
1

Politecnico di Milano
Facoltà di Ingegneria dell’Informatica

Corso di Laurea in
Ingeneria Informatica

Dipartimento di
Electronica e

Informatzione e Bioingeneria

A Methodology and a Platform for Monitoring Multi-
Cloud Applications

Supervisor: Prof. Elisabetta Di Nitto
Assistant supervisor: Prof. Danilo Ardagna

Master’s thesis of: Narges Shahmandi Hoonejani matr.764761

Academic Year 2012-2013

2

3

Abstract
Owing to the rapid progress in the Information and Communications Technology

(ICT) and the subsequent demand for computing power, Cloud Computing, as an efficient
method for handling workloads of great diversity and massive scale, has received
increasing attentions. Cloud Computing has been increasingly adopted in diverse areas,
such as e-commerce, retail industry and academic environment due its various advantages
including No up-front investments, lower operating costs, high scalability and elasticity,
easy access and reduction of business risks and maintenance expenses.

However, despite the undeniable advantages and considerable spread of Cloud
Computing, there are still many related challenges and issues which should be dealt with
in order to ensure the efficient and proper operation of this new computing paradigm.
Specifically in order to ensure the quality of service and health of the running applications
of the Cloud, monitoring the Cloud infrastructures and applications is a crucial task. The
solution that has been proposed is defining Data Collectors that are gathered data from
resources and produce as the output RDF triples data, and the Data Analyzer that at a
high-level could be seen as accepting in input RDF stream data, and producing one or
more streams of data in RDF format as the output. In this thesis the DA is implemented by
using C-SPARQL (continues-SPARQL) that is a query engine for RDF data.

In the present thesis, in the context of MODAClouds project, a monitoring framework will
be developed which provides the enabling mechanism to trigger runtime adaption and to
fill the gap between design-time modules and run-time application behavior. Aspect
Oriented Programming, owing to its capability of keeping separate the cross-cutting
features, has been chosen for developing the monitoring framework. Furthermore, meta-
model for specifying the QoS, and meta-model and language for monitoring rules at
design time. Finally, a methodology for the automatic/semi-automatic translation of QoS
constraints into monitoring rules for translating them into queries is defined.

4

5

1 INTRODUCTION

In a world characterized by rapid progress, demand for computing power has been
increasing over the last half century. The penetration of Information and Communications
Technology (ICT) in our daily social and personal interactions with the world,
encompassing business, commerce, education, manufacturing and communication
services, has led to the necessity of handling workloads of great diversity and enormous
scale in all the crucial fields of today's society.

With the rapid development of processing and storage technologies, and owing to
the success of the Internet, computing resources have become cheaper, more powerful and
more universally available than ever before. In such a context, dynamic systems are
required to provide services and applications which are more competitive, scalable and
responsive in comparison to the classical systems. This technological trend has enabled
the realization of a new computing paradigm called Cloud Computing, in which resources
(e.g., CPU and storage) are provided as general utilities that can be leased and released by
users through the Internet in an on-demand approach.

In a Cloud Computing environment, the traditional role of service provider is
played by the infrastructure providers who manage Cloud platforms and lease resources
according to a usage-based pricing model, and service providers, who rent resources from
single or multiple infrastructure providers to serve the end users. The emergence of Cloud
Computing has made a tremendous impact on the Information Technology (IT) industry
over the past few years, where large companies such as Google [9], Amazon [2] and
Microsoft [12] strive to provide more powerful, reliable and cost-efficient Cloud
platforms, while business enterprises seek to reshape their business models to gain benefit
from this new paradigm. Indeed, Cloud Computing provides several compelling features
which takes the attentions of the business owners.

6

The new mechanism is increasingly adopted in many areas, such as e-commerce,
retail industry and academic environment for its various advantages including No up-front
investments, lower operating costs, high scalability and elasticity, easy access and
reduction of business risks and maintenance expenses.

Cloud Computing uses a pay-as-you-go pricing model. A service provider does not
need to invest in the infrastructure to start gaining benefit from Cloud Computing. It
simply rents resources from the Cloud according to its own needs and pay for the usage.
As a consequence, cloud model is cost-effective because customers pay for their actual
usage without up-front costs.

Beside, resources in a Cloud environment can be rapidly allocated and deallocated
on demand. Hence, a service provider no longer needs to provision capacities according to
the peak load. This ensures huge savings since resources can be released to save on
operating costs when service demand is low. In this way, costs are claimed to be reduced
and in a public Cloud delivery model capital expenditure is converted to operational
expenditure.

 Additionally, Infrastructure providers pool large amount of resources from data
centers and make them easily accessible. Scalability is possible via dynamic ("on-
demand") provisioning of resources on a fine-grained, self-service basis near real-time,
without users having to engineer for peak loads (surge computing). Indeed, a service
provider can easily expand its service to large scales in order to handle rapid increase in
service demands (e.g., flash-crowd effect).

Furthermore, services hosted in the Cloud are generally web-based. Therefore, they
are easily accessible through a variety of devices with Internet connections. These devices
not only include desktop and laptop computers, but also cell phones and smart devices.
Agility improves with users' ability to re-provision technological infrastructure resources.

Moreover, by outsourcing the service infrastructure to the Clouds, a service
provider shifts its business risks (such as hardware failures) to infrastructure providers,
who often have better expertise than many customers and are better equipped for
managing these risks. In this way Cloud Computing guarantees business continuity and
disaster recovery. In addition, maintenance of Cloud Computing applications is easier,
because they do not need to be installed on each user's computer and can be accessed from
different places. Consequently, a service can cut down the hardware maintenance and the
staff costs.

However, despite the considerable development and spread of Cloud Computing, it
also brings many challenges and new problems in terms of quality of service (QoS),

7

Service Level Agreements (SLA), security, compatibility, interoperability, costs and
performance estimation and so on. These issues have been analyzed and studied in the last
few years but still a lot of investigation needs to be carefully addressed.
Accordingly, in order to ensure the quality of service and health of the running
applications of the Cloud, monitoring the Cloud infrastructures and applications is a
crucial task. Cloud monitoring also allows us to get insights into the system and to gather
information and scalability and consequently coming up with adaptation decisions based
on the monitoring data.
In general, the monitoring approaches differ from various points of view including
monitoring actor, monitored object, timing of the monitoring procedure, monitoring
mechanism, monitoring environment architecture and monitoring constraints and output.
One of the important monitoring challenges is to tackle the different monitoring
constraints imposed by different target clouds. IaaS and PaaS platforms offer very
different metrics and therefore a multi-cloud monitoring platform has to cope with this
heterogeneity.

MODAClouds, Model-Driven Approach for design and execution of applications on
multi clouds, is a European project which is focused on providing method, a decision
support system, an open source IDE and run-time environment for the high-level design,
early prototyping, semi-automatic code generation, and automatic deployment of
applications on multi-Clouds with guaranteed QoS. MODAClouds includes a Runtime
Environment that will implement the MAPE-K loop (monitor, analysis, planning,
execution, knowledge) reference blueprint for the implementation of self-adaptive
applications. The monitoring platform that is provided by this project affords a possible
approach in order to face the heterogeneity data that are received from different layers of
Cloud, that is explicitly distinguish between infrastructure-level metrics, that are exposed
only on IaaS clouds, from application-level metrics, that will rely on monitoring probes
injected in the application code and therefore can be collected on any target cloud.

The approach which has been proposed for developing the monitoring platform of
MODAClouds project is defining Data Collectors which gather data from resources and
produce the RDF triples data as the output, and the Data Analyzer that at a high-level
could be seen as accepting RDF stream data as an input and producing one or more
streams of data in RDF format as the output.

In the present thesis, in the context of MODAClouds project, a monitoring framework is
developed which provides the enabling mechanism to trigger runtime adaption and to fill

8

the gap between design-time modules and run-time application behavior. The
corresponding Data Analyzer is implemented by using C-SPARQL (continues-SPARQL)
that is a query engine for RDF data.

Different approaches can be employed for developing the cloud monitoring systems.
Aspect oriented programming (AOP) is one of the proper choices that can be utilized for
accomplishing this task especially for PaaS layer. The capability of keeping separate the
cross-cutting features like response time, and status code of a web page, is the advantage
which makes AOP a promising option for monitoring purposes . Accordingly AOP has
been employed in the present work for developing the monitoring platform.

For IaaS layer resources, we considered the data of two cloud providers in specific,
Azure and Amazon EC2. In Amazon EC2 the data are directly gathered from the
CloudWatch, while in Azure as we could not gather them directly they have been retrieved
from storage.

In addition, meta-model for specifying the QoS, and meta-model and language for
monitoring rules at design time, are defined. Moreover, a methodology for the
automatic/semi-automatic translation of QoS constraints into monitoring rules for
translating them into queries is proposed.

Original Contributions
The main objectives of this work are as follows:

• Designing Data Collectors in order to gathering the monitoring data produced
by the various data sources, and producing RDF triple as the output for the
Data Analyzer in order to get inside the system, analyze the received data and
apply further modifications

• Defining a meta-model that specifies the constraints of the Quality of the
Service at design time,

• Defining a meta-model and a language for the specification of the monitoring
rules at design time, and mapping the QoS constraints into the related
monitoring rule. Also new monitoring rules were provided by extending or
composing the other monitoring rules,

• Identifying a methodology for the automatic/semi-automatic translation of QoS
constraints into monitoring rules for translating monitoring rules into probes
and monitoring queries that will be executed by the analysis component

Outline of the Thesis
This thesis is organized as follows:

9

• Chapter 2 discusses the main concept of the cloud computing and cloud
monitoring and explains the state of the art concepts and techniques relative
to our work

• In Chapter 3, first we introduce the MODAClouds project and then the main
technologies that are used in this thesis are reviewed. In addition, there the
case study of this thesis, MiC application, and its Palladio meta-models are
provided.

• In Chapter 4 the monitoring architecture of MODAClouds, and related core
ontology is reviewed and is described. Then knowledge base information
generated during the design time and run time is explained. Finally dedicated
to the mapping of the monitoring rules to C-SPARQL queries.

• Chapter 5 the monitoring approach that is developed in this thesis, is
evaluated. The main objectives are quantitatively evaluation of the overhead
that is introduce by the monitoring platform which are done on MiC
application.

10

2 CHAPTER 2

This chapter presents a general overview on Cloud Computing and Cloud

Monitoring and explains the state of the art concepts and techniques relative to our work.

After a short introduction on basic concepts in Section 2.1, we provide and analyze

a definition of Cloud, illustrate the main characteristics and show different structural

models.

In Section 2.2, we provide a general overview on Cloud Monitoring then we

investigate the current monitoring platforms acting at different layers of the cloud stack. A

classification of the state of the art literature which considers general monitoring,

infrastructure-level monitoring and application level monitoring is also proposed.

2.1 CLOUD COMPUTING BASIC CONCEPTS

In a world characterized by progress, fast changes and advances, demand for
computing power has been increasing over the last half century. Handling workloads of
great diversity and enormous scale is necessary in all the most significant fields of today's
society, due to the penetration of Information and

Communications Technology (ICT) in our daily interactions with the world both at
personal and community levels, encompassing business, commerce, education,
manufacturing and communication services. With the rapid development of processing
and storage technologies, and with the success of the Internet, computing resources have
become cheaper, more powerful and more universally available than ever before. In such a
setting, dynamic systems are required to provide services and applications that are more

11

competitive, more scalable and more responsive with respect to the classical systems. This
technological trend has enabled the realization of a new computing paradigm called Cloud
Computing, in which resources (e.g., CPU and storage) are provided as general utilities
that can be leased and released by users through the Internet in an on-demand fashion.

In a Cloud Computing environment, the traditional role of service provider is
divided into two: the infrastructure providers who manage Cloud platforms and lease
resources according to a usage-based pricing model, and service providers, who rent
resources from one or many infrastructure providers to serve the end users. The emergence
of Cloud Computing has made a tremendous impact on the Information Technology (IT)
industry over the past few years, where large companies such as Google [9], Amazon [2]
and Microsoft [12] strive to provide more powerful, reliable and cost-efficient Cloud
platforms, and business enterprises seek to reshape their business models to gain benefit
from this new paradigm. Indeed, Cloud Computing provides several compelling features
that make it attractive to business owners.

The new mechanism is increasingly adopted in many areas, such as e-commerce,
retail industry and academy for its various advantages:

• No up-front investments: Cloud Computing uses a pay-as-you-go pricing model.
A service provider does not need to invest in the infrastructure to start gaining benefit
from Cloud Computing. It simply rents resources from the Cloud according to its own
needs and pay for the usage. As a consequence, cloud model is cost-effective because
customers pay for their actual usage without up-front costs.

• Lowering operating costs: Resources in a Cloud environment can be rapidly
allocated and deallocated on demand. Hence, a service provider no longer needs to
provision capacities according to the peak load. This ensures huge savings since resources
can be released to save on operating costs when service demand is low. In this way, costs
are claimed to be reduced and in a public Cloud delivery model capital expenditure is
converted to operational expenditure.

• High scalability and elasticity: Infrastructure providers pool large amount of
resources from data centers and make them easily accessible. Scalability is possible via
dynamic ("on-demand") provisioning of resources on a fine-grained, self-service basis
near real-time, without users having to engineer for peak loads (surge computing). Indeed,
a service provider can easily expand its service to large scales in order to handle rapid
increase in service demands (e.g., flash-crowd effect).

• Easy access: Services hosted in the Cloud are generally web-based. Therefore,
they are easily accessible through a variety of devices with Internet connections. These

12

devices not only include desktop and laptop computers, but also cell phones and smart
devices. Agility improves with users' ability to re-provision technological infrastructure
resources.

• Reducing business risks and maintenance expenses: By outsourcing the service
infrastructure to the Clouds, a service provider shifts its business risks (such as hardware
failures) to infrastructure providers, who often have better expertise than many customers
and are better equipped for managing these risks. In this way Cloud Computing guarantees
business continuity and disaster recovery. In addition, maintenance of Cloud Computing
applications is easier, because they do not need to be installed on each user's computer and
can be accessed from different places. Consequently, a service can cut down the hardware
maintenance and the staff costs.

However, despite the considerable development and spread of Cloud Computing, it

also brings many challenges and new problems in terms of quality of service (QoS),
Service Level Agreements (SLA), security, compatibility, interoperability, costs and
performance estimation and so on. These issues have been analyzed and studied in the last
few years but still a lot of investigation needs to be carefully addressed.

Before presenting the state of the art and discussing the main research challenges,
in the next sections we explain what Cloud Computing is, highlighting its key concepts
and architectural principles.

2.1.1 Cloud Computing Definition

The origin of the term "Cloud Computing" is obscure as it has never been defined
in a unique way and precise circumstance. It appears to derive from the practice of
drawing stylized Clouds to denote networks in diagrams of computing and
communications systems since the half of the XX century.

The word "Cloud" is used as a metaphor for the Internet, based on the standardized
use of a Cloud-like shape to denote a network on telephony schematics and later to depict
the Internet in computer network diagrams as an abstraction of the underlying
infrastructure it represents.

13

The main idea behind Cloud Computing is not a new one, unlike other technical
terms; it is not a new technology, but rather a new operations model that brings together a
set of existing technologies to run business in a different way. Indeed, most of the
elements used by Cloud Computing, such as virtualization and utility-based pricing, are
not new. Instead, Cloud Computing leverages these existing technologies to meet the
technological and economic requirements of today's demand for information technology.

If we consider that with the first available large-scale mainframe in academia and
corporations, accessible via thin clients / terminal computers, it became important to find
ways to get the greatest return on the investment in them, allowing multiple users to share
both the physical access to the computer from multiple terminals as well as to share the
CPU time, and eliminating periods of inactivity (time-sharing), we can affirm that the
underlying concept of Cloud Computing dates back to the 1950s.

In 1961, John McCarthy was the first to suggest publicly that computer time-

sharing technology might result in a future in which computing power and even specific
applications could be provided and sold through the public utility business model (like
water or electricity). This idea was very popular during the late 1960s, but faded by the
mid-1970s, since hardware and telecommunications were not sophisticated and prepared
enough for this progressive scheme.

The term "Cloud" has also been used in various contexts such as describing large

ATM (Asynchronous Transfer Mode) networks in the 1990s. Telecommunications
companies began to offer VPN (Virtual Private Network) services instead of dedicated
point-to-point data circuits, with comparable quality of service but at a much lower cost.
The Cloud symbol was used to represent the demarcation line between provider's and
user's responsibility. This boundary was soon extended to cover servers as well as the
network infrastructure.

However, since 2000, the idea has resurfaced in new forms. It was after Google's

CEO Eric Schmidt used the word to describe the business model of providing services
across the Internet in 2006, that the expression really started to gain popularity. Since then,
the term Cloud Computing has been used mainly as a marketing term in a variety of
contexts to represent many different ideas. The ubiquitous availability of high-capacity
networks, low-cost computers and storage devices as well as the widespread adoption of
hardware virtualization, service-oriented architecture, autonomic, and utility computing

14

had led to a tremendous growth in Cloud Computing in various fields of application. This
is the reason why Cloud Computing term does not have a standard definition. The lack of
general and uniform concept generated not only market hypes, but also a fair amount of
skepticism and confusion. For this reason, recently there has been work on standardizing
the definition of Cloud Computing. As an example, in [87] the author compared over 20
different definitions from a variety of sources to confirm the following standard definition:

Clouds are a large pool of easily usable and accessible virtualized resources (such
as hardware, development platforms and/or services). These resources can be
dynamically reconfigured to adjust to a variable load (scale), allowing also for an
optimum resource utilization. This pool of resources is typically exploited by a pay-per-
use model in which guarantees are offered by the Infrastructure Provider by means of
customized SLAs.

