-3: ROC curve (left) and Euclidean Distance (right) 

 

It can be observed that ROC curves are shifted downwards in respect to the previous case. Again, the best results are  obtained 

when the lowpass filter governed by Bw is not applied : the minimum Euclidean distance of 14.14 for Sw=0.2 and the SE is 86,84% 

and PP is 94,82%. 

When signal-to-noise ratio is further decreased the previous trend is confirmed. Results are plotted in Figure 6-4 and Figure 6-5 

respectively. 

 

Figure 6-4: ROC curve (left) and Euclidean Distance (right) 
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Finally, for S/N ratio equals to 103, the result is depicted in Figure 6-5: 

 

Figure 6-5: ROC curve (left) and Euclidean Distance (right) 

 

For a better focus the best result for each investigated S/N ratios are reported in Table 6-1 We can notice a decay of the 

investigated parameter (SE and PP) when the S/N ratio decreases. This result was expected because the more the noise level is 

increases, the more the burst detection ability is compromised.    

About the Euclidean distance, we can observe that the more the noise power decreases, the more the distances increases and this 

result is in agreement with SE and PP trends. 

 

SN ratio 10^6 10^5 10^4 10^3 

SE (%) 87,61 86,84 83,37 76,35 

PP (%) 97,83 94,82 93,85 89,01 

Eucl.Dist 12,58 14,14 17,73 26,08 

Sw 0,1 0,2 0,5 0,9 

Bw Not appl. Not appl. Not appl. Not appl. 

 

Table 6-1: BC Results 
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6.2 Ledalab 

We preferred the CDA method offered by Ledalab instead of DDA method (see chapter 4.4.2) because the CDA method tends to 

retrieve the signal characteristics of the underlying sudomotor nerve activity (SNA). In this way, a direct comparison with BC 

software is feasible.  

Data must be a structure. Among the CDA algorithm setup, Ledalab let us choose to delete the detected spikes with amplitude 

less than a default value (0.2 uS as default value) but we did not eliminate any of them. Ledalab exports a structure containing the 

time instants of the spikes and the corresponding spike amplitudes according to “CDA” and “TTP” (Trough-to-peak analysis – see 

chapter 4.1) analysis. From these data, as described before  we obtained the ROC curves varying the spike amplitude threshold from 0 

uS to 20 uS with step of 0.2 uS. 

On each ROC curves (Figure 6-6, Figure 6-6, Figure 6-7, Figure 6-8) the black thick circle indicates the closest points (in terms 

of Euclidean distance) to (SE,PP)=(100%,100%). In Figure 6-6 the ROC curve obtained with S/N level of 106 are shown. The best 

performances are SE and PP of 90.18% and 93.93% respectively for an amplitude threshold of 3.6 uS.  

 

Figure 6-6: ROC curve with S/N ratio of 106. 

 

In Figure 6-7 the ROC curve for S/N level of 105. 
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Figure 6-7: ROC curve with S/N ratio of 105.  

 

The best performance is 83.07% and 89.15% respectively for SE and PP with an amplitude threshold of 6.2 uS. In Figure 6-8 the 

ROC curve for S/N level of 104: 

 

Figure 6-8: ROC curve with S/N ratio equals to 104 

 

The best performance is 65.31% for SE and 75.77% for PP with an amplitude threshold of 11 uS. 

In Figure 6-9 the ROC curve for S/N level of 103: 
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Figure 6-9: ROC curve with S/N ratio equals to 103.  

 

The best performance is 60.35% and 53.56% for respectively for SE and PP with an amplitude threshold of 12.8 uS. Figure 6-10 

compares the previous ROC curves. 

 

Figure 6-10: Comparison of ROC curves. Starting from the top:  

S/N ratio 106 curve (point marks), S/N ratio 105(circles marks), S/N ratio 104(star marks), S/N ratio 103(plus marks) 

 

Figure 6-10 shows the worsen of performances: the more the S/N level decreases the poorer are the performances  drastically 

passing from 105 to 104. Figure 6-11 reports the best results for each investigated S/N level.  
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Figure 6-11: SE,PP and Amplitude Threshold comparison 

 

Table 6-2 reports the previous results  

 

SN ratio 10^6 10^5 10^4 10^3 

SE (%) 90,18 83,07 65,31 60,35 

PP (%) 93,93 89,15 75,77 53,56 

Thr.(microS) 3,60 6,20 11,00 12,80 

 

Table 6-2: Ledalab Results 
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6.3 Comparison 

In Figure 6-12 the bar plots of the best Ledalab and BC performances based on Table 6-3.   

