
POLITECNICO DI MILANO

Scuola di Ingegneria dei Sistemi

Corso di Laurea Magistrale in Ingegneria Matematica

Tesi di laurea magistrale

GPU implementation of a shell element

structural solver aimed at fluid-structure

interaction problems

Relatore:

Prof. Alfio Quarteroni

Correlatori:

Dott. Massimiliano Cremonesi

Dott. Nicola Parolini

Tesi di laurea di:

Andrea Bartezzaghi

matricola 770702

Anno accademico 2012-2013

3

Ringraziamenti

Innanzitutto, desidero ringraziare calorosamente il Prof. Alfio Quarteroni

per avermi concesso l’opportunità di svolgere la tesi sotto la sua supervisione,

per il suo supporto e la sua disponibilità nonostante i numerosi impegni.

Ringrazio molto il Dott. Nicola Parolini e il Dott. Massimiliano Cremonesi

per il costante aiuto che mi hanno fornito durante tutto il periodo di tesi, per

l’immensa pazienza e la disponibilità, a qualsiasi ora del giorno e della notte.

Ringrazio anche il Prof. Umberto Perego e il team di Ingegneria Strutturale

per il supporto fornitomi durante lo sviluppo del codice strutturale, e il

Dott. Matteo Lombardi per il tempo che mi ha dedicato a Losanna e per

avermi aiutato a fare chiarezza sulla parte di interazione fluido-struttura.

Un ringraziamento speciale lo dedico alla mia famiglia, in particolare ai miei

genitori, che da sempre mi motivano e mi danno la forza per andare avanti,

e le mie sorelle, che mi sopportano ogni giorno. Ad Alessandra, per avermi

sempre incoraggiato e sostenuto anche nei momenti peggiori. A Ruggero,

per le lan, le sessioni di lavoro e la potenza computazionale che mi ha messo

a disposizione. A Boes, Gio e Silvia per le distruttive arrampicate. A Ele,

Kons, Manu e Miri per gli svaghi, le cene e le bevute. A Jack, Kens, LG e

Nick per le serate poker e Pes. A Giorgio, Ivan e Pagan per la sopravvivenza

in Svizzera e le “studiate” al Rolex Center. A tutti i miei amici, per avermi

aiutato a sopravvivere alla vita di studente.

Infine al Cassone, che, nonostante la veneranda età e i frequenti acciacchi,

continua ad essere un fedele compagno di avventure.

Abstract

The study of thin structures is very common nowadays and useful in dif-

ferent fields. An important example is the analysis of sail dynamics. In

this context, accurate simulations of the interaction between the sail and

the wind are also required. However, this kind of fluid-structure interaction

problems are very computationally expensive.

First objective of this thesis is the implementation of an highly efficient shell

finite element structural solver, designed to run on GPU (Graphics Process-

ing Unit) hardware. In order to fully exploit the GPU computational power,

an explicit central difference time-advancing scheme is adopted. Domain is

discretized using MITC4 shell elements in large displacements formulation,

due to their adequate numerical properties and ability of avoiding shear-

locking problems and simulating sail wrinkles. Techniques adopted during

the development, such as algorithms, memory management and code op-

timizations, are described in details. Numerical tests and benchmarks are

carried out and performances are compared with the commercial software

Abaqus.

Second objective of this thesis is the development of a partitioned strongly

coupled fluid-structure interaction solver, implemented in OpenFOAM, an

open-source CFD framework. The fluid dynamics problem is solved using

the PISO scheme, while the solver implemented in the first part handles the

structural problem. The mesh-motion process and interpolation algorithms

are analyzed and implemented in GPU in order to gain performance and

reduce memory requirements. Finally, results of numerical and performance

tests on the developed FSI solver are reported.

Keywords: fluid-structure interaction, finite element method, shell dynam-

ics, mesh-motion, GPU parallelization, CUDA

3

Sommario

L’analisi di strutture sottili è attualmente un importante settore di ricerca,

anche in relazione allo studio di fenomeni di interazione fluido-struttura. Un

esempio è l’analisi della dinamica delle vele interagenti con il vento. Questo

tipo di problemi risultano però essere computazionalmente molto onerosi.

In questa tesi, inizialmente si focalizza l’attenzione sul solo problema strut-

turale. Si propone lo sviluppo di un efficiente solutore ad elementi finiti di

tipo guscio, progettato appositamente per l’esecuzione in GPU (Graphics

Processing Unit). Il software viene successivamente integrato in un’applica-

zione più ampia mirata alla risoluzione di problemi di interazione fluido-

struttura.

Per quanto riguarda il solutore strutturale, per poter usufruire appieno della

potenza computazionale offerta dalla GPU, l’avanzamento in tempo viene

effettuato tramite uno schema esplicito alle differenze finite centrate. Il

dominio è discretizzato tramite elementi guscio di tipo MITC4, con formu-

lazione in grandi spostamenti. Questo tipo di elementi è l’ideale per lo studio

della dinamica delle vele, dato che sono immuni a problemi di shear-locking

e permettono di simulare accuratamente le increspature del tessuto senza

bisogno di modelli aggiuntivi. In questo documento, tutte le tecniche adot-

tate durante lo sviluppo del codice sono discusse dettagliatamente, assieme

agli algoritmi, alla gestione della memoria e alle ottimizzazioni effettuate.

Utilizzando il software Abaqus come riferimento, sono riportati i risultati

di test sia numerici che di prestazioni, sottolineando l’ottimo guadagno ot-

tenuto grazie all’implementazione in GPU in termini di tempi di calcolo.

Secondo obiettivo di questa tesi è lo sviluppo di un’applicazione destinata

alla risoluzione di problemi di interazione fluido-struttura, all’interno dell’am-

biente open-source OpenFOAM. Il problema strutturale viene risolto tramite

il solutore sviluppato nella prima parte, mentre quello fluido tramite lo

schema PISO. Il due problemi sono legati da un accoppiamento forte e par-

tizionato, con sotto-rilassamento di Aitken per velocizzare la convergenza.

Viene anche analizzata l’implementazione in GPU degli algoritmi di inter-

polazione e mesh-motion, per incrementare ulteriormente le prestazioni e

diminuire il consumo di memoria. Infine, sono riportati i risultati numerici

su due casi di interazione fluido-struttura, con analisi dei benefici ottenuti

grazie all’utilizzo della GPU.

4

Parole chiave: interazione fluido-struttura, metodo degli elementi finiti, di-

namica dei gusci, movimento della griglia, parallelizzazione in GPU, CUDA

Contents

Introduction 13

I Models 17

1 Solid mechanics 19

1.1 Static analysis . 20

1.1.1 Formulation using covariant coordinates 23

1.2 The MITC4 element . 28

1.2.1 Small displacements formulation 29

1.2.2 Large displacements formulation 32

1.2.3 Mixed interpolation 35

1.3 Dynamic analysis . 37

1.3.1 Central difference method 38

2 Fluid dynamics 41

2.1 Navier–Stokes equations . 41

2.2 Finite volume method . 43

2.3 Solution of the pressure problem 44

3 Fluid-structure interaction 47

3.1 Mesh-motion algorithms . 47

3.2 Radial Basis Functions interpolation 49

3.3 Inverse Distance Weighting interpolation 51

3.4 Fluid-structure coupling . 52

5

6 Contents

II Implementation 55

4 GPU parallelization 57

4.1 CUDA . 59

5 Structural solver 65

5.1 Development framework . 65

5.2 CPU solver implementation 68

5.3 GPU solver implementation 71

5.3.1 First GPU implementation 72

5.3.2 Optimized GPU implementation 77

5.4 Structural test cases . 88

5.4.1 Uniformly loaded circular plate 89

5.4.2 Clamped rectangular plate 99

6 Interpolation and mesh-motion libraries 107

6.1 Mesh-motion solvers . 107

6.2 Implementation of RBF interpolation 110

6.3 Implementation of IDW interpolation 111

6.4 Performance comparison . 112

6.5 Matrix-free IDW interpolation 115

6.5.1 Performance comparison 116

7 Fluid-structure interaction solver 123

7.1 Implementation . 123

7.2 Cavity with flexible bottom test case 130

7.3 Gennaker sail simulation . 137

Conclusions 151

Bibliography 155

List of Figures

1.1 MITC4 shell element. 28

1.2 Sampling points considered for mixed interpolation. 36

1.3 Warped shell element. 36

3.1 Sketch of the main cell quality measures. 48

3.2 FSI coupling algorithm flow chart. 52

4.1 Example of two-dimensional CUDA thread hierarchy. 60

4.2 CUDA memory spaces. 61

5.1 Simplified sketch of ShellProblem class internal structure. . . 67

5.2 Generic thread access pattern that helps coalescing. 73

5.3 Partitioning of a quadrangular mesh. 74

5.4 Example of node shared by many elements. 74

5.5 Partitioning of a sail mesh. 75

5.6 Greedy algorithm used to create mesh partitions. 76

5.7 Steps performed in time integration kernel. 80

5.8 Thread access pattern with AoS layout. 81

5.9 Thread access pattern with SoA layout. 82

5.10 Example of vector packing. 83

5.11 Local node numbering for neighbour arrays. 85

5.12 Thread block size tuning for a problem with two different

meshes on two different GPU boards. 87

5.13 Circular plate test case. 89

5.14 L2-norm error against analytical solution. 91

5.15 Deformed mesh after 100 seconds (3023 elements). 92

5.16 Solution comparison against Abaqus. 92

5.17 Computational time (double-precision arithmetic). 96

7

8 List of Figures

5.18 Computational time (single-precision arithmetic). 96

5.19 Speedup (double-precision arithmetic). 97

5.20 Speedup (single-precision arithmetic). 97

5.21 Clamped cantilever test case. 99

5.22 Deformations of the cantilever at different times. 100

5.23 Solution comparison against Abaqus. 101

5.24 Computational time comparison (double-precision arithmetic). 104

5.25 Computational time (single-precision arithmetic). 104

5.26 Speedup (double-precision arithmetic). 105

5.27 Speedup (single-precision arithmetic). 105

6.1 Different interpolation results obtained by the inclusion or

non inclusion of fixed points into the control points set. . . . 108

6.2 movingBlock domain. 112

6.3 Deformed meshes at different times. 113

6.4 Speedups gained by the GPU implementation of interpolation

algorithms over the CPU one. 114

6.5 Comparison of interpolation times. 118

6.6 Speedup achieved by the GPU matrix-free implementation. . 118

7.1 3D cavity problem setup. 130

7.2 Velocity magnitude field on the X-Z plane at different times. 131

7.3 Bottom wall deformations at different times. 132

7.4 Comparison with numerical results reported in [34]. 133

7.5 Solutions with different mesh refinements (dt = 0.1). 135

7.6 Solutions with different time-step sizes (on finest mesh). . . . 135

7.7 Dependence of the amount of FSI sub-iterations on FSI time-

step size. 136

7.8 Particular of the fluid mesh. 137

7.9 Velocity profile imposed at inflow boundaries. 138

7.10 Structural sail mesh and fluid mesh. 139

7.11 Sail displacements at different times. 140

7.12 Slice view of the velocity field after 3 s. 141

7.13 Time taken to perform a FSI sub-iteration. 142

7.14 Distribution of time inside a FSI sub-iteration. 143

7.15 Memory allocated by each node. 144

7.16 Time taken to perform a FSI sub-iteration on the PLX. . . . 146

List of Figures 9

7.17 Distribution of time inside a FSI sub-iteration on the PLX. . 147

7.18 Absolute time and percentage of the total time taken by the

various operations inside a FSI sub-iteration with the fine

mesh on the PLX. 148

7.19 Memory allocated by each node. 149

List of Tables

5.1 Comparison with analytical solution. 90

5.2 Meshes used for performance comparison. 93

5.3 Time-step sizes used by Abaqus during the simulations. . . . 94

5.4 Computational time in seconds (double-precision arithmetic). 95

5.5 Computational time in seconds (single-precision arithmetic). . 95

5.6 Meshes used for performance comparison. 101

5.7 Time-step sizes used by Abaqus during the simulations. . . . 102

5.8 Computational time in seconds (double-precision arithmetic). 103

5.9 Computational time in seconds (single-precision arithmetic). . 103

6.1 Meshes used in the interpolation benchmark. 113

6.2 Average interpolation times. 114

6.3 Meshes considered for the benchmark. 117

6.4 Timings in seconds. 117

6.5 Initialization timings in seconds. 119

6.6 Theoretical memory consumption. 120

6.7 Actual memory consumption. 120

7.1 Different meshes used. 133

7.2 FSI sub-iteration timings (in seconds). 142

7.3 Total amount of memory allocated. 144

7.4 FSI sub-iteration timings (in seconds) on the PLX. 146

7.5 FSI sub-iteration timings (in seconds) with the fine mesh on

the PLX. 148

7.6 Total amount of memory allocated. 149

11

Introduction 13

Introduction

Scientific computing is a continuously growing field. Thanks to the new

technologies, there is always more computational power available. This per-

mits the adoption of more and more complex and sophisticated mathemat-

ical models to simulate reality, which aid in most engineering fields.

The study of thin solids, with size along one dimension much smaller

than along the others, is of fundamental importance in different applications.

Accurate analysis of laminate sheet dynamics is necessary to optimize and

prevent problems during forming or molding processes. Studies regarding

package production for liquid food have been conducted in [5, 9, 14] using

shell finite element formulations. Sail dynamics is another subject which

requires the modeling of thin elastic structures. In particular, in order to

fully study the dynamics of a sailing boat, it is necessary to analyze the

interaction between the sails and the air field in which they are immersed.

This kind of fluid-structure interaction problems has started to be analyzed

relatively recently, since that the required computational time is very high.

Analysis on sail-wind interaction has been conducted in [20, 21, 28, 33]. In

this application shell elements are of fundamental importance in order to

correctly capture sail wrinkling phenomena.

In recent years, the general purpose GPU (Graphics Processing Unit)

programming scene is growing fast. While being initially designed to accel-

erate real-time 3D graphics operations, over the years programmers realized

that GPUs’ immense power could be used also for different applications. Its

inherent vectorized architecture and massive amount of floating-point arith-

metic units make it a very powerful tool for the scientific programmer at

a relatively low cost. While in the past GPU programming was hard and

required lots of technical notions about the underlying hardware architec-

ture, nowadays thanks to the introduction of frameworks such as CUDA�,

by NVIDIA® Corporation1, or OpenCL�, by the Khronos� Group2, it has

become more accessible and widespread.

The main objective behind this work is the design of a GPU based im-

plementation of a shell element structural solver. In order to fully exploit

the GPU computational power, an explicit time-stepping scheme based on

1http://www.nvidia.com/object/cuda_home_new.html
2http://www.khronos.org/opencl

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl

14 Introduction

central finite difference is employed [30, 37, 18]. Spatial discretization is

performed adopting the MITC4 shell element [2, 1, 4], a four-node element

with five degrees of freedom per node, three translational and two rota-

tional. This element does not suffer from shear-locking problems thanks to

the different interpolation of in-plane deformation convariant components

from the out-of-plane deformations (the term mixed interpolation derives

from this approach). Thanks to the explicit time-integration method and

mass lumping, the resulting algorithm is well suited for a GPU implementa-

tion. This structural solver has been designed and implemented from scratch

during this work. A complete redesign from the start was needed in order to

develop an algorithm specifically aimed at running on GPU. Two structural

test cases have been simulated and results checked against the literature

and the commercial software Abaqus FEA®3. Performance benchmarks

have also been conducted against Abaqus, in order to have a measure of the

speedup gained thanks to the GPU implementation.

The second purpose of this work is the inclusion of the presented GPU

structural solver in an integrated framework for the simulation of fluid-

structure interaction problems. All the recent FSI models have the big limit

of being very computationally and memory demanding. A good solution is

thus to exploit the GPU hardware in order to speed up computations. In

this work a segregated strongly coupled solver is employed [29, 12, 20]. It has

been implemented inside the open-source OpenFOAM® framework4. The

fluid problem is formulated resorting to the Arbitrary Lagrangian–Eulerian

(ALE) approach [20], while the structural problem is expressed in a total La-

grangian formulation. Given the fluid domain Ωf and the structural domain

Ωs, we name F the fluid problem, solved in Ωf , S the structural problem,

solved for the displacements (although using shell elements rotations in each

node are computed also) in Ωs, and M the mesh-motion problem, which cal-

culates the motion of mesh internal points given the boundary movements,

solved in the initial fluid domain Ω0
f .

3http://www.simulia.com
4http://www.openfoam.com

http://www.simulia.com
http://www.openfoam.com

Introduction 15

This leads to the following coupled problem:

F (v, p, η̇) = 0 in Ωf (t)

S (u) = 0 in Ωs (t)

M (η) = 0 in Ω0
f

v = u̇ on Γ (t)

σf (v, p) nf = σs (u) ns on Γ (t)

η = u on Γ0

, (1)

where v and p represent the fluid velocity and pressure respectively, u the

displacements computed solving the structural problem and η the positions

of fluid mesh points. The fluid problem F requires also the velocity of mesh-

motion η̇ in its ALE formulation. The last three conditions link the problems

together at the interface Γ: a kinematic condition ensures that fluid velocity

is equal to structure velocity at the boundary, a dynamic condition makes

sure normal stresses are consistent at the interface and the last statement

imposes the boundary conditions on the mesh-motion problem to reflect the

changes in geometry undergone by the structural mesh.

The incompressible Navier–Stokes equations for the fluid problem are

solved using the PISO algorithm [13]. In wind-sail interaction problems, es-

pecially in downwind configurations, full RANS (Reynolds Averaged Navier-

Stokes) simulations are needed in order to correctly model turbulence in-

fluence; in this work the k − ω SST model is employed (as in [20]). The

structural problem is handled by the presented GPU solver. IDW (Inverse

Distance Weighting, [36, 20]) and RBF (Radial Basis Function, [3]) interpo-

lation algorithms have also been implemented in GPU in order to speed up

the mesh-motion process. A GPU matrix-free approach to IDW interpola-

tion is also presented, which reduces the memory consumption enormously

and permits the usage of larger fluid meshes.

This work is divided into two parts. In the first part, mathematical

models and algorithms behind the solvers are discussed. In chapter 1 the

structural problem is presented, with a brief introduction to shell dynamics

and details about the finite element formulation and time-advancing scheme.

The fluid problem is briefly introduced in chapter 2, together with the finite

16 Introduction

volume discretization of Navier–Stokes equations and the PISO algorithm.

In chapter 3 the partitioned strongly coupled FSI solver is presented. The

second part of this work is opened by a brief introduction to GPU program-

ming, in chapter 4. It is followed by the main discussion about the GPU

structural solver, in chapter 5, where the design and algorithms behind the

implementation are presented and tested. The GPU implementations of

interpolation procedures are explained in chapter 6. Finally, in chapter 7

the full FSI solver is presented, with accompanying results and performance

analysis. At the end of this dissertation, limits of the current implementa-

tions will be discussed and possible future developments will be shown.

This work has been partially supported by Regione Lombardia and CINECA

Consortium through a LISA Initiative (Laboratory for Interdisciplinary Ad-

vanced Simulation) grant.

This work is not approved or endorsed by ESI Group, the producer of the

OpenFOAM® software and owner of the OpenFOAM® trade mark.

Part I

Models

In this first part, the mathematical models and formulations on

which this work is based are presented, together with the under-

lying hypothesis assumed and some numerical schemes used in the

implementation.

17

Chapter 1

Solid mechanics

The primary objective of this work consists in implementing a shell fi-

nite element structural solver. Shells can be used to model solids which

are thinner along one dimension with respect to the others. To describe

their dynamical behavior it is thus necessary to take the more general solid

mechanics equations and apply approximations derived from the underlying

hypothesis of the assumed shell theory.

In this work, the shell model is based on the widely accepted Reiss-

ner–Mindlin kinematical hypothesis [7]. It is assumed that any material

line originally orthogonal to the midsurface in the undeformed configura-

tion remains straight and unstretched during the deformations, even if it

does not remain perpendicular to the midsurface. Furthermore, stresses

normal to the midsurface are assumed to be zero.

In real problems objects are made by materials with different properties

that often change across the whole body. For example, sails are built with

fibers that have different orientations from zone to zone, such that, under

load conditions, the sail tends to assume a pre-designed optimal shape. In

this work, we assume a simple homogeneous isotropic linear elastic material;

however, with the framework developed, the extension to more complex

models should be straightforward. Moreover, in order to cope with large

laminates or sail simulations, solid mechanics is analyzed in the context

of small deformations and large displacements. Loads applied to this kind

of structures are relatively high compared to the overall stiffness, so large

cumulative displacements are expected. Locally, strains remain small and

the equations over the single element can thus follow the small strain theory.

19

20 Chapter 1. Solid mechanics

In this chapter, a basic introduction to shell dynamics is presented, with

references to the Reissner–Mindlin shell theory. Firstly, static analysis is

considered, with a brief discussion about the problem linearization. An ap-

proach based on finite elements is then introduced, with details about small

and large displacements formulation using the adopted MITC4 element. In

the final section, dynamic analysis is discussed and the chosen explicit time-

advancing scheme is briefly presented.

1.1 Static analysis

In order to solve the elastic structural problem, the Virtual Work Prin-

ciple [6] is exploited. To cope with large displacements, equilibrium has to

be imposed in the deformed configuration. The VWP claims that, naming

the displacement field u and the small strain tensor ε, for each valid virtual

variations δtu and δt0ε that satisfy the boundary conditions, we have that:∫
tV

tσijδ
t
0εijd

tV =

∫
tV

fBi δ
tuid

tV +

∫
tSf

f
Sf

i δtu
Sf

i dtS +
∑
m

Fmi δ
tumi , (1.1)

where σ is the Cauchy stress tensor and fB, fSf and Fm express body,

surface and concentrated loads respectively. In this notation, the subscript

on the left represents the initial configuration, while the superscript, again

on the left, represents the current configuration (at time t). The time indexes

in this equation are fictitious, as they just indicate which configuration the

variables belong to; the analysis keeps its static nature, since, at this stage,

we are considering the steady problem.

Following a total Lagrangian approach [1], all integrals are valuated over

the initial configuration. Two new tensors are then needed to express the

internal work with respect to the original configuration:

Wint =

∫
0V

t
0Πij δ

t
0eij d

0V , (1.2)

where e is the Green–Lagrange strain tensor and Π represents the second

Piola–Kirchhoff tensor. In order to better represent these tensors it is nec-

essary to introduce some other quantities.

1.1 Static analysis 21

First of all, the deformation gradient tensor:

t
0Xij =

∂ txi
∂ 0xj

, (1.3)

where 0xj and txi represent coordinates of points on the original configuration

and the current configuration, namely:

tx = 0x + u, (1.4)

where u represents displacements occurred from time 0 to t.

The deformation gradient tensor expresses how fibers have stretched and ro-

tated from time 0 to time t. It can be uniquely decomposed, using the polar

decomposition theorem, into a product of an orthogonal tensor R, repre-

senting rotations, and a symmetric positive definite tensor U, representing

stretches:
t
0X = t

0R
t
0U. (1.5)

Introducing the Cauchy–Green right deformation tensor:

t
0C =

(
t
0X

T t
0X
)
, (1.6)

the Green–Lagrange strain tensor can then be written as:

t
0e =

1

2

(
t
0C− I

)
=

1

2

(
t
0X

T t
0X− I

)
=

1

2

(
t
0U

T t
0U− I

)
. (1.7)

From this equation it is clear how the Green–Lagrange strain tensor is in-

variant with respect to rigid transformations.

The second Piola–Kirchhoff stress tensor is:

t
0Π = det

(
t
0X
)
t
0X
−1 tσ t

0X
−T , (1.8)

where tσ is the Cauchy stress tensor. Π is symmetric and expresses the

stress relative to the reference configuration. It is energy conjugate to the

Green–Lagrange strain tensor and it is invariant to rigid transformations

too.

22 Chapter 1. Solid mechanics

It is easy to demonstrate that [6]:∫
tV

(
tσ : δtε

)
dtV =

∫
0V

(
t
0Π : δt0e

)
d0V. (1.9)

This result is of fundamental importance and allows the integration to be

carried out on the reference volume.

We can now proceed with the linearization of the large displacements

problem around the solution obtained at time t. The vector of displace-

ments is decomposed into two parts, the current known solution tu and the

increment ∆u, such that:

t+dtu = tu + ∆u. (1.10)

The increment is the problem unknown we want to find. The same procedure

is applied to the components of the Green-Lagrange strain tensor:

t+dteij =
1

2

(
t+dtui,j + t+dtuj,i + t+dtuk,i

t+dtuk,j

)
= teij +

1

2

(
∆ui,j + ∆uj,i + ∆uk,i

tuk,j + tuk,i∆uk,j + ∆uk,i∆uk,j
)
.