2.1.2 Characteristics

The above definition highlights the basic properties of Cloud Computing:

• Ubiquity: The user can totally ignore the location of the hardware infrastructure
hosting the required service and make use of the service everywhere and every
time he needs through his client application.

• Convenience: The consumer can use a service exploiting remote physical
resources, without necessarily buying/acquiring them. As he is just charged for the
resources provided according to a pay-per-use mechanism, utility-based pricing
lowers service operating cost.

• On-demand activation: A service consumes resources only when it is explicitly
activated by the user, otherwise it is considered inactive and the resources needed
for its execution can be used for other purposes.

Moreover, the NIST definition also specifies five essential characteristics of Cloud

Computing, as stated in [38]:

• On-demand self-service: Resources can be allocated or "allocated on demand",
without requiring human interaction with the service's providers. The automated

15

self-organized resource management feature yields high agility that enables service
providers to respond quickly to rapid changes.

• Broad network access: Capabilities are available over the Internet and are accessed
through mechanisms that promote use by simple (thin) or complex (thick) client
platforms (e.g., any device with Internet connectivity such as mobile phones,
laptops, and smart devices). Moreover, to achieve high network performance and
localization, many of today's Clouds consist of data center distributed in many
locations around the globe. A service provider can easily leverage geo-diversity to
achieve maximum service utility.

• Resource pooling: Different physical and virtual resources are dynamically
assigned and reassigned according to consumer demand and needs; they are pooled
by providers to serve multiple resource users and using a multi-tenant model. The
customer's control is independent from the exact location of the provided resources
but may know a location at a higher level of abstraction (e.g., country, state, or
data-center). Such dynamic resource assignment capability provides much
flexibility to infrastructure providers for managing their own resource usage and
operating costs. Examples of resources include storage, CPUs, memory, network
bandwidth, and virtual machines.

• Rapid elasticity: Resources can be rapidly and elastically provisioned, in some
cases automatically, to quickly scale out and rapidly released to quickly scale in;
the consumer often perceives unlimited availability of resources that can be
purchased in any quantity at any time. Compared to the traditional model that
provisions resources according to peak demand, dynamic resource provisioning
allows service providers to acquire resources based on the current demand, which
can considerably lower the operating cost.

• Measured service: Resources usage is always automatically controlled and
optimized by leveraging a metering capability at a level of abstraction appropriate
to the type of service (e.g., storage, bandwidth, CPU activity time for processing
services and so on). This monitoring mechanism provides transparency for both
the provider and consumer of the agility that enables service providers to respond
quickly to rapid changes in service demand such as the flash crowd effect.

16

2.1.3 Structure models

This section aims to give a global description of the architectural, business and
various operation models of Cloud Computing.

A layered architecture

In a Cloud environment, services owned by multiple providers are collocated in a
single data center. The performance and management issues of these services are shared
among service providers and the infrastructure provider. The layered architecture of Cloud
Computing provides a natural division of responsibilities: the owner of each layer only
needs to focus on the specific objectives associated with that layer. However, multi-
tenancy also introduces difficulties in understanding and managing the interactions among
various stakeholders.

Figura 2-1

Figure 1: Cloud Computing architecture [103]

Generally speaking, we can identify four layers that compose the architecture of a

Cloud Computing environment: The hardware/data center layer, the infrastructure layer,
the platform layer and the application layer, as shown in Figure 2.1 This classification
allows to understand what each of the layers is composed of, what the intended function of
that layer is, and how these layers interact with each other. By simplifying the Cloud
Computing concept into layers, it is easier to define the roles within the overall structure

17

and explain where the business fits into the model. A detailed description of each layer
follows:

1. The hardware layer: This layer is responsible for managing the physical resources
of the Cloud, including physical servers, routers, switches, power suppliers, and
cooling systems. In practice, the hardware layer is typically implemented in data
centers. A data center usually contains thousands of servers that are organized in
racks and interconnected through switches, routers or other fabrics. Typical issues
at hardware layer include hardware configuration, fault-tolerance, traffic
management, power and cooling resource management. Note that the physical
hardware is being sliced into virtual machines (VMs), each having their own small
(usually Linux or UNIX based) operating system installed.

2. The infrastructure layer: Also known as the virtualization layer, the infrastructure
layer creates pools of storage and computing resources by partitioning the physical
resources using virtualization technologies such as Xen [22], KVM [11] and
VMware [21]. These pools of resources are the key to providing elasticity,
scalability and flexibility with respect to server architecture. Indeed, virtual
machines can be brought online and assigned to a resource pool on-the-fly when
the demand on that pool increases, while they can then be destroyed when no
longer needed. The ability to provision and delete virtual machines on the y allows
a vendor to provide Infrastructure as a Service (IaaS). As a consequence, instead of
purchasing servers or even hosted services, IaaS customers can create and remove
virtual machines and network them together at will. Thanks to virtualization
technologies, the infrastructure layer offers VMs as a service to end users that have
complete control of their environments.

3. The platform layer: Built on top of the infrastructure layer, the platform layer
consists of operating systems and application frameworks, and abstracts the IaaS
layer by removing the individual management of virtual machine instances. The
purpose of this layer is to minimize the burden of deploying applications directly
into VM containers. In fact, at this layer customers do not manage their virtual
machines; they merely create their own programs and applications, which are
hosted by the platform services they are paying for, within an existing API or
programming language. This frees the developers from concerns about
environment configuration and infrastructure scaling, but offers limited control.

4. The application layer: At the highest level of the hierarchy, the application layer
consists of the actual Cloud applications that offer web-based software as a service

18

(SaaS), such as email or CRM (Customer Relationship Management). In this layer,
users are truly restricted to only what the application is and can do; they get only
pre-defined functionality and they cannot go much further than that. Indeed,
applications are designed for ease of use and GTD (getting things done). Billing
can be based on utility or at monthly fee. Either way, it is a simple way to get the
application functionality you need without incurring the cost of developing that
application. Different from traditional applications, Cloud applications can
leverage the automatic-scaling feature to achieve better performance, availability
and lower operating cost. We note that the architecture of Cloud Computing is
modular, much more than traditional service hosting environments. Each layer is
loosely coupled with the layer above and below, allowing each layer to evolve
separately. The architectural modularity allows Cloud Computing to support a
wide range of application requirements while reducing management and
maintenance overhead.

Cloud service models

Cloud Computing adopts a service-driven operating business model, indicating a
strong emphasis on service management. In other words, hardware and platform-level
resources are provided as services on an on-demand-basis, according to the SLAs
negotiated with its customers. Conceptually, every layer of the architecture described in
the previous section can be implemented as a service to the layer above. Conversely, every
layer can be perceived as a customer of the layer below. However, in practice, Cloud
Computing providers offer services that can be grouped into three fundamental categories:
infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service
(SaaS), as in Figure 2.

Figure 2: Cloud service models.

19

• Infrastructure as a Service: IaaS refers to on-demand provisioning computers, storage and

other infrastructural physical resources, usually in terms of VMs. The Cloud owner who

offers IaaS is called a IaaS provider. The consumer is able to deploy and run arbitrary

software, which can include operating systems and applications. In this model, the
consumer does not manage or control the underlying Cloud infrastructure but he is

responsible for patching and maintaining the operating systems, deployed application

software, storage, and he possibly has limited control of select networking components

(e.g., host _firewalls). Cloud providers typically bill IaaS services on a utility computing
basis, that is, cost reflects the amount of resources allocated and consumed. Examples of

IaaS providers include Amazon EC2 [1An], Windows Azure Virtual Machines [15An],

Google Compute Engine [8An], GoGrid [5An], and Flexiscale [4An].

• Platform as a Service: PaaS refers to providing platform layer resources, typically
including operating system support, database, web server and software development

frameworks. These provided capabilities are consumer-created or acquired applications,
created using programming languages and tools supported by the provider. The consumer

has control over the deployed applications and possibly application hosting environment

configurations but cannot manage the underlying Cloud infrastructure. Application

developers can develop and run their software solutions on a Cloud platform without the

cost and complexity of buying and managing the underlying hardware and software layers.
With some PaaS offers, the underlying computer and storage resources scale automatically

to match application demand such that Cloud user does not have to allocate resources

manually. Examples of PaaS providers include Google App Engine [6An], Microsoft

Windows Azure Compute [14An], and Force.com [19An].

• Software as a Service: SaaS refers to providing on-demand applications over the Internet.
Cloud providers install and operate application software running on a Cloud infrastructure
while Cloud users access this software from various client devices through a thin interface

such as a web browser (e.g., web-based email). The consumer does not manage or control

the underlying Cloud infrastructure and platform on which the application is running, with

the possible exception of limited user specific application configuration settings. This

eliminates the need to install and run the application on the Cloud user's own computers
simplifying maintenance and support. The pricing model for SaaS applications is typically

a monthly or yearly at fee per user, so price is scalable and adjustable if users are added or

removed at any point. Examples of SaaS providers include Salesforce.com [19An],

Rackspace [18An] and SAP Business ByDesign [20An], Google Apps [7An], Microsoft
Office 365 [13An], and Onlive [17An].

20

We observe that PaaS and IaaS providers are often called the infrastructure providers of
Cloud providers since, in the current practice, they are often part of the same organization
(e.g. Google and Salesforce). However, according to the layered architecture of Cloud
Computing, it is entirely possible that a PaaS provider runs its Cloud on top of an IaaS
provider's Cloud.

IaaS instance options

In addition to providing the flexibility to easily choose the number, the size and the
configuration of the compute instances the customers need for their applications, a IaaS
provides customers different purchasing models that give them the flexibility to optimize
their costs. For example Amazon EC2, IaaS market leader and reference model of this
work, offers three kinds of instances: i) On-demand instances which allow the customer to
pay a fixed hourly rate with no commitment; ii) reserved instances where the customer
pay a low, one-time fee and in turn receive a significant discount on the hourly charge; iii)
on-spot instances which enable the customer to bid whatever price he wants for individual
instance, providing for even greater savings if his application have flexible start and end
times. An accurate description of the three different EC2 instance options follows:

• On-demand instances: On-demand instances require no long-term commitments or upfront

payments. Customers can increase or decrease compute capacity depending on the

demands of their own applications and only pay the needed rate for the instances they use.

A IaaS always strives to have enough on-demand capacity available to meet customers’

needs, but during periods of very high demand, it is possible that it might not be able to
launch specific on-demand instance types in specific availability zones (i.e., a specific

Amazon data center) for short periods of time. On-demand instances are recommended for

users that want the low cost and flexibility without any up-front payment or long-term

commitment, or applications with short term, spiky, or unpredictable workloads that

cannot be interrupted.

• Reserved instances: Functionally, reserved and on-demand instances perform identically
but those reserved let the customer make a low, one-time, upfront payment for an instance,

reserve it for a one or three year term, and pay a significantly lower hourly rate for that

instance. Customers are assured that their own reserved instance will always be available

for the operating system (e.g. Linux/UNIX or Windows) and availability zone in which

they purchased it. For applications that have steady state needs, reserved instances can
provide high savings compared to using on-demand instances. Reserved instances are

usually recommended for applications with predictable usage, applications that require

21

reserved capacity, including disaster recovery and users able to make upfront payments to

reduce their total computing costs even further.

• On-spot instances: Spot instances provide the ability for customers to purchase compute
capacity with no upfront commitment and at hourly rates usually lower than the on-

demand rate. Spot instances allow you to specify the maximum hourly price that you are

willing to pay to run a particular instance type. IaaS sets a spot price for each instance type
in each availability zone, which is the price all customers will pay to run a spot instance

for that given period. The spot price fluctuates based on supply and demand for instances,

but customers will never pay more than the maximum price they have specified. If the spot

price moves higher than a customer's maximum price, the customer's instance will be shut

down by the IaaS. Other than those differences, spot instances perform exactly the same as
on-demand or reserved instances. For the majority of cases, spot instances are

recommended for applications that have flexible start and end times, applications that are

only feasible at very low compute prices and users with urgent computing needs for large

amounts of additional capacity. Due to the nature of on-spot instances, competitions for
their acquisition raise between customers.

Cloud deployment models

There are many issues to consider when moving an enterprise application to the
Cloud environment. For example, some service providers are mostly interested in
lowering operation cost, while others may prefer high reliability and security.
Accordingly, there are different types of Clouds, each with its own benefits and
drawbacks:

• Public Clouds: A Cloud in which service providers offer resources as services available to
the general public or a large industry group and owned by a private organization selling

Cloud services (like Amazon AWS, Microsoft and Google); these services are free or
offered on a pay-per-use model. Public Clouds offer several key benefits to service

providers, including no initial capital investment on infrastructure and shifting of risk to

infrastructure providers. However, they lack fine-grained control over data, network and

security settings, which restricts their effectiveness in many business scenarios.

• Private Clouds: Also known as internal Clouds, private Clouds are designed for exclusive
use by a single organization. A private Cloud may be hosted internally or externally and

managed by the organization or by a third-party represented by external providers. A

private Cloud offers the highest degree of control over performance, reliability and

security. However, they are often criticized for being similar to traditional proprietary
server farms and do not provide benefits such as no up-front capital costs. Moreover,

undertaking a private Cloud project requires a significant level and degree of engagement

22

to virtualize the business environment: every one of the steps in the project raises security

issues that must be addressed in order to avoid serious vulnerabilities.

• Community Clouds: The Cloud infrastructure is shared by several organizations and
supports a specific community that has common concerns (e.g., mission, security

requirements, policy, and compliance considerations). It may be managed by the
organizations or by a third party and may exist on premise or o_ premise. The costs are

spread over fewer users than a public Cloud (but more than a private Cloud), so only some

of the cost savings potential of Cloud Computing are realized.

• Hybrid Clouds: A hybrid Cloud is an alternative solution to addressing the limitations of

both public and private Clouds. It is a combination of two or more Cloud models (public,
private or community), that remain unique entities but are bound together by standardized

or proprietary technology that enables data and application portability (e.g., Cloud

bursting for load-balancing between Clouds). In this way companies and individuals are

able to obtain degrees of fault tolerance combined with locally immediate usability
without dependency on internet connectivity. Hence, hybrid Cloud architecture is flexible

and scalable. Compared to public Clouds, they provide tighter control and security over

application data, while still facilitating on-demand service expansion and contraction. On

the down side, designing a hybrid Cloud requires carefully determining the best split

between public and private Cloud components. For most service providers, selecting the
right Cloud model depends on the business scenario. For example, computing-intensive

scientific applications are best deployed on public Clouds for cost-effectiveness.

Arguably, certain types of Clouds will be more popular than others. In particular, it was

predicted that hybrid Clouds will be the dominating deployment model for most

organizations.

It is fundamental to note that Cloud Computing is still an evolving paradigm. Its
definitions, structure, use cases, underlying technologies, issues, risks, and benefits will be
refined in a spirited debate by the public and private sectors. The definitions, attributes,
and characteristics given in the previous discussion will evolve and change over time.
Finally we remark that the Cloud Computing industry represents a large ecosystem of
many models, vendors, and market niches. Our description attempts to encompass all of
the various Cloud approaches.

23

2.2 CLOUD MONITORING

 In the context of Cloud management, monitoring Cloud infrastructures and
applications is a critical task. It allows us to i) get insights into the system and the health
of the running applications, ii) to gather information and scalability and, as a result,
coming up with adaptation decisions based on monitoring data. In general, monitoring
approaches differ from various points of view, in particular:

• The monitoring actor (who) can be the application/service provider, cloud
provider, or third party. Who performs monitoring has an impact on the aspects
possible to monitor. For instance, an application/service provider has usually a full
control over the execution of its application components/services and can easily
probe their internals. In contrast, it could not easily access to infrastructure level
information that the cloud provider may hide.

• What objects and properties are monitored. The monitored objects can be an
application, cloud resources or some specific services such as queues. As for the
monitored properties different approaches can be distinguished one from the other
for the following two aspects:

o Types of monitored properties. Monitored properties can be functional
(proper functionality) or non-functional (quality aspects) such as execution
cost, response time, and throughput.

o Punctual versus History-based monitoring. The monitoring is punctual if
it concentrates on values collected at particular instants of the execution.
The term history-based monitoring refers to the case when the analysis
considers the history of the system in a certain time window in order to
discover the presence (absence) of sequences of values or events.

• When monitoring happens. This concerns the timing of the monitoring process
with respect to the execution of the monitored system.

• How the monitoring system is built. This refers to the monitoring mechanism,
the expressiveness of the language and abstraction level, the capability of
diagnosing and deviation handling and the runtime support.

24

• The language expressiveness. The type of monitored properties and the capability
of predicating on single values and histories lead to the expressiveness of the
monitoring language. After deciding what we want to monitor, we need a way to
render monitoring directives. Usually services are monitored through special
purpose constraints that must be checked during execution such as compliance
with promised SLAs. History-based constraints require a temporal logic to relate
the values belonging to a sequence, while monitoring the QoS properties imposes
a language allowing for suitable representation.

• Abstraction level. Monitoring properties can be expressed at various abstraction
levels. There is a distinction between the level at which monitoring works and the
level at which the user is required to define such properties. This distinction helps
characterize what the user specifies with respect to what the execution
environment must cope with. Abstraction level refers to the first aspect and does
not consider what the runtime support executes. This aspect is taken into account
when considering the degree of automation intrinsic within each approach.

