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Abstract

Time-resolved spectroscopy is a powerful technique that allows to explore the

dynamics of a system by measuring its optical polarization response. In this

thesis work I present my contribution for the realization of an innovative and

promising set-up for a specific nonlinear technique: the bidimensional electronic

spectroscopy (2DES). By this new technique it is possible to fully characterize

the third order nonlinear polarization P (3) and to reveal the coupling between

electronic transitions, to monitor the energy flow in complex system or to study

the inhomogeneous broadening in congested samples.

2DES represents the most complete nonlinear spectroscopy tool to study a

system, but it requires a complex set-up and a careful data-analysis. In order

to perform this experiment, three incoming pulsed beams are required.

In our laboratories we use the so called pump-probe configuration of 2DES

where the first two interaction pulses, called pump pulses, have the same propa-

gation ~k-vector and the probe pulse comes from another direction. The emitted

signal is called photon echo and is detected along the probe direction.

The most challenging part of the experiment is to control the two pump

pulses that must be phase-locked. In our laboratories it has been proposed

a new technique based on birefringent glass wedges, witch could simplify the

experimental set-up and fit to ultrashort broadband pulses. My activity was

involved in the opto-mechanical realization of this device followed by its optical

characterization.

Moreover I performed some preliminary measurements to test the set-up on

carbon nanotubes (CNTs). The results obtained are very promising and can be

used to address the problem of the inhomogeneous broadening in the nanotubes.

viii



Sommario

La spettroscopia ottica risolta nel tempo è un potente strumento che per-

mette di esplorare le dinamiche di un sistema attraverso la risposta della po-

larizzazione ottica. Ad oggi sono molte le tecniche di spettroscopia nonlineare

basate sull’interazione di impulsi con la materia, ed in questo elaborato pre-

senterò la realizzazione del set-up di spettroscopia elettronica bidimensionale

(2DES). L’informazione aggiunta da questa tecnica nuova e promettente riguar-

da proprio la misura completa del termine non lineare del terzo ordine della

polarizzazione: P (3).

Molti sono i vantaggi della 2DES; in particolare, dalle informazioni rica-

vate, è possibile tracciare eventuali accoppiamenti tra transizioni elettroniche,

registrare le dinamiche di flussi di energia in sistemi complessi e misurare l’allar-

gamento di riga inomogeneo in sistemi congestionati. Ad oggi la spettroscopia

bidimensionale è lo strumento più completo per lo studio di sistemi, ma proprio

per questo motivo essa richiede un set-up particolarmente complesso, e i dati

ottenuti devono essere analizzati con cura.

Per generare la polarizzazione del terzo ordine nella spettroscopia 2D c’è

bisogno di tre impulsi. Il setup di 2DES realizzato nei nostri laboratori è in

geometria pump-probe, ovvero prevede due impulsi con stesso vettore d’onda ~k

chiamati impulsi di pompa (pump pulses) e un impulso di lettura (probe pulse).

Il segnale emesso dal campione dopo l’interazione con i tre impulsi incidenti

prende il nome di photon echo ed è emesso esattamente nella stessa direzione

del probe.

La principale difficoltà del setup di 2DES risiede nel controllo dei due im-

pulsi di pompa che devono essere agganciati in fase (phase-locked). Per risol-

vere tale difficoltà è stato pensato, nei nostri laboratori, un compatto sistema

di cunei (wedges) birifrangenti che permette la generazione dei due impulsi di

pompa con le caratteristiche desiderate. Durante la mia tesi ho partecipato alla

realizzazione dei componenti opto-meccanici e alla caratterizzazione di questo

setup.

Infine ho svolto alcune misure preliminari su un campione di nanotubi di

carbonio dimostrando la potenzialità della spettroscopia bidimensionale nello

studio dei sistemi inomogenei.
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Introduction

Scientific research springs from the need of knowledge about what surrounds

ourselves. Trying to understand how matter behaves and evolves in time is

a hot topic in this field. Physics, chemistry and biology allow us to obtain

wide descriptions of matter. Concerning physics thanks to interaction between

matter and electromagnetic radiation it is possible to study the composition and

the dynamics of almost any sample. The knowledge of all these aspects allows

us to be able to understand many phenomena that occur in nature.

As already said, in physics the interaction between light and matter plays

a fundamental role in the analysis of a sample. Therefore the optical proper-

ties of the matter can be investigated and from them it is possible to retrieve

information about the object of study. In particular it is possible to study the

physics of a sample thanks to optical spectroscopy. Optical spectroscopy is a

technique that involves the electromagnetic radiation and its interaction with

matter. Once the electric polarization is generated, it is possible to register it

and to retrieve fundamental properties of the sample.