(1.11)

Therefore, their virtual variations are:

δt+dteij = δt+dtεij + δt+dtηij , (1.12)

where the linear part is:

δt+dtεij =
1

2

(
δ∆ui,j + δ∆uj,i + tuk,iδ∆uk,j + δ∆uk,i

tuk,j
)

(1.13)

and the nonlinear part is:

δt+dtηij =
1

2
(δ∆uk,i∆uk,j + ∆uk,iδ∆uk,j) , (1.14)

having deleted all other known and fixed quantities, since they have no

virtual variation. The second Piola–Kirchhoff tensor is also decomposed:

t+dtΠ = tΠ + ∆Π, ∆Π =
∂Π

∂e
: ∆e = D : ∆e, (1.15)

where ∆e = t+dte − te and D is the fourth-order tensor which expresses

1.1 Static analysis 23

the material constitutive law. Under the assumption of small deformations,

the law that links ∆Π and ∆e is the same that links σ and the small

deformations tensor ε.

In order to proceed with the linearization, the nonlinear part of the

Green–Lagrange strain tensor is neglected, obtaining:

t+dtΠ : δt+dte =
(
tΠ + ∆Π

)
: δt+dte

=
(
tΠij +Dijkl∆ekl

)
:
(
δt+dtεij + δt+dtηij

)
∼=
(
tΠij +Dijkl∆εkl

)
:
(
δt+dtεij + δt+dtηij

)
∼= tΠijδ

t+dtεij + tΠijδ
t+dtηij +Dijδ

t+dtηij +Dijkl∆εklδ
t+dtεij
(1.16)

It is now possible to rewrite the main virtual work principle equation (1.1)

using the linearized expression between the second Piola–Kirchhoff tensor

and the Green–Lagrange tensor. Keeping surface forces only to simplify the

notation, the linearized large displacements equation of equilibrium is:∫
0V

Dijkl∆εklδ
t+dtεijd

0V +

∫
0V

tΠijδ
t+dtηijd

0V = (1.17)

=

∫
t+dtSf

f
Sf

i δtu
Sf

i dt+dtS −
∫

0V

tΠijδ
t+dtεijd

0V, (1.18)

where all terms which do not depend on the increment ∆u have been moved

to the right hand side.

1.1.1 Formulation using covariant coordinates

Other than the standard orthonormal basis, in continuum mechanics

other bases are commonly used, with vectors not orthogonal and not unitary

in modulus. Given an Euclidean space and a fixed origin, three linearly

independent vectors gi, with i = 1, 2, 3, represent a covariant basis for the

space: a generic vector can be expressed as linear combination of the three

basis vectors. It is possible to define a corresponding contravariant basis,

with vectors gj , such that:

gi · gj = δij , (1.19)

24 Chapter 1. Solid mechanics

where δij is the Kronecker delta. A generic vector u can then be represented

as:

u = uig
i or u = uigi, (1.20)

where ui are the covariant components and ui are the contravariant com-

ponents or vector u. The metric tensor can be expressed in covariant com-

ponents too, defined as gij = gi · gj , with gi = gijg
j , or in contravariant

components, defined as gij = gi · gj , with gi = gijgj . These bases are

particularly useful to express scalar and tensor products.

In order to simplify calculations it is often convenient to define some

part of the formulation in covariant basis and other parts in contravariant

basis (for details see [4]). The deformation gradient tensor can be expressed

using the covariant basis in this way:

t
0X = tgj ⊗ 0gi, (1.21)

where tgj and tgi are covariant basis and contravariant basis respectively in

the reference configuration and 0gj and 0gi are covariant and contravariant

basis in the current configuration:

0gj =
∂x

∂ξj
, tgj =

∂ (x + u)

∂ξj
, (1.22)

having denoted ξj as the local non-Cartesian coordinates.

The Green–Lagrange strain tensor can then be written as:

te =
1

2

(
t
0X

T t
0X− I

)
= tẽij

0gi ⊗ 0gj =
1

2

(
tgij − 0gij

)
0gi ⊗ 0gj .

(1.23)

Therefore:

tẽij =
1

2

(
tgi · tgj − 0gi · 0gj

)
=

1

2

(
∂ (x + u)

∂ξi
· ∂ (x + u)

∂ξj
− ∂x

∂ξi
· ∂x

∂ξj

)
=

1

2

(
∂x

∂ξi
· ∂u

∂ξj
+
∂u

∂ξi
· ∂x

∂ξj
+
∂u

∂ξi
· ∂u

∂ξj

)
.

(1.24)

1.1 Static analysis 25

The linear and nonlinear parts can be separated:

tẽij |linear =
1

2

(
∂x

∂ξi
· ∂u

∂ξj
+
∂u

∂ξi
· ∂x

∂ξj

)
tẽij |nonlinear =

1

2

(
∂u

∂ξi
· ∂u

∂ξj

)
.

(1.25)

Under the hypothesis of small displacements, the nonlinear part of the

Green–Lagrange strain tensor is neglected.

In order to speed up the calculations, it is possible to avoid continuous

transformations between covariant and Cartesian coordinates, exploiting the

nice properties of covariant and contravariant components when applied in

double dot products. To calculate the deformation energy, contravariant

components of the stress tensor will be multiplied against covariant compo-

nents of the strain tensor.

In order to enforce in a correct way the plane stress state hypothesis,

typical for shells, it is necessary to define a local Cartesian reference system

aligned with the shell, to correctly follow the surface normal evolution:

e1 =
g1

‖g1‖
, e2 = e3 ∧ e1, e3 =

g1 ∧ g2

‖g1 ∧ g2‖
. (1.26)

Covariant and controvariant components of stresses and strains respectively

can be written in the following way:

σ = σ̃αβ gα ⊗ gβ = σij ei ⊗ ej ,

ε = ε̃αβ gα ⊗ gβ = εij ei ⊗ ej .
(1.27)

Applying scalar products it is possible to write that:

σ̃αβ = σij

(
ei · gβ

)(
ej · gα

)
,

εij = ε̃αβ

(
gα · ej

)(
gβ · ei

)
.

(1.28)

26 Chapter 1. Solid mechanics

In order to use a more compact notation the following vectors are introduced:

ε̃ =

ε11

ε22

ε33

γ12

γ23

γ13

, σ̃ =

σ11

σ22

σ33

τ12

τ23

τ13

. (1.29)

We call Qsh the transformation matrix such that:

ε = Qsh · ε̃. (1.30)

Equation (1.28) shows how the matrix which transforms stresses from Carte-

sian to contravariant components is in fact the transposed of Qsh, the matrix

which transforms strains from covariant to Cartesian components.

Finally, the deformation energy can be calculated:

2W = σijεij = σ̃αβ ε̃αβ = ε̃T · σ̃

= εT · σ = εT ·D · ε = ε̃T ·QT
sh ·D ·Qsh · ε̃,

(1.31)

where D is the elastic constitutive matrix, which relates stresses and strains:

σ = D · ε (1.32)

Under the assumption of plane stress state, in a Cartesian reference system

aligned with the shell element, the matrix can be written as [5]:

D =
E

1− ν2
·

1 ν 0 0 0 0

ν 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1−ν
2 0 0

0 0 0 0 k 1−ν
2 0

0 0 0 0 0 k 1−ν
2

, (1.33)

where E is the Young modulus, ν is the Poisson ratio and k the shear factor,

which is equal to 5
6 .

When large displacements are expected, it is necessary to formulate the

virtual work equation using the Green–Lagrange strain tensor and the sec-

1.1 Static analysis 27

ond Piola–Kirchhoff stress tensor, as described in the previous section. The

latter one can be written using covariant coordinates as:

t
0Π = det

(
t
0X
)
t
0X
−1 · tσ · t0X−T

= det
(
t
0X
) (

0gj ⊗ tgj
)
·
(
σ̃mn tgm ⊗ tgn

)
·
(
tgp ⊗ 0gp

)
= det

(
t
0X
)
σ̃mn 0gm ⊗ 0gn.

(1.34)

The linearization procedure is the same as the previous section. The dis-

placement vector is decomposed in a known part and the increment:

t+dtu = tu + ∆u. (1.35)

The Green–Lagrange tensor components are decomposed too:

t+dtẽij =
1

2

(
0gi ·

∂t+dtu

∂ξj
+ 0gj ·

∂t+dtu

∂ξi
+
∂t+dtu

∂ξi
· ∂

t+dtu

∂ξj

)
=

1

2

(
0gi ·

∂tu

∂ξj
+ tgi ·

∂∆u

∂ξj
+ 0gj ·

∂tu

∂ξi
+ tgj ·

∂∆u

∂ξi

+
∂tu

∂ξi
· ∂

tu

∂ξj
+
∂∆u

∂ξi
· ∂∆u

∂ξj

)
.

(1.36)

The virtual variation is then calculated for each term, obtaining:

δt+dtẽij = δt+dtεij + δt+dtηij , (1.37)

where:

δt+dtεij =
1

2

(
tgi ·

∂δ∆u

∂ξj
+ tgj ·

∂δ∆u

∂ξi

)
,

δt+dtηij =
1

2

(
∂δ∆u

∂ξi
· ∂∆u

∂ξj
+
∂∆u

∂ξi
· ∂δ∆u

∂ξj

) (1.38)

are the linear and nonlinear components respectively. In the problem lin-

earization the latter ones are neglected. Taking also into consideration the

underlying hypothesis of the shell kinematics theory it is then possible to lin-

earize the double scalar product between the second Piola–Kirchhoff stress

tensor and the linear part of the Green-Lagrange strain tensor.

28 Chapter 1. Solid mechanics

1.2 The MITC4 element

As finite element to discretize shells we consider the MITC4 (Mixed

Interpolation of Tensorial Components) element [1, 2, 4]. It is the four node

version of the generic MITCn element, where n represents the number of

nodes. They are Solid-Like Shell Elements: they were built starting from a

tridimensional solid brick element and then imposing kinematic constraints

typical of thin laminates. The element is outlined in figure 1.1.

Figure 1.1: MITC4 shell element.

Considering a generic shell body, in order to describe its configurations, a

fixed Cartesian coordinate system { X, Y, Z } is introduced, with versors e1,

e2, e3, together with a local coordinate system { ξ1, ξ2, ξ3 }, not necessarily

orthogonal. The position of a generic point on the shell body in the reference

configuration is described by the following mapping:

0X = Φ (ξ) = Φ̄
(
ξ1, ξ2

)
+ ξ3L

(
ξ1, ξ2

)
, − th

2
≤ ξ3 ≤ th

2
, (1.39)

where th is the shell thickness (here for simplicity assumed to be constant

over the whole body), Φ̄ is the in-plane midsurface chart and L represents

the out-of-plane director vector field.

The MITC4 is an isoparametric element: the same shape functions are

used both to transform from global Cartesian coordinates to local coordi-

nates and to interpolate displacements in a generic point inside the element

1.2 The MITC4 element 29

from its nodal values. The bilinear shape functions are:

h1

(
ξ1, ξ2

)
=

1

4

(
1− ξ1

) (
1− ξ2

)
, (1.40)

h2

(
ξ1, ξ2

)
=

1

4

(
1 + ξ1

) (
1− ξ2

)
, (1.41)

h3

(
ξ1, ξ2

)
=

1

4

(
1 + ξ1

) (
1 + ξ2

)
, (1.42)

h4

(
ξ1, ξ2

)
=

1

4

(
1− ξ1

) (
1 + ξ2

)
. (1.43)

In each node k a director vector Vk
n is defined such that it is orthogonal

to the midsurface in the reference configuration and rotates during the de-

formations. In global Cartesian coordinate system the position of a generic

point at time t will then be:

tx
(
ξ1, ξ2, ξ3

)
=

4∑
k=1

hk
txk + ξ3

4∑
k=1

(
th
2
hk

tVk
n

)
, (1.44)

where the first part refers to in-plane interpolation, while the second part is

the out-of-plane interpolation.

In a total Lagrangian approach, displacements are obtained from the current

positions with respect to the original positions in the reference configuration.

Using the vector:

Vk
n = tVk

n − 0Vk
n (1.45)

displacements are obtained as it follows:

tu
(
ξ1, ξ2, ξ3

)
=

4∑
k=1

hk
(
txk − 0xk

)
+ ξ3

4∑
k=1

tk
2
hk

(
tVk

n − 0Vk
n

)
=

4∑
k=1

hk
tuk + ξ3

4∑
k=1

tk
2
hkV

k
n. (1.46)

These equations are used to calculate the components of the Green–Lagrange

strain tensor and the second Piola–Kirchhoff tensor.

1.2.1 Small displacements formulation

Under the hypothesis of small rotations, it is possible to describe the

components of Vk
n in each node as small rotations around a local orthonor-

30 Chapter 1. Solid mechanics

mal basis, composed of:

�
0Vk

n;

�
0Vk

1 =
iy×0Vk

n

‖iy×0Vk
n‖2

, or 0Vk
1 = iz if denominator is zero;

�
0Vk

2 = 0Vk
n × 0Vk

1 .

Under this assumption, changes of director versor can be described using

these vectors:

Vk
n = −0Vk

2αk + 0Vk
1βk, (1.47)

where αk represents the small rotation around 0Vk
1 and βk the small rota-

tion around 0Vk
2 . The mid-plane torsion is not considered, so the component

parallel to normal director version is neglected. In this way, only two ro-

tational degrees of freedom are needed for each node, summing up to 20

degrees of freedom per element (3 translational and 2 rotational in each of

the 4 nodes).

In order to solve the elastic problem, the principle of virtual work, intro-

duced above, is used. Using two matrices B and H, it is possible to express

displacements and deformations with respect to nodal values, so that the

VWP equation (1.1) becomes:∫
tV
δUT ·BT ·D ·B ·UdtV =

∫
tV
δUT ·H · fBdtV

+

∫
tSf

δUT ·HSf
· fSfdtS

+
∑
m

δUT ·Hm · Fm,

(1.48)

having used the relations:

u =

uxuy
uz

 = H ·U, ε =

εx

εy

εz

γxy

γyz

γzx

= B ·U, σ =

σx

σy

σz

τxy

τyz

τzx

= D · ε. (1.49)

1.2 The MITC4 element 31

From here on, for the sake of simplicity, only surface forces will be considered.

Equation (1.48) is then simplified to:∫
tV
δUT ·BT ·D ·B ·UdtV =

∫
tSf

δUT ·HSf
· fSfdtS. (1.50)

It is now necessary to perform the integration on the finite elements. Con-

sidering that U contains nodal values (thus it is constant) and the Virtual

Work Principle must be satisfied for every virtual displacements field δU,

equation (1.50) becomes:

K ·U = FE , (1.51)

where:

K =

∫
tV

BT ·D ·BdtV, FE =

∫
tSf

HSf
· fSfdtS. (1.52)

Matrices B and H are calculated considering the kinematic relations and

assumptions made for the MITC4 element in the previous paragraph. Con-

sidering the single element, vector U contains the generalized nodal dis-

placements:

UT =
[
ux1 uy1 uz1 α1 β1 ux2 uy2 uz2 α2 β2 ...

]
. (1.53)

Matrix H (3x20 elements) derives directly from equation (1.46) and ex-

presses displacements from nodal values in U. Matrix B (6x20 elements),

used to express strains, is trickier to obtain, since it requires calculating dis-

placement derivatives with respect to the global coordinate system. Thus

it is necessary to define the Jacobian matrix of local-to-global coordinates

transformation:

J =

∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

∂x
∂ξ3

∂y
∂ξ3

∂z
∂ξ3

 . (1.54)

Therefore displacement derivatives are calculated with respect to local co-

ordinates at first and then they are transformed to global coordinates. Con-

32 Chapter 1. Solid mechanics

sidering, for example, the first component of displacement u:
∂ux
∂x
∂ux
∂y
∂ux
∂z

 = J−1

∂ux
∂ξ1
∂ux
∂ξ2
∂ux
∂ξ3

 . (1.55)

Finally, K and F are obtained performing the integration of the reference

element, multiplying it by the Jacobian:

K =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BT (ξ1, ξ2, ξ3) ·Dsh ·B (ξ1, ξ2, ξ3) det (J) dξ1 dξ2 dξ3,

FE =

∫ +1

−1

∫ +1

−1
HSf

(
ξ1, ξ2, ξ̄3

)
· fSf

(
ξ1, ξ2, ξ̄3

) ∥∥∥∥ ∂x

∂ξ1
∧ ∂x

∂ξ2

∥∥∥∥ dξ1 dξ2,

(1.56)

where Dsh is the usual elastic constitutive matrix under the assumption of

plane stresses, expressed in the global coordinate system using an appropri-

ate transformation matrix Qsh:

Dsh = QT
sh ·D ·Qsh. (1.57)

Integrals are evaluated numerically using Gaussian quadrature.

1.2.2 Large displacements formulation

When it is necessary to cope with large displacements the previously

defined rotations αk and βk around the local nodal basis cannot be used

anymore. With this purpose, in this work the formulation described in [5]

has been adopted.

The difficulty resides in the expression of the difference between t+dtVk
n

and tVk
n, since these directors can undergo large rotations. It is then neces-

sary to express them as rigid rotations.

The general expression for a rotation matrix is:

R = I + sin (θ) W + (1− cos (θ)) W2, (1.58)

where I is the identity matrix, θ is the angle of rotation and W is a skew-

symmetric matrix such that:

Wu = k ∧ u, ∀u ∈ R3, (1.59)

1.2 The MITC4 element 33

where k is the rotation axis. It can be written, in the global Cartesian

reference system, as:

W =

 0 −k3 k2

k3 0 −k1

−k2 k1 0

 . (1.60)

It is possible to express the rotation using a single vector φ, parallel to the

axis k and with modulus equal to θ. In this way:

R = I +
sin (θ)

θ
Φ +

(1− cos (θ))

θ2
Φ2, (1.61)

where Φ is a skew-symmetric matrix built in the same way as W with the

components of φ.

A generic rotation in three dimensions can be seen as three different

consecutive rotations around three orthogonal axes. The rotations are not

commutative, so their order is important. Using the local nodal basis in the

reference configuration (described in the previous section), if the rotation

around the midsurface normal vector is performed first, there is no transfor-

mation of the director. Therefore, the vector φ holds only two independent

components in every node. It can be written as:

φ̃k =
[
αk βk 0

]
, θ =

√
α2
k + β2

k, (1.62)

where, in contrast with the previous section, αk and βk are not angles, but

just independent components of the vector φ. In global Cartesian coordi-

nates it is equal to:

φk = αkV
k
1 + βkV

k
2 . (1.63)

This approach has the advantage of storing only two rotational components

for each node, allowing memory saving.

Differently from the case of small displacements, when dealing with large

displacements it is necessary to solve the elastic problem by steps. The

solution is obtained through incremental updates, which can be written, at

iteration n, as:

Un+1 = Un + ∆Un, (1.64)

34 Chapter 1. Solid mechanics

where ∆Un is the displacement increment that can be obtained solving:

KT (Un) ·∆Un = FE − FI (Un) , (1.65)

where FE is a vector containing all external loads and FI collects internal

elastic forces on nodes. KT is the tangent stiffness matrix, obtained lin-

earizing the virtual work principle against increments of translational and

rotational nodal values.

First of all, increment of displacements in a generic point has to be

written. In order to do so, calling ψk the vector which expresses the rotation

of director in node k from time t to t+dt, it is necessary to write the rotation

matrix R (ψk). An updated Lagrangian approach is mandatory in this case,

since the series expansion of R is acceptable only when dealing with small

rotations. Stopping the expansion at the second order, increments can be

written as:

∆u
(
ξ1, ξ2, ξ3

)
=

4∑
k=1

hk∆uk + ξ3
4∑

k=1

tk
2
hk

(
ψk +

1

2
ψk ·Ψk

)
tVk

n, (1.66)

where Ψk is the antisymmetric matrix calculated with ψk.

Their virtual variation is then calculated and decomposed into a constant

and a variable part:

δ∆uconst
(
ξ1, ξ2, ξ3

)
=

4∑
k=1

hkδ∆uk + ξ3
4∑

k=1

tk
2
hkδΨk

tVk
n,

δ∆uvar
(
ξ1, ξ2, ξ3

)
=
ξ3

2

4∑
k=1

tk
2
hk

(
δΨk ·Ψk + Ψk · δΨk

)
tVk

n.

(1.67)

These are used to calculate Green–Lagrange strain tensor components and

put in the final equation, where terms above the first order (in increments

of nodal parameters) are neglected. In covariant components this leads to

1.2 The MITC4 element 35

the linearized equation:∫
0V

Dαβγδ∆εγδδ
t+dtεconstαβ d0V +

∫
0V

tΠαβδt+dtηαβd
0V + (1.68)

+

∫
0V

tΠαβδt+dtεvarαβ d
0V −

∫
t+dtSf

fαSf
δt+dtuvarα dt+dtS = (1.69)

=

∫
t+dtSf

fαSf
δt+dtuconstα dt+dtS −

∫
0V

tΠαβδt+dtεconstαβ d0V. (1.70)

Left-hand-side terms contributes to the tangent stiffness matrix calculation,

while right-hand-side terms are expression of external forces vector FE and

nodal forces vector (equivalent to internal elastic forces) FI respectively.

These last terms express the imbalance between internal and external loads

and thus they can be used as residual for an iterative method.

1.2.3 Mixed interpolation

The shear-locking problem is very common in finite element analysis,

which derives from the underlying assumptions of piecewise polynomial be-

havior dictated by the finite element shape functions. This acts as an ad-

ditional constraint on the whole element behavior. In the case of shell ele-

ments, it results in an artificious shear stiffness larger than the real system,

especially when thickness is small compared to element size in the other

directions.

In order to overcome the shear-locking problem, in [1] the covariant

components of in-plane deformations are interpolated separately from the

out-of-plane deformations. This process characterizes the MITCn elements

and their name: Mixed Interpolation of Tensorial Components.

Considering the element on the ξ1-ξ2 plane sketched in figure 1.2, the sam-

pling points A, B, C and D have local coordinates (0, -1, 0), (1, 0, 0), (0, 1,

0) and (-1, 0, 0) respectively. Covariant components of shear deformations

in the sampling points are obtained through interpolation from the known

nodal values:

ε̃23 =
1

2
(1 + ξ1) ε̃A23 +

1

2
(1− ξ1) ε̃C23,

ε̃13 =
1

2
(1 + ξ2) ε̃D13 +

1

2
(1− ξ2) ε̃B13.

(1.71)

36 Chapter 1. Solid mechanics

Figure 1.2: Sampling points considered for mixed interpolation.

When assembled, these changes in the covariant components induce a mod-

ification in the whole small strain tensor in Cartesian coordinates, in-plane

deformations included. With this kind of interpolation, the element presents

sort of membrane locking only in an highly warped configuration (figure 1.3):

in this situation it becomes necessary to refine the mesh.

Figure 1.3: Warped shell element.

1.3 Dynamic analysis 37

1.3 Dynamic analysis

Our goal is to simulate the dynamical behavior of shell structures. Until

now we have presented a static model. It is now necessary to introduce

the time variable and the inertial components in the virtual work principle

equation (1.1):∫
t+∆tV

ρüiδuid
t+∆tV +

∫
t+∆tV

cu̇iδuid
t+∆tV +

∫
0V

(
t+∆t
0 Π : δt+∆t

0 e
)
d0V =

=

∫
t+∆tV

fBi δ
t+∆tuid

t+∆tV +

∫
t+∆tSf

f
Sf

i δt+∆tu
Sf

i dt+∆tS +
∑
m

Fmi δ
t+∆tumi .

Following the notations and variables introduced in last sections, the mass

matrix M is introduced, whose components are:

Mij =

∫
t+∆tV

ρHiHjd
t+∆tV, (1.72)

where ρ is the material density, and the damping matrix C, whose compo-

nents are:

Cij =

∫
t+∆tV

cHiHjd
t+∆tV, (1.73)

where c represents the damping coefficient. Actually, the calculation of the

damping matrix C is not performed this way, since the coefficient c is hardly

known. There are different techniques to build it. One of the most popular,

implemented in this work, combines linearly the mass and stiffness matrix

with appropriate coefficients.

It is now possible to write the semi-discretized motion equation:

MÜ + CU̇ + FI (U) = FE , (1.74)

where U, U̇ and Ü are vectors containing the degrees of freedom values, ve-

locity and acceleration respectively, FI represents the internal elastic forces

and FE the external loads respectively. Equation (1.74) is a system of non-

linear second order differential equations and an appropriate time-advancing

scheme is needed to integrate it. Generally, they can be classified into

implicit and explicit time integration methods. The former ones impose

38 Chapter 1. Solid mechanics

equilibrium of the system at the end of the time-step and are generally

unconditionally stable but computationally heavy, since they require ma-

trix inversions and sub-iterations in order to cope with the nonlinearities.