• Architecture of the monitoring environment. Monitoring constraints must be
specified and then evaluated while the system executes. The support could be in
the form of modeling environment, meaning what the approach offers to the user
to specify the monitoring constraints (e.g., Palladio component modeling) and
execution environment meaning what the approach offers/requires to check
directives at runtime. Usually, specification environments propose proprietary
solutions, while execution environments can be based on standard technology,
proprietary solutions, or suitable customizations of existing engines. The execution
environment may also include the mechanisms deployed for generating the
monitoring information such as instrumentation, reflection, and the interception of
events/information exchanged in the execution environment.

• Filtering. Pure monitoring is in charge of detecting possible discrepancies between
what stated by monitoring constraints and what is actually collected from the
execution. Filtering and reasoning abilities enable analysis of complex properties
by combining raw data collected by the monitoring infrastructure.

• Monitoring output. The monitoring environment can offer its output through
specific and proprietary GUI or it can offer APIs enabling the retrieval of
monitoring data. In general, the richness of information offered as an outcome of
the monitoring activity is of paramount importance.

25

• Derivation of monitoring constraints. Monitoring directives can be either
programmed explicitly or be derived (semi) automatically from other artifacts, e.g.,
design specification containing QoS information.

• Reactive/proactive monitoring. Reactive monitoring takes actions to solve
problems in response to one or more incidents, after a problem has occurred. It is
designed to analyze the direct and root causes of the problems and then take
corrective actions to fix them. Optionally, it could collect data for comparison with
past and future events and allow related risk assessment. For example, reactive
monitoring comprises reduction, correlation, sequencing, notification and reporting
of event, automated actions and responses, and the implementation of special-
purpose policies to constrain problems. Proactive monitoring implies the definition
of monitoring actions trying to identify and solve problems before occurrences
such as the verification of SLAs, capacity planning and treatment of statistics to
measure of the system behaves.

2.2.1 General Monitoring Approaches

In this section some approaches generally applicable to web service monitoring are
presented, together with some cloud-specific ones that are dealing with all layers of the
Cloud.

COMPAS [Mos02]. The COMponent Performance Assurance Solutions (COMPAS) is a
performance monitoring approach for J2EE systems in which components are EJBs. The
framework is divided into three parts: monitoring, modelling, and prediction. Java
Management Extensions (JMX) is used in the monitoring part. An EJB application is
augmented with one proxy for each component EJB. Such proxies mirror in the
monitoring system each component in the original application. Timestamps for EJB life-
cycle events are sent through these proxies to a central dispatcher. During runtime, a
feedback loop connecting the monitoring and modelling modules, allows the monitoring
to be refined by the modelling process in order to increase the efficiency of
monitoring/modelling.

TestEJB [Mey04]. This approach deals with QoS specification of components by
introducing a novel measurement architecture. It is is the performance monitoring of J2EE

26

systems implementing an application-independent profiling technique. The framework
focuses on response time by monitoring execution times of EJBs and also traces of users
calls. The approach relies on the Java Virtual Machine Profiler Interface (JVMPI) and
records events for constructing and deconstructing EJBs. This method allows tracing back
memory consumption to individual components and introduces a significant overhead in
the range of seconds and should only be used in a testing environment.

PAD [Par08]. Monitoring is not limited to just obtaining some raw data, rather it concerns
also analyzing the data in order to detect functionality and performance issues that then
trigger ameliorative adaptation decisions. The objective of Performance Anti-pattern
Detection (PAD), which is based on the COMPAS framework, is the automatic detection
of performance anti-patterns in EJB component-based systems. The framework includes
three modules as performance monitoring, reconstruction of a design model and anti-
pattern detection. PAD is portable across different midleware implementations as a result
of using standard J2EE mechanisms. For each EJB module proxies are used regarding
collect timestamps and call sequences. Based on rules implemented with the JESS rule
engine, anti pattern detection on the reconstructed design model could be achieved. PAD
collcts data at the correct level of abstraction and provide sufficient runtime context for the
collected data.

An elastic Multi-layer monitoring approach [Kon12]. A peer-to peer scalable
distributed system for monitoring is proposed in [Kon12], enabling deployment of long-
living monitoring queries (query framework) across the cloud stack to collect metrics and
trigger policies to automate management (policy framework). The monitoring architecture
of the approach is composed of three layers as data, processing and distribution,
interfacing on different levels with the cloud stack.
The data layer provides extensible adaptors to cope with resource heterogeneity. The
processing layer describes complex queries (in a SQL-like syntax) over data and also
defines policy rules to be triggered if needed. The distribution layer performs an
automated deployment of processing operators in the correct places relying on services
such as SmartFrog [Gol09], SLIM [Kir10] or Puppet [Tur07].

RMCM [Sha10]. Runtime Model Based Monitoring Approach for Cloud (RMCM)
[Sha10] represents a running cloud through an intuitive model.The objective is to provide
an opearable profile of a running cloud and to apply it for implementing a flexible

27

monitoring framework. RMCM is presented from the point of view of three roles in the
cloud: cloud operators, service developers, and end users. The entities of this model are:
Interaction behavior, Application, Middleware and Infrustructure. The main focus of
infrastructure monitoring is on the resource utilization. Applications are monitored from
the design and performance point of views. The monitoring is based on server-agent
architecture. A monitoring agent is deployed on each virtual machine in charge of
collecting runtime information of all the entities on the same VM. These entities are
equipped with various monitoring mechanisms to collect runtime information from
entities of each level. Collected information is used to instantiate corresponding RMCM to
be checked based on some pre-defined rules. Administrators can view and query this
monitoring information from the DB. They also can modify the monitoring configuration
for each agent.

mlCCL [Bar12]. The Multi-layer Collection and Constraint Language (mlCCL) [Bar12]
is an event-based multi-level service monitoring approach which defines runtime data to
be collected and how to collect, aggregate and analyze it in a multi-layered system such as
Cloud. mlCCL Data is described as Service Data Object (SDOs) that may have two kinds
of data collections: messages and indicators. Messages are used to obtain the request or
response messages exchanged during service invocations. In the case of a new service
invocation for which a message collection is defined, the mlCCL tool produces a new
SDO and outputs it to an event bus so that the designer can make further use of it. In
addition to collected messages and the location of them, an SDO contains a timestamp
indicating when the message was sent or received by the service runtime (NTP - Network
Time Protocol) timestamps are used for the purpose of clock synchronization when
sampling sources on different computers with a precision in the order of 10 ms and an
instanceID, that is a unique ID identifying the specific service call. Indicators are not
triggered by any particular service call. They collect periodic information about a service.
An indicator can be a Key Performance Indicator (KPI) such as average response time or
throughput, or a Resource Indicator (RI) such as the amount of available memory or idle
CPU in a virtual machine. Upon calculating a new indicator value by mlCCL runtime, it is
wrapped in an SDO and output to an event bus for further use.

28

2.2.2 Infrastructure-Level Monitoring

Infrastructure-level monitoring involves collecting metrics related to CPU, memory,
disk and network from a IaaS platform, either via monitoring probes deployed inside VMs
or using services provided by the cloud platform itself (e.g., Amazon Cloudwatch). In this
section we review current standard monitoring tools and cloud-specific tools that may be
appropriate for this purpose.
Ganglia []. Ganglia is a scalable distributed monitoring system for high-performance
computing system such as clusters and Grids. Ganglia is able to run on Linux and
Windows.
Nagios []. Nagios offers the ability to monitor applications, services, operating systems,
network protocols, system metrics and infrastructure components with a single tool.
Nagios is able to respond to issues at the first sign of a problem and automatically fix
problems when they are detected. Nagios is able to run on Linux and Windows.
MonALISA []. It is an assembler of autonomous multi-threaded, self-describing agent-
based subsystems which are registered as dynamic services. It has the ability to collect
local host information, and it’s mainly Linux based.
JASMINA []. It is a set of monitoring tools that allows supervising a distributed
infrastructure. It has the ability of running on any platform.
Zabbix []. It is an open source monitoring software for enterprise environment. It is
available for Linux, Unix and Windows.

2.2.2.1.1 Cloud-specific monitoring

Amazon CloudWatch [2]. CloudWatch enables monitoring for Amazon cloud resources
and services. CloudWatch provides monitoring metrics about CPU, disk, network, system
status check and custom metrics such as memory and error rates. CloudWatch supports
alarm for notification of predefined metric value. Graphs and statistics are provided for
selected monitoring metrics. CloudWatch is neither open source nor free.

Azure Monitoring [3]. The key performance metrics for azure cloud services can be
monitored in the Windows Azure Management Portal. It is possible to set the level of
monitoring to minimal and verbose for each service role, and to customize the monitoring
displays. Verbose monitoring data is stored in a storage account, which can be accessed
outside the portal. Monitoring displays in the Management Portal are highly configurable.
The user can choose the metrics that wanted to be monitored in the metrics list on
the Monitor page, and the user can choose which metrics to plot in metrics charts on

29

the Monitor page and the dashboard. The minimal metrics are limited to CPU Percentage,
Data In, Data Out, Disk Read Throughput, and Disk Write Throughput.

Cloudify []. Cloudify is an open source PaaS for business-critical applications enabling
on-boarding and scaling to any cloud. Cloudify supports monitoring system using a web
management console or using the Cloudify shell. Cloudify in default can monitoring CPU
and memory. It also supports monitoring probes and plugins to conduct monitoring, such
as JMX. Alerts can be set inside the web management console.
Rackspace Cloud Monitoring []. Rackspace Cloud Monitoring is a service provided by
Rackspace to monitor applications on cloud (not limited to Rackspace cloud). Rackspace
Cloud Monitoring supports various monitoring metrics, including CPU, disk, memory,
network, processes and custom metrics.
CopperEgg Reveal []. CopperEgg is a cloud computing systems management company
and its products provide monitoring for websites, web applications, servers, and systems
deployed in cloud. RevealCloud is a tool for server monitoring; RevealUpTime is a tool
for website and web application monitoring; includes also custom monitoring metrics.
CopperEgg products support almost all the major public cloud providers and platform.
CopperEgg products are not free.
New Relic []. New Relic is an application performance management company. Its
products provide user, application and server monitoring functionalities. Real user
monitoring is able to provide real time performance metrics such as page load time, page
views, Apdex score, identify poor performance pattern and alert and notification.
Application monitoring is able to provide several metrics such as throughput, response
time and Apdex score and transaction tracking and reporting. It also supports alerts and
capacity analysis. Server monitoring provides performance metrics such as CPU, memory,
network and IO. New Relic products are not free.
AppDynamics. AppDynamics is an application performance management company. Its
products focus on providing performance management in cloud. AppDynamics provide
real time monitoring and end user monitoring. AppDynamics is able to achieve
troubleshooting by identifying bottlenecks, detecting transaction anomalies and code
diagnostics. AppDynamics provides detailed report and visualised dashboard for statistics
and comparison with each release. AppDynamics products are not free.

30

Beside the features of cloud-specific monitoring applications, there is no
possibility of monitoring internal components, like the response time of the website pages
that are hosted by a cloud provider.

2.2.3 Application-Level Monitoring

This section is devoted to application level Cloud monitoring, which is of
significant importance, especially in the context of Cloud application SLA management.
Due to virtualization as the basis for resource sharing, multiple virtual machines (VMs)
can be run on a single physical machine or even multiple applications can be run on a
single VM. As a result, per-application monitoring in such a shared environment is
essential to keep applications healthy and guarantee QoS. Therefore, it is not enough just
to monitor a physical machine or a VM to measure the application resource consumption,
detecting SLA violations and managing resources efficiently.

RTCE [Hol10]. Run-time Correlation Engine (RTCE) provides a scalable log

correlation, analysis, and symptom matching architecture that can perform real time
correlation for large volumes of log data. Analysing the huge mass of data which is
produced by software component, especially in heterogenous environment is a challeging
issue. RTCE framework encompasses four functionalities: automatic data collection, data
normalization into a common format, runtime correlation and analysis of the data to give a
coherent view of system behaviour at run-time and a symptom matching mechanism
identifying errors in the correlated data [Hol09].

Data from each application is read by Monitoring Agent (MA) and are routed in
the form of events to the Evenvt Correlation Engine (ECE) via TCP/IP connection. After
the data being procesed by ECE, they are presented on the web server, and users get them
from different view. One of the limitation of RTCE is scalability in cloud computing
environments.

A multi-layer approach for cloud application monitoring [Gon11]. A three-

dimentional approach for cloud application monitoring is proposed in [Gon11],
encompassing Local Application Survelliance (LAS), the Intra Platform Survelliance
(IPS) and the Global Application Survelliance (GAS) dimensions. LAS monitors the

31

application instance to check for rules violation; Its output is sent to the assigned IPS. The
filtered results are then sent to the GAS components for more analysis.

Cloud Application Monitoring [Rak11]. The building of custom monitoring

systems for Cloud applications is facilitated using the mOSAIC API. The mOSAIC
approach as a whole contains four modules as the API, the framework (i.e., platform), the
provisioning system, and the semantic engine. The API and the framework aim at the
development of portable and provider independent applications. The provisioning system
works at IaaS level and resource management. The functionality of the provisioning
system is a part of the Cloud agency [Ven11]. The framework is a collection of predefined
Cloud components in order to build complex applications. The framework constitutes a
PaaS enabling the execution of complex services with predefined interfaces. The mOSAIC
SLA management components are also part of the framework. The API offers the
implementation of a programming model in a given language (currently Java, and Python
in the future) to build applications. The API provides new concepts (e.g., the Cloudlet or
the Connector) in order to focus on Cloud resources and communications instead of the
resource access or communication details.

The mOSAIC monitoring API offers a set of connectors representing an
abstraction of resource monitoring and a set of drivers implementing different ways of
acquiring monitoring data (from different techniques); therefore, it supports monitoring by
(i) offering a way to collect data directly from any of the components of a mOSAIC
application, (ii) offering a way to collect data for any proposed monitoring techniques
(accessing Cloud-provider, resource-related, and mosaic monitoring tools (called M/W -
monitoring/warning - system), and (iii) supporting the mOSAIC Cloud application in
order to access data regardless to the technology of the acquired resources and the way
they are monitored. The aim of the set of mOSAIC monitoring tools, offered by the
mOSAIC framework, is offering the ability to building up a dedicated monitoring system.

M4Cloud [Mas11]. It is a model-driven approach that classifies and monitors

application-level metrics in shared environments such as the Cloud. The basis for the
implementation of the monitoring phase is the Cloud Metric Classification (CMC). CMC
identifies the following four models: application based (e.g., generic/specific),
measurement based (e.g., direct/calculable), implementation based (e.g.,
shared/individual) and nature based (e.g., quantity/quality) models. The application based
model supports the distinction of the metrics on the basis of the application they belong to.

32

The measurement based model is applied to define the formulas from which metrics can
be calculated; the Implementation Based Model defines for each metric the corresponding
measurement mechanisms, coherently with the formulas defined at the previous step;
finally, the nature based model defines the nature of the metrics and their definition within
SLAs. More info on the models could be found in the original article in [Mas11].

CMC is part of the M4Cloud framework. In this framework, the FoSII
infrastructure [Bra10] is used as a Cloud Management System (CMS). Monitored data is
analyzed and stored within a knowledge database and then is used for planning actions.
Moreover, monitored data is also acquired and analyzed after the execution of such
actions, for the purpose of efficiency evaluation.

Cloud4SOA [*].The Cloud4SOA monitoring offers a unified platform-

independent mechanism, to monitor the health and performance of business-critical
applications hosted on multiple Clouds environments in order to ensure that their
performance consistently meets expectations defined by the SLA. In order to consider the
heterogeneity of different PaaS offering Cloud4SOA provides a monitoring functionality
based on unified platform independent metrics. The Cloud4SOA monitoring functionality
allows to leverage on a range of standardized and unified metrics of different nature
(resource / Infrastructure level, container level, application level, etc.) that, based on the
disparate underlying cloud providers, allow the runtime monitoring of distributed
applications so as to enforce the end-to-end QoS, regardless of where they are deployed
across different PaaS. In the scope of Cloud4SOA several metrics have been defined from
the cloud resource as well as the business application perspective, but not all of them have
been enforced at runtime since they only provide useful information about the status of the
application.

REMO [Men08]. Cost effectiveness and scalability are among the main criteria in

developing monitoring infrastructure for large-scale distributed applications. REMO
addresses the challenge of constructing monitoring overlays from the cost and scalability
point of views jointly considering inter-task cost-sharing opportunities and node-level
resource constraints. Processing overhead is modeled in this approach in a per message
basis. A forest of optimized monitoring trees is deployed in the approach through
iterations of two phases exploring cost sharing opportunities between tasks and refining
the tree with resource sensitive construction schemes. In every iteration, a partition
augmentation procedure is run generating a list of most promising augmentations for

33

improving the current distribution of workload among trees, considering also the cost
estimation for the purpose of limiting the list. Then, these augmentations are further
refined through a resource-aware evaluation procedure and monitoring trees are built
accordingly (through the resource-aware tree construction algorithm).

 An adaptive algorithm is also considered for the purpose of balancing the cost and
benefits of the overlay, which is useful especially for large-scale systems with dynamic
monitoring tasks.

Planning the monitoring topology and collection frequency are important factors in
keeping a balance between monitoring scalability and cost effectiveness. The drawback of
proposed approaches up to date is that they either build monitoring topologies for each
individual monitoring task (e.g., TAG [Mad02], SDIMS [Yal04], PIER [Hue05], join
aggregations [Cor05], REED [Aba05], operator placement [Sri05]) or use a static one for
all monitoring tasks [Sri05], which none of them is optimal. For instance, it could happen
that two monitoring tasks collect data over the same nodes. Hence, in such a case it is
more efficient to consider just one monitoring tree for data transmission, as nodes can
merge updates for both tasks and reduce per-message processing overhead. Therefore, it is
of significant importance to consider multi-monitoring-task level topology optimization
for the purpose of monitoring scalability. Load management is another important factor to
be considered in monitoring data collection, especially for data-intensive environments,
meaning that the monitoring topology should be able to somehow control the amount of
resources spent in order to collect and deliver the data. In the case of ignoring this fact, it
may lead to overloading and consequently losing of data. Remo approach addresses all
these issues considering node-level resources in building a monitoring topology and
optimizing the topology for the purpose of scalability and ensuring that no node is
assigned with monitoring workloads more than the amount that their available resources
could support.