Therefore polarization has a fundamental role in the study of the matter.

If many interactions occur, it is possible to talk of high orders of polarization

or nonlinear polarization. These terms are even more useful in the analysis of

the matter. The first term that is directly connected to the physics behavior

and composition of a sample is the third order polarization P (3) and it is also

the first nonlinear term that is reachable for every material. Nonlinear optical

spectroscopy is therefore a very useful technique since it allows to measure this

term of electric polarization.

The importance of this measurements is getting even higher when it is pos-

sible to speak of ultrafast nonlinear optical spectroscopy. The ultrafast feature is

obtained thanks to ultrafast pulses that are used as electromagnetic radiation.

Thanks to the short duration of these pulses what it is possible to obtain is the

characterization of the very first moments of the evolution of the matter when

it is excited by radiation.

In this thesis work will be first illustrated the formalism required for an
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overview on the nonlinear spectroscopy and afterward will be presented some

different techniques that nowadays are used to record the physics evolution

of a sample. Then a quite new technique of ultrafast nonlinear spectroscopy,

i.e. two-dimensional spectroscopy will be treated. It is an innovative method

that allows to obtain almost every information from the sample in one single

measurement.

In the first chapter it is introduced the formalism of the density matrix

operator, a statistic function able to describe the state of matter. The formalism

adopted is thus quite rigorous but is necessary for a complete treatise of the

perturbative theory. When light interacts with matter the state of the sample

is perturbed and starts to oscillate. Thus a polarization inside the material

is generated. This oscillations are described by the density matrix operator

and hence by studying its the temporal evolution several information about the

sample can be retrieved.

In the second chapter some technique of spectroscopy are presented. The

simpler that is described is the linear spectroscopy, i.e. a measurement of the

absorption spectrum. When several interaction between light and matter take

place, higher order of polarization are thus generated inside the material. The

density matrix operator allows to know also those terms and thus, techniques

that allow to measure it are necessary. Nonlinear spectroscopy helps to do that.

Many ultrafast nonlinear spectroscopy techniques are here presented starting

from the simpler (the pump probe spectroscopy) and concluding with a new

one that is able to extract almost all the information that it is possible to

obtain. This nonlinear technique is the bidimensional spectroscopy (2D-S).

In the third chapter is described how this nonlinear technique is realized in

our laboratories. 2D spectroscopy involves three pulses, two to pump and one to

probe. The most challenging part of the experiment is the control of the delay

between the two pump pulses and thus many possible devices that control it are

described. An innovative and very interesting way to produce two phase-locked

finely controlled replica based on birefringent media is than presented. This

device, developed at Politecnico di Milano, is here described and tested. Then

the project for all the opto-mechanical mounts and its realization is displayed.

In the fourth chapter is described the experimental setup used for the exper-

iment. The light source used is a very compact Ti:sapphire laser form Coherent

with pulses of 100 fs at 800 nm with 1 kHz of repetition rate. This light is used

to realize an optical parametric amplifier able to generate e near infrared pulsed

radiation. These pulses are those used in the bidimensional spectroscopy exper-

iment and thus are here characterized. In the last paragraph is then described

the setup used in the laboratory for the 2DES.

In the last fifth chapter, to summarize what it has been said, some very

2



first measurements are displayed. 2DES is performed on a single walled carbon

nanotubes (SWNTs) sample that is briefly described. Its temporal evolution is

then recorded at different delays between the two pump pulses and the probe

pulse. From data it is possible to observe a certain ultrafast dynamics typical

of the sample. To conclude some tips in order to improve the quality of the

experiment are given so that less noisy maps with higher resolution can be

recorded.

3



Chapter 1

Quantum theory of the

Density Matrix Operator

In this chapter is introduced the formalism that allows a mathematical compre-

hension of the generation of the third order polarization. First will be discussed

the basics concepts of the density operator that describes the system’s state,

and then will be derivated its time evolution. When matter interacts with elec-

tromagnetic pulses, the density operator evolution describes the system’s state

in time. From this it is possible to retrieve the evolution of the nonlinear polar-

ization. It will be possible to understand why ultrafast nonlinear spectroscopy

is fundamental for the study of the evolution and composition of the system in

analysis.