Explicit methods, instead, expect equilibrium at the beginning and do not

iterate inside the time-step, assuming a time-step size small enough. There-

fore, they are only conditionally stable and end up requiring many small but

quick time-steps. Their structure suits better the GPU hardware, thus in

this work an explicit integrator is used.

1.3.1 Central difference method

Integration in time is done using an explicit half-station central finite

differences approach [30, 37]. It is simple and has the largest stability limit

for second-order accurate integration formulas [18], and represents a com-

mon choice for this kind of problems.

At the beginning of time-step n, the internal forces vector Fn
I has already

been calculated in the previous step and the external forces vector Fn
E is

assumed to be known.

Given the amplitude of time-step ∆t, the velocity field is firstly approxi-

mated at half-step n+ 1/2:

U̇n+1/2 =
1

∆t

(
Un+1 −Un

)
. (1.75)

Then the acceleration is evaluated at the n-th step:

Ün =
1

∆t

(
U̇n+1/2 − U̇n−1/2

)
(1.76)

and velocity is updated:

U̇n =
1

2

(
U̇n+1/2 + U̇n−1/2

)
. (1.77)

Assuming the damping matrix proportional to the mass matrix, such that:

C = αM, (1.78)

1.3 Dynamic analysis 39

with α ≥ 0, and putting equations (1.75), (1.76), (1.77) inside (1.74) we

obtain:

U̇n+1/2 =

(
2 ·∆t

2 + α∆t

)
M−1 (Fn

E − Fn
I) +

(
2− α∆t

2 + α∆t

)
U̇n−1/2. (1.79)

New displacements can then be obtained integrating in time, using the cal-

culated half-step velocities:

Un+1 = Un + ∆t U̇n+1/2. (1.80)

Once displacements are known, it is possible to compute the strain field

inside each finite element and then the stress field can be evaluated by

integrating the constitutive law. The new internal forces vector Fn+1
I is

then used in the next time-step to calculate the accelerations.

This explicit method, in conjunction with mass lumping, which makes

the mass matrix diagonal, has a remarkable advantage: it does not require

any matrix factorization or inversion, but instead transforms the problem

(1.74) into an uncoupled system of equations, that can be solved individually

on a per-degree-of-freedom basis (this fact will be highly exploited in the

parallelized algorithm). The only complex operation that needs to be done

for every time-step is the internal forces calculation. The computational

burden of each time-step is very low, but the method is not unconditionally

stable: it requires ∆t to be lower than a critical value: ∆t ≤ ∆tcrit. This

is called the Courant-Friedrichs-Levy condition [8, 30]. In particular, ∆t

should be the smallest period of vibration of the system, considering all

degrees of freedom. When structural elements are concerned, in [1] a limit

value of ∆tcrit = Tn/π is proposed, where Tn is the mesh smallest eigen-

period: following this criterion, it is possible to select a lower bound to the

time-step size as ∆t = 2/ωm, where ωm is the highest frequency over the

whole mesh related to a single finite element. Generally this limit value can

be very low. This represents the major disadvantage of using an explicit

time advancing method.

Chapter 2

Fluid dynamics

In the fluid-structure interaction cases studied in this work a solid me-

chanics problem is coupled with a fluid dynamics problem. The first one

has been introduced in the previous chapter. The mathematical model un-

derlying the latter one will be presented in the following sections, together

with the numerical methods employed in OpenFOAM to solve it.

2.1 Navier–Stokes equations

Considering a generic Newtonian fluid, it holds that:
∂ (ρv)

∂t
+ div (ρvv) = div (σ) + ρb

∂ρ

∂t
+ div (ρv) = 0

, (2.1)

where v is the fluid velocity, ρ is its density and b represents external volume

forces (per unit mass). The first equation expresses the conservation of

momentum, while the second one, the continuity equation, expresses the

conservation of mass. σ is the total stress tensor and is defined, in the case

of a Newtonian fluid, as:

σ = −pI + 2µD +
2

3
µ div (v) , (2.2)

where p is the fluid pressure, µ is the dynamic viscosity and D is the strain

rate tensor, equal to:

D =
1

2

(
∇v +∇Tv

)
. (2.3)

41

42 Chapter 2. Fluid dynamics

For the sake of simplicity in this work incompressible fluids are treated only.

Therefore, equations (2.1) can be significantly simplified, obtaining the usual

Navier–Stokes equations:
∂v

∂t
+ (v · ∇v) = f + ν∆v −∇p̃

div (v) = 0

, (2.4)

where ν is the kinematic viscosity, defined as ν = µ
ρ . p̃ is obtained as

p̃ = p
ρ + gh, including in the pressure term the gravity effect too.

In order to solve these equations, OpenFOAM follows an approach based

on projection methods. In particular, it solves them in two steps: initially,

a velocity field is built such that it satisfies the momentum equation but

without the pressure gradient term; finally, the field is corrected in order to

satisfy the continuity equation, by means of the solution of an appropriate

pressure equation.

Carrying out the divergence to the momentum equation and simplify-

ing it with the continuity equation, the following Poisson problem for the

pressure is obtained:

div (∇p) = −div

[
div (ρvv − S)− ρb +

∂ (ρv)

∂t

]
, (2.5)

where S is the viscous part of the stress tensor: S = σ + pI.

In our cases, both density and viscosity are considered to be constant,

so the equation can be further simplified (see [13]):

∆p = − ∂

∂xi

[
∂ (ρvivj)

∂xj

]
. (2.6)

This is the equation to solve in order to guarantee the calculated velocity

field to be solenoidal.

In the implementation of these equations it is important to cope also with

the motion of the fluid mesh, which can undergo substantial deformations

and thus the overall domain and control volumes can change. Therefore, in

the standard fluid dynamic equations the terms have to be changed in order

to take into account for the fluxes caused by border motion: it is necessary

to employ a Arbitrary Lagrangian–Eulerian approach. For further details

see [20].

2.2 Finite volume method 43

2.2 Finite volume method

The vast majority of commercial CFD codes employs finite volume meth-

ods to discretize the fluid equations. OpenFOAM follows this approach too

in its principal solvers.

For a brief introduction to finite volume methods, let us consider a simple

scalar conservation equation:

∂w

∂t
+ div (F (w)) = s (w) , x ∈ Ω, t > 0, (2.7)

with proper boundary and initial conditions. w represents the unknown

scalar, F is the flux function and s is the source term.

The domain is divided into a finite number of polyhedral control vol-

umes and the equations are integrated on each of them. Thanks to the

divergence theorem, the second term can be turned into a surface integral,

which represents the flux of the modeled quantity across cell faces:

∂

∂t

∫
VP

w dV +

∫
∂VP

F · n dσ =

∫
VP

s dV. (2.8)

The mean value wP over the cell P is the main unknown value of finite

volume methods:

wP =
1

|VP |

∫
VP

w dV. (2.9)

Calling NP the set of cells which share one face with VP , it is possible to

write the conservation equation in the cell P in this way:

|VP |
dwP
dt

+
∑
s∈NP

∫
VP∩Vs

F · n dσ =
1

|VP |

∫
VP

s dV. (2.10)

Integrals can then be calculated adopting appropriate quadrature rules.

Following the notation in [13], in a finite volume discretization of the

Navier–Stokes equations, for each cell P the momentum conservation equa-

tion can be written in this way (assuming an implicit time-advancing scheme):

aviP v
n+1
i,P +

∑
l

avil v
n+1
i,l = Qn+1

vi −
(
δpn+1

δxi

)
P

, (2.11)

where l is an index referring to neighbor nodes taking part to the momen-

tum equation for the cell P and the matrix a holds all coefficients. Q

44 Chapter 2. Fluid dynamics

contains all terms that can be explicitly calculated using vni and the forces,

or other terms, that depend on vn+1
i . This notation will be used again in

the brief introduction to the scheme implemented in OpenFOAM for solving

the velocity-pressure coupled problem.

Meshes used in the cases analyzed in this work are composed principally

by hexahedral and tetrahedral cells. OpenFOAM has been developed with

the precise intent of managing unstructured mesh. Therefore, it uses collo-

cated grids, putting nodes at the center of each cell. In order to guarantee

stability, values on faces are obtained employing a method that resembles

the Rhie–Chow interpolation. For further information see [17].

2.3 Solution of the pressure problem

OpenFOAM uses iterative projection methods to solve the pressure equa-

tion. In particular, it employes the SIMPLE algorithm (acronym for Semi-

Implicit Method for Pressure-Linked Equations), the PISO algorithm (ac-

ronym for Pressure Implicit with Splitting of Operators) and the PIMPLE

algorithm (developed specifically for OpenFOAM and result of the combi-

nation of the other two schemes).

They are all quite similar. In all three approaches, velocity and pressure

correction terms are introduced:

vmi = vm
∗

i + v′i, i = 1, 2, 3

pm = pm−1 + p′,
(2.12)

where m is an index of the sub-iterations inside time-step tn.

The common procedure is then divided into the following substeps, executed

iteratively at each time-step, until convergence is reached:

1. as first approximation of vn+1
i and pn+1 the velocity and pressure val-

ues obtained in the previous time-step are used.

2. the intermediate velocity field is then calculated solving the linearized

momentum conservation equation:

vm
∗

i,P = ṽm
∗

i,P −
1

aviP

(
δpm−1

δxi

)
P

, (2.13)

2.3 Solution of the pressure problem 45

where

ṽm
∗

i,P =
Qm−1
vi −

∑
l a
vi
l v

m∗
i,l

aviP
. (2.14)

3. the pressure corrective equation is solved:

δ

δxi

[
ρ

aviP

(
δp′

δxi

)]
P

=

[
δ
(
ρvm

∗
i

)
δxi

]
P

+

[
δ (ρṽ′i)

δxi

]
P

. (2.15)

The term ṽ′i is neglected for computational reasons. In order to cope

with this approximation, in the PISO algorithm a second correction

is used. In particular, after the first pressure correction, velocities are

updated:

v′i,P = − 1

aviP

(
δp′

δxi

)
P

,

ṽ′i,P = −
∑

l a
vi
l v
′
i,l

aviP
.

(2.16)

At this point, a second pressure problem is solved:

δ

δxi

[
ρ

aviP

(
δp′′

δxi

)]
P

=

[
δ (ρṽ′i)

δxi

]
P

. (2.17)

This step can be executed more than once, for a number of times

prescribed by the user. The term ρvm
∗

i is corrected every time, in

order to cope with possible mesh non-orthogonalities.

4. the pressure field is then updated:

pm = pm−1 + curp
′, (2.18)

with 0 < cur < 1 being an under-relaxation factor, needed in the

SIMPLE algorithm to reestablish the convergence speed, lost because

of the approximation made neglecting the term ṽ′i in the previous step.

In the PISO algorithm, instead, the under-relaxation is not necessary,

thanks to the second pressure corrective pass, which helps maintaining

the rate of convergence.

5. the velocity field is finally updated:

vmi,P = vm
∗

i,P + v′P , (2.19)

46 Chapter 2. Fluid dynamics

where

v′i,P = − 1

aviP

(
δp′

δxi

)
P

, (2.20)

or, as far as the PISO algorithm is concerned:

vmi,P = vm
∗

i,P + v′′P , (2.21)

where

v′′i,P = ṽ′i,P −
1

aviP

(
δp′′

δxi

)
P

. (2.22)

Now the velocity field satisfies the continuity equation.

6. boundary conditions are updated, using the corrections introduced by

the pressure problems.

7. finally, this procedure is iterated, using vmi and pm as always better

approximations of vn+1
i and pn+1, until corrections made are negligible

and below a certain prefixed threshold.

The process then continues with the next time-step.

Chapter 3

Fluid-structure interaction

The structural and fluid dynamics problem have been introduced in the

previous chapters. In this chapter, the remaining pieces necessary to build

a simulation with fluid-structure interaction are presented. In section 3.1

the mesh-motion problem is described. Interpolation algorithms used to

move mesh internal points or transfer quantities at the interface between

the grids are discussed in section 3.2 and 3.3. Finally, in section 3.4 the

coupling procedure is briefly presented.

3.1 Mesh-motion algorithms

When the structural problem is solved, a field containing displacements

of all solid mesh points is obtained. These displacements actually deforms

the fluid domain, imposing movements on a set of boundaries. As a conse-

quence, the fluid mesh has to adapt: the internal points have to be repo-

sitioned in order to cope with the new boundaries. Several algorithms can

perform this kind of interpolation. A good algorithm has to be quick (since

that, with refined meshes, the number of internal points to move can be

extremely high) and, even more important, has to preserve the quality of

the mesh.

There are various indexes that permit a quantitative analysis of mesh

quality. However, it is important to note that, if a control volume is different

from the ideal isotropic cell, it does not mean always bad quality of the

mesh. For example, the cell aspect ratio is the ratio between the longest edge

and the shortest one; in certain situations, a high value of this indicator is

47

48 Chapter 3. Fluid-structure interaction

preferred, especially when cells are explicitly aligned with the flux.

(a) Non-orthogonality (b) Skewness

Figure 3.1: Sketch of the main cell quality measures.

Two indicators often used in OpenFOAM to check mesh quality are the

non-orthogonality index and the skewness. The first indicator measures the

angle between the segment which links two cell centers and the normal of

the shared face. In figure 3.1a, P and N are the two cell centers and f is

the common face, with normal S: the non-orthogonality value is the angle

θ between PN and S. Best value for this indicator is zero. If θ is above

70◦ performances of solvers are reduced and accuracy is lowered. In extreme

cases, convergence is not guaranteed.

The skewness measure is sketched in figure 3.1b. If fi is the intersection

between the line which links the cell centers P and N and the shared face,

the distance between fi and the face center f is the skewness measure. A

high value of this index causes a reduction in the face integration order and,

therefore, means that appropriate high order schemes for gradient calcula-

tion are required; stability is instead not undermined.

In this work two methods will be introduced: Radial Basis Functions in-

terpolation and Inverse Distance Weighting interpolation. They are generic

interpolation methods and will be used also outside the mesh-motion con-

text, in particular to interpolate quantities between different grids (from the

solid mesh to the fluid mesh and viceversa).

3.2 Radial Basis Functions interpolation 49

3.2 Radial Basis Functions interpolation

In [3], the author claims that good smoothness in internal point position-

ing can be achieved formulating the problem in pure algebraic terms. The

method so obtained is quicker and more robust if compared to other meth-

ods based on partial differential equations, like, for example, the solution of

a Laplace problem for the internal points motion [16].

Interpolation with Radial Basis Functions (RBF) employs a moderate

number of control points to accomplish a global interpolation of all internal

mesh points. For each component, the interpolation formula is the following:

s (x) =

Nb∑
j=1

αjφ (|x− xb,j |) + q (x) , (3.1)

where xb contains positions of the Nb control points, φ is the basis function,

which depends on the distance between the considered point and the con-

trol points, and q (x) is a polynomial, usually linear, which depends on the

choice of basis function and on the coefficients αj .

In order to guarantee interpolation consistency, it is required that all poly-

nomials of order lower than q have zeros in correspondence with the control

points:
Nb∑
j=1

αjp (xb,j) = 0. (3.2)

Choosing a linear polynomial, it holds that:

q (x) = β0 + β1x+ β2y + β3z. (3.3)

Interpolation coefficients (contained in vectors α and β) are solution of the

following system: [
s (xb,j)

0

]
=

[
Φbb Qb

QTb 0

][
α

β

]
, (3.4)

where s (xb,j) is the interpolated function value in the control points and

matrix Φbb contains values produced by the basis function evaluated using

the distance between pairs of control points. Each element is defined as:

Φ(i,j) = φ (|xb,i − xb,j |) . (3.5)

50 Chapter 3. Fluid-structure interaction

Qb is instead a rectangular matrix whose rows are
[
1 xb

]
.

The obtained system to solve is dense and needs a factorization method in

order to be solved. In this implementation, LU factorization is adopted,

already available in OpenFOAM.

Choice about the RBF function to use is well discussed in [3] and [20].

Generally, there are locally supported functions, which involves points within

a certain range r and permits to have a system simpler to solve but with

a loss in accuracy, and globally supported functions, which instead needs a

smoothing function in order to facilitate the calculus.

The most computationally heavy operation is the inversion of the in-

terpolation matrix. After this step, all other internal points motion is cal-

culated by means of formula (3.1). This approach is quite effective when

control points are few but significant and the dense matrix to invert is small.

It has proved to be robust and to produce high quality meshes, especially

when handling rigid motion-like boundary movements. When contour mo-

tion is more complicated, however, sometimes its parameters are difficult to

tune and it produces worse meshes.

3.3 Inverse Distance Weighting interpolation 51

3.3 Inverse Distance Weighting interpolation

In Inverse Distance Weighting (IDW) interpolation [36], an amount ofNb

control points (on the mesh boundaries) are given, with their displacement

xb,j . Other internal points position is then calculated using the following

interpolation formula:

w (x) =

∑n
j=1 xb,jφ (rj)∑n
j=1 φ (rj)

, (3.6)

where rj = |x− xb,j | is the distance between x and the control point xb,j

and φ is the weighting function, defined as:

φ (r) = r−c, (3.7)

where c is a parameter adequately chosen and tuned.

Internal points positions on the non-deformed mesh are known; therefore,

the NaxNb interpolation matrix H can be precomputed, where Na is the

overall number of internal points. It is such that, if multiplied by the control

points displacement vector, it returns a vector with the displacements of all

internal points. It is assembled checking, for each internal point i, which

control points actually influence its position, using a vicinity check based on

a prefixed cut-off range. At this point, the i-th row is assembled with the

contributions given from each chosen control point to the final movement of

point i, calculated using the interpolation formula.

Thanks to the cut-off check, for each internal point only a few control points

contribute to its movement. Therefore, matrix H is sparse and without any

recognizable pattern, since meshes are generally unstructured. Moreover, it

can be really big, depending directly on the number of internal points, and

this can cause memory issues if not handled appropriately.

52 Chapter 3. Fluid-structure interaction

3.4 Fluid-structure coupling

In fluid-structure interaction problems, the fluid and structural models

are coupled, with the deformable structure interacting with the fluid flow.

The fluid and structural problems have been separately described in last

chapters; in the previous sections the mesh-motion and interpolation pro-

cesses have been discussed too. All what remains is to link these pieces

together by means of a coupling algorithm.

There are different techniques to solve this kind of coupled problem.

With a monolithic approach [11], a unique system is solved, where all de-

grees of freedom are treated together. Partitioned or segregated FSI schemes

[29, 12, 20] instead decompose the domain of computation in different parts,

usually separating the fluid problem from the structural one, with appropri-

ate handling of the interface. In this way, different existing codes, using even

different kinds of discretization and optimized for one particular problem,

can be coupled together. Information between them is exchanged only at

domain boundaries, usually by means of interpolation schemes.

In this work a strongly coupled partitioned approach is used, based on a

Dirichlet-Neumann interface coupling formulation (for details see [20]).

Mesh-motion

Convergence
check

Under-relaxation Fluid solver

Structural solver
Not converged Converged

New time
interval

Figure 3.2: FSI coupling algorithm flow chart.

A flow chart of the coupling algorithm is sketched in figure 3.2. During each

time-step the three problems are solved separately in sequence for a certain

number of sub-iterations, until a convergence criteria is met. Structure

displacements resulting from the structural solver are not treated directly

but instead they are relaxed using the adaptive Aitken relaxation technique

[10, 31], in order to reach convergence in fewer sub-iterations:

ũn+1
s,k+1 = (1− αk+1) un+1

s,k+1 + αk+1ũ
n+1
s,k , (3.8)

where αk is the adaptive relaxation coefficient, set to a prefixed value in the

3.4 Fluid-structure coupling 53

first sub-iteration and updated in each next sub-iteration:

αk+1 = αk + (1− αk)
(∆us,k+1 −∆us,k) ·∆us,k+1

(∆us,k+1 −∆us,k)
2 , (3.9)

where ∆us,k = un+1
s,k − ũn+1

s,k−1 and ∆us,k−1 = un+1
s,k−1 − ũn+1

s,k−2.

Convergence criteria may vary and depend on the problems. Generally, the

absolute or relative difference of velocity, pressure or structural displacement

fields between two consecutive sub-iterations is checked against a threshold

value, below whom the time-step is considered to have converged:

∥∥∥un+1
f,k+1 − un+1

f,k

∥∥∥ ≤ Thu∥∥∥pn+1
f,k+1 − p

n+1
f,k

∥∥∥ ≤ Thp or∥∥∥un+1
s,k+1 − un+1

s,k

∥∥∥ ≤ Thd

∥∥∥un+1
f,k+1 − un+1

f,k

∥∥∥ / ∥∥∥un+1
f,k

∥∥∥ ≤ Thu∥∥∥pn+1
f,k+1 − p

n+1
f,k

∥∥∥ / ∥∥∥pn+1
f,k

∥∥∥ ≤ Thp∥∥∥un+1
s,k+1 − un+1

s,k

∥∥∥ /∥∥∥un+1
s,k

∥∥∥ ≤ Thd
with appropriate norms. In this work, both L2 and L∞ norms are used, de-

pending on the case analyzed.

Computational grids of fluid and structure may not be conforming at

the interface. If they are not, or if the two problems are discretized in dif-

ferent ways, it is necessary to employ interpolation algorithms to transfer

information across the interface. In this work, fluid equations are solved

with finite volume methods, while structural equations uses a finite element

discretization. Moreover, the fluid problem has its degrees of freedom in cell

centers and imposes boundary conditions on face centers, while the struc-

tural problem defines displacements on the nodes. There are two different

issues: transfer the structural displacements from the structural nodes to

the fluid domain and transfer normal stresses from the fluid mesh to the

structural domain.

Once structural displacements have been computed by the structural

solver, it is necessary to:

1. obtain displacements of fluid mesh boundary points, in order to carry

on the mesh-motion procedure.

2. obtain velocities in fluid mesh boundary face centers, as boundary

conditions for the fluid equations.

An interpolation scheme can be employed to transfer structural displace-

54 Chapter 3. Fluid-structure interaction

ments from structural points to fluid points. However, the same interpola-

tion scheme cannot be used to interpolate velocities from structural points

to fluid face centers also, because the geometric conservation law would not

be respected (see [19]) and the fluid problem would suffer from additional

incorrect mass sources. In this work, displacements are not interpolated

directly on fluid mesh nodes, but instead on a triangular subdivision of the

boundary faces. The area-weighted average of those values is then computed

in order to obtain velocities and continue with the mesh-motion procedure.

On the other hand, Neumann condition on normal stresses has to be

imposed in order to solve the structural problem. In the weak formulation,

such condition consists in a surface integral term in the right-hand-side.

Therefore, the interpolation procedure must be able to transfer information

from fluid face centers to structural quadrature nodes. It is also possible to

interpolate values directly on structural nodes, calculating them on quadra-

ture nodes using the structural element’s shape functions, although losing

some accuracy. One even more inaccurate solution could also be to use di-

rectly the fluid pressure field interpolated on the structural mesh (in element

centers), thus having for each element a constant external pressure value.

One important fact to consider is that the condition of equivalence of

normal stresses, imposed weakly at the boundary, is, in fact, equivalent to

enforce the principle of virtual works, for any possible displacement. There-

fore, the interpolation scheme employed to transfer information across the

interface must be able to ensure energy conservation. This has proven to be

very important in order to guarantee stability of the FSI coupling [29].

In this work, interpolation based on radial basis functions (introduced

in section 3.2) has been adopted. It can be formulated so that it preserves

energy conservation at the interface. For further information and details

about parameter tuning see [20].

Part II

Implementation

In this second part, all what concerns the implementation of struc-

tural and fluid-structure interaction solvers is discussed, with partic-

ular attention to the developed algorithms and optimizations made.

At the end of each chapter, results of numerical tests and perfor-

mance benchmarks are presented.

55

Chapter 4

GPU parallelization

The GPU, acronym for Graphics Processing Unit, is the main processor

inside graphics boards. It is responsible for all dedicated graphics calcula-

tions and operations.

The idea of using the video board and its power for purpose other than

video-games and CAD design is not recent. The inherently parallel vector-

ized architecture of the GPU has always been exploited to perform the most

various calculations, but it has always been very hard to program. In the

past, it was designed to be an hardware accelerator for 2D and 3D graphics,

with a fixed but very efficient pipeline structure. It posed a lot of constraints

to the general purpose programmer: doing calculus that was not graphics

related was difficult and a very deep understanding of the underlying hard-

ware and its functionalities was needed.

When the first forms of programmable graphics hardware were introduced by

the major video hardware companies, which embedded features like texture

combiners or shaders, GPUs became much more powerful and user friendly.

