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Abstract

In this work we develop a numerical method for unsteady hyperbolic conservation laws in
Arbitrary Lagrangian Eulerian (ALE) formulation, in order to use moving grids without
any time-consuming interpolation step. Hyperbolic equations are discretized in time with
explicit Runge Kutta 2 scheme and in space with a Residual Distribution approximation.
The numerical method has been tested on scalar problems and on Euler Equations: when
computing smooth solutions second order of accuracy is achieved, moreover no oscilla-
tions appear when computing discontinuous solutions. For every test case, comparisons
with numerical solutions provided by the Eulerian counterpart, confirmed theoretical ex-
pectations.

Sommario

In questo lavoro costruiamo una metodo numerico per problemi iperbolici non stazionari
scritti nella formulazione Arbitraria Lagrangiana Euleriana (ALE), in modo da poter uti-
lizzare griglie mobili senza alcuna necessità di interpolare la soluzione ad ogni istante di
tempo. Le equazioni iperboliche sono discretizzate nel tempo con un metodo di Runge
Kutta 2 esplicito e nello spazio con i metodi di Distribuzione del Residuo. Lo schema
numerico è stato testato sia su problemi scalari che sulle Equazioni di Eulero: laddove
atteso, il metodo è accurato al secondo ordine su soluzioni regolari ed è capace di approssi-
mare gli urti senza oscillazioni. Ovunque vengono riportati i confronti con le soluzioni
numeriche fornite dal medesimo algoritmo nella versione Euleriana, ed un buon accordo
è riscontrato.





1 Introduction

In this thesis a method for the solution of hyperbolic equations in Arbitrary Lagrangian
Eulerian (ALE) formulation through a Residual Distribution space approximation is pre-
sented.

First order hyperbolic partial differential equations (PDEs) govern a wide spectrum of
phenomena where advection of some information is involved, such as the conservation
of the fundamental quantities in geophysics, gasdynamics, acoustics, solid mechanics.
Among them, the field that provided a first understanding and that led to development
of new methods and ideas, was gasdynamics. The study of compressible flow started
to be fundamental for aerospace applications when the speed of airplanes and missiles
dramatically increased. A simplified model called Potential Flow was first developed, then,
the constant growth in computer power, made possible to solve complete equations for
inviscid compressible flows: the Euler Equations. These constitute a nonlinear hyperbolic
system of partial differential equations and to find numerical solutions is a very challanging
objective due to many reasons. Firstly, they are a set of coupled equations for d+2
variables (in d dimensions), namely the velocity components, density and total energy.
Moreover, nonlinearity is revealed through the appereance of shocks and great carefulness
in their treatment is required. Finally, all practical applications regards at least two
dimensional phenomena. All of this points add a certain degree of difficulty, when moving
from scalar equations to systems, from one dimension to two dimensions, from linear
to nonlinear, new problems arise for computational methods. The resulting complexity
may obscure the basic concepts behind hyperbolic equations and, in addition, it makes
the development of new ideas very difficult. Working on simple problems such as scalar
advection and Burgers’equation would represent an advantage: ideas are more immediate
to understand and more easy to implement. They are just model problems without
applications but many results, once understood in such simple cases, can be applied to
the into Euler equations. In this thesis we follow this approach; we develop a method for
the solution of hyperbolic equations, reasoning on the mentioned model problems. Only
when things becames clearer, step by step, we move to more difficult issues, with the
application to two dimensional Euler Equation being the ultimate goal.

In this introduction we give a brief overview about the topics addressed in each chapter.
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1 Introduction

1.1 Residual Distribution

Finite Volume (FV) are the most popular schemes for the discretization of hyperbolic
PDEs. They arise from the discretization of integral conservation laws which are the
most fundamental equations when the solution contains discontinuities. In these cases
differential form does not hold anymore but the integral one still admits solutions. The
basic ideas is to break the domain into many volumes and for each of them write the
integral conservation law. The solution is averaged within every cell and is updated, at
every time step according to the conservation law, hence by a balance of numerical fluxes
at the interfaces. The problem is to choose good numerical fluxes. An important aspect
is that the solution is mimicking what the exact solution does and, even in presence of
discontinuities, these class of methods does not break down. The major drawback of first
order FV scheme is that, in more dimensions, results have proven to be inaccurate due
to the large amount of diffusion introduced in the crosswind direction. This is related
to the fact that the computation of fluxes at the interfaces is extended directly form one
dimension where the normals at the interfaces are always aligned to the wind direction.
In two dimensions this could be no longer true and upwinding appears also in crosswind
direction. Even if high resolution methods are used this drawback remains.
Stabilized Finite Elements method (FE) rapresents another class of methods which could
be applied to hyperbolic equations. The Galerkin approximation for advection dominated
problems yields numerical solution with strong oscillations. Thus a stabilization term is
added in order to provide the method with some form of dissipation. This corresponds to
use test functions belonging to a different space respect to the one in which the solution
is searched and for this reason stabilized FE are also called Petrov Galerkin FE . An
estimation for the error shows that, depending on the degree of polynomial used, orders
of accuracy higher then one are achieved. On the other hand, a well known weak point
is that FE , in the form discussed above, are not suitable for computing discontinuos
solutions. Close to discontinuities the numerical solution shows again oscillations that
spoils convergence order and, in this regions, dissipation through a tuning parameter has
to be introduced.
At the beginning of the eigthies a new class of methods has been proposed by P.L. Roe.
He reformalized FV into a form called Fluctuation Splitting schemes. Here the solution
is modified at each time step by the balance of abstract quantities called fluctuations
instead of fluxes at the interfaces. This has paved the way to the development of what
today is referred to as Residual Distribution (RD). The domain is decomposed into many
elements and for each element the flux balance, called residual, is computed. Residual
is then splitted through an appropriate distribution, in many contributions, one for each
node of the element and, finally, the solution at each node is updated by the contribu-
tion of the elements sharing that node. In one dimension it is possible to demonstrate
that this abstract passeges are just a reformulation of the classical FV Godunov method.
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1.2 Time discretization

The promising aspect was that an abstract geometrical interpretation of upwinding nat-
urally arises. When passing to multidimensional problems this fact is used to introduce
upwinding in a more clever way. Indeed early experiments demonstrated that, for multi-
dimensional problems, first order RD were more accurate then first order FV . Meanwhile
the method was provided of a mathematical basis for stability and accuracy analysis, the
possibilty of constructing second order scheme was investigated. The results on paper were
again very promising because second order and positive schemes were defined without any
blending, thus completely parameter free. This rapresents an important advantage with
respect to FE . Unfortunately further studies proved that a certain amount of dissipation
is needed in order to have a second order and positive accurate solution accurate solution,
leading to several different forms of stable nonlinear discretizations.
Chapter 2 is an introduction to Residual Distribution method for simple scalar problems.
The link between FV , RD and FE in one dimension is pointed out. Then RD discretiza-
tion is extended to two dimensions and unsteady problems. The basic elements to perform
a stabilty and accuracy analysis on RD schemes are given. Finally many distributions
are presented.

1.2 Time discretization

Since we are interested in unsteady phenomena, in Chapter 3 the time discretization is
discussed. The extension to time dependent simulations has been a critic point in the
development of RD. An analogy between RD and stabilized FE is invoked in order to
treat correctly the time part. As in FE a mass matrix appears. Lumping the mass matrix
decouples the equations but spoils the accuracy properties while keeping consistent mass
matrix requires its time-consuming inversion and moreover spoils positivity. An explicit
Runge Kutta two scheme (ERK2) has been implemented successfully on fixed grid by
Ricchiuto and Abgrall: the mathematical fundation of the method is again the analogy
with stabilized FE . Firstly, PDE are discretized in time, then they are recast in variational
form and fully discretized with a stabilized FE approximation. The advective part is put
in RD form while the time part is lumped. Positive, second-order accurate solutions are
obtained for different problems through a fast, fully explicit scheme.

1.3 Residual Distribution schemes for moving grids

In Chapter 4 we present three coordinate frameworks in which conservation laws can be
written. In the Eulerian approach conservation laws are written for a control volume fixed
in space, in the Lagrangian approach, the control volume is moving following particles
motion, in the Arbitrary Lagrangian Eulerian (ALE) formulation, the control volume is

9



1 Introduction

moving arbitrarly with a prescribed motion law. The Eulerian approach is well suited for
fluid dynamics because the volume is fixed and we state conservation for particles that are
flowing inside. On the opposite, the Lagrangian approach would involve big distortions
of the grid that could lead to instabilties.
If the classical Eulerian approach is used together with moving grids, at every time step
we have to write conservation laws for new volumes. On the updated grid, the solution
at the previous time step has never been calculated. Thus an interpolation step of the
old solution on the updated grid becomes necessary at every time step. With the ALE
approach we write conservation laws for the same control volumes and no time-consuming
interpolation step is needed. If an ALE framework is used a condition regarding the
preservation of the volumes arises. This is referred to as Geometric Conservation Law
(GCL). Reformulation of Eulerian scheme into ALE framwork requires minor modification
in the algorithm, however great care has to be put in order to satisfy GCL.
All the space discretizations have been put into ALE formulation. Regarding RD , in
the last decade, many papers have been written, due to the contribution of Deconinck
and coworkers at Von Karman Institute. First-order accuracy has been reached with Ex-
plicit Euler time-approximation, second-order has been achieved only using implicit time
schemes. In this thesis a novel RD discretization is proposed based on the reformulation
of the genuinely explicit RD scheme described in chapter 3, in ALE form. The resulting
scheme is rearranged in order to resamble its Eulerian counterpart, mantaining its nice
stability and accuracy properties. The GCL is verified by construction through an appro-
priate choice of the grid velocity and of time instants on which integrals are performed.
We still expect to end up with an explicit algorithm that gives positive and second-order
accurate solutions. The method is tested firstly on simple two dimensional scalar prob-
lems: a linear advection test case is used to see accuracy property when computing smooth
solutions while the Burger’s equation test case should demonstrates positivity property
when computing shock waves.

1.4 Residual Distribution schemes for Euler Equations
with moving grids

The necessity of moving grids comes, for unsteady phenomena, in order to adapt to
moving boundaries. This demand is particularly important in aeronautical applications,
where many problems of interest involve the motion of boundaries (i.e. aeroelasticity,
turbomachinery and helicopter applications). Also in unsteady aerodynamics, since ac-
curacy depends on spatial discretization, it is desirable to change the grid according to
the solution itself for example refining it in regions where strong gradients appears. For
this reasons in Chapter 5 we extend the scalar scheme to systems of hyperbolic equations,
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1.4 Residual Distribution schemes for Euler Equations with moving grids

in particular we focus our attention on Euler equations of gasdynamics. Again, accuracy
and positivity is shown through two test cases: the advection of a vortex and a two di-
mensional Riemann problem. Finally a very simple application with moving boundaries
is presented.
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2 Residual Distribution

In this second chapter we present Residual DistributionRD schemes which rapresent now-
days a nice alternative for the solution of hyperbolic problems to either Finite Volume FV
and Finite Elements FE . The main goal will be to design a class of conservative schemes
which could compute nice solutions both in smooth regions and near discontinities, hence
guaranteeing accuracy and a non-oscillatory beahviour at the same time. The road to RD
was paved by the work of Roe on Flux-Difference Splitting Finite Volume schemes and
after on Fluctuation Splitting schemes [1][2]. At that time, among the two-dimensional
upwind methods, many schemes were known to be less diffusive respect to the first order
upwind FV ones [3][4][5]. The idea that brought to RD was to incorporate upwinding in
a genuinely multidimensional way, always remaining with a compact stencil. This leads to
the design of a class of optimal upwind schemes. From the pioniereeng work in the eighties
of Roe at the University of Michigan and the immediate development of Deconinck and
coworkers at Von Karman Institute, contributions has been given by many groups which
pushed step by step to new issues: high order of accuracy, solution of unsteady problems,
extension to viscous problems. Among them we mention Hubbard and coworkers (Leeds
University), Napolitano and coworkers (Politecnico di Bari) and Abgrall and coworkers
(INRIA Bordeaux).

2.1 Basic concept in 1D

2.1.1 An upwind RD scheme

We start, for its semplicity, from the approximation of the one-dimensional homogeneus
hyperbolic equation called conservation law which is expressed by the following partial
differential equation

∂u

∂t
+ ∂f(u)

∂x
= 0 x ∈ [0, 1], t ∈ [0, T ] (2.1)

where u = u(x, t) is the solution or the conserved quantity and f = f(u) is the flux
function. (2.1) can be rewritten in quasilinear form

∂u

∂t
+ a(u)∂u

∂x
= 0 (2.2)
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2 Residual Distribution

where a(u) = ∂f(u)
∂u

is called the flux jacobian and has to be real to provide the hypebolicity.
Since in this case (2.2) models the simple transport or advection of the conserved quantity
at local speed a(x, t) = a(u(x, t)), then a is rightly called advective speed.

Finite Volume and Residual Distribution

The starting point for the development of RD schemes by Roe was the introduction of the
concept of fluctuations for the 1D upwind Finite Volume method. The slightly different
viewpoint opened the way to this new methods. Starting from the integral form (2.1)
written for the time slab [tn, tn+1] and control volume hi, which rapresent the medial dual
cell area surrounding node i, we obtain
ˆ
hi

u(x, tn+1) dx =
ˆ
hi

u(x, tn) dx−
ˆ tn+1

tn
f(u(xi+ 1

2
, t)) dt+

ˆ tn+1

tn
f(u(xi− 1

2
, t)) dt (2.3)

The steps for a FV-Godunov method are the followings
1. Approximate the solution at time tn over the cell with the cell average uni =

1
hi

´
hi
u(x, tn) dx

2. Such an approximation define a sequence of Riemann problem at every interface.
Evolve (2.3) with the above initial data to obtain the exact solution at time tn+1,
un+1(x)

3. Average the solution over the cell un+1
i = 1

hi

´
hi
u(x, tn+1) dx

At the end of this three steps, (2.3) reduce to

un+1
i = uni −

∆t
hi

(
Fi+1/2(uni , uni+1)− Fi−1/2(uni−1, u

n
i )
)

(2.4)

where numerical flux functions F are computed with ug obtained by solving a Riemann
problems at each cell interface

Fi−1/2 = f(ug(ui−1, ui))

Fi+1/2 = f(ug(ui, ui+1))
If, instead of the exact Riemann problem defined by (2.1) together piecewise constant
initial data, we solve an approximate linearized problem at the interfaces using a Roe
linearization, we can express the fluxes as

Fi−1/2 = 1
2(fi + fi−1)− 1

2 |ai−1/2|(ui − ui−1) (2.5)

Fi+1/2 = 1
2(fi+1 + fi)−

1
2 |ai+1/2|(ui+1 − ui) (2.6)
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2.1 Basic concept in 1D

for example, at at the interface xi−1/2, the original problem has been replaced by a linear
one with constant advection speed fixed at an appropriate averege ai−1/2 such that fi −
fi−1 = ai−1/2(ui − ui−1).
The numerical fluxes, substituted into (2.4), provide a FV method which has an upwind
property because the approximation of the numerical flux function is one-sided in the
direction of the advective speed. This method can be rewritten in the following form

un+1
i = uni −

∆t
hi

(
a+
i−1/2(ui − ui−1) + a−i+1/2(ui+1 − ui)

)
= 0 (2.7)

where
a+ = max(0, a) and a− = min(0, a)

Moreover for the cell (xi−1, xi) we can also write

fi − fi−1 = a+
i−1/2(ui − ui−1) + a−i−1/2(ui − ui−1) (2.8)

The flux difference is splitted between a quantity that rapresents the effect of the right-
going wave a+

i−1/2(ui−ui−1) entering at the interface xi−1/2 and a quantity a−i−1/2(ui−ui−1)
rapresenting the effect of the left-going wave entering at the same interface from the
opposite direction. These contributions are called fluctuations and give more insight about
the FV scheme (2.7): the updated solution results from a balance of fluctuations instead
that of fluxes. Infact the flux difference is splitted between a left-going fluctuation that
updates ui−1 and a right-going fluctuation that updates ui. A full parallelism between FV
equation (2.4) and such method is obtained if in (2.4) one uses the following conservative
numerical fluxes

Fi−1/2 = f(ui)− a+
i−1/2(ui − ui−1) (2.9)

From Finite Volumes a more general class of method arises, such methods, called Flux-
Difference Splitting schemes, are based on some splitting of the flux difference, in the
same fashion of (2.8), followed by application of (2.7).

fi − fi−1 = F+
i−1/2 + F−i−1/2 (2.10)

un+1
i = uni −

∆t
hi

(
F+
i−1/2 + F−i+1/2

)
= 0 (2.11)

From Flux-Difference Splitting to Residual Distribution the step is short. We have to
formalize the method in terms of residuals instead that in terms of fluctuations. In the
steady case the passages to construct a RD method are the followings:

1. On every cell define the cell residual using a continuous piecewise linear approxima-
tion of the solution uh(x, t) = ∑

j ϕj(x)uj(t)

φi−1/2 =
ˆ xi

xi−1

∂f(uh)
∂x

dx = fi − fi−1 (2.12)
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2 Residual Distribution

i-1 i i+1

F−
i+1/2F+

i−1/2

fi − fi−1 fi+1 − fi

F+
i+1/2F−

i−1/2

x axis

Figure 2.1: Flux-Difference Splitting

2. Split the cell residual (nothing else then a flux difference) between the two nodes of
the cell through the distribution coefficients βi−1/2

i , βi−1/2
i+1

φi−1/2 = β
i−1/2
i−1 φi−1/2︸ ︷︷ ︸
φ
i−1/2
i−1

+ β
i−1/2
i φi−1/2︸ ︷︷ ︸
φ
i−1/2
i

(2.13)

In order to compute consistently the residual, the distribution coefficients has to
sum to one for each cell

β
i−1/2
i−1 + β

i−1/2
i = 1

which is reffered to as consistency condition
3. Assemble the residuals at node i

β
i+1/2
i φi+1/2 + β

i−1/2
i φi−1/2 = 0 (2.14)

By a proper choice of βi+1/2
i−1 , βi−1/2

i the steady version of (2.7) is recovered

β
i−1/2
i−1 =

a−i−1/2

ai−1/2
β
i−1/2
i =

a+
i−1/2

ai−1/2
(2.15)

The distribution of the residuals (2.15) is clearly upwind in the sense that we evoy all
the residual to the downstream node of the cell, relatively to the advection speed. This
geometrical interpretation of upwinding, very different respect to a FV context, will be
of key importance in two-dimensions. For now, we can conclude that, in one dimension,
through Flux-Difference Splitting, we have found a full parallel between upwind RD and
upwind FV .
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2.1 Basic concept in 1D

i-1 i i+1

x axis

φ
i−1/2
i φ

i+1/2
i+1

φi−1/2

φ
i−1/2
i−1 φ

i+1/2
i

φi+1/2

a

Figure 2.2: Upwinding in 1D RD: all the residual is envoyed to the donwsteam node

Finite Elements and Residual Distribution

In order to derive the RD analogue of (2.4) we miss the time part which has to be treated
properly. This can be done with an analogy between RD and Finite Elements. Starting
form (2.1) we construct a stabilized FE method through the following steps