1.1 Density Matrix Operator

In a quantum mechanical approach to the interaction between matter and ra-

diation it is possible to divide systems between pure states and mixed states. A

pure state is a state of the system (e.g. a molecule) that can be described by a

single wavefunction or by combination of wavefunctions. In the most common

cases, instead, the state of the system is more complicated and it can not be

described by coherent combination of wavefunction. It is not a superposition of

single states, it is something more difficult to understand but that can be de-

scribed by the density matrix operator. Density matrix operator is a statistical

operator that must be involved when a statistical ensemble is considered [6] [7].

Thanks to the new formalism that will be presented, it will be possible to

calculate the expectation value of any operator Â. Expectation value is defined

4



as

〈Â〉 = 〈ψ| Â |ψ〉 (1.1)

that expressed with the basis set {|n〉} become

〈Â〉 =
∑

cnc
∗
m 〈n| Â |m〉

=
∑

ρnmÂnm

= Tr
[

ρÂ
]

(1.2)

with Ânm matrix elements of Â and ρnm = cnc
∗
m density matrix elements. This

will be clear in next sections.

1.1.1 Density matrix of a pure state

A pure state of a system can be represented by a single wavefunction |ψ〉 and

the density matrix operator is defined as:

ρ = |ψ〉 〈ψ| . (1.3)

If {|n〉} is an arbitrary basis set it is possible to write

|ψ〉 =
∑

n

cn |n〉 (1.4)

where cn are the quantum probability amplitudes that satisfy the relation:

〈ψ|ψ〉 =
∑

n

cnc
∗
n =

∑

n

|cn|2 = 1 (1.5)

Thus the density matrix operator can be written as

ρ =
∑

n,m

cnc
∗
m |n〉 〈m| . (1.6)

and the density matrix elements ρnm are

ρnm = 〈n| ρ |m〉 = cnc
∗
m. (1.7)

It is possible to make a distinction between matrix elements on the diag-

onal and terms off the diagonal. The firsts are called population terms and

describe the dynamics of the population of excited or ground states when they

interact with electromagnetic radiation, the others are coherence terms and give

information about the coherent superposition of two different states. These two

classes of terms are sufficient for the analysis of the system and, from their time

5



evolution, it is possible to know the internal evolution of the system.

In this representation it is possible to introduce the time dependence and

find the so called Liouville-von Neumann equation that describes the evolution

of the system in time,

d

dt
ρ(t) =

d

dt
(|ψ(t)〉 〈ψ(t)|) =

(

d

dt
|ψ(t)〉

)

· 〈ψ(t)| + |ψ(t)〉 ·
(

d

dt
〈ψ(t)|

)

. (1.8)

The terms in the round braces are directly connected to the time dependent

Schrödinger equation (TDSEQ). In fact:

d

dt
|ψ(t)〉 = − i

~
Ĥ |ψ(t)〉 (1.9)

and its complex conjugate

d

dt
〈ψ(t)| = +

i

~
〈ψ(t)| Ĥ (1.10)

that substituted in Eq. 1.8 give

d

dt
ρ(t) = − i

~
Ĥ |ψ(t)〉 〈ψ(t)| +

i

~
|ψ(t)〉 〈ψ(t)| Ĥ

= − i

~
Ĥρ(t) +

i

~
ρ(t)Ĥ

= − i

~

[

Ĥ, ρ(t)
]

.

(1.11)

Liouville-von Neumann equation describes the evolution of the density matrix

operator and involves the interaction of the Hamiltonian Ĥ both from the left

and from the right with ρ(t)

The expectation value of the operator Â(t) in a pure state can be expressed

by Eq. 1.2 as

〈Â(t)〉 = Tr
[

ρ(t)Â
]

(1.12)

with Ânm(t) matrix elements of Â(t). The density matrix operator in a pure

state, indeed, allows to calculate the expectation value of any operator Â(t).

Concerning the evolution of the wavefunction in pure states, it is described by

the Schrödinger equation, see Eq. 1.9, therefore it doesn’t involves the density

matrix operator.

1.1.2 Density matrix of a mixed state

In most of the cases it is not possible to speak of pure state because the system

cannot be described only by a single wavefunction. Moreover it is important

to underline that in pure states, Schrödinger and Liouville-von Neumann equa-
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tions are identical and therefore the density matrix operator does not add any

additional physical meaning to the analysis of the system.

Things get more interesting when a statistical approach is taken and en-

semble of molecules are considered. The system cannot be described by a su-

perposition of pure states, it is instead a undetermined state in between of all

the possible states. This systems, called mixed states, cannot be described by

a single wavefunction or by a coherent superposition of wavefunctions, and the

only way to trace it is thanks to the density matrix operator.