But it is only recently that, with the introduction of unified architectures

and specialized languages such as CUDA or OpenCL, GPU general purpose

programming has gained popularity and has become available to everybody

who owns a decent video board.

Because of their history as gaming devices, for their internal structure

GPUs are specialized in vectorized and parallel calculus. They come with

a large amount of extremely quick floating point arithmetic units, a feature

that makes them attractive to scientific programmers: high level of FLOPS

(Floating-Point Operations Per Second) can be achieved, with an hardware

57

58 Chapter 4. GPU parallelization

relatively cheap and not power consuming. In comparison, graphics proces-

sors dedicate the majority of transistors to perform calculations, while CPUs

employ them in cache and flow control. This implies, as far as the graphics

hardware is concerned, a less flexible programmability, but also an higher

amount of computational power. For example, the NVIDIA GeForce GTX

480 GPU has a theoretical peak of 1344.96 GFLOPS in single precision; the

more recent NVIDIA GeForce GTX 690 reaches even the theoretical peak

of 5621 GFLOPS: a mini-cluster inside the computer tower.1

There are different available frameworks dedicated to GPU general pur-

pose programming. Some of them are proprietary, directly developed by

video hardware companies and obviously compatible with their GPUs only:

for example ATI Stream and AMD App, developed by AMD/ATI , or CUDA,

owned by NVIDIA.

There are also more generic development environments for which compati-

bility is the main goal. Examples are OpenCL from the Khronos Group and

DirectCompute from Microsoft.

As far as this work is concerned, the choice of which framework to use has

been made after some tests with two different kinds of environments: CUDA

and OpenCL. The former one is proprietary and runs only on NVIDIA

GPUs, while the latter is theoretically compatible with different kinds of

graphics hardware and can run on some CPUs also. We finally have opted

for CUDA mainly because of practical reasons: we believe that NVIDIA’s

general purpose GPU programming solutions are more mature and the rich

availability of libraries, debugging and profiling tools makes it a powerful

development environment. Furthermore, there have been some problems

programming in OpenCL mainly related to poorly-coded and bugged device

drivers developed by video board companies. It is nevertheless easy to port

CUDA code to OpenCL, since they are based on very similar architectures

and code structure is basically the same. Thus this choice of language is not

as restrictive as it maybe seem.

1http://en.wikipedia.org/wiki/GeForce_600_Series

http://en.wikipedia.org/wiki/GeForce_600_Series

4.1 CUDA 59

4.1 CUDA

CUDA, acronym for Compute Unified Device Architecture, is the main

GPU hardware computational platform developed by NVIDIA. There are

different versions of the CUDA APIs (Application Programming Interfaces)

and GPU architectures (which can be referred using the compute capabil-

ity index); some functions or features have been introduced from a certain

architecture onward, or have a different behavior depending on compute

capability. Therefore, each different architecture has its own optimization

strategies to be exploited. All CUDA code developed for this thesis is op-

timized for and meant to be run on Fermi GPUs (starting from compute

capability 2.0) or newer. For more details about the Fermi compute archi-

tecture see [26].

A generic CUDA application is mainly divided into two parts: host code,

which runs on CPU, and device code, written in CUDA language, which

runs on the GPU in a parallel fashion. The host code is responsible to

initialize the GPU devices, to manage memory allocations and to transfer

and launch kernels. A kernel is a sequence of SPMD operations (from Single

Program Multiple Data) executed on an arbitrarily high number of parallel

threads. A program is a bunch of compiled GPU code: it contains different

kernels, callable directly from host code, and other functions, visible only

from device code and kernels. Each thread executes exactly the same set

of instructions. They are organized by the programmer in a hierarchical

structure, a n-dimensional grid made of n-dimensional blocks of threads

(where n can be one, two or three, example with n = 2 is in figure 4.1). In

order to develop an efficient code, thread topology is important and must

be designed accurately: it should somehow reflect the intrinsic structure of

the problem to be solved.

A GPU contains a certain number of Streaming Multiprocessors (SM), which

execute one or more thread blocks each, based on the amount of resources

available and resources requested per-block. Threads are executed by the

SM in groups of 32, called warps (a group of 16 threads is called half-

warp), with virtually zero-overhead warp scheduling. All threads in a warp

execute an instruction at a time. Thread scheduling is completely handled

by the hardware, without any help from the software and transparently to

the user. In order to maintain high performances, it is thus very important to

60 Chapter 4. GPU parallelization

Figure 4.1: Example of two-dimensional CUDA thread hierarchy.

ensure that threads follow the same execution path, avoiding when possible

conditional jumps. Execution divergence is automatically handled by the

hardware, but it leads to overhead and should indeed be avoided. There

are different kinds of memory which can be used by CUDA applications (a

sketch of them is visible in figure 4.2):

� Global memory : it is the biggest off-chip memory available and its size

is in the order of gigabytes. It is visible from host source code also.

Bandwidth from and to host memory can be high, up to hundreds of

GB/s for modern GPUs, thanks to specialized DMA transfer engines.

Latency, however, is really high. Therefore, accesses to global memory

should be handled with care: they can easily become the bottleneck

of memory-intensive kernels. In modern GPUs (compute capability

2.x at least) there are also two levels of cache (L1 and L2), made of

128-byte cache lines. Memory accesses cached in L1 are serviced with

128-byte memory transactions, while memory accesses cached in L2

4.1 CUDA 61

Figure 4.2: CUDA memory spaces.

only are serviced with 32-byte memory transactions. They can be

enabled or disabled by the programmer and if used correctly they can

result in a significant source of optimization.

� Constant memory : this kind of memory is currently 64 KB big in all

devices and it is meant to contain constant values. It is optimized

for broadcast memory accesses (i.e. threads of the same half-warp, or

warp if compute capability 2.x or upper, access the same address),

while it can drastically reduce performance when threads of the same

half-warp perform transactions on different addresses at the same time.

Constant memory has also an associated constant cache, which stores

recently accessed values in order to speed up further requests to them.

� Texture memory : this read-only memory is useful primarily for graph-

ics applications, since its texture cache is highly optimized for accesses

with spatial locality (in texture coordinates) and not memory locality

(as the other kinds of cache). It is also equipped with dedicated fast

hardware filters (mainly linear interpolation filters) to perform tex-

ture fetches, which in certain situations can become handy and save

instruction cycles.

� Shared memory : it is a low-latency (roughly 100x lower than global

memory) on-chip memory, usually 48 KB maximum per SM. Each

thread block has its own portion of shared memory, not visible from

threads of other blocks. It is used primarily for inter-block commu-

62 Chapter 4. GPU parallelization

nications, data reuse between threads and to organize and facilitate

coalescing of reads and writes to global memory. It is not accessible

outside a kernel and it is not persistent over kernel calls. It is divided

into 16 (or 32 on modern GPUs with compute capability of 2.x or

upper) interleaved banks of 32 bits each, which can service only one

request at a time. If the same bank is accessed by more threads (but

not all of them) of an half-warp (or a warp, for compute capability of

2.x or upper) at the same time it causes a bank conflict, which means

that accesses are serialized and thus performances are reduced.

� Registers: they are the fastest on-chip memory areas available, with

local thread scope. There is a certain amount of registers available in

each SM (from 8 K up to 64 K 32-bit registers, it depends on compute

capability) and they are partitioned among concurrent threads.

� Local memory : it is a portion of off-chip global memory with scope

local to the thread. Accessing to it is as expensive as accessing to

global memory. It is used when there is insufficient register space to

hold local variables (register spilling) or if there are local arrays with

indexing not resolvable at compile time. Therefore, the amount of

thread variables can lead to significant performance loss if too high or

not managed properly.

It is important to observe that resources of SMs are allocated for a thread

block as long as that block is active (i.e. there is at least one thread which

has not completed). Therefore, number of registers per thread, shared mem-

ory usage and thread block size influence the occupancy of SMs, the ratio

between the actual number of active warps and the maximum manageable

by the SM. A good level of occupancy is necessary in order to hide mem-

ory latency: when a warp is waiting for a memory request to complete, the

scheduler is able to process other warps. Nevertheless, this does not mean

that high occupancy is always beneficial (see [35]).

One of the most important performance consideration to follow is the

coalescing of global memory accesses: read or write requests issued by treads

in a warp (or half-warp if compute capability 1.x) can be coalesced into a

single transfer if certain access pattern and address alignment criteria are

met. They depend highly on the compute architecture (see [24, 25] for a

detailed description). Global memory loads and stores are the bottleneck of

4.1 CUDA 63

most algorithms, so it is vital to ensure coalesced accesses wherever possible

in order to achieve the maximum bandwidth; shared memory is often useful

for this scope, since it permits to temporarily store values randomly accessed

by threads, organizing them for coalesced read and write transactions.

Memory transfers from global host memory to device memory (and vice-

versa) constitute another common bottleneck in GPU algorithms. It is bet-

ter to keep data in GPU memory avoiding transfers wherever possible. In

recent CUDA releases it is possible to execute asynchronous memory trans-

fers while a kernel is in execution. This is a powerful feature, but requires a

good algorithm design to be exploited successfully.

An example of NVIDIA GPU with Fermi architecture is the GeForce

GTX 470, used in most of the test cases for this work. It is equipped with

448 CUDA cores and 1280 MB of GDDR5 video RAM, with a bandwidth up

to 133.9 GB/s. It contains third-generation SMs with 32 CUDA cores each

and 64 KB of local low-latency memory. Each of these processors supports

up to 1024 threads and 32 768 32-bit registers.

One important underlying hypothesis assumed in this work is that every

structure that belongs to video memory is completely contained in it and

does not need any form of swapping or streaming from host memory. This

means that the entire problem must fit the available video memory and thus

it is limited by its size. This should not be a problem: memory consumption

of most of the algorithms described in this work when applied to problems

of standard size is quite low and fits perfectly a common video board.

Extending the algorithms to deal with bigger problems should not be diffi-

cult but would require an additional splitting of the problem, with all the

necessary scheduling and communications between parts, and good memory

management. This would also probably break some of the optimizations

currently exploited to gain performance.

Chapter 5

Structural solver

In this chapter the developed structural solver is discussed, with details

about the implementation process. Two different GPU implementations are

considered. The first one is based directly on the CPU algorithm, which is

analyzed and divided into sub-operations, assigned to one GPU kernel each.

The second implementation follows a different approach: the time advance-

ment procedure is observed from the element point of view and implemented

in a single big GPU kernel, maximizing computational efficiency while mini-

mizing communications. Memory and code optimizations are also discussed.

Results and performances of the structural solver are then checked against

Abaqus in two structural test cases.

5.1 Development framework

The main objective of this work is building from scratch a finite element

application to solve shell dynamics problems taking advantage of the avail-

able GPU computing power, in order to gain performance over standard

CPU-based solvers. It has been developed to be modular and versatile: its

aim is to be linked with other applications, for example a CFD solver, in

order to easily couple the structural problem in a multi-physics framework.

It will in fact be used as structural solver for fluid-structure interaction

problems, as described in chapter 7.

The solver environment consists of several libraries and applications. It

is a relatively small but complete package for finite element analysis: other

than the solver itself, several pre-processing and post-processing utilities

65

66 Chapter 5. Structural solver

have been developed, in order to facilitate its usage and result validation.

It is completely written in C++ and CUDA.

The main library where shell solver source code and CUDA kernels reside

is called Strusol (a not original name deriving from Shell Structural Solver).

It contains a set of classes that help the user to set up simulations.

Other functions and classes, not related exclusively to shell problem solving

and finite element analysis but more general purpose, are packed in the

Utils library. They, for instance, help logging and managing errors, parsing

text files and scripts, managing file system operations in a operating system

independent manner. Functions that aid in debugging are also included.

Finally this library contains a set of math classes and structures that are

used by the solvers.

A little mesh viewer is available in the Viewer library. It is extremely simple

and it is not meant to be a fully featured post-processor. Nevertheless, it is

an extremely useful debugging tool: it shows the actual mesh as it is being

deformed in real-time, while the simulation is running. It uses OpenGL as

rendering platform and GLUT for OpenGL context management.

The principal stand-alone interface to Strusol via command-line interface is

called StrusolCli. It is mainly a command parser: using external scripts or

direct commands it can load meshes, set up problems, run simulations and

export results in various formats. It can be linked with the Viewer library

to permit real-time rendering of results as they are computed by Strusol.

Finally, other useful source code, test cases and post-processing applications

are collected in the UtilsBin package, completing the framework in order for

it to be an easy to use and portable environment.

The structural solver SEDIS, developed at the department of Structural

Engineering of Politecnico di Milano [5, 14, 9], was taken as a base for the

development process of Strusol. SEDIS solves the shell dynamics problems

introduced in chapter 1, using MITC4 elements. It consists on a library

with an user front-end and a callable interface. It is completely written in

FORTRAN and features both an explicit dynamics solver and an Adaptive

Dynamic Relaxation solver [27] for steady cases. It has been written and

debugged over the years and it is considered to be mature and stable. For

this reason, in the process of development, both SEDIS and the commercial

solver Abaqus have been extensively used as references for result validation.

The version of SEDIS used throughout this work is able to work on multiple

5.1 Development framework 67

threads on the same computational node thanks to an OpenMP paralleliza-

tion (although an MPI implementation of an older version of the codebase

was discussed in [9]).

Strusol has been built from scratch for one main reason: to be completely

free from constraints of an existing design and to be organized and prepared

for execution on GPU hardware from the beginning of the development. It

is quite always possible to directly port a CPU application to GPU with

some clever tricks; but it is only designing the algorithms from scratch, with

the clear purpose of running on GPU in mind, that the best performances

can be achieved.

The main Strusol library is not meant to be runnable on its own: it

just exports a set of functions and classes to the user and it is up to him

to program and build the final executable that will be linked against the

library.

ShellProblem

Mesh

Problem

BoundaryConditionsMap

Export results

Time management

ShellMeshGpu

Export results

VTK exporter

GiD exporter

External forces External pressure

Problem setup/import Simulation

ShellMeshCpu
GPU management

CudaManager

ManagedArray

Importer

Figure 5.1: Simplified sketch of ShellProblem class internal structure.

There are different categories of classes exported by Strusol. The first

group of classes deals with problem loading and pre-processing. A generic

Mesh class handles the polygonal geometries with their nodes, elements

and sets. Meshes and problem settings are set up manually or they can

be directly imported from SEDIS and Abaqus job files: an internal parser

understands a subset of Abaqus keywords and permits the user to setup

problems in Abaqus, exploiting its user interface, and importing and solving

them later with Strusol.

68 Chapter 5. Structural solver

The second category of classes helps setting up the problem for its simu-

lation. The QuadratureRule class calculates points and weights for standard

Gaussian quadrature rules. The Problem class stores all materials with

their mechanical properties and other global parameters, such as damping

coefficients, gravity, global pressure and external loads. The BoundaryCon-

ditionsMap class helps setting boundary condition values on single nodes,

node sets or boundaries.

A third group of classes handles the simulation of the shell problem.

There are mainly two different solvers: a CPU only single-threaded ver-

sion and a GPU optimized version, both with the same external interface.

They take the mesh and problem settings stored in their respective classes,

assemble the problem to be run and simulate it.

Another group of source code files helps with the post-processing of

results. There is an exporter to an easily readable custom file format as

well as exporters to VTK (viewable in Paraview) and GiD files, for a more

accurate post-processing work.

The last group of classes and functions is the ”glue” of all the other

pieces. There are buffer managers, CUDA support classes and lot of debug-

ging utilities.

Finally, the library contains also the ShellProblem class (figure 5.1, which

offers all functionalities from one single place: it contains everything needed

to setup problems, manage time and history output, export results and

animations, all with one single interface. Users can choose to manage the

problem themselves (manually creating the necessary classes) or let this class

do it for them. A child class of ShellProblem is used to link Strusol with

OpenFOAM for fluid-structure interaction problems.

5.2 CPU solver implementation

After the problem is created or loaded from file, the assembly process

starts. Internal buffers are initialized with their initial values, nodal di-

rectors are calculated on the whole geometry, local nodal basis are built,

lumped mass coefficients are extrapolated using Gaussian surface quadra-

ture rules (since thickness is constant over an element by hypothesis) and

finally damping coefficients and gravity force on each node are calculated.

After this initialization step the problem is ready to be solved. Time is dis-

5.2 CPU solver implementation 69

cretized into small steps of size ∆t, which should satisfy stability conditions.

One implemented method to determine a critical time-step size is to directly

apply the Courant-Friedrichs-Lewy condition:

∆tcrite =
le√
E

ρ(1−ν2)

. (5.1)

This condition infers that ∆t should be less than the time taken by an elastic

wave to travel a shell element. It depends on material properties (density ρ,

Young coefficient E and Poisson ratio ν) and element characteristic length

le, which derives from geometrical properties of the element itself, such as

area, lengths of sides and diagonals. Since it depends on the single element

properties, it is calculated on each element and then the minimum over the

entire mesh is kept. At the end, ∆t is set as:

∆t = γ min
e
{∆tcrite }, (5.2)

where γ ∈ (0, 1) is a safety parameter. This calculated step size can be very

small and leads to a large number of (quick) iterations to be performed.

Starting at the beginning of a time step, the time advancement process

can be summarized in these steps (they derive directly from the finite ele-

ment formulation and time-integration scheme described in chapter 1, but

are reported here for clarity):

� First integration half-step of the central finite difference time-advanc-

ing scheme is performed: starting from degree-of-freedom (from now

on dof) values, velocities and accelerations of the previous time-step

(uni , vni and ani respectively), half step velocities (v
n+ 1

2
i) are calculated

and dof values are updated. This calculation is carried on indepen-

dently for every dof (denoted by the i subscript):

v
n+ 1

2
i = vni +

1

2
∆t ani , (5.3)

un+1
i = uni + ∆t vn+ 1

2 . (5.4)

� Based on the new rotational dof values, new directors are calculated

in each node and local basis are rebuilt. The new director of node k

70 Chapter 5. Structural solver

can be updated as follows:

φ =
(
αn+1
k − αnk

)
tVk

1 +
(
βn+1
k − βnk

)
tVk

2 , (5.5)

t+∆tVk
n =

 1 −φ3 φ2

φ3 1 −φ1

−φ2 φ1 1

 tVk
n, (5.6)

with αnk and βnk being old rotational dof values and αn+1
k and βn+1

k the

new ones. The director is then normalized and taken as reference to

update local nodal basis also.

� Internal forces are calculated, based on new nodal displacements and

directors. The calculation is carried on each element and resulting

forces are accumulated on the nodes, in order to have an internal force

value fn+1
I,i for each dof i.

� External nodal forces and external elemental pressures are collected,

obtaining fn+1
E,i for each dof.

� The second integration half-step of the time-advancing scheme is per-

formed. Accelerations are updated using new internal and external

forces and velocity integration is concluded:

an+1
i =

fn+1
E,i − f

n+1
I,i − ci v

n+ 1
2

i

mi + 1
2 ∆t ci

, (5.7)

vn+1
i = v

n+ 1
2

i +
1

2
∆t an+1

i , (5.8)

where ci and mi are respectively the damping coefficient and mass value

associated with the i-th dof.

Dirichlet boundary conditions are easily applied: in the integration half-

steps, if a dof is fixed it does not get updated, but keeps its original value. In

this way, this is the only part of code that needs to know about these bound-

ary conditions, avoiding other conditional statements that would break ex-

ecution flow path.

5.3 GPU solver implementation 71

5.3 GPU solver implementation

Independently from the underlying algorithm, every GPU application

follows these four essential steps:

� organize permanent data and constants in GPU memory;

� transfer input values to GPU;

� run one or more kernels on this data;

� transfer output values and results from GPU to host.

For simple problems these steps could be trivial and reflect the actual CPU

implementation. For more complex tasks instead a good planning is neces-

sary in order to get good performance results. As said before, particular care

must be taken to organize memory and manage transfers. Because of the

limited PCI-Express bandwidth, host-to-device and device-to-host memory

transfers can easily become the bottleneck of an algorithm. Therefore, it

is better to avoid them when it is possible, keeping constant data on GPU

memory and moving values from/to device only when necessary. This is

possible as long as the needed data fits GPU memory, otherwise it becomes

necessary to design a different memory management strategies that include

streaming of data. As previously stated, in this work this is generally not a

problem, since memory consumption is very low even with big mesh sizes.

The GPU version of Strusol performs an initialization step where GPU

buffers are allocated and filled with initial or constant values. Then, all

simulation data remain on GPU. No memory transfer occurs until the ap-

plication wants to have access to resulting displacements. When it does so,

the buffer holding current dof values is transferred and displacements are

extracted and returned to the caller.

In order to easily manage memory buffers, the specialized class Man-

agedArray has been developed. It represents a generic array of items (their

type is passed as template parameter). Thanks to C++ operator overload-

ing it acts like a standard array, but provides safety checks for out-of-bounds

violations and helps keeping host and device memory synchronized. In fact,

it keeps two distinct buffers, one in host memory and the other one on the

GPU, and transparently handles memory transfers, performing them only

when one of the two arrays is modified.

72 Chapter 5. Structural solver

During the development of the GPU algorithm, a lot of different strate-

gies have been explored. The solver at hand, thanks to its own nature, at

first sight is quite easy to parallelize. It can be decomposed into different

tasks which can be easily parallelized one by one. This approach produces

good results, but, as it will be discussed more in details in the next sections,

in order to obtain a real improvement in performance, the whole algorithm

has to be reorganized and lots of different optimization techniques have to

be employed.

Therefore, two different GPU implementations will be discussed. The first

one is more standard and the ideas behind it come directly from the serial

implementation. The second one is the result of a complete redesign of the

algorithm, where constraints of optimized CUDA programming have driven

the development.

5.3.1 First GPU implementation

Analyzing the structure of the CPU algorithm, an important fact is

observed: it is divided into independent parts, all of which that can be seen

as loop over a set of entities. In particular, these parts can be classified as

follows:

� for each dof: perform first integration half-step;

� for each node: update director and local basis;

� for each node: extract displacements from dof values;

� for each element: calculate internal forces;

� for each element: calculate external forces due to external pressures;

� for each node: add contribution of external nodal forces;

� for each dof: perform second integration half-step.

Therefore, the first obvious approach for parallelizing an algorithm with

this kind of structure consists on splitting the problem into these parts and

assigning each of them to one separated CUDA kernel. Each kernel then

exploits the inherent nature of the assigned sub-problem: if it consists in

a loop over dof quantities, each thread will operate on a single dof; if it is

over mesh nodes, each thread will operate on a single node, and so on. This

5.3 GPU solver implementation 73

Figure 5.2: Generic thread access pattern that helps coalescing.

is a very simple fine-grain parallelization technique that can be in practice

quite effective. It is obviously possible to assign to a single thread more

than one entity to process. In fact, if the amount of calculations done by a

single thread is too low, then latency of accesses to global memory cannot be

hidden and sometimes even thread scheduling becomes a visible overhead.

Therefore, in these cases often it is better to let each thread work on more

entities at once (using the general pattern in figure 5.2 to pick entities,

in order to ensure coalescing accesses). The actual number of entities to

process can be evaluated in a pre-processing stage, trying different values

until a balance is reached and maximum performances are achieved.

The main problem with this approach is that time integration is per-

formed on dof quantities. Internal forces and external pressures are cal-

culated element by element, but at the end they must provide a resulting

value for each dof. However, dofs are shared among near elements, therefore

these operations require a further assembly step, where resulting values are

collected and forces for each dof are calculated summing contributions from

all elements to which they belong.

While in CPU this is easily done, in GPU it is harder. It is basically a re-

duction problem: in order to collect values to be summed information about

mesh connectivity and synchronization between threads (and thread blocks)

are required. One approach could be employing one of the several reduc-

tion patterns that have already been studied and developed (see for example

[15]). The chosen solution, implemented in Strusol, is much simpler. The

main issue regarding this assembly step is that each memory location of

the internal and external forces vectors is accessed by different elements on

different threads, possibly concurrently. Therefore, it is necessary to avoid

these conflicts and enforce that only one thread at a time can access its

74 Chapter 5. Structural solver

Figure 5.3: Partitioning of a quadrangular mesh.

values on these shared locations. To address this problem, a partitioning of

the mesh has been introduced: elements are divided into different sets such

that each element in one set does not share any nodes with other elements

of the same set. An example of this partitioning can be seen in figure 5.3.

It shows a quadrangular mesh composed of 81 elements with 100 nodes. It

has been partitioned into 4 different element sets, shown in the figure with

different colors, containing respectively 25, 20, 20 and 16 elements.