 

Figure 6-12: Ledalab and BC Sensiblity and Positive Predictive Value 
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Table 6-3: Ledalab and BC performances 

 

The BC algorithm shows better performances (only exception SE for S/N level 106).  
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7 Experimental Protocol - Emotions 

 

The experimental protocol is inspired by a previous research work (Rainville, et al., 2006) where subjects were asked to recall an 

autobiographical episode that strongly evoked the target emotions. The same protocol already provided evidence-based results 

showing different and quite robust cerebral activity patterns (Damasio, et al., 2000). In our study the challenge is managing to 

distinguish between two base conditions (relax and stress) and four emotional states (rage, fear, happiness, sadness), specific areas of 

“Valence Arousal” space recording physiological signals, including SC signals. 

7.1  Method  

7.1.1  Subjects 

35 normal subjects were voluntarily recruited from the student body of IULM University of Milan. Students were scheduled to 

come at the Behavior and Brain Lab for an interview were they had to let the researcher know whether they could recall two recent 

episodes where they felt each of the 4 target emotions: joy, sadness, rage and fear. If positive, the researchers asked them to recall 

verbally while a psychologist took notes about all the episodes. After the psychologist chose the most vivid and intense episodes 

between the two, they were scheduled for a second appointment to participate to the recording session. All the people who could not 

recall a vivid recent episode for each of the four emotions were asked not to participate in the research. 

7.1.2 Device 

SC signals were recorded continuously using Flexcomp Infinity™ encoder (Thought Technology Ltd.; Montreal, Canada) with a 

sampling rate of 2048 Hz, while subjects sitting; then it  was resampled at 256 Hz. SC was recorded using two electrodes placed on 

different fingers of a hand (forefinger and ringfinger) using the exosomatic method.  

7.1.3 Recording Session 

It was not allowed for the subjects to drink coffee, tea or other stimulating substances on the recording day as well as the day 

before in order not to alter the sympathetic system. Once subjects came at the lab for the experiment, they were asked to fill in a 

consent form, and sit down. Then a researcher located all the sensors, and the recording started. After a baseline (relax) period of 3 
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minutes, the psychologist privately with the subject helped him to recall the episode he/she described in the interview while he/she is 

supposed to listen and focus on the emotion (listening phase). The duration of each of those is variable depending on the episode 

evoked. Once subject felt the emotion, the researcher asked to stay silent and try to focus intensely on the emotion without moving for 

3 minutes (focusing phase). After the emotion recall, a rest of 3 minutes (recovery time) was provided before re-starting with the next 

emotion. The sequence of emotion recalled was randomly assigned for each subject in order not to bias the results. The recording 

sessions lasted approximately from 30 to 50 minutes.  

In Figure 7-1 an example of SC signal with markers which identify the position of the focusing phases(the amplitude identifies 

the focused emotion: 2.Fear, 3:Happiness, 4:Rage, 5.Sadness. Baseline is identified by 1). The listening phases are identified by 

intervals of zero amplitude preceding the focusing phases (obtained by discarding initial 3 minutes – the recovery time).     

 

Figure 7-1: Example of SC signal with Markers 

7.2 Elaboration 

Before applying BC algorithm a normalization on SC signals is needed since it is clear by Figure 7-2 (top) that a wide subject 

inter variability exists. The normalization consists on detrending  and dividing by the maximum variability range (max – min) of the 

signals to make them comparable. In result of the normalization procedure applied to 4 signals is depicted in Figure 7-2 (bottom). 
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Figure 7-2: An example of BC algorithm output. SC signal with marker signal (top) and spike sequence(bottom) 

 

Then BC algorithm with 0 for Bw  and 0.2 for Sw because the S/N ratio was approximately estimated to be higher than 105 was 

run on signals. An example is depicted in Figure 7-3. 