1. Write (2.1) in weak form with solution and test function u, v ∈ V , with V a suitable
functional space, and, after the domain has been discretized, use a Galerkin Finite
Element approximation with both the approximate solution and the test function
belonging to the space of piecewise linear polynomial over an element uh, vh ∈ V h ≡
X1
h(0, 1). This space is described by a lagrangian basis having for elements the N+1

Galerkin linear shape functions {ϕi}i=1,N+1. Neglecting boundary conditions, the
approximate weak form reads

find uh ∈ V h : a(uh, vh) = 0, ∀vh ∈ V h (2.16)

with the form a(·, ·) that defines the following scalar product a(u, ·) =
´ 1

0 L(u)(·) dx.
L(u) is the differential operator associated to the conservation law. Imposing that
(2.16) is satisfied for every element of the basis of X1

hˆ 1

0

(
∂uh

∂t
+ ∂f(uh)

∂x

)
ϕi dx = 0 ∀ϕi, i = 1, N + 1 (2.17)
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2 Residual Distribution

2. Since the Galerkin approximation of an hyperbolic problem unfortunatly gives un-
stable numerical results, we add a stabilization term modifing the approximation of
the weak problem in the following way

find uh ∈ X1
h : a(uh, ϕi) + Lh(uh, ϕi) = 0 ∀ϕi, i = 1, N + 1 (2.18)

for a suitable stabilization operator Lh such that it vanishes if the exact solution is
used

Lh(u, ϕi) = 0 ∀ϕi, i = 1, N + 1 (2.19)

One obtains a SUPG method if uses

L(uh, ϕi) =
N∑
i=1

ˆ xi+1

xi

L(uh)τa(uh)∂ϕi
∂x

dx (2.20)

where obviously L(u) = 0 and constraint (2.19) is satisfied. So far we have obtained
ˆ 1

0

(
∂uh

∂t
+ ∂f(uh)

∂x

)
ϕi dx+

N∑
i=1

ˆ xi+1

xi

(
∂uh

∂t
+ ∂f(uh)

∂x

)
τa(uh)∂ϕi

∂x
dx = 0

Using the fact that ϕi, ∂ϕi∂x
6= 0 only in the interval [xi−1, xi+1] and assembling in a

different way
ˆ xi+1

xi−1

∂uh

∂t

(
ϕi + τa(uh)∂ϕi

∂x

)
dx+

ˆ xi+1

xi−1

∂f(uh)
∂x

(
ϕi + τa(uh)∂ϕi

∂x

)
dx = 0

Basically we are modifing the test function which, in general, is no more belonging to
the same functional space of the solution, X1

h, but it has an upwind bias due to the
stabilization bubble, as seen figure (2.3). The method is then said Petrov-Galerkin
Finite Elements. Calling

wi = ϕi + γi, γi = τa(uh)∂ϕi
∂x

(2.21)

After step 1 and 2, for internal nodes, the scheme is written compactely
ˆ xi+1

xi−1

(
∂uh

∂t
+ ∂f(uh)

∂x

)
wi dx = 0 ∀wi, i = 2, N (2.22)

Which gives immediately the following semidiscretization

∑
j−1,j,j+1

ˆ xi+1

xi−1

ϕjwi dx
duj
dt

+
ˆ xi+1

xi−1

∂f(uh)
∂x

wi dx = 0 j = i, i = 2, N (2.23)
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2.1 Basic concept in 1D

Assuming a local Roe linearization of the fluxes

φi−1/2 =
ˆ xi

xi−1

∂f(uh)
∂x

dx = ai−1/2
∂uh

∂x
hi−1/2, ai−1/2 = 1

hi−1/2

ˆ xi

xi−1

a(uh) dx (2.24)

we can recast the advective part in a RD form as in (2.14) . Infact

∑
j−1,j,j+1

(ˆ xi

xi−1

ϕjwi dx+
ˆ xi+1

xi

ϕjwi dx

)
duj
dt

+
ˆ xi

xi−1

ai− 1
2

∂uh

∂x
wi dx+

ˆ xi+1

xi

ai+ 1
2

∂uh

∂x
wi dx = 0

In the first two terms we recognize the consistent element mass matrices for elements
i− 1/2 and i+ 1/2

∑
j−1,j

m
i−1/2
ij

duj
dt

+
∑
j,j+1

m
i+1/2
ij

duj
dt

+ φi−1/2

hi−1/2

ˆ xi

xi−1

wi dx+ φi+1/2

hi+1/2

ˆ xi+1

xi

wi dx = 0 (2.25)

If one calls
1

hi−1/2

ˆ xi

xi−1

wi dx = β
i−1/2
i (2.26)

That shows the equivalence between FE and RD: in the first class of method the con-
servation law is first multiplied by a test function and then integrated over the domain
while in the second, roughly speaking, first one integrates and then multiplies for some
coefficients. (2.26) gives a condition to make the two operation equivalent.
With the choice τ = h

2|a| in (2.21), one obtains, after integration of (2.26), the upwind
distribution of residuals already presented in (2.15), just written in a slightly different
form

β
i−1/2
i = 1

2 −
1
2
ai−1/2

|ai−1/2|
(2.27)

Except for the time part where a mass matrix appears, SUPG collapses again to an upwind
scheme. Stabilized FE , FV and RD coincide and, more interesting fact, they give three
different interpretations to the concept of "upwinding" as seen from the comparison of
figure (2.2) and (2.3).
There are many choice of wi that satisfy (2.26), for example two possible choices which
are reffered respectively to as F1 and F2 (formulation one and two) arewF1

i = const = β
i−1/2
i xi−1 ≤ x ≤ xi

wF1
i = const = β

i+1/2
i xi ≤ x ≤ xi+1

(2.28)

wF2
i = ϕi + β

i−1/2
i − 1

2 xi−1 ≤ x ≤ xi

wF2
i = ϕi + β

i+1/2
i − 1

2 xi ≤ x ≤ xi+1
(2.29)
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2 Residual Distribution

i-1 i

x axis

i+1

wi

a

ϕi

Figure 2.3: Upwinding in 1D FE : Streamline Upwind Petrov Galerkin test function

Once a unique correspondence between β and w has been established we can compute
the mass matrix which will depends from the formulation choosen. For the cell i + 1/2
we have

m
i+1/2,F1
ij =

ˆ xi+1

xi

ϕjw
F1
i dx = hi+1/2

2 β
i+1/2
i (2.30)

m
i+1/2,F2
ij =

ˆ xi+1

xi

ϕjw
F2
i dx = hi+1/2

2

(
δij
3 + β

i+1/2
i − 1

6

)
(2.31)

Finally the RD semidiscretization of (2.1) then reads
∑
j−1,j

m
i−1/2
ij

duj
dt

+
∑
j+1,j

m
i+1/2
ij

duj
dt

= −
(
β
i−1/2
i φi−1/2 + β

i+1/2
i φi+1/2

)
j = i, i = 2, N

(2.32)
To get a full equivalent with the upwind FV method (2.4) one can do mass-lumping on
the mass-matrices and, using the consistency condition, for both the formulations one
gets

m
i+1/2,ML
ij = hi+1/2

2 δij (2.33)

Calling hi = 1
2(hi−1/2 + hi+1/2) the Finite Volume median dual cell area, (2.32) becomes

hi
dui
dt

= −
(
β
i−1/2
i φi−1/2 + β

i+1/2
i φi+1/2

)
(2.34)
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2.2 2D Residual Distribution for steady scalar conservation law

Thinking to the β as more general coefficients that only has to satisfy the consistency
requirment, (2.34) is the one-dimensional RD compact protype scheme. Regarding the
accuracy and the stabilty of the method more strict conditions has to be fixed but this
will be discussed later, directly in two-dimensions.

2.1.2 A Lax-Friederich RD scheme

Within the FV method (2.4), the classical Lax-Friederich (LxF) approximation of the
fluxes has the form

FLxF
i−1/2 = 1

2 (fi + fi−1)− 1
2
hi−1/2

∆t (ui − ui−1) (2.35)

this flux looks like an unstable centered flux with an additional term that models an
artificial diffusive term of type υ(x)ux, with artificial viscosity υ = 1

2
h2
i−1/2
∆t . We see that,

as the grid is refined, this coefficient vanishes so that the method is still consistent with
the original hyperbolic equation but, at the same time, we are introducing a numerical
diffusion that damps instabilties. However the Lax-Frederich method introduce too much
diffusion giving very poor numerical results unless a very fine grid is used.
It is very easy to recast the numerical flux difference FLF

i+1/2 − FLF
i−1/2 in a RD framework,

just reassembling the terms present in (2.35)

FLxF
i+1/2 − FLxF

i−1/2 = 1
2 (fi+1 − fi) + 1

2
hi+1/2

∆t (ui − ui+1)︸ ︷︷ ︸
φ
i+1/2,LxF
i

+ 1
2 (fi − fi−1) + 1

2
hi−1/2

∆t (ui − ui−1)︸ ︷︷ ︸
φ
i−1/2,LxF
i

The residuals are distributed, according to Lax-Friederich, splitting the total residual
(2.12) in a centered way and adding a diffusion term to it

φ
i+1/2,LxF
i = 1

2φ
i+1/2 + 1

2
hi+1/2

∆t (ui − ui+1) (2.36)

φ
i−1/2,LxF
i = 1

2φ
i−1/2 + 1

2
hi−1/2

∆t (ui − ui−1) (2.37)

As already seen for the upwind method, in one-dimension everything collapse to the same
scheme.

2.2 2D Residual Distribution for steady scalar
conservation law

Consider the steady scalar conservation law
∇ · f(u) = 0, x ∈ Ω (2.38)
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2 Residual Distribution

Once we have approximated the domain through a suitable triangulation Th we propose
directly a Residual Distribution approximation of (2.38). We repeat the same steps seen
for the one-dimensional case. Boundary condition are neglected at this point and we
imagine that every element does not share any edge with the domain boundary.

1. With a piecewice linear approximation of the solution over each triangle uh(x, t) =∑N+1
j=1 ϕj(x)uj(t) we compute the residual on each element

φK =
ˆ
K

∇ · f(uh) dx =
ˆ
∂K

f(uh) · n ds (2.39)

as in the 1D-case, the physical interpretation of the residual is a flux balance, this
time, over a triangle.

2. Distribute the residuals to the nodes of the element i, j, k ∈ K through weights that
sum up to one for consistency

φK = βKi φ
K + βKj φ

K + βKk φ
K =

∑
j∈K

φKj (2.40)

with
βKi + βKj + βKk = 1

3. Assembly the residuals shared by the same node. If Di is the domain formed by all
the elements of the triangulation that have in common node i, we have∑

K∈Di
βKi φ

K =
∑
K∈Di

φKi = 0, ∀i ∈ Th (2.41)

Linearization

Instead of working with the conservative form of the residual (2.39), the quasi-linear form
will be more suited to our purposes. For non linear problems a linearization is necessary
at this point. This passage requires some carefulness since the correct computation of the
residual implies to end up with a conservative method.
Being conservative is a delicate issue for every numerical method approximating conserva-
tion laws. It means that the numerical solution satisfies the integral form of conservation
laws, mimicing what the exact solution does. Summing (2.41) over all the elements, using
consistency condition (2.40), (2.39) and the fact that, for a conservative scheme, fluxes
cancel out except at the boundaries, we have that∑

i∈Th

∑
K∈Di

φKi =
∑
K∈Th

∑
j∈K

φKj =
∑
K∈Th

ˆ
∂K

f(uh) · n ds

=
ˆ
∂Ωh

f(uh) · n ds
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2.2 2D Residual Distribution for steady scalar conservation law

which states that, imposing correctly boundary conditions, we have exact conservation
over the full domain. We can reassume that aRD method is conservative if it is consistent
and we are able to approximate the residual with a sufficient degree of precision

φK =
ˆ
∂K

f(uh) · n ds (2.42)

This has been interpreted as a constraint on the linearization. To continue to compute
correctly the residuals, the passage from a conservative form to a linearized one should
be exact

φK =
ˆ
K

∇ · f(uh) dx =
ˆ
K

a(uh) dx · ∇uh

= ā · ∇uh|K| (2.43)

where
ā = 1

|K|

ˆ
K

a(uh) dx (2.44)

An important result, which will be used extensively, is the following definition of the
linearized residual. From the definition of the gradient of a P1 solution over the element
∇uh = 1

2|K|
∑
j∈K njuj we have that

φK = ā · ∇uh|K| = 1
2
∑
j∈K

ā · njuj

=
∑
j∈K

kjuj (2.45)

We have introduced the upwind parameter

ki = 1
2 ā · ni (2.46)

Equivalently
φK =

∑
j∈K,,j 6=i

kj (uj − ui) (2.47)

Upwinding

If in one-dimension was immediate to construct an upwind scheme able of introducing
numerical diffusion to damp oscillation, in two-dimensions things are not straightforward.
For FV , one proceeds directly with a two-dimensional extension of the method that works
in 1D. Connected to this procedure there is the problem of the strong cross-diffusion
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2 Residual Distribution

introduced, which, in turn, come up directly from the fact that the normals to the faces
are no more aligned with the direction of the advective velocity, as in 1D. If we recall how
we have introduced upwinding for one-dimensional Residual Distribution, the extension
to multidimensional problem seems to be less critic in this case. The flux balance infact,
can be splitted between the nodes of the element in an “upwind way” respect to the
advective speed, also if we are in more dimensions.
As in 1D it is crucial to establish if a node of an element is upstream or downstream.
Through the upwind parameter it is possible to distinguish between inflow and outflow
faces and upstream and downstream nodes

inflow face : ki > 0 i is downstream
outflow face : ki < 0 i is upstream

Generalizing the RD one-dimensional upwind distribution, in order to have an upwind
method, we want to split the residual only between downstream nodes with the upstream
nodes receiving no contribution instead. We give the following definition
Definition (Upwinding) A RD method is upwind if

ki < 0⇒ βi = 0 (2.48)

The one-inflow case of figure (2.4) is straightforward since all the residual is sent to the
only downstream node. This distribution is said to be one-target. The two-inflow case
is slightly more difficult because one has to choose how to split the residual between the
two downstream nodes. Independently from the choosen criteria this distribution is said
to be two-target. Different choices are possible, leading to upwind schemes with different
properties.

2.3 Unsteady scalar conservation law

As in this theses unsteady problem will be under study, we consider here the integration
of the time dependent conservation law L(u) = 0

∂u

∂t
+∇ · f(u) in Ω ∈ R2, t ∈ [0, T ] (2.49)

Since the advective part has been treated in the previous paragraph, here we explain how
the time part can be treated. As done in 1D we use the analogy with the stabilized FE
method. Given the unsteady scalar conservation law (2.49) the problem is approximated
with the following

find uh ∈ X1
h : a(uh, ϕi) + Lh(uh, ϕi) = 0 ∀ϕi, i = 1, N + 1 (2.50)
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2.3 Unsteady scalar conservation law
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Figure 2.4: Upwinding, 2D RD: left) two inflow case. right) one inflow case

where a(·, ·) defines the scalar product in L2(Ω), a(u, ·) =
´

Ω L(u)(·) dx, ϕi is the two-
dimensional Galerkin shape function, Lh(uh, ϕi) is a proper stabilization form that has to
verify the following properties:

1. Accuracy: to not spoil the accuracy analysis of the Galerkin method it should satisfy

Lh(u, ϕi) = 0 ∀ϕi ∈ X1
h (2.51)

2. Stabiliy: it should introduce a diffusion-like term
3. Conservation: it should not provide any contribution to the flux balance

A possible choice, for example, is the SUPG stabilization form

Lh(uh, ϕi) =
∑
K∈Th

ˆ
K

L(uh) τa(uh) · ∇ϕi dx

where τ is a parameter. We will rapidly generalize the above operator using the bubble
functions γi

Lh(uh, ϕi) =
∑
K∈Th

ˆ
K

γi

(
∂uh

∂t
+∇ · f(uh)

)
dx (2.52)

The bubble function will modify the Galerkin shape function, element by element, intro-
ducing a kind of weightening for the test function in the upwind direction. Infact if we
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2 Residual Distribution

write the full scheme
ˆ

Ω
ϕi

(
∂uh

∂t
+∇ · f(uh)

)
dx+

∑
K∈Th

ˆ
K

γi

(
∂uh

∂t
+∇ · f(uh)

)
dx = 0 (2.53)

The test function wi = ϕi + γi is now belonging to some other functional space different
from the continuous piecewise linear one of the solution. We get back the Petrov-Galerkin
approximation

∑
K∈Th

ˆ
K

(
∂uh

∂t
+∇ · f(uh)

)
wi dx = 0 ∀i = 1, N + 1 (2.54)

We divide the time part from the advective one

∑
K∈Th

ˆ
K

ϕjwi dx
duj
dt

+
∑
K∈Th

ˆ
K

∇ · f(uh)wi dx = 0 ∀i = 1, N + 1 (2.55)

Recognizing the mass-matrix mK
ij =

´
K
ϕjwi dx and using the conservative linearization

(2.43) we get ∑
K∈Di

∑
j∈K

mK
ij

duj
dt

+
∑
K∈Di

φK

|K|

ˆ
K

wi dx = 0 (2.56)

Calling
1
|K|

ˆ
K

wi dx = βKi (2.57)

One gets the RD scheme in the classical formalism with consistent mass matrix

∑
K∈Di

∑
j∈K

mK
ij

duj
dt

+
∑
K∈Di

βKi φ
K = 0 (2.58)

Two possible choices that satisfy (2.57) lead to the mass-matrix formulations used in our
computations called respectively F1 and F2 are

wF1
i (x) = βKi x ∈ K (2.59)

wF2
i (x) = ϕi(x) + βKi −

1
3 x ∈ K (2.60)

The mass matrix for both the formulation used in our computation, is then computed

mK,F1
ij =

ˆ
K

ϕjw
F1
i dx

= |K|
3 βKi = |K|m̂K,F1

ij
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2.3 Unsteady scalar conservation law

i

Si

Figure 2.5: Median Duall Cell Si

mK,F2
ij =

ˆ
K

ϕjw
F2
i dx

= |K|
3

(
δij
4 + βKi −

1
12

)
= |K|m̂K,F2

ij

Hereinafter we will also make use extensively of the mass-lumped formulation (ML), spe-
cially in steady computations where mantainig accuracy in the time part is not important.
Summing all the element on a given row, to the diagonal

mK,ML
ij = |K|3 δij (2.61)

Calling the median duall cell |Si| = ∑
K∈Di

|K|
3 rapresented in figure (2.5), (2.58) is then

modified in the classical RD scheme with inconsistent mass matrix

|Si|
dui
dt

+
∑
K∈Di

φKi = 0 (2.62)
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2 Residual Distribution

2.4 Stability and Accuracy for the compact prototype
scheme

Any steady RD scheme can be formalized in the following abstract form

|Si|
dui
dt

= −
∑
K∈Di

∑
j∈K,j 6=i

cKij (ui − uj) ∀i ∈ Th (2.63)

Proof. Substituting (2.47) in (2.62)

|Si|
dui
dt

= −
∑
K∈Di

φKi = −
∑
K∈Di

∑
j∈K,j 6=i

(
−βKi kj

)
(ui − uj)

we get the proof.
The abstract form is referred to as the compact protoype scheme from the compactness
of the stencil, involving only the nearest neighboring nodes of node i. The compact
discretization is another advantage of RD compared to Finite Volumes where, for high
order schemes with polynomial reconstruction, wide stencil are used.
A stabilty analysis on (2.63) seems to be too restrictive, specially if unsteady phenomena
are studied, as in our case. This has been a critical issue in extending RD to the study
of unsteady problems. Instead the reference formalism will be still useful to us, because
the full discretization that we are going to present in the next chapter can be recasted in
a form similar to the prototype scheme.