Thanks to this partitioning, assembly of internal and external forces can

be performed on one element set at a time: this means sequential calls to

the same CUDA kernel (with only a different parameter), which are han-

dled efficiently by the GPU, since no kernel switch is involved. Threads are

then able to write to forces vectors without any concerns of overlapping.

In this way, other costly synchronization procedures are also avoided. One

Figure 5.4: Example of node shared by many elements.

5.3 GPU solver implementation 75

Figure 5.5: Partitioning of a sail mesh.

drawback of this approach is that mesh quality affects partitions: if lot of

elements share one common node (like in figure 5.4), many element sets are

created and more sequential passes have to be taken. Therefore, it is neces-

sary to control the meshing operation and check for these situations, trying

to keep the number of elements sharing the same node as low as possible.

An example of different partitioning is shown in figure 5.5 for a sail geome-

try, a gennaker discretized into 2694 elements, with 2846 nodes. It has been

divided in element sets using a simple greedy approach, described in figure

5.6. It ended up split into 7 elements sets, containing respectively 667, 642,

587, 539, 183, 68 and 8 elements. Therefore, internal and external forces are

computed and assembled in seven consecutive passes.

It could be possible to develop a better algorithm to partition the mesh,

which would create more balanced element sets, resulting in slightly better

performance. At this stage, no effort has been made to improve the greedy

approach for various reasons. First of all, with some care taken while mesh-

ing the geometry, it gives satisfactory results most of the times. In any case,

overall solver performance would not be improved much by better parti-

tioning algorithms. Furthermore, the improved GPU version of the solver,

which will be described below, does not need to partition the mesh, thus

other solutions were not further investigated.

76 Chapter 5. Structural solver

Array of shared nodes is emptied

An element, whose nodes are not present

in the array of shared nodes, is assigned to

the current element set

Its nodes are added to the array of shared

nodes

Is there an element

without shared nodes?

Store the just created element set as a new

partition

Have all elements been

assigned to a partition?

Start

Done partitioning

Yes

Yes

No

No

Figure 5.6: Greedy algorithm used to create mesh partitions.

5.3 GPU solver implementation 77

5.3.2 Optimized GPU implementation

The first version of the GPU solver has been developed decomposing

each time-step into sub-problems and exploiting their inherent parallelizable

structure. In order to build a better implementation, a re-design of the

algorithm is needed.

Solver redesign

The main issue with the previous approach is that each part of the

algorithm operates on different type of entities: they are basically loops

over either dofs or nodes or elements. If it was possible to express the entire

time step process as a set of loops over a single type of quantity, all these

loops could be aggregated into one single procedure, which could fit a single

CUDA kernel and thus avoid costly kernel calls and switches.

Centering the whole algorithm around dofs as main entity is not a good

idea. It would be convenient only in time integration steps. Implementation

of the other passes, nodal basis update and forces calculation, would require

many conditional branches and flow logic, which should be avoided in a

CUDA kernel wherever possible.

Looping over nodes could be a better approach. Their one-to-five relation

with dofs is convenient in order to express time integration steps (they simply

would become unrolled loops over local dofs) and obviously nodal director

and local basis update are trivial. Calculation of internal and external forces,

the most computationally expensive step, remains hard to be performed

on a per-node basis, since it requires integration over the elements. Each

node would have to know which elements it belongs to, their properties and

materials, and then calculate forces contributions for all those elements.

This would be highly unpractical and would cause lot of wasted time to

perform the same calculations more than once (considering the lack of easy

synchronization between thread blocks).

All these problems are avoided choosing to express all loops over the

elements. In order to do so, it is necessary to keep for each element all

information about its local nodes. In this way, each element can perform

time integration and nodal basis update by itself, on its own nodes, and

then it can proceed to calculate forces. All steps can thus be done in one

single large CUDA kernel.

78 Chapter 5. Structural solver

In order to optimize the time integration pass internal of the time-step

some rearrangements to the default central finite differences method are

needed. It is necessary to maintain the forces calculation step as the last

one: it is the only step that needs explicit communication between elements.

To avoid global communications inside the CUDA kernel it must be placed at

the end of kernel execution, so that it can rely on the implicit synchronization

occurring between successive kernel calls.

As it has already been described, at time-step n the standard central finite

differences method can be summarized as follows (i is the dof index):

� first integration half-step:

v
n+ 1

2
i = vni +

1

2
∆t ani , (5.9)

un+1
i = uni + ∆t vn+ 1

2 ; (5.10)

� forces calculation:

Fn+1
I = internalForces

(
Un+1

)
, (5.11)

Fn+1
E = externalForces

(
Un+1

)
; (5.12)

� second integration half-step:

an+1
i =

fn+1
E,i − f

n+1
I,i − ci v

n+ 1
2

i

mi + 1
2 ∆t ci

, (5.13)

vn+1
i = v

n+ 1
2

i +
1

2
∆t an+1

i . (5.14)

In order to perform the desired optimizations it is necessary to move the

forces calculation step to the end of the algorithm. In order to do so, equa-

tions (5.9) and (5.10) can be preponed soon after the second integration pass

of the precedent time-step.

5.3 GPU solver implementation 79

The procedure then becomes:

Fn+1
I = internalForces

(
Un+1

)
, (5.15)

Fn+1
E = externalForces

(
Un+1

)
, (5.16)

an+1
i =

fn+1
E,i − f

n+1
I,i − ci v

n+ 1
2

i

mi + 1
2 ∆t ci

, (5.17)

vn+1
i = v

n+ 1
2

i +
1

2
∆t an+1

i , (5.18)

v
n+1+ 1

2
i = vn+1

i +
1

2
∆t an+1

i , (5.19)

un+2
i = un+1

i + ∆t vn+1+ 1
2 . (5.20)

It is now possible to anticipate the force calculation pass at the end of the

precedent time-step. Merging velocity updates and normalizing time-step

superscripts, we obtain:

an+1
i =

fnE,i − fnI,i − ci v
n− 1

2
i

mi + 1
2 ∆t ci

, (5.21)

v
n+ 1

2
i = v

n− 1
2

i + ∆t an+1
i , (5.22)

un+1
i = uni + ∆t vn+ 1

2 , (5.23)

Fn+1
I = internalForces

(
Un+1

)
, (5.24)

Fn+1
E = externalForces

(
Un+1

)
. (5.25)

It is obviously necessary to perform an initialization step where initial forces,

dof values and half-step velocities are calculated.

With the time advancing pass expressed in this form, there are two main

advantages. First of all, the is no need to store dof acceleration and velocity

values. The only buffers needed are related to dof values, half-step velocities

and forces. Furthermore, this procedure does not need synchronizations

inside a time-step. Having given to each element its own copy of nodal

values, they are now able to perform calculations completely independently

from each other. The whole time-step advancing procedure is contained in

a single big CUDA kernel, where each thread is assigned to an element. A

80 Chapter 5. Structural solver

Read necessary quantities from device

memory and constant memory

Gather contribution to local nodal forces

from neighbouring elements

Time integration step

Calculate internal and external forces

Thread start

Thread end

Update local nodal directors and basis

Write all updated values to device memory

CUDA kernel

Figure 5.7: Steps performed in time integration kernel.

schematized flow chart of this procedure is shown in figure 5.7.

Performing this calculation in an element by element manner means

that some calculations are done multiple times: each element has to inte-

grate quantities and build nodal basis on its own local nodes, even if they

are shared with other elements. The only communication allowed among

different elements is in the force assembly step, where forces coming from

near elements are gathered. This approach relies on these facts:

� as far as GPU programming is concerned, performing the same cal-

culations more than once often is better, if that means fewer memory

accesses. GPUs are much more powerful at doing calculations rather

than reading/writing memory;

� in this case, forces calculation is, by far, the most computationally

5.3 GPU solver implementation 81

expensive pass. Therefore, if there is the necessity to repeat some of

the calculations (to avoid expensive memory accesses), it is better to

re-calculate values related to the other lighter passes;

� memory consumption of this algorithm is not a problem, thus some

memory can be wasted duplicating necessary information, if that leads

to simplification in the kernel or better memory access patterns.

In order to sustain this last point, some simple benchmarks can be per-

formed. To fully understand this point however a deeper explanation on

how the buffers are managed is necessary. Memory consumption analysis is

presented afterward.

Structure layout and memory optimizations

With respect to the previous GPU implementation, also GPU memory

management has been redesigned and optimized. When necessary, the man-

aged array class is now able to organize data in a structure-of-arrays (SoA)

manner, instead of the more intuitive array-of-structures (AoS). These mem-

ory layouts influence how values are read and stored to device memory;

therefore, since bottlenecks of most algorithms are due to memory accesses,

data organization is really important in order to ensure coalescence and gen-

erally good performances of the implementation.

An example of these different memory layouts is the following. In order to

store a 3D coordinates array, the common AoS layout is:

struct Vector3 {

Real x;

Real y;

Real z;

};

struct Vector3 coordinates[N];

X Y Z

Z

X Y Z X Y Z

Thread 0 Thread 1 Thread 2

Figure 5.8: Thread access pattern with AoS layout.

82 Chapter 5. Structural solver

When used in CUDA kernels this is often not efficient. When each thread

reads a structure of values from device memory, accesses with this kind of

layout often break coalescing patterns. For example, if each thread (with

index i) has to read the x coordinate of the vector at position i into the array,

considering all threads in a warp, the wanted values are not contiguous,

therefore accesses cannot be coalesced. This causes serialized memory reads

and wasted bandwidth and cycles. A common solution is to store structure

values in separate arrays (structure-of-arrays approach, SoA), as follows:

struct Coordinates {

Real x[N];

Real y[N];

Real z[N];

};

struct Coordinates coordinates;

X0 X1 X2

Z

Y0 Y1 Y2 Z0 Z1 Z2

T0 T1 T2 T0 T1 T2 T0 T1 T2

Figure 5.9: Thread access pattern with SoA layout.

With this memory layout, each thread reads a value at a time from sepa-

rate arrays: the values accessed at the same time by threads inside a warp

are contiguous, thus accesses can be fully coalesced and performances are

dramatically increased.

This layout gives the best performance most of the times, but there are

some situations where other approaches can be useful. Sometimes, having

the wanted values stored close one to another is good for caching purpose

and, if the structure is of the right size, accesses to it can still be fast

(assuming the base address being accessed is aligned correctly): 64- and

128-bit loads and stores can be done with a single instruction by the hard-

ware. Therefore, with vectorized types such as float2 (two consecutive 32-

bit floating point numbers) or float4 (four consecutive 32-bit floating point

numbers) an AoS layout can sometimes be better than a SoA approach,

since fewer memory operations are issued and a smaller number of pointers

has to be managed. It depends on the specific situation; sometimes, even

5.3 GPU solver implementation 83

an hybrid approach could be beneficial, for example a SoAoS layout, with

correctly aligned arrays of right-sized structures. In this cases often the best

approach is trial-and-benchmark.

However, in all situations three-component vectorized types are never a

good container: they break not only coalescence rules but also alignment.

One possible solution to this problem can be clever packing of values. For

example, let us assume that storage for node coordinates of an element is

needed. This would mean 4 vectors (one for each local node) of 3 components

(since they are vectors in a 3D space). Instead of storing these values in

triples and then performing 4 memory accesses of 3 floats each, which is

not good from alignment and coalescence point of view, it is possible to

store these values in three vectors of 4 scalars, packing the fourth vector

components into the last spaces of the other vectors (as in figure 5.10).

 X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

Node 1:

Node 2:

Node 3:

Node 4:

:

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4

Y4

Z4

Figure 5.10: Example of vector packing.

It is then necessary to perform 3 memory accesses of 4 values each. If data

type is 32-bit wide and addresses are aligned, these transfers are not slowed

down. However, it is important to mention that usually double precision

floating point arithmetic is wanted. But doubles are 64-bit wide; therefore,

in the implementation described in this work best performances are achieved

using generally a SoA approach for data organization (AoS is used only in

a few places, with 4 x 32-bit vectorized types).

While buffers with element quantities are stored in GPU device memory,

common parameters or pointers are stored in constant memory. Values such

as quadrature points and weights or mass damping coefficients are shared

by all elements, thus placing them in constant cache ensures good access

latency.

Another optimization that was adopted regards Dirichlet boundary con-

ditions handling. At first, to know if a dof was fixed (to zero or to some

84 Chapter 5. Structural solver

predefined value) or free it was necessary to keep a separate memory buffers

which contained one multiplier per dof: a value of 0 indicated a fixed dof, a

value of 1 a free dof. This factor was then used as a multiplier for final accel-

eration values, leading to a non-zero acceleration and velocity only if the dof

was not fixed. This solution was efficient from the calculation point of view,

since it did not break execution flow path with conditional branches, but

it had the draw-back of requiring other memory accesses to read multiplier

values.

A better solution has then been implemented considering that a bit of in-

formation can be stored in the sign of mass values. Since mass is obvi-

ously always positive, a negative mass indicates a fixed dof. In this way,

a conditional branch (over the mass sign) has been introduced in the in-

tegration pass, but the reads from device memory are avoided. This little

trick improved performances quite significantly, underlining how GPU code

optimizations sometimes can be unobvious.

This kernel is very computationally expensive. Calculation of internal

forces requires lots of computational power, thus memory access latency is

well hidden. Furthermore, almost all memory accesses are organized to be

fully coalesced. The only pass that actually breaks coalescence patterns

and introduces overhead is the local forces exchange pass (the second one

in figure 5.7). Each element has to perform dof integration on its own lo-

cal nodes. In order to do so, it needs to assemble forces on these nodes.

The force calculation pass (performed at the end of the previous time-step)

gives only a partial contribution to local forces: it is necessary to collect all

contributions from neighboring elements also. In particular, each element

needs to know, for all its local nodes, which elements contain those nodes

and what their local indices are.

In figure 5.11 a simplified mesh with four elements is shown. Global node

indices are written in black, local node indices in red: as an example, node

5 has local index 2 for element B, but local index 1 for element C.

Let us consider element B. At the beginning of the time-step the corre-

sponding thread reads from device memory the contributions to local forces

in its own nodes, calculated at the end of the precedent time-step. After

that, it needs to access neighboring elements’ local forces array in order to

gather all necessary contributions to its own local forces: local node 0 needs

force contribution from node 1 of element A; local node 3 needs contribution

5.3 GPU solver implementation 85

D C

B
A

0

1
2

3 4
5

6

7
8

D
6

7

5

8

C

2

B

0
1

3

A
4

3

2

1
0

3

0

1

2 3

1

2

1

23

0

0

Figure 5.11: Local node numbering for neighbour arrays: node global in-
dices are in black, local indices in red.

from node 0 in element C, node 1 in element D and node 2 in element A,

and so on. These connectivity arrays are built in a pre-processing step and

remain unchanged during the simulation. This is the only pass inside the

time-step where un-coalesced reads to device memory are performed. How-

ever, number of accesses is small and it does not impact on overall solver

performance. It could be possible to improve this pass of the algorithm,

for example employing some clever ordering of elements together with block

shared memory; this is left to be done in future releases of the solver.

Finally, it is possible to approximate the memory consumption of this

algorithm, to prove the fact that wasting memory on duplicating necessary

information can sometimes be a good idea. As far as GPU memory is

concerned, the following buffers are allocated:

� read/write buffers:

– dof values: 20 x (number of elements) scalars;

– dof half-step velocities: 20 x (number of elements) scalars;

– nodal directors: 4 x (number of elements) x (3 scalars);

– nodal basis: 2 x 4 x (number of elements) x (3 scalars);

– element local forces: 20 x (number of elements) x 2 (because of

the double buffering).

� read-only buffers:

– initial nodal directors: 4 x (number of elements) x (3 scalars);

– dof masses: 20 x (number of elements) scalars;

86 Chapter 5. Structural solver

– element material properties and external pressures: 4 x (number

of elements) scalars;

– external nodal forces: 4 x (number of elements) x (3 scalars);

– initial node coordinates: 4 x (number of elements) x (3 scalars);

– neighbors array: 2 x 4 x (max. number of neighbors) x (number

of elements) integers.

By hypothesis, let us assume that 6 is the maximum number of elements

sharing the same node. Summing up all contributions, it results that each

element requires 176 scalars and 48 integers. Considering double precision

arithmetic, so that scalars are 8 bytes long, and 32-bit integers, each elements

requires 1600 bytes of storage. A low-range gaming GPU now has often at

least 1 GB of video RAM. Tesla computing boards are equipped usually

with several GBs of memory. For each GB, theoretically 671088 elements

can be stored. This is an incredible big number: usually meshes are much

smaller, since the MITC4 element is considered to be quite rich, with its 5

dofs per node, and there is no need for fine refinements in most cases. In

case of bigger meshes, they can always be partitioned and asynchronically

streamed to GPU memory while executing; this would require specialized

management of elements at sub-domain interfaces, but the overall structure

of the solver would remain the same.

Code and CUDA optimizations

After this whole process of algorithm redesign, it was necessary to per-

form other optimizations at code level, in order to squeeze more performance

out the GPU. First of all, it is important to notice that the algorithm is inde-

pendent from the size of thread blocks: these have to be monodimensional,

with a number of threads multiple of 32 in order to guarantee fully coa-

lesced memory accesses, but the actual size can vary. Since it depends on

far too many factors, a crude but simple way to find out the best block

size to employ is to try them all: the time advancing process is run for two

seconds for each block size and the number of time-steps completed in that

amount of time is taken as reference in order to choose the most performant

one. It is stored on a file, so subsequent simulations on the same problem

are run with the chosen block size. Results of this tuning step are GPU

and problem dependent. For example, in figure 5.12 average computation

5.3 GPU solver implementation 87

time of a single time-step is shown for a problem with two different meshes

(with 1596 and 3680 elements respectively) run on a laptop equipped with

a NVIDIA GeForce GTX 670M (336 CUDA cores) and tower PC with a

NVIDIA GeForce GTX 470 (448 CUDA cores).

Figure 5.12: Thread block size tuning for a problem with two different
meshes on two different GPU boards.

Finally, other miscellaneous optimizations to the source code were made.

With the aid of profiling tools (namely NVIDIA nvprof, Visual Profiler or

Nsight) bottlenecks of the algorithm were investigated and corrected when

possible. In particular, in this kernel the biggest cause of performance drop

is register spilling: there are too many local variables to fit the available reg-

isters, thus some of them are stored in local memory (which has the same

latency as global memory) causing a significant performance drop. This

problem was alleviated in two steps. Initially, reads and writes to global

memory were performed at the beginning and at the end of the time-step

respectively; in order to avoid storing values in temporary variables for the

whole time-step process, reads and writes were moved before and after the

actual code using them. Furthermore, in order to help the CUDA optimizer,

a meticulous process of local variable scope tuning (enforced dividing manu-

ally the source code in blocks using curly brackets) and forcing variable reuse

was performed, with good results in terms of performance gained (around

20% more).

88 Chapter 5. Structural solver

This whole algorithm redesign and optimization process has proven to

be very useful: with respect to the first GPU implementation, this new one

is approximately 2-3 times faster, depending on the problem and the GPU

board, and it could probably be improved further. In the next sections

some benchmarks assessing performance of the GPU implementation will

be discussed.

5.4 Structural test cases

In order to check accuracy, robustness and performance of the structural

solver various test cases have been built and comparison made with results

obtained using the commercial software Abaqus, a software suite for com-

puter aided design and finite element analysis, part of SIMULIA by Dassault

Systèmes. It comes with an extremely rich environment of tools that cover

from 3D modeling and pre-processing to the finite element analysis itself

and post-processing. It supports an extensive set of elements and integra-

tion techniques, as well as mesh generation and refinement algorithms.

In order to check results against the shell dynamics solver presented in

this work, Abaqus-Explicit finite element analyzer has been used and tweaked

to behave similarly. In particular, elements of type S4, without reduced

integration, have been employed. Strusol comes with an Abaqus input files

importer, which can read a subset of Abaqus job’s keywords. Consequently,

meshes are modeled in Abaqus CAD interface and directly imported into

the shell solver without modifications.

Post-solution analysis is carried on using the internal Abaqus post-pro-

cessor when dealing with Abaqus results. Strusol results, instead, are pro-

cessed using Paraview, a powerful open-source scientific visualization tool.

5.4 Structural test cases 89

5.4.1 Uniformly loaded circular plate

This first test is meant to check solver accuracy and to compare per-

formance of the CPU and GPU implementation against the commercial

software Abaqus. It is quite simple, but has also an essential and very rare

property: an analytical solution, for the steady case, is available.

A circular plate made of an isotropic homogeneous material is analyzed

in constant external pressure and simply supported edge conditions, i.e.

border’s vertical displacements are blocked, while rotations are allowed.

Figure 5.13: Circular plate test case.

Under small displacements assumption, an analytical solution for displace-

ments can be found following the procedures in [32]. Using Reissner-Mindlin

shell theory, vertical displacements of plate points can be calculated:

uy (ρ) =
pextR

4

64D

(
1− ρ2

) [5 + ν

1 + ν
− ρ2 + 16

λ2

β

]
, (5.26)

where pext is the constant external pressure applied on the plate, R is plate’s

radius and D represents its flexural rigidity:

D =
Eh3

12 (1− ν2)
, (5.27)

where h is the thickness, E is the Young modulus, ν is the Poisson’s ratio,

ρ = r/R is an adimensional radial coordinate, λ = h/R is an index of how

the plate is thin with respect to its radius and β is a characteristic parameter,

which is, as far as homogeneous plates are concerned, equal to 5 (1− ν).

For all tests the following parameter values have been considered:

90 Chapter 5. Structural solver

� Material: E = 206 000 MPa, ν = 0.3;

� Geometry: R = 10 mm, h = 0.1 mm;

� External pressure: pext = 0.0001 MPa.

These values lead to a static vertical displacement of the middle point of

0.003 377 mm.

In order to compare the numerical solution against the analytical one,

this problem is discretized by differently refined meshes. Since the analyt-

ical solution refers to the steady case and the solver is purely transient, a

little damping is applied and the solver is left running until convergence.

Numerical results are summarized in table 5.1.

Mesh Elements L2-norm error Punct. error (%)

1 20 1.31 10−3 3.772

2 80 3.64 10−4 0.995

3 180 1.70 10−4 0.462

4 320 1.01 10−4 0.276

5 500 6.84 10−5 0.189

6 1280 3.33 10−5 0.095

Table 5.1: Comparison with analytical solution.

Last column of the table refers to the circular plate’s central point punctual

error against the analytical solution. It is just an indicative value, since

punctual convergence cannot be guaranteed.

In figure 5.14, L2-norm error is shown, firstly over the number of mesh

elements, then over an approximate element size measure, in logarithmic

scale. Second order convergence is achieved as expected for this kind of

bilinear isoparametric elements from the finite-element analysis theory.

These results refer to a static case. The same problem setup is used

to perform also a dynamics analysis. Figure 5.15 shows an example of the

resulting deformation after 100 seconds of simulation. A transient analytical

solution is not available, therefore results are tested against the commercial

5.4 Structural test cases 91

(a) L2-norm error over number of elements

(b) L2-norm error over characteristic element size h, in logarithmic scale

Figure 5.14: L2-norm error against analytical solution.

92 Chapter 5. Structural solver

Figure 5.15: Deformed mesh after 100 seconds (3023 elements). Displace-
ments have been amplified by a scaling factor of 1000.

software Abaqus. In figure 5.16 vertical displacements of the circular plate’s

central point are shown for a 120 seconds time period, calculated by both

solvers. Obviously, the two solutions are practically identical, since the same

discretization and element are used.

Figure 5.16: Solution comparison against Abaqus.

5.4 Structural test cases 93

Having checked that Abaqus and Strusol produce the same results, it

is possible to compare performance too. Different mesh refinements are

tested, with more elements than the meshes used to compare results with

the analytical solution, in order to make trends in time duration and speedup

more visible. Their number of elements and nodes are reported in table 5.2.

Mesh Elements Nodes

1 500 521

2 1125 1156

3 2000 2041

4 3125 3176

5 4500 4561

6 8000 8081

7 12 500 12 601

Table 5.2: Meshes used for performance comparison.

All meshes have been created in Abaqus. In order to make the comparison as

accurate as possible, the very same job files, exported from Abaqus as results

from the modeling stage and input for the simulation stage, are imported

in Strusol without any change; even the number of times displacements are

written to file is kept the same. Abaqus mesh is made of S4 elements,

without reduced integration.

Abaqus is equipped with a good time-step size estimation algorithm that

adapts it during the simulation, trying to keep it as large as possible, while

preserving stability. Strusol instead calculates a (very restrictive) time-step

size at the beginning and then keeps it for the whole simulation; it let

the user change it when he desires, but it does not come with an included

automatic adaptation algorithm yet.