 Three main advantages of this approach are as follows. At first, it identifies three
critical requirements of large-scale application monitoring including sharing message
processing cost among attributes, meeting node-level resource constraints and efficient
adaptation based on monitoring task changes. Then after, a monitoring framework
optimizing the monitoring topologies and addressing the above-mentioned requirements is
proposed. Finally, techniques for runtime efficiency and support are developed as well.

34

In Table 1 a summary of the characteristic of the monitoring frameworks, reviewed
in this section is reported, according to the classification dimensions introduced in Section
2.2.

Monitoring
approaches

Who What When How

COMPAS Client/server
provider

J2EE systems
with EJB

components

Periodical
Proactive

TestEJB Client/server
provider

J2EE systems
with EJB

components

Parallel with
the application

execution

Proactive

PAD Service provider Component-level Parallel with
the application

execution

Proactive

Elastic multi-
layer

Service provider Multi-layer Continuous at
pre-defined
time interval
time interval

Proactive

RMCM Service provider Multi-layer Continuous Proactive/Reactive

mlCCL Service provider Multi-layer Periodical Proactive/Reactive
RTCE Service provider Comment-level Periodical Proactive

A multi-layer
approach for

cloud
application
monitoring

Service provider

Application-level

Continuous

Proactive

Cloud
application
monitoring

Service provider

Application-level

Event-based
and at the
predifined

time interval

Proactive/Reactive

M4Cloud Service provider Application-level On demand
and

periodically

Proactive/Reactive

35

REMO Service provider Application-evel Collecting the
metrics is not
the scope of

the work

Not part of the work

Table 1: Monitoring Frameworks

36

3 CHAPTER 3

The main methodologies that are used in this thesis are reviewed in the following
chapter.

In 3.1 there is an overview of Aspect Oriented Programming and the review of
current monitoring approaches based on that are provided.

Section 3.2, firstly exhibits a summary on Semantic Web then in the following there
are more details on RDF streams, and C-SPARQL engine which is the core of the
monitoring solution implemented by this thesis are provided. Also there is a revision over
current stream monitoring approaches.

A general overview of the Palladio tool supports component-based application
development is provided in Section 3.3.

Some explanations on our case study, MiC application and its Palladio meta-models,
are given in Section 3.4.

In Section 3.5 we introduce MODAClouds project that is the main context of this
thesis.

3.1 ASPECT ORIENTED PROGRAMMING

 Aspect-Oriented Programming (AOP) was proposed to handle separation of

concerns [Kiczales et al. 1997; Tarr et al. 1999], improving the modularity, and

maintainability of an application, orthogonal concerns like logging, persistence,

synchronization, failure handling.

Aspect-Oriented Software Development (AOSD) presents a new kind of module

named aspect. In each aspect there are pointcuts and advices. A point during the execution

of a method or the handling of an exception is called join point. A pointcut is an

37

expression representing a set of join points. An advice describes the behavior of an aspect

at a particular join point. When execution of a program reaches a join point, the control is

transferred to related advice.

AOP supports both static and dynamic point cuts. Static pointcuts are events in the

program execution that can be determined during compilation. Static point cuts do not

support runtime adaption directly. Dynamic point cuts, instead, designate an execution

point that cannot be decided at compile time; that means programmers are not obliged to

determine the point cuts during compile time. The decision to execute an advice and the

possibility to enable/disable could be done during the runtime. For example in AspectJ if

and the cflow point cuts belong to this category. The if pointcut activates an advice

whenever a condition is satisfied, and cflow pointcut activates an advice along the current

control flow. Dynamic pointcuts are a fundamental mechanism used by dynamic AOP.

Weaving is the process of binding advices with the rest of the code. There are three

different weaving. In compile-time weaving, sometimes referred to as static weaving,

aspects are merged with the code-base during the compilation process. Load-time weaving

enhances the code when the class is loaded in the virtual machine. In run-time weaving

advices are woven during the execution of the application.

Dynamic AOP, is especially important for self-adaptive systems, refers to

activating, configuring and removing aspects dynamically. Programmers can plug/unplug

aspects during the program execution.

Dynamic support for AOP and weaving strategy are, in principle, orthogonal. An

AOP implementation can hook all the possible join points statically and postpone at

runtime their activation depending on the configuration of the active advices.

Different features of AOP make it suitable for using in different applications.

Many researchers investigated AOP to implement self-adaptive systems, as they perceive

many adaption concerns are crosscutting. At the same time, AOP has been used in the

service-oriented application and Web services adaptability.

There are different AOP frameworks; among them we can name AspectJ, Spring

AOP, and JBoss AOP. They are all supported by eclipse IDE. AspectJ language extension

requires the use of an extended compiler and related tools, and has the lack of libraries. In

JBoss advanced IDE features are not yet supported and its libraries are integrated with

JBoss and JEMS. Spring AOP has the lack of IDE support for working with aspects, and it

38

is integrated with Spring framework that makes it portable and adaptable for existing

Spring users. A summary of the characteristics of these three frameworks is reported in

Table 2.

AOP
frameworks

Control
flow

conditional Weaving IDE

AspectJ

cflow,

cflow below

If

Compiled
and load

time

Eclipse,
jdeveloper,

jbuilder,
netbeans

JBoss AOP Via
specified
call stack

Via
Dynamic

cflow

Run time
interception
and proxies

Eclipse

Spring
AOP

cflow

Custom
pointcut

Run time
interception
and proxies

eclipse

Table 2: AOP Frameworks

The ability of AOP in modifying execution of an application by inserting or

substituting the behaviors, and enable/disabling aspects on several execution points from

one side and crosscutting aspect of monitoring at the other side, makes AOP as an

effective way in the field of monitoring.

AOP is one of the possibilities that we propose for monitoring of Cloud Computing

services, especially for PaaS layer, relying on the capabilities of AOP that is keeping

separate the cross-cutting features like response time, and status code of a web page. In

this case we are not forced to inject any additional modification to the current codes, and

even we could add aspects to the current code without the detailed knowledge of the code

itself. Also the feature of enable and disable of aspects helps us to do monitor whenever it

is necessary.

39

3.1.1 Monitoring via Aspect Oriented Programming

 For adding self-adaptive behavior or monitoring capabilities to an application,

programmers do not need to know the structure of the code, and do any modifications, as

the aspects are designed to be separated from the existing code and AOP enforce

obliviousness. AOP developer only needs to specify the execution points in which advices

must be triggered. In the following we review some of the monitoring approaches that are

based on AOP.

In [Aspect EX 1], a fine-grain monitoring framework architecture has been

proposed that called AOP-Monitoring framework. This framework is composed by two

main modules: Sensors and the Monitor Manager. Sensors are assigned to collect data

from the system, that are aspects. In this approach for every data or event that needs to be

monitored, a sensor was considered. When a sensor collects enough data, this data is sent

to the Monitor Manager for analyzing and making decision for the system. Monitor

Manager is the responsible of collecting data from all the active sensors, and define policy

to follow. The monitor manager uses data mining to predict failure or use the sensor to

forecast methods. If method prediction needs more data, monitor manager can activate

some more sensors or even deactivate others to obtain needed information. The monitor

manager can also change the behavior of sensors in the case of redefine their elapse time

between collecting data that made the system more flexible and adaptable and reduce the

overhead when the behavior of the system seems correct. In Figure 3, the related

architecture is shown in more details:

Figure 3: Detailed Architecture of a Sensor

As this picture shows, sensor architecture is contained real sensor and Sensor

Manager Proxy. Sensor Manager Proxy can active or deactivate sensor, and change the

time between monitor task, and communicate with Monitor Manager in order to send the

received data that it has received from sensors and receive new orders from the Monitor

Manager.

40

In the first version of the framework, two sensors have been developed, which they

monitored the memory consumption and CPU status. For evaluating the overhead of using

this framework, a simple web application on Tomcat Server 5.5.20 was run, and the two

sensors were injected in every method call in the Tomcat Server core. The client workload

for the experiment was generated with Httperf [Httperf]. This analysis showed that the

throughput overhead introduced in the maximum point is around 6% (the number of

requests were reduced from 422 req/sec to 395,7 req/sec) and the response time was

increased around 16%.

In [IBM], a flexible and modular approach to a performance monitoring has been

proposed that is a combination of AspectJ with JMX. They used the base idea and source

code of the Glassbox [GlassBox]. In this work, the authors show how to gain statistics such

as total counts, total response time for requests, and allow to drill down into information

gathered from database.

AOP4CSM [AOP4CSM], is a Cloud service monitoring approach based on Aspect-

Oriented programming. The main differences between this approach and related works in

web service monitoring and Cloud services are as follow: AOP4CSM is a non-invasive

approach that is the capability of AOP in terms of isolating aspects from source code; It

does not modify the source code of the applications, and it is not based on special

environment like Java-based application. This approach does not require any special

hardware and/or configuration and could be installed on all Service-Oriented

environments. AOP4CSM measures five QoS metrics: execution time, response time,

communication time, throughput and availability. Regarding to invoke these parameters,

specific join points are defined at important instants of time. To evaluate the performance

of AOP4CSM, several experiments have been conducted in a private cloud on IaaS layer.

These experiments are divided in measuring the computational overhead of AOP4CSM

and its usefulness in the context of fault tolerance. For the first one, the response time of a

cloud service was measured in two cases, with and without AOP4CSM. The average value

of the AOP4CSM overhead is about 34 milliseconds. For the second case, the authors

integrated that into fault tolerance framework and a cloud service based on a real life

medical workflow, and their experiments showed that the failure rate has decreased about

eleven percent.

41

SpringSource Hyperic [Hyp13] is a monitoring tool for managing various aspects

of web applications. In particular, it provides support for real-time monitoring and, by

default, visibility into availability, performance, utilization, and throughput. Hyperic is

structured as a set of installable plugins, each one providing various metrics for a single

application type. Hyperic supports the most popular application servers (e.g., JBoss,

Apache Tomcat, IBM WebSphere, Microsoft .NET, etc.), mail servers (e.g., sendmail,

postfix, Microsoft Exchange, etc.) and messaging middleware (e.g., RabbitMQ,

ActiveMQ, Hadoop, etc.).

Finally, among the monitoring frameworks based on AOP, it is worth noticing Kieker
[KIE13]. Kieker provides monitoring probes that can be added by adding annotations to
the code, and supports Java-based systems although recently adapters for other type of
systems have been added (i.e., .NET and COM). Kieker already comes with a set of
predefined monitoring probes for the major metrics (i.e., response times, user sessions,
CPU utilization, memory usage, etc.). Kieker moreover supports the Palladio component
model [BEC09], it is able to derive Palladio models from the instrumented code and thus
it takes advantage of the various analysis tools already available for this platform.
Its overhead has been shown to be minimal and it has been successfully used in production
environments.

AOP-Monitoring framework is a flexible and adaptable fine grained monitoring

framework. The ability to activate or deactivate sensors, sensor behavioral change at run

time, and changing the monitoring level make this framework to have a better coverage of

errors and failures than the traditional solutions. In the IBM research, an AOP-based

system for performance monitoring was proposed that was designed to monitor multiple

web applications simultaneously and provided correlated statistical results. SpringSource

is another AOP based monitoring framework of web applications that is designed for most

popular applications and mail servers. Among the frameworks that have been reviewed,

AOP4CSM is a cloud service monitoring approach. This framework is a non-invasive

monitoring approach that could be used in different domains like self-healing, fault

tolerance, QoS management, load balancing and SLA management. In the domain of fault

tolerance it was implemented on IaaS layer (Amazon EC2).

XXX TODO: Add a comparison Kieker with other and my approach XXX

42

3.2 SEMANTIC WEB

The Semantic Web is the extension of the World Wide Web that enables people to

share content beyond the boundaries of applications and websites [semantic web 1]. It is a

mesh of information linked up in such a way as to be easily readable by machines, on a

global scale. It can be understood as an efficient way of representing data on the World

Wide Web, or as a globally linked database. As shown in Figure 4, the Semantic Web is

realized through the combination of certain key technologies [semantic web 1]. The

technologies from the bottom of the stack up to the level of OWL have already been

standardized by the W3C and are widely applied in the development of Semantic Web

applications. The technologies are: Universal Resource Identifiers (URIs) provide means

for uniquely identifying Semantic Web resources. The Semantic Web should be able to

represent text documents in different human languages, and Unicode serves this purpose.

XML provides an elemental syntax for content structure within documents. Resource

Description Framework (RDF) is a framework for creating statements in the form of

triples: subject – predicate – object. RDF Schema (RDFS) provides a basic schema

language for RDF. For example, using RDFS it is possible to create hierarchies of classes

and properties. Web Ontology Language (OWL) is used to formally define an ontology –

“a formal, explicit specification of a shared conceptualization” [semantic web 2]. OWL

extends RDFS by adding more advanced constructs to describe resources on the Semantic

Web. By means of OWL and other ontology specification languages it is possible to

explicitly define knowledge (i.e. concepts, relations, properties, instances, etc.) and basic

rules in order to reason about this knowledge. OWL allows stating additional constraints,

such as cardinality, restrictions of values, or characteristics of properties such as

transitivity. It is based on Description Logics and thus brings reasoning power to the

Semantic Web. Semantic Web Rule Language (SWRL) extends OWL with even more

expressivity, as it allows defining rules so that whenever the conditions specified in the

body of a rule hold, then the conditions specified in the head must also hold. SPARQL is

an RDF query language - it can be used to query any RDF-based data, including

statements involving RDFS and OWL.

43

Figure 4: Semantic Web Technology Stack

3.2.1 C-SPARQL

 In 2008, Della Valle et al. in [DEL09] called the Semantic Web community for

techniques able to reason upon rapidly changing information. When reasoning on massive

data streams, such as those characterizing the monitoring of cloud base applications, well

known artificial intelligence techniques have the right level of expressivity, but their

throughput is not high enough to keep pace with the stream (e.g., belief revision[GAE03]).

The only technological solutions with the right throughput are Data Stream Management

Systems (DSMS) [GAR07] and Complex Event Processing [LUC08], but, on the other

hand, they are not expressive enough. A new type of inference engines is thus needed to

reason on streams. [DEL09] named them stream reasoners.

In the following years, a number of stream reasoning approaches have been

developed [BAR10,ANI11,TDO11,CAL10]. They share three main concepts:

1. they logically model the information flow as an RDF stream, i.e. a sequence

of RDF triples annotated with one or more non-decreasing timestamps,

2. they process the RDF streams “on the fly”, often by rewriting queries to the

raw data streams, and

3. they exploit the temporal order of the streaming data to optimize the

computation.

Within the monitoring systems of MODAClouds, that will be developed within

this thesis, we propose to use Continuous SPARQL (C-SPARQL) [BAR10] – an extension

44

of SPARQL that continuously processes RDF streams observed through windows (as done

in DSMS). The current version of the C-SPARQL engine is an extension of SPARQL 1.1

and it includes support for all its constructs. The syntax and semantics of C-SPARQL

were described in [BAR10b]. The C-SPARQL execution engine and its optimization

techniques were illustrated in [BAR10c]. The optimization needed for high-throughput

RDFS++ reasoning are described in [BAR10d]. Hereafter we provide a minimum guide to

RDF streams and C-SPARQL syntax.

3.2.2 RDF Stream Data Type

C-SPARQL adds RDF streams to the data types supported by SPARQL1.1. An

RDF stream is defined as an ordered sequence of pairs, where each pair is made of an

RDF triple and its timestamp τ:

... (⟨subji, predi, obji⟩ , τi) (⟨subji+1, predi+1, obji+1⟩ , τi+1) …

Timestamps can be considered as annotations of RDF triples; they are

monotonically non-decreasing in the stream (τi ≤ τi+1). They are not strictly increasing

because timestamps are not required to be unique. Any (unbounded, though finite) number

of consecutive triples can have the same timestamp, meaning that they “occur” at the same

time, although sequenced in the stream according to some positional order.

Example. In our running example, taken from monitoring system scenario, data

streams are associated with http-status. In the streams every triple corresponds to the page-

url that return a specific http-status. The predicate of the triple (t:returnedBy) is fixed,

while the subject (?httpstatus) and object (?requestedurl) parts of the triple are variable.

Thus, a physical source for this stream has items consisting of pairs of values. This

arrangement is coherent with RDF repositories whose predicates are taken from a small

vocabulary constituting a sort of schema, but C-SPARQL makes no assumption on

variable bindings of its stream triples. An example of stream of status code of five

requested urls.

45

Triple Timestamp

c:402 t:returnedBy " http://myservlet.cloudapp.net/mic/" t100

c:403 t:returnedBy " http://myservlet.cloudapp.net/mic/Register.jsp" t101

c:404 t:returnedBy "http://myservlet.cloudapp.net/mic/Questions" t102

c:403 t:returnedBy " http://myservlet.cloudapp.net/mic/SaveAnswer" t103

c:401 t:returnedBy " http://myservlet.cloudapp.net/mic/Login" t104

3.2.3 Data Sources and Time Windows

The introduction of data streams in C-SPARQL requires the ability to identify such

data sources and to specify selection criteria over them. As for identification, we assume

that each data stream is associated with a distinct IRI, that is a locator of the actual data

source of the stream. More specifically, the IRI represents an IP address and a port for

accessing streaming data. As for selection, given that streams are intrinsically infinite, we

introduce the notion of windows upon streams, whose types and characteristics are

inspired by those defined for relational streaming data.