2.4.1 Maximum Principle and Stability

In this paragraph we are interested firstly in stability based on discrete maximum princi-
ple: we search for some criteria that ensure RD schemes to satisfy the discrete analogue
of the maximum principle which holds for the solution of (2.49)

min
Ω
u0(x, y) ≤ u(x, y, t) ≤ max

Ω
u0(x, y) (2.64)

A very important property of the scheme written in form (2.63) is the so-called Local
Extremum Diminishing (LED) property
Property(LED). The prototype compact scheme (2.63) is Local Extremum Diminishing
(LED) that is, in the numerical solution local maxima are non-increasing and local minima
are non-decreasing, if∑

K∈Di∩Dj
cKij = c̃Kij ≥ 0 ∀j ∈ Di, j 6= i and ∀i ∈ Th (2.65)

28



2.4 Stability and Accuracy for the compact prototype scheme

Proof. It is very simple to show that

dui
dt

= − 1
|Si|

∑
K∈Di

∑
j∈K,j 6=i

cKij (ui − uj)

= − 1
|Si|

∑
j∈Di,j 6=i

 ∑
K∈Di∩Dj

cKij

 (ui − uj)

• if ui is a local maximum, then ui ≥ uj, follows that (2.65) implies dui
dt
≤ 0

• if ui is a local minimum, then ui ≤ uj, follows that (2.65) implies dui
dt
≥ 0

A stronger requirement which is easy to control is obtained asking each cKij to be posi-
tive, instead that their sum ∑

K∈Di∩Dj c
K
ij . This corresponds to ask that, in (2.67), the

contribution of every element, taken separately, gives a solution which satisfy a LED
property

dui
dt

= − 1
|Si|

∑
j∈K,j 6=i

cKij (ui − uj)

Repeating the demonstration for the above equation we get the following result
Property (sub-element LED). The prototype compact scheme (2.63) is LED if

cKij ≥ 0 ∀j ∈ K, j 6= i and ∀K ∈ Di (2.66)

Collecting for every element the coefficient cKij = −βKi kj in a matrix, (2.66) is translated
asking for the non-positivity of the off-diagonal terms.
We would like that the RD scheme satisfies the LED property but still this is not enough
since new extrema can be created. We want a discrete version of maximum principle as
it will be presented in a while. Before a fully discrete version of (2.63) is necessary. With
Explicit Euler (EE)

un+1
i = uni −

∆t
|Si|

∑
K∈Di

∑
j∈K,j 6=i

cKij (ui − uj) (2.67)

A Discrete Maximum Principle is written locally for each sub-domain of Ω, Di, and for
every time slab [tn, tn+1]

min
j∈Di

unj ≤ un+1
i ≤ max

j∈Di
unj (2.68)

Property(Local Discrete Maximum Principle). The protoype compact RD-EE rep-
resented by (2.67) verifies a local maximum principle if the scheme is LED or sub-LED
that is, (2.65) or (2.66) holds, and under the time-step restriction

4t ≤ |Si|∑
j∈Di,j 6=i c̃

K
ij

∀i ∈ Th (2.69)
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2 Residual Distribution

Proof. The proof is immediate if un+1
j is written as a combination of the values of unj

un+1
i = uni −

∆t
|Si|

∑
j∈Di,j 6=i

c̃Kij (ui − uj)

=
1− ∆t

|Si|
∑

j∈Di,j 6=i
c̃Kij

uni + ∆t
|Si|

∑
j∈Di,j 6=i

c̃Kiju
n
j

= Ciiu
n
i +

∑
j∈Di,j 6=i

Ciju
n
j =

∑
j∈Di

Ciju
n
j

LED property ensures that Cij ≥ 0, while the CFL-like condition (2.69) ensure that also
Cii ≥ 0 ∑

j∈Di
Cij

min
j∈Di

unj ≤ un+1
i ≤

∑
j∈Di

Cij

max
j∈Di

unj

and using the fact that ∑j∈Di Cij = 1 the result is prooved.
Property(Positivity). A scheme that satisfy maximum principle is said to be positive
(P)
Once we have a discrete maximum principle we can proof that the method is stable in
L∞-norm and that we have also a precise estimate for the bounds of the numerical solution

un+1
j = H(un; j), ‖H‖L∞(Ω) ≤ Cs

Infact
Theorem(L∞-stability). If a local maximum principle is verified for all the time slabs
{[tn − tn+1]}n=0,...M−1 then the method (2.67) is L∞-stable and the following bounds hold
for its numerical solution

min
j∈Di

un0 ≤ un+1
i ≤ max

j∈Di
un0 ∀i ∈ Th, n ∈ [1,M ] (2.70)

We have provided ourself now of a nice criterium for the construction of schemes wich
does not exhibit oscillatory behaviour near discontinuities.

2.4.2 Order of accuracy and Godunov Theorem

Apart from the stability another crucial issue for numerical methods is the order of accu-
racy. We search for a condition under which the solution of (2.63) is second order accurate,
this being in general impossible for the lumping of the mass matrix. For this reason we
only present accuracy results for steady state while for unsteady problems second order
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2.4 Stability and Accuracy for the compact prototype scheme

accuracy will be achieved with a more complicated time approximation discussed in the
next chapter. At steady state we want second order accuracy in some L-norm

‖u− uh‖V = O(h2) (2.71)

We give the following result whose demontration is contained in [6]
Property (Second Order Accuracy). A scheme in the form (2.63) produce a second
order accurate solution at steady state if

φKi = O(h3) ∀K ∈ Th and ∀i ∈ K (2.72)

The following estimate for the residual holds

φK = O(h3) (2.73)

Proof. Starting from (2.43) the residual can be written

φK =
ˆ
K

ā · ∇uh dx =
ˆ
K

∇
(
ā · uh

)
dx

=
ˆ
K

∇ ·
(
āuh − a(u)u

)
dx =

ˆ
∂K

(
āuh − a(u)u

)
· n dl

= O(h3)

If uh can be interpreted as the solution of the Petrov-Galerkin weak form (2.50) then, in
case of P1 approximation (2.54) and smooth solution the following estimate holds

‖uh − u‖L2(Ω) = O(h2) (2.74)

The following estimate is also true

āuh − au = O(uh − u)

because a, ā are bounded. Moreover dl = O(h). The result then is prooved.
Now the fundamental relation φKi = βiφ

K , together with (2.72)(2.73), lead to the following
result
Property (Linearity Preserving scheme). A RD scheme is linearity preserving if
the distribution coefficients are uniformly bounded with respect to the solution and data of
the problem, hence exists a constant C such that

max
K∈Th

max
j∈K
|βKj | < C ∀uh,a, uh0 (2.75)

A scheme which is linearity preserving is second order accurate at steady state.
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2 Residual Distribution

We give the following definition:

Definition (Linearity). A scheme in the form (2.63) is said to be linear if all cKij are
indipendent from the numerical solution.

Unfortunatley a linear scheme cannot be positive and linearity preserving at the same
time. This is stated by the following theorem [7], which is an extension of the one-
dimensional Godunov theorem (a monotone scheme is at most first accurate).

Theorem (Godunov). A linear scheme of the form (2.63) cannot be positive and second
order accurate.

This is a strong restriction that we have to face when we try to get an accurate numer-
ical solution in smooth region without oscillations near discontinuities. To solve such a
problem Godunov theorem forces us to move to non-linear schemes.

Finally we give the Lax-Wendroff theorem which confirms our hope that, once we have a
method that produces a solution uh which converges to some function u as the grid/time
step is refined, then u is a weak solution.

Theorem(Lax Wendroff Theorem). Given initial data u0 ∈ L∞(R2), a function
u(x, t) ∈ L2(R2×R+) and a consistent and stable approximation uh(x, t) of u(x, t) such
that

lim
h,∆t→0

‖uh − u‖L2(R2×R+) = 0

then u is a weak solution of the problem.

2.5 Distributions

The canonical RD formalism has been derived but what is inside φKi is still missing. In
this paragraph we present the different distributions that will be used in our numerical
experiments in chapter 3. We start by simply extending some very known FV or FE
one-dimensional schemes already introduced, showing that also in two-dimensions they
can be absorbed or even recasted into RD form. After we investigate a new classes of
schemes, the truly multidimensional upwind schemes, which can be easily construct within
the RD philosophy and not so easily in different class of methods. Finally we provide two
systematic methods to construct non linear schemes which are both positive and linearity
preserving.
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2.5 Distributions

2.5.1 Lax Friederich scheme

A direct extension of the one-dimensional Lax-Friederich residual (2.36) is

φLxFi = 1
3φ

K + αK
∑

j∈K,j 6=i
(ui − uj) , αK ≥ max

j∈K
|kj| (2.76)

The scheme is the result of a centered Galerkin scheme plus a diffusion term which intro-
duces some form of stabilization to damp oscillations. Again a great amount of diffusion
is introduced, unfortunately much more the one is effectively needed.
Using (2.45),(2.47)

φLxFi = 1
3
∑
j∈K

kjuj + αK
∑

j∈K,j 6=i
(ui − uj)

= −1
3

∑
j∈K,j 6=i

kj (ui − uj) + αK
∑

j∈K,j 6=i
(ui − uj)

= 1
3

∑
j∈K,j 6=i

(
αK − kj

)
(ui − uj)

Since, for the definition of the parameter αK , cKij = 1
3

(
αK − kj

)
≥ 0, the sub-element

LED property (2.66) is verified. We can see the positive-stabilizing effect of the second
term which overcome the possible negative contribution of the centered part. To get
positivity for (2.69)

∆t ≤ 3|Si|∑
K∈Di

∑
j∈K,j 6=i (αK − kj)

(2.77)

For Godunov theorem the method is only first order accurate, moreover it does not respect
property (2.48), hence it is not upwind.

2.5.2 SUPG scheme

The RD version of SUPG scheme is derived from the Petrov-Galerkin FE method if a
conservative linearization is used. Considering only the advective part for simplicity (but
the time part can be treated as usual with the same analogy)ˆ

Ω
∇ · f(uh)ϕi dx+

∑
K∈Th

ˆ
K

∇ · f(uh)τa(uh) · ∇ϕi dx = 0 ∀i ∈ Th (2.78)

Rearranging∑
K∈Di

ˆ
K

∇ · f(uh)
(
ϕi + τa(uh) · ∇ϕi

)
dx =

∑
K∈Di

ˆ
K

∇ · f(uh)wi dx (2.79)
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2 Residual Distribution

Using passage (2.45) and computing β through (2.57) one gets

βSUPGi = 1
|K|

ˆ
K

(
ϕi + τa(uh) · ∇ϕi

)
dx = 1

3 + τ ā · 1
2|K|ni = 1

3 + τ
ki
|K|

(2.80)

From a RD point of view the streamline upwind term introduces some kind of upwind
bias in the centred distribution even if the scheme is not upwind. From (2.80) is not
possible to prove sub-LED property while one can easily check for property (2.75) that
ensures second order accuracy. In our computation we fix for each element the parameter
τ as follow

τ = |K|(∑
j∈K |kj|

) (2.81)

The SUPG distribution then reads

βSUPGi = 1
3 + kiT, T =

∑
j∈K
|kj|

−1

(2.82)

2.5.3 N scheme

The Narrow (N) scheme is a successful first order positive scheme. Infact using the
multidimensional upwind property of RD schemes, the basic idea proposed by Roe was
to construct a scheme without oscillations near discontinuities but, at the same time, with
as low cross-diffusion as possible. We give immediately the residual distribution for the
N scheme

φNi = k+
i (ui − uin) (2.83)

where the inflow velocity is computed

uin = −
∑
j∈K

Nk−j uj, N =
∑
j∈K

k+
j

−1

(2.84)

For the one-target case trivially all the residual is sent to the downstream node. For the
two-target case of figure (2.6), where the downstream nodes are 1 and 2, one have

φN1 = k1(u1 − u3), φN2 = k2(u2 − u3) (2.85)
which allows a simple geometrical interpratation of the splitting philosphy between the
two nodes. Infact decomposing the local averaged advective field along the parallel to the
inflow faces ā = ā1 + ā2

φK =
ˆ
K

(ā1 + ā2) · ∇uh dx

=
ˆ
K

ā1 · ∇uh dx+
ˆ
K

ā2 · ∇uh dx

= φK(ā1) + φK(ā2)
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2.5 Distributions

Developing for example the first term, with the obvious fact that ā1 · n2 = 0

φK(ā1) = ā1 ·
1
2
∑
j∈K

njuj = 1
2 ā1 · (n1u1 + n3u3)

= 1
2 ā1 · n1 (u1 − u3) = 1

2 ā1 · n1 (u1 − u3)

= k1(u1 − u3)

The last passage is obtained becouse of simple geometry

1
2 ā1 · n1 = 1

2 (ā1 + ā2) · n1 = 1
2 ā · n1 = k1

The total residual can then be expressed as in (2.83)

φK = k1(u1 − u3) + k2(u2 − u3) = φN1 + φN2 (2.86)

Thus the scheme reduces to a one-dimensional upwind scheme along the direction of each
of the two inflow edges. The N scheme introduces upwinding cleverly in two-dimensions.
We can check the positivity

φNi = k+
i ui + k+

i

∑
j∈K

Nk−j uj

= −
∑
j∈K

k+
i Nk

−
j ui +

∑
j∈K

k+
i Nk

−
j uj

= −
∑
j∈K

k+
i Nk

−
j (ui − uj)

= −
∑
j∈K

k+
i Nk

−
j (ui − uj)

The group cKij = −k+
i Nk

−
j ≥ 0, the scheme is sub-element LED and it is also positive if

time step is choosen according to (2.69)

4t ≤ |Si|∑
K∈Di

(
−∑j∈K k

+
i Nk

−
j

) = |Si|∑
K∈Di k

+
i

(2.87)

2.5.4 LDA scheme

After the construction of a positive upwind scheme we search for its linearity-preserving
counterpart. The Low Diffusion A scheme works very good in computing smooth numer-
ical solution being second order in accuracy for a P1 approximation of the solution. Of
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Figure 2.6: Geometrical interpretation of N scheme

course, for discontinuous solutions, one has no guarantees against the rising of oscillations
since no maximum principle holds in this case.
The LDA scheme is defined by the following distribution coefficients

βLDAi = k+
i N (2.88)

which is a bounded distribution independently on φ(uh) and property (2.75) is satisfied.
The idea of a true multidimensional upwinding is to envoy the most of the residual to the
most downstream node. If in one-target case the splitting is trivial and all RD upwind
schemes coincide (LDA and N), in two-target case we need a measure to decide which one,
among the two, is the most downstream nodes. The LDA scheme use a simple geometrical
consideration. Using the notation of the element in figure (2.7) we compute the two areas
in which the element is splitted by the line parallel to the local avereged advective and
passing from the upstream node

|T423| =
l34 · k1

‖a‖
, |T143| =

l34 · k2

‖a‖

The distribution can be written

βLDA1 = k1

k1 + k2
= |T423|
|T |

βLDA2 = k2

k1 + k2
= |T143|
|T |
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Figure 2.7: Geometrical interpratation of LDA scheme

Starting from a one target situation where all the residual is sent to node 1, as long as the
outflow point moves from node 1 to node 2 more residual is sent to node 2 in a measure
proportional to the area of the triangle T143 until a one target situation is reached again
this time at node 2.

2.5.5 Blended schemes

All the linear schemes analyzed so far are or P (LxF,N) or LP (SUPG,LDA) but not
both for Godunov theorem. Now we want to construct a class of schemes which ensures
high accuracy without oscillations near discontinuties. In this paragraph we present the
classical approach, common also to high-resolution FV methods, of a non-linear blending
between a P scheme and a LP one. The idea is to use the LP scheme in regions where the
numerical solution is smooth and the P scheme just across discontinuties. The difference
beween RD and FV is that, instead of blending fluxes, this time we blend residuals

φBi =
(
1− l(uh)

)
φLPi + l(uh)φPi (2.89)

Even if the idea is simple, the design of the limiter l(uh) is not simple at all. It has to
be of order O(h2) when the solution is smooth and of order O(1) when the solution is
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2 Residual Distribution

discontinuous but a more rigourous study of the limiter is needed in order to get a scheme
which strictly guarantees the above properties. In this work we don’t follow the rigorous
way since there is an heuristic definition for l(uh) by Deconinck and Van der Weide which
works very well in many cases

l = |φK |∑
j |φNj |

(2.90)

This definition only ensure, for l(uh), the switch to the correct order of magnitude across
discontinuities but do not satisfies the positivity requirement: imposing a sub-element
LED properties for the resultant scheme (2.89) implies the satisfaction of three equations
which lead to different constraints on the limiter that can’t be satisfied in general by only
one parameter (2.90).
In the following we will consider the blending between the LDA scheme and the N scheme
both sharing the multidimensional upwind property. The resulting blended scheme is
reffered to LDA-N scheme

φLDA−Ni =
(
1− l(uh)

)
φLDAi + l(uh)φNi (2.91)

2.5.6 Limited schemes

Another root to the construction of non linear schemes which are LP and P consists in
limiting the unbounded coefficients of a P scheme in such a way that the the resulting
scheme is completely parameter free, this rapresenting an objective advantage respect to
the blending approach.
The problem is the following. Consider a triangle and assume we are given a residual
distribution that define a first order P scheme (φ1, φ2, φ3). We want to construct a second
order scheme defined by residuals (φ?1, φ?2, φ?3) . Calling the first order and second order
weights respectively

xi = φi
φK

βi = φ?i
φK

The resulting scheme has to be
1. Conservative
2. LED
3. Linearity Preserving

The above problem can be reformulated as finding a mapping (x1, x2, x3) → (β1, β3, β3)
such that the scheme satisfy the properties (1,2,3). This properties can be translated
directly in some constraints on βi

1. Conservation: ∑j∈K βj = 1
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2. LED: we prefer the more restricting sub-element LED

φ?i =
∑

j∈K,i6=j
c?ij (ui − uj) , c?ij ≥ 0

The residual is rewritten as follows

φ?i = φ?i
φK

φK

φi
φi = βi

1
xi

∑
j∈K,i6=j

cij (ui − uj)

We ask for the positivity of the coefficients c?ij = βi
xi
cij ≥ 0 which, since cij ≥ 0 by

definition, is equivalent to βixi ≥ 0
3. Linearity Preserving: βi bounded for any i

We provide a geometrical interpretation of the above constraints. Since ∑j∈K xj = 1
and ∑j∈K βj = 1 we can interprete coefficients (x1, x2, x3) , (β1, β3, β3) as the baricentric
coordinates of the points L and H respect to an abstract reference triangle of vertices
(A1, A2, A3)