As a matter of fact, the geometry of the problem at hand is very simple and

Abaqus uses only two different time-step sizes trough the whole simulation

period: one smaller, only for the first time interval, and the other bigger,

for the rest of simulation. For the sake of comparison, in these simulations

Strusol’s time-step size is fixed as the smallest one used by Abaqus. Those

time-step sizes are reported in table 5.3.

For each mesh, time taken to perform 120 seconds of simulation is mea-

94 Chapter 5. Structural solver

Mesh Elements First ∆t Largest ∆t

1 500 0.01464 0.02119
2 1125 0.00894 0.01325
3 2000 0.00638 0.00951
4 3125 0.00495 0.00736
5 4500 0.00404 0.00597
6 8000 0.00294 0.00431
7 12 500 0.00231 0.00335

Table 5.3: Time-step sizes used by Abaqus during the simulations.

sured. Measures do not include any pre-processing or post-processing time,

only the actual computational time. Abaqus and Strusol CPU simulations

have been run on a single core of an AMD Phenom X4 9950 Black Edi-

tion CPU at 2.6 GHz. Strusol GPU simulations have been run on the same

machine, equipped with a NVIDIA GeForce GTX 470 GPU, provided with

448 CUDA cores (14 SM, 32 cores/SM). All simulations have been made

on Linux, without graphical user interface (to not interfere with GPU com-

putations). Results obtained measuring computational time with double-

precision and single-precision floating point arithmetic are summarized re-

spectively in tables 5.4 and 5.5.

With the biggest mesh considered, in double precision arithmetic, Strusol

runs over 33 times faster than Abaqus. Considering that Abaqus uses the

largest time-step size, 1.45 times bigger than the small one, only for the

first time increment, while Strusol uses it for the whole simulation, it is fair

to compare the two implementations in the same situation also, turning off

Abaqus’ adaptive time-step and forcing it to use the same time-step size as

Strusol. In this situation, the gained speedup is over 43x.

These simulations have been done using a GPU suited for video-gaming

and not specialized in scientific computing. Despite the good results shown

using double-precision arithmetic, these kind of video boards are more suited

for single-precision arithmetic, because in 3D graphics real-time performance

is required and it is important to obtain visually-appealing quick results,

sometimes sacrificing physical accuracy. So, just for the sake of compari-

son, the same simulations have been performed with single-precision arith-

metic: speedup of 46x and 61x have been obtained considering Abaqus’

adaptive and fixed time-step configurations respectively. If computationally-

5.4 Structural test cases 95

Mesh Abaqus
(adaptive)

Abaqus
(fixed)

Strusol CPU Strusol GPU

1 24.86 32.13 13.28 2.46
2 88.02 118.54 52.65 5.29
3 216.56 291.86 141.77 9.38
4 435.28 576.10 263.00 15.24
5 769.04 1023.15 473.38 24.46
6 1884.61 2472.49 1120.33 59.76
7 3753.52 4845.03 2308.00 111.51

Table 5.4: Computational time in seconds (double-precision arithmetic).

Mesh Abaqus
(adaptive)

Abaqus
(fixed)

Strusol CPU Strusol GPU

1 13.57 18.32 13.47 1.18
2 46.82 63.77 54.20 2.37
3 115.92 158.13 132.92 4.05
4 231.33 312.44 273.46 6.36
5 408.17 541.74 486.52 9.73
6 988.34 1318.71 1241.45 24.12
7 1973.87 2606.35 2278.53 42.43

Table 5.5: Computational time in seconds (single-precision arithmetic).

96 Chapter 5. Structural solver

Figure 5.17: Computational time (double-precision arithmetic).

Figure 5.18: Computational time (single-precision arithmetic).

5.4 Structural test cases 97

Figure 5.19: Speedup (double-precision arithmetic).

Figure 5.20: Speedup (single-precision arithmetic).

98 Chapter 5. Structural solver

oriented GPU boards are employed, like for example NVIDIA Tesla, which

are equipped with high-performing double-precision ALUs, even better per-

formances are achievable and the speedup curve would saturate at an higher

value. It is interesting to notice also that, even with the finest mesh consid-

ered, the GPU implementation is able to compute 120 seconds of simulation

in less than 112 seconds. This means that the problem can be simulated

completely in real-time, using the full MITC4 elements and without requir-

ing reduced integration or simpler elements.

Results show how this kind of problems are well suited for GPU imple-

mentation. Explicit time integration requires a large amount of very small

time-steps to be performed, but on GPU they can be executed extremely

quickly and overall performances are satisfactory. It is also important to

emphasize that during these simulations the CPU is practically idle. This

fact can be exploited in more complex situations where different systems

have to be simulated concurrently: keeping computation on GPU frees the

CPU to perform other demanding tasks.

5.4 Structural test cases 99

5.4.2 Clamped rectangular plate

This second structural case represents a test for the large displacement

formulation and a simple benchmark for performance.

A rectangular plate is fixed at one edge. Its dynamics is analyzed under a

constant tip load. Figure 5.21 shows the geometry of the problem.

Figure 5.21: Clamped cantilever test case.

The following setup is considered:

� Material: E = 1768 MPa, ν = 0.3, ρ = 3000 kg/m3;

� Geometry: 100 mm x 20 mm, h = 0.2 mm (thickness);

� External tip load: Pext = 0.001 56 MPa.

These parameters have been accurately chosen to cause large displacements

of the structure, in order to test the solver in such situations. Evolution of

the deformed structural mesh is visible in figure 5.22, where displacements

at different times are shown. The same identical problem is again imported

in Abaqus in order to check the implementation against a widely known

and tested commercial software and to compare their performance. As a

reference, vertical displacements of the central point on the tip of the can-

tilever are extracted and compared. They follow the curve shown in figure

5.23. Once again, pointwise values calculated by Abaqus and Strusol are

obviously identical, even in case of large displacements. What is interesting

are performance benchmarks.

100 Chapter 5. Structural solver

(a) t = 0 s (b) t = 0.0525 s

(c) t = 0.105 s (d) t = 0.1575 s

(e) t = 0.21 s (f) t = 0.2975 s

Figure 5.22: Deformations of the cantilever at different times, without dis-
placement scaling factor.

5.4 Structural test cases 101

Figure 5.23: Solution comparison against Abaqus.

In order to conduct a performance comparison, different mesh refine-

ments are tested (listed in table 5.6). This kind of mesh is well suited for

benchmarks, being in fact structured and very easy to refine. Moreover,

considering the GPU implementation, the regularity of the grid helps dur-

ing the internal forces intercommunication process: nodes neighbor lists are

of the same size, so the majority of threads executes the same operations

and memory transactions, without breaking the execution path (see the im-

plementation chapter for details).

Thanks to the time-step adaptation process, Abaqus again calculates

and uses during the whole simulation only two different time-steps: a first

Mesh Elements Nodes

1 80 105
2 160 205
3 320 369
4 640 729
5 1280 1377
6 2560 2737
7 5120 5313
8 10 240 10 593

Table 5.6: Meshes used for performance comparison.

102 Chapter 5. Structural solver

Mesh Elements First ∆t Largest ∆t

1 80 4.923 · 10−6 5.343 · 10−6

2 160 2.767 · 10−6 2.767 · 10−6

3 320 2.461 · 10−6 2.677 · 10−6

4 640 1.383 · 10−6 1.383 · 10−6

5 1280 1.231 · 10−6 1.339 · 10−6

6 2560 6.917 · 10−7 6.917 · 10−7

7 5120 6.153 · 10−7 6.696 · 10−7

8 10 240 3.458 · 10−7 3.458 · 10−7

Table 5.7: Time-step sizes used by Abaqus during the simulations.

smaller one, used only for the first time increment, and a second one for

the rest of the simulation. In this situation, however, the two time-step

sizes are not as different as compared to the uniformly loaded circular plate

examined in the previous section. This causes an unusual consequence:

Abaqus computational times using a given time-step (fixed to be the smaller

one of the two) is smaller than that of the adaptive case, where both time-

steps are used. This means that more time is lost because of the time-step

adaptation process compared to the additional time consumed using slightly

smaller time increments. For the sake of comparison Strusol uses, as always,

the worst time-step calculated by Abaqus. These time-steps are listed in

table 5.7.

The complete simulation lasts 0.35 seconds. Total computational time

taken by Abaqus (with both adaptive and fixed time-step) and the GPU

implementation in Strusol is summarized in 5.8 and 5.9 in case of double

and single precision arithmetic respectively. Time measures were taken in

the same way as the test case in the previous section, without including

any pre-processing or post-processing time, only the actual computational

time. The same testing environment was used: Abaqus was run on a single

core of an AMD Phenom X4 9950 Black Edition CPU at 2.6 GHz, Strusol

in addition used the equipped NVIDIA GeForce GTX 470 GPU board,

provided with 448 CUDA cores (14 SM, 32 cores/SM). All simulations were

run on Linux, without interference by background tasks or graphical user

interface.

5.4 Structural test cases 103

Mesh Abaqus
(adaptive)

Abaqus
(fixed)

Strusol GPU

1 57.79 57.99 16.61
2 180.64 179.10 29.87
3 374.93 369.28 38.61
4 1294.34 1277.35 77.44
5 2898.43 2858.18 113.54
6 10 214.82 10 094.71 272.56
7 22 891.90 22 517.00 499.73
8 81 117.21 79 891.72 1755.99

Table 5.8: Computational time in seconds (double-precision arithmetic).

Mesh Abaqus
(adaptive)

Abaqus
(fixed)

Strusol GPU

1 38.65 39.23 6.80
2 110.58 108.14 12.26
3 216.55 217.19 18.13
4 709.78 708.25 37.64
5 1541.46 1553.88 47.34
6 5541.72 5504.04 112.27
7 12 297.11 12 316.41 194.08
8 43 813.10 43 300.00 685.66

Table 5.9: Computational time in seconds (single-precision arithmetic).

104 Chapter 5. Structural solver

Figure 5.24: Computational time comparison (double-precision arithmetic).

Figure 5.25: Computational time (single-precision arithmetic).

5.4 Structural test cases 105

Figure 5.26: Speedup (double-precision arithmetic).

Figure 5.27: Speedup (single-precision arithmetic).

106 Chapter 5. Structural solver

In this simulation, performances achieved by the GPU implementation

are even higher if compared to the uniformly loaded circular plate test case:

speedup is over 46x if double-precision arithmetic is considered and increases

to 63x with single-precision arithmetic. This is probably due to the fact

that the easy and regular geometry permits to employ the whole potential

of the GPU board and manages to take full advantage of the parallelized

algorithm. This is clear also by looking at the speedup graphs in figure

5.26 and 5.27: the software seems to have reached a saturation point, where

capabilities of the GPU are used at their maximum and the speedup cannot

increase any further. Obviously, these saturation curves depend heavily on

the underlying GPU hardware: with computationally-oriented GPU boards

they would reach higher peak values.

Chapter 6

Interpolation and

mesh-motion libraries

One important ingredient for the final fluid-structure interaction solver is

the implementation of interpolation methods. They are used both to transfer

data between the fluid mesh and the structural mesh across the interface and

to perform mesh-motion. In both these tasks, interpolation can become a

serious performance eating process. When domains are refined, interpolation

matrices grow, becoming an issue both from the computational time point

of view and the overall memory consumption. Therefore it is necessary

to study clever implementations of them in order to make the whole FSI

solution process lighter and quicker.

6.1 Mesh-motion solvers

Before going into the description of interpolation algorithm in detail, it

is important to briefly summarize the mesh-motion process in OpenFOAM.

Its internal design is extremely object-oriented. Therefore, mesh handling is

implemented in an extensive hierarchy of C++ classes. The motion solver is

the class responsible for moving mesh points when necessary. All is needed

is to create a child of this class, implement the motion solving algorithm and

then load it at run-time as an external shared object: it will be recognized

by OpenFOAM as one of the available motion solver classes and chosen

to operate, if the appropriate dictionary says so. It is also important to

notice that, while OpenFOAM includes all the necessary machinery to apply

107

108 Chapter 6. Interpolation and mesh-motion libraries

topological changes to meshes, in this work modifications of domain topology

(i.e. addition or deletion of faces and cells, change of node orders, etc.)

are not supported. If boundaries move, the mesh can only be adapted by

changing the positions of its internal points.

Independently from the underlying interpolation algorithm employed,

all implemented motion solvers have the same structure. There is always

a set of points that controls the interpolation and a set of points where

the interpolation is needed to be computed. Motion is imposed on control

points; the interpolator is then called in order to reposition the other points,

based on the control points influence.

Control points can be chosen inside the available boundary patches.

They obviously should contain the majority (if not all) of the moving points

on mesh contours. They can include also some of the fixed points of other

patches: this is necessary to prevent motion of points that should not be

moved, such as, for example, fixed walls. It also permits a better reposition-

ing of points near those walls. In fact, if the fixed points are included, they

contribute to the calculation of the final position of the points near them,

lowering the influence of the other control points. An example of this situ-

ation is show in figure 6.1, where the red boundary is fixed and the green

one is deformable. If points of the red boundary are not included in the

interpolation process, internal points are influenced by the green boundary

movements only, resulting in loss of cell quality near the red border, as it

can be observed in figure 6.1a. If fixed points are included (figure 6.1b),

they influence the interpolation too. Therefore, contributes of the green

(a) Without fixed points (b) With fixed points

Figure 6.1: Different interpolation results obtained by the inclusion or
non inclusion of fixed points into the control points set.

6.1 Mesh-motion solvers 109

points are balanced by the red points, resulting in a smoother interpolation

(especially considering the points near the fixed boundary).

It is also worth mentioning that a large number of control points does not

always lead to better results. Moreover, the size of the interpolation matrix

directly depends on their amount, so does the interpolation computational

time. The common motion solver class allows the use of a coarsening factor

on given patches: doing so, not all points of those patches are included

into the control points set, but, for each point chosen, a certain number of

points is skipped. In this way, the patches influence the motion, while the

interpolation matrix is kept small.

When solvers are run in parallel on different processors, the problem is

decomposed in smaller domains. Therefore, each node performs mesh mo-

tion on its part of nodes, but all nodes require knowledge about the whole

set of control points and their movement. It is then necessary, at initializa-

tion time, for the master node to broadcast all control points positions to

slave nodes and to keep them updated during the simulation.

One last important feature of the motion solver is the ability to reset

the interpolators when deformations have become too large: interpolation

weights are recalculated and the matrix is rebuilt. In this way, quality of

mesh motion is reestablished and the whole system gains in stability and

robustness.

In the following paragraphs, implementations of the interpolation algo-

rithms introduced in section 3.1 will be briefly discussed.

110 Chapter 6. Interpolation and mesh-motion libraries

6.2 Implementation of RBF interpolation

RBF interpolation has been implemented in two different versions. The

first one runs on CPU and is mainly based on the implementation written by

the author of [3], included within the OpenFOAM repository. It has been

reorganized and slightly optimized. The other implementation has been

written from scratch and runs on GPU hardware.

They share a similar structure. At initialization time, the interpolation

matrix is assembled based on positions of control points, then it is inverted

(using LU factorization). When the interpolator is called, it calculates co-

efficients α and β and then proceeds with the interpolation.

If used for the sake of mesh-motion, during the initialization stage each po-

tentially movable point is analyzed by means of a cut-off function, to check

if it lies in the zone where the mesh-motion should apply or not. There is

also a focal point around which the motion is centered: displacements of

internal points are weighted also based on this distance. In this way, it is

possible to aggregate more than one interpolator summing afterward their

results, making it simpler to cope with boundary movements on different

parts of the mesh.

In the GPU implementation matrix assembly is kept on CPU not par-

allelized, while interpolation is performed in two different CUDA kernels:

the first one calculates α and β coefficients and the second one performs

the interpolation. The scheme of the two kernels is similar and follows the

common skeleton of dense matrix-vector multiplication: each row is treated

by a block of 32 threads (size of a warp). Each thread performs the compu-

tation on elements with stride equal to 32. After that, a reduction process

sum up the partial results and the first thread of the block writes the final

result to the output buffer. This algorithm is adapted to perform the RBF

interpolation process, including weights calculation and blending. It allows

the whole computation to access device memory with coalescence, resulting

in a very fast implementation.

The actual RBF interpolator used to transfer quantities across the in-

terface is slightly different and optimized for the FSI solver, but its base

remains the same as the motion interpolator implementation.

6.3 Implementation of IDW interpolation 111

6.3 Implementation of IDW interpolation

IDW interpolation code is based on the original implementation in [20].

The boost numeric bindings (set of bindings provided by the boost libraries

to interface with BLAS routines) are used to perform matrix operations, in

particular the matrix-vector product function “axpy”.

First of all, the interpolator analyzes initial positions of internal points with

respect to the control points, calcolating weights and building the interpo-

lation matrix. Afterward, when it is necessary to carry on the interpolation,

it multiplies the matrix by the vector of control points displacements (one

component at a time) to obtain the final internal points movement field,

relative to their initial positions. As it has already been said, not all con-

trol points influence a given internal point, thus the interpolation matrix is

extremely sparse, without any recognizable pattern.

As far as the GPU version is concerned, implementation of matrices with

sparse storage was needed. We decided not to use an existing library in order

to avoid further dependencies to other code and to have full control on the

whole process, in order to simplify optimization and debugging. The only

needed features are management of an appropriate sparse matrix format and

matrix-vector multiplication.

Construction of the matrix is done serially in CPU and it is temporarily

stored in COO (coordinate) format. It is then sorted by rows (using the

quick-sort algorithm), compressed following the CSR (Compressed Sparse

Row) format and finally arrays with compressed row indexes, column indexes

and non-zero values are transferred to GPU device memory for later use.

The interpolation itself consists in just a sparse matrix-vector multiplication

and the implementation follows the common scheme outlined in the previous

paragraph. Unlike the CPU implementation, the three components of each

point are treated at the same time for speed. A structure-of-array approach

guarantees coalescing memory accesses, in order not to have performance

drops.

112 Chapter 6. Interpolation and mesh-motion libraries

6.4 Performance comparison

In order to compare the interpolation algorithms a simple test case has

been used. They are compared in a mesh-motion context, as internal inter-

polation algorithms of the motion-solver.

This is a default case and it is included in the standard OpenFOAM

package under the name of movingBlock. In the center of a 25 m× 25 m

quadrilateral domain there is a 5 m× 1 m rectangular hole which moves fol-

lowing a prefixed path. This movement is obtained by an algebraic function

and includes translations, rotations and scaling, resulting in an oscillatory

movement.

Inlet Outlet

Figure 6.2: movingBlock domain.

It is a two-dimensional problem, but it is handled in OpenFOAM as a three-

dimensional case, with cells of fixed thickness and appropriate boundary

conditions on front and back faces. It is a genuine fluid dynamical case: an

incompressible Newtonian fluid enters the domain from the left inlet bor-

der and leaves it through the right outlet border. As far as the velocity is

concerned, on the inlet a Dirichlet condition is imposed (of 1 m/s), while on

the outlet, based on flux direction, a Dirichlet or an homogeneous Neumann

condition is used. On top and bottom walls it is fixed to be zero, while on

the moving internal walls the special movingWallVelocity condition ensures

that there is no flux through the faces. About pressure, an homogeneous

Neumann condition is imposed everywhere, but on the outlet, where pres-

6.4 Performance comparison 113

(a) IDW, t = 0.5 s, Mesh 1 (b) IDW, t = 1.0 s, Mesh 1

(c) RBF, t = 0.5 s, Mesh 1 (d) RBF, t = 1.0 s, Mesh 1

Figure 6.3: Deformed meshes at different times.

sure is fixed to zero. At the beginning of the simulation, all cavity is filled

with fluid with constant velocity (magnitude equal to 1 m/s, to the right),

while pressure is zero.

Type and amplitude of boundary movements permit to avoid resetting the

motion-solver during the simulations (i.e. recalculation of interpolation ma-

trices). In figure 6.3 there is an example of deformed meshes obtained during

the simulation using the two different interpolation algorithms. In order to

conduct a benchmark on performance different mesh refinements have been

used. Information about number of cells and points are listed in table 6.1.

Performance has been measured on the same machine used to benchmark

Mesh Cells Points

1 620 1352
2 2480 5184
3 5580 11496
4 9920 20288
5 15500 31560
6 22320 45312

Table 6.1: Meshes used in the interpolation benchmark.

114 Chapter 6. Interpolation and mesh-motion libraries

Mesh IDW (CPU) IDW (GPU) RBF (CPU) RBF (GPU)

1 0.00008 0.00011 0.00123 0.00019
2 0.00070 0.00024 0.00755 0.00039
3 0.00228 0.00046 0.02299 0.00078
4 0.00546 0.00077 0.04672 0.00130
5 0.01043 0.00118 0.08668 0.00227
6 0.01807 0.00175 0.14299 0.00337

Table 6.2: Average interpolation times.

the structural solver: a computer equipped with a quad-core AMD Phenom

X4 9950, 4 GB of RAM memory and a NVIDIA GeForce GTX 470 video

board, with 448 CUDA-cores and 1.28 GB of video memory.

Average times (in seconds) taken to perform the interpolation step only

(without the rest of the mesh-motion process) are summarized in table 6.2.

Initialization passes are not included in the timings, while memory transfers

(from host to device memory and viceversa) are. A graph with speedups

obtained thanks to the GPU implementation over the CPU implementation

of both algorithms is shown in figure 6.4.

Difference of performance between GPU and CPU implementations in-

creases again with the mesh refinement. The achieved RBF interpolation

speedup is higher because the interpolation matrix is dense and so it manages

to better exploit the computational power of GPU’s floating point arithmetic

units. IDW interpolation, on the other hand, needs to deal with sparse ma-

Figure 6.4: Speedups gained by the GPU implementation of interpola-
tion algorithms over the CPU one.

6.5 Matrix-free IDW interpolation 115

trices, which require indexing arrays and thus memory accesses become a

bottleneck. It is important to notice also that BLAS routines employed in

the CPU implementation of the IDW algorithm are far better optimized

if compared to RBF serial code included in OpenFOAM, so performance

difference between GPU and CPU implementations of IDW interpolation is

more contained.

In addition, matrix inversion, necessary for RBF interpolation matrix

initialization, can be parallelized on GPU hardware too, obtaining signif-

icant speedups. In this work however it has not been implemented, since

it matters only on the initialization step of the simulation. In cases when

the interpolator needs to be reset often, a GPU implementation of the LU

factorization and matrix inversion could be another good optimization for

the whole final simulation.

6.5 Matrix-free IDW interpolation

After having calculated the interpolation matrix, IDW interpolation con-

sists basically in a matrix-vector multiplication. The matrix has a number

of rows equal to the total number of points affected by mesh-motion and a

number of columns equal to the number of control points. Therefore, it can

be really huge, even if a cut-off function is used in order to reduce its size:

for each moving point, only a subset of control points is selected to influence

its movement, thus making the matrix sparse. With very big meshes, how-

ever, even if the matrix is sparse and the problem is divided among different

computational nodes, it can require a large amount of memory (up to several

gigabytes).

One solution to overcome this high memory requirement is to avoid the

initial matrix construction and re-calculate its coefficient on the fly: for

each mesh point potentially affected by mesh motion, contributes of con-

trol points to its movement are evaluated at every interpolation and then

summed up, to give the final point position. It is thus not necessary to store

the whole matrix and memory storage is reduced drastically, at the cost of

computational time to reevaluate its coefficients at every interpolation.

Each mesh point movement is independent from the other points. This

fact makes this algorithm suitable for GPU implementation. GPUs are much

faster doing floating-point operations than accessing memory, so this kind of

116 Chapter 6. Interpolation and mesh-motion libraries

storage-less approach is ideal to be run in device kernels. One or more points

are assigned to each thread, making it possible to exploit shared memory to

efficiently store control points, which are common to all threads and read

with fully coalesced accesses, while hiding memory latency with the good

amount of calculations involved.

As optimization, the denominator in IDW interpolation formula is pre-

computed for each mesh point. This needs a negligible amount of extra

memory, but increases overall performance.

Therefore, the whole computation is divided in two passes: an initialization

step, when the denominators are calculated, executed only once, and then

the interpolation step itself. Each pass is performed by a separate CUDA

kernel. Denominators are transferred only once and kept in GPU memory.

The original IDW algorithm requires an initial step too, in order to

build the interpolation matrix. This step is quite expensive since it needs to

allocate and fill the sparse matrix, which, as it is stated above, can be very

big.

