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Abstract

Epilepsy is a disabling neurological condition and it's a relevant risk

of death factor. Its main manifestation is the seizure which can

present a wide range of symptoms, from convulsion to unconscious-

ness. Epilepsy is usually classi�ed in two main subtypes: gener-

alized, if the seizure triggering neuronal population is non clearly

identi�able, partial when the epileptogenic cortex is very con�ned.

Focal epilepsies are drug resistant in the 30-40% of the times and

the only available treatment is the cortical ablation surgery in order

to remove the seizure triggering cortex. The pre-operative planning

stage is extremly critical because the surgery is aimed at remov-

ing only the epileptogenic area without any damage to the healty

surrounding zone, so as leading the patients to a total seizure free

condition with the least neurological damage.

Localizing the epileptogenic zone (EZ) is a quite complex task,

performed by neurologists, who have to analyze a huge amount and

variety of data (patient's clinical history and symptoms, CT and

MRI images, encefalographic signals). Sometimes, when the EZ

localizalization can't be accomplished with non-invasive techniques,

surgeons proceed with the insertion of electrodes within the most

probable epileptogenic brain areas (according to neurologists), in

order to record the neuronal activity with high spatial and temporal

resolution.

The objective of this project was the implementation and the val-

idation of an automatic classi�er able to recognise leads implanted in

an epileptogenic zone from the ones inserted within a healty brain

region. In order to obtain a total healing of the epileptic subject

the complete ablation of the seizure triggering cortex is required,

making mandatory the absolute absence of False Negatives in the

classi�cation performance.

A non-linear non-parametric correlation measure was computed
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for each couple of channels of the StereoElectroencephalography

(SEEG), a depth-EEG recording method, in order to estimate con-

nectivity matrixes, which are the representation of how much each

channel (leads of the electrodes) is mutual dependant from the oth-

ers. Connectivity matrixes were used as input for reconstruct the

functional networks of the interaction between the neuronal popu-

lation corresponding to the SEEG leads, shifting the problem in the

graph theory domain, considering each matrix the representation of

the inward and outward connections of a network.

Figure 1: 1. From the estimated connectivity matrixes, the corresponding net-
works are reconstructed. Only the most signi�cative subgraphs of 3 and 4 nodes
are used to characterize SEEG leads. 2. Clustering and classi�cation of SEEG
leads, on the base of the features extracted in the previous stage. Results were
optimized on a subset of the dataset.

The implemented classi�cation algorithm, starting from the re-

constructed networks, is made by two main stages:
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1. A deep network analysis is performed. First of all size-3 and

size-4 subgraphs are enumerated from the reconstructed net-

works, then they are collected in classes and then only the

most statistical signi�cative are selected. The statistical signif-

icance is computed comparing the subgraph occurrence to the

one in a random network model. Then the most signi�cative

subgraphs become the starting point for the Roles Fingerprint

Matrix, assigning to each node a set of values, called roles, com-

puted taking into account its inward and outward connections

and the subgraphs where it occurs (stage 1 in Figure 1).

2. The Roles Fingerprint Matrix is the input of two unsupervised

clustering methods, K-Means and A�nity Propagation. Clas-

si�cation is performed with the apriori knowledge of one EZ

leads, which is used to �nd the EZ cluster. Each lead assigned

to EZ cluster is considered as Positive (EZ), while leads as-

signed to each other cluster are considered Negative (NEZ).

The algorithm was optimized considering a subset of patients.

The main optimization constraint is the minimizing the num-

ber of False Negative. The, in the False Negative minimum

domain, also the False Positive is minimized. Finally also leads

of the remaining patiens were classi�ed and classi�cation per-

formance was evaluated (stage 2 in Figure 1).

In this project 18 clinical cases were considered, drug-resistant par-

tial epilepsy (in particular Focal Cortical Dysplasia, Post Traumatic

epilepsy, Polymicrogyria) and seizure free after the cortex ablation

surgery.

Each patient was implanted with a variable number (from 5 to

15) of multileads electrodes. The dataset was made by 3 minutes of

multichannel interictal SEEG signal. Each contact has recorded the

surrounding electrical neuronal activity for several weeks. An expert

neurologist has selected an interictal signal window 3 minutes long,
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labeling each channel as epileptogenic (EZ) or non-epileptogenic

(NEZ).

The di�erence between K-Means and A�nity Propagation clus-

tering was checked with a Chi-Square test.

Results were analyzed both all together and separately in two

groups. One group was made by the patients a�ected by Focal Cor-

tical Dysplasia, the other by patients with Post Traumatic epilepsy

and Polymicrogyria. The reason of this choice is that the epilepto-

genic zone in Focal Cortical Dysplasia is usually more well-de�ned,

and so easier to be localized, than the one in the other two types of

epilepsies.

The obtained classi�er has a quite low False Negative Rate and

also a reasonable number of False Positive, especially in patients

with Focal Cortical Dysplasia. Instead, talking about the other

cases, the False Negative number is unacceptable, considering the

objective of the work. However, since the dataset is really poor,

especially for the number of non-Focal Cortical Dysplasia cases, it's

impossible to de�nitively draw some conclusions.

This work it's just a starting point. Future improvements could

include a deeper network analysis, considering also size-k subgraphs

with k ≥ 5, paying attention to the script implementation, which

must have a very parallelized structure. Plus a very powered-up

hardware is required. Another possible upgrade could be the use of

bayesian method or multivariate variance analysis on the Roles Fin-

gerprint Matrix. Finally, in order to provide a software suited for a

clinical use, a very user-friendly GUI could be designed, able to give

out also information about the morphology of the patients' brain,

fusing the information about the epileptogenicity to the information

contained in the CT and MRI images.

Key-Words: epilepsy, classi�cation, automatic, intericatal, stere-

oelectroencefalography, leads.
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Sommario

L'epilessia è una patologia neurologica altamente debilitante e cos-

tituisce un serio pericolo per la vita di chi ne è a�etto. Si manifesta

attraverso crisi che possono presentare molti tipi diversi di sintomi,

dalle convulsioni alla perdita di conoscenza. Essa è classi�cata gen-

eralmente in due sottotipi: generalizzata se la popolazione neuronale

che genera l'attacco non è identi�cabile, parziale se invece la cortec-

cia epileptogenica è limitata e de�nita. Le epilessie focali sono nel

30-40% dei casi refrattarie a trattamenti farmacologici e l'unica ter-

apia possibile diventa l'ablazione chirurgica della parte di corteccia

cerebrale che dà origine alla crisi. La fase di piani�cazione pre-

operatoria diventa estremamente critica poichè l'operazione mira a

rimuovere solamente la parte di cervello malata cercando di non

danneggiare le sezioni circostanti, in modo da portare il soggetto

alla guarigione totale dalle crisi, introducendo il minor danno neu-

rologico possibile.

L'individuazione della zona epileptogenica (EZ) è un'attività molto

complessa deputata ai neurologi, i quali devono analizzare un gran

quantità e varietà di dati (storia clinica e sintomi del paziente, im-

magini CT e MRI, segnali encefalogra�ci). In particolare, quando la

localizzazione del focolaio epileptogeno risulta troppo complessa, si

ricorre all'uso di una tecnica invasiva che consiste nell'inserimento

di elettrodi all'interno della corteccia cerebrale con lo scopo di reg-

istrare l'attività neuronale con alta risoluzione spaziale e temporale

nelle zone dove il neurologo ritiene possa esserci più probabilmente

la zona epileptogenica. In questo progetto sono stati presi in consid-

erazione segnali ottenuti con la tecnica della Stereoelettroencefalo-

gra�a.

Lo scopo di questo progetto di tesi è implementare e validare un

classi�catore automatico in grado di discernere contatti impiantati

in una zona epileptogenica da quelli che si trovano a contatto con
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corteccia cerebrale normale, utilizzando il segnale sopra descritto.

La priorità deve essere data all'ottenimento di un numero di falsi

negativi (contatti epileptogenici classi�cati come sani) il più basso

possibile, perchè per avere la completa guarigione del soggetto epilet-

tico è indispensabile la totale rimozione della corteccia epileptogena.

Figure 2: 1. Dalle matrici di connettività stimate dal segnale SEEG, sono state
ricostruiti i corrispondenti circuiti di rete. All'interno di esse sono stati indivd-
uati i sottogra� più signi�cativi di 3 e 4 nodi e sono stati usati per caratterizzare
i contatti SEEG. 2. I contatti dell'SEEG sono stati clsuterizzati e classi�cati
sulla base dei parametri estratti al punto 1. I risultati sono stati ottimizzati su
un sottoinsieme del dataset.

Dai segnali SEEG sono state calcolate delle matrici di connet-

tività, utilizzando una misura di correlazione non lineare e non

parametrica per ogni coppia di contatti. Le matrici contengono

l'informazione di quanto ogni coppia di canali (contatti degli elet-
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trodi) è mutualmente dipendente. Dalle matrici di connettività,

basandosi sulla teoria dei gra�, sono state ricostruite le reti fun-

zionali di interazione fra le zone neuronali corrispondenti ai contatti

della SEEG. Ogni matrice è la rappresentazione delle connessioni di

ingresso e di uscita dei vertici di un grafo.

L'algoritmo di classi�cazione utilizza le ricostruzioni delle reti

come input ed è costituito da due passaggi principali:

1. E' stata e�ettuata un'approfondita analisi di rete che prevede

prima l'enumerazione di tutti i sottogra� di 3 e 4 nodi, la loro

relativa suddivisione in classi e la scelta di quelli statisticamente

più signi�cativi, utilizzando un confronto con un modello di

rete casuale. I sottogra� statisticamente più signi�cativi sono

stati utilizzati per la generazione della Matrice dell'Impronta

dei Ruoli assegnando ad ogni nodo una serie di valori, chiamati

ruoli, sulla base delle sue connessioni di ingresso e di uscita

all'interno di un determinato sottografo (blocco 1 nella �gura

2).

2. La Matrice dell'Impronta dei Ruoli è stata poi utilizzata come

dataset per due algoritmi di clustering, K-Means e A�nity

Propagation. La classi�cazione è stata e�ettuata utilizzando

come conoscenza a priori un singolo contatto etichettato come

EZ (epileptogenico) in modo da individuare il cluster EZ. Tutti

i contatti contenuti nel cluster EZ sono stati classi�cati come

positivi, mentre i contatti contenuti in tutti gli altri clusters

sono stati considerati negativi. L'algoritmo è stato ottimizzato

su un sottoinsieme dei pazienti costituenti il dataset minimiz-

zando prima i falsi negativi e poi, nel dominio così trovato, i

falsi positivi. In�ne sono stati classi�cati i contatti dei restanti

quattordici pazienti e sono state valutate le performance del

classi�catore (blocco 2 nella �gura 2).

In questo lavoro sono stati presi in considerazione 18 casi clinici,
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tutti a�etti da epilessia parziale farmaco resistente (in particolare

a�etti da Displasia Corticale Focale, epilessia Post Traumatica e

Polimicrogiria) e guariti totalmente dalle crisi dopo l'intervento di

resezione della corteccia. I dati utilizzati consistevano in 3 minuti di

segnale interictale encefalogra�co registrato con la tecnica invasiva

della Stereoelettroencefalogra�a. Ogni paziente ha subito l'impianto

di un numero variabile (da 5 a 15) di elettrodi multicontatto. Ogni

contatto ha registrato per alcune settimane l'attività elettrica delle

popolazione neuronali lui adiacenti. Un neurologo esperto ha se-

lezionato 3 minuti di segnale interictale di ogni paziente, catalogando

ogni canale in epileptogenico, o non epileptogenico.

Per veri�care la diversistà fra K-Means e A�nity Propagation è

stato e�ettuato il test del chi-quadro. I risultati ottenuti sono stati

valutati sia nella loro totalità sia analizzando semparatamente i casi

di epilessia dovuta a Displasia Corticale Focale da quelli dovuti a

Post Traumatica e Polimicrogiria. La divisione è stata fatta poichè

l'individuazione della zona epileptogenica è generalmente molto più

semplice per le patologie dovute a Displasia Corticale.

Il classi�catore ottenuto riesce a classi�care piuttosto bene e con

un ragionevole numero di falsi positivi i contatti EZ nei casi di epi-

lessia dovuti a Displasia Corticale. Negli altri casi presenta invece un

alto numero di falsi negativi, inaccettabili per l'obiettivo preposto.

Tuttavia, essendo il dataset piuttosto limitato, soprattutto per quel

che riguarda le epilessie non dovute a Displasia Corticale, non è

possibile trarre delle conclusioni de�nitive. L'algoritmo andrebbe

provato su un più ampio dataset, spostando l'attenzione anche su

altre �nestre del segnale SEEG (onset, ictale, post-ictale).