 

Figure 7-3: Output provided by BC algorithm 
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On the obtained spikes sequences we calculated the following parameters:  

 

1. Mean Spike Amplitude  (MSA): index of the mean sympathetic activity (uS). 

2. Mean Spike Frequency (MSF): index of  sympathetic activity (Number of spikes / s = Hz). During 

spontaneous skin conductance changes, augmented wave number and amplitude is interpreted as increased 

activity in the sympathetic nervous system.  

3. Area under “Integrated Activity Curve (IAC)” curve (AUC): AUC is the area underlying IAC. IAC 

provides a continuous index comprising frequency and amplitude information of spikes and is calculated as 

follow: 

 

A window (WL, 2 seconds long) slides second by second over the spike sequence summing spike amplitudes within it; the result 

is strictly correlated to WL. In Figure 7-4 and Figure 7-5 an example of processing with WL=2 s.  

 

 

Figure 7-4: Integrated Activity Curve with WL of 2 seconds 
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Figure 7-5: Zoom of a part of Figure 7-4 

 

7.2.1 Tests 

 

The 3 parameters where obtained for listening phases last minute (List), for each of the 3 minutes composing the focusing phases 

(Foc1,Foc2 and Foc3 respectively) and the central minute of baseline (Bl).  To investigate whether existed statistical differences 

among phases an ANOVA one-way test was performed.  

Moreover t-tests were performed between:  

• Bl and successive List, Foc1, Foc2, Foc3 for each emotion  

• List , Foc1, Foc2, Foc3 and each one with itself for the four emotions 

 

Because of multiple t-tests are performed, the significance level was corrected with Bonferroni correction, passing from 0.05 to 

α calculated according to Equation 7 where in our case parameter n is the number of all considered t-test comparisons, precisely 16 

(Baseline versus remaining phases) + 6 * 4 = 40.  

 

Equation 7: Bonferroni Correction 
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αBonf is 0.0013 which will be considered as new significant level. 

7.3 Result 

Figure 7-6, Figure 7-7 and Figure 7-8 depict the box and whisker plot of Mean Spike Amplitude, Mean Spike Frequency and 

AUC respectively. They show the median, first and fourth quartiles, minimum and maximum values and outliers for each phase of the 

parameter considered.  

 

Figure 7-6: Box Plot of Mean Spike Amplitude for each phase where: B stands for Baseline , (H, F, R, S prefixes) indicate emotions, (L, 

f1,f2,f3) stand for the 4 phases 
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Figure 7-7: Box Plot of Mean Spike Frequency for each phase where: B stands for Baseline , (H, F, R, S prefixes) indicate emotions, (L, 

f1,f2,f3) stand for the 4 phases 

 

 

Figure 7-8: Box Plot of AUC for each phase where: B stands for Baseline , (H, F, R, S prefixes)  

indicate emotions, (L, f1,f2,f3) stand for the 4 phases 
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Table 7-1 reports ANOVA one-way results and Table 7-2 reports the p-values from the t-test comparing Bl with List, Foc1,Foc2 

and Foc3. Moreover the results from ANOVA test are reported in Table 7-2 (bottom) with values of F function, numerator and 

denominator. 

 

ANOVA P-Value F (16,34) 

M.S.Ampl. 9,442E-11
(*)

 5,3916 

AUC 2,22E-16
(*)

 7,568 

M. Spike Freq 2,22E-16
(*)

 7,593 

αAnova=0.05  
(*) 

 

Table 7-1: ANOVA results 

 

T-Test Bas_HappList Bas_HappFoc1 Bas_HappFoc2 Bas_HappFoc3 Bas_FearList Bas_FearFoc1 Bas_FearFoc2 Bas_FearFoc3 

M.S.Ampl. 1,57*10
-8 (*)

 0,0010
(*)

 0,0317 0,0036 1,9647*10
-7(*)

 2,84*10
-5(*)

 6,12*10
-5 (*)

 0,0019 

AUC 1,12*10
-7 (*)

 5.3*10
-4(*)

 0,0229 0,0044 9,2335*10
-8(*)

 2,4*10
-4 (*)

 5,6*10
-4

 
(*)