Identification and selection are expressed in C-SPARQL by means of the FROM

STREAM clause. The syntax is as follows:

FromStrClause → ‘FROM’ [‘NAMED’] ‘STREAM’ StreamIRI ‘[RANGE’

Window ‘]’

Window → LogicalWindow | PhysicalWindow

LogicalWindow → Number TimeUnit WindowOverlap

TimeUnit → ‘ms’ | ‘s’ | ‘m’ | ‘h’ | ‘d’

WindowOverlap → ‘STEP’ Number TimeUnit | ‘TUMBLING’

PhysicalWindow → ‘TRIPLES’ Number

A window extracts the last data elements from the stream, which are the only part

of the stream to be considered by one execution of the query. The extraction can be

46

physical (a given number of triples) or logical (all triples occurring within a given time

interval, whose number is variable over time).

Logical windows are sliding if they are progressively advanced by a given STEP

(i.e., a time interval that is shorter than the window’s time interval). They are non-

overlapping (or TUMBLING) if they are advanced in each iteration by a time interval

equal to their length. With tumbling windows every triple of the stream is included exactly

into one window, whereas with sliding windows some triples can be included into several

windows.

The optional NAMED keyword works exactly like when applied to the standard

SPARQL FROM clause for tracking the provenance of triples. It binds the IRI of a stream

to a variable which is later accessible through the GRAPH clause.

Example. A monitoring system query counts the number of pages returning http-

statuses; the query considers the last 10 minutes, while the sliding window is modified

every minute.

PREFIX mc: <http://www.modaclouds.eu/monitoring#>

SELECT DISTINCT ?httpstatus (COUNT(?requestedurl) AS ?pagecount)

FROM STREAM <http://stream.org/monitoredhttpstatus.trdf>[RANGE 10 MIN STEP

1 MIN]

WHERE { ?httpstatus mc:returnedBy ?requestedurl . }

GROUP BY ?httpstatus

The query is executed as follows: first, all pairs of status and url are extracted from

the current window over the stream, then the total number of url for each status is counted

into the new variable pagecount and every pair is extended into a triple, and finally the

triple is projected as distinct pairs of status and number of url. The window considers all

the stream triples in the last 10 minutes, and is advanced every minute. This means that at

every new minute new triples enter into the window and old triples exit from the window.

Note that the result of the aggregation does not change during the slide interval, therefore

also the query result does not change during the slide interval; it changes instead at every

slide change.

47

3.2.4 C-SPARQL Queries

All queries over RDF data streams are denoted as continuous queries, as they

continuously produce output in the form of tables of variable bindings tables or RDF

graphs. Each C-SPARQL query is registered through the following statement:

Registration → ‘REGISTER QUERY’ QueryName [‘COMPUTED EVERY’

Number TimeUnit] ‘AS’ Query

Only queries in the CONSTRUCT and DESCRIBE form can be registered as

generators of RDF streams, as they produce RDF triples, associated with a timestamp as

an effect of the query execution. The optional COMPUTED EVERY clause indicates the

frequency at which the query should be computed. If no frequency is specified, the query

is computed at a frequency that is automatically determined by the system.

Example. Assume that a (classic, static) RDF repository stores (a) the page hosted

in a http-server, (b) the URL of each page, and (c) the virtual machine containing http-

server. We now show a query that combines static knowledge (from the repository) and

dynamic knowledge (from the streaming data) in order to periodically count how many

http-statuses have returned from each VM in the last 30 minutes. In this example the

window is sliding with a step of five minutes. From now on, the c: and t: prefixes are

omitted for brevity.

REGISTER QUERY httpstatuspervm COMPUTED EVERY 5 MIN AS

SELECT DISTINCT ?vm (COUNT(?httpstatus) AS ?httpstatuscount)

FROM STREAM <http://stream.org/monitoredhttpstatus.trdf> [RANGE 30 MIN STEP

5 MIN]

FROM <http://www.modacloud.eu/monitoringsystemmap.rdf>

WHERE { ?httpStatus mc:returnedBy ?url .

?page mc:hasurl ?url .

?page mc:IsIn ?httpserver .

?vm mc:contains ?httpserver .

}

48

The query is executed as follows. As in the previous query, all pairs of bindings of

http-status and url are extracted from the current window over the stream, and joined to a

graph pattern used to extract from the RDF repository the pair of bindings of URL with

their pages, the pages with their http-server and, finally, the http-server with their VM.

Then, the number of http-statuses returned by the page in each VM is counted into the new

variable passages. Finally, pairs of distinct VM and http-status count are projected.

3.2.5 Stream Registration

C-SPARQL allows the production of RDF streams, registered through the

following statement:

Registration → ‘REGISTER STREAM’ QueryName [‘COMPUTED EVERY’

Number TimeUnit] ‘AS’ Query

Only CONSTRUCT and DESCRIBE queries can be registered as RDF streams, as

they produce RDF triples that are associated with a timestamp as effect of the query

execution. Every query execution produces from a minimum of one triple to a maximum

of an entire RDF graph, depending on the query construction pattern. In the former case, a

different timestamp is assigned to every triple. In the latter case, the same timestamp is

assigned to all the triples of the constructed graph. Still, the system-generated timestamps

are in monotonic non-decreasing order.

Example. The following example allows the construction of new RDF data

streams, by registering CONSTRUCT queries. Consider the previous query in which the

projected pairs of districts and passages are used to construct a triple. The corresponding

C-SPARQL query is:

49

REGISTER STREAM httpstatuspervm COMPUTED EVERY 5 MIN AS

CONSTRUCT {?vm mc:returned ?httpstatuscount}

FROM STREAM <http://stream.org/citytollgates.trdf> [RANGE 30 MIN STEP 5 MIN]

WHERE

{

 SELECT ?vm (COUNT(?httpstatus) AS ?httpstatuscount)

 WHERE {

 ?httpStatus mc:returnedBy ?url

 ?httpStatus a mc:clientErrors

 ?page mc:hasurl ?url

 ?page mc:IsIn ?httpserver

 ?vm mc:contains ?httpserver

 }

}

This query uses the same logical conditions as the previous one, but using the

inference, extracts only the http-statuses of the client-error class (and its subclasses, that

could be found in the ontology, e.g. 400, 401, 402, 403, 404 etc.) and constructs the output

in the format of a stream of RDF triples. Every query execution may produce from a

minimum of one triple to a maximum of an entire graph. In the former case, a different

timestamp is assigned to every triple. In the latter case, the same timestamp is assigned to

all the triples of the graph. In both cases, timestamps are system-generated in monotonic

order. Results of two evaluations of the previous query are presented in the table below.

triple Timestamp

c:303 t:returnedBy "http://www.modaclouds.eu/url1" t400

c:404 t:returnedBy "http://www.modaclouds.eu/url2" t400

c:403 t:returnedBy "http://www.modaclouds.eu/url3" t401

c:404 t:returnedBy "http://www.modaclouds.eu/url4" t401

c:301 t:returnedBy "http://www.modaclouds.eu/url5" t401

The first evaluation occurs at t400. Suppose that only data from two sources (i.e.,

c:303 and c:404) are present in the window. Then, the evaluation generates two triples

with the same timestamp (i.e., t400).

50

The second evaluation occurs at t401. Suppose that part of the data elaborated by

the previous query is still in the window and that new data related to c: 403 entered in the

window. Then, the evaluation produces 3 triples; all of them have the same new

timestamp (i.e., t401).

3.2.6 Stream monitoring approaches

In the context of semantic web, we presented some relevant monitoring approaches

that are based on the idea of using semantic query language and engines.

Linke Stream Middleware (LSM) [Stream Related work 1] is a platform in the sensor

fields which collects data from sensors, time dependent or time streams, and analyzes

them. Its layer architecture contains: i) Data Acquisition, which collect data from different

wrappers that are plugable during run-time. The format of input data are different from

one wrapper to the another one, but the Mediate Wrappers use data transformation rules to

map data in the RDF format; ii) Linked Data Layer, in this layer the data is composed by

adding global identifiers to the data items and an ontology that capture the data model,

(here Semantic Sensor Network ontology has been used). iii) Data Access layer, queries

over the Linked Data Layer are executed in the layer. For this purpose SPARQL query

language is used for sensor meta data and CQELS engine is used stream data; iv)

Application Layer, the ability of the query processing of previous layer powered this

layer, which simplify the development of the applications with a SPARQL end point. The

output results from the queries are sent to a chosen channel.

In [Stream Related work 2] the authors have presented a framework to introduce

self-management in Platform-as-a-Service environments. Their framework is based on the

concept of viewing cloud platform as a sensor network. They proposed to employ

techniques from the Semantic Sensor Web (SSW) [22SSWA]. The SSW technology,

namely RDF data streams and SPARQL query engine, has been used for the challenge of

processing multiple heterogeneous data streams. They also followed the IBM MAPE-K

(Monitor, Analyze, Plan, and Knowledge) reference model to create adapt loops. The

high-level architecture of their framework, as Figure X shows, contains 3 main elements:

triplication engine, continues SPARQL query engine and OWL/SWRL reasoning engine.

The triplication engine is responsible for consuming and “homogenizing” the data

51

generated by deployed applications, platform components, external services, etc. The

engine takes as input streams of raw data, and generates streams of RDF triples.

Continuous SPARQL query engine takes as input the flowing RDF data streams generated

by the triplication engine and evaluates pre-registered continuous SPARQL queries

against them, to support situation assessment. The OWL ontologies and SWRL rules

provide expressivity for adaption policies. When a critical situation is discovered, an

adaption plan has to be generated, that is not just association of event and condition, but

more complex reasoning. Authors have proposed a scenario where a number of

applications are deployed on cloud platform, where the response time of the notification

service is monitored. The related data sent to the C-SPARQL engine in RDF format.

Based on the defined C-SPARQL queries in the case of detecting critical situation, the

possible reactions will be performed.

Both of the stream monitoring approaches that have been discussed are based on

SSN ontology, while in this thesis a specific ontology is defined for monitoring cloud

resources. In LSM the CQELS engine was used to analyze the stream while in the second

approach, and in this thesis, C-SPARQL engine is used. In [], the authors compared C-

SPARQL engine versus CQELS engine, and showed that C-SPARQL has a larger set of

functionalities and is more flexible.

3.3 PALLADIO

 In this section, we will review the Palladio tool that is a software tool supporting
component-based application development. Palladio is the starting point that will be
extended during this thesis in order to allow the definition of monitoring rules with a
white-box approach.

The aim of Palladio is allowing performance metrics analysis of component-based
applications depending on the underlying hardware infrastructure. The framework
comprises the Palladio Component Model (PCM), a component-based development, a
software architecture simulator (called SimuCom) and an Eclipse tool (Palladio-Bench).
Additionally, other analytical solvers and simulation tools are supported (i.e. LQNS,
LQSIM).

52

The Palladio Component Model is composed of several meta-models describing

various aspects of a component-based application and defined by different kinds of users.

In particular, four roles are defined (Figure 5) [1]:

Figure 5: Palladio - Developer Roles in the Process Model

• Component Developer: She/he defines the Repository Model

implementing all the available components.

• System Architect: She/he builds up the general software architecture

(System/Assembly Model) using components picked up from the

Repository Model.

• System Deployer: She/he defines the Resource Model representing the

features of the hardware resources hosting the application. Then the

Resource Model is used to define the Allocation Model that specifies

which components will run on which hardware resources.

• Domain Expert: She/he defines the Usage Model representing how

users interact with the application.

The development process

Palladio Framework is available in a self-contained Eclipse Juno distribution called

Palladio Bench3. The aim of this section is to express the process to develop the meta-

models representing the software system. The first step consists of defining a set of

53

abstract components and interfaces. This task is performed by the Component Developer.

Abstract components are defined in terms of required and/or provided interfaces that are

saved into the Repository Model and can be used to build up system architectures.

Components and interfaces are later connected through Requires and/or Provides relations.

Interfaces are used to define the list of methods provided by the components and

are linked to them by Provides relations. Furthermore, when methods are used by other

components they are linked to the corresponding interfaces by Requires relations.

Components can also contain information about the dependency by some parameters

which are related to input variables or objects.

The Component Developer defines also the so-called Resource Demand Service

Effect Specification (RDSEFF or SEFF) for the methods/actions provided by each

component, so for example in Figure 6 a WebGUI component contains the TTPDownload

SEFF, which is shown in Figure 6.

Figure 6: Palladio example, HTTPDownload SEFF

A RDSEFF is quite similar to an activity diagram/graph composed of a flow of

actions linking a starting point (represented as a bullet) to an end point (represented as a

54

circled bullet). Actions can be internal (Internal Action) or external (External Call Action)

depending on whether they are defined within the component or they are calls to

operations defined by external components. In the first case, the Component Developer

can specify the units of low-level resources (such as CPU and Storage) used by the action,

while in the second case he/she can specify some parameters useful to determine the

resource usage on the external components side. Furthermore, resources utilization can be

specified using deterministic or stochastic expressions. Stochastic expressions allow

defining discrete or continuing distribution functions. Finally, within the RDSEFF it is

also possible to specify probabilistic branches, each of which in turn is defined by an

activity graph.

The main task of the System Architect is to builds up the System Model by picking

the needed components from the repository and defining the connections between them.

Each component can be reused several times within the system. Moreover, components

can be included in the Repository Diagram, but their use is not mandatory in the system.

This is due to the fact that the System Architect may want to create several versions of the

system differing each other for some components in order to compare the performance of

the architectures. The system model is characterized by System Interfaces, exposed to

users (provided interfaces) or to other external systems (provided and/or required

interfaces). Figure 7 shows the graphical representation of the System Model of the Media

Store example (one of the Palladio’s built-in examples). The system provides the IHTTP

interface which is directly derived from the IHTTP interface provided by the WebGUI

component. So, the system is composed by the following components: WebGUI,

MediaStore, AudioDB and DigitalWatermarking. They are combined together through

their interfaces in order to realize a composite service which is provided by the system

through the IHTTP interface. In this way, the system becomes a black-box for the users,

which access it only through the IHTTP interface.

The System Deployer, instead, defines a set of suitable hardware resources

specifying their characteristics in the Resource Model and provides the Allocation Model.

The later model is in charge of defining the resource each component has to be allocated

55

on.

Figure 7: Palladio - Media Store Example, System Diagram

The Palladio framework does not provide any mechanism to define quality of service
constraints or monitoring rules for the application under development. These issues will be
the focus of the next chapter.

3.4 MEETING IN THE CLOUDS

MiC is a social networking web application [CPIM]. It allows a user to register and to
choose her/his topics of interest providing a grade in the range 1-5. At the end of the
registration process, MiC identifies the most similar users in the social network according
to the registered user’s preferences, in particular, similarity is computed through the
pearson coefficient (Pearson, 2010). After registration, the user can enter into the MiC
portal and can interact with his “Best Contacts” writing and reading on the selected topics.
More precisely, the application is composed of a front-end developed as JSP and servlets
and a back-end developed as a CPIM (Cloud Provider Independent Model) CloudTask.
The front-end and back-end are decoupled by a task queue and shared user profiles
through the SQL Service. The same service also stores messages, and best contacts that
are accessed by the front-end. The Blob Service is used to store pictures while the NoSQL
Service stores user interests and preferences. Both are accessed by the front-end. Finally,
the Memcache Service is used to temporarily store the last retrieved user profiles and best
contacts messages with the aim of improving the response time of the whole application.

56

MiC application has been deployed on Google App Engine (GAE), Azure, and Amazon
EC2. In Chapter 5, the overhead of the monitoring framework that is developed in this
work be assessed by performing analysis on Azure and Amazon EC2.

As discussed before in Section 3.3, Palladio tool provides meta-models that are
representing the software system. The information that is provided by these meta-models
are employed for defining the Knowledge Base which is next used as the supporting
information for the C-SPARQL engine. The mentioned knowledge base is provided by
extending the core ontology for a specific application and extracting design time
information that will be added to the permanent RDF data.
In the next parts of the present section, the Palladio models of the MiC application and the
procedure of definition of the extended ontology will be defined; while section 4.7 will be
devoted to the explanation of the permanent information.
The Palladio meta-models are also used as the extension for the specification of the
Quality of Service (QoS) constraints developed in this thesis. The fact which will be
discussed more in details in the next section.
The information that is provided by Palladio meta-models of MiC application contains
components and resources of the MiC and the way the components are allocated to the
resources.
Figure 11 shows the graphical representation of the Repository Model of MiC, displaying
eight interfaces and components listed below:

• Components: Frontend, Backend, Blob, NoSQL, SQL, Memcache, TaskQueue,
Mailing

• Interface: MiC IF, Backend IF, Blob, NoSQL, SQL, Memcache, TaskQueue,
Mailing

57

Figure 8: RipositoryDiagram of Mic

Components and interfaces are connected through <<Requires>> and/or
<<Provides>> relations, as it is illustrated in the Figure . Interfaces are used to define
the methods that are provided by the components and are linked via <<Provides>>
relations. Therefore, the Frontend component as instance provides the methods (which
correspond to the main JSP pages of the application) saveUserdata, saveUserPicture,
saveSelectedTopic, saveAnswersAbout, editUserProfile, updateSimilarity, refresh,
writeMessage, deleteMessage, login and logout through MiC interface, and requires
the methods within Backend, Blob, NoSQL, SQL, Memcache, TaskQueue, and
Mailing components.