Eventuali sviluppi futuri prevedono una più approfondita analisi

di rete, in particolare estendendo la ricerca a sottogra� di dimen-

sioni maggiori (5 nodi o più), anche se questo particolare amplia-

mento del metodo richiede la riscrittura di alcuni script in modo da
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renderli più performanti e una struttura hardware particolarmente

avanzata. Un altro possibile ampliamento riguarda l'analisi della

matrice dell'impronta dei ruoli, che può essere elaborata utilizzando

reti bayesiane o analisi multivariate di varianza. In�ne, in previsione

di un uso clinico, si potrebbe implementare un'interfaccia gra�ca, in

grado non solo di fornire informazioni sull'epileptogenicità delle varie

zone in analisi, ma anche sulla posizione dei contatti e sulla mor-

fologia del cervello in esame, fondendo anche informazioni derivanti

dalle immagini CT e MRI di ogni paziente.

Parole chiave: epilessia, classi�cazione, automatica, stereoelet-

troencefalogra�a, contatti.
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is a neurological chronic condition that a�ects about 1%

of the population. It is characterized by recurrent and unprovoked

seizures, which are the main manifestation of this disease. A seizure

is de�ned as a paroxysmal, self-limited change in behaviour asso-

ciated with excessive electrical discharge from the central nervous

system. Epilepsy is de�ned as a condition of recurrent seizures and

medical intractable recurrent seizures despite optimal treatment un-

der the direction of an experienced neurologist over a two to three

year period. Seizures have been classi�ed based upon their clinical

manifestations which had some relevance for patients and physicians

but was of limited diagnostic or prognostic value. This classi�cation

scheme is based entirely on the distinct behavioural and electrophys-

iologic features of the seizures themselves. According to this classi-

�cation, an epileptic disorder is de�ned as either being generalized,

partial (focal) or undetermined. Primary generalized seizures start

as a disturbance in both hemispheres synchronously without evi-

dence of a localized onset zone. The manifestations of these seizures

tend to be major motor seizures of a tonic, clonic, tonic-clonic, my-

27
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oclonic or atonic type. They also include minor events of the petit

mal (absence) type. Partial forms of epilepsy start in a focal area

of the brain and may remain localized without alteration of con-

sciousness. These events are referred to as simple partial seizures

and the symptoms vary with the area of the brain a�ected. If the

event spreads and alters consciousness it is referred to as a complex

partial seizure. If the event spreads further and leads to a major mo-

tor seizure it is referred to as a secondarily generalized seizure and

may be quite di�cult to distinguish from the primary generalized

forms. Partial seizures often arise from the limbic structures of the

temporal and frontal lobes but can occur from any cortical region

and are often quite refractory to medical therapy alone. In general

, patients with partial seizure disorders are the most amenable to

surgical intervention [6]. Due to the described symptoms, epilepsy

is considered a disabling disorder. Furthermore people with epilepsy

are at risk for death because of four main problems :

• Status Epilepticus is a life-threatening condition in which the

brain is in a state of persistent seizure. Traditionally it is de-

�ned as one continuous, unremitting seizure lasting longer than

5 minutes, or recurrent seizures without regaining consciousness

between seizures for greater than 5 minutes [7]. It is always con-

sidered a medical emergency. There is some evidence that �ve

minutes is su�cient to damage neurons and that seizures are

unlikely to self-terminate by that time.

• Trauma from seizure, due to strong convulsions [8].

• Sudden Unexpected Death in Epilepsy (SUDEP) is term used

when a person with epilepsy suddenly dies, and the reason for

the death results from unexplained respiratory failure or car-

diac arrest after seizures (this should not be confused with sta-

tus epilepticus). Post mortem examination usually reveals no
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abnormalities in victims [9].

• Suicide associated with depression, because subject a�ected by

epilepsy cannot often live a normal life [8].

From the point of view of the electrophysiology (recorded on or

within the scalp), it is important the evolution in time of a seizure.

In an epileptic subject's electrophysiological signals, may be identi-

�ed four major temporal phases of the seizure [10]:

1. Preictal phase, is the temporal window just before the real

seizure. It can last from minutes to days and makes the sub-

ject acts and feels di�erently, even if not everyone experiences

something at this stage. Preictal activity often present spikes

with high power. At the end of this stage, electrical signal

is usually a�ected by high frequency ripples, which mark the

seizure onset.

2. Ictal phase, is the stage when the actual seizure develops. Dur-

ing this time there will be an electrical storm in the subject

brain, making him present cardiovascular, metabolic and elec-

trophysiological changes.

3. Post Ictal, takes place after the real seizure and it's a neuronal

reovery stage. During this stage the most involved brain areas

are often reftactory, showing a very little electrical activity.

4. Interictal phase is the time between seizure. Anyway a lot of

epileptic subjects show some kind of symptoms also during this

stage.
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Figure 1.1: Example of three di�erent phases of the SEEG in an epileptic sub-
ject. Interictal phase doesn't show any anomaly. Preictal shows some fast tran-
sient events, which disappears in the onset. Ictal phase shows high amplitude
waves.

As told above, under the term �epilepsy� may be found a large

number of di�erent pathologies. In the following will be described

epilepsy type considered in this work. They are very di�erent from

each other, both for the etiology and symptomps. Their only com-

mon aspect is that they are classi�ed as partial epilepsies.

1. Focal Cortical Dysplasias (FCD). They are part of an array of

disorders described variously as disorders of cortical develop-

ment, cortical dysplasias, cortical dysgenesis, or neuronal mi-

gration disorders. This kind of epilepsy was studied for the �rst

time by Taylor in 1971 [11]. In fact this group of pathology is

also known as Taylor Type Epilepsy. Classi�cation of these dis-

orders depends on either their pathological characateristics or

the proposed origin of the pathological elements. Especially in

2004 [12] a general classi�cation have been proposed and FCD

epilepsies have been splitted in 2 macro groups: (a) Type I:

FCD cases with non evidence of abnormal cells. (b) Type II:

FCD epilepsies which presents dysmorphic cells and/or balloon

cellsFocal cortical dysplasia is a signi�cant cause of medically
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refractory epilepsy [13]. During the last 45 years, developments

in imaging, electroencephalography, and electrocorticography

have allowed more patients with medically refractory epilepsy

to undergo resective surgery. In this thesis have been consid-

ered 15 patients with FCD type II

2. Polymicrogyria (PMG). Developmental malformation of the hu-

man brain characterized by an excessive number of small con-

volutions (gyri) on the surface of the brain, resulting in struc-

turally abnormal cerebral hemispheres. Either the whole sur-

face (generalized) or parts of the surface (focal) can be a�ected.

Children born with it may su�er from a wide spectrum of other

problems, including: global developmental disabilities, mild to

severe mental retardation, motor dysfunctions including speech

and swallowing problems, respiratory problems, and seizures.

Only two patients a�ected by PMG have been considered in

this work [14].

3. Post Traumatic Epilepsy (PTE). Form of epilepsy that results

from brain damage caused by physical trauma to the brain

(traumatic brain injury, abbreviated TBI). A person with PTE

su�ers repeated post-traumatic seizures (PTS, seizures that re-

sult from TBI) more than a week after the initial injury [15].

PTE is estimated to constitute 5% of all cases of epilepsy and

over 20% of cases of symptomatic epilepsy (in which seizures

are caused by an identi�able organic brain condition). It is not

known how to predict who will develop epilepsy after TBI and

who will not. However, the likelihood that a person will de-

velop PTE is in�uenced by the severity and type of injury; for

example penetrating injuries and those that involve bleeding

within the brain confer a higher risk. The onset of PTE can

occur within a short time of the physical trauma that causes it,

or months or years after. People with head trauma may remain



CHAPTER 1. INTRODUCTION 32

at a higher risk for seizures than the general population even

decades after the injury. Diagnostic measures include electroen-

cephalography and brain imaging techniques such as magnetic

resonance imaging, but these are not totally reliable [16].

The mainstay of treatment of epilepsy is anticonvulsant and barbi-

turic medications, but 30% of the patients cannot control seizures

with a mix of three di�erent drugs. For drugs resistant epilepsy

the option is a cortical ablation surgery. The requirement for this

treatment is a very localized onset brain area and the goal is the

total seizures control, although sometimes anticonvulsant medica-

tions may still be required, especially when the epileptogenic cor-

tex isn't totally removed. This situation occurs when some cortical

regions, identi�ed as epileptogenic, are involved in too critical neu-

rologic functions (eloquent cortex) or when the epileptogenic zone

isn't correctly detected.

Detecting the onset region, also called Epileptogenic Zone (EZ)

is a very di�cult task, which takes long time and a large number

of clinical exams, which must be interpreted by neurologists with

a deep visual inspection. Usually clinicians, in order to make an

accurate diagnosis, proceed �rst with a detailed study of the pa-

tient's clinical history, analyzing symptomps, neurological condition

and the family clinical history. Then they analyze di�erent types of

images, including CT, MRI, SPECT, PET in order to identify any

anatomical malformations or functional anomalies. At the same

time the patient is video-recorded during a seizure in order to ana-

lyze its clinical signs, e.g. convulsions, neurological signs like fear or

anger, pain, absence, because they are often related with onset zone.

But the most important instrument to formulate a careful diagnosis

is the brain electrical activity recording. There are four modalities

to record electrical signals from brain:

• Scalp electrodes (EEG) are the least invasive method, but with
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a lot of disadvantages. (a) Low spatial resolution on the scalp.

(b) EEG determines neural activity that occurs below the upper

layers of the brain (the cortex) poorly. (c) It requires precise

placement of dozens of electrodes around the head and the use

of various gels, saline solutions, and/or pastes to keep them in

place. (d) Signal-to-noise ratio is poor [17].

Figure 1.2: An example of how electrodes should be put for a scalp EEG record-
ing

• Epidural electrodes are used infrequently and generally only

for lateralization and approximate localization of seizure onset.

These electrodes are placed through tiny openings in the skull

with the electrode contact resting on the dura to provide a high

amplitude EEG signal without muscle or movement artifact.

Because they do not penetrate the dura the risk of infection

is minor. These electrodes can only record from the lateral

convexity of the cerebral hemispheres and therefore are limited

in their spatial resolution [18].

• Subdural electrodes are placed subdurally on the surface of the

brain in the form of rectangular grids or linear strips with �at

metal contact points mounted in �exible plastic. The grids

require a craniotomy for placement and therefore are limited

to unilateral application. The strip electrodes can be placed
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through burr holes over the lateral convexity or under the

frontal or temporal lobes. It is di�cult to place them in the

interhemispheric �ssure to record from parasaggital regions be-

cause of technical risks associated with large cortical veins. The

major advantage of subdural electrodes is that they do not pen-

etrate cerebral tissue and can record from a relatively wide area

of the cortical surface. They can also be used for extraoperative

cortical stimulation to map out speci�c areas of cortical func-

tion. Unfortunately, subdural electrodes cannot record directly

from the deep cerebral structures (i.e. amygdala, hippocampus

and cingulum) which are characteristically involved in many

medically refractory partial epilepsies. They also have a small

but real risk of intracranial infection and hemorrhage estimated

to be approximately 4% [19].

Figure 1.3: Subdural electrodes implanting.

• Intracerebral depth electrodes can be placed stereotactically into

deep cerebral structures with the aid of CT, MR and angiog-

raphy. Most centers employ �exible electrodes with multiple

contact points that are placed through small holes in the skull

and secured with some form of cranial �xation. Electrodes are

usually targeted towards the amygdala, hippocampus, orbital-
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frontal and cingulate regions and may be inserted via a lateral

or vertex approach. Using a lateral approach, stereotactic cere-

bral angiography must be utilized to avoid major blood vessels

during placement of the depth electrodes. Depth electrodes

may be used in combination with scalp or subdural electrodes

for more extensive coverage. Depth electrode investigation is

generally indicated for patients with bitemporal, bifrontal of

frontal temporal seizures and can localize a focal area of seizure

onset not possible with scalp recordings. The major compli-

cations of depth electrodes include hemorrhage and infection

with mortality and morbidity rates between 1 - 4%. It should

be noted that the intracranial monitoring incurs greater risk

than resective surgery itself and is also considerably more ex-

pensive than a noninvasive evaluation and therefore should be

used only when necessary [20].

Figure 1.4: Left : StereoElectroEncefalographic electrode. Right : Post Stereo-
ElectroEncefalographic electrodes implanting radiography.

The recorded signal is visual inspected, especially the temporal win-

dows containing the transition from the pre-ictal phase and the ic-

tal activity, because this section of the signal usually presents clear

epileptic electrical manifestation.

This work focuses on the information contained in StereoElec-

troEncefalographic (SEEG) signals (section 1.2) , recorded with in-
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tracerebral depth electrodes, and especially on interictal signal.