Let ps be the classical probability that the ensemble is in a certain state

|ψs(t)〉 described by

|ψs(t)〉 =

n
∑

j=1

cj(t) |ψj〉 (1.13)

the density matrix operator is defined as

ρ(t) =
∑

s

ps |ψs(t)〉 〈ψs(t)| (1.14)

with ps ≥ 0 and
∑

s |ps|2 = 1. Note that ρ(t) is not a coherent superposition of

state, i.e. it is not equivalent to any wavefunctions. It is possible to underline

how the pure states are a particular case of the mixed states in which pk 6= 0

and ps = 0 for every s 6= k.

Let’s try to calculate the expectation value for an operator Â(t) and the evo-

lution of the system of mixed states. As in the previous section the expectation

value will depend on the density matrix operator (see Eq. 1.2):

〈Â(t)〉 =
∑

s

ps 〈ψs(t)| Â |ψs(t)〉 = Tr
[

ρ(t)Â
]

. (1.15)

The temporal evolution of the system is more difficult to evaluate with respect

to the previous case, but since the transformation from a pure state to mixed

state is linear, in a first approximation equation 1.11 is still valid. To be more

precise some additional terms must be considered for a complete treatment.

For a statistical average it is possible to write the basis representation of the

density matrix operator

ρnm(t) =
∑

s

psc
s∗
n c

s
m (1.16)

and the density matrix elements evolution is

ρ̇nm(t) =
∑

s

dps

dt
cs∗

n (t)cs
m(t) +

∑

s

ps

(

dcs∗
n

dt
cs

m(t) + cs∗
n (t)

dcs
m

dt

)

=
∑

s

dps

dt
cs∗

n (t)cs
m(t) − i

~

[

Ĥ, ρ(t)
]

nm

(1.17)
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Properties Pure state Mixed state
Hermitian ρ∗

nm(t) = ρnm(t) ρ∗
nm(t) = ρnm(t)

Diagonal elements ρnn(t) ≥ 0 ρnn(t) ≥ 0
Normalization Tr [ρ(t)] = 1 Tr [ρ(t)] = 1
Trace of ρ2 Tr

[

ρ2(t)
]

= 1 Tr
[

ρ2(t)
]

≤ 1

Table 1.1: Density matrix operator properties

The second term is related to the Liouville-von Neumann equation for a pure

state while the first leads to dephasing and populations relaxation.

To conclude this section a summary of all the properties of the density matrix

operator is shown in Table 1.1.

1.2 Time dependent perturbation theory

Taking in mind the evolution of a mixed state described Eq. 1.17, it is possible

to calculate the linear response of a time dependent perturbation. Let’s consider

an Hamiltonian in the form

Ĥ(t) = Ĥ0 + Ŵ (t) (1.18)

where Ĥ0 is the Hamiltonian of the unperturbed system and Ŵ (t) is the per-

turbative field generated by the pulses from the laser. Ŵ (t) will be weaker than

the internal electric field generated by the molecules, so that Ŵ (t) ≪ Ĥ0. This

means that pulses do not alter the eigenstates of the system, but will act only

on the coefficients cn. Therefore a perturbative treatment can be used.

Eigenstates of the Hamiltonian can be obtained from

Ĥ0 |n〉 = En |n〉 (1.19)

From the Liouville-von Neumann equation for mixed states 1.17, considering

the dephasing term for the coherenses, i.e. ρnm with n 6= m, it is possible to

write

ρ̇nm(t) = − i

~

[

Ĥ0, ρ(t)
]

nm
− i

~

[

Ŵ (t), ρ(t)
]

nm
− ρnm(t)

T2
(1.20)

The first term can be easily calculated by expanding the density matrix on the
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eigenfunction of the unperturbed Hamiltonian:

[

Ĥ0, ρ(t)
]

nm
= 〈n| Ĥ0ρ(t) |m〉 − 〈n| ρ(t)Ĥ0 |m〉

= En 〈n| ρ(t) |m〉 − Em 〈n| ρ(t) |m〉
= (En − Em) ρnm(t)

(1.21)

And then Eq. 1.20 becomes

ρ̇nm(t) = −
(

iωnm +
1

T2

)