6.5.1 Performance comparison

In order to compare the different IDW implementations a simple test case

has been built: a cubical mesh undergoes random displacements of some of

its border faces and internal points must adapt. Different refinements of

the mesh has been considered; they are listed in table 6.3, together with

the number of moving points (equal to the total number of mesh points)

and the number of control points used. This test has been conducted on a

IBM PLX-GPU hybrid supercomputer, owned by CINECA1. Computational

nodes are equipped with 2 six-cores Intel Westmere CPUs, 2.40 GHz, 48 GB

of RAM and 2 NVIDIA Tesla M2070 GPU boards, with 448 CUDA cores

and 5 GB of memory, each. They are linked together by an InfiniBand2

network, which assures very low inter-node latency. Results of benchmark

are reported in table 6.4. It is worth noting that the supercomputer is shared

between different users, thus performance analysis cannot be very accurate:

since nodes are shared, if a user suddenly starts his own job on the same

nodes used to measure timings, it could cause a performance drop, which

would be reflected on benchmark results (especially when GPUs are used by

1http://www.cineca.it
2http://www.infinibandta.org

http://www.cineca.it
http://www.infinibandta.org

6.5 Matrix-free IDW interpolation 117

Mesh Cells Moving
points

Control
points

1 1000 1331 484
2 4096 4913 1156
3 8000 9261 1764
4 17 576 19 683 2916
5 27 000 29 791 3844
6 46 656 50 653 5476
7 64 000 68 921 6724
8 97 336 103 823 8836
9 125 000 132 651 10 404

Table 6.3: Meshes considered for the benchmark.

multiple users performances change drastically).

Moreover, timings have been measured considering the interpolation pro-

cess only and not the whole mesh-motion machinery. They don’t include

the initialization step, performed before the first interpolation. The column

ATLAS refers to the standard IDW implementation in CPU, introduced in

the previous section: it calculates and stores in memory the whole interpola-

tion matrix using boost compressed sparse matrix class (which stores values

in CSR format) and uses the linear algebra library ATLAS to perform quick

sparse matrix-vector multiplication. Columns “No-memory-CPU ” and “No-

memory-GPU ” refer to matrix-less IDW implementation, executing in CPU

and GPU respectively. Timings show clearly how the matrix-free approach

in CPU is significantly slower than the standard one and it is worth using

Mesh ATLAS No-memory-CPU No-memory-GPU

1 0.0034 0.0192 0.0012
2 0.0681 0.1696 0.0047
3 0.1979 0.5038 0.0120
4 0.5136 1.7044 0.0392
5 1.0554 3.3998 0.0771
6 3.0783 8.3047 0.1841
7 5.0542 13.8712 0.1857
8 5.5371 27.2803 0.3640
9 8.2519 41.0152 0.5167

Table 6.4: Timings in seconds.

118 Chapter 6. Interpolation and mesh-motion libraries

Figure 6.5: Comparison of interpolation times.

it only if memory consumption is a serious bottleneck. On the other hand,

GPU implementation shows a significant speedup against the standard one;

this contributes to prove the fact that often redundancy in calculations is

better than storing pre-computed values in memory, as far as GPU program-

ming is concerned.

A comparison of interpolation times of the standard CPU implementa-

Figure 6.6: Speedup achieved by the GPU matrix-free implementation.

6.5 Matrix-free IDW interpolation 119

tion using ATLAS versus the matrix-free GPU implementation is shown in

figure 6.5, while figure 6.6 shows the gained speedup.

The standard implementation needs to build the sparse matrix in its

initialization step. This includes the allocation and compression of the big

sparse matrix and can take a lot of time. The matrix-free approach instead

ideally does not require any initialization step. The GPU implementation,

however, requires CUDA to be initialized, GPU buffers to be allocated and

filled with moving and control points coordinates and distances to be pre-

calculated. In table 6.5 initialization step timings are summarized.

The best advantage of using the matrix-free approach instead of the stan-

dard one is the much lower memory requirement. A very brief analysis can

be performed considering that the standard implementation substantially

needs to store the sparse interpolation matrix. It has not a precise pattern,

thus used memory depends strictly on the number of non-zeros which need

to be stored. The matrix-free implementation instead does not require any

memory as far as the CPU version is concerned. The GPU version needs

some buffers to store moving points, control points, control field (movement

of the control points), resulting fields and pre-computed distances in GPU

memory (and some of them with the respective counterparts in CPU mem-

ory). Table 6.6 shows a rough estimation of memory usage. Double-precision

floating-points have been considered. It is important to note that memory

consumption of the standard implementation reported in the table considers

the storage for the values only. It is a sparse matrix, so storage for item

coordinates also takes a lot of memory, but it depends on the actual pattern

Mesh ATLAS No-memory-GPU

1 0.1071 0.24944
2 1.0178 0.23751
3 2.9488 0.20404
4 10.5715 0.24077
5 21.5050 0.24971
6 54.7335 0.32547
7 89.9693 0.33543
8 174.0089 0.49501
9 260.9821 0.51708

Table 6.5: Initialization timings in seconds.

120 Chapter 6. Interpolation and mesh-motion libraries

Mesh Non-zeros Standard impl. GPU matrix-free impl.

1 845 816 6.45 MB 95.48 KB
2 7 984 400 60.92 MB 322.87 KB
3 23 498 624 179.28 MB 589.15 KB
4 84 391 528 643.86 MB 1.21 MB
5 169 965 144 1.30 GB 1.81 MB
6 415 866 976 3.17 GB 3.03 MB
7 698 579 360 5.33 GB 4.08 MB
8 1 391 673 832 10.62 GB 6.09 MB
9 2 100 236 680 16.02 GB 7.74 MB

Table 6.6: Theoretical memory consumption.

of non-zero values and the kind of compression used. Therefore, values in

the table must be considered as (very) lower bounds of the actual required

memory.

In table 6.7 actual measures of memory consumption are reported. Values

include all memory allocations performed from the class constructor to the

end of an interpolation call. Memory consumption of the CPU standard

implementation is much bigger if compared to theoretical values, since this

time they take into account also the element indices inside the sparse matrix

(even if the matrix is compressed in CSR format) and every other memory

overhead needed by the interpolation class to operate. Values regarding

the GPU matrix-free implementation follow more or less the theoretical

predictions, but with a constant overhead of about 26 MB, probably due to

CUDA internal allocations.

Mesh Standard impl. GPU matrix-free impl.

1 13.28 MB 26.07 MB
2 124.97 MB 26.17 MB
3 367.54 MB 27.33 MB
4 1.32 GB 27.63 MB
5 2.66 GB 28.97 MB
6 6.50 GB 30.63 MB
7 10.92 GB 34.28 MB
8 21.75 GB 35.29 MB
9 32.82 GB 36.28 MB

Table 6.7: Actual memory consumption.

6.5 Matrix-free IDW interpolation 121

These results show the importance of this kind of approach. When run-

ning on a cluster, shared with other users, memory can become a serious

problem. MPI processes can usually access only a certain amount of memory

each; if more memory is needed, it needs to be requested explicitly when the

job is launched, which means higher cost per hour. The approach presented

in this section shows that, if GPUs are available, they can be used not only

to decrease the computational time but also to lower the amount of memory

needed. In this way, overall resource consumption is reduced.

Chapter 7

Fluid-structure interaction

solver

In this chapter the developed solver for fluid-structure interaction prob-

lems is introduced. In section 7.1 a simplified version of the source code is

presented and commented in its parts. Afterward, the solver is employed

in two FSI cases: a cube cavity with flexible bottom, in section 7.2, and

a sail simulation, in section 7.3, where performances are compared to the

single-sail transient solver presented in [20].

7.1 Implementation

The full fluid-structure interaction solver combines all modules described

in the previous chapters in order to couple the structural and fluid problems

together. In this section the whole process will be described. The solver’s

main function is explained in details with the aid of a C++-like pseudo-

code, with some OpenFOAM and MPI constructs. Although it is not the

real source code, it shares the same structure.

1 #include ”setRootCase.H”

2 #include ”createTime.H”

3 #include ”createDynamicFvMesh.H”

4 #include ”readCouplingProperties.H”

5 #include ”createFields.H”

6 // ... other initialization code ...

123

124 Chapter 7. Fluid-structure interaction solver

First of all, OpenFOAM fluid dynamic case is initialized: parameters are

read from dictionaries, the main classes which manage the dynamic finite

volume mesh and time integration are created, the main fluid fields are built.

7 // initialize the structural problem

8 if (isMasterNode() == true) {
9 shellProblem = new ShellProblem()

10 shellProblem−>createStructuralMesh()

11 // ... structural problem initialization ...

12 }
13 broadcast(shellProblem−>getMeshNodes())

The structural problem is initialized on the master computational node. The

structural mesh can be built in different ways:

� loading an external file or importing mesh and settings from an Abaqus

job; this will require future interpolations between grids.

� treating a fluid mesh boundary as an elastic wall, which gets directly

deformed by the structural solver.

� using a couple of zero-thickness internal patches as double-sided walls,

either discretized using elements corresponding to the (quadrilateral)

fluid faces or with a different set of elements created ad-hoc.

All computing nodes need to have the structural mesh points. Therefore,

they are broadcasted from the master node after having built the mesh.

14 #include ”createStressFields.H”

15 #include ”readTimeControls.H”

16 #include ”initParametersFSI.H”

17 #include ”initContinuityErrs.H”

18 #include ”createInterpolators.H”

Initialization follows with the creation of all vectors necessary for the struc-

tural problem to manage displacement interpolation and relaxation. Other

parameters controlling time advancement and FSI convergence tolerances

are read. Then the variable which will hold the cumulative continuity er-

ror measure is initialized. Finally, displacement and stress interpolators are

created; this process is shown more in details in the next box of code.

7.1 Implementation 125

createInterpolators.H

1 // ...

2 RBFInterpolation interpolator (

3 // dictionary with parameters

4 couplingProperties.subDict(”RBFInterpolator”),

5 // structural points, acting as control points for the interpolation

6 structuralPoints,

7 // fluid mesh face centres at the interface

8 mesh.boundaryMesh()[fluidPatch].faceCentres(),

9 // initial mesh−motion point positions

10 pointDisplacements.boundaryMesh()[fluidPatch].localPoints(),

11 // ... other parameters ...

12)

13 // ...

RBF interpolator is inizialized. Structural points are used as interpolation

control points. Considering the interpolation of stresses, destination points

are located in fluid mesh face centres. When interpolation of displacements is

considered instead, destination points correspond to the initial mesh-motion

point positions (in the pointDisplacements field).

Returning to the main function, the initialization process continues:

18 if (isMasterNode() == true) {
19 // finalize structural problem initialization

20 shellProblem−>finalizeSetup(structUseGpu, ...)

21 // calculate deltaT

22 scalar structDeltaTCFL =

23 shellProblem−>calculateCFLDeltaT() * structCFLFactor

24 shellProblem−>setDeltaT(structDeltaT)

25 // set time

26 shellProblem−>setCurTime(runTime.value())

27 // restarting from a previously calculated solution?

28 if (restart == true) {
29 shellProblem−>readRestart(runTime.timeName(), ...)

30 }
31 // save initial state

32 shellProblem−>saveState()

33 }

Structural problem initialization is finalized: all necessary GPU memory

buffers are created and populated with data and the time-step to use is

obtained from an appropriate CFL condition and multiplied by a conserva-

126 Chapter 7. Fluid-structure interaction solver

tive safety factor. If necessary, a previously computed solution is loaded, to

continue from a simulation already started. The full initial shell problem

state (with all buffers) is saved. States will be saved/restored during the

FSI iterative process.

18 // setup Aitken relaxation

19 AitkenRelax aitkenRelax(defaultRelaxFactor, ...)

20 // save structural displacements

21 vectorField structDisplacementsInitial(structDisplacements)

22 Info << ”Problem initialized” << endl

Finally, the whole FSI problem initialization step is finalized: Aitken relax-

ation class is initialized with a default relaxation factor and initial structural

displacements are saved. This last buffer is necessary to perform future

mesh-motion re-initializations, necessary to cope with large structural de-

formations.

Now the simulation main loop can be summarized:

18 // main runtime loop

19 while (runTime.run()) {
20 // OpenFOAM time step initialization

21 #include ”readControls.H”

22 #include ”CourantNo.H”

23 #include ”setDeltaT.H”

24 // advance time

25 runTime++;

26

27 // does the structure have to remain fixed?

28 if (runTime.value() > structFixTime) {
29 // save initial fluid fields for FSI iterative process

30 saveFluidFields()

31 // start FSI sub−iterations loop

32 int subcycle = 0

33 do {
34 // restore previous fields

35 if (subcycle > 0) {
36 restoreFluidFields()

37 if (isMasterNode() == true)

38 shellProblem−>restoreState()

39 }
40 // interpolate stresses

41 #include ”transferStresses.H”

7.1 Implementation 127

42 // run structural problem on master node

43 shellProblem−>run(runTime.deltaT().value())

44 // interpolate displacements

45 #include ”transferDisplacements.H”

46 // mesh−motion

47 #include ”setMotion.H”

48 // solve fluid problem

49 #include ”solveFluid.H”

50 // calculate residuals

51 #include ”checkFSIConvergence.H”

52 }
53 while (isConverged() == false);

54 // update structural solver internal state

55 if (isMasterNode() == true) {
56 shellProblem−>endOfSubcycles()

57 shellProblem−>saveState()

58 }
59 } else {
60 // structure is fixed, solve the fluid problem only

61 #include ”solveFluid.H”

62 }
63 // end of global time−step

64 runTime.write()

65 // ... output other results and restart files ...

66 }
67 Info << ”End” << endl

The structure of the main loop is straightforward. After time-step initializa-

tion, current time is checked: if it is below a certain preset value, then the

structural problem is not solved. This helps to stabilize the fluid solution

before starting the real FSI problem. If time is above structFixTime, the

FSI sub-iterations loop is entered. Sequence of operations follows the out-

line given in chapter 3: stresses are transferred from the fluid mesh to the

structural mesh at the interface, then the structural problem is solved on the

master node, displacements are transferred and interpolated, the fluid mesh

is deformed by the interpolated relaxed displacement field and finally the

fluid problem is solved. Checks on solution increments between sub-cycles

are performed in order to determine when the FSI coupling has converged.

Finally, solution fields are dumped to file and the simulation can continue

with the next time-step.

128 Chapter 7. Fluid-structure interaction solver

Details about the implementation of the single internal steps are now de-

scribed.

transferStresses.H

1 // evaluate fluid stresses

2 interfaceFluidStresses =

3 rhoFluid.value() * p.boundaryField()[fluidPatch]

4 * p.boundaryField()[fluidPatch].patch().magSf()

5 * p.boundaryField()[fluidPatch].patch().nf()

6 // perform RBF inverse interpolation

7 structPatchStresses = interpolator.reverseInterpolate(interfaceFluidStresses)

8 // sum up contributes from each computational node

9 reduce(structPatchStresses, sumOp<vectorField>())

10 // set external force field in structural problem

11 if (isMasterNode() == true) {
12 shellProblem−>setExternalForces(structPatchStresses)

13 }

In transferStresses.H fluid stresses at interface are calculated first, using the

fluid pressure field, then they are interpolated on the structural mesh. Each

node has computed the stresses on its own domain: the reduce operation

on the master node is necessary to gather all contributions from the other

nodes and to sum them. Finally, the master node sets the resulting stresses

as external loads for the structural problem.

transferDisplacements.H

1 /// get displacements

2 if (isMasterNode() == true) {
3 structDisplacementsNotRelaxed = shellProblem−>getPointDisplacements();

4 }
5 // broadcast them to the other computational nodes

6 broadcast(structDisplacementsNotRelaxed)

7 // Aitken relaxation

8 aitkenRelax.update(subcycle, structDisplacementsNotRelaxed)

9 structDisplacements = aitkenRelax.getRelaxedField()

transferDisplacement.H is included after the structural problem is solved.

Resulting displacements are firstly copied from GPU memory to a CPU

buffer, then they are broadcasted to all computational nodes. The Aitken

relaxation class manages the internal double-buffering and residual fields

7.1 Implementation 129

necessary to perform the adaptive under-relaxation of displacements at the

interface.

setMotion.H

1 // check if a reset of the motion−solver is needed

2 if (max(magnitude(structDisplacements − structDisplacementsInitial)) > threshold) {
3 // reset motion−solver

4 motionSolver.reset()

5 // save new initial displacements

6 structDisplacementsInitial = structDisplacements

7 }
8 // interpolate displacements

9 fluidDisplacements = interpolator.interpolate(structDisplacements)

10 // set motion field

11 pointDisplacements.boundaryField()[fluidPatch] == (

12 fluidDisplacements

13)

14 // update mesh

15 mesh.update()

16 // update continuity error measure

17 #include ”volContinuity.H”

In setMotion.H all the code concerning the mesh-motion process is included.

Initially, the maximal structure deformation is checked to see if a too large

deformation occurred and it is necessary to reset the motion-solver: in

such case, interpolation matrices are recalculated using the new positions

of structural mesh points as control points, so that future interpolations are

smoother. Displacements are then interpolated on the fluid mesh at the

interface and set as control motion field for the mesh-motion process. The

fluid mesh is then updated on all computational nodes.

The fluid solver implemented in solveFluid.H is very similar to the imple-

mentation in pimpleDymFoam, shipped by default with OpenFOAM, thus

a detailed description is not necessary in this context.

130 Chapter 7. Fluid-structure interaction solver

7.2 Cavity with flexible bottom test case

In order to check the FSI coupled solver, a classical benchmark test

case has been used: a three-dimensional cubic cavity with flexible bottom

is filled by a pulsating flow field, imposed by the boundary condition on the

top part of the cavity. This problem has already been proposed in [22, 23]

in two dimensions, and in [34, 20] in three dimensions.

Inlet
Outlet

Top

Flexible bottom

x

y
z

Figure 7.1: 3D cavity problem setup.

A 1 m× 1 m× 1 m cube is filled with a fluid with density of 1 kg/m3 and

viscosity equal to 0.01 m2/s. A small inlet area (1 m× 0.125 m) lets the

fluid enter the cavity, aligned on the x direction, with the following time-

dependent linear velocity profile:

v (z) = v̄ · (z − 0.875)

0.125
v̄ = 1− cos

(2πt)

5
, 0.875 ≤ z ≤ 1. (7.1)

A small outlet area of the same size lets the flow exit the domain. The top

boundary imposes velocities equal to v̄. On all the other lateral walls velocity

is imposed to be zero, while on the flexible bottom the movingWallVelocity

condition guarantees that the fluid velocity is equal to the boundary velocity,

7.2 Cavity with flexible bottom test case 131

(a) t = 10 s (b) t = 11.25 s

(c) t = 12.5 s (d) t = 13.75 s

(e) t = 15 s

Figure 7.2: Velocity magnitude field on the X-Z plane at different times.
Values are shown in logarithmic scale.

132 Chapter 7. Fluid-structure interaction solver

(a) t = 10 s (b) t = 11.25 s

(c) t = 12.5 s (d) t = 13.75 s

(e) t = 15 s

Figure 7.3: Bottom wall deformations at different times.

7.2 Cavity with flexible bottom test case 133

Index Elements per side Total elements Points

1 8 512 729
2 16 4096 4913
3 24 13 824 15 625
4 32 32 768 35 937
5 40 64 000 68 921

Table 7.1: Different meshes used.

and flux across the patch is zero. On the outlet patch, zero pressure is

imposed. Different meshes have been considered (details in table 7.1). In

each case, the solver extracts the bottom patch from the fluid mesh and

setups the solid shell problem directly using it. In this way, the structural

grid and the fluid one are conforming and no interpolation between them

is needed. Mesh-motion is carried out employing the GPU implementation

of RBF interpolation. In this case it produces the best quality mesh with

overall low computational effort.

In figure 7.2 velocity magnitude field is shown at different times, referring

to the simulation with 24x24x24 cells and FSI time-step of 0.1 s. In figure 7.3

evolution of bottom wall deformation is shown. When compared with values

presented in [34], a very similar trend is observed in the two solutions (figure

Figure 7.4: Comparison with numerical results reported in [34].

134 Chapter 7. Fluid-structure interaction solver

7.4). There is a small difference in the mean value, probably due to non

matching boundary conditions or the different structural elements employed;

it is also worth noting that even values regarding the bidimensional case

presented in [34] have a slightly higher mean value than values in [22], so it

may be just a tendency in his FSI setup.

Tests have been made with different FSI time-steps also. Time-steps

considered are 0.2 s, 0.1 s, 0.05 s and 0.025 s. With dt = 0.5 s, the simulation

stops after a few seconds because from there on FSI sub-iterations do not

converge anymore. Vertical displacements of the central point of the bottom

wall are extracted from the solutions and used as reference: results of sim-

ulations with different mesh refinements and different time-steps are shown

in figure 7.5 and 7.6 respectively. The resulting curves converge to a mesh

and time-step independent solution.

In order to have the FSI inner loop to converge more quickly, Aitken

under-relaxation has been used on the deformations of the bottom wall.

It helped a lot in lowering the amount of sub-iterations needed to reach

convergence between the fluid and solid problem at each time-step. Results

show that there is an (obvious) correlation between the time-step size and

the number of sub-iterations performed. In figure 7.7 the amount of sub-

iterations performed in each time-step is shown, for four different time-steps

and two mesh refinements. When time-step size is lowered, the amount of

sub-iterations needed to reach convergence decreases. This is expected, since

with smaller time-steps there are also smaller differences between solutions of

successive time-steps, thus the coupling is easier to be enforced. A similar

relation is not observed considering instead the level of mesh refinement

employed; especially when the time-step is small, the different meshes behave

similarly, requiring a similar amount of sub-iterations to converge.

7.2 Cavity with flexible bottom test case 135

Figure 7.5: Solutions with different mesh refinements (dt = 0.1).

Figure 7.6: Solutions with different time-step sizes (on finest mesh).

136 Chapter 7. Fluid-structure interaction solver

(a) Third mesh (13 824 elements)

(b) Fourth mesh (32 768 elements)

Figure 7.7: Dependence of the amount of FSI sub-iterations on FSI time-
step size.

7.3 Gennaker sail simulation 137

7.3 Gennaker sail simulation

In this section, numerical results obtained by solving a more complex FSI

case are reported. Performances of the solver at hand have been compared

against the FSI solver used in [20], with details about the speedup obtained

by the presented solver in the FSI sub-iterations.

A gennaker sail is immersed in a rectangular prism domain, filled with

air. A view of the mesh is shown in figure 7.8. The bottom boundary acts

as the water surface. Air flows into the domain from the lateral boundaries.

The sail is made of an isotropic elastic material with density of 100 kg/m3,

Young modulus equal to 3.76× 108 N/m2 and Poisson ratio equal to 0.3.

Thickness of the sail is 0.001 m. Air density is set to 1 kg/m3 and viscosity

to 1.5× 10−5 m2/s. A k − ω model is employed in order to account for

turbulence. Fluid velocity is fixed by a Dirichlet condition on the bottom

boundary; lateral boundaries act like inlets (fixed Dirichlet condition) if the

Figure 7.8: Particular of the fluid mesh.

138 Chapter 7. Fluid-structure interaction solver

flow is inward or outlets (homogeneous Neumann condition) if the flow is

outward. A slip condition is imposed on the sky and the movingWallVelocity

condition on the gennaker (flux across the sail is set to zero). Pressure value

is fixed to zero on outlets as reference; on the other patches its gradient

normal to the boundary is zeroed. Finally, appropriate wall conditions are

applied to k and ω on all patches.

The velocity profile at inlets is the composition of wind velocity, which

reaches zero at sea level when the sea is at rest, and the inverse of boat

velocity: this results in a twisted profile, shown in figure 7.9.

Figure 7.9: Velocity profile imposed at inflow boundaries.

7.3 Gennaker sail simulation 139

Unlike the cube cavity case shown in the previous section, the sail struc-

tural problem is solved on a separate mesh. The two problems are coupled

with the aid of RBF interpolation in order to exchange values between the

two grids across the interface. A comparison of the structural quad mesh

and the corresponding fluid mesh interface is visible in figure 7.10. The fluid

mesh is composed of 216 571 cells, with 81 037 points, while the structural

one is made of 2694 elements, with 2846 nodes.

The sail is fixed at its three corners: their translational dofs are set

to zero, while the other rotational dofs are not fixed. A more realistic

simulation would employ a trimming sheet attached to one of the bottom

sail corners, in order to simulate sail opening. In this work, performance of

the solver is the main concern, therefore the adopted boundary conditions

are sufficient; implementation of better conditions would have no impact on

performance and remains to be done in future releases.

(a) Sail structural mesh (b) Sail fluid mesh

Figure 7.10: Structural sail mesh and fluid mesh.

As initialization step, for 10 seconds of simulation, only the fluid problem

is solved, while the sail is kept fixed. A slice view of the resulting velocity

field after 3 seconds of full FSI simulation is shown in figure 7.12.