1.2 StereoElectroEncephaloGraphic (SEEG) Sig-

nals

StereoElectroEncephaloGraphy (SEEG) is a diagnostic stereotac-

tic procedure aimed at implanting recording multilead depth elec-

trodes directly within brain structures, with a patient-tailored ex-

ploration strategy on the basis of noninvasive studies [21]. It is

used in epileptic patients who don't respond to medical treatment,

and who are potential candidates to receive brain surgery in order

to minimize/dissolve seizures. Intracerebral electrodes are placed

within the desired brain areas to record spontaneous seizures or to

provoke them via low- and high-frequency stimulations, thus con-

tributing to de�ne with accuracy the epileptogenic zone, i.e. the

site of the beginning and of primary organization of the epileptic

discharge[22]. This technique was developed and introduced in the

diagnostic iter of epileptic patients by Talairach and Bancaud at the

S. Anne Hospital, Paris, France, in the second half of the 20th cen-

tury [20]. Nowadays the basic concepts of this methodology are still

valid, but modern technological tools facilitate the work-�ow, as the

integration of advanced multimodal imaging, obtained in frameless

conditions, and robotic surgical implantation [23]. SEEG is a pro-

cedure aimed to localize epileptogenic zone with high accuracy and

it is used only when EEG-VideoEeg and images (MRI, CT) are not

enough for cortical ablation surgery planning. Unlike EEG, signals

obtained have a good signal to noise ratio.

The electrodes implanted during SEEG procedures are semi-rigid

multilead depth electrodes with 0.8 mm external diameter. Every

contact is 2 mm long, with 1.5 mm inter-leads gap. These electrodes

are available with 5, 8, 10, 12, 15, 18 contacts, without or with the
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presence of groups of leads (3 groups with 5, 6 contacts each).

Figure 1.5: Multilead eletrode used for StereoElectroEncephaloGraphic proce-
dure. On the right-bottom corner a zoom of the terminal leads

Each lead records electrical activity from a con�ned neuronal

population in two di�erent modalities:

1. Monopolar recording, where the voltage is measured respect to

a �ground reference potential�.

2. Bipolar recording, where the voltage of each leads is mea-

sures respect to another close lead. Usually bipolar signals are

obteined with a di�erence between the di�erence of the voltage

of recording of two consecutive leads.

1.3 The aim of the work

In this project, the epileptogenic zone identi�cation is based on the

analysis of interictal Stereo Electroencephalographic signals. The

epileptogenic zone (EZ), following the theoretical principle of stereo-

EEG (SEEG) methodology [24], is considered here as the site of the

beginning and of the primary organization of the epileptic seizures.
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Stereo Electroencephalography (SEEG) is a technique which con-

sists in the insertion of electrodes in the brain cortex with surgery.

Each of these electrodes is made up of a number, from 8 to 15, of

di�erent leads, which can record electric activity of a small neu-

ronal population. This technique allows to have a less noisy signal

than the EEG one and a very high spatial resolution. Implanta-

tion of the electrodes lasts even for some weeks, and they record

a very huge amount of data. SEEG procedure is used in order to

localize with a very high accuracy the seizure triggering zone, dur-

ing the pre-surgical planning phase when an eplipetic subject is a

good candidate for a cortical ablation surgery. Removing the brain

area which triggers seizures is the only available treatment for drug-

resistant partial epilpesies. Nowadays the analysis of the signals

is performed manually by clinicians. The task takes a long time,

and, for a correct epileptogenic zone detection, it's required at least

one recording of the seizure. The aim of the work is to provide an

automatic method to classify SEEG interictal signals in EZ (Epilep-

togenic Zone), namely recorded from a SEEG lead put within a

epileptogenic neuronal population, and in NEZ (Non-epileptogenic

Zone).

1.4 Outline of the thesis

The thesis is organized as follow:

• Chapter 2 summarizes the existing automatic algorithms aimed

to the localization of the Epileptogenic Zone (EZ) and describes

analytical methods for the evaluation and the analysis of net-

works and their connectivity properties.

• Chapter 3 describes the pipeline implemented for the automatic

classi�cation of the SEEG leads.
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• Chapter 4 reports the performance of the implemented classi�er

using data of post-resected patient with seizure-free outcome.

• Chapter 5 concludes the thesis and presents possible develop-

ments for the presented work.



Chapter 2

State of the Art

2.1 Methods for automatic Epileptogenic Zone

identi�cation

To solve the problem of the epileptogenic zone (EZ) localization,

during the last 50 years, a lot of trials were done. Anyway the

problem is still alive, because none of the developed methods is able

to replace the capacity and the experience of clinicians.

Most of this methods is based on the automatic analysis of bioim-

ages (CT, MIR, PET, SPECT), in order to �nd some anatomical

or functional abnormality. This kind of approach has some critical

points. First of all, epilepsy is not always correlated to a visible

lesion. Surely, in a subject a�ected by a certain type of cortical dis-

plasya, is often easy to �nd out the epileptogenic focus, because it

very recognizable analyzing grey values in a MRI. But only a mini-

mal number of epileptic subjects is a�ected by this kind of pathology.

In all of the other cases the cortical malformation is more di�cult to

be localized and it may not totally �t with the epileptogenic focus.

To overcome the problems above, a trial with FDG-PET images,

which measure the metabolic activity of brain regions, was done by

Wesley et al. [25]. They have developed an automated computer-

40
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aided diagnostic tool that has the potential to work both indepen-

dent of and synergistically with expert analysis. Their tool operates

on distributed metabolic changes across the whole brain measured

by iPET. The algorithm is made by two part. The �rst one consists

of the segmentation of PET images and of the computation of the

average radioactivity in each Region of Interest (ROI), normalized

by the whole brain radioactivity, as feature for the next step. The

second part of the algorithms is based on a Multi-Layers Perceptron

(MLP) aimed to each ROI classi�cation. The MLP accuracy was

80%. Actually, due to the low resolution of the PET imaging tech-

nique, their CAD is able only to diagnose and lateralize temporal

lobe epilepsy (TLE), making it inappropriate for a more accurate

epileptogenic zone localization during a pre-resection planning.

Another study aimed to localize the epileptogenic zone using

methabolic images was performed by Newey et al. [1]. They devel-

oped a very performant algorithm based on a SISCOM [26] coreg-

istration between SPECT images and MRI. The speci�city of the

method is very high, around 90%, but the sensitivity is still too low

(70%).

Figure 2.1: SISCOM analysis and MRI coregistration. A shows SISCOM anal-
ysis performed on preoperative MRI. B shows the coregistered postoperative
MRI, which presents a resection consistent with SISCOM localization [1].
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Although the algorithm cannot be used as a stand-alone auto-

matic method, it could be a very useful tool in order to help neu-

rologists in the epileptogenic zone localization task. But there is a

big problem about the clinical application: Ictal SPECT is a cost-

intensive and labor-intensive procedure reserved for the more chal-

lenging patients undergoing presurgical evaluation.

In a consistent number of cases the analysis of the images isn't

enough, becuase there is not any evident cortical malformation and

the epilepsy is caused only by an abnormal electrical activity, which

is invisible to funcional images as well [27].

Then, in order to identify the epileptogenic zone, another ap-

proach consists in the analysis of the electrical activity of the brain.

Over the past decades some trials were done to search a way to

automatically identify a signal as epileptogenic with scant success.

The reason of all this insuccess is that is impossibile to �nd a clear

�epileptogenic pattern� in electrical signals due to the fact that there

is an incredible number of di�erent patology under the name of

epilpesy. Only few information processing methods able to statisti-

cally characterize the spatio-temporal distribution of interictal tran-

sient events in large datasets have been reported up to now.

Nowadays the problem is still unsolved and the literature about

SEEG/EEG processing for the epileptogenic zone identi�cation is

very brief.

One of the �rst pro�table attempt was obtained by Wendling

et al. ([28, 29]) with the estimation of the mutual involvement of

di�erent brain structures computing a non-linear non-parametric

correlation h2 index using the IEEG (Intracerebral EEG) signals.

In particular the study was focused on the transition from pre-ictal

activity to the seizure and on the ictal activity of patients with

Temporal Lobel Epilepsy (TLE). It's reported that starting with

the seizure onset, the computed correlation index of the involved
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regions increses and its mean values is higher for the total duration

of the ictal activity (see Figure 2.2).

Figure 2.2: (a) Depth-EEG signals recorded from (i) amygdala (AMY) and (ii)
hippocampus (HIP) in a human during transition to seizure activity in temporal
lobe epilepsy. (b(i)(ii)) Spectrograms corresponding to depth-EEG signals ob-
tained from short-term Fourier transform. (c) Estimated relationship between
the two signals in the time�frequency plane, which reveals a synchronization
process well localized in frequency at seizure onset. (d) Estimated relationship
between the two signals using the h2(t) nonlinear regression analysis method.
The increase of the h2(t) at the seizure onset denote the involvement of the
Amygdala and the Hippocampus in the seizure (see [2]).
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The study is a milestone in the EZ localization, because it showed

that the epileptogenicity of di�erent brain areas is strictily related

to their mutual involvement with others. Anyway the method is not

as much as reliable to an accurate EZ identi�cation.

Another study focused on the mutual connection of di�erent cor-

tical areas, is reported by Bourien et al. ([30, 3]). They proposed a

method able to analyze a particolar characteristic of the interictal

signal. The method was based on three main task:

1. Automatic detection of monochannel itracerebral interictal spikes

(mono-IIS).

2. Identi�cation of multichannel intracerebral interictal spikes (multi-

IIS).

3. Automatic extraction of Subsets of Co-Activated Strucures (SCAS)

making use of data-mining and statistical test.

Figure 2.3: (a) Detection of mono-IIS and identi�cation of multi-IIS in intrac-
erebral EEG, (b) Boolean co-occurrence matrix and (c) extraction and repre-
sentation of SCAS [2]. Method described in [3].
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The interictal signal usually shows transient events (mono-ISS)

which are one of the main feature that characterizes an epileptic

IEEG. The detection of the IIS is a very critical aspect of this

method, because, as shown in many studies ([31]), the ideal spike

detector does not exist, as the speci�city and the sensitivity remain

di�cult to control in a context where the frequency of spikes is

modulated by the patient state and where the human experts have

themselves di�culties, in some cases, to assess the presence of spikes.

Bourien et al. used a technique based on wavelet decomposition that

has proven particularly suited for enhancing transient signals well

localized in time and frequency. After the detection of mono-ISS

the method builds the matrix B which is a boolean matrix contain-

ing the co-occurance information extracted from the multichannel

EEG data (identi�cation of multi-IIS). Also this step has a criti-

cal aspect, beacuse the multi-IIS identi�cation depends on sliding

window, whose duration must be su�cientily short to avoid fusion

of temporally unrelated monochannel events but it must be long

enough to avoid the situation where temporally related events are

not detected. Its duration was chosen experimentally. Then from

the boolean matrix are extracted SCAS classifying all its subsets.

Each SCAS come with a value which is the misure of the mutual

involvement of the structures grouped in that SCAS. Higher values

are correlated with an higher epileptogenicity. This task increases in

complexity with the number of channel. Bourien's method isn't able

to �nd the EZ with accuracy, but it can just provide a support to

neurologists identifying the most probable epileptic triggering struc-

tures [2]).

In 2008 the Bartolomei's et al. [4] analyzed SEEG signals with

a revolutionary method, described in the following. High-frequency

oscillations are frequently observed during the transition from inter-

ictal to ictal activity, called onset window (Figure 2.4).
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Figure 2.4: SEEG signals recorded in di�erent brain cortical areas: anterior
Hippocampus (aHIP), entorhinal cortex (EC), Amygdala (AMY), MiddleTtem-
poral Gyrus (MTG), Insula (INS). In the �gure it's highlighted the seizure onset
signal window [4].

They are often referred to as �rapid discharges� as they constitute

a typical electrophysiological pattern characterized by a noticeable

increase of signal frequency. Classically, the rapid discharge is a

transient phenomenon, which lasts for a few seconds and which may

or may not be associated with voltage reduction. In order to charac-

terize both the propensity of a given brain structure to a rapid dis-

charge and the delay of appearance of this discharge with respect to

seizure onset, Bartolomei et al. [4] introduced a new index referred

to as the `Epileptogenicity Index' (EI). The purpose of this index is

to provide quanti�ed information about the behaviour of recorded

brain structures from signals they generate during the seizure pro-

cess (from onset to termination). This index summarizes two pieces

of information into a single quantity:

1. Whether or not the recorded brain structure is involved in the

generation of a rapid discharge.

2. When involved, whether or not this rapid discharge is delayed

with respect to rapid discharges generated by other structures.