ρnm(t) − i

~

[

Ŵ (t), ρ
]

nm
(1.22)

where ωnm = En−Em

~
. Making the hypothesis that the system is at equilibrium

before interaction with light, it is possible to suppose zeroth-order terms off

diagonals of the density matrix equal to zero, i.e. ρ
(0)
nm = 0 for n 6= m. The

first-order dynamics hence can be written

ρ̇(1)
nm(τ) = −

(

iωnm +
1

T2

)

ρ(1)
nm(τ) − i

~

[

Ŵ (t), ρ(0)
]

nm
(1.23)

with τ absolute time. The solution of this equation, expressed in relative time

delay, is

ρ(1)
nm(t) =

i

~

∫ ∞

0

[

Ŵ (t− t1), ρ(0)
]

nm
e

−
(

iωnm+ 1
T2

)

t1dt1. (1.24)

In order to expand the commutator, let’s consider the perturbation term

Ŵ (t) = µ̂(t)E
′

(t)cos(ωt) =
µ̂(t)

2
E

′ (

eiωt − e−iωt
)

=
µ̂(t)

2
(E(t) − E∗(t))

(1.25)

that will give

[

Ŵ (t), ρ(0)
]

nm
=
(

Ŵ (t)ρ(0) − ρ(0)Ŵ (t)
)

nm

=
(

µ̂ρ(0) − ρ(0)µ̂
)

nm
(E(t) − E∗(t))

= −
(

ρ(0)
mm − ρ(0)

nn

)

µ̂nm (E(t) − E∗(t))

(1.26)

since ρ
(0)
nm = 0 for n 6= m. If the incoming radiation is resonant with the system,

i.e. ω = ωnm, first-order density matrix will be in the form

ρ(1)
nm(t) =

i

~

(

ρ(0)
mm − ρ(0)

nn

)

µ̂nm·
{

e−iωt

∫ ∞

0

E
′

(t− t1)e−t1/T2e2iωt1dt1 + eiωt

∫ ∞

0

E
′

(t− t1)e−t1/T2dt1

}

.

(1.27)
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Thanks to rotating wave approximation is it possible to neglect the first integral

that will oscillate too fast, and consider only the second term in the between

of the braces. This will simplify the analytic formalism and will allow a easier

analysis. Eq. 1.27 shows how first order density matrix operator off diagonal

elements are non zero and if the same calculation is performed for the opposite

corner term, what would be obtained is

ρ(1)
mn = ρ∗(1)

nm (1.28)

thus, off diagonal terms of the density matrix operator are complex conjugates.

In order to go beyond the first order of the density matrix operator elements

in perturbative expansion it is possible to follow the same procedure, but an

easier formalism can be introduce to make this operation easier. Thanks to this

new formalism that will be introduced in the next paragraph will be possible to

evaluate high-order terms of the density matrix operator ρ(n). These will lead

to high order polarization terms. Thus let’s introduce the interaction picture

formalism.

1.2.1 Interaction picture

The importance of interaction picture is due to the fact that it allows to describe

dynamics caused by the laser pulses and those that are internal to the molecules

of the ensemble. Taking in mind the perturbative Hamiltonian in Eq. 1.18, it is

possible to divide the evolution of |ψ(t)〉 governed by Ĥ0 from the one dictated

by Ŵ (t). Thus once defined the time evolution operator Û0(t, t0) respect to the

unperturbed Hamiltonian Ĥ0 as

Û(t, t0) = e− i
~

Ĥ0(t−t0 (1.29)

the wavefunction in the interaction picture |ψI(t)〉 must satisfy

|ψ(t)〉 = Û0(t, t0) |ψI(t)〉 . (1.30)

The system is hence described by the time evolution operator that is responsi-

ble of all that concern the unperturbed Hamiltonian, while |ψI(t)〉 describes the

evolution of the wavefunction due to the difference between the total Hamilto-

nian and the unperturbed one, i.e. the weak perturbation Ŵ (t). If there is no

perturbation, i.e Ĥ(t) = Ĥ0, the interaction wavefunction is the unperturbed

one and will be constant in time

|ψI(t)〉 = |ψ(t0)〉 . (1.31)
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By introducing Eq. 1.30 into the Schrödinger Eq. 1.9:

− i

~
Ĥ |ψ(t)〉 =

d

dt
|ψ(t)〉

− i

~
Ĥ · Û0(t, t0) |ψI(t)〉 =

d

dt
· Û0(t, t0) |ψI(t)〉

=

(

d

dt
Û0(t, t0)

)

· |ψI(t)〉 + Û0(t, t0) ·
(

d

dt
|ψI(t)〉

)