The FSI solver implemented in this work has been compared in terms of

performance against the FSI solver used in [20] to perform single-sail sim-

140 Chapter 7. Fluid-structure interaction solver

(a) t = 0.7 s (b) t = 1.58 s

(c) t = 2.85 s (d) t = 3.32 s

(e) t = 3.475 s

Figure 7.11: Sail displacements at different times.

7.3 Gennaker sail simulation 141

Figure 7.12: Slice view of the velocity field after 3 s.

ulations. Its underlying structure and coupling algorithm is basically the

same, but the single modules which carry out the calculations are different.

It uses SEDIS as structural solver, which runs only on the master compu-

tational node and uses OpenMP to run on multiple threads. IDW inter-

polation based mesh-motion is implemented with the aid of ATLAS library

for matrix operations. The FSI solver developed for this work is equipped

instead with Strusol as structural solver, which runs on master node’s GPU,

and the matrix-free IDW GPU implementation as mesh-motion interpola-

tor, which uses the GPU of on each computational node. In both solvers the

fluid problem is handled using OpenFOAM constructs and classes. Using

basically the same structural elements, interpolation algorithms, relaxation

technique and fluid solver, the two FSI solvers produce obviously compara-

ble results. In order to compare them from the performance point of view,

the FSI sub-iteration has been profiled. The test machine is equipped with

a Intel Core i7 Q720 CPU, which runs at 1.60 GHz, 10 GB of RAM and

a NVIDIA GeForce GTX 670M video board, with 336 CUDA cores and

1.5 GB of GPU memory. The CPU is quad-core, with a total of 8 logic

cores. The simulations have been performed with 1, 2, 4 and 8 MPI pro-

cesses on the same machine, so latency of communication is low (bandwidth

is not a problem, since the amount of data exchanged between nodes is quite

small). SEDIS runs always with 8 OpenMP threads. In table 7.2, time

142 Chapter 7. Fluid-structure interaction solver

Implem. Nodes Fluid Struct. Mesh Other Total

Presented 1 7.745 0.924 1.284 0.127 10.080
Presented 2 5.622 0.928 1.240 0.124 7.914
Presented 4 5.037 0.933 1.191 0.112 7.274
Presented 8 4.427 0.952 1.149 0.197 6.725

Solver [20] 1 7.918 20.450 1.403 0.228 29.999
Solver [20] 2 5.209 20.259 1.129 0.249 26.846
Solver [20] 4 4.786 20.342 1.000 0.315 26.443
Solver [20] 8 4.830 20.413 0.988 0.503 26.734

Table 7.2: FSI sub-iteration timings (in seconds).

taken to perform a single FSI sub-iteration by the two implementations is

summarized. All timings in the table are values averaged over several FSI

sub-iterations. They tend to remain similar during the simulation; they in-

crease significantly when there is a problem in the setup of the case and

solvers converge with difficulty. The “Fluid” and “Struct.” columns refer

to time taken solving the fluid dynamic problem and the structural problem

respectively. The “Mesh” column indicates how long it takes to perform

mesh-motion. This time includes not only the interpolation process but also

the actual mesh modifications, which is done in both solvers by OpenFOAM

Figure 7.13: Time taken to perform a FSI sub-iteration.
Simulation run on 1, 2, 4 and 8 computational nodes.

7.3 Gennaker sail simulation 143

Figure 7.14: Distribution of time inside a FSI sub-iteration.
Simulation run on 1, 2, 4 and 8 computational nodes.

in CPU (thus achievable speedup is limited). The “Other” column lists time

taken to perform other calculations necessary to glue the main operations

together.

The best optimization comes from the structural solver as expected, with

a speedup of about 22x, thanks to the GPU implementation. Mesh-motion

process performs better only with 1 or 2 nodes, it does not scale well when

the amount of computational nodes increases. This happens mainly because

there is a single GPU board which is shared among the processes; CUDA

is capable of handling multiple processes transparently, but performances

are affected. Figure 7.13 helps comparing times taken to perform a single

FSI sub-iteration by the two FSI solver. It shows clearly how the structural

problem solution is the bottleneck of the FSI solver [20]. Thanks to the GPU

structural solver, the fluid solver instead constitutes the bottleneck of the

presented implementation. Figure 7.14 shows the distribution of computa-

tional time among FSI sub-iteration process parts. It shows better how the

fluid solver is the main concern now, although its performance scales with

the number of processors adopted. Mesh-motion takes still an important

part of the computational time. Employing the GPU implementation of

the full IDW interpolation algorithm would have given better performance

results, but we chose to stick with the matrix-free version in order to use

144 Chapter 7. Fluid-structure interaction solver

Nodes Presented solver Solver [20]

1 1.060 GB 3.152 GB
2 1.263 GB 3.431 GB
4 1.689 GB 3.884 GB
8 2.441 GB 4.653 GB

Table 7.3: Total amount of memory allocated.

less memory and be able to operate on bigger meshes. In order to support

this fact, measure of memory consumption has been performed. Results are

summarized in table 7.3 in terms of total amount of memory allocated after

the initialization process. A measure of the memory used by each single

computational node during a simulation is showed in figure 7.15. Domain

has been decomposed using METIS1, which tries to minimize communica-

tion between nodes. The total amount generally grows with the number of

nodes since there are some buffers necessary to all of them; the amount on

the single node decreases instead, obviously because the domain is parti-

tioned and thus nodes have smaller meshes to handle. From the histogram,

the presented FSI solver clearly uses much less memory then the solver [20].

Figure 7.15: Memory allocated by each node.
Solvers run on 1, 2, 4 and 8 computational nodes.

1http://glaros.dtc.umn.edu/gkhome/views/metis

http://glaros.dtc.umn.edu/gkhome/views/metis

7.3 Gennaker sail simulation 145

Fluid solver implementations are similar and both structural solvers use only

a small amount of memory: therefore the real difference is caused by the

motion-solvers. The main purpose of IDW matrix-free implementation is in

fact to use the GPU computational power to be able to avoid storing huge

interpolation matrices; this case is an example of how overall memory con-

sumption is reduced thanks to this approach. It is also important to notice

that, when the full IDW interpolation implementation is used, the amount

of memory allocated on the single computational node depends heavily on

how domains have been decomposed: the interpolation matrix on the com-

putational node is sparse, with an unpredictable number of non-zero entries,

which depends on the points inside the corresponding sub-domain.

Note that with 4 nodes the full simulation with the FSI solver [20] runs

better than with 8 nodes; this means that the test machine is saturated with

4 processes (which is not strange, since the CPU is a quad-core) and commu-

nication between processes becomes a problem if more are used. Structural

solvers are not affected since in both these implementations they run only on

the master node. In a future release, designed to solve larger cases, a multi-

node version of the structural solver will be implemented; with the current

structural meshes employed it is sufficiently quick as it is, even though it

runs on a single node, thanks to the GPU computational power.

146 Chapter 7. Fluid-structure interaction solver

Implem. Nodes Fluid Struct. Mesh Other Total

Presented 1 6.020 0.709 1.316 0.203 8.249
Presented 2 3.562 0.693 0.817 0.176 5.248
Presented 4 1.937 0.692 0.541 0.128 3.299
Presented 8 0.892 0.671 0.312 0.118 1.993

Solver [20] 1 5.879 13.180 2.182 0.256 21.497
Solver [20] 2 3.273 13.523 1.274 0.271 18.341
Solver [20] 4 1.663 13.750 0.662 0.278 16.352
Solver [20] 8 0.751 13.970 0.452 0.332 15.504

Table 7.4: FSI sub-iteration timings (in seconds) on the PLX.

These presented benchmarks were performed on commodity hardware.

The same tests have been conducted on the more powerful IBM PLX-GPU

(the same hybrid supercomputer described in chapter 6 and used to bench-

mark the matrix-free IDW interpolation implementation in GPU). Results

of benchmarks are reported in table 7.4 and shown graphically in figure

7.16. It is important to highlight again that the supercomputer is shared

between users, thus performance analysis could not be very accurate (al-

though attention has been paid in order to give the best benchmark results

possible).

Figure 7.16: Time taken to perform a FSI sub-iteration on the PLX.
Simulation run on 1, 2, 4 and 8 computational nodes.

7.3 Gennaker sail simulation 147

Figure 7.17: Distribution of time inside a FSI sub-iteration on the PLX.
Simulation run on 1, 2, 4 and 8 computational nodes.

As expected, On the PLX the fluid solver scales much better, thanks to

the powerful CPUs and the fast InfiniBand network. Unlike on the single

computer, the mesh-motion GPU implementation is able to scale too. In

fact, on the PLX each node has its own GPU board (if MPI processes

are assigned to different nodes), while on the single computer it had to

be shared. In this way, there is no performance drop caused by running

multiple kernels in parallel (obviously if other users are not using the GPU

at the same time). Analyzing figure 7.17, where percentages of time taken to

perform the single sub-operations are reported, it is clear how, as far as the

solver [20] is concerned, the structural problem starts taking the majority of

time when the number of computational nodes increases. This tendency is

visible on Strusol’s timings too, but it is not a major issue since more nodes

are needed in order for this to become a problem (considering also that the

fluid solver would arrive to a saturation point) and absolute time taken to

perform a full FSI sub-iteration is in any case small.

The case tested so far is a coarse version of a more complex setup. While

the structural mesh employed gives satisfactory results as it is, if a better

simulation is wanted the fluid mesh needs refinements, especially at sea

level, in order to fully capture the effects of the twisted wind velocity pro-

file, and in sail’s boundary layer. The complete fluid mesh is composed by

148 Chapter 7. Fluid-structure interaction solver

Implem. Nodes Fluid Struct. Mesh Other Total

Presented 1 498.508 0.677 52.701 1.408 553.294
Presented 2 240.132 0.678 22.086 0.804 263.700
Presented 4 117.085 0.671 9.994 0.489 128.239
Presented 8 42.510 0.669 5.272 0.287 48.738

Table 7.5: FSI sub-iteration timings (in seconds) with the fine mesh on
the PLX.

2 936 932 cells, with 1 019 731 points. A benchmark of the presented FSI

solver has been performed on this refined mesh, using 1, 2, 4 and 8 nodes.

Results are reported in table 7.5. Absolute time taken to perform the vari-

ous sub-operations and percentages over the total FSI sub-iteration duration

is plotted as histograms in figure 7.18. Total memory consumption is sum-

marized in table 7.6, while memory usage for each node is plotted in figure

7.19. With this mesh, the fluid solver takes obviously much more time if

Figure 7.18: Absolute time and percentage of the total time taken by the
various operations inside a FSI sub-iteration with the fine
mesh on the PLX. Simulation run on 1, 2, 4 and 8 computa-
tional nodes.

7.3 Gennaker sail simulation 149

Nodes Allocated memory

1 7.804 GB
2 9.287 GB
4 9.655 GB
8 10.535 GB

Table 7.6: Total amount of memory allocated.

compared to the structural solver. Nevertheless, it scales well with the num-

ber of computational nodes involved and so does the mesh-motion process.

The FSI solver in [20] was unable to run on these amounts of nodes because

of the memory needed: even with 8 nodes it was not possible to satisfy all

requests of memory on the nodes. It needs a decomposition in more domains

in order to lower the required resources per node. During this work it was

not possible to request more computational resources and perform a real

comparison between the two solvers with the finer mesh; these benchmarks

will be completed in the near future.

Figure 7.19: Memory allocated by each node.
Simulation run on 1, 2, 4 and 8 computational nodes.

Conclusions 151

Conclusions

In this work we have shown how GPUs can be effectively used to build

implementations which outperform CPU-only algorithms.

A shell finite element structural solver has been developed from scratch

with the clear purpose of exploiting the GPU hardware as much as possible.

The MITC4 shell element was chosen for its ability to avoid shear-locking

and model wrinkling effects, necessary feature in order to correctly sim-

ulate sails. The central finite difference explicit time-advancing scheme,

together with mass lumping, led to an highly parallelizable time-stepping

procedure. In order to fully exploit the GPU hardware potential, the al-

gorithm was designed in order to perform all operations in a per-element

basis, with as few communications between elements as possible. Thanks

to a revised integration procedure, smart memory management and code

optimizations the resulting implementation fitted a single fast CUDA ker-

nel. Two structural problems were employed to test the implementation and

measure performances of the new solver: a uniformly loaded circular plate

with simply supported edges, for which there was also an analytical solu-

tion for the steady case, and a clamped rectangular plate with a constant

tip load, which tested the solver in case of large displacements. Solutions

obtained with Abaqus were used as reference. After having checked that the

two solvers provided the same results, performances were measured. In both

cases, thanks to the GPU, the presented solver proved to be several times

faster than Abaqus’ serial implementation, both with adaptive and fixed

time-step. Moreover, all benchmarks were performed on a video-gaming

GPU, which means that even better performances are achievable if a GPU

suited for double-precision scientific computing is employed.

The presented solver has then been used to solve structural problems in

fluid-structure interaction cases. A partitioned strongly coupled FSI solver

has been developed to solve problems presenting interactions of shell struc-

tures with incompressible Newtonian fluids. The OpenFOAM open-source

CFD library was chosen as framework for the implementation. The fluid

equations expressed in an ALE formulation were solved using the PISO

scheme, implemented with OpenFOAM classes and constructs. The Aitken

under-relaxation technique helped lowering the number of sub-iterations nec-

152 Conclusions

essary to reach convergence in the strong coupling inner loop. In order

to enhance overall FSI solver performances, a study on interpolation and

mesh-motion algorithms has been conducted, leading to GPU optimized

implementations of Radial Basis Functions and Inverse Distance Weighting

interpolation methods. Compared to the corresponding CPU implementa-

tions, interpolation times decreased substantially, especially concerning the

RBF interpolation. However, when highly refined fluid meshes were consid-

ered, memory consumption became a serious problem to handle. Therefore,

a matrix-less version of IDW interpolation has been developed: exploiting

the GPU’s powerful floating-point arithmetic units, interpolation coefficients

could be recalculated at every interpolation process instead of being stored

in a sparse matrix, reducing memory consumption from several gigabytes to

some megabytes and saving computational time too.

The solver was tested in two FSI cases. Firstly, a standard test problem

of a cubic cavity with flexible bottom filled with an incompressible fluid was

considered. A pulsating flow was imposed on the inlet and upper boundary,

causing oscillating deformations of the flexible bottom wall. Convergence to

a mesh and time-step independent solution was observed and values were

successfully compared against results in the literature. Finally, a more com-

plex FSI case was analyzed: a gennaker sail moving under the action of

the wind. Performances of the presented FSI solver were directly compared

to the solver proposed in [20], which had identical structure and coupling,

but used the OpenMP multi-threaded SEDIS structural solver and CPU-

only implementations of interpolation and mesh-motion algorithms. A good

reduction in computational time was observed, causing the fluid problem

solution to be the new bottleneck of the FSI solver. Memory consumption

was also lowered, thanks to the matrix-less IDW interpolator, resulting in

an overall reduction of resource usage per simulation.

One of the most important fact emerged during this work is that adapt-

ing an existing algorithm to run as it is on GPU devices often does not

give the wanted results in terms of performance gain. This happens simply

because existing algorithms are thought and designed to be run on classical

CPU architectures. If a real improvement in performance is wanted then a

complete redesign of the algorithm is needed. If a numerical model is meant

to be run on GPU devices or hybrid architectures, it is necessary to design

it from scratch with these constraints in mind, instead of sticking with old

Conclusions 153

concepts or adapting existing source codes. Ideas that do not work well

in CPU sometimes are suited for the GPU hardware. Examples shown in

this work can be the redundancy in keeping copies of local nodal values for

each element, as far as the structural solver is concerned, or the recalcula-

tion of known values in order to avoid memory accesses in the matrix-free

interpolation implementation.

It is important to note that the solvers presented in this work are pro-

totypes and there are plenty of possible enhancements that can be imple-

mented. As far as the structural solver is concerned, its modularity could be

exploited to introduce different kinds of elements, without making changes

to the underlying algorithmic structure. It would be interesting to add dif-

ferent kinds of boundary conditions also, for example to simulate a trimming

sheet attached to one corner of the sail, in order to perform more realistic

simulations. Another interesting feature to add would be the support for

contact detection and response; it could be tricky to implement and opti-

mize for GPU, but would make the solver suitable for solving a lot of other

useful structural problems. The current source code could also be further

optimized: it could benefit by handling better the neighboring elements,

increasing instruction level parallelism, reducing register spilling even more,

using better CUDA intrinsics, etcetera. The problem is that the more op-

timizations are made, the more it is difficult to maintain a modular and

extendible code, therefore a balance should be kept.

The most direct improvement to the FSI solver to be thought of, would

be the employment of a CPU/GPU hybrid version of the fluid solver too.

Currently there are several studies being conducted on GPU implementation

of linear algebra solvers for OpenFOAM. Using them would benefit on overall

performances. A multi-GPU implementation of all sub-modules of the FSI

solver would also guarantee even lower computational times.

In general, thanks to all these optimizations, the FSI solver is much

quicker. Therefore, other better and more complex models can be imple-

mented. In particular, it would be interesting to combine the sail FSI model

with the rigid motion of the hull: it would represent a far more realistic

setup for studying the dynamics of boats.

Bibliography

[1] Bathe K. J., “Finite element procedures”, Prentice Hall, 1996.

[2] Bathe K. J., Dvorkin E., “A four node plate bending element based

on Mindlin/Reissner plate theory and a mixed interpolation”, Interna-

tional Journal for Numerical Methods in Engineering, 21(2): pp. 367-

383, 1985.

[3] Bos F., “Numerical simulations of flapping foil and wind aerodynamics:

mesh deformation using radial basis functions”, PhD Thesis, Technical

University Delft, 2009.

[4] Chapelle D., Bathe K. J., “The finite element analysis of shells - Fun-

damentals”, Springer, 2003.

[5] Colombi M., “Sviluppo di un modello ad elementi finiti per la simu-

lazione di contatto e frattura di contenitori alimentari in laminato sot-

tile”, Master Thesis, Politecnico di Milano, 2004.

[6] Corradi dell’Acqua L., “Meccanica delle strutture - Volume 1: Il com-

portamento dei mezzi continui”, McGraw–Hill, 1992.

[7] Corradi dell’Acqua L., “Meccanica delle strutture - Volume 2: Le teorie

strutturali e il metodo degli elementi finiti”, McGraw–Hill, 1992.

[8] Courant R., Friedrichs K., Lewy H., “Über die partiellen Differenzengle-

ichungen der mathematischen Physik”, Mathematische Annalen, 100:

pp. 32-74, 1928.

[9] Cremonesi M., “Implementazione di tecniche di parallelizzazione e di un

metodo lagrangiano a particelle di fluido finalizzati allo sviluppo di un

codice ad elementi finiti per problemi di interazione fluido-struttura”,

Master Thesis, Politecnico di Milano, 2005.

155

156 Bibliography

[10] Deparis S., “Numerical Analysis of Axisymmetric Flows and Methods

for Fluid-Structure Interaction Arising in Blood Flow Simulation”, PhD

thesis, EPFL, 2004.

[11] Deparis S., Discacciati M., Fourestey G., Quarteroni A., “Fluid-

structure algorithms based on Steklov–Poincaré operators”, Computer

Methods in Applied Mechanics and Engineering, pp. 5797-5812, 2006.

[12] Felippa C. A., Park K. C., Farhat C., “Partitioned analysis of coupled

mechanical systems”, Computer Methods in Applied Mechanics and

Engineering, 190(24-25): pp. 3247-3270, 2001.

[13] Ferziger J. H., Perić M., “Computational methods for fluid dynamics”,

Springer, 1996.

[14] Giampieri A. N., “An interface element to model the mechanical re-

sponse of crease lines for carton-based packaging”, PhD Thesis, Po-

litecnico di Milano, 2009.

[15] Harris M., “Optimizing parallel reduction in CUDA”, NVIDIA.

[16] Jasak H., Tuković Ž., “Automatic mesh motion for unstructured finite

volume method”, Transactions of FAMENA, vol. 30, 2007.

[17] Karrholm F. P., “Rhie–Chow interpolation in OpenFOAM ”, Chalmers

University of Technology, 2006.

[18] Krieg R., “Unconditional Stability in Numerical Time Integration Meth-

ods”, ASME, Journal of Applied Mechanics, 1973.

[19] Lesoinne M., Farhat C., “Geometric conservation laws for flow problems

with moving boundaries and deformable meshes, and their impact on

aeroelastic computations”, Computer Methods in Applied Mechanics

and Engineering, 134: pp. 71-90, 1996.

[20] Lombardi M., “Numerical simulation of a sailing boat: free surface,

fluid structure interaction and shape optimization”, PhD Thesis, EPFL,

2012.

[21] Lombardi M., Parolini N., Quarteroni A., Rozza G., “Numerical simu-

lation of sailing boats: dynamics, FSI and shape optimization”, Varia-

tional Analysis and Aerospace Engineering: Mathematical Challenges

Bibliography 157

for Aerospace Design, Springer Optimization and Its Applications 2012,

pp. 339-377, 2012.

[22] Mok D. P., “Partitionierte Losungsansatze in der Strukturdynamik und

der Fluid-Struktur-Interaktion”, PhD Thesis, Institut für Baustatik,

2001.

[23] Mok D. P., Wall W. A., “Partitioned analysis schemes for the transient

interaction of incompressible flows and nonlinear flexible structures”, in

Wall, W. A., Bletzinger, K. U., and Schweizerhof, K., editors, Trends

in Computational Structural Mechanics, pp. 689-698, 2001.

[24] “CUDA C Programming Guide”, NVIDIA.

[25] “CUDA C Best Practices Guide”, NVIDIA.

[26] “NVIDIA next generation CUDA compute architecture: Fermi”,

whitepaper, NVIDIA, 2009.

[27] Oakley D. R., Knight N. F., “Adaptive Dynamic Relaxation Algorithm

for Non-Linear Hyperelastic Structures, Part 1 - Formulation”, Com-

puter Methods in Applied Mechanics and Engineering, 1995.

[28] Parolini N., Lombardi M., “Unsteady FSI simulation of downwind

sails”, V International Conference on Computational Methods in Ma-

rine Engineering, 2013.

[29] Piperno S., Farhat C., and Larrouturou B., “Partitioned procedures

for the transient solution of coupled aroelastic problems part 1: Model

problem, theory and two-dimensional application”, Computer Methods

in Applied Mechanical Engineering, 124: pp. 79-112, 1995.

[30] Quarteroni A., “Modellistica numerica per problemi differenziali”, 4th

edition, Springer, 2008.

[31] Quarteroni A., Sacco R., Saleri F., “Matematica numerica”, 3rd edition,

Springer, 2008.

[32] Timoshenko S., Woinowsky–Krieger S., “Theory of plates and shells”,

McGraw–Hill, 1959.

158 Bibliography

[33] Trimarchi D., Turnock S. R., Taunton D. J., Chapelle D., “The use of

shell elements to capture sail wrinkles, and their influence on aerody-

namic loads”, in the Second International Conference on Innovation in

High Performance Sailing Yachts, Lorient, France, 2010.

[34] Vázquez J. G. V., “Nonlinear Analysis of Orthotropic Membrane and

Shell Structures Including Fluid-Structure Interaction”, PhD Thesis,

Universitat Politècnica de Catalunya, 2007.

[35] Volkov V., “Better performance at lower occupancy”, GPU Technology

Conference, 2010.

[36] Witteveen J., Bijl H., “Explicit mesh deformation using inverse distance

weighting interpolation”, in Proceedings of 47th AIAA Aerospace Sci-

ences Meeting, 2009.

[37] Zienkiewicz O. C., Taylor R. L., “The finite element method. Volume

one: the basis”, 5th edition, Oxford, Butterworth–Heinemann, 2000.

	Introduction
	I Models
	Solid mechanics
	Static analysis
	Formulation using covariant coordinates

	The MITC4 element
	Small displacements formulation
	Large displacements formulation
	Mixed interpolation

	Dynamic analysis
	Central difference method

	Fluid dynamics
	Navier–Stokes equations
	Finite volume method
	Solution of the pressure problem

	Fluid-structure interaction
	Mesh-motion algorithms
	Radial Basis Functions interpolation
	Inverse Distance Weighting interpolation
	Fluid-structure coupling

	II Implementation
	GPU parallelization
	CUDA

	Structural solver
	Development framework
	CPU solver implementation
	GPU solver implementation
	First GPU implementation
	Optimized GPU implementation

	Structural test cases
	Uniformly loaded circular plate
	Clamped rectangular plate

	Interpolation and mesh-motion libraries
	Mesh-motion solvers
	Implementation of RBF interpolation
	Implementation of IDW interpolation
	Performance comparison
	Matrix-free IDW interpolation
	Performance comparison

	Fluid-structure interaction solver
	Implementation
	Cavity with flexible bottom test case
	Gennaker sail simulation

	Conclusions
	Bibliography