For the �rst time both frequency and time information were taken

into account. Then it's possibile to assign to each signal an epilep-

togenicity index, which measure how much the zone from where the
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signal has been recorded is epileptogenic. Anyway EI can be applied

only for a limited number of epilpesy cases. In fact it works well only

for very focal epilpesy type. Plus it's not always clear when EI is

high enough to consider the related signal as epileptogenic. Among

disadvantages, there is the problem that EI must be computed us-

ing the onset signal, not always available and with a decent signal

to noise ratio. Plus, SEEG recordings are usually very extended in

time and so, in order to compute EI, the algorithm must also be

able to automatic detect the onset zone, which is a very critical task

and an open-problem in the signal theory.

The �rst EZ localization study reporting also a sensitivity-speci�city

analysis was published in 2011 [5]. Dataset included 29 sublinical

seizures and four seizure onset and it was made by SEEG record-

ings. It was analyzed with a functional connectivity index, Adapted

Directed Transfer Function (ADTF), derived from the coe�cients

of a time-variant multivariate autoregressive model �tted to the

data. ADTF was applied to each couple of SEEG channels. Di�er-

ent ADTF normalization was studied on simulations of ippocampal

seizures and a Receiver Operating Characteristic (ROC) curve (�g-

ure 2.5) was computed. ADFT shows the source of a propagarion

eletrical wave, making possibile the localization of the epileptogenic

focus. The proposed method was validated on the dataset, made

by 4 seizure onsets of 4 di�erent patients and 29 subclinical seizures

of the same patient. All the results obtained were concordant with

post-surgical �nding and it was concluded that the algorithm was

able to correctly identify the hippocampus epilepsies without any

history about seizure and patient.
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Figure 2.5: ROC curve of performances obtained with di�erent normalization
of ADTF in simulated seizure with added noise [5].



Chapter 3

Materials and Methods

SEEG leads were classi�ed in EZ (epileptogenic) and NEZ (non-

epilpetogenic) with a semi-unsupervised algorithm which searches

similarities among the behaviour of each leads in a reconstructed

brain network. Networks were reconstructed applying a non-linear

non-parametric index to pairwised SEEG recordings.

The algorithm is made by two di�erent sections:

1. Network analysis with the identi�cation of the most signi�cant

subgraphs and the creation of a �Role Fingerprint Matrix�, a

matrix aimed to describe the behavior of each lead in the net-

work during time (sec. 3.2 and 3.3).

2. Clustering analysis on the �Role Fingerprint Matrix � data, in

order to identify EZ and NEZ (sec. 3.4 ).

The �rst stage is based on the graph theory, especially on the �nding

of network paths which occurance is di�erent from that in a respec-

tive random model. This kind of analysis is inspired by the new

trend that the bioinformatic related to the study of genomic and

proteomic is taking in these last years. The second stage is based

on two methods of unsupervised classi�cation.

Then, in section 3.5, is described an optimization problem aimed

49
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to improve at best the classi�cation performance.

Figure 3.1: A recaping scheme of the implemented pipeline. A. SEEG signals are
selected and labeled by a neurologist. B. Connectivity matrixes are computed
in order to reconstruct the functional brain network. C. In the reconstructed
network an algorithm searches subgraphs and assigns to them a measure of their
statistical signi�cance D. For each node (a row in the matrix in the picture) a
set of roles is computed by the most signi�cative subgraphs, on the base of the
incoming and outcoming connections of the nodes. The selection of the most
signi�cative subgraph is made according to a set of parameters (U3, Z3, U4, Z4 ).
The role information is stored in the Role Fingerprint Matrix. E. PCA on Role
Fingerprint Matrix. F. The classi�cation of the leads is based on unsupervised
method, and the EZ leads are found providing to algorithm the information
about just one EZ lead (using the labeling provided by neurologist). All the leads
in the EZ cluster are considered positive, the others are considered negative (and
so classi�ed as NEZ). G. Optimization of the set of parameters U3, Z3, U4, Z4

used for the selection of of the subgraphs at point (D) They are optimized
minimazing the False Negatives and then the False Positive of 4 FCD patients
(using a priori information provided by clinician).
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3.1 Connectivity Matrixes (A-B)

This stage of the algorithm corresponds to point A and B in �gure

3.1.

There is the growing evidence that a wide range of neurologic

disease are strictly related to the di�erent connectivity behavior

between brain areas [32, 33].

The dataset used in this work was made by connectivity matrixes

provided by DDEP (Besta Hospital): SEEG recordings of each pa-

tient were divided into 36 non-overlapped 5 seconds-length epochs

and each couple of channels was submitted to connectivity analysis

by means of nonlinear regression method h2 [34], a statistical mea-

sure that describes the dependency of a signal y(t) on another signal

x(t) in a general way, independently of the type of relation between

the two signals. This measure was called the correlation ratio h2(τ).

It is de�ned as follow:

h2(τ) = 1− V AR [y(t+ τ)/x(t)]

V AR [y(t+ τ)]
(3.1)

where

V AR [y(t+ τ)/x(t)]
.
= argmin

h
E [y(t+ τ)− h(x(t))]2 (3.2)

The h2 index is asymmetric ( h2 (x→ y) 6= h2 (y → x) ), and this

interesting property which allows an investigation of whether h2 is

symmetric or not can give insight into the nature of the relationship

between x(t) and y(t).

A Connectivity matrix (also re�ered to as Adjacency matrix) was

then built for each epoch, with the value of the element (i, j) repre-

senting the association or �ow of information from channel xj(t) to

xi(t) , where each channel was a recording lead of a SEEG electrode

(�gure 3.2). Each element of diagonal of each matrix was equal to
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zero, because the auto-connections (the dependency of a signal with

itself) was ignored.

Figure 3.2: An example of how the connectivity matrixes were computed. For
each epoch a di�erent matrix was computed. Each element of the matrix is an
h2 signal between two channels of the SEEG recording. In this example only
four channels were considered. Usually there are at least 30 channels.

Each value of the matrix is a h2 index which measure the strength

of the connection between two leads. For instance, considering the

element in row 2 and column 1, h2
21 index, if its values is equal to

0.06, it means that the information �ows from lead number 1 to lead

number 2 with a strength equal to 0.06. Viceversa h2
12 index show

the power of the connection from lead 2 to 1.

An example of a connectivity matrix could be seen in �gure 3.3,

where 84 leads are considered. It is the representation of the infor-

mation �ow of one epoch of SEEG signal of a Patient a�ected by

Cortical Focal dysplasia of type II.
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Figure 3.3: An example of the connectivity matrixes provided by DDEP. Each
element is h2index representing the connection power between two leads. Dif-
ferent colors are di�erent h2 values.

A connectivity matrix is a representation of the mutual depen-

dencies of the neural processes recorded by the SEEG. Each con-

nectivity matrix is the functional connectivity picture of the brain

areas under study. For each patient 36 connectivity matrixes were

computed, one for each epoch.

Then a threshold of h2 was computed in order to build binary

connectivity matrix.

The threshold h2
threshold is the minimum h2 among the maximum

of each lead. In �gure 3.4 the complete threshold choice work�ow is

reported.
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Figure 3.4: The work�ow of how the threshold h2 was chosen for each epoch.

Then for each matrix each h2 ≥ h2
threshold was replaced with a

one, the h2 < h2
threshold with a zero.

After the thresholding, each connectivity matrix became a binary

connectivity matrix. A binary connectivity matrix is the represen-

tation of a graph.

Even if usually graph and network have a meaning slightly dif-

ferent, in this work the two words will be both used re�ering to the

same concept.
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Figure 3.5: Equivalence between a binary connectivity matrix and a graph. In
the �gure it's considered a directed case, becuase �t with data used in this work

In �gure 3.5 is shown the equivalence between a binary connec-

tivity matrix and a directed graph. Columns represent the outward

connections, rows the inward connections for each node of the re-

lated graph. Just to make an example, always looking at the �gure

3.5, column 1 shows that the node 1 in the graph has two outward

connections, one toward the node number 2 and one toward the

number 5.

In the following, binary connectivity matrix will be simply called

connectivity matrix. Symmetric connectivity matrixes are trans-

lated in undirected graphs, while asymmetric matrixes represent di-

rected graphs (�gure 3.6).

Figure 3.6: In undirected network the information �ow isn't expressed. Usually
the use of an undirected links is deprecated except when all the connections are
bidirectional
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Since h2 index has the asymmetry property, in this work the

methods proposed will handle directed graphs.

There were 36 (one for each epoch) binary connectivity matrixes

(graphs) for each patient (�gure 3.7). Each matrix is the representa-

tion of functional connectivity estimated from SEEG signals in each

epoch.

Figure 3.7: A summary of the work�ow from the SEEG signals to the connec-
tivity matrixes.

3.2 Network Analysis (C)

This section of the algorithm corresponds to point C in �gure 3.1.

A large network can be subdivided in smaller structures made

by k nodes, called size-k subgraphs, which represent subpaths in the

networks circuits (�gure 3.8).
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Figure 3.8: A Graph and a size-3 subgraph extracted from the given graph.

There are evidences that local subpaths in a network play a key

role in the de�nition of the network properties [35, 36].

The �rst stage of this thesis was to perform a complete net-

work analysis of the graphs described by the connectivity matrixes

(section 3.1), aimed to �nd the most signi�cative subgraphs, which

should represents the connections not due to chance (noise).

The network derived from the connectivity matrix in the follow-

ing will be called original network. From each connectivity ma-

trix (original networks) three sets of 1000 random networks were

genereted. The number of nodes of each random network is equal

to that of the original network. Each set was builded according a

di�erent randomness model:

• Local randomness. In this model, unidirectional edges are only

exchanged with unidirectional ones. The same applies for bidi-

rectional edges. Therefore, the number of incident bidirectional

edges remains locally constant, that is, it constant for each ver-

tex.

• Global randomness. Model where the number of bidirectional

edges is kept constant in the overall network. However, a spe-

ci�c vertex may lose or gain incident bidirectional edges.
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• No regard. This states that bidirectional edges can be cre-

ated and destroyed during randomization. This option usually

increases the number of bidirectional edges compared to the

original network.

In all cases, the random network is generated from the original net-

work by a series of three edge switching operations (Figure 3.9). So

the overall number of the inward and outward connections in the

random networks is always the same of those in the corresponding

original network.

Figure 3.9: The random model used to estimate the the statistical signi�cance
of each graph are built switching the links di�erent times.

From the original network and from each random network, all

size-3 and size-4 subgraphs were enumerated using the ESU algo-

rithm [37], a very e�cient method able to accomplish the enumera-

tion task of large networks in a short time.

Then, size-3 and size-4 subgraphs of each network (both the orig-

inal and those of the three sets) were collected into labeled subgraph

classes Sk, according to the isomorphism (�gure 3.10) criterium. To

accomplish this task was used the Nauty algorithm [38, 39, 40] (see

appendix A).
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Figure 3.10: Feed Forward Loop is a very recurrent subgraph in the biological
systems. In the �gure are shown two of its isomorphic states. On the left the
connectivity matrixes and on the right the corresponding graphs.

At this point each network (both the original and those of the

three sets) was accompanied by its own collection of size-3 subgraphs

grouped into subgraph classes (S3) and by its own collection of size-4

subgraphs grouped into subgraph classes (S4).

The signi�cance of each class is based on statistical measures,

computed as follow. Let's consider the original network, which is

that derived from connectivity matrixes described in section 3.1, and

the large set of random networks.

Classes Sk enumerated from the original network and in the set

of random networks are the same, because it's possible to �nd a

con�ned set of di�erent classes, depending on the size (k) of the

subgraphs considered. Then for each Sk were computed the occu-

rance frequency foriginal in the original network and the mean occu-

rance frequency f̄random of the random model over the set of random

networks.

foriginal(Sk) =
length{Sk}
Nsubgraphs

(3.3)

where Sk is the set of the enumereted subgraphs grouped into

a certain subgraph class and Nsubgraphs is the total number of sub-
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graphs enumerated in the whole original network.

f̄random(Sk) =
1

Nrandom

Nrandom∑
i=1

length {Sik}
N i
subgraphs

(3.4)

where:

• Nrandom is the number of random network generated.

• Sik is the set of the subgraph with a certain label found in the

i -th random network.

• N i
subgraphs is the total number of subgraphs enumerated in the

i -th random network.

In this work Nrandom = 1000.

Using these frequencies a z-Score for each class is computed,

which is a normalized measure of the deviation of a Sk from a ran-

dom model:

zScore(Sk) =
foriginal(Sk)− f̄random(Sk)

std(frandom(Sk))
(3.5)

The �nal output is a list of all the size-k subgraph (with k=3 and

k=4) classes Sk found in the original network analyzed, accompanied

by their relative foriginal, f̄random, zScore. This method was applied

to connectivity matrixes stored in the dataset, i.e. for each epoch in

which SEEG signals were divided, and for each patient. Obviously

the obtained values of foriginal, f̄random, zScore were di�erent for

each epoch. Due to the computational time, which scale with the

increasing of the size of subgraphs and according to the number of

nodes in the original network, the algorithm was applied only to

search size-3 and size-4 subgraphs.