58

Figure 12 shows the graphical representation of the System Model of the MiC
application. The system provides MiC interface which is directly derived from the
MiC interface which is provided by Frontend component.

Figure 9: System model of MiC

All the required hardware resources of MiC are defined in Resource Environment
diagram.

59

Figure 10: ResourceEnviornment of MiC

Finally the allocation diagram, Figure 14, describes how the components are allocated
to the hardware resources. In our case, each of the components is allocated in a
separate resource; while the servers and components are called resource container,
allocation context respectively.

60

Figure 11: Allocation Diagram of MiC

Extended Ontology for MiC application
For each application, related ontology will be designed by extending the core
ontology, based on the information supplied by Palladio Diagrams.
Resource containers represent either platform or infrastructure and can be defined
through the resource environment meta-model. Repository Model, describes all the
application components of the case study.

61

In our case study, MiC application, the following applications are included:

• Applications: Frontend, Backend, Blob, NoSQL, SQL, Memcache, TaskQueue,
Mailing

Each component requires a different class which extends the Software class in the
ontology. As the resource container shows, for MiC application eight platform
components are considered:

• Platform: WebServer, Blob Server, Mailing Server, NoSQL Server, Memcache
Server, SQL Server, TaskQueue Server, Backend

3.5 MODACLOUDS

Finally in this section, we provide an overview of the MODAClouds FP7 IP project
which provides the context of this thesis development.

Current Cloud’s offer is becoming day by day wider providing a vibrant technical
environment, where SMEs can create innovative solutions and evolve their services.
Cloud promises cheap and flexible services to end-users at a much larger scale than
before. However, Cloud business models and technologies are still in their initial hype and
characterized by critical early stage issues, which pose specific challenges and require
advanced software engineering methods.

The main goal of MODAClouds, Model-Driven Approach for design and execution
of applications on multi clouds, is to provide methods, a decision support system, an open
source IDE and run-time environment for the high-level design, early prototyping, semi-
automatic code generation, and automatic deployment of applications on multi-Clouds
with guaranteed QoS. Model-driven development combined with novel model-driven risk
analysis and quality prediction will enable developers to specify Cloud-provider
independent models enriched with quality parameters, implement these, perform quality
prediction, monitor applications at run-time and optimize them based on the feedback,
thus filling the gap between design and run-time. Additionally, MODAClouds provides
techniques for data mapping and synchronization among multiple Clouds.

MODAClouds innovations are:

• simplify Cloud provider selection favoring the emergence of European Clouds,
• avoid vendor lock-in problems supporting the development of Cloud enabled

Future Internet applications,

62

• Provide quality assurance during the application life-cycle and support migration
from Cloud to Cloud when needed.

The monitoring framework that will be developed by this thesis will provide the

enabling mechanism to trigger runtime adaption and to full the gap between design-time

modules and run-time application behavior.

63

4CHAPTER 4

The QoS (Quality of Service) management of applications that can execute on multiple
Clouds requires the ability to collect metrics on the application state and the processed
workload, and use these metrics to decide at runtime adaptations to ensure high quality of
service.
The main objective of the present thesis is to develop a monitoring framework for the
MODAClouds project.
Section 4.1 provides an overview of the MODAClouds project run-time environment.
In Section 4.2 the monitoring architecture of MODAClouds is reviewed; while in section
4.3 the MODAClouds core ontology is described. Section 4.4 is focused on how the
Palladio meta-model is extended for the specification of the of the QoS constraints; the
constraints which are subsequently employed in Section 4.5 for the specification of the
monitoring rules.
In Section 4.6, the approach for the definition of knowledge base information generated
during the design time and run time is explained. Section 4.7 describes the mapping of the
monitoring rules to C-SPARQL queries. Finally, section 4.8 is dedicated to the
Explanation of the Data Collectors that are designed in the present work.

4.1 MODACLOUDS RUN-TIME ENVIORNMENT

MODAClouds includes a Runtime Environment that will implement the MAPE-K loop
(monitor, analysis, planning, execution, knowledge) reference blueprint for the
implementation of self-adaptive applications. The Monitoring Platform will be the system,

64

inside the Runtime Environment, playing the main monitoring and analysis roles of the
MAPE-K loop. These two capabilities may be summarized as follows:

• Monitoring: The monitoring component is responsible for managing the different
probes that provide information regarding the performance of the system. In
MODAClouds, probes can capture the current consumption of critical node
resources (such CPU and memory) but also other performance metrics (e.g.,
number of processed requests in a time window and the request process latency).
The monitoring granularity is specified by rules. Probes can also raise notifications
when the system configuration changes.

• Analysis: The analysis component is responsible for processing the information
captured by the monitoring component and to generate high level events or high-
level aggregate information. For instance, it may combine the values of CPU and
memory utilization to signal an overload condition in the platform.

 Figure 8 illustrates the Monitoring Platform role in the Runtime Environment
envisioned in the MODAClouds project. The Monitoring Platform will receive a set of
monitoring rules from the design-time environment (MODAClouds IDE) that will specify
what to measure and will allow to customize how to measure it (e.g., monitoring
resolution). The Monitoring Platform will be then responsible for obtaining information
from the running application from its cloud environment and analyze this data in order to
achieve two main objectives: 1) generating triggers and data streams for the Self-
Adaptation Platform of the Runtime Environment; 2) Sending relevant monitoring data to
the design-time IDE as a feedback, in order to provide the decision support and insights on
application behavior at runtime for the application developer and the application QoS
Engineer. The last scenario also includes the case where the application has been deployed
on a sandbox, i.e. a controlled test environment, with the aim of calibrating the design-
time tools and models based on the initial runtime information.

Figure 12: Conceptual architecture - MODAClouds runtime environment

65

The main objectives of the present thesis are listed below:
- Defining a meta-model for specifying the constraints of Quality of Service (QoS)

at design time.
- Defining a meta-model and a language for the specification of the monitoring rules

at design time.
- Identifying a methodology for the automatic/semi-automatic translation of QoS

constraints into monitoring rules for translating monitoring rules into probes and
monitoring queries that will be executed by the analysis component.

 Monitoring rules are derived semi-automatically from specifications of QoS
constraints. It should be noted that, due to the fact that the monitoring activities introduce
overhead in the running application and incur also in costs, they should only be enabled
while needed. Accordingly, required mechanisms in order to enable/disable monitoring
rules, either manually or by the other monitoring rules, will be developed.
 The analysis component will be implemented by a C-SPARQL engine which
requires knowledge base to run the queries; where, the knowledge base, as shown in
Figure 9, contains ontology and permanent RDF data. The C-SPARQL engine utilizes
knowledge base information defined during design-time or run-time in order to analyze
the RDF streams that are received from different Data Collectors. The procedure of
defining the knowledge base information and the approach through which the C-SPARQL
engine employs them, will be explained in details in Section 4.6.
 In the present work, MODAClouds ontology, as shown in Figure 10, is employed
as the core ontology and will be extended for each application based on the related design
time specification. In the present thesis, MiC application which is a social networking web
application and has been deployed on Google App Engine (GAE), Azure, and Amazon
EC2, is considered as the case study and is explained more in Section 4.3 in details.

4.2 MODACLOUDS MONITORING ARCHITECTURE

The monitoring system architecture is illustrated in Figure 9 and its components are
described in the following subsections [MODAClouds deliverable D6.2].

MODAClouds IDE and Monitoring Rules

66

Monitoring rules are defined at design time either manually by the Cloud application
developer or administrator or automatically by the MODACloudsIDE that derives them
from the definition of the non-functional requirements (for instance constraints on
response time, availability, etc.) specified for the cloud-based application.
In the Monitoring Platform active monitoring rules continuously process the input
monitoring data and evaluate the corresponding conditions. Each monitoring rule defines
the monitoring resource and related metrics that will be monitored. Monitoring rules may
be active or inactive. The activation of non-active rules can be triggered by the violation of
some active rule, according to the activation dependencies specified by the developer at
design time. Their activation, cause the other data collectors to be activated and start
gathering data from the resource.

Figure 13: Monitoring Architecture

Data Collectors
Data Collectors (DC) have two main objectives:

• Gathering the monitoring data produced by the various data sources;
• Associating semantic information to the monitored data. This is possible thanks to

the structured nature of the data format that will be used to transport the data
(RDF).

Data collectors will deal with the heterogeneity of different data sources by producing data
under the form of an RDF triple. For some data sources, the data collector may rely on

67

other solutions providing a unified interface over some cloud aspects. For example,
libraries such as jclouds are able to interface with multiple cloud providers using the same
API. Cloud-proprietary APIs and services (e.g., Amazon CloudWatch API) may be
directly invoked as an alternative. Within the MODAClouds project the decision of the
best approach will be taken experimentally, by direct comparison of alternatives to
understand the best trade-off between overhead and implementation complexity. However,
in either case the implementation details will be hidden by the fact that each data collector
will communicate with the rest of the system only via RDF. In this thesis we developed
data collector for java applications through aspects. Furthermore we developed specific
data collector for Amazon EC2 and MS Azure by invoking directly the cloud providers
API.
To be as general as possible, the data monitored by the data sources will be retrieved
following two strategies: push and pull. In the push strategy, data sources actively send
(i.e., push) data to the data collectors, which passively wait for them. In order to perform a
push data collection, data sources must know a data collector endpoint. In the pull
strategy, data collectors periodically query (i.e., pull) the various data sources and retrieve
data from them. While the push-based approach integrates more naturally with the stream-
based architecture of the Monitoring Platform, it cannot be adopted in all cases as not all
data sources support this strategy (consider for instance the case of a closed-source
component offering a SNMP interface). In these cases, a pull-based approach will be
adopted. Within MODAClouds, the actual used strategy will then be identified case by
case and the needed logic will be embedded in the data collectors. The other parts of the
Monitoring Platform will see the data streamed out by the data collector in the RDF
format and will not be aware of how these data have been retrieved. In this thesis, RDF
pushes while EC2 and Azure pull.
Data Analyzer
The Monitoring Platform will be populated by a set of data analyzers (DAs). A DA is a
basic unit to process monitoring data. At a high-level of abstraction, a DA is seen as
accepting in input a continuous stream of monitored data (in RDF format) and producing
in output one or more streams of data (in RDF format). At a finer granularity, the main
duties of a data analyzer include the generation of one or more output streams providing a
higher level of abstraction with respect to the given input. For example data at different
time granularities may be aggregated to produce a homogeneous view over the data at a
longer time scale. Similarly, a DA may perform indirect estimation of unobservable or
missing data and output this on new streams.

68

Since DAs will be heterogeneous and serve different purposes, we distinguish DAs into
four categories:

• Detection DAs will be responsible to detect a violation in a QoS constraint (e.g.
SLA) of a measured metric and raise a trigger to the Self-Adaptation Platform.

• Correlation DAs will establish a relationship between measurements collected on
different components of the application, with the aim of generating measures that
summarize component runtime execution correlations.

• Estimation DAs will estimate QoS metrics of the system within a time horizon
specified by the MODAClouds IDE that are not directly observable by the data
collectors, or that cannot be observed due to overhead concerns.

• Forecasting DAs will forecast, using statistical and stochastic methods, trends for
some of the metrics needed by the Self-Adaptation Platform to manage the
application QoS.

Within the above conceptual categorization, it is useful to remember that a single software
component may serve in multiple roles. For example, detection and correlation may be
done by the DAs. In this thesis we focus on detection DAs that will be implemented by
using C-SPARQL, that is a query engine for RDF data. C-SPARQL provides an efficient,
yet expressive tool to execute queries on data streams based on the system ontology. C-
SPARQL queries correspond to our monitoring rules. As we explained before in Chapter
3, they work on time window, i.e., the most recent triples of a given stream, observed
while the data is continuously flowing. The support for RDF format allows for a great deal
of flexibility and interoperability.
The task of the data analyzers will be supported by the presence of a monitoring ontology
that provides information about the various relationships among the gathered data.
Ontology formally represents the knowledge of a specific domain. Ontologies define a set
of common concepts and the relationships among them. From this knowledge it is then
possible to apply automated reasoning techniques allowing for the extraction of further
knowledge. In the context of the MODAClouds monitoring architecture, ontologies are a
semantic reference to the components of the run-time environment supporting monitoring
rules and their execution and are used by C-SPARQL engine. In particular, monitoring
rules writers rely on the formal model represented by the ontology to take advantage of
existing concepts and their relationships.
Knowledge base
The task of the data analyzers will be supported by the presence of the Knowledge Base
that provides information about the running system. The knowledge base is composed of
an ontology and RDF permanent data. The Ontology formally represents the knowledge
of a specific domain. Ontologies define a set of common concepts and the relationships

69

among them. From this knowledge it is then possible to apply automated reasoning
techniques allowing for the extraction of further knowledge. In the context of the
MODAClouds monitoring architecture, ontologies are a semantic reference to the
components of the run-time environment supporting monitoring rules and their execution
and are used by C-SPARQL engine. In particular, monitoring rules writers rely on the
formal model represented by the ontology to take advantage of existing concepts and their
relationships.
RDF permanent data is a database containing the actual information about the running
system, and it is in practice one of the infinite possible instantiation of the ontology. The
knowledge base requires to be initialized at design time and to be kept updated during the
runtime so that DAs may rely on the exact representation of the system.
Observer
An Observer represents any software component that needs to receive information from
the Monitoring Platform. Monitoring Platform maintains a list of observers and updates
them according to their interests.
Feedback Loop
A monitoring feedback loop will carry information about the application execution to the
MODACloudsIDE for further analysis and display to the QoS engineer or the Cloud App
developer.

4.3 MODACLOUDS CORE ONTOLOGY

Figure 10 shows the main concepts that are relevant for the Monitoring platform and that
constitute the core ontology.
The purpose of the monitoring activity is defined by a set of Monitoring Rules that checks
a set of QoS Metrics parsing Monitoring Data. A Monitoring Datum is produced by one of
the several Data Collectors attached to the running system. Each Data Collector is in
charge of monitoring a Resource. Monitoring Rules may trigger other Monitoring Rules,
for example violation of some QoS constraints at the front end of an application may
enable monitoring on a back end component. Furthermore, monitoring rules may trigger
data collectors that are currently disabled in order to have as an instance finer grain
monitoring data. Violation is a Time Stamped Data Item that is generated by the producer
which could either be the Data Analyzer or Data Collector, the mentioned data item can

70

also be the one consumed by Consumer. Data Analyzer, which evaluates the Monitoring
Rule, is considered as a Producer while writing on stream and as a Consumer while
reading it.
During the design time, the core ontology is extended to represent the relevant
components of the application which is being monitored.
As the ontology shows, a component can contain another component. Allocation diagram
of Palladio shows that each resource contains an application. In our case, each of the
components is allocated in a separate resource. This relation could be defined after all the
components are specified during the run-time.

Figure 14: MODAClouds Ontology

71

4.4 QOS CONSTRAINTS DEFINITION

In this Section first we describe the definition of QoS, and Palladio meta-model extension
for the specification of the Quality of Service (QoS) constraints, and some QoS constraints
examples on the Palladio models of MiC application will be next provided.
QoS plays a pivotal role in the optimal delivery of web services, and as more applications
are deployed on public clouds, the task of handling QoS becomes harder. As more
applications share the same infrastructure, their demand for resources may create
contention that reduces the QoS perceived by the user.
An alternative and disputable definition of QoS is requirements on a metric, a tangible
quantity measured from a system, which reflects or predicts the subjectively experienced
quality. As it was discusses in Section , the metrics that will be monitored are related to
the monitorable resources belonging to different abstraction level.
Each QoS constraint is describe by five definitions:

Name: For each QoS a name will be defined.
Target QoS metric: A metric that is related to the target resource and its value is checked
by a predicate.
Target QoS Resource: The resource that QoS will be applied on it.
• Predicate (can include standard stats function, e.g., mean, standard deviation, etc.):

Checks if the aggregating function specified in the computation field satisfies a
given condition.

• Hard/Soft constraint (and their associated priority): Shows whether it is always applicable
or not

The QoS constraint applies on a target metric of the resource to check a predicate.
The procedure of specifying QoS constraints on Palladio models of MiC application as a
case study is explained in the following part.
In particular, the predicates of QoS constraints at infrastructure and container level metrics
will be associated to Palladio Resource environment model, while predicates on
constraints at application level will be introduced in the system model.
As shown in the environment Palladio model, the constraints could be applied on all the
resources of the MiC application. Figure 7 shows a constraint on the CPU utilization of
the Web Server in which the predicate, as a hard constraint, states that the mean value of
the CPU Utilization should be lower than 60%.

72

Figure 15: Definition of QoS constraints in the MiC Resource Environment model

Response time constraint, as another instance shown in Figure 16, could be applied on the
components of system diagram and its corresponding method inside of the system.

Figure 16: Definition of QoS constraints in the MiC System model

73

The QoS constraints and particularly the soft constraints with their priority will be

used within MODAClouds for design time exploration, though this issue beyond the scope
of the present thesis. In the following section, a class diagram for relation among QoS
constraints and monitoring rules is provided. Afterwards, the monitoring rules together
with their different types are described.

4.5 MONITORING RULES DEFINITION

 The present section first discusses the relation between QoS constraints and
monitoring rules. Afterwards, the monitoring rules and their definitions are described and
some related examples are next provided. The section also elucidates how the monitoring
rule is derived from the QoS and the way they can be specified by an application
developer without introducing explicit constraints.
 The following class diagram shows the relation between QoS constraints and the
monitoring rules. As we discussed before, for each QoS constraints there is one
monitoring rule, while a monitoring rule may be related to a QoS or not.
Each monitoring rule could be the extension of another rule, or it may be composed by
other rules.