L = A1x1 + A2x2 + A3x3 H = A1β1 + A2β2 + A3β3

No condition are given for (x1, x2, x3), except ∑j∈K xj = 1, so they could be unbounded
with the point L everywhere in the domain. Our problem then is to find a mapping that
project L onto a bounded subdomain, in this way the boundedness of the the coefficients
(β1, β3, β3), is ensured. Moreover any bounded region will be a correct subdomain onto
which we can carry on the projection, for example the disk in figure (2.8). A possible
choice is the PSI mapping proposed by Struijs [7]

βi = x+
i∑

j∈K x
+
j

(2.92)

In this case, since βi are not only bounded but also 0 ≤ βi ≤ 1, the projection subdomain
is the triangle (A1, A2, A3). Properties (1)(3) are clearly satisfied but also property (2)
holds since

if xi ≥ 0⇒ βi ≥ 0
if xi ≤ 0⇒ βi = 0

thus, the scheme is also LED.
The PSI limiting procedure can be applied to any first order linear scheme such as the
Lax-Friederich scheme (LLxF or LxF-PSI) and the N-scheme (LN or N-PSI)

βLNi =

(
βNi
)+

∑
j∈K

(
βNj
)+ , βLLxFi =

(
βLxFi

)+

∑
j∈K

(
βLxFj

)+ (2.93)
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Figure 2.8: Geometrical rapresentation of the mapping (x1, x2, x3)→ (β1, β3, β3)
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Multiplying by the total residual we get another way of rewriting the limiting. For example
for for Limited Lax-Friederich

βLLxFi =

(
φLxFi

)+

∑
j∈K

(
φLxFj

)+ (2.94)

2.5.7 Erratic convergence for LLxF scheme: LLxFs scheme

For limited schemes things, at end, turned out not so simple. Infact looking to the so-
lution obtained with LLxF one can observe the appereance of wiggles on the isolines,
wiggles that gives very poor results in term of accuracy and destroy the convergence
property expected. This oscillations can be seen as the rising of some unexpected destibi-
lizing phenomena even if the scheme, from the rigorous analysis followed in the previous
paragraph, remains perfectly stable in L∞-norm. A partial confirmation of this is that
discontinuity are well handed while in the smooth region we encounter poor accuracy.
Abgrall in [8] provides some argument to support the following hypothesis. The mapping
(x1, x2, x3)→ (β1, β3, β3) is done according to the sign of the distribution coefficients and
not by using some consideration regarding the upwind character of the final distribution.
In other words, as seen in figure (2.9), for a LxF distribution which is in general three
target, the PSI limiting procedure can result in a distribution which is no more upwind,
thus introducing small amplitude oscillations. Another explanation arrives from the work
of Barth who performed an energy stability analysis for the PSI scheme in the simple case
of scalar linear advection. Even for such a simple case, he found that source of energy
instability might be introduced when the PSI limiter compresses the distribution from a
three target case to two or even one target. Which is exactly our case.
A possible solution to cure the problem is suggesed in the same paper [8]. A SUPG term
is added, with a limiter to tune the diffusion introduced. The final distribution for such
a scheme called LLxF stabilized or briefly LLxFs reads

βLLxFsi = βLLxFi + δ(uh)βSUPGi (2.95)
Now the problem is definition of the limiter. A definition calibrated for preserving the
positivity is not useful since positivity is lost anyway by the addition of the SUPG term.
Hence, for every triangle, we can use the following choice

δ(uh) = min

1, 1
|φK |
ūh2
K

+ ε

 (2.96)

with hK the element reference size, ū = maxj∈K |uj| and ε = 10−10. It is easy to show
that the definition (2.96) can detect the discontinuties. Infact δ(uh) is of order O(1) in
smooth region where dissipation is needed to damp oscillations and of order O(h−1) across
discontinuities where the LLxF scheme behave nicely computing well-resolved profiles.
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Figure 2.9: Source of erratic convergence for LLxF scheme
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3 Time discretization

In this brief chapter we quickly present a time approximation to integrate conservation
law (2.49). We search for a time discretization that gives second order of accuracy and, in
particular that leads to an explicit scheme. The explicit Runge Kutta scheme of Ricchiuto
and Abgrall [9] matches both the requirments and will fit very nicely to our application.

For a RD scheme written in the compact form (2.63) and discretized in time with an
Explicit Euler approximation, we have seen that many results about positivity under a
CFL condition exist and moreover the scheme remains compact. For steady problem an
accurate discretization in time is not needed, the resulting approximation (2.67) works
very good and, if accuracy requirement are matched, it gives second (or third) order
accurate results. Unfortunately for unsteady problems, where we need an accurate time
discretization, the lumped formulation gives only first order accurate solution even if very
accurate time/space discretization are used [6]. For this reason Ferrante [10] developed
a monotone and accurate scheme starting from the consistent mass-matrix formulation
(2.58). The problem of this approach is that positivity is no more guaranteed directly
and to correct the problem, many aspects of a RD methods are lost (compactness and
upwinding for example). Abgrall and Mezine [11] proposed a space-time reinterpreatation
of RD which lead them to design a second order positive scheme. The method is implicit
and has to satisfy a CFL condition in order to be positive. The advantage of implicit
method (not have a constraint on time step) is lost so why not try to develop a second
order explicit method which will be way faster. This is discussed by Ricchiuto and Abgrall
[9].

3.1 Explicit Runge Kutta

In the present section we construct, following step by step [9], a second order discretization
for time dependent conservation law in the form of (2.49)

Given an ODE
du

dt
+ e(u) = 0

calling the difference between the solution at the k-th step and the one at the n-th step
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3 Time discretization

∆uk = uk − un, the classical Explicit Runge Kutta two reads
∆u1

∆t + e1 = 0, e1 = e(un)
∆u2

∆t + e2 = 0, e2 = 1
2 (e(un) + e(u1))

with the generic k-th step being
∆uk
∆t + ek = 0

This time approximation is second order accurate in time.

Step-shifted stabilization operator

Let us now apply the RK2 discretization to the the unsteady conservation law approx-
imated in space with the stabilized FE method, hence to the time continuous equation
(2.53). We get

ˆ
Ω
ϕi

(
∆ukh
∆t +∇ · fk(uh)

)
dx+

∑
K∈Di

ˆ
K

γi

(
∆ukh
∆t +∇ · fk(uh)

)
dx = 0 (3.1)

Such a scheme leads to a nonlinaer algebraic system because the stabilization bubble
depends strongly on the solution. In order to avoid this, the term ∆uk

∆t in the bubble
contribution is replaced by a shifted approximation of the time derivative ∆uk

∆t where
∆uk = uk−1−un. This shifting guarantees to end up with an explicit linear scheme, since
the term under analysis is now dependent on quantities already computed at the previous
step, without deteriorating the overall accuracy. (3.1) can be rearranged in the following
form ˆ

Ω
ϕi

∆ukh
∆t dx−

ˆ
Ω
ϕi

∆ukh
∆t dx = −

∑
K

ΦRK(k)
i = 0 (3.2)

with ΦRK(k)
i =

ˆ
K

wi

∆ukh
∆t +∇ · fk(uh)

 dx (3.3)

Putting in evidence all the mass matrices and passing to a RD formalism

∑
K∈Di

∑
j

mGAL
ij

∆ukj
∆t = −

∑
K∈Di

ΦRK(k)
i −

∑
j

mGAL
ij

∆ukj
∆t

 (3.4)

ΦRK(k)
i =

∑
j∈K

mK
ij

∆ukj
∆t + φ

RK(k)
i (3.5)
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3.1 Explicit Runge Kutta

Exploiting the two steps
ΦRK(1)
i = φi(unh) (3.6)

ΦRK(2)
i =

∑
j∈K

mK
ij

(
u1
j − unj

)
∆t + ∆t

2
(
φi(u1

h) + φi(unh)
)

(3.7)

High order mass lumping

(3.4) still requires the inversion of the Galerkin mass matrix at each Runge Kutta step.
The algorithm would be very powerful if we decouple all the equations with a lumping
strategy which preserve the accuracy of the method. The idea then is to replace the exact
Galerkin integral by means of a quadrature formulaˆ

K

ϕi
∆ukh
∆t dx '

∑
xq

ϕi(xq)
∆ukh(xq)

∆t ωq|K| (3.8)

In [12] it is shown that a sufficient condition for this approximation to keep a truncation
error O(h2) is for the quadrature formula to integrate exactly polynomials of degree one.
The interesting application of this approach is that, when the quadrature points coincide
with the degree of freedom of the element, one can use the property ϕi(xj) = δij∑

xq

ϕi(xq)
∆ukh(xq)

∆t ωq|K| =
∑
j

ϕi(xj)
∆ukh(xj)

∆t ωj|K| =
1
3 |K|

∆uki
∆t (3.9)

Accuracy is mantained because the choosen quadrature formula with weights all equal to
1/3 integrates exactly polynomials of order one. The unsteady term then reads

ˆ
Ω
ϕi

∆ukh
∆t dx =

∑
K

1
3 |K|

∆uki
∆t = |Si|

∆uki
∆t (3.10)

Selective Lumped (SL) Formulation

If we decide to lump only the first integral, then the final RK2 −RD approximation at
the k-th step, reads

|Si|
∆uki
∆t = −

∑
K∈Di

ΦRK(k)
i −

∑
j∈K

mGAL
ij

∆ukj
∆t

 (3.11)

The weak point of this formulation is that it cannot be recasted in the form (2.67) for
the presence of the last term. All the results given in section (2.4.1) are no more true
and, in general, we cannot expect a monotone beahviour near discontinuities. In order
to recover positivity a lumping on the second Galerkin integral is needed, leading to the
Global Lumped Formulation of the RK2
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3 Time discretization

Global Lumped (GL) Formulation

Lumping the second Galerkin mass matrix in (3.4) we get for the first and second step
respectively |Si|

u1
i−u

n
i

∆t = −∑K∈Di ΦRK(1)
i

|Si|
un+1
i −u1

i

∆t = −∑K∈Di ΦRK(2)
i

(3.12)

(3.12) closely follows the form of the prototype comapact scheme (2.67). It can be demon-
strated, using the positive coeffcient theory, that if, the residuals φi(uh) are positive, (3.12)
define a positive scheme.

3.1.1 Application to the different schemes

Now we explictly compute the total residual ΦRK(k)
i from the formula (3.5), for each

scheme presented in section (2.5). For clarity the superscript RK(k) has been changed in
XXX(k) where XXX is the shorthand notation for the scheme. For positive schemes the
definition of a mass matrix is not so clear because of the unboundness of the distribution
coefficients. Moreover these schemes are only first order accurate, thus one can lump the
mass matrix.

For linear schemes the total residual to be substituted in (3.11) or (3.12) is

ΦLxF (k)
i = |T |3

∆uki
∆t + φ

LxF (k)
i (3.13)

ΦSUPG(k)
i =

∑
j∈K

mSUPG
ij

∆ukj
∆t + φ

SUPG(k)
i (3.14)

ΦLDA(k)
i =

∑
j∈K

mLDA
ij

∆ukj
∆t + φ

LDA(k)
i (3.15)

ΦN(k)
i = |T |3

∆uki
∆t + φ

N(k)
i (3.16)

For the non-linear limited LLxF scheme we use directly the limiting operation (2.94) with
the total residual defined in this contest

βLLxFi =

(
ΦLxF (k)
i

)+

∑
j∈K

(
ΦLxF (k)
j

)+ (3.17)
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3.1 Explicit Runge Kutta

Finally the limiter (2.96) is rewritten according to the modified form of the residual

δ(uh) = min

1, 1
|ΦK |

∆tū|a|h2
K

+ ε

 (3.18)
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4 Residual Distribution schemes for
moving grids

Many unsteady problems governed by conservation laws involve the movement of the
boundaries. In the numerical approximation of this phenomena additional difficulties arise
because the grid must adapt at every time step to the moving boundaries. If equations are
written in Eulerian framework as in (2.49), which is very well suited for fluid dynamics, this
in turn makes necessary an intermediate step between the computation of two successive
numerical solutions. Infact, once the grid has been adapted to the new boundaries, an
interpolation of the previous solution over the new grid is essential in order to start up
the computation of the new solution. On the opposite conservation laws can be written in
a Lagrangian framework where we move the grid at the same velocity of the particles and
we write integral conservation laws always for the same particles. The algorithm works
always on the same grid, with the same nodes, and no interpolation step is needed. The
problem of this approach is that the grid movement is connected to the particles paths
and when strong distortion are present, like in a fluid dynamic contest, the method suffer
from instabilities.
The Arbitrary Lagrangian Eulerian formulation solves the drawbacks of both the ap-
proaches since conservation laws are written for an arbitrary moving grid with respect to
the particles motion. Since the grid movement is arbitrary, one of the possibilities that
are exploited is the adaptation of the grid according not only to boundary motion but
also to some refinement criteria, for example, with an appropriate algorithm, gathering
the nodes where strong gradients of the solution appear or are expected. This issue has
not been addressed in the present thesis. Our attention has been focused on the correct
formulation of the ALE approach within a Residual Distribution method.
The appereance of the ALE approach dates back to the early eighties due to the contribu-
tion of J.Donea [13]. The idea was found very appealing in many field of computational
continuum mechanics because of the fact that the extension of a classical Lagrangian
(for solid mechanics) or Eulerian (for fluid mechanics) method into ALE formulation is
straightforward and requires few lines of changes in the algorithm. In fluid dynamics the
recasting of Eulerian Finite Volumes and Finite Elements has been investigated since long
time with important contribution by Farhat, Geuzaine and Grandmont [14]. For Residual
Distribution schemes, developments occured at Von Karman Institute with the work of
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4 Residual Distribution schemes for moving grids

Michler and Deconinck [15] who achieved first order with an Explicit Euler time integra-
tor and later Dobes [16] who, in his PhD thesis, moved to high order time approximation
(BDF3, Crank Nicholson), this allowing him to have second order of accuracy. The aim
of this thesis is to obtain a numerical solution with second order of accuracy using a faster
explicit time integrator.

4.1 Actual configuration, material configuration and
reference configuration

Assuming that we are given a domain Ω and field of displacements that brings every point
of the domain from the reference position X to the actual one x(t) and that this field is
governed by an arbitrary given motion law

dx(t)
dt

= σ(x, t), (4.1)

Solving the ODE (4.1) starting from the reference configuration x(0) = X, gives back, at
every time instant, the actual configuration through the following mapping

A(t) : ΩX → Ωx(t), x = A(X, t) (4.2)

We define the Jacobian matrix of the mapping as

JA = ∂x

∂X
, JA = detJA 6= 0

We introduce now another set of coordinates, the Lagrangian or material coordinates χ,
and a mapping that describes the motion of each particle. This mapping returns the
physical location, rapresented by the actual coordinate x, of the particle marked with χ
at time t

B(t) : Ωχ → Ωx(t), x = B(χ, t) (4.3)
Defining the Jacobian matrix of the mappig

JB = ∂x

∂X
JB = detJB 6= 0

If u is a conserved quantity it can be expressed as a function of the different coordinates
x,X,χ and three different time derivatives can be defined. If the derivation is computed
in the actual configuration one has

∂u(x, t)
∂t

∣∣∣∣∣
x

= ∂u

∂t
spatial derivative (4.4)
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4.2 ALE equations

If it is computed following the particle motion one has

∂u(χ, t)
∂t

∣∣∣∣∣
χ

= du

dt
material derivative (4.5)

Finally if it is computed following the domain motion one has

∂u(X, t)
∂t

∣∣∣∣∣
X

referential derivative (4.6)

Moreover two different velocities can be computed: the particle velocity and the domain
velocity

∂x(t)
∂t

∣∣∣∣∣
X

= dA(X, t)
dt

= σ (4.7)

∂x(t)
∂t

∣∣∣∣∣
χ

= dB(χ, t)
dt

= a (4.8)

The transformation theorem provides a relation between the above derivatives and these
velocities

du

dt
= ∂u

∂t
+ a(x, t) · ∇u(x, t) (4.9)

du

dt
= ∂u

∂t

∣∣∣∣∣
X

+ (a(x, t)− σ(x, t)) · ∇u(x, t) (4.10)

From continuum mechanics we need also the followings

∂JB
∂t

∣∣∣∣∣
χ

= dJB
dt

= JB∇ · a (4.11)

∂JA
∂t

∣∣∣∣∣
X

= JA∇ · σ (4.12)

The last one is commonly called Geometric Conservation Law (GCL) and rapresents a
constraint the points of the domain have to satisfy during their arbitrary motion. This
will be very important when developing a numerical method with a moving grid; up to
now we only want to make clear that the movement of the domain is arbitrary but within
hypothesis (4.12).