Each patient, which is represented by a collection of 36 binary

connectivity matrixes, underwent to a total network analysis (�gure

3.11): from each one of the 36 connectivity matrixes (original net-
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works) three, one for each randomness model, sets of 1000 random

networks were generated. Then from each of the 36 original net-

works and from its related sets of random networks, are enumerated

size-3 and size-4 subgraphs. Then they were collected into classes

Sk according to the isomorphism criterium. For each class of each

original matrix two statistical parameters were computed ( foriginal

and zScore).

Figure 3.11: Network analysis described in detail. It is performed for each of
the 36 epoch (of each patient).
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At the end of this stage each enumerated subgraph from each of

the 36 original networks were recorded into a Database. There is a

�le for each epoch and for each patient. Each record in these �les

contains the following information:

• Leads involved in the size-k subgraph. They are labeled ac-

cording to their position in the conncectivity matrixes.

• An ID of the related Sksubgraph class. It's a unique num-

ber assigned to each subclass class found in order to uniquely

identify it.

• The class related foriginal and zScore values.

Node A Node B Node C Sk ID foriginal zScore

4 10 34 12 0.06 0.4

Table 3.1: An example of how each subgraph found in the original network is
recorded. In this example a size-3 subgraph is considered. First three column
(Four if the considered subgraph has three nodes) are the label of the Lead
involved in that subgraph. Then the last three columns are the ID of the
subgraph class in which the leads are involved, the occurence frequency of the
subgraph and its z-score.

In table 3.1 there is an example table. It describes the represen-

tation of an enumerated subgraph from the original network. For

each epoch there are a variable number of enumerated subgraphs

(records), whose order of magnitude is the following: for size-3 sub-

graphs there are 105records and for size-4 subgraphs 106.

For the implementation of the above algorithm used FANMOD's

libraries [41] , compiled and runned in a GNU/Linux environment.

The algorithm was wrapped in a parallelizing C++ coded structure

(non-CUDA) in order to reduce the computation time. Unfortu-

nately the method requires a large amount of memory, due to the

dimensions of the network analyzed. So only two thread could be

executed at the same time without the overhanging within the swap

memory (with a great drop in performance).
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3.3 Roles Fingerprint Matrix computation (D)

The following procedure corresponds to point D in �gure 3.1.

Each subgraph recorded was considered signi�cative if its sub-

graph class Sk has the following characteristics:

• foriginal(Sk) ≤ U

• |zScore(Sk)| ≥ Z

Where U is a frequency threshold and Z is a z-Score threshold.

U and Z are parameters chosen solving an optimization problem

(see 3.5). All the subgraphs, whose subgraph class was not consid-

ered signi�cative, were discharged.

The purpose of the method proposed in this thesis is the calssi-

�cation of the SEEG leads in EZ (epileptogenic) and NEZ (non-

epileptogenic). Epileptogenic EZ are a con�ned subset of the total

lead number. The hypothesis formulated is that each size-k sub-

graph represents a little piece of information concerning the system

under study. In the case of the network built up with SEEG record-

ing, the information carried by each subgraph concerns how each

neuronal populations talks with the others. According to this hy-

pothesis the most frequent subgraphs carry the information common

to a large subset of the network nodes (leads). Since the epilepto-

genic network involves only a very small subset of nodes, the infor-

mation about EZ must be searched in the rarest subgraphs, selecting

only the classes with their occurance frequency foriginal under a cer-

tain threshold. At the same time, selected subgraphs must have

a zScore higher enough to consider their occurance di�erent from

those in a random network. Skwith a zScore too close to zero can

be considered as random noise [36].

From each signi�cant Sk, selected according to the constraints

described above, another group of features were extracted, called in

this work roles.
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Given a binary connectivity matrix Ak of a size-k subgraph class,

its element are marked with akijwhere i and j must be included from

1 to k. A role is a set of four numbers:

ROLE = {ID, k, In,Out} (3.6)

where

• ID is a unique identi�cation number given to each size-k sup-

graph class. Its only purpose is to identify each class of Sk

uniquely.

• k is the subgraph dimension.

• In and Out are the In Degree and the Out Degree of the role,

i.e. the number of inward and outward connection of each single

node in the subgraph under analysis. They were respectively

computed as in the equation 3.7 and 3.8.

Out(i) =
k∑
j=1

aij (3.7)

In(j) =
k∑
i=1

aij (3.8)

Roles have two properties, which limit their number in given size-

k subgraphs.

Property 1. For a given size-k subgraph class, exists at least one

role.

There is only one role, for instance, in symmetric cyclical graphs

(�gure 3.12).
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Figure 3.12: An example of a graph where all its nodes have the same roles. In
this example all nodes have one inward connection and one outward connection.
This is a symmetric cyclical graph.

Property 2. For a given size-k subgraph class there are maximum

k di�erent roles.

It happen when all nodes have a di�erent role (�gure 3.13

Figure 3.13: A graph where each node has a di�errent roles

Thanks to the previously described properties, it is possible to

create a list of all the roles identi�ed in each epoch of each patient,

in order to have a common dictionary for any new elaboration. The

dictionary allows the coupling of a single identi�cation number IR

to each role, giving an easier instrument to manage roles. The dic-

tionary is de�ned as a biunique function D:

IR = D(ID, k, In,Out) (3.9)

Such function has been implemented in a SQL data structure and

each of its instance is a SQL query.
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In the following, in order to clarify the concept of role and how

the Dictionary function works (equation 3.9), will be provided an

example.

Considering the size-4 subgraph A4(�gure 3.14). Subgraph A4is

enumerated from a larger network. It's a assigned to a class Sk with

ID = 137. Then foriginal and zScore of A
4are computed.

Figure 3.14: A size-4 subgraph and its relative connectivity matrix A4

Assuming that its foriginal ≤ U and |zScore| ≥ Z and so it

was considered signi�cant. Each node is represented by a row and

column with �the same number�. For example, node 1 is represented

by the �rst row and �rst column, node 2 by the the second row and

second columns, and so on. Equation 3.7 and 3.8 are applied to the

matrix and to each node is assigned a set of number (de�nition 3.6).

The table 3.2 is related to the example in �gure 3.14:

Node Label (see �gure 3.14) ID K In Out

Node 1 137 4 1 2
Node 2 137 4 1 1
Node 3 137 4 1 1
Node 4 137 4 2 1

Table 3.2: Example of de�nition of roles with 4 de�nition numbers

These data are used as input for Dictionari FunctionD (Equation

3.9) obtaining an IR for each node:
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Dictionary Function Function Output (IR)

D(137, 4, 1, 2) 450
D(137, 4, 1, 1) 451
D(137, 4, 1, 1) 451
D(137, 4, 2, 1) 452

Table 3.3: Working example of the dictionary function

The function D sends a query request to the SQL database for

each combination of four parameters. If the combination already ex-

ists, the IR is simply returned and assigned to the node. If the com-

bination doesn't exist, the Dictionary Function adds a new record to

the database with an IR increased by one compared to the maximum

already existing.

For each subgraphs enumerated during the �rst subtask from the

real network a roles computation was performed.

Let's consider only a patient and only one epoch (one connectivity

matrix) related to it. The algorithm described above was runned,

obtaining for each network node (the representation of the SEEG

leads) a list of roles, each role identi�ed by a unique number (IR).

Each node can assume more than one role at a time, because it

can be involved in a large number of di�erent subgraphs at the

same time. Then, for each node, a frequency histogram is computed

(�gure 3.15), counting how many time each role occurs.
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Figure 3.15: Size-3 roles histogram of the lead number 9 of the patient 5 in
epoch 3. On the x-axis role IR (in this case from 1 to 13) and on the y-axis the
occurance frequency normalized between zero and one. It is the representation
of the behavoiur of a SEEG lead in the reconstructed network during one epoch.
Each lead will have 36 histogram like the one in the picture.

In �gure 3.15 there is the occurence histogram of the roles as-

sumed by a single node, considering only size-3 subgraphs.

Then the histogram was normalized between zero and one. A

histogram was computed for each epoch. At the end of this stage,

each node had 36 (the number of epochs) di�erent histograms, which

describe a sort of ��ngerprint� of the roles that a node can assume

over time. The output of this stage is a matrix for each patient,

whose rows are the nodes of the graph estimated by the pairwised

SEEG channels (leads), and whose columns are the values of the 36

histograms for each lead, that are put side by side. Such matrix has

been called Roles Fingerprint Matrix (�gure 3.16). The number of

columns of this matrix depends on:

• The number of subgraphs classes considered signi�cative.

• Size of the subgraphs considered. Can be considered size-3

subgraphs, or size-4 subgraph or both togheter.
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• The randomness model considered. They can be used sepa-

rately, pairwised or also all togheter.

Figure 3.16: Roles Fingerprint Matrix. Each row represents a lead and on the
column there are the role occurance, derived from histogram, over the epochs.
Red color means high occurence, blue means low occurence.

For each patient 18 di�erent Roles Fingerprint Matrixes were

computed. Each of them was obtained with a di�erent combination

of the dimensions of the subgraphs and/or di�erent combination of

random model (see list in chapter 4).

3.4 Unsupervised Classi�cation (E-F)

This step of the algorithm corresponds to point E and F in �gure

3.1.

The output of the algorithm described in the previous section

is a matrix (Roles Fingerprint Matrix) where each line contains all

the features (roles occurrance over time) extracted with the network

analysis. Each line is a vector, which can be the input of a classi�-

cation method. Each vector represents a SEEG lead, which have to

be classifed in EZ and NEZ (�gure 3.17).
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Figure 3.17: Work�ow of the clustering analysis

The problem is that the vector has very large dimensions (till to

30000 dimensions), due to the great number of roles that can be

found, especially in size-4 subgraphs.

The majority of the classi�cation/space partitioning algorithm

are not so robust when inputs have too many dimensions, and there

is the risk that the computation time increases esponentially. In

order to reduce these problems the dataset obtained at the end of

section 3.2 (the Roles Fingerprint Matrix) was �rst elaborated with

Principal Component Analysis (PCA) (E in �gure 3.1) in order to

reduce its dimensions. Principal component analysis (PCA) is a

mathematical procedure that uses an orthogonal transformation to

convert a set of observations of possibly correlated variables into a

set of values of linearly uncorrelated variables called principal com-

ponents. The number of principal components is less than or equal

to the number of original variables. This transformation is de�ned
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in such a way that the �rst principal component has the largest

possible variance (that is, accounts for as much of the variability

in the data as possible), and each succeeding component in turn

has the highest variance possible under the constraint that it be

orthogonal to (i.e., uncorrelated with) the preceding components.

The explained variance took into consideration was the 99%. Even

if the cuto� of the variance was so high, dimension of dataset always

decreased from about 30000 to about one hundred dimensions.

Then two kinds of clustering were used: K-Means Clustering and

A�nity Clustering (F in �gure 3.1).

The choice of an unsupervised partition method is a bit unusual

in a binary classi�cation like the one in this thesis. Actually, even if

the purpose is the partition of the leads in two classes, EZ and NEZ,

it's only an approximation. A deeper re�ection about the choice of

the classi�cation method will be done in Chapter 5.

To accomplish the classi�cation, after the clustering, will be pro-

vided to the algorithm just one EZ lead. The cluster containing that

EZ lead, will be considered the EZ cluster CLEZ , and all the leads

owning to that partition will be considered as EZ. Then, in order

to estimate the performance, will be measured the False Negative

(FN) 3.10, the False Positive (FP) 3.11 and the True Positive (TP):

FN = length {LEADEZ 6∈ CLEZ} (3.10)

FP = length {LEADNEZ ∈ CLEZ} (3.11)

TP = length{LEADEZ ∈ CLEZ} (3.12)

where LEADEZ is the subset of the overall lead set labeled by the

neurologist as Epileptogenic and LEADNEZ is the subset labeled as

Non-Epileprogenic.
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False Negative and False Positive will be also be expressed in

percentage (False Negative Rate FNR 3.13 and False Positive Rate

FPR 3.14):

FNR =
FN

length{LEADEZ}
(3.13)

FPR =
FP

length{LEADNEZ}
(3.14)

In order to evaluate performance with more compact measure

was used the Accuracy:

Accuracy = 1− FN + FP

Nleads

(3.15)

where Nleads
1is the total number of the leads classi�ed in that

patient.

Finally another index, F-Score, was computed:

F = 2 · precision · recall
precision+ recall

(3.16)

where:

precision =
TP

TP + FP
(3.17)

recall =
TP

TP + FN
(3.18)

F-Score is aimed to measure how much a linear classi�er (EZ/NEZ)

works well for both the classes. It ranges from zero to one and higher

it is, better are performances on both classes.