-‐name
-‐targetMetric
-‐targetResource
-‐Predicate
-‐constraintType

QoS
-‐name
-‐targetResource
-‐targetMetric
-‐grouping
-‐computePredicate
-‐samplingTime
-‐timeWindow
-‐checkPredicate
-‐type

Monitoring	 Rule

0..1 1

-‐compose 1

0..*

-‐extend1

0..*

Figure 27: Class Diagram

 The purpose of the monitoring activity is defined by a set of Monitoring Rules that
checks a set of Metrics observed by Monitoring Resources in the form of Monitoring
Datum.

74

Each monitoring rule contains the following definitions:
Name: For each monitoring rule a name will be defined which could be the same as QoS
constraint name.
Target resource: The resource that will be monitored
Target QoS metric: A metric that is related to the target resource and its value is checked
by a predicate.
Compute: The aggregation function applied on the values of the target metric.
Grouping: Monitoring datum can be taken at a specific resource (e.g., a component or a
VM) or over a set of resources belonging to a group (e.g., the set of VMs hosting the
presentation tier of an application).
Sampling Time: Specifying the interval for receiving data from the resource, that could
be specified or not.
Sampling probability: A probability value that defines whether the collected data will be
sent to the data analyzer or not.
Time window: A window extracts the last data elements that are received, which are the
only part of the RDF stream to be considered during the execution of the C-SPARQL
query.
Time Unit: shows the unit time of window.
Check Predicate: checks if the aggregating function specified in the computation field
satisfies a given condition.
Storage type: If the rule is permanent, the output of the query will be logged.

Name → [‘Name’]
Target resource → [‘resource name’]

Target QoS metric → [‘metric name’]
Grouping → Monitorable Resource

Compute → ‘mean’ | ‘stddev’ | ‘percentile’ | ‘total

Sampling time → Number TimeUnit

Sampling probability → Number in [0,1]

Time window → Number TimeUnit

TimeUnit → ‘ms’ | ‘s’

Check predicate → [‘predicate expression’]

 Storage type → ‘stream’ | ‘permanent’

75

Considering the fact that a very fine-grained monitoring cause overhead, different
sampling probability values are considered for the data collectors and rule definitions.
There are three different types of monitoring rules:

• Simple Rules

• Composed Rules

• Extension Rules
A simple rule is directly derived from a QoS constraint. For all of the QoS constraints, a
monitoring rule will be derived, just adding some default values for the additional fields
that characterize the monitoring rule with respect to the QoS constraint.

In the following example, Figure 17, we are going to drive rules from CPU Utilization
QoS.

Figure 17: CPUUtilization Monitoring Rule

 In order to allow the definition of complex monitoring rules and foster the re-use
of monitoring rules specification, we add some Object Oriented features to the
MODAClouds monitoring framework.

In a composed rule, the check predicate also includes the predicates of the other
monitoring rules and introduces an additional predicate for its target metric. Hence, in the
composed rule both pre-existing rules and the additional monitoring rules will be

76

evaluated. In addition, in the composed rule, if the time windows of the rules are not the
same, the lower one will be considered
As an instance, the following rule checks the average response time of login operation:

 CheckLoginRT
 Target Resource: Login
 Target Metric: ResponseTime
 Grouping: Request
 Compute: Mean
 Sampling Time: 60s
 Time Window: 600ms
 Predicate: Mean < 300ms
 Type: stream

 A new composed rule called SystemHealthy checks the health of system via
checking both the error code of the requests that ask for Frontend operations during the
defined time window and the predicate of CheckLoginRT:
 SystemHealthy
 Target Resource: Frontend
 Target Metric: overalError
 Grouping: Request
 Compute:
 Sampling Time: -
 Time Window: 600ms
 Predicate: ErrorCode = OK && CheckLoginRT.predicate = true
 Type: stream
In the new rule, CheckLoginRT rule beside the predicate of the new rule will be checked.
A rule could be the extension of a current rule. In this case, it can have its own definitions
value or use the values of the super rule. If the values of super rule change, it will effect on
the value of the extended rule. As an example, a new rule CheckNoSQLRT extends the
CheckLoginRT rule as follow:

 CheckNoSQLRT
 Extends: CheckLoginRT
 Target Resource: NoSQL
 Compute: Mean, Percentile
 Predicate: super.Predicate && percentile(95) < 500ms
 Type: persistent

77

The main difference among the composed and extension rules is that, in the composed
case more than one rule is checked, while in the extension rule only the predicate of the
new rule is checked independently and only the values that differ from the super rule need
to be specified.

Within the MODAClouds framework, the rules associated to QoS hard constraints will be
always running. Vice versa, some rules may depend on the result of the other rules and
may be activated only in case some events in the system are detected. Furthermore, since
monitoring rules add overhead and cost in the system, they should be active when needed.

 Rules dependencies can be specified through a dependency directed graph:

• Vertex : Rule

• Arc: connects source and target rules, the target rule is enable in the case of
violation of the source rule predicate

• Arc can be annotated with activation/deactivation time, and an action that may
notify an element of the MODAClouds run-time environment or change a property
of the target rule

 In the case of violation in check predicates of a rule, after a specified delay time,
another rule could be triggered. Similarly, when the check predicate becomes true again,
after a specified delay time, the rule will be deactivated.
The following rule shows as an example, if the predicate of CheckLoginRT be violated
during the activation time, the CheckExtServerRT rule will be activated:

Figure 18: Activation/Deactivation of rule

78

In the following sections, we will show how the C-SPARQL queries will be generated
from the current rules.

79

4.6 KNOWLEDGE BASE INFORMATION

As described before, in the present thesis we focus on detection DAs that is implemented
by using C-SPARQL engine which based on the Knowledge Base executes queries on
data streams collected by different DCs. The knowledge Base is composed of an ontology
and RDF permanent data.
In Section 4.7.1 and 4.7.2 we will describe how the permanent knowledge base data are
detected for an application during the design-time, and run-time. We also some provide
some examples on MiC application.

4.6.1 Design-Time Information

For each application, design-time information is the one that could be retrieved from its
specification and should be adaptable to the core ontology, and then the extracted
information will be added into the permanent RDF data in order to be used in the process
of mapping monitoring rules into the C-SPARQL queries.
One of the specified information that could be augmented into the permanent data is
Metric that is defined by two components and specified during the design time. All the
metrics that could be defined as the target metrics and will be checked by monitoring rules
need to be specified clearly. These metrics are about monitoring resources either
components or operations.
Parts of the relations among the concepts of the ontology are fixed in design time, and
could be added into the permanent RDF Data.
By investigating the Palladio meta-models of the application that we explained before, all
the methods of the components in repository meta-model can be considered as Operation.
As the ontology shows, each operation is a Monitorable Resource and is monitored via
Data Collector.
Some of the monitoring rules could be defined in design time for the application.
Monitoring rules are evaluated by Data Analyzer during the run-time and check the
Metrics of the monitoring resources.

80

In the following, we describe the design time information of our case study, and show how
they are recorded in to the Permanent RDF Data.
As we discussed before in Chapter 3 for introducing data streams in C-SPARQL, it is
needs to identify data sources. For this purpose IRI is used. Each data stream is associated
with a distinct IRI that is a locator of the data source of the stream.
IRI of a data source composed of the prefix of the stream that has been registered in the C-
PARQL engine in addition to the data source definition. All the sources that are added in
to the permanent RDF Data during either design time or run time will have distinct IRI.
We will explain them more in the following sections.

In this work, we register this stream http://micapp.cloudapp.net/mic/ for MiC application,
and we consider “mc” as its prefix

In our case study we define the follow metrics, and record them into the knowledge base:

• Metric: mc:Metric#CPUUtilization, mc:Metric#DiskWriteBytes,
mc:Metric#DiskReadBytes, mc:Metric#DiskWriteOps, mc:Metric#DiskReadOps,
mc:Metric#NetworkInBytes, mc:Metric#DiskOutBytes, mc:Metric#ResponseTime,
mc:Metric#ErrorCode

To record each of the metric into the data base, a complete RDF needs to be
considered, as an example:
 mc:Metric#CPUUtilization mc:type mc:Metric

From our reference example repository diagram, we consider each method as an
operation; for example the operations that are defined in MiC application for the Frontend
component are:

• Operation: mc:Operation#saveUserdata, mc:Operation#saveUserPicture,
mc:Operation#saveSelectedTopic, mc:Operation#saveAnswersAbout,
mc:Operation#editUserProfile, mc:Operation#updateSimilarity,
mc:Operation#refresh, mc:Operation#writeMessage,
mc:Operation#deleteMessage, mc:Operation#login, mc:Operation#logout

And they are saved in the data base in RDF format, like:
 mc:Operation#login rdf:type mc:Operation

81

In this thesis, we consider a data collector for each the operation, and as it is a triggerable,
it could be disabled or enabled by monitoring rules. Here we show some of the data
collectors for our operations:

• DataCollectors: mc:DataCollector#saveUserdata,
mc:DataCollector#saveUserPicture, mc:DataCollector#saveSelectedTopic,
mc:DataCollector#saveAnswersAbout, mc:DataCollector#editUserProfile,
mc:DataCollector#updateSimilarity, mc:DataCollector#refresh,
mc:DataCollector#writeMessage, mc:DataCollector#deleteMessage,
mc:DataCollector#login, and mc:DataCollector#logout

And all of them are recorded as RDF streams. For example, a data collector for the login is
recorded as a type of a Data Collector:
 mc:DataCollector#login rdf:type mc:DataCollector

4.6.2 Run-Time Information

After the deployment of the application, related run-time information that are adaptable to
the core ontology, could be specified. Run-time information are either permanent or
stream. The permanent information is the one that is fixed during the deployment, while
the streaming information is not fixed and could not be recorded in the knowledge base.
In this section, we will first explain the permanent run-time information, and then in the
rest we will discuss about the stream one.
For specifying the permanent run-time information, we follow the ontology and
investigate the Palladio models of the application.
All the components defined by the Palladio repository model are considered as
applications monitoring resources while being ran; while multiple components with the
same task can be ran simultaneously. It is noteworthy that each of the mentioned running
components is unified by a unique ID and will be added to the data base in RDF format.
 Palladio resource environment specifies the resources of an application, each of
which is considered as a virtual machine that is a monitorable resource component.
Whilst, any resource should to be identified in order to be recorded as permanent data.
As the repository model of the MiC is shown, eight applications are considered:

• Applications: mc:Frontend, mc: Backend, mc:Blob, mc:NoSQL, mc:SQL, mc:Memcache,
mc:TaskQueue, mc:Mailing

82

For each running application, a unique id is defined. For example a running Frontend can
be recorded as the following RDF:
 mc: Frontend#Frontend1 rdf:type mc:Frontend
It shows that Frontend1 is a running application, and its type is Frontend application.

For the MiC application, we have defined eight resources, as it depicted in the resource
environment of the Palladio model. For each running resource, like the other permanent
data that we have explained till now, it is needed to specify a unique id and then record it
into the knowledge base. The eight VMs that are specified for MiC application are:

• VMs: mc:WebServer, mc:Backend, mc:TaskQueue, mc:SQLServer, mc:MemcacheServer,

mc:NoSQLServer, mc:MailingServer, mc:Blob Server

 And related RDF formats for a running webserver could be like:
 mc:WebServer1#WebServer1 rdf:type mc:WebServer
This RDF explains that WebServer1 is a running virtual machine from the Webserver
virtual machine type.
As the ontology shows, a component can contain another component. Allocation diagram
of Palladio shows that each resource contains an application. In our case, each of the
components is allocated in a separate resource. This relation could be defined after all the
components are specified during the run-time.
For example a running virtual machine can contain a running application:
 mc:WebServer1 mc:contains mc:Frontend#Frontend1
 mc:Frontend#Frontend1 rdf:type mc:Frontend
 mc:WebServer#WebServer1 rdf:type mc:WebServer

Another relation that is defined by the ontology is provides, which exists among a running
application and different operations. As we have discussed in the previous section,
operations are design-time information, and we have specified them before. Palladio
allocation diagram of MiC also shows this relation. As an example, a running Frontend
application, like Frontend1, provides the methods inside MiC IF component, like login
method:
 mc:Frontend#Frontend1 mc:provide mc:Operations#login
 mc:Operations#login rdf:type mc:Operation
 mc: Frontend#Frontend1 rdf:type mc:Frontend

83

In the rest of this section, we describe the stream run-time information. The nature of this
information is streaming that are not fix information neither during the design time nor in
run-time, so they will not be added into the knowledge base.
From the ontology, request and all the related relations are stream information. As the
ontology shows, for each request we have the following relations:

• A request asksFor an operation.

• A request processedBy an application.

For example a request, like req1, can ask for an operation. This relation among them
could be defined in RDF format:
 mc:Request#req1 rdf:type mc:Request
 mc:Request#req1 mc:asksFor mc:Operation#saveUserPicture
 mc:Operation#saveUserPicture rdf:type mc:Operation

From the ontology MonitoringDatum is an RDFTriple and is another streaming. It
contains a reference to a metric with the relation of hasMonitoringMetric, and isAbout a
MonitorableResource.
The relation among Data Collector and Monitorable Resource, monitors, is also stream
information. Whether a data collector monitors a monitorable resource or not, will change
during the run time by monitoring rules. For example in the case of generating a violation
by an specific monitoring rule, it may trigger a data collector and enable it to monitor a
monitorable resource.

In the following table we summarize the overall information that could be extracted from
ontology and show which of them is defined during run time and which during the design
time, and they are categorized based on permanent and stream.

Components/Relations Permanent
DesignTime

Permanent
RunTime

Stream RunTime

Component

Operation
Request

MonitoringDatum
Metric

84

MonitoringRule

provides
contains

asksFor
isAbout

process
hasValue

hasMonitoredMetric

checks
monitors

produces
isOn

triggers

hasUnitOfMeasurement

 In the next section we show how the monitoring rules are translated in to the C-
SPARQL queries.

4.7 TRANSLATING MONITORING RULES TO C-
SPARQL QUERIES

In this section we show the steps of translating monitoring rules in to C-SPARQL queries
and then we will discuss how they will be generated automatically. Each C-SPARQL
queries correspond to one or more monitoring rules.

As it has been discussed in Section 4.5 there are three types of monitoring rules,
the first step in the translation is transformation of extended and composed rules into
simple rules. Then in the process of translating, we try to map the rule definition into C-
SPARQL query definitions.

The query name can be the same as Monitoring rule name, and to definin the
Window of the query, time window, and sampling time of the rule are used.

The Sampling probability and storage type definitions are not used during the
translation.

85

For the rest of the translation the Metrics features and their category will be utilized.
By following the ontology, each metric has a monitoring datum which has a value and is
about a monitorable resource. The monitorable resource can be the target resource of the
rule definition, or a resource that is in a relation with target resource, as the ontology
relation shows it.

For every target metric the following RDF stream needs to be added in to the query:
?monitoringDatum mc:hasValue ?value;
 mc:hasMonitoredMetric mc:Metric#TargetMetric;
 mc:isAbout ?monitorableresource.

For the rest of the query, the target metric, target resource and grouping definitions
are considered, all together. For the metrics two main abstraction levels are defined,
Infrastructure and Application. Infrastructure metrics correspond to the VM, Host, and
Application monitorable resources, while Application level metrics are related to the
Operation, and Request monitorable resources.

• Infrastructure metrics
o If metric is Infrastructure and target resource is VM, Host, or

Application then group by components
 ?monitorableresource mc:type ?VM
 ?VM mc:type mc:VM#targetResource

o If metric is application level, the target resource is an application and
the grouping by operation: System health

 ?monitorableresource mc:type ?request
 ?request mc:asksFor ?operation
 ?operatiomc:providedBy ?app
 ?app mc:type mc:app#targetResource

• Application Metric: If the metric is an application level, the target resource is
either Operation, or Request

o If the metric is application level, and target resource is operation:
 ?monitorableresource mc:type mc:operation#targetResource
 or

 ?monitorableresource mc:type ?request
 ?request mc:asksFor ?operation
 ?operation mc:type mc:operation#targetResource

o If the metric is application level, and the target resource is request:

 ?monitorableresource mc:type ?request

86

Here you can see the determined part of the C-SPARQL query for the monitoring
rules:

REGISTER STREAM/QUERY AS NAME

CONSTRUCT { Stream}
FROM STREAM StreamIRI [“RANGE” Window]

WHERE{
?monitoringDatum mc:hasValue ?value;
 mc:hasMonitoredMetric mc:Metric#TargetMetric;
 mc:isAbout ?monitorableresource.
.
.
}
GROUPBY()
HAVING(RulePredicate^^xsd:valuetype)
FILTER(RulePredicate)

The GROUPBY, HAVING and FILTER definitions are related to the purpose of

each query.
The rest of the query will be extended, based on the monitoring resource target.

For the composition rule, it just needs to translate the composited rule without

considering the predicate of base rule, and then the stream result of the other rules will be
added in to the translation of composition rule.

For extended rule, first we put the translation parts of the super rule, and then
complete the rest of rule by translating the definition of the new rule.

Related example for both composition, and translation rules are provided in the last
part of this section

 In the following, we explain the process of translating different types of
monitoring rules in to the C-SPARQL queries via some examples.