 8,2*10
-4

 
(*)

 

M Spike 

Freq 
1,42*10

-8 (*)
 0,1020 0,2724 0,1329 2,5032*10

-7(*)
 9,9*10

-4 (*)
 0,0120 0,0211 

         
T-Test Bas_RageList Bas_RageFoc1 Bas_RageFoc2 Bas_RageFoc3 Bas_SadList Bas_SadFoc1 Bas_SadFoc2 Bas_SadFoc3 

M.S.Ampl. 2,34*10
-9(*)

 8,87*10
-6(*)

 0,0011
(*)

 4,6*10
-4 (*)

 2,9387*10
-8(*)

 0,0164 0,0249 0,0445 

AUC 1,38*10
-8(*)

 2,03*10
-6(*)

 1,1*10
-4(*)

 5,97*10
-5(*)

 5,7321*10
-9(*)

 0,0118 0,028 0,0875 

M Spike 

Freq 
1,47*10

-8(*)
 9,6*10

-4 (*)
 1,6*10

-4(*)
 5,6*10

-4(*)
 8,3476*10

-8(*)
 0,2111 0,1188 0,1391 

       
αBonf=0.0013  

(*)
 

 

Table 7-2: T-Test results Baseline versus all remaining phases 

  

Table 7-3, Table 7-4, Table 7-5, Table 7-6 report respectively the ANOVA and t-test results comparing Listening phases (List) 

among each other, Focusing1 phases(Foc1) among each other, Focusing2 phases(Foc2) among each other and Focusing1 

phases(Foc1) among each others. 
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T-Test HappList_FearList HappList_RageList HappList_SadList FearList_RageList FearList_SadList RageList_SadList 

M.S.Ampl. 0,0256 0,306 0,7444 0,1797 0,0702 0,5272 

AUC 0,0551 0,1944 0,0906 0,2805 0,997 0,3366 

M Spike Freq 0,571 0,3502 0,0104 0,6313 0,0517 0,074 

      
αBonf=0.0013  

(*)
 

 

Table 7-3: T-test results comparing List phases among each other 

 

 

 

T-Test HappFoc1_FearFoc1 HappFoc1_RageFoc1 Happfoc1_SadFoc1 FearFoc1_RageFoc1 FearFoc1_SadFoc1 RageFoc1_SadFoc1 

M.S.Ampl. 0,382 0,4916 0,4263 0,8434 0,0369 0,0942 

AUC 0,2765 0,432 0,4133 0,5469 0,0338 0,0573 

M Spike 

Freq 
0,1861 0,0922 0,6754 0,6183 0,0817 0,0242 

      
αBonf=0.0013  

(*)
 

 

Table 7-4: T-test results comparing Foc1 phases with each other 

 

 

T-Test HappFoc2_FearFoc2 HappFoc2_RageFoc2 Happfoc2_SadFoc2 FearFoc2_RageFoc2 FearFoc2_SadFoc2 RageFoc1_SadFoc2 

M.S.Ampl. 0,0164 0,0224 0,6415 0,4101 0,0466 0,0324 

AUC 0,0347 0,0079 0,4924 0,3211 0,1558 0,0381 

M Spike 

Freq 
0,08 0,0001

(*)
 0,4753 0,1085 0,2985 0,0226 

      
αBonf=0.0013  

(*)
 

 

Table 7-5: T-test results comparing Foc2 phases with each other 
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T-Test HappFoc3_FearFoc3 HappFoc3_RageFoc3 Happfoc3_SadFoc3 FearFoc3_RageFoc3 FearFoc3_SadFoc3 RageFoc3_SadFoc3 

M.S.Ampl. 0,3218 0,2315 0,4752 0,9537 0,1109 0,0542 

AUC 0,4973 0,1204 0,6656 0,3961 0,3608 0,134 

M Spike 

Freq 
0,2236 0,0205 0,9447 0,1485 0,419 0,0494 

      
αBonf=0.0013  

(*)
 

 

Table 7-6: ANOVA and t-test results comparing Foc3 phases among each other 

 

T-Test Bas_HappList Bas_HappFoc1 Bas_HappFoc2 Bas_HappFoc3 Bas_FearList Bas_FearFoc1 Bas_FearFoc2 Bas_FearFoc3 