The classi�cations obtained with the two clustering method were

compared with the chi-squared test. The null hypothesis H0 was:

<�<Have the two method the same classi�cation performance?>�>

1Formal de�nition: Nleads = length{LEADEZ ∪ LEADNEZ}
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The con�dency level desired was α = 0.001. The tabled value ac-

cording to α isχ2
crit = 10.83.

3.4.1 K-Means clustering

In statistics and machine learning, K-Means clustering is a method

of cluster analysis which aims to partition n observations (in this

work each vector of �role features� representing a lead) into k non-

empty, non-overlapping and non-subordinated clusters, in which

each observation belongs to the cluster with the nearest mean. In

its most common form, the algorithm is an iterative greedy algo-

rithm which converges to a local optimum after a certain number of

iterations.

The algorithm works by �rst selecting k locations at random to

be the initial centroids for the clusters. Each observation is then

assigned to the cluster which has the nearest centroid, and the cen-

troids are recalculated using the mean value of assigned values. The

algorithm then repeats this process until the cluster centroids do not

change anymore, or until the change less than a given threshold.

To avoid local minima the algorithm was repeated 20 times and

the clustering with the minor distance within cluster was chosen.

The pairwise distance used was a correlation distance, de�ned as

following:

Dc(x, y) = 1− (x− x̄)(y − ȳ)T√
(x− x̄)(x− x̄)T

√
(y − ȳ)(y − ȳ)T

(3.19)

Where x and y are two vector representin two leads.

The correlation distance doesn't measure the absolute distance

between two vectors, but it focuses on how much the components

trend of the two vectors is similar. Such choice was taken because

the attention was putted on the change during time of the behaviour

of the nodes, ant not on each single component of the roles vector.



CHAPTER 3. MATERIALS AND METHODS 74

The reason is that epileptogenic regions usually show in time little

changes in their relation with other brain zones [33, 2].

K-Means clustering have a main issue, which consists in the dif-

�cult choice of the number of clusters that the algorithm have to

generate.

3.4.2 A�nity Propagation

A�nity propagation is an algorithm that identi�es exemplars among

data points and forms clusters of data points around these exem-

plars. It operates by simultaneously considering all data point as

potential exemplars and exchanging messages between data points

until a good set of exemplars and clusters emerges [42]. An exem-

plar : is a data point, in this case a lead, that is nicely representative

of itself and some other data points. It means that the lead �nger-

print identi�ed as exemplar, become a sort of label for a set of leads.

A�nity propagation is based on the concept of similarity, which

is the opposite of the concept of distance (used for example in the

k-means clustering). The similarity of data point x to data point y,

called s(x, y), is the suitability of point y to serve as the exemplar

for data point x. Similarity can be expressed with di�erent king of

metric. Since in this work data are real-valued, the similarity was

measured with negative Euclidean Distance:

s(x, y) = −[x− y] · [x− y]T (3.20)

where x and y are two input vectors.

To each input data point has assigned a preference value. The

preference of a point i, called p(i), is the a priori suitability of point i

to serve as an exemplar. Preferences can be set to a global (shared)

value, or customized for particular data points. High values of the

preferences will cause a�nity propagation to �nd many exemplars

(clusters), while low values will lead to a small number of exemplars
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(clusters). A good initial choice for the preference is the minimum

similarity or the median similarity. In this work, the preference was

set globally equal to the minimum similarity, because an higer value

would have led to a too large number of cluster. In fact one of

the main advantage of this method is the automatic choice of the

number of cluster.

Figure 3.18: A. How responsability r(i, k) communicate with data points. B.
Availability a(i, k) working. C. Trend of the number of cluster in function of
preference p(i).

A�nity Propagation works exchanging two type of messages be-

tween data points:

• Availability : Message sent from candidate exemplars to poten-

tial cluster members, indicating how appropriate that candi-

date would be as an exemplar.

• Responsability : Message sent from cluster members to can-

didate exemplars, indicating how well-suited the data point

would be as a member of the candidate exemplar's cluster.

The net-similarity is a score, de�ned as the sum of the total avail-

ability and the total responsability and it is the objective function

that a�nity propagation tries to maximize.

A�nity propagation iteratively computes responsibilities and avail-

abilities. The algorithm terminates if decisions for the exemplars



CHAPTER 3. MATERIALS AND METHODS 76

and the cluster boundaries are unchanged for convits iterations, or

if maxits iterations are reached.

Figure 3.19: An example of the evolution during iteration of the A�nity Prop-
agation algorithm. Red points are the exemplar found. The arrow show the
messages exchange.

This kind of clustering was chosen, �rst, for its capability to auto-

matic �nd the number of cluster and then for its di�erent approach

compared to the K-Means clustering. In fact, as shown above, a�n-

ity propagation doesn't realize a real space partitionin, but it makes

compete the sample, fusing a distance-based clustering method, with

a competitive unsupervised method. The hope was that such algo-

rithm was able to �nd hidden similarities.

3.5 The optimization problem (G)

The optimization was performed just one time. The loop described

in �gure 3.1 is closed just once (point G).

In the section 3.3 were introduced the fact that each subgraph

enumerated would be considered signi�cative for a further analysis

only if respecting two constraints:
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• foriginal(Sk) ≤ U

• |zScore(Sk)| ≥ Z

A real problem was the choice of the best value for U and Z. Since

both size-3 and size-4 subgraphs were searched, a set of four param-

eters estimation was required: two for size-3 subgraphs, i.e. U3 and

Z3, two for size-4 subgraphs, i.e. U4 and Z4.

The optimization of these parameters was based on the quality

of the classi�cation of the leads, and so False Negatives and False

Positives, in function of {U,Z3, U4, Z4} were minimized.

False Negatives and False Positives were computed changing in-

cresing consecutively each parameter of 0.5. Each parameter started

from 0.5. In �gures 3.20 and 3.21 the FN and FP trend is displayed.

Each iteration corresponds to a combination of the four parameters.

Figure 3.20: False negative trend in patient 14
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Figure 3.21: False positive trend in patient 14. It present a large number of
local minima.

Considering the goal of the classi�cation, is more important to

have no False Negative. In fact having false negative rate equal

to zero, means that the neurologist can consider only the cluster

labeled as epileptogenic and anlyzing only the leads owning to that

cluster, reducing the analysis even from one hundred leads to �fteen

or ten!

The solving of the problem was in two step.

1. Search all the False Negative minimum

2. Looking for the False Positive minimum only in the range where

the false negative rate is minimum.

The optimization was performed using 4 FCD (Focal Cortical Dys-

plasia) patients (Pt2, Pt3, Pt10, Pt13) chosen by chance from the

totality of the FCD patients.



Chapter 4

Results

In this work were considered SEEG multichannel recordings of 3

minutes of interictal activity selected by neurologists from subjects

with a seizure-free outocome after cortical ablation surgery (En-

gel Class I1). Signal windows were selected according to their qual-

ity and the absence of relevant artifact and labeled as EZ or NEZ

by a neurologist. The data was recorded during the invasive pre-

surgical work-up at the Epilepsy Surgery center of Niguarda Hos-

pital in Milan. Subjects were monitored for up to several days in

order to characterize their seizures and assess their candidacy for

surgery. Recordings were collected from 18 subjects with partial

drug-resistant epilpepsy (15 FDC, 1 PT, 2 PMG). Raw signals were

sampled at 1000 Hz and, after low pass �ltering at 120 Hz to avoid

aliasing, downsampled at 250 Hz. The number of channels included

in each record ranged from 30 to 90. All the derivations consid-

ered was bipolar, leading to a more localized study of the neuronal

activity. In order to protect the privacy of the subjects, all health

information in the original �les was removed.

Results of the optimization problem (section 3.5) are summarized

1Jerome Engel proposed a scheme, made by four classes, to classify postoperative outcome
for epilepsy surgery, which has become a standard when reporting results in medical literature
[43].
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in the following table:

Par Value

U3 1.5
Z3 3
U4 0.5
Z4 0.5

Table 4.1: Optimum parameters obtained as result of the optimization problem
explained in 3.5. They represent the cut-o� of Frequencies and Z-Score.

Those parameters were used as thresholds for the selection of the

most signi�cative subgraphs.

In the next are showed di�erent clustering settings with the same

four patients (Pt2, Pt3, Pt10, Pt13) used for the optimization prob-

lem, in order to choose the best con�guration.

Roles Fingerprints Matrix related to leads of each of the four pa-

tients were clusterized with the two methods described in section

3.4: 18 Roles Fingerprint Matrixes were computed, with di�erent

combination of dimensions of subgraphs enumerated and random-

ization modalities:

1. Size-4 subraphs with all three randomness models

2. Size-4 subraphs with Local random and Global random

3. Size-4 subraphs with Local and NoRegard

4. Size-4 subraphs with Global and NoRegard

5. Size-4 subraphs with Local alone

6. Size-4 subraphs with Global alone

7. Size-4 subraphs with NoRegard alone

8. Size-3 subraphs with all three randomness models

9. Size-3 subraphs with Local random and Global random
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10. Size-3 subraphs with Local and NoRegard

11. Size-3 subraphs with Global and NoRegard

12. Size-3 subraphs with Local alone

13. Size-3 subraphs with Global alone

14. Size-3 subraphs with NoRegard alone

15. Size-3 and 4 subgraphs with all three randomness models.

16. Size-3 and 4 Local Randomness.

17. Size-3 and 4 Global Randomness.

18. Size 3 and 4 No-Regard Randomness.

In the followinf �gure the K-Means cluster overall numbers for the

Pt2, Pt3, Pt10, Pt13 and for di�erent numbers of clusters:

Figure 4.1: False Negatives for each combination in above list and varying
the number of clusters in K-means clustering. Combination 7 gave the best
performance.
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The same study was performed used the A�nity Propagation

clustering, with the di�erence that for the A�nity Propagation the

number of cluster is automatically chosen.

Figure 4.2: False Negatives for each combination in above list with A�nity
Propagation clustering. Combination 6 gave the best performance.

The best combination, and then the one chosen, was that with

the least overall number of False Negative on the four patients (Pt2,

Pt3, Pt10, Pt13). So for the K-Means clustering was chosen the

combination number 7, Size-4 subraphs with No Regard model. It

was chosen because there is a minimum also using 4 clusters. Using

four clusters is better than three, becuase there should be a lesser

number of False Positive. For A�nity Propagation was selected the

combination number 6, Size-4 subraphs with Global alone. A�nity

Propagations always computed three clusters. For further patients

this number could change.

In the table 4.2 the setting for the two clusterings is summarized.
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U3 = 1.5 Z3 = 3 U4 = 0.5 Z4 = 0.5
Size-4 Subgraphs

K-Means A�nity Propag.

Model: No regard Model: Global
N.Cluster = 4 Preference = min(s)

Table 4.2: Recap of the parameters used for K-Means clustering and A�nity
Propagation

Then, using the setting evalutaed with the study of false negative,

in order to obtain the least number of them, classi�cation algorithms

were performed on the remaining 14 patients. In tables 4.4 and 4.4

are shown the performance in absolute number and with percentage

values (FNR, FPR, Accuracy).
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Table 4.3: The table shows the overall automatic classi�cation performances.
Leads column is the number of analyzed leads. EZ is the number of leads labeled
as Epileptogenic. KM FN and KM FP show the number of false negatives and
false positives obtained with K-Means clustering. AP FN and AP FP show the
number of false negatives and false positives obtained with A�nity Propagation.
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Table 4.4: False Negative Rate, False Positive Rate and Accuracy of the auto-
matic method for all the patients.

Finally, in the following charts are summarized the performances

of the two clusterings.
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Figure 4.3: Accuracy, mean, maximum and minimum, of the two clustering
methods, considering all the patients (blue), only those a�ected by Focal Cor-
tical Dysplasia (red) and those with non-FCD (green). These results don't
consider the four patients used for the optimization (Pt2, Pt3, Pt10, Pt13).

Figure 4.4: False Negative Rates, mean, maximum and minimum, of the two
clustering methods, considering all the patients (blue), only those a�ected by
Focal Cortical Dysplasia (red) and those with non-FCD (green). These results
don't consider the four patients used for the optimization (Pt2, Pt3, Pt10, Pt13).
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Figure 4.5: False Positive Rates, mean, maximum and minimum, of the two
clustering methods, considering all the patients (blue), only those a�ected by
Focal Cortical Dysplasia (red) and those with non-FCD (green). These results
don't consider the four patients used for the optimization (Pt2, Pt3, Pt10, Pt13).

The F-Score was performed only on the overall classi�cation.

Figure 4.6: F-Score, mean, maximum and minimum, of the two clustering meth-
ods, considering all the patients (blue), only those a�ected by Focal Cortical
Dysplasia (red) and those with non-FCD (green). These results don't consider
the four patients used for the optimization (Pt2, Pt3, Pt10, Pt13).