4.2 ALE equations

The conservation of the scalar quantity u can be written, dependig on convenience, in
the different coordinate frameworks. If we choose a material control volume C(t) which
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4 Residual Distribution schemes for moving grids

contains always the same particles, following them throughout all the domain, the con-
servation is simply stated in actual coordinates

d

dt

ˆ
C(t)

u(x, t) dx = 0 (4.13)

Passing to material coordinates and using (4.11) together with the transformation theorem
(4.9)

d

dt

ˆ
Cχ

u(X, t)JB dX =
ˆ
Cχ

d

dt
(u(χ, t)JB) dχ

=
ˆ
Cχ

(
du

dt
JB + u

dJB
dt

)
dχ (4.14)

=
ˆ
Cχ

(
∂u

∂t
+ a · ∇u+ u∇ · a

)
JB dχ

We have derived the conservation law in integral Eulerian form
ˆ
C

(
∂u

∂t
+∇ · f

)
dx = 0 (4.15)

Now, in the intermediate passage (4.14), we use (4.10) instead of (4.9)
ˆ
Cχ

(
du

dt
JB + u

dJB
dt

)
dχ =

ˆ
Cχ

(
∂u

∂t

∣∣∣∣∣
X

+ (a− σ) · ∇u+ u∇ · a
)
JB dχ

=
ˆ
C(t)

(
∂u

∂t

∣∣∣∣∣
X

+∇ · f − σ · ∇u
)
dx (4.16)

The first term can be rewritten if we compute the derivative of the conserved quantity
inside a control volume C(t), which is following the motion of the points of the domain.
Note that there is a little abuse in the notation since C(t) has been already used to
rapresent a material volume. Transforming into referential coordinate and using the fact
that CX does not depend on time

∂

∂t

∣∣∣∣∣
X

ˆ
C(t)

u(x, t) dx = ∂

∂t

∣∣∣∣∣
X

ˆ
CX

u(X, t)JA dX =
ˆ
CX

∂ (JAu)
∂t

∣∣∣∣∣
X

dX

=
ˆ
CX

∂u

∂t

∣∣∣∣∣
X

JA dX +
ˆ
CX

∂JA
∂t

∣∣∣∣∣
X

u dX

=
ˆ
CX

∂u

∂t

∣∣∣∣∣
X

JA dX +
ˆ
CX

JAu∇ · σ dX (4.17)
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4.2 ALE equations

So we have ˆ
C(t)

∂u

∂t

∣∣∣∣∣
X

dx = ∂

∂t

∣∣∣∣∣
X

ˆ
C(t)

u dx−
ˆ
C(t)

u∇ · σ dx (4.18)

Substituting (4.18) in (4.16) we get the integral form of conservation law written in Ar-
bitrary Lagrangian Eulerian Formulation (ALE)

∂

∂t

∣∣∣∣∣
X

ˆ
C(t)

u dx+
ˆ
C(t)
∇ · (f − uσ) dx = 0 (4.19)

which express the conservation of u contained in a control volume which is moving ar-
bitrarly. The equilibrium is reached by the relative flux of u entering and leaving the
volume with velocity a− σ.
It is interesting that, for the arbitrariety of the movement, the ALE formulation rapresents
a generalization of both the Eulerian and Lagrangian formulations. Infact in (4.19)

1. If σ = 0 , the control volume is fixed in space (from C(t) to C) and we get the
Eulerian form (4.15)

2. If σ = a , the control volume is moving with the particle motion and we get the
Lagrangian form (4.13)

A differential form of conservation law in ALE formulation is needed but its derivation is
simple if we start from the integral form (4.19) and we use (4.12)

∂

∂t

∣∣∣∣∣
X

ˆ
CX

uJA dX +
ˆ
CX

JA∇ · (f − uσ) dX =

=
ˆ
CX

(
∂ (JAu)
∂t

∣∣∣∣∣
X

+ JA∇ · (f − uσ)
)
dX = 0

Using the localization principle, the differential form of conservation law in ALE formu-
lation is derived

∂ (JAu)
∂t

∣∣∣∣∣
X

+ JA∇ · (f − uσ) = 0 (4.20)

It is easy to see that the requirement for volume conservation (4.12) we have previously
done can be derived simply by imposing a state of uniform flow in (4.20). In this case
we are modelling a situation in which the flow is uniform and the domain is moving from
behind.
Developing the derivative in (4.20) and then substituting (4.12)

JA
∂u

∂t

∣∣∣∣∣
X

+ JAu∇ · σ + JA∇ · (f − uσ) = 0

which lead to the following equation that we will use extensively hereinafter
∂u

∂t

∣∣∣∣∣
X

+∇ · f − σ · ∇u = 0 (4.21)
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4 Residual Distribution schemes for moving grids

4.3 Galerkin Finite Element

We start with the approximation of (4.20) both in time and space. The domain is initially
approximated with an unstructured triangulation ΩX

h , then mapping (4.2) produce a time-
continuous transformation of the grid ΩX

h → Ωh(t). The time discretization will make us
evaluate the grid at instants tn generating a set of grid Ωh(tn) = Ωn

h.
Moreover we ask our numerical method to satisfy a discrete version of the GCL condition
(4.12), often referred to as Discrete Geometric Conservation Law (DGCL). Referring to
the interpretation previously given, we are asking the method to preserve the state of
uniform flow, which is a natural requirement for every nice scheme. We start with the
simple Galerkin Finite Element space approximation which allows us a simple satisfaction
of the GCL at a discrete level.

4.3.1 Galerkin method

We proceed in building the classical Galerkin method on the conservation law in ALE
framework (4.20), with solution uh, test function ϕi and grid velocity σh = ∑

j∈K
ϕjσj

belonging to the space of piecewise linear polynomials
ˆ

ΩX
h

(
∂(JAuh)
∂t

∣∣∣∣∣
X

+ JA∇ · (f(uh)− σhuh)
)
ϕi dX = 0 (4.22)

Since the the configuration ΩX does not depend on time and assuming ∂ϕi
∂t

∣∣∣
X

= 0 we can
take the time derivative outside the integral

∂

∂t

∣∣∣∣∣
X

ˆ
ΩX
h

ϕiJAu
h dX +

ˆ
ΩX

ϕiJA∇ · (f(uh)− σhuh) dX = 0

Passing to the current coordinates x we have the Galerkin approximation for (4.20)

∂

∂t

∣∣∣∣∣
X

ˆ
Ωh(t)

ϕiu
h dx+

ˆ
Ωh(t)

ϕi∇ · (f(uh)− σhuh) dx = 0 (4.23)

If the flow is uniform we get the time continuous and space discrete approximation of
(4.12)

∂

∂t

∣∣∣∣∣
X

ˆ
Ωh(t)

ϕi dx =
ˆ

Ωh(t)
ϕi∇ · σh dx

∑
K∈Di

1
3
∂K(t)
∂t

∣∣∣∣∣
X

=
∑
K∈Di

1
3

ˆ
K(t)
∇ · σh dx
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4.3 Galerkin Finite Element

which reads as follows
∂K(t)
∂t

∣∣∣∣∣
X

=
ˆ
K(t)
∇ · σh dx (4.24)

From (4.24) we clearly see that the satisfaction of the the GCL at a discrete level is
related to the time scheme that one is using to integrate the conservation law. If one uses
BDF3 rather then RK2 then, the different approximations of the left-hand side will lead
to different ways of verifying exactly (4.24). We stress the fact that the DGCL is specific
to the time scheme. If equation (4.24), approximated in time with the same scheme used
to integrate the conservation law, is exactly satisfied, then the method is said to satisfy
the Discrete Geometric Conservation Law.

4.3.2 An example of a DGCL satisfing scheme

A very useful time integrator is BDF2 which provide second order accuracy in time. We
explain how to satisfy the DGCL for BDF2 following a method proposed by Dobes in a
RD framework [16]. The weak form is obtained starting from a sligthly different form of
(4.20) obtained by splitting the ALE flux term and using the fact that a = a(u)

∂ (JAu)
∂t

∣∣∣∣∣
X

+ JA (a− σ)∇ · u− JAu∇ · σ = 0 (4.25)

Since we want to satisfy the GCL condition we substitute (4.12) into the above equation

∂

∂t

∣∣∣∣∣
X

ˆ
ΩX

JAϕiuh dX +
ˆ

ΩX
JAϕi

(
a(uh)− σh

)
· ∇uh dX − ∂JA

∂t

∣∣∣∣∣
X

ˆ
ΩX

ϕiuh dX = 0

The last term is usually reffered to as Geometric Source Term. After some calculation
the algorithm is rewritten

∑
K∈Di

∑
j∈K

m̂GAL
ij

∂ (|K|uj)
∂t

∣∣∣∣∣
X

+
ˆ

Ωh(t)
ϕi
(
a(uh)− σh

)
·∇uh dx−

∑
K∈Di

∂|K|
∂t

∣∣∣∣∣
X

∑
j∈K

m̂GAL
ij uj = 0

(4.26)
where m̂GAL

ij = δij
4 + 1

4 is the Galerkin mass matrix. As we can see, satisfying the GCL
is completely different from satisfing the DGCL for which we have to discretize both the
derivatives with the same time discrete operator. Proceeding in this fashion we are sure
to balance, element by element, the volume variation in the time step with the integral
of the grid velocity flux along the boundaries of the element (4.24).

This approach has a nice recasting into a RD framework. Infact the second term in (4.26)
is already in a quasi-linear form, so it can be written in a RD form through a conservative
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4 Residual Distribution schemes for moving grids

linearization. Since the grid velocity is approximated with P1 interpolation the correct
conservative linearization of the ALE part is immediate

ˆ
Ω(t)

ϕiσ
h · ∇uh dx =

∑
j∈K

σj
3 ∇u

h|K| = σ̄∇uh|K|

The upwind parameter with the ALE correction naturally becomes

ki = 1
2 (ā− σ̄) · ni (4.27)

If αn+1, αn, αn−1are the coefficients of BDF2, the Galerkin RD scheme then reads

∑
K∈Di

∑
j∈K

m̂GAL
ij

αn+1|Kn+1|un+1
j + αn|Kn|unj + αn−1|Kn−1|un−1

j

∆t +
∑
K∈Di

βGALi

∑
j∈K

kn+1
j un+1

j +

−
∑
K∈Di

αn+1|Kn+1|+ αn|Kn|+ αn−1|Kn−1|
∆t

∑
j∈K

m̂GAL
ij uj = 0 (4.28)

where βGAL = 1
3 is the distribution coefficient for the Galerkin method. (4.28) satisfies the

DGCL by construction. This is supposed to be just an example since Galerkin method
for hyperbolic problems is unstable.

4.3.3 A Farhat approach

Keeping in mind that our objective is a method verifying the time discrete counterpart of
(4.24), in this paragraph we proceed in a different way, according to what suggested by
Farhat in [17]. The main idea is that many of the most used time discretizations satisfy
naturally the DGCL condition by the choice of a proper grid velocity and of a proper
quadrature rule for the integrals.
First, we present some useful results that will be use everywhere hereinafter. Integrating
(4.24) in the timeslab [tn, tn+1] provides

Kn+1 −Kn =
tn+1ˆ
tn

ˆ
∂K(t)

∇ · σh dxdt (4.29)

We have already observed that great care has to be put, when building the numerical
method, in order to satisfy exactly the above equation. This can be done with simple
geometry and algebra. Since the triangle area can be computed as |K| = 1

2
∑
j∈K

xj · kj
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4.3 Galerkin Finite Element

with

|K|n+1 − |K|n = 1
2
∑
j∈K

[
(xj · kj)n+1 − (xj · kj)n

]
= 1

2
∑
j∈K

[
x
n+1/2
j ·

(
kn+1
j − knj

)
+ kn+1/2

j ·
(
xn+1
j − xnj

)]
=

∑
j∈K

k
n+1/2
j ·

(
xn+1
j − xnj

)
(4.30)

If we set the grid velocity

σ∗j =
xn+1
j − xnj

∆t (4.31)

We can recast (4.30) in the following form

|K|n+1 − |K|n = ∆t
ˆ

Kn+1/2

∇ · σ∗h dx (4.32)

We have proved that, in order to satisfy (4.29), a natural choice for the grid velocity is
(4.31) while the configuration on which we perform integrations should be the midpoint
one between tn and tn+1.
We found the result of Farhat for which it is crucial to establish in (4.29) where the time
integral must be computed and the same question arise for the grid velocity. Since the
left-end side is always computed exactly, an appropriate scheme for evaluating exactly´ tn+1

tn

´
Ωh
∇ · σh dx dt is presented

tn+1ˆ
tn

ˆ
K

∇ · σh dx dt = ∆t
ˆ
Kn+ 1

2
∇ · σ∗h dx (4.33)

This result is very useful once we have discretized in time (4.23).

Explicit Euler EE

Discretizing in time (4.23) with EE we have
∆
∆t

ˆ
Ωh(t)

ϕiuh dx+
ˆ

Ωh(t)
ϕi∇ ·

(
f(unh)− σhunh

)
dx = 0

We have still to face the problem of satisfying the DGCL, both σ and Ωh(t) are undefined
infact. Imposing a uniform flow, one sees that the satisfaction of the DGCL conditon
passes through (4.32). Setting σj = σ∗j and Ωh(t) = Ωn+1

h we close the problemˆ

Ωn+1
h

ϕiu
n+1
h dx−

ˆ

Ωn
h

ϕiu
n
h dx+ ∆t

ˆ

Ωn+1/2
h

ϕi∇ · (f(unh)− σ∗hunh) dx = 0 (4.34)
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4 Residual Distribution schemes for moving grids

Implicit Euler IE

We proceed as before, setting σj = σ∗j and Ωh(t) = Ωn+1
h and we found that the DGCL

condition is again satisfied.ˆ

Ωn+1
h

ϕiu
n+1
h dx−

ˆ

Ωn
h

ϕiu
n
h dx+ ∆t

ˆ

Ωn+1
h

ϕi∇ ·
(
f(un+1

h )− σ∗hun+1
h

)
dx = 0 (4.35)

Infact imposing a uniform flow one finds (4.32).

Crank-Nicholson CN

Also in this case, the imposition of a uniform flow leads to equation (4.32) which is exactly
satisfied for σj = σ∗j and Ωh(t) = Ωn+1

h . Hence we have´
Ωn+1
h

ϕiu
n+1
h −

´
Ωn
h

ϕiu
n
h +

+∆t
2

 ´
Ωn+1
h

ϕi∇ · (f(un+1
h )− σ∗hun+1

h ) +
´

Ωn+1
h

ϕi∇ · (f(unh)− σ∗hunh)
 = 0

4.4 Stabilized Finite Element and Residual Distribution

The Galerkin method provide a centered approximation of the advective part leading
to an unstable numerical solution. To cure this problem the stabilized Finite Element
method is invoked in this paragraph.
In the stabilization form Lh(uh, ϕi), many choices that satisfies (2.51) are possible for the
operator L(u):

1. Using the conservation law in conservative form (4.20) one gets

Lh =
∑
K

ˆ
KX

γi

(
∂ (JAu)
∂t

∣∣∣∣∣
X

+ JA∇ · (f − uσ)
)
dX (4.36)

2. Using the mixed formulation (4.21)

Lh =
∑
K

ˆ
K

γi

(
∂u

∂t

∣∣∣∣∣
X

+∇ · f − σ · ∇u
)
dx (4.37)

3. Farhat within a Finite Element method in [17] uses instead the Eulerian formulation

Lh =
∑
K

ˆ
K

γi

(
∂u

∂t
+∇ · f

)
dx (4.38)
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4.4 Stabilized Finite Element and Residual Distribution

4.4.1 Explicit Euler

In the next section we show two different ways of formulating a GCL-satisfying stabilized
FE-RD using (4.36) as stabilization term.

Dobes Closure

We can rearrange the weak form asˆ
ΩX
h

(
∂(JAuh)
∂t

∣∣∣∣∣
X

+ JA∇ · (f(uh)− σhuh)
)
wi dX = 0 ∀i ∈ Th (4.39)

where the test function is wi = ϕi + γi.
Reapeating the passages of paragraph (2.2.2) with the only difference that now we have
wi instead of ϕi, we get∑
K∈Di

∑
j∈K

m̂K
ij

∂ (|K|uj)
∂t

∣∣∣∣∣
X

+
ˆ

Ω(t)
wi
(
a(uh)− σh

)
· ∇uh dx−

∑
K∈Di

∂|K|
∂t

∣∣∣∣∣
X

∑
j∈K

m̂K
ijuj = 0

where m̂K
ij is the general mass matrix that depends on the test function, introduced in

section (2.3). Discretizing the time derivative with Explict Euler, lumping the mass-
matrix, and using the FEM−RD analogy

|Sn+1
i |un+1

i − |Sni |uni
∆t +

∑
K∈Di

βi
∑
j∈K

knj u
n
j −
|Sn+1
i | − |Sni |

∆t uni = 0 (4.40)

For the presence of the Geometric Source Term, the above scheme is not written in the
compact prototype form but one can prove that a sub-element positivity property still
holds. The scheme for a single element is written

|Kn+1|un+1
i − |Kn|uni
3∆t +

∑
j∈K

cKiju
n
j −
|Kn+1| − |Kn|

3∆t uni = 0

un+1
i =

(
|Kn|+ |Kn+1|
|Kn+1|

− 3∆t
|Kn+1|

cKii

)
uni −

3∆t
|Kn+1|

∑
j∈K,j 6=i

cKiju
n
j

Positivity is ensured with the following CFL-like condition

∆t ≤ |K
n|+ |Kn+1|

3cKii
∀i,K ∈ Th

Dobes used this approach together with second order implicit time schemes, in particular
BDF2 with consistent mass-matrix - getting the stabilized version of the algorithm of
paragraph (2.2.2) - and CN with lumped mass matrix, obtaining very good results. We
have to mention only that, if a consistent mass-matrix formulation is used, then positivity
is spoiled.
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4 Residual Distribution schemes for moving grids

Another closure

In this thesis we suggest another closure to the problem which is somewhat simple. We
start again from equation (4.39) discretized in time with EE , we split again the ALE flux
term, finally we use grid velocity (4.31) and midpoint configuration.

∆
∆t

ˆ
Ω(t)

wiu
h dx+

ˆ
Ωn+1/2

wi (∇ · f(unh)− σ∗h · ∇unh) dx−
ˆ

Ωn+1/2
wiu

n
h∇ · σ∗h dx = 0

(4.41)
If a uniform flow is imposed one gets

ˆ
Ωn+1
h

wi dx−
ˆ

Ωn
h

wi dx = ∆t
ˆ

Ωn+1/2
h

wi∇ · σ∗h dx

It is easy to check that the above equation is verified exactely. Infact for property (2.57)
we have ∑

K∈Di
βKi

(
|K|n+1 − |K|n

)
= ∆t

∑
K∈Di

βKi

ˆ
Ωn+1/2
h

∇ · σ∗h dx

Thus, we get again (4.32) which is an identity.

We recall the following property which come from the fact that, given two quantity A,B,
then ∆ (AB) = B∆A+ A∆B

∆|n+1
n

(ˆ
Ω(t)

wiu
h dx

)
=

=
ˆ

Ωn+1/2
wi
(
un+1
h − unh

)
dx+ ∆t

ˆ
Ωn+1/2

wi

(
un+1
h + unh

)
2 ∇ · σ∗h dx (4.42)

Second, we substitute (4.42) in (4.41) and we sum the last term of the above equation
with the last one in (4.41)(

1 + ∆t
2 ∇ · σ

∗
h

)ˆ
Ωn+1/2

wi
(
un+1
h − unh

)
dx+

+∆t
ˆ

Ωn+1/2
wi (∇ · f(unh)− σ∗h · ∇unh) dx = 0 (4.43)

Third we invoke the analogy with Residual Distribution method, we do mass-lumping

∑
K∈Di

(
1 + ∆t

2 ∇ · σ
∗
h

)
|Kn+1/2|

3
(
un+1
i − uni

)
= −∆t

∑
K∈Di

βi
∑
j

knj u
n
j
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4.4 Stabilized Finite Element and Residual Distribution

And the final algorithm reads

|S̃n+1/2
i |

(
un+1
i − uni

)
= −∆t

∑
K∈Di

βi
∑
j

knj u
n
j (4.44)

where the median dual cell area of (2.63), here evaluated at midpoint configuartion, has
to be modified to take into account the grid distortion

|S̃n+1/2
i | =

∑
K∈Di

(
1 + ∆t

2 ∇ · σ
∗
h

)
|Kn+1/2|

3 (4.45)

The method satisfy the DGCL by construction but it is extremely easy to prove this
again, by simply imposing a uniform state in the method presented so far.
Apart from the ALE flux part in the upwind parameter kj, the formulation follows very
closely the prototype scheme in Eulerian formulation (2.67), an extension of the results
regarding positivity should be straightforward. A modified median dual cell area appear
to take into account mesh distortion

(
1 + ∆t

2 ∇ · σ
∗
h

)
. Strictly speaking this scalar quantity

can be also negative (in a critical situation of very fast compression for the mesh) spoiling
every positive coefficient anlysis. If the grid displacements within the timestep are of
order h then this term is of order O(h2) and does not affect the result provided in section
(1.4.1). In all the computation that we did, even the ones involving big distortion of the
grid, the positivity of |S̃n+1/2

i | was mantained.
Unfortunately this scheme converge only with first order of accuracy. To achieve second
order accuracy and stay explicit we can use the explicit Runge-Kutta presented in section
(3.1)

4.4.2 Runge Kutta two

This method has been discussed in the Eulerian version in section (2.1). In order to
end up with the correspondent ALE scheme that verify a DGCL condition we use the
idea developed in the previous paragraph, even if a direct extension, will be a little bit
tricky. The problem that we have to face is that the shifting cause, in the first step, the
disappereance of the time part associated to the stabilization bubble and this breaks the
terms balance for the satisfaction of the DGCL. A simple way to fix this inconvenient is
to choose for the stabilization term equation (4.37). The Galerkin part, discretized with
a RK2, with σh = σ∗h and midpoint configuartion, writes