Simple rule Example
 As an example, here we show the translation of the CPUUtilization rule:

REGISTER QUERY CPUUtilViolation AS
FROM STREAM <http://mic-app.com/stream> [RANGE 300s STEP 60s]

87

WHERE {
 ?datum mc:hasValue ?CPU;
 mc:hasMonitoredMetrics mc:Metric#CPUUtilization ;
 mc:isAbout ?vmContainer .
 ?vmContainer mc:type mc:VirtualMachine .}
Group By (?vmContainer)

Having (AVG(?CPU) > “0.6”^^xsd:float)

Violation rule Example
 Consider an existence monitoring rule that checks the response time of all requests
that ask for SaveUserData operation (mc:MonitoringRule#CheckSaveUsrRT). The
new rule will be created in the case that this rule is violated. In the following case we
want to trigger the Data Collector to monitor SaveUserPicture Operation.
 mc:MonitoringRule#CheckSaveUsrRT rdf:type mc:MonitoringRule
 mc: MonitoringRule#CheckSaveUsrRT mc:checks mc:Metric#ResponseTime

 mc:Metric#ResponseTime rdf:type mc:Metric
 mc: MonitoringRule#CheckSaveUsrRT mc:checks mc:Metric#ResponseCode

 mc:Metric#ResponseCode rdf:type mc:Metric
The new rule is:
REGISTER STREAM AS CheckSaveUsrRTViolation
CONSTRUCT {[] rdf:type mc:Violation;
 mc:isGeneratedBy mc:MonitoringRule#CheckSaveUsrRT;
 mc:isOn mc:Operation#SaveUserData. }
FROM STREAM <http://mic-app.com/stream> [RANGE 600s STEP 60s]
WHERE {
 ?datum1 mc:hasValue ?resTime;
 mc:hasMonitoredMetrics mc:Metric#responseTime ;
 mc:isAbout ?request .
 ?datume2 mc:hasValue “200”;
 mc:hasMonitoredMetrics mc:Metric#responseCode ;
 mc:isAbout ?request .
 ?request mc:asksFor mc:Operation#SaveUserData.
Filter (AVG(?resTime) > “300”^^xsd:float).
}
Extended rule Example

88

Here we want to show how an extended rule will be trasnlated from the base rule.
Those definitions of the extended rule that has the value of super rule definition, it is
just needed to use related query translation, then for the rest, the translation of rule will
be done. As the following example shows.

From the example that has been expressed in section 4.5, CheckNoSQLRT rule is
extended from the CheckLoginRT monitoring rule.
 First we translate the base rule:
REGISTER STREAM AS CheckLoginRTViolation
CONSTRUCT { [] rdf:type mc:Violation;
 mc:isGeneratedBy mc:MonitoringRule#CheckLoginRT;
 mc:occursOn ?request
}
FROM STREAM <http://mic-app.com/stream> [RANGE 600s STEP 60s]
WHERE {
 ?datum mc:hasValue ?resTime;
 mc:hasMonitoredMetrics mc:Metric#responseTime ;
 mc:isAbout ?request .
 ?request mc:asksFor ?operation.
 ?operation rdf:type mc:Operation#Login . }
 GROUPBY(?request)
 Having(AVG(?resTime) < “300”^^xsd:float)

And the extension rule is translated as follow:

REGISTER Query AS CheckNoSQLRT
FROM STREAM <http://mic-app.com/stream> [RANGE 600s]
WHERE {
 ?datum1 mc:hasValue ?respTime;
 mc:hasMonitoredMetrics mc:Metric#ResponseTime.
 mc:isAbout ?request .
 ?request mc:asksFor ?operation.
 ?operation rdf:type mc:Operation#Login.
 ?datum2 mc:hasValue ?respTime;
 mc:hasMonitoredMetrics mc:Metric#ResponseTime ;

89

 mc:isAbout ?request .
 ?request mc:asksFor ?operation.
 ?operation rdf:type mc:Operation#NoSQL . }

GROUP BY (?request)
HAVING(AVG(?resTime) < “300”^^xsd:float &&	 PERC(0.95) < “500”^^xsd:floa)

90

Composition rule Example
For translating a composition rule into the related C-SPARQL query, it is needed to
check the rule predicate that is defined in the predicate of the composition rule.
For this purpose, the stream that is generated via the base rule is used in the query of
the composition rule.
As an example, the predicate of SYSTEMHealthy rule checkes the predicate of the
CheckLoginRTViolation, that is generated an stream in the case of violation.

REGISTER Query AS SystemHealthy
FROM STREAM <http://mic-app.com/stream> [RANGE 600s STEP 60s]
FROM STREAM <http://mic-app.com/stream/CheckLoginRTViolation> [RANGE
600s STEP 60s]
WHERE {
 ?datum ms:hasvalue ?resCode;
 mc:hasMonitoredMetrics mc:Metric#responseCode ;
 mc:isAbout ?request .
 ?request mc:asksFor ?operation.
 ?operation rdf:type mc:Operation#Login .
 mc:isprovidedBy ?application;
 ?application rdf:type mc:Application#Frontend
 }
 GROUPBY(?request)
 HAVING(?respCode = 200)

4.8 DATA COLLECTORS

In the present thesis, Data collectors are designed to deal with the heterogeneity of
different data sources by producing data under the form of an RDF triple. As we explained
before the data monitored by the data sources will be retrieved by pushing or pulling
strategies. While in the push strategy, data sources actively send (i.e., push) data to the
data collectors, in the pull strategy, data collectors periodically query (i.e., pull) the
various data sources and retrieve data from them. In order to perform a push data
collection, data sources must know a data collector endpoint. The push-based approach

91

integrates more naturally with the stream-based architecture of the Monitoring Platform.
In this thesis, RDF pushes while EC2 and Azure pull. Here we present three different data
collectors that are designed in this thesis:

• Aspects Data Collector: For each operations in the component of Palladio
repository model a point cut is defined. In each join point the execution time
related to that operation will be computed and will be sent to the data analyzer.
Each point cut, that acts as a data collector, could be activated while a rule defines
for that and then it will start feeding the engine some are already activated, some
will be deactivated. High level data collector in the case violation spesicfic dc
could be activated. There is no sampling time for these rules, as the request for
each operation does not have defined time. A point cut could be applied to all
methods or a specific one. To create a point cut, our monitoring framework will
generate it by receiving the related method name from the user side, and
substituing that in the defult pointcut expression.

• Data Collector for CloudWatch: In Amazon EC2, the data are provided
periodically. For the metrics that are defined, the data are gathered periodically,
and are sent to the data analyzer.

• Data Collector for Azure storage: Windows Azure Diagnostic enables us to
collect diagnostic data from an application running in Windows Azure. After
the diagnostic data is collected it can be transferred to a Windows Azure
storage account for persistance. The data of the metrics that are added in
diagnostic, will be stored in to storage table. When the data collector is
triggered it starts collecting data from storage table for the related metric. As
the Azure storage is NoSQL, related query should applied to extract the data.
After the data is collected, it will be sent to the data analyzer.

92

5 CHAPTER 5

In this chapter we will evaluate the monitoring approach developed in this thesis. The
main objectives are quantitatively evaluate the overhead that is introduce by the
monitoring platform which are done on MiC application, we described in Section , and
evaluate the expressiveness of the proposed monitoring rules from the interview that has
been done with a professional system engineer partner of the MODAClouds consortium
and provider of a case study for the validation of the project.
In Section 5.1 the basic settings of the system for testing have been specified, and the
experiment results of the application on the cloud were discussed. Section 5.2, describes
some monitoring rules and experiment that are performed on our monitoring platform.
Finally in Section 5.3, we will provide the interview with one of the MODAClouds.

5.1 EXPERIMENT RESULT ON THE CLOUD

5.1.1 Basic Test Settings

We deployed the MiC application in Azure. In particular, the application Frontend has
been deployed on a small worker role. For the evaluation of the overhead we added the
aspects to every single page. The backend was on a medium worker role. Both worker
roles run a Tomcat web container and were deployed in the West Europe Microsoft data
center. Adding aspects to every frontend servlet page corresponds to the worst case
evaluation scenario, since before and after advice execution requires few millisecond as
the generation of a dynamic web page, while the execution of the backend method for the

93

evaluation of the Pearson coefficient requires several seconds and hence in that case the
monitoring overhead would benegligible.
In order to represent a multi-cloud and distribute monitoring environment, C-SPARQL
engine was deployed in Amazon EC2 in the Virginia Amazon Region during the tests.
The monitoring rule defined for the tests was a simple rule which checked the response
time and status code of all frontend operations for each individual during the time window
of 300 samples.
We considered the user session registration as the test plan. Registration scenario contains:

• Save picture in to Blob storage
• Save User Profile in to SQL Server
• Select topics of interest from Data storage
• Answer questions from Data storage, and
• Save all users selection in to the Data storage

JMETER was used as workload injector and three clients were deployed medium host in
the same data center providing the worker roles.The Apache JMeter™ desktop application
is open source software, 100% pure Java application [Reference] designed to load test
functional behavior and measure performance. In particular, master controller initiated the
test by two slaves clients.

• XXX Here add Palladio diagrams annotated with your rule. XXX

5.1.2 Experiments and graphs

In order to estimate the overhead, the platform has been investigated under different
conditions.

• Terms of comparison were MiC without any monitoring rule
• Different sampling probabilities were considered
• The reported results were executed the week, as the Azure performance were

worst during the weekend

The test were performed:

• Overhead estimation for single user scenario
• Sampling probability effect
• Overhead estimation for multi users scenario (representative of real application)

94

In the first run a single user was tested for 10 hours with 0.1 sampling probabilities. As
for a single user we have small number of request, the test has been done for a longer time
period with respect to the following analyses. In this run every response time is exactly the
demanding time of running single pages with and without aspect actually without any
problem of concurrency. In this test we could evaluate the effect of the aspect. The related
results are shown in Table 1.

 Number of Samples Response Time Overhead
 Native Aspect Native Aspect

Total 2150 2155 414.76 443.04 6.82%
Table 3: Overhead

 From the table, the overall overhead of the system is around 7%, that is reasonable
in production environment.

In the second run, we tested the system with small number of users, for ten, twenty
and thirt number of users. The results that, shown in Table, present that aspect
version of the application in all cases have errors. The investigation displayed that
this problem is caused because of feeding the C-SPARQL engine for all the
requests. The errors specify the importance of using sampling probability in a
production environment. , so the rest of the tests reported in this chapter were done
based on the sampling probability.

Number of Users Error% (Total) Throughput

 Native Aspect
10 0% 11.31% 1.5/sec

20 0% 19.78% 3.0/sec

30 0% 23.92% 1.4/sec
Table 4 : Test result without sampling

 The CPU utilization of the Azure worker roles, and C-SPARQL engine were also
registered during this test for aspect version of the application.
Figures 1, and 2 show the results of testing 10 users in the aspect version of the
application. Worker role 1 is in the purple, while worker role 2 is the blue line. Figure
shows the result of 20 users and Figures X-Y illustrate the results achieved for 30 users:

95

Figure 19: CPU Utilization for 10 users in Aspect version

Figure 20: CPU Utilization of C-SPARQL for 10 users in Aspect

version

Figure 21: CPU Utilization for 20 users in Aspect version

96

Figure 22: CPU Utilization of C-SPARQL for 20 users in Aspect version

Figure 23: CPU Utilization for 30 users in Aspect version

97

Figure 24: CPU Utilization of C-SPARQL for 30 users in Aspect version

The following Table summarized the CPU utilization of all the VMs in three cases that has
been investigated during this test:

Number of Users Worker Role 1 % Worker Role 2 % C-SPARQL %
10 3.42 17.61 2.366

20 4.36 43.28 2.6
30 5.51 72.77 3.534

Table 5: CPU utilization of VMs in Aspect version

As the table shows, CPU utilization is low for front end role, while it is high for backend
role, which is clearly the application bottleneck , and for C-SPARQL utilization it is very
low.

We did more extended evaluation by increasing the number of users until the worker roles
became saturated. We tested from 100 users to 800 users. Table is shown the related
results.

 X(request/sec) Web role
Utilization%

Response Time
(msec)

Error
rate%

C-
SPARQL
utilization

overhead

Number
of Users

Native Aspec
t

Nativ
e

Aspec
t

Nativ
e

Aspec
t

100 15 15.1 10.83 9.62 145 95 0.56 1

98

300 45.1 43.8 21.49 18.38 139 99 1.39 1.2

500 72 55.8 29.58 22.60 153 123 1.72 1.5

700 88.8 59.8 33.34 23.82 161 164 1.89 1.7
800 79.7 54.8 30.36 35.42 214 1753 1.95 1.9

In the following EXPLAIN

Throughput (X):

Utility:

99

Response time:

Utility versus Throughput:

In the 800 users even the role without the aspect was saturated. There is no
significant overhead in response time in any of workload condition. The error code
reduced, as we used the sampling, but the problem is that starting from 500 users
we have some performance degradation in throughput and also increase of
standard deviation of the response time. We investigated what was caused the

100

problem. Spike in the utilization of the worker role of the aspect that shows maybe
because of garbage collector, also the clean version without aspect has problem as
soon as the role become saturated, and we have performance degradation, and the
throughput is higher than the other one. The lesson learning is that this tool need to
be managed carefully.

5.2 EVALUATION OF THE POWER OF MONITORING

RULES EXPRESSIVENESS

In order to validate the power of monitoring rules that we have define in this thesis, and
explained in the previous chapter, we did an interview with a system engineer from BOC,
one of the partner of the MODAClouds project. The interview was performed through
Skype and overall last 2 hours and half. In the following a report from the interview is
provided in order to show the way our approach can be used in their application which
will provide of the MODAClouds project case study.
The main objectives of the interview were:

• Whether the monitoring rule language that has been defined in this present work
can be easily understood for who deals with monitoring challenges or not

• The monitoring language allows to define the monitoring rules that are used in real
systems

• Identify benefits of the approaches of the monitoring rules presented in this work

Moreover, they mentioned that combination rule is one of the approaches that will be
useful in monitoring of their application, as they use data from different data collectors,
and put query on them.
Their provided application names ADOxx Application [REFRENCE]. ADOxx is a Meta
modeling platform that enables the end user to instantiate products by defining meta-
models and having scenarios specific functionality. The products that are derived from this
platform are used by end customers either in a rich client scenario with relational data base
behind it or alternatively as a web application with a web tier, a business tier, and data
base. Web based access is actually the case study considered within MODAClouds
project.

101

The main motivation for BOC to move this application to the Cloud is to move from BOC
data center to cloud base infrastructure to gain flexibility especially in terms of critical
issue of services locations, especially in Europe, and also for service proximity to
guarantee low latency between web browser and web tier. The other goal is to get rid of
hardware staff of the data center and to leverage cloud services and benefit from the
flexibility of cloud services.
This application follows classical 3-tier architecture:

• Web tier: Java application usually in tomcat web container
• Presentation tier: REST API eccessed from java script base user interface which is

running on end customer browser. It talks to the Business tier, and is SOA (SOAP)
• Business tier: is C++, which is targeted in windows and challenge for cloud plans.

It provides different logics, provide script interfaces for logic.

The data base currently used is oracle Microsoft SQL server can be used as alternative.
The plan to move to cloud is first one to one migration to IaaS, after that take the benefit
of cloud in terms of PaaS features.
Curently Nagios is used in order to monitoring the ADOxx application. It is an open
source computer system monitor, network monitoring and infrastructure monitoring
software application. It is deal with the concept of monitoring server in the case that when
all the configurations for monitored infrastructure, services, etc. are ready, you can access
monitoring system as either black box then you can query in some case of HTTP server
get request from the server, or agent running in the server that allows you reach all kind of
scripting that helps you get all the needed information.
In the commands one can define a threshold and how the services be monitored. The rules
can be defined in Nagios, for example binding the actions. As an example if the response
exceed certain threshold another instance of the application could be launched, and bind it
to the load balancer to scale out the application. Nagios is mostly used for handling the
problems. Currently there is no possibility to scale the application as it is in a standard
data center without cloud features, and it’s also didn’t needed so far scale in such a high
way, what is done some times is extend the environment that need more long time
planning.
Nagios does not separate data collectors from data analyzers; they are combined at the
same entity. Actually there are scripts that gather data and analyze the data to check
whether the status is critical, for warning or and provide some performance data.

102

The monitoring approach developed in this thesis could be helpful as it collects data from
different application resources, and the combination of data collectors approaches with
BOC will provide better functionality.
As an example, in our approach aspects are used to monitor web applications that are for
application tires and not business tires.
Administrative of Nagios receives data from bunch of plugins available for example CPU
or Memory usage. Those are not cloud specific, and whenever one faces with something
that no plugin existed for that, it should be designed. In this case especially in the cloud
context as we define data collectors in our approach, they can use the beneficial of our
feature.
Nagios monitoring could be integrated with C-SPARQL solution. In this case for any
violation in the constraints, an alert will be sent to Nagios. As there is no way to push data
to the Nagios, an intermediate like observer that is defined in our architecture is needed.
Both Nagios, and C-SPARQL engine can query on the recent data. This definition has
been specified as time window in our work, and Nagios can make a profit of that in its
queries.
Inside of the data analyzer there are rules that could distinguish, and in the case of
happening an special situation the data will be pushed to the observer and from there it
will be keep it up by nagious.
Bothe approaches could be used with each other in terms of using the advantage of our
approach to collect data, analyze them in C-SPARQL engine, and then provide them as the
input to the Nagios. This means that Nagios be used as the next layer after C-SPARQL.
As it was discussed during the interview, the monitoring rule language that has been
defined in this thesis is easily understandable for who deals with challenges of monitoring.
Also they mentioned that combination rule is one of the approaches that could be useful in
monitoring the ADOxx, as they use data from different data collectors, and put query on
them.
Here is a monitoring rule example, that they provided based on our language on their case
study application.

103

6 CONCLUSION