Chi-squared test was performed on the overall success and failure
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of the algorithm. The obtained value was χ2 = 241.2 and the critical

value tables is χ2
crit = 10.83. So the null hyphotesis was rejected.



Chapter 5

Discussions and Conclusions

5.1 Discussions and Conclusions

Partial epilepsies are in the 40% of the cases drug-resistant. The only

treatment available in order to lead those epileptic subjects to a to-

tal healing is the ablation surgery of the epileptogenic cortical area

(EZ), which must be accurately localized during the pre-surgical

planning. Localizing EZ cortex is a very critical task, because the

goal is the total seizure-free outcome with the minor cortical dam-

age. In some cases, when the EZ localization is particularly hard,

the electric activity of the brain is inspected with the invasive in-

sertion of electrodes within the brain, in order to record depth-EEG

for some weeks. The amount of signal that neurologists have to

deeply visual inspect is huge, making the EZ localization a very

time consuming activity.

The objective of this thesis was the implementation of an au-

tomatic classifer able to achieve an accurate classi�cation of the

interictal SEEG signal with the purpose of helping clinician in the

EZ identi�cation.

SEEG signals of 18 drug-resistant partial epileptic patients with

seizure-free outcome (Engel Class I) were analyzed. Dataset of each

89
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patients were composed by 3 minutes of signal recorded by a variable

number of channels (from 30 to 90), and it is splitted in 36 epochs.

From each epoch a connectivity matrix was computed.

Then connectivity matrixes underwent the network analysis, lead-

ing to Roles Fingerprint Matrixes (one for each patient) as output.

Then Roles Fingerprint Matrixes, were each row was a SEEG lead,

were used as input for two clustering techniques (K-Means and A�n-

ity Propagation). Finally the classi�cation was performed providing

just one EZ lead (labeled by neurologist) to the algorithm in order to

localize the EZ cluster, classifying all the leads in it as EZ. The run-

time for each patient is about 6 hours. Network analysis script was

implemented in C++ and compiled on a linux based operative sys-

tem. Role Fingerprint generation and clustering were implemented

with .NET libraries and runned on windows 7.

Methods choice Analysing SEEG signals with the purpose of

localizing the epileptogenic zone is a very critical task. Each kind of

epilepsy shows di�erent typical signal events, and it's impossible to

�nd a common �epileptic pattern�. Plus, SEEG signal changes a lot

according to the brain region where the leads are inserted within.

For example, a signal recorded by a lead in a healty primary motor

cortex, sometimes shows very fast �uctuation, which are very similar

to those showed by the onset signal. The human eye can recognize

that di�erence, but it's impossibile for a computer. For these reasons

the approach chosen, with the computation of the Roles, tried to go

beyond the mere signal processing. In fact, the purpose was to �nd

di�erent behaviours of each channel of the SEEG respectively to

other channels. The performed network analysis accomplished this

objective, studying all the channels together and then assigning to

each of them a series of characterizing values (Roles). In order o

classify Roles, an unsupervised method was prefered for two main

reasons:
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• The classi�cation must be patient-custom, due to the great

di�erence between each case of epilepsy. The dataset related to

each patient, was to poor for a division in a training, validation

and testing set, which are essential for the use of a supervised

method.

• The goal was the leads classi�cation with the least a-priori in-

formation provided by clinicians.

Cluster analysis on the 18 patients shows that in some cases, es-

pecially in the Focal Cortical Dysplasia, it's possibile to �nd a real

epileptogenic class among the dataset. Anyway it is not always pos-

sibile, maybe due to the reasons explained above, or maybe due to

the implemented method. When an EZ lead is classi�ed as NEZ,

meaning that it is in NEZ cluster, it's arguable that its Roles Fin-

gerprint is too di�erent from the one represented in the EZ cluster,

suggesting two things:

• The need of two (or even more) EZ clusters.

• A failure in the classi�cation method.

Classi�cation performances The di�erence in the classi�cation

between the two clustering methods was checked with the Chi-

Square test. Since the obtained value was greater than the tabled

critical value, the null hypothesis, that the performance of the two

classi�er was similar, must be rejected. Performances obtained, con-

sidering the number of False Negative, are better considering only

the size-4 subgraphs. The reason is that the size-3 subgraphs cannot

really express the behaviour of each node in the network.

• A�nity Propagation (AP): Accuracy Chart (Chart 4.3) shows

that the A�nity Propagation Clustering doesn't �t the prob-

lem (overall accuracy of about 39%). In fact, even if A�nity

Propagation has a little number of False Negative (Chart 4.4),
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the classi�cation obtained with AP has very low accuracy due

to a very high False Positive Rate (Chart 4.5). This high num-

ber of False Positives leads to a very imbalanced classi�cation,

in fact the F-Score related to AP method is very small.

• K-Means (KM): K-Means clustering (KM) works quite well

with an overall accuracy of 75,5% (without considering Pt2,

Pt3, Pt10, pt13). Anyway, as already explained, the problem

was focused on obtaining the fewest possibile number of False

Negative. In fact, the overall FNR (always not considering

Pt2, Pt3, Pt10, pt13) is 18.5% and the mean F-score show an

imbalanced classi�cation performance, according to the type

of optimization performed. Performances were also computed

dividing the FCD cases from Post Traumatic and Polymicro-

gyria, because FDC epileptogenic zone is usually easier to �nd.

As showed in Charts 4.3, 4.4, 4.5, performances between the

two kind of pathologies are very similar. But considering Post

Traumatic epilepsies and PMG was impossible to obtain a FNR

equal to zero (tables 4.3 and 4.4), which should be the ultimate

goal of a EZ classi�er. Talking about results concernings the

FCD, they are very good except for three patients (Pt14, Pt15,

Pt16) where there is a quite large number of False Negatives.

The �rst re�ection about the performances described is that

the computation of the False Negative was performed on the

basis of the labels of the leads provided by neurologist. There

is chance that a neurologist misclassi�ed a lead, even if this is a

very rare event, especially in FCD cases. Another critical point

is discussed in the following paragraph.

Method optimality Performances obtained are the best possible

using such input data? The answer is that there are a lot of critical

aspects which could in�uence results.

• There isn't any evidence that the h2 index is the most suitable
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measure for a connectivity estimation. h2 index uses the sig-

nal without selecting the frequencies to study. Since epileptic

phenoma are often bound to high frequency, a selective con-

nectivity index that works only on SEEG gamma (and delta)

band, may improve the classi�cation performances.

• In some other works [2] the threshold used on h2index to de�ne

the presence or not of a connection between two elements, it's

di�erent. In fact the other criterion is to use the mean h2value,

computed on the whole connectivity matrix..

• The most critical task of this work is optimization of the pa-

rameters set {U3, Z3, U4, Z4}. First, the upgrading step of the

parameters during the optimization phase was quite high, but

the choice was made according to computational constraints.

Plus the dataset was very limited. To have a very pro�table

optimization a larger dataset is required, maybe with a greater

number of non-FCD patients. In fact the parameters obtained

optimizing four FCD patients are used also for non-FCD pa-

tients, surely introducing a bias in the performance.

Conclusion The outcome of this work is a quite good classi�ca-

tion method for SEEG signals in order to identify the Epileptogenic

Zone among the SEEG leads. Even if the dataset used was too

poor to lead a ultimate conclusion, the method seems to be not suf-

�ciently reliable for a stand-alone clinical use. Anyway it's a big

step forward on the path to a performant automatic method for the

EZ localization. It's the �rst time that a method shows such quite

good performances in the SEEG signals classi�cation, able to handle

di�erent epilepsy types. The method proposed can be used syner-

gistically with clinicians, in order to decrese the number of signals

that they have to visual analyze.
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5.2 Future Work

The developed method shows quite good classi�cation capacities but

with a great bias in non-FCD cases. The work described is just a

starting point for several possible further developments:

• The use of a more extended SEEG signal window. Especially

could be nice collecting SEEG interictal section day-far recorded,

and analyzing roles trend of each single node in time. Anyway,

of course, the most interesting signal section would be the on-

set one, in order to compare this work with the other that took

into consideridation just such that part of the signal. Another

trial could be done analyzing the seizure signal, but it may be

too much noisy for an acceptable outcome.

• Size-k subgraphs were considered only with k = 3 and k =

4. The analysis with k ≥ 5 may improve the classi�cation

power of the algorithm. In fact in this work size-3 subgrahs

showed worse performances than the size-4 subgraphs. The real

issue is that searching for signi�cantive subgraphs with more

than 5 nodes require a long time and a powered-up hardware

con�guration. Plus the role computation script must be written

with a paralleling computation conception because the runtime

with larger subgraph increases factorially with their size.

• In this work the Role Fingerprint Matrix were analyzed with

a clustering method. A lot of other di�erent approach could a

lead to very satisfactory results. For instance, role �ngerprint

could be designed with a transition state model and then stud-

ied with a HMM1 method. In this case the critical aspect could

1A Hidden Markov Model (HMM) is a Markov chain for which the state is only partially
observable. In other words, observations are related to the state of the system, but they are
typically insu�cient to precisely determine the state. Several well-known algorithms for hidden
Markov models exist. For example, given a sequence of observations, the Viterbi algorithm
will compute the most-likely corresponding sequence of states, the forward algorithm will
compute the probability of the sequence of observations, and the Baum�Welch algorithm will
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be the de�nition of the alphabet to use and its length. Role Fin-

gerprint seems also to �t on a possibile RM-ANOVA2 analysis,

because with it, it's possibile to �nd the di�erent distribution

behaviour in time, fetching the di�erent trend of evolution of

the activity of each signle recording node.

• Adding to the described method a Graphic User Interface (GUI)

could boost its attractiveness from the point of view of the clin-

icians. Building a 3D Slicer3 module that fuse the information

provided by the classi�cator with the information extracted by

bioimages could become a very reliable instrument for the pre-

operative planning phase.

estimate the starting probabilities, the transition function, and the observation function of a
hidden Markov model.

2One-Way ANOVA looks at di�erences between di�erent samples exposed to di�erent
manipulations (or di�erent samples that may come from di�erent groups) within a single
factor. RM-ANOVA is a techinque that can take into account a multichannel dataset.

33D Slicer (Slicer) is a free, open source software package for image analysis and scienti�c
visualization. Slicer is used in a variety of medical applications



Appendix A

Appendix

GRAPHS

Some basic familiarity with graph-theoretic terminology must be

provided. For a given graph G = (V, E), V is the set of Vertices

and E is the set of Edges. Vertices are the nodes, particularly in

this work they represent the SEEG electrodes leads. The edges are

the links between vertices (see �gure A.1) and they represent the

functional connectivity between leads. Let n := |V | (length(V )) and

assume that all vertices in V are uniquely labeled by the integers

1, ..., n. To abbreviate that the label of a vertex u is larger than

that of a vertex v, will be written �u > v�. In order to simplify the

presentation, edges in G = (V, E) are always identi�ed using set

notation, regardless of whether the graph is directed or undirected.

In the case that G is directed (�gure 3.6) and contains the edges

(u, v) and (v, u) for two vertices u and v, these edges become a

single bidirectional edge {u, v} (in this notation). For a set V ′ ⊆ V

of vertices, its open neighborhood N(V ′) is the set of all vertices

from V \ V ′ (\stands for the di�erence between two sets) which are

adjacent to at least one vertex in V ′. For a vertex v ∈ V \ V ′,
its exclusive neighborhood with respect to V ′, denoted Nexcl(v, V

′),
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consists of all vertices neighboring v that do not belong to V ′ ∪
N(V ′). A connected subgraph that is induced by a vertex set of

cardinality k is called size-k subgraph. For a given integer k, the

set of all size-k subgraphs in G can be partitioned into sets Sik(G)

called subgraph classes, where two size-k subgraphs belong to the

same subgraph class if and only if they are isomorphic, that is, if

and only if they are topologically equivalent (see paragraph A).

Figure A.1: Notation about graphs

Isomorphic subgraphs

In abstract algebra, an isomorphism is a bijective1 homomorphism2.

Two mathematical structures are said to be isomorphic if there is

1In mathematics, a bijection (or bijective function or one-to-one correspondence) is a func-
tion giving an exact pairing of the elements of two sets. Every element of one set is paired
with exactly one element of the other set, and every element of the other set is paired with
exactly one element of the �rst set. There are no unpaired elements. In formal mathematical
terms, a bijective function f : X → Y is a one to one and onto mapping of a set X to a set Y .

2In abstract algebra, a homomorphism is a structure-preserving map between two algebraic
structures
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an isomorphism between them.