∆
∆t

ˆ
Ω(t)

ϕiu
k
h dx+

ˆ
Ωn+1/2

ϕi (∇ · f(uh)− σ∗h · ∇uh)
k dx+

−
ˆ

Ωn+1/2
ϕi (uh∇ · σ∗h)

k dx = 0 (4.46)
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4 Residual Distribution schemes for moving grids

While for the stabilization one, also computed at midpoint configuration, we have

∑
K∈Di

ˆ
Kn+1/2

γi
∆ukh
∆t dx+

∑
K∈Di

ˆ
Kn+1/2

γi (∇ · f(unh)− σ∗h · ∇unh)k dx = 0 (4.47)

Now, in analogy with (3.3), we give the following definition

ΦRK(k)
i =

ˆ
Kn+1/2

wi

∆ukh
∆t +

(
∇ · f(uh)− σ∗h∇uh

)k dx (4.48)

or, as in (3.5)

ΦRK(k)
i =

∑
j∈K

mK
ij

∆ukj
∆t + φ

RK(k)
i (4.49)

In particular exploiting the two stepsΦRK(1)
i = φi(uh)

ΦRK(2)
i = ∑

j∈Km
K
ij

u1
j−u

n
j

∆t +1
2 (φi(u1

h) + φi(unh))
(4.50)

Selective Lumped

|S̃n+1/2
i |∆u

k
i

∆t = −
∑
K

ΦRK(k)
i −

∑
j

m̃GAL
ij

∆ukj
∆t

 (4.51)

Apart from the ALE part in the definition of the upwind parameter, the only differences
respect to Eulerian version (3.11) is the presence of the modified median dual cell area
(4.45) and of a modified Galerkin mass matrix

m̃GAL
ij =

(
1 + ∆t

2 ∇ · σ
∗
h

)
mGAL
ij (4.52)

Proof. For the first step (k = 1) assembling (4.46)(4.47) and at the same time using (4.42)
ˆ

Ωn+1/2
ϕi
u1
h − unh
∆t dx+ ∆t

2

ˆ
Ωn+1/2

ϕi∇ · σ∗h
(
u1
h − unh

)
dx+

+
ˆ

Ωn+1/2
wi (∇ · f(unh)− σ∗h · ∇unh) dx = 0

In a RD formalism
∑
K∈Di

(1 +∇ · σ∗h)
|Kn+1/2|

3
u1
h − unh
∆t = −

∑
K∈Di

βi
∑
j

knj u
n
j = −∆t

∑
K∈Di

φi(uh)
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4.4 Stabilized Finite Element and Residual Distribution

Using the definition (4.45), then the first line of (4.51) is prooved.
For the second step (k = 2) the algebra is a little longer. We put in evidence the clear
fact

∑
K∈Di

ˆ
Kn+1/2

γi
∆ukh
∆t dx =

∑
K∈Di

ˆ
Kn+1/2

wi
∆ukh
∆t dx−

ˆ
Ωn+1/2

ϕi
∆ukh
∆t dx (4.53)

Again assembling (4.46)(4.47) and at the same time using (4.42)
ˆ

Ωn+1/2
ϕi
un+1
h − unh

∆t dx+ ∆t
2

ˆ
Ωn+1/2

ϕi∇ · σ∗h
un+1
h + unh

∆t dx+

−1
2

ˆ
Ωn+1/2

ϕi∇ · σ∗h
(
u1
h + unh

)
dx−

ˆ
Ωn+1/2

ϕi
u1
h − unh
∆t dx+

+
∑
K∈Di

ˆ
Kn+1/2

wi
u1
h − unh
∆t dx+ 1

2
∑
K∈Di

ˆ
Kn+1/2

wi (∇ · f(unh)− σ∗h · ∇unh) dx+

+1
2
∑
K∈Di

ˆ
Kn+1/2

wi
(
∇ · f(u1

h)− σ∗h · ∇u1
h

)
dx = 0

Now we sum and subtract the quantity ∆t
2

´
Ωn+1/2 ϕi∇·σ∗h

un+1
h
−unh

∆t dx. The term with plus
sum with the first term of the above equation, the term with minus sum with the second,
the third and the fourth ones
ˆ

Ωn+1/2

(
1 + ∆t

2 ∇ · σ
∗
h

)
ϕi
un+1
h − unh

∆t dx−
ˆ

Ωn+1/2

(
1 + ∆t

2 ∇ · σ
∗
h

)
ϕi
u1
h − unh
∆t dx

+
∑
K∈Di

ˆ
Kn+1/2

wi
u1
h − unh
∆t dx+ 1

2
∑
K∈Di

ˆ
Kn+1/2

wi (∇ · f(unh)− σ∗h · ∇unh) dx+

+1
2
∑
K∈Di

ˆ
Kn+1/2

wi
(
∇ · f(u1

h)− σ∗h · ∇u1
h

)
dx = 0

The last three terms can be rewritten compactly with (4.48),
ˆ

Ωn+1/2

(
1 + ∆t

2 ∇ · σ
∗
h

)
ϕi
un+1
h − unh

∆t dx =

= −
∑
K∈Di

ΦRK(2)
i +

ˆ
Ωn+1/2

(
1 + ∆t

2 ∇ · σ
∗
h

)
ϕi
u1
h − unh
∆t dx

Developing both the modified mass matrices but lumping only the one on the right-hand
side, then using definitions (4.45) and (4.52), (4.51) is finally prooved
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Global Lumped

|S̃i
n+1/2|u

1
i−u

n
i

∆t = −∑K ΦRK(1)
i

|S̃i
n+1/2|u

n+1
i −u1

i

∆t = −∑K ΦRK(2)
i

(4.54)

The scheme closely resemble the Eulerian one (3.12). The presence of the modified median
dual cell area does not destroy the positivity.

Proof. The first step remain the same and has been already prooved

For the second step (k = 2) assembling (4.46)(4.47), togheter with (4.42)(4.53)
ˆ

Ωn+1/2
ϕi
un+1
h − unh

∆t dx+ ∆t
2

ˆ
Ωn+1/2

ϕi∇ · σ∗h
un+1
h + unh

∆t dx+

−1
2

ˆ
Ωn+1/2

ϕi∇ · σ∗h
(
u1
h + unh

)
dx−

ˆ
Ωn+1/2

ϕi
u1
h − unh
∆t dx+

+
∑
K∈Di

ˆ
Kn+1/2

wi
u1
h − unh
∆t dx+ 1

2
∑
K∈Di

ˆ
Kn+1/2

wi (∇ · f(unh)− σ∗h · ∇unh) dx+

1
2
∑
K∈Di

ˆ
Kn+1/2

wi
(
∇ · f(u1

h)− σ∗h · ∇u1
h

)
dx = 0

Summing the first and the fourth term togheter and the second and third too
ˆ

Ωn+1/2
ϕi
un+1
h − u1

h

∆t dx+ ∆t
2

ˆ
Ωn+1/2

ϕi∇ · σ∗h
un+1
h − u1

h

∆t dx+

+
∑
K∈Di

ˆ
Kn+1/2

wi
u1
h − unh
∆t dx+ 1

2
∑
K∈Di

ˆ
Kn+1/2

wi (∇ · f(unh)− σ∗h · ∇unh) dx+

+1
2
∑
K∈Di

ˆ
Kn+1/2

wi
(
∇ · f(u1

h)− σ∗h · ∇u1
h

)
dx = 0

The last three terms can be rewritten compactly with (4.48), while the first two terms
sum up ˆ

Ωn+1/2

(
1 + ∆t

2 ∇ · σ
∗
h

)
ϕi
un+1
h − u1

h

∆t dx = −
∑
K∈Di

ΦRK(2)
i

Developing the mass matrix, lumping it and using (4.45) we get the second line of (4.54).
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4.5 Numerical results

4.5 Numerical results

The scalar experiments we show here are used to test the formulation presented so far.
The test cases are exactely the ones performed by [9] with a the explicit RK2 of chapter 2:
we hope to recover the same results, in terms of accuracy and non-oscillatory behaviour,
when the grid is moving with an arbitrary motion and the RK2-ALE scheme presented
in the previous chapter is used.
All the schemes, modified in the proper way forRK2 time integrator in section (3.1.1), are
used here. We have just to remember that, for ALE computaions, the upwind parameter
takes into account the grid movement and follows the definition (4.27) which is recalled
below

ki = 1
2 (ā− σ̄) · ni

All the definition which involves ki has been revisted.
For all the experiments the time step is computed in order to verify the CFL condition

∆t = CFL min
i∈Th

|Si|∑
K∈Di 3αK (4.55)

where CFL = 0.8. Inequalities (2.77) and (2.87) are verified hence the LxF and N schemes
are positive.

4.5.1 Convergence properties

To test the accuracy of the method we use the simple case of linear advection of a smooth
sinusoidal hill

∂u
∂t

+ a · ∇u = 0, a = [0, 1] , x ∈ [0, 1]× [0, 2], t ∈ [0, 1]
u0 = cos (2πr) if r ≤ 0.25, r =

√
(x− 0.5)2 + (y − 0.5)2

u0 = 0 otherwise

We choose 4 unstructured grid with characteristic lenghts shown in table. Given a refer-
ence domain (X, Y ), it is mapped according to the following lawx(t) = X + 0.1 sin (2πX) sin (πY ) sin (2πt)

y(t) = Y + 0.2 sin (2πX) sin (πY ) sin (4πt)
(4.56)

At t = 1, the mapping is the identity x = X, so we can compare the ALE solution with
the Eulerian one easily. In figure (4.1) grid number 3 is shown with the corresondent
mapping.
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4 Residual Distribution schemes for moving grids

All the results collected in figure (4.2) shows that second order of accuracy, when expected,
is achieved. The ALE convergence curve almost collapse on the classical one. The Blended
LDA-N on smooth solution should collapse to the LDA scheme but it converges more
slowly, only with order 1.5 instead. This is due to the fact that the advecting hill is very
narrow and the presence of strong gradients cause the switch to a first order N scheme.

grid h
2 1/30
3 1/50
4 1/80
5 1/160
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4.5 Numerical results

Figure 4.1: Linear Advection. Mapping for the grid and example of the numerical solution
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Figure 4.2: Linear Advection. Order of Convergence
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4.5.2 2D Burger equation

The non-linear Burger equation is a good test to see how the schemes behaves near
discontinuities

∂u
∂t

+ a · ∇u = 0, a = [u, u] , x ∈ [−1, 1]× [−1, 1], t ∈ [0, 1]
u0 = 1 if x ∈ [−0.6,−0.1]× [−0.35, 0.15]
u0 = 0 otherwise

The reference grid size is h = 1/80. The domain is mapped in a similar way to (4.56),
according to x(t) = X + 0.2 sin (πX) sin (πY ) sin (2πt)

y(t) = Y + 0.2 sin (πX) sin (πY ) sin (4πt)

Only results with formulation F1 are shown but the use of formulation F2 lead to very
similar results.
First we consider the linearity preserving LDA and SUPG scheme in figures (4.3), (4.4),
(4.5), (4.6). As expected, these two schemes that gives very good results when computing
smooth solutions, fail when computing discontinuities. Oscillations appears on the shock
and at the tail of the rarefaction wave. The important observation is that the ALE results,
far from the discontinuity, are very close to the Eulerian ones, on the tail of the rarefaction
even better.
The non-linear schemes LLxFs and LDA-N are designed to capture very well disconti-
nuities. This is shown if (4.7), (4.8), (4.9), (4.10). We have seen that SL formulation,
unfortunately, does not allow us to mantein positivity hence oscillation still appear but are
less pronunced respect to linear schemes. With GL formulation this problem is cured pro-
vided that some dissipation is introduced due to the mass-lumping [9]. The ALE results
trace very good the Eulerian one and they are even better smeared out when computing
the tail of the rarefaction wave.
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Figure 4.3: 2D Burger Equation, F1-SL LDA scheme. Top: 20 equispaced isolines between
0 and 1 at time t = 1. left, Eulerian. right ALE. Bottom: comparison of the
solution along the symmetry line and along the line y = 0.3
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Figure 4.9: 2D Burger Equation, F1-SL LDA-N scheme. Top: 20 equispaced isolines
between 0 and 1 at time t = 1. left, Eulerian. right ALE. Bottom: comparison
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Figure 4.10: 2D Burger Equation, F1-GL LDA-N scheme. Top: 20 equispaced isolines be-
tween 0 and 1 at time t = 1. left, Eulerian. right ALE. Bottom: comparison
of the solution along the symmetry line and along the line y = 0.3
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5 Residual Distribution for Euler
Equations with moving grids

5.1 Basic concept for 1D systems

Once Residual Distribution schemes for scalar conservation laws have been understood,
their extension to systems is quite simple. A nice exercise to see this, can be the reformal-
ization of a Finite Volume first order upwind approximation of a 1D-linear system into a
Residual Distribution method. Given the hyperbolic linear system

∂u
∂t

+ A∂u
∂x

= 0 (5.1)

with u ∈ Rm vector of conserved quantities, we recall that the system is hyperbolic if
A ∈ Rm×m is diagonalizable with real eigenvalues. We denote the eigenvalues by

λ1 ≤ λ2 ≤ ... ≤ λm

The matrix A is diagonalizable if a complete set of linearly independent eigenvectors exists

r1, r2, ..., rm

In this case the matrix having for coloumns the eigenvectors

R = [ r1 r2 ... rm ]

is non-singular and has an inverse so we can put the matrix A in a diagonal form by the
following tranformation

Λ = R−1AR, where Λ = Diag {λ1, λ2, ..., λm} (5.2)

If we define the vectors of characteristic variables w = R−1u, we can rewrite the linear
system (5.1) as a set of m decoupled linear advection equations

∂w
∂t

+ Λ∂w
∂x

= 0 (5.3)
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5 Residual Distribution for Euler Equations with moving grids

whose solution, in turn, can be used to solve the original system of equation.
The Godunov approximation of (5.1) writes

un+1
i = uni −

∆t
hi

(
Fi+1/2(uni , uni+1)− Fi−1/2(uni−1, uni )

)
(5.4)

where the numerical flux function, indicated with little abuse in the notation as F, is
computed according to

Fi−1/2 = A(ug(uni−1, uni )) = 1
2A(uni + uni−1)− 1

2 |A|(uni − uni−1) (5.5)

As already seen for the scalar case, the bridge between Finite Volume and Residual Distri-
bution consists in rewriting (5.5) in terms of fluctuations. Using the following numerical
flux

Fi−1/2 = Auni − A+(uni − uni−1)
in analogy with the scalar reformulation (2.7), the FV approximation can be rewritten
as a Flux-Difference Splitting approximation

un+1
i = uni −

∆t
hi

(
A−(uni+1 − uni ) + A+(uni − uni−1)

)
(5.6)

where
A+ = RΛ+R−1 and A− = RΛ−R−1

Λ+ =


(λ1)+

(λ2)+

. . .
(λm)+

 , Λ− =


(λ1)−

(λ2)−
. . .

(λm)−


The method as a nice interpratation, infact the flux difference across the boundaries of
the cell [xi−1, xi] can be splitted in the following way

Fi − Fi−1 = A−(uni − uni−1) + A+(uni − uni−1) (5.7)

Two contributions called fluctuations appears, one coming from the net effect of all left-
going waves and one coming from the net effect of all right-going waves. The Flux-
Difference splitting algorithm (5.6) follows immediately after the application of (5.7) for
every cell. The value of the solution at xi is updated summing up a right-going fluctuation
A+(uni −uni−1) entering from the interface xi−1/2 and a left-going fluctuation A−(uni+1−uni )
entering from the opposite interface xi+1/2.
We have already seen in the scalar case that the Residual Distribution method is a Flux-
Difference Splitting method with an arbitrary splitting of the flux difference, which in
turn is called, in a RD contest, residual. Through the usual steps, a true RD scheme is
constructed:
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5.1 Basic concept for 1D systems

1. Using a piecewise linear approximation of the solution, compute the residual over
every cell. For the cell [xi−1, xi]

Φi−1/2 =
ˆ xi

xi−1

A∂u
∂x

dx = A(uni − uni−1)

with residual Φi−1/2 ∈ Rm.
2. Split the residual between the two nodes of the element through the distribution

matrix βi−1/2
i , βi−1/2

i−1 ∈ Rm × Rm

Φi−1/2 = β
i−1/2
i Φi−1/2 + βi−1/2

i−1 Φi−1/2

3. Assembly all the contributions belonging to node i to update the solution at the
new time step

un+1
i = uni −

∆t
hi

(
β
i−1/2
i Φi−1/2 + βi+1/2

i Φi+1/2
)

(5.8)

It is easy to see that the following choice for the distribution matrices leads to an equiv-
alence with upwind FV/Flux-Difference Splitting (5.6)

β
i−1/2
i = RBi−1/2

i R−1, with Bi−1/2
i = Λ+Λ−1

β
i−1/2
i−1 = RBi−1/2

i−1 R−1, with Bi−1/2
i−1 = Λ−Λ−1

It is interesting to note that this particular distribution corresponds to apply an upwind
Residual Distribution scheme on the transformed system (5.3). Infact applying the one-
dimensional scalar upwind RD method to each scalar decoupled equation we would have
obtained the same result. Briefly:

1. Compute the residual
Φi−1/2(wh) = Λ (wi − wi−1) = ΛR−1 (ui − ui−1)

remembering that the following transformation holds
Φi−1/2(wh) = R−1Φi−1/2(uh) (5.9)

2. Split the residual according to the one-dimensional upwind distribution (2.15), hence
with distribution matrices Bi−1/2

i ,Bi−1/2
i−1

Φi−1/2(wn
h) = Bi−1/2

i Φi−1/2(wn
h) + Bi−1/2

i−1 Φi−1/2(wn
h)

3. Assembly

wn+1
i = wn

i −
∆t
hi

(
Bi−1/2
i Φi−1/2(wn

h) + Bi+1/2
i Φi+1/2(wn

h)
)

(5.10)

If one transforms back in conserved variables premultipyling (5.10) by R and then using
(5.9), gets (5.8).
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5 Residual Distribution for Euler Equations with moving grids

5.2 Residual Distribution for non-linear systems

A system of coupled conservation laws can be written, in a general form, as an hyperbolic
system of equations. We will consider only two dimensional problems

∂u
∂t

+∇ · f = 0 in Ω ∈ R2, t ∈ [0, T ] (5.11)

with solution u(x, t) ∈ Rm, flux function f(u) = [ fx fy ] ∈ Rm × R2, with fx, fy ∈ Rm. In a
quasi linear form

∂u
∂t

+ Ax(u)∂u
∂x

+ Ay(u)∂u
∂y

= 0 (5.12)

where Ax = dfx
du and Ay = dfy

du . Collecting both in a three dimensional array A(u) = df
du =[

Ax Ay

]
∈ Rm × Rm × R2 we obtain the Jacobian of the flux. The system is called

hypebolic if, for any vector ξ = (ξx, ξy) ∈ R2, the m×m matrix K

K(ξ, u) = A(u) · ξ = Ax(u) ξx + Ay(u) ξy (5.13)

is diagonalizable with real eigenvalues. Everywhere in the text we shall denotes with
Λ(ξ, u) = Diag {λ1, λ2, ...λp} the diagonal matrix of the eigenvalues of K, while with
R(ξ, u) the matrix of right eigenvectors of K. Thus we can bring K to a diagonal form by
a similarity transformation