M.S.Ampl. 1,57*10
-8 (*)

 0,0010
(*)

 0,0317 0,0036 1,9647*10
-7(*)

 2,84*10
-5(*)

 6,12*10
-5 (*)

 0,0019 

AUC 1,12*10
-7 (*)

 5.3*10
-4(*)

 0,0229 0,0044 9,2335*10
-8(*)

 2,4*10
-4 (*)

 5,6*10
-4

 
(*)

 8,2*10
-4

 
(*)

 

M Spike 

Freq 
1,42*10

-8 (*)
 0,1020 0,2724 0,1329 2,5032*10

-7(*)
 9,9*10

-4 (*)
 0,0120 0,0211 

         
T-Test Bas_RageList Bas_RageFoc1 Bas_RageFoc2 Bas_RageFoc3 Bas_SadList Bas_SadFoc1 Bas_SadFoc2 Bas_SadFoc3 

M.S.Ampl. 2,34*10
-9(*)

 8,87*10
-6(*)

 0,0011
(*)

 4,6*10
-4 (*)

 2,9387*10
-8(*)

 0,0164 0,0249 0,0445 

AUC 1,38*10
-8(*)

 2,03*10
-6(*)

 1,1*10
-4(*)

 5,97*10
-5(*)

 5,7321*10
-9(*)

 0,0118 0,028 0,0875 

M Spike 

Freq 
1,47*10

-8(*)
 9,6*10

-4 (*)
 1,6*10

-4(*)
 5,6*10

-4(*)
 8,3476*10

-8(*)
 0,2111 0,1188 0,1391 

       
αBonf=0.0013  

(*)
 

 

Table 7-2 reports significant differences between Baseline and Listening phases for all emotions, so it is demonstrated that the 

psychologist’s goal was successfully reached managing to involve emotionally the subjects; moreover we can observe that Fear, Rage 

and only partially Happiness activate the subjects for longer time whereas Sadness is not significant for any of Focusing phases. Rage, 

Fear, Happiness and Sadness, in this order, are listed from the most activating to least activating emotion. Probably the reason 

involves innate survival instincts since rage and fear, opposed to sadness and happiness are more appropriate to promote subject 

adaptation to hostile environment so only focusing on memories involving those feelings increase the alertness level facilitating 

survival mechanisms. Only rage and fear create a more lasting alertness state in the subjects. Sadness tends to be the most short 

lasting emotion (being significant only Listening phase); the subject behave in this way probably due to psychological mechanisms 

that aims to avoid painful or stressful memories. Happiness is less activating than rage and fear but more than sadness: it may be that 

this emotion facilitates socialization being useful for human survival as well. 

There are no significant difference between Listening and Focusing phases with themselves.  
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8 Conclusions 

 

The surrogate SC signals are realistic enough to satisfy the aim of this investigation, making them even more realistic adding 

noise by setting S/N levels. We did not introduce motion artifacts or external artifacts as well as we did not modeled the spike 

generation mechanisms regulated by ANS. However, we judged this model enough to our goals.  

BC algorithm developed at Boston MIT was proved to be more efficient in analyzing SC signals overtaking the state of the art 

Ledalab software. We have improved BC algorithm offering a criteria to properly tune it up; before this study Sw and Bw values were 

fixed and not chosen according to any precise and justified criteria. As demonstrated, to maximize performances the filter governed 

by Bw must not be applied whereas Sw parameter ranges between 0.1 and 0.9.  

From the experimental protocol we obtained important findings highlighting psychological mechanisms in response to 

emotigenous stimuli, maybe linked to human innate survival instincts. It may be possible to improve the results combining SC signals 

with other physiological indexes (i.e. respiration or HRV). The reported findings can help to widen and enrich knowledge in 

psychology field as well as improve affecting computing area whose aim is to shorten distances between human and machines 

enabling them to perceive, interpret, process and simulate human feelings.  

Definitely we tuned up and validated a powerful tool able to reflect sympathetic nervous system activity proposing a novel 

solution to SCRs overlap problem, faced by most of the most recent algorithms in literature.                  
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