= − i

~
Ĥ0 · Û0(t, t0) |ψI(t)〉 + Û0(t, t0) ·

(

d

dt
|ψI(t)〉

)

(1.32)

From the definition of the perturbative Hamiltonian 1.18, previous equation

become

− i

~
Ŵ (t)Û0(t, t0) |ψI(t)〉 = Û0(t, t0)

(

d

dt
|ψI(t)〉

)

. (1.33)

Multiplying Eq. 1.33 from the left by a factor Û†
0 (t, t0), taking in mind that

the time evolution operator is unitary (i.e. Û†Û = 1) and defining the weak

interaction Hamiltonian ĤI(t) as

ĤI(t) = Û†
0 (t, t0)Ŵ (t)Û0(t, t0)

= e
i
~

Ĥ0(t−t0)Ŵ (t)e− i
~

Ĥ0(t−t0)
(1.34)

the Schrödinger equation become

− i

~
ĤI(t) |ψI(t)〉 =

d

dt
|ψI(t)〉 . (1.35)

The interaction picture is a compact way to treat the evolution of a system

and is a combination of Schrödinger picture and Heisenberg picture. Infact the

weak evolution due to the perturbation term of the Hamiltonian is deal with

the evolution of the wavefunction, i.e. Schrödinger picture, whereas the overall

evolution is left to the operator as the Heisenberg picture requests.

1.2.2 Perturbative expansion of the wavefunction

Eq. 1.35 is the Schrödinger equation for the interaction wavefunction, hence it

can be integrated and gives

|ψI(t)〉 = |ψI(t0)〉 − i

~

∫ t

t0

dτĤI(τ) |ψI(τ)〉 (1.36)
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that can be iteratively solved as

|ψI(t)〉 = |ψI(t0)〉 − i

~

∫ t

t0

dτĤI(τ) |ψI(t0)〉

+

(

− i

~

)2 ∫ t

t0

dτ2

∫ τ2

t0

dτ1ĤI(τ2)ĤI(τ1) |ψI(τ1)〉 .
(1.37)

Cycling this procedure it is possible to obtain the following equation

|ψI(t)〉 = |ψI(t0)〉 +
∞
∑

n=1

(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

ĤI(τn)ĤI(τn−1) . . . ĤI(τ1) |ψI(t0)〉
(1.38)

that is the power expansion in terms of the small interaction term ĤI(t).

Trying to go back to the Schrödinger picture it is possible to multiply Eq.

1.38 by the time evolution operator since |ψ(t)〉 = Û0(t, t0) |ψI(t)〉. Defining

|ψI(t0)〉 = |ψ(t0)〉, previous equation become

|ψ(t)〉 = |ψ(0)(t)〉 +

∞
∑

n=1

(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

Û0(t, t0)ĤI(τn)ĤI(τn−1) . . . ĤI(τ1) |ψ(t0)〉
(1.39)

with |ψ(0)(t)〉 = Û0(t, t0) |ψ(t0)〉 zeroth-order wavefunction that describes the

evolution of the ensemble due to the molecular Hamiltonian Ĥ0 only. Thus

first term of Eq. 1.39 gives the temporal evolution of the system as it was

unperturbed. The second term contains all the information about the weak

perturbative Hamiltonian and it has a intuitive physical meaning: from t0 the

system evolves freely thanks to the molecular Hamiltonian Ĥ0 until τ1, time at

which light pulses overcome. From that moment the ensemble interacts with

the weak perturbation ĤI(τ1) and then propagates. When another weak per-

turbation overcome ĤI(τ2), the system interacts with it and then it propagates

and so on. In order to have a figurative representation of the expansion of the

wavefunction, Feynman single sided diagrams can be helpful. In Fig. 1.1 the

solid arrow is the time axis and the dotted arrows correspond to the interaction

at different time τ1, τ2 and so on.

1.2.3 Perturbative expansion of the density matrix

It is possible to do the same expansion did for the wavefuntion but on the

density matrix operator. In the interaction picture it has been shown in Eq.

1.35 that the evolution of the wavefunction is analogous to the Schrödinger

equation. The same is true for what concern the density matrix operator in
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Figure 1.1: Single sided Feynman diagram. [1]

the interaction picture what therefore will be described by the Liouville-von

Neumann equation.

The density matrix operator of a pure state in the new formalism is defined

as

ρI(t) = |ψI(t)〉 〈ψI(t)| (1.40)

since

ρ(t) = |ψ(t)〉 〈ψ(t)|
= Û0(t, t0) |ψI(t)〉 〈ψI(t