Λ(ξ, u) = R−1(ξ, u) K(ξ, u) R(ξ, u) (5.14)

A Residual Distribution approximation of (5.11) is obtained throught the following step
1. Once we have approximated the solution with a P1 approximation uh, compute the

residual over every element

ΦK =
ˆ
K

∇ · f(uh) dx =
ˆ
∂K

f(uh) · n dx ∀K ∈ T h (5.15)

2. Distribute the residual to the nodes i, j, k of the element through the distribution
matrix βKi ,βKj ,βKk

ΦK = βKi ΦK + βKj ΦK + βKk ΦK =
∑
j∈K

ΦK
j (5.16)

If Im is the m×m identity matrix, the consistency condition is translated as follows∑
j∈K

βKj = Im (5.17)

82



5.2 Residual Distribution for non-linear systems

3. For every node i assemby the contribution from all K ∈ Di and evolve ui in time

|Si|
dui
dt

+
∑
K∈Di

ΦK
i = 0 ∀i ∈ T h (5.18)

The steps define a generalization of paragraph 1.2.
In the splitting step, in order to end up with an upwind distribution, we will need to
know some information about the eigenstructure of the jacobian K (as in 1D we needed
the scalar parameter k), the access to the quasi-linear or better to a linearized form
becomes thus necessary. Regarding the linearization we have to face the same problem of
the scalar case: for conservativity reasons the linearization should be exact and this fixes
the correct averaged Jacobian Āˆ

K

∇ · f(uh) dx =
ˆ
K

(
Ax(uh)∂uh

∂x
+ Ay(uh)∂uh

∂y

)
dx

=
ˆ
K

Ax(uh) dx∂uh
∂x

+
ˆ
K

Ay(uh) dx∂uh
∂y

=
(

Āx
∂uh
∂x

+ Āy
∂uh
∂y

)
|K| (5.19)

with
Āx = 1

|K|

ˆ
K

Ax(uh) dx and Āy = 1
|K|

ˆ
K

Ay(uh) dx (5.20)

Using this linearization we can write the residual in the following form, very similar to
the scalar analogue (2.45)ˆ

K

∇ · f(uh) dx = 1
2
∑
j∈K

(
Āxnx,j + Āyny,j

)
uj

=
∑
j∈K

Kjuj

with upwind matrix defined by

Kj = 1
2
(

Āxnx,j + Āyny,j
)

(5.21)

Moreover we define the following matrix

K̄(ξ) = 1
2
(

Āxξx, + Āyξy,
)

which admits the usual decomposition
K̄(ξ) = R̄(ξ) Λ̄(ξ) R̄−1(ξ)

We conclude this section with the hope that, almost all the nice properties of scalar RD,
could be extended to systems. Even in the cases when this turns to be true, the extension
is not trivial at all.
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5 Residual Distribution for Euler Equations with moving grids

Multidimensional Upwinding

In the first example we have seen that, simply working on characteristic variables instead
of the physical ones, it is possible to design a one-dimensional upwind RD scheme for
systems. This is certainley true also in multidimensional problems where we can imply
an upwind scheme for every simple wave, thus coming to a scheme which inherits from
the scalar case the property of a genuinely multidimensional upwinding. Then, it seems
logical to use the eigenvalues of Kj as a reference to decide whether node i receives a
larger or smaller amount of residual.

On the other hand, for systems, the concepts of inflow/outflow faces, downstream/upstream
nodes, one/two-targert cells have no more sense. A sense clearly holds for each simple
wave, but for the system in conserved variables the coupling of the equations makes the
cell generally three-target. The definition of upwinding given in section (2.2) has to be
revisited for systems.

Definition (Matrix RD, Upwinding). A RD method in the form (5.18) is upwind if

K+
i = 0⇒ ΦK

i = 0 (5.22)

Stability and Accuracy

The direct extension of the results provied for the scalar case in paragraph (2.4.1) could
be misleading. First of all the existence of a maximum principle for a system of non-
linear conservation laws is not a trivial task. This does not mean that a non oscillatory
behaviour near discontinuities is desired/expected. Even if, heuristically, we extend the
positive analysis to systems getting to a compact form like

un+1
i = uni −

∆t
|Si|

∑
j∈K

Cijuj

it is not easy to handle with the LED condition, this time applied to a matrix Cij ≤ 0. To
avoid this difficulties, someone searches for a condition relying on entropy consideration
but this is beyond the scope of the thesis [6]. We will extend directly the scalar schemes
to systems without providing a rigorous demonstration of why they are oscillation-free or
not.

We can only say that, given a direction ξ, the solution can be decomposed as sum of
simple waves

u = R(ξ, u)w⇒ uh = R̄(ξ)wh (5.23)
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5.2 Residual Distribution for non-linear systems

and the linearized residual can be splitted into a linear combination of simple residuals
φKl , each of them acting on a single simple wave

ΦK(uh) = ΦK(R̄(ξ)wh)
= R̄(ξ)ΦK(wh) =

∑
l=1,m

φKl (wlh)rl

From this point to the end, in order to lighten a little bit the notation we skip the apex
K in the defintion of residual. Using (2.47), every distributed sub-residual φli(wl) can be
written in the compact form

φli(wlh) =
∑
j∈K

clij
(
wlj − wli

)
(5.24)

Hence, playing with the coefficient clij, we can still define a positive scheme for every
wave, for example using a N distribution for φli. Heuristically we can say also that, many
schemes we shall present in a while, the LDA and N schemes for example, once written in
characteristic variables, correspond exactly to their respective scalar versions applied to
each simple wave and, somehow, we expect that the scheme acting on conserved variables
inherits the properties (LED , positivity) from each scalar scheme.
On the contrary accuracy results presented in paragraph 1.4.2 can be extended very easily
to systems. We give directly the result
Definition (Matrix RD, Second Order Accuracy and Linearity Preserving
schemes). A RD method in the form (5.18) is second order accurate at steady state
if

Φi = O(h3) (5.25)

Moreover the matrix scheme is said to be linearity preseving if the distribution matrix
βKi is uniformly bounded with respect to the solution and data of the problem. Linearity
preserving schemes are second order accurate at steady state.

5.2.1 Lax Friederich scheme

The Lax-Friederich scheme for systems write

ΦLxF
i = 1

3ΦK
i − αK

∑
j∈K,j 6=i

(ui − uj) αK = max
j∈K

det Kj (5.26)

The parameter α has to give the correct dimensionalization and the correct order of
magnitude to the dissipation operator. (5.26) is a generalization of (2.76). The scheme is
positive and first order accurate
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5 Residual Distribution for Euler Equations with moving grids

5.2.2 SUPG scheme

The SUPG scheme is also derived directly from a formal generalization of its scalar coun-
terpart (2.82). The correspondent distribution matrix is

βSUPGi = 1
3 Im + KiT, T =

∑
j∈K
|Kj|

−1

(5.27)

which lead to a second order non-positive scheme.

5.2.3 LDA scheme

Extending the LDA scalar scheme (2.88)

βLDAi = K+
i N, N =

∑
j∈K

K+
j

−1

(5.28)

we get a second order upwind scheme.

5.2.4 N scheme

And finally, starting from the scalar counterpart (2.83) we have the system N scheme

ΦN
i = K+

i (ui − uin) , uin = −
∑
j∈K

NK−j uj (5.29)

which is positive and upwind but only first order accurate.

5.2.5 Blended schemes

Once a second order and a first order residual ΦLPi ,ΦPi has been computed, the issue is
how to implement the limiter. The idea of Abgrall and Mezine suggested in [18] is to
decompose the problem in simple waves and define a scalar limiter acting on each wave.
We define the right and left eigenvectors associated to the flow direction (but the result
is rather independent of this choice)

ΦK(wh) = ΦK(L̄uh) = L̄ΦK , φKl (wl) = lTl · ΦK (5.30)

Hence using the same limiter as in (2.90) for every l-wave

µl = |φKl (wl)|∑
j∈K |φNl,j(wl)|

= |lTl · ΦK |∑
j∈K |lTl · ΦN

j |
∀l = 1, 2, ..m (5.31)
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Blending residuals in the domain of characteristic variables we get, with scalar notation

φBl,i(w) = lTl · ΦLPi + µl
(

lTl · ΦPi − lTl · ΦLPi
)

(5.32)

Projecting back into conserved variables

ΦB
i = R̄ΦB

i (wh), ΦB
i =

∑
l=1,p

φBl,irl (5.33)

Substituting (5.32) in (5.33) we get

ΦB
i =

∑
l=1,p

(
lTl · ΦLPi + µl

(
lTl · ΦPi − lTl · ΦLPi

))
rl (5.34)

where µl is computed with (5.31).

5.2.6 Limited schemes

When extending the limiting procedure to system, we face the same problem of the
blending approach. We have the PSI limiter that works very good for the scalar case and
we would like to extend it to systems. The idea of defining a limiter on each wave allows
us to apply a PSI limiter on every positive residual distribution ΦPi . Infact

βli =

(
φPl,i(wl)

)+

∑
j∈K

(
φPl,j(wl)

)+ =

(
lTl · ΦPi

)+

∑
j∈K

(
lTl · ΦPj

)+ ∀l = 1, 2, ..m (5.35)

Limiting the positive residual projected in the domain of characteristic variables results
in getting m limited residuals

φLIMl,i = βliφ
P
l = βli

(
lTl · ΦP

)
∀l = 1, 2, ..m (5.36)

Finally we project back into conserved variables

ΦLIM
i = R̄ΦLIM

i (wh), ΦLIM
i =

∑
l=1,p

φLIMl,i rl (5.37)

Substituting (5.36) in (5.37) we get

ΦLIM
i =

∑
l=1,m

βli
(

lTl · ΦP
)

rl (5.38)

with βli computed with (5.35).
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5 Residual Distribution for Euler Equations with moving grids

5.2.7 LLxFs and LLxF-SUPG schemes

Also for systems the LLxF scheme suffers from spurious oscillation that, eventually, can
reduce the accuracy to first order. As in section (2.5.7), a SUPG term, tuned by some
parameter, is added. For Euler equations this parameter is introduced by Abgrall in [8] in
a way very similar to the scalar analogue (2.96). He reasons that the residual, projected
in characteristic variables, has an entropy component which is defined through the usual
projection (5.30), this time on the correct left eigenvector corresponding to the entropy
wave, lTs

φKs = lTs · ΦK

The limiter is then computed

δ(uh) = min

1, 1
|φKs |
h2
K

+ ε

 (5.39)

It has the correct order of magnitude, hence δ(uh) ' 1 in smooth region and δ(uh) ' 0
near discontinuities. An explanation for the steady case is given in the same paper [8] but
(5.39) captures very well discontinuities also in unsteady cases. The matrix distribution
for the LLxFs reads

βLLxFsi = βLLxFi + δ(uh)βSUPGi (5.40)
Indeed another version, for which has been demonstrated in [9] that better results are
obtained, consists in a full blending between a LLxF and a SUPG scheme through the
limiter (5.39). It is defined by the following matrix distribution

βLLxF−SUPGi =
(
1− δ(uh)

)
βLLxFi + δ(uh)βSUPGi

The scheme is called in shorthand notation LLxF-SUPG and it is the one used in the
computation.

5.3 Residual Distribution for Euler equations

Through the chapter we have built a powerful tool (matrix RD) to solve non-linear
hyperbolic systems of conservation laws in the form (5.11). We will test it on the Euler
equations governing inviscid compressible flows. The system states the conservation of
mass, momentum and energy for a perfect gas. The conserved variables and flux matrix
are given by

u =


ρ
ρu
ρv
ρE

 , f(u) =


ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p
ρHu ρHv

 (5.41)
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5.3 Residual Distribution for Euler equations

where ρ is the fluid density, u = (u, v) is the flow speed, E is the total energy per unit
mass, H is the total entalpy per unit mass

H = E + p

ρ

For polytropic ideal gas thermodynamic properties are completely defined by the following
pair of equations of state

p(T, ρ) = RTρ, e(T ) = RT

(γ − 1) (5.42)

where we have introduced the internal energy per unit mass e and the temperature of the
fluid T . Combining the two equations we obtain p as a function of e and ρ

p(e, ρ) = (γ − 1) eρ (5.43)

The Euler equations are closed with the definition of internal energy

e = E − 1
2‖u‖ (5.44)

since we are able to express the pressure as function of the unknown ρ, u, v, E.
To define the eigenstructure of the Euler equations we need the definition of another
thermodynamic variable, the speed of sound. For polytropic ideal gas

c = γ (γ − 1) e

We compute the jacobian of the flux A(u) = df
du , then the matrix K(u, ξ) according to

(5.13). The eigenvalues of K(u, ξ) are

λ1,4(u, ξ) = u · ξ ∓ c(u)‖ξ‖, λ2,3(u, ξ) = u · ξ (5.45)

which are all real, making the system hyperbolic and K(u, ξ) diagonalizable with diagonal
matrix Λ.

Roe-Struijs-Deconinck linearization

In order to put the residual in a linearized form (5.50) the correct conservative linearization
of the flux now is performed. We use the fact that the flux components are quadratic
function of the the Roe parameter vector

z = √ρ
[

1 u v H
]T

(5.46)
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First we express the residual as a function of zh. Assuming a piecewise linear variation of
zh ˆ

K

∇ · f(zh) dx =
(
dfx
dz (z̄) ∂zh

∂x
+ dfy
dz (z̄) ∂zh

∂y

)
|K| (5.47)

The passage from the conservative form to the linearized one is exact only if
dfx
dz (z̄) = 1

|K|

ˆ
K

Ax(zh) dx and dfy
dz (z̄) = 1

|K|

ˆ
K

Ay(zh) dx (5.48)

The choice of the variable z seems the only possible one leading to a full conservative
scheme, in this way infact the above integrals exist and are very easy to compute. A(zh)
is linear and follows immediately that we have to evaluate the jacobian at a proper average
state which correspond to the arithmetical average of Roe variables over the element

Ā = A(z̄), with z̄ =
∑
j∈K

zj
3 (5.49)

This averageing, for one dimensional problems, reduce to the classical 1D Roe conserva-
tive linearization [19] and rapresents its multidimensional extension as suggested by [20].
Substituting (5.49) in (5.47), the linearized residual is computed

ˆ
K

∇ · f dx =
(
dfx
dz (z̄) ∂zh

∂x
+ dfy
dz (z̄) ∂zh

∂y

)
|K|

=
(
dfx
du (z̄) du

dz (z̄) ∂zh
∂x

+ dfy
du (z̄) du

dz (z̄) ∂zh
∂y

)
|K|

=
(

Ax (z̄) du
dz (z̄) ∂zh

∂x
+ Ay (z̄) du

dz (z̄) ∂zh
∂y

)
|K|

=
(

Ax (z̄) ∂uh
∂x

+ Ay (z̄) ∂uh
∂y

)
|K| (5.50)

Matrix Kj follows from (5.21)

Kj = 1
2 (Ax (z̄)nx,j + Ay (z̄)ny,j) (5.51)

5.4 Euler equations in ALE framework

We don’t derive again the system of conservation laws in ALE formulation but we extend
it directly from the scalar case. Extending the scalar equation (4.19) we get the integral
form of Euler equations in ALE framework

∂

∂t

∣∣∣∣∣
X

ˆ
C(t)

u dx+
ˆ
C(t)
∇ · (f − uσ) dx = 0 (5.52)
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Extending (4.20) brings to the differential form of Euler equations written in ALE frame-
work

∂ (JAu)
∂t

∣∣∣∣∣
X

+ JA∇ · (f − uσ) = 0 (5.53)

Given a vector ξ ∈ R2 the jacobian of the fluxes in ALE framework writes

K(u, ξ,σ) = d

du (f − uσ) · ξ = df
du · ξ −

d

du (uσ) · ξ

= A · ξ − d

du ((σ · ξ) u) = A · ξ − σ · ξdu
du

= Ax(u) ξx + Ay(u) ξy − (σxξx + σyξy) I4 (5.54)

There is a local modification of the jacobian matrix due to the ALE part in the flux. The
new eigenvalues, all real, are grouped into the diagonal matrix

Λ(u, ξ,σ) = (u− σ) · ξ I4 −Diag {c, 00,−c} (5.55)

Right and left eigenvectors does not change with the reference system and remains the
one computed in the Eulerian framework R(u, ξ), L(u, ξ).

5.5 RD-RK2 for Euler Equation in ALE framework

This paragraph rapresents the last step of the thesis: the matrix RD schemes presented
in paragraph (5.2) together with the explicit Runge-Kutta time integrator of paragraph
(4.4.2) are used to approximate Euler Equation in ALE formulation.
The extension to systems of the RD explicit Runge Kutta two approximation for scalar
ALE conservation laws expressed by (4.51)(4.54) is straightforward. Using the same
notation introduced for that formulas, the selective lumped formulation writes

|S̃n+1/2
i |∆uki

∆t = −
∑
K

ΦRK(k)
i −

∑
j

m̃GAL
ij

∆ukj
∆t

 (5.56)

where the definition for the scalar |S̃n+1/2
i |, m̃GAL

ij are the same of paragraph (4.4.2) while
for the vector ∆uki , ∆ukj we use simple extensions of the scalar definitions already given.
For the residual the scalar definition (4.50) is rewritten in a matrix RD formalismΦRK(1)

i = Φi(uh)
ΦRK(2)
i = ∑

j∈Km
K
ij

u1
j−unj
∆t + 1

2 (Φi(u1
h) + Φi(unh))
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5 Residual Distribution for Euler Equations with moving grids

For the global lumped formulation one has|S̃i
n+1/2|u

1
i−uni
∆t = −∑K ΦRK(1)

i

|S̃i
n+1/2|u

n+1
i −u1

i

∆t = −∑K ΦRK(2)
i

(5.57)

The only passage where some care is needed is the computation of the total residual which
becomes

ΦK(uh) =
ˆ
K

(
∇ · f(uh)− σh∇uh

)
dx

Using, for the advective part, the linearized form of the residual (5.50), the total residual
for Euler equation in ALE framework writesˆ

K

(
∇ · f(uh)− σh∇uh

)
dx =

(
Ax (z̄) ∂uh

∂x
+ Ay (z̄) ∂uh

∂y

)
|K| −

ˆ
K

σh dx · ∇uh (5.58)

Since σh is linear over the element we can evaluate the integral at the second termˆ
K

σh dx =
∑
j∈K

σj
3 |K| = σ̄|K| (5.59)

Thus the linearization remains exact also in ALE framework, hence the conservativity of
the method is preserved. Remember how we compute the gradient of a linear function
over a triangle

∇uh = 1
2|K|

∑
j∈K

njuj (5.60)

With some calculation the total residual (5.58) becomes
ˆ
K

(
∇ · f(uh)− σh∇uh

)
dx =

(
Ax (z̄) ∂uh

∂x
+ Ay (z̄) ∂uh

∂y

)
|K| − σ̄ · ∇uh|K|

= 1
2

Ax (z̄)
∑
j∈K

nx,juj + Ay (z̄)
∑
j∈K

ny,juj

− 1
2σ̄

∑
j∈K

njuj

=
∑
j∈K

1
2 (Ax (z̄)nx,juj + Ay (z̄)ny,juj)−

∑
j∈K

(1
2σ̄ · nj I4

)
uj

=
∑
j∈K

(1
2A(z̄) · nj −

1
2σ̄ · nj I4

)
uj

=
∑
j∈K

KALE
j uj (5.61)

This results in the following modifcation of the upwind matrix which closely resamble the
upwind parameter obtained in the scalar case (4.27). Infact from the above equation

KALE
j = Kj −

1
2σ̄ · nj I4 (5.62)
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5.6 Boundary conditions

The upwind matrix is used to define the various matrix linear schemes, LxF (5.26), LDA
(5.28), N (5.29), SUPG (5.27). The non linear schemes, both the limited (5.38) and the
blended one (5.34), are built starting from the linear ones, where the only additional
information we need are the matrices of right and left eigenvectors of the Roe linearized
jacobian K(z̄, ξ) which does not change respect to the Eulerian formulation.
Finally for the computation of the residual ΦRK(k)

i we reminds the scalar formulas in
section (3.1.1) which can be immediatly extended to systems.