In the graph theory two graphs G1 = (V1, E1) and G2 = (V2, E2)

are de�ned isomorphic if there is a biunique correspondence between

them:

ϕ : V (G1)→ V (G2) : (u, v) ∈ E(G1)⇐⇒ (ϕ(u), ϕ(v)) ∈ E(G2)

(A.1)

The mathematical formalization in A.1 can be translate in: two

graphs are isomorphic if only their representation is di�erent, but

they are the same structure. To be more precise, two graphs G1and

G2are isomorphic if there a biunique correspondence between ver-

texes of G1and vertexes of G2and if exists a biunique correspondence

between the edges of G1and those of G2which preserve the same inci-

dence rule. A vertex and an edge of G1 have a corresponding vertex

and edge in G2. Two isomorphic graphs are identi�ed with the fol-

lowing notation: G1
∼= G2.

In the �gures 3.10 and A.2 are showed some example of isomor-

phic graphs in order to clarify the meaning of that concept. A

careful reader may note that a possible informal de�nition for graph

isomorphism could be that two graphs are isomorphic if they are

equal except for a permutation of the vertex labels.

The �gure A.2 highlights that two graphs are isomorphic if the

picture of one can be led to �t with the other one without breaking

the links (Edges) connecting the vertices.
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Figure A.2: Two examples of isomorphic graphs. A: 5-size graphs. B : 8-size
graphs.

Isomorphic graphs have the following properties:

1. Vertexes number |V (G)| doesn't change after an isomorphic

transformation: isomorphism is a biunique correspondence of

the vertexes sets of the graphs and then the cardinality of the

two array V (G1) and V (G2) must be the same.

2. Two isomorphic graphs have the same number of edges: an

isomorphic tranformation sends adjacent vertexes to adjacent

vertexes and it is biunique, so also the number of links between

vertexes doesn't change.

3. Isomorphic graphs have the same vertex degree3 distribution:

if G owns k' d-degree vertexes, each isomorphic graph has

exactlyk′ d-degree vertexes. In fact if v ∈ V (G1)is adjacent to

u1, ..., uk ∈ V (G1), ϕ(v) ∈ v(G2)is adjacent to ϕ(u1), ..., ϕ(uk) ∈
V (G2) and it cannot be adjacent to any other vertex in order

to not break the biunique correspondence.

Isomorphisms from an object to itself is called automorphism. To

be more speci�c, a graph automorphism is when there is vertex

mapping that preserves vertex and edge connectivity (e.g. an iso-

morphism of the vertices onto the same graph). In example in �gure

A.3.
3Vertex degree: sum of the inwards connection and the outwards connection of a vertex in

a directed graph. In an undirected graph it's just the sum of connection of a vertex.
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Figure A.3: An example of automorphism. Using a one to one matching criterion
the two graphs will be marked as di�erent, even if they are the same graph!

In order to accomplish a motif detection of a large network is

mandatory to indentify all the isomorphic size-k subgraphs and col-

lect them in classes. The reason is that the interest is focused on

the relation between nodes and not on the actual path of the in-

formation �ow. Establish that two subgraphs are isomorphic is a

NP-complete4 problem (thanks to biunique properties), and so it's

possible to build a polynomial algorithm able to carry out the task.

There some di�erent algorithms able to e�ciently detect isomorphic

subgraphs in a network. In this work was used Nauty Algorithm [38],

which is the fastest one [40].

Isomorphism Detection

In order to make the reader understand how the algorithm works,

will be given some formal de�nitions. Then the concept of Search

Tree will be de�ned and will be provided an explaination on how it

enables computation of automorphism groups and canonical forms

[44].

• A Colouring of V (set of vertices V = {1, 2, ..., n}) is a sur-

jective5 function π from V onto {1, 2, ..., k} for some k. The

4NP-complete is a subset of NP class, the set of all decision problems whose solutions can
be veri�ed in polynomial time; NP may be equivalently de�ned as the set of decision problems
that can be solved in polynomial time on a nondeterministic Turing machine. A problem p in
NP is also NP-complete if every other problem in NP can be transformed into p in polynomial
time.

5In mathematics, a function f from a set X to a set Y is surjective (or onto), or a surjection,
if every element y in Y has a corresponding element x in X given by f(x) = y. Multiple
elements of X might be turned into the same element of Y by applying f.
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number of colours, i.e. k, is denoted by |π|. A cell of π is the

set of vertices with some given colour, that is, π−1(j) for some

j with 1 ≤ j ≤ |π|. A discrete colouring is a colouring in which

each cell is a singleton, in which case |π| = n. Note that a

discrete colouring is a permutation of V . A pair (G, π), where

π is a colouring of G, is called a coloured graph.

• A canonical isomorph function assigns to every graph G an iso-

morph L(G) such that whenever a graph H is isomorphic to

G it has L(H) = L(G). L(G) is called the canonical isomorph

of G. From this concept derives the process of Canonical La-

beling: given a class of objects one can choose one member

of each isomorphism class and call it the canonical member of

the class. The process of �nding the canonical member of the

isomorphism class containing a given object is called canoni-

cal labeling. Two labeled objects which are isomorphic become

identical when they are canonically labeled. Since identity of

objects is usually far easier to check than isomorphism, canon-

ical labeling is the preferred method of sorting a collection of

objects into isomorphism classes. A possible de�nition of the

canonical member of an isomorphism class would be the mem-

ber which maximises some linear representation (such as a list

of edges). Formalizing, L : Θ× Π, where G ∈ Θand π ∈ Π.

• The Search Tree T (G) is a rooted tree created for each sub-

graph, whose nodes correspond to sequences of vertices, with

the empty sequence at the root of the tree. The sequences

become longer moving down through the tree. Each sequence

corresponds to a colouring of the graph obtained by giving the

vertices in the sequence unique colours then inferring in a con-

trolled fashion a colouring of the other vertices. Leaves of the

tree correspond to sequences for which the derived colouring

is discrete. The Re�nament function de�ned in the following
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point is the core of the Search Tree Build up procedure. It

speci�es the colouring that corresponds to a sequence.

• A key concept used by Nauty is partition re�nement (partition

= colouring). An equitable partition is one where every two

vertices of the same colour are adjacent to the same number

of vertices of each colour. Re�nement of a partition means to

subdivide its cells. Given a partition (colouring) π, there is a

unique equitable partition that is a re�nement of π and has

the least number of colours. Figure A.4 shows the steps which

lead from an initial colouring to the equitable partition. The

black arrows indicate vertices having a number of neighbours

in a reference cell which is di�erent from that of other vertices

in their cell. The re�nement function R(G, π, α) is clearly de-

scribed in Algorithm A.1. In practice most of the execution

time of the whole algorithm is devoted to re�ning colourings,

so its implementation is critical. While the function R de�ned

above works well for many graphs, there are di�cult classes

for which it does not adequately separate inequivalent vertices.

Regular graphs are the simplest example, since the colouring

with only one colour is equitable. Nauty provides a small li-

brary of stronger partitioning functions, some of them designed

for particular classes of di�cult graphs.
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Figure A.4: Steps of the Re�nement Algorithm, which lead to a consecutive
partitioning of a graph assigning di�erent colorus to similar neighborhood. Each
iteration of the algorithm is a node in the Search Tree.

Algorithm A.1 Refinement function

Input: π i s the input co l ou r i ng and α i s a sequence o f some c e l l s o f π .
Output: the f i n a l va lue o f π i s the output co l ou r i ng .

01 while α i s not empty and π i s not d i s c r e t e do

02 Remove some element W from α .
03 for each c e l l X o f π do

04 Let X1, ..., Xk be the fragments o f X d i s t i n gu i s h ed accord ing
to the number o f edges from each ver tex to W.

05 Replace X by X1, ..., Xk in π .
06 if X ∈ α then

07 Replace X by X1, ..., Xk in α .
08 else

09 Add a l l but one o f the l a r g e s t o f X1, ..., Xk to α .
10 end

11 end

12 end

Nauty algorithm starts by forming the equitable re�nement of the

unit partition, thereby extracting all of the initial degree informa-

tion. Then the Re�nement Function iterates and, adding a level in

Search Tree after each colour re�nement, it systematically explores

the space of equitable ordered partitions and at the same time it
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builds the Tree.

The terminal nodes of the search tree are nodes with no outgoing

arcs. These terminal nodes correspond to discrete ordered partitions

of ther given Graph, i.e. all it's possible equitable topologic forms.

Given a discrete ordered partition π = (V1, V2, ..., Vm) (a leaf of the

Search Tree), let σπ ∈ Σn to be a permutation among the all possible

permutarions such that i(σπ) = j if Vj contains i. For example, if π =

(1|9|3|7|8|6|4|2|5), thenσvπ maps 1→ 1, 9→ 2, 3→ 3 , 7→ 4, 8→ 5,

and so on. To each terminal node it is possible to associate the

isomorph G(σπ) of G. The Canonical Isomorph Function is de�ned

to be

LM(G) = max
Λ

{
G(σπ) : (π;u

˜
) is a leaf of T (G)

}
where Λis the set of the numbers of substitutions for the each σπ

permutation. Anyway the canonical label can be chosen also impos-

ing di�erent criteria. The one described �t well with the analysis of

small subgraphs (k=3 and k=4).

The Canonical Function is used to canonize its isomorphic sub-

graphs in order to have only a class for that isomorphic family.

Here a summering of the method: the nodes of the tree corre-

spond to partitions (colourings). The root of the tree corresponds to

the initial colouring, re�ned. If a node corresponds to a discrete par-

tition (each vertex with a di�erent colour), it has no children and it

is a leaf. Otherwise a chosen colour used more than once (the target

cell), individualize one of those vertices by giving it a new unique

colour, and re�ne to get a child. Each leaf lists the vertices in some

order (since colours have a prede�ned order), so it corresponds to

a labelling of the graph. If two leaves give the same labelled graph,

there is an automorphsim. If an order on labelled graphs is de�ned,
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such as lexicographic order 6, then the greatest labelled graph cor-

responding to a leaf is a canonical graph. However the tree can be

much too large to generate completely. It will be pruned by means

of node invariants. A node invariant is a valueΦ(ν) attached to each

node ν in the tree that depends only on the combinatorial properties

of ν and its ancestors in the search tree (not on the labelling of the

graph). Node invariants, together with automorphisms, allow us to

remove parts of the search tree without generating them.

• If l1, l2 are nodes at the same level in the search tree and

Φ(l1) < Φ(l2), then no canonical labelling is descended from l1.

• If l1, l2 are nodes at the same level in the search tree and

Φ(l1) 6= Φ(l2), then no labelled graph descended from ν1 is the

same as one descended from l2.

• If l1, l2 are nodes with l2 = (l1)g for an automorphism g, then g

maps the subtree descended from l1 onto the subtree descended

from l2.

Pruning the Tree is very important to reduce the computational

time and complexity of it and it's the reason that Nauty Algorithm

is much better than a full enumeration of the all permutation of

each graph.

Nauty Algorithm is based on three main ideas:

1. Using, iteratively, degree information of vertexes.

2. Building a search tree examining choices non determined by

degree information.

3. Pruning the tree using graph automorphirsm and nodes invari-

ants.
6In mathematics, the lexicographic or lexicographical order (also known as lexical order,

dictionary order, alphabetical order or lexicographic(al) product) is a generalization of the
way the alphabetical order of words is based on the alphabetical order of their component
letters
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The Tree is an instrument to assign a label, i.e. a class to each

subgraph found in the whole network. The strenght of the Tree

is that its building process is very fast and during that a lot of

useless information is discharged (e.g automorphism). Then for each

subgraph there is a sort of matching function (Canonical Labelling),

where each possibile form of the a subgraph is matched with its

correspondence label. So it's possibile to split up the subgraphs set

in a class set just with a one to one matching, faster than any other

kind of coupling.

Here a complete nauty user guide [39]. Instead for a deeper math-

ematical argumentation the reader can read the original McKay's

document about Nauty algorithm [38].

A very simple example for a further clari�cation of the algorirhm

work�ow is given considering the following size-9 graph:

Figure A.5: A size-9 graph G=(V,E) where |V | = 9 and |E| = 12.

From that graph, using iteratively the re�nement function its

related Search Tree is built up:
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Figure A.6: Search Tree derived from the graph in picture A.5

The, considering automorphism and invariants the Tree is pruned

and the resulting is the following (actually the pruning process is

contemporaneous to the Re�nement Function):

Figure A.7: The Graph derived from the graph in picture A.5 after the pruning
process.

The Canonical Label in this case is the leaf(1|9|3|7|8|6|4|2|5).

Then every further graphs, whose Search Tree presents a leaf like

that, will be considered an isomorphic of the graph showed in ex-
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ample. The corresponding Graph is the one in �gure A.8:

Figure A.8: The Canonical Label LM (G) of the graph G in �gure A.5.

The subgraph in the �gure A.8 become the label of its class and

its isomorphics will be found comparing the corresponding Search

Trees.
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