5.6 Boundary conditions

Up to now the imposition of boundary conditions has not been addressed yet, it has been
assumed that the elements share no edges with the boundary. Here we follow [21]. If an
element K share an edge ΓK with the boundary Γh, the following boundary residual has
to be added to the total one computed in (5.15)

ΦΓK =
ˆ

ΓK

(
f∂(uh)− f(uh)

)
· n dx (5.63)

where f∂ is the boundary flux. We have already seen that conservation implies the fol-
lowing relation ∑

i∈Th

∑
K∈Di

ΦK
i =

ˆ
Γh

f∂(uh) · n dx (5.64)

Separating the contribution of the domain residuals ΦK,d
i and the contribution of the

boundary ones ΦΓK
i , the above relation writes∑
i∈Th

∑
K∈Di

ΦK
i =

∑
i∈Th

∑
K∈Di

ΦK,d
i +

∑
i∈Γh

∑
K:K∈Di,∂K∈Γh

ΦΓK
i

=
∑
K∈Th

∑
j∈K

ΦK,d
j +

∑
K:∂K∈Γh

∑
j∈ΓK

ΦΓK
j (5.65)

Conservation (5.64) is respected if the distribution for the boundary residual respects the
following relation ∑

j∈ΓK
ΦΓK
j = ΦΓK

This means that we have to split separately the boundary residual and the domain ones.
A solution could be a centered distribution using the trace of the Galerkin shape function
along the boundary ϕj(x) = ϕj(x)|ΓK

ΦΓK
j =

ˆ
Γh

(
f∂(uh)− f(uh)

)
· nϕj(x) dx

Two types of conditions can be imposed continuosly along the boundaries
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5 Residual Distribution for Euler Equations with moving grids

1. Wall boundary conditions: we impose the condition u · n = 0 directly when we
compute the product f∂ · n in (5.63). This correspond to have

f∂(uh) · n =


0

p(uh)nx
p(uh)ny

0

 (5.66)

2. Inflow/outflow boundary conditons: for a scalar equation, if a boundary point is of
inflow the freestream state u∞ is imposed. For systems of equations we encounter
the problem that, at every boundary points, we have to decide for which variables
the same point is of inflow/outflow, hence for which variables we have to impose the
boundary condition. This is determined by the sign of the eigenvalues of the local
jacobian K = A(uh) · n. For the l-th eigenvalue

λl > 0 inflow point for wl

λl ≤ 0 outflow point for wl

The eigenvalues defines the matrices Λ−, Λ+. Imposing the boundary values on the
linearized residual in characteristic variables

f∂(wh) · n = Λ−wh + Λ+w∞

Then transforming back in conserved variables we get the correct boundary flux

f∂(uh) · n = K−(uh)uh + K+(uh)u∞ (5.67)

5.7 Numerical Results

We first present a test case to prove that the ALE formulation of Euler equations, imple-
mented as proposed in section (5.5), does not spoil the accuracy property of its Eulerian
counterpart. The second test case is a Riemann problem to see if we are able to recover
the Eulerian results, in terms of positivity and accuracy, when shock waves are present.
For this cases, a comparison with the results obtained on a fixed grid is invoked to prove
the effectiveness of the method. The following mapping involving the usual distortion of
the grid with sinusoidal law is used. At the final time it reduces to the identity mapping
and we can compare results on the same gridx = X + 0.1 sin (2πX) sin (2πY ) sin (2π t/tmax)

y = Y + 0.1 sin (2πX) sin (2πY ) sin (2π t/tmax)
(5.68)
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5.7 Numerical Results

We believe that, summing up these last two experiments with the scalar ones, the for-
mulation has been tested enough. We can conclude that the ALE reformulation of the
RK2-RD scheme of Ricchiuto and Abgrall, as it is implemented in this thesis, give quite
good result. At this point a very simple experiment where moving boundaries are involved
is given.

Time step is computed according to

∆t = CFL min
i∈Th

|Si|∑
K∈Di 3αK

where CFL = 0.8.

5.7.1 Advection of a Vortex

The accuracy of the schemes is measured on the advection of a constant density vortex.
The test case is the one used in [22]. Initial conditions are now presented. The flow
velocity is given by the sum of a freestream velocity and a circumeferential perturbation

u0 =
[

6
0

]
+ ∆u (5.69)


∆u =

 −yc
xc

ω if r < 0.25

∆u = 0 if r ≥ 0.25
(5.70)

with xc = x−0.5, yc = y−0.5, ω = 15 (cos4πr + 1) and r =
√
x2
c + y2

c . Density is choosen
constant ρ0 = 1.4, the pressure is a given by

p0 = pm + ∆p (5.71)

∆p = 152ρ

(4π)2

(
2 cos (4πr) + 8πr sin (4πr) + cos (8πr)

8 + 4πr sin (8πr)
4 + 12π2r2

)
+ C

(5.72)
The constant C is fixed such that the pressure at r = 0.25 is the freestream pressure
p0 = pm = 100. The maximum Mach number is Mmax

0 = 0.8.

The problem is solved on a square domain [0, 1]× [0, 1] until a final time tmax = 1/6. The
domain is approximated with 4 unstructured triangulations with element’s reference size
shown in table. Freestream boundary conditions are imposed at y = ±0, 1 through (5.67)
and periodic boundary one are used at x = ±0, 1.
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5 Residual Distribution for Euler Equations with moving grids

Figure 5.1: Advection of a Vortex for linear schemes (RK-F1-SL). 15 equispaced pressure
isolines between level 94 and 101. Left column: Eulerian. Right column: ALE.
From the top, in order of rows: LDA, SUPG

In figure (5.3) some results are presented: the convergence curves are qualitatively similar
to the ones obtained for the scalar advection of a smooth profile. From figure (5.2) we
see that results closely follow the one in Eulerian framework. Second order of accuracy is
achieved also in ALE framework for both the lumped and the selective formulation. The
lowest convergence rate (equal to 1.5) is observed for the LDA-N scheme but, again, this
is due to a switch to the first order N scheme in regions where strong gradients of the
vortex are present.

grid h
1 1/40
2 1/80
3 1/160
4 1/320

96



5.7 Numerical Results

Figure 5.2: Advection of a Vortex for non linear schemes (RK-F1-SL). 15 equispaced pres-
sure isolines between level 94 and 101. Left column: Eulerian. Right column:
ALE. From the top, in order of rows: LDA-N, LLxF-SUPG
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Figure 5.3: Advection of a Vortex. Order of Convergence
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5.7 Numerical Results

5.7.2 A 2D Riemann problem

This test case is contained in [23]. We use it to test the shock-capturing capabilities of the
schemes. With reference to the notation of the figure (5.4), the initial solution is given by

(
ρ u v p

)
=



(
1.5 0 0 1.5

)
state a(

0.1379928 1.2060454 1.2060454 0.0290323
)

state b(
0.5322581 1.2060454 0 0.3

)
state c(

0.5322581 0 1.2060454 0.3
)

state d

(5.73)

The structure of the solution is very complex. Two normal shocks are interacting with two
oblique shocks. This interaction generates two couples of symmetric lambda shocks with
the appereance of contact discontinuities emanating from each of the 4 triple points. The
amount of fluid that passes through the upper lambda shock structures (hence through
two oblique shocks) is then pushed by the pressure gradient between state a and b into
a transonic jet against the normal shock. The domain is a box [0, 1] × [0, 1] and it is
approximated through a structured triangulation with element reference size h = 1/200.
The final time is tmax = 0.8.
Only the non-linear schemes are expected to give postive and second order accurate re-
sults, hence results in figure are referred only to the LDA-N and LLxF-SUPG schemes.
The LDA-N case is shown in figure (5.5)(5.6). The ALE results are overlapped, almost
everywhere, with the ones obtained with Eulerian formulation on a fixed grid. As in that
case, only when the global lumped formulation is used, we get positive results. With
selective lumping, the solution is quite monotone but small oscillations appears near the
discontinuities.
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0.8
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Figure 5.4: 2D Riemann Problem: initial solution
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Figure 5.5: 2D Riemann problem computed with LDA-N scheme and RK2-F1-SL formu-
lation. Top: 30 equispaced density isolines between maximum and minimum
values of 1.65 and 0.1. Top left: Eulerian formulation. Top right: ALE formu-
lation. Middle: comparison of the solutions along the symmetry line. Bottom:
comparison of the solutions at y = 0.85
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Figure 5.6: 2D Riemann problem computed with LDA-N scheme and RK2-F1-GL formu-
lation. Top left: 35 equispaced density isolines for Eulerian formulation. Top
right: 35 equispaced density isolines for ALE formulation. Middle: compar-
ison of the solutions along the symmetry line. Bottom: comparison of the
solutions at y = 0.85
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Figure 5.7: 2D Riemann problem computed with LLxF-SUPG scheme and RK2-F1-SL
formulation. Top left: 35 equispaced density isolines for Eulerian formulation.
Top right: 35 equispaced density isolines for ALE formulation. Middle: com-
parison of the solutions along the symmetry line. Bottom: comparison of the
solutions at y = 0.85
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Figure 5.8: 2D Riemann problem computed with LLxF-SUPG scheme and RK2-F1-GL
formulation. Top left: 35 equispaced density isolines for Eulerian formulation.
Top right: 35 equispaced density isolines for ALE formulation. Middle: com-
parison of the solutions along the symmetry line. Bottom: comparison of the
solutions at y = 0.85
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5.7 Numerical Results

5.7.3 A very simple application: wind tunnel with wall deflection

We have seen that, for all the test cases that we have run, the ALE formulation proposed
in this thesis works quite good and we are able to recover almost the same result of
Eulerian formulation. A very simple application, just to see the use of ALE formulation,
is shown, involving moving boundaries. In this case Eulerian formulation cannot work
without an interpolation step. The Eulerian formulation with the interpolation step has
not been implemented, henco no comparison is given for this case.
We have a 2D channel [2× 1] with an hinge on the lower surface placed at x = 0.25.
This hinge allows a rigid deflection of the lower wall which is governed by the following
exponential motion law for angle α defined from the horizontal axisα(t) = αmax

(
1− e−t/τ

)
t ≤ tswitch

α(t) = αmax − 2αmax
(
1− e−(t−tswitch)/τ

)
t > tswitch

(5.74)

We choose the following values

tswitch = 1.25, τ = 0.05, αmax = 20°

The final time for our simulation is tmax = 2.5. The domain is approximated with an
unstructured triangulation with an element reference size h = 1/160. During the simula-
tion the grid is distorted solving a Laplace equation along every abscissa with boundary
conditions given by the flap displacement at that abiscissa. In figure (5.9) the mapping
for the grid is shown. Since shock waves are expected, we have tested only the non-linear
schemes LDA-N and LLxF-SUPG. The formulation choosen is F1-GL. The Mach number
at the inlet is M = 3.
From the experiments we can observe that, after the transient, the shock structure finds
a stable configuration close to the the analitical solution (Mach reflection of the shock at
the upper surface) at t w 1.2. Immediately after the wall deflects an unsteady interaction,
between the shock and the expansion wave rising from the corner, is observed. The shock
wave, while it is going back, takes an S-shaped configuration. In particular, in the region
near the lower wall, the shock seems to be particularly strong becouse of the interaction
between the accelerating flow, in expansion after the corner, and the compressed region
at the outlet. Finally, at t w 2.5, the supersonic Prandtl-Mayer expansion is recovered.
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Figure 5.9: Topology for the grid. Left: compression. Right: expansion.
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5.7 Numerical Results

Figure 5.10: Mach 3 wind tunnel with LDA-N RK2-F1-GL: 50 equispaced density isolines
between extreme values of 0.2− 6.5 at different time instants
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Figure 5.11: Mach 3 wind tunnel with LDA-N RK2-F1-GL: 50 equispaced density isolines
between extreme values of 0.2− 6.5 at different time instants
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5.7 Numerical Results

Figure 5.12: Mach 3 wind tunnel with LDA-N RK2-F1-GL: 50 equispaced density isolines
between extreme values of 0.2− 6.5. Final time
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Figure 5.13: Mach 3 wind tunnel with LLxF-SUPG RK2-F1-GL: 50 equispaced density
isolines between extreme values of 0.2− 6.5 at different time instants
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5.7 Numerical Results

Figure 5.14: Mach 3 wind tunnel with LLxF-SUPG RK2-F1-GL: 50 equispaced density
isolines between extreme values of 0.2− 6.5 at different time instants
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Figure 5.15: Mach 3 wind tunnel with LLxF-SUPG RK2-F1-GL: 50 equispaced density
isolines between extreme values of 0.2− 6.5. Final time
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Conclusion

In this thesis we have developed a novel class of genuinely explicit residual based discretiza-
tions for conservation laws on moving meshes. This has been achieved by proposing a new
Arbitrary Lagrangian Eulerian (ALE) formulation for the explicit Runge Kutta Residual
Distribution (RD) schemes of [9]. In the manuscript we have slowly discussed all the
aspects related to this study, from the basics of RD schemes, to the extensive numerical
testing of the new proposed method.

In Chapter 2 many properties of RD have been introduced. Among other classes of
numerical methods used to solve hyperbolic equations, RD are the least known. This class
of schemes has an inherently geometrical interpretation of the concept of upwinding, this
leading to less diffusive schemes respect, for example, to first order two dimensional Finite
Volume method (FV). The name of the two linear RD schemes used in computations
recall to the reader this property: the first order Narrow scheme (N) and the second order
Low Diffusion A scheme (LDA). Other two popular schemes have been reformalized as
linear RD schemes: the first order Lax Friederich scheme (LxF) and the second order
Streamline Upwind Petrov Galerkin scheme (SUPG). A stability criteria and an error
estimation for RD in comptact prototype form is also given. Nonlinear schemes are
invoked in order to have both positive and second order accurate solvers. Two design
philosophy are followed: a strategy borrowed from FV is the blending of a positive scheme
with a second order one through the use of an appropriate limiter, a second approach,
developed directly into a RD contest, consists in limiting in a correct way a first order
distribution. In theory a limited schemes is positive and second order accurate, but, even
in simple experiments, spurious oscillations spoil the order of accuracy and a stabilization
term is necessary to fix the problem. In computations both the approaches have been
tested: the blended LDA-N scheme and the Limited Lax Friederich stabilized scheme
(LLxFs).

PDEs are discretized in time with the explicit Runge Kutta 2 (ERK2) tested by Ricchiuto
and Abgrall on fixed grids, for conservation laws written in Eulerian framework. First
conservation laws are discretized in time, a full discretization is obtained with Petrov
Galerkin Finite Elements, the analogy between stabilized Finite Elements (FE) and RD
allows to recast the scheme into a RD contest, finally, through high order mass lump-
ing, consistent mass matrix is replaced by a median dual cell area. Since two Galerkin
mass matrices appears, lumping is performed with two different strategies: on both ma-
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trices (Global Lumped formulation) or only on the right-end side term (Selective Lumped
formulation).
Conservation laws have been finally presented in Arbitrary Lagrangian Eulerian (ALE)
formulation together with the constraint of the Geometric Conservation Law (GCL). With
a little more algebra it is possible to repeat the same steps listed in the previous paragraph
for the new equations: the time discretization, the Petrov Galerkin space discretization,
this time with an appropriate stabilization term, and finally the reformulation into RD.
The stabilization term, in particular the differential operator inside it, was choosen not
only concerning accuracy, stability and conservation properties, but also in order to satisfy
the discrete counterpart of the GCL. We ended up with a scheme that results in minor
modifications respect to the Eulerian algorithm. The ALE part in the fluxes modifies the
definition of the residual but, at the end, this is interpreted as a local modification of the
advective field. The median dual cell area is modified by the presence of a term involving
the divergence of the grid velocity instead. In all the computation that we did, this term
that takes into account of grid distortion, never spoiled the positivity of the median dual
cell area.
The method has been studied extensively through theorical investigation and numerical
experiments. Numerical results were in good agreement with Eulerian ones. The two
advection test cases provided numerical evidence that convergence order is not spoiled
when arbitrary grid distortions are involved. On smooth solutions SUPG and LDA are
second order accurate, moreover LDA-N and LLxFs are also second order accurate, thus
the definition of blending and limiting procedures, even if extended directly from the
Eulerian formulation, in such cases works well. The Burger’s equation test case and the
Riemann problem showed the ability, for LLxFs and LDA-N both in the Global Lumped
version, to handle well discontinuities.
Unfortunately in this thesis we did not have the opportunity to cover some aspects that
were not clear enough or that, in our opinion, deserve further studies. In the following
list we enumerate them briefly

1. A rigorous stability analysis of the scheme in the ALE formulation, in particular for
positive schemes (N,LxF), in order to understand some not clear phenomena. With
Selective Lumped formulation oscillations appears near shock waves. The Global
Lumped formulation closely recalls the compact prototype form but the presence
of different terms arising from the ALE approach, makes a further investigation
necessary. Numerical simulations seems to confirm that the ERK2-RD N scheme,
in the Global Lumped formulation, is positive.

2. A ridefinition of some parameters such as limiters and blending procedures that
have been extended directly from the Eulerian scheme.

3. Even if strong and arbitrary distortions of the grid have been applied, only sinusoidal
mappings have been tested. For the last experiment infact, the grid is distorted ac-
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cording to a one dimensional Laplace equation but no comparison exists, apart from
the analytical solution at the end of the transients. The classical two dimensional
pitching airfoil test would have represented an important test.

To conclude we mention possible future developments:
1. Grid adaptation not only to moving boundaries but also through a mechanism of

node insertion/removal in order to refine the grid where strong gradients of the
solution are expected. A succesfull algorithm has been already implemented by
Guardone and Isola in a FV context by [27]

2. The extension to third order accurate solutions through high order space and time
approximations. RD schemes that converges with order higher then two have been
studied extensively for the steady case by Abgrall. The extension of the present
work to third order should involve higher order elements and also an high order
time discretization such as RK3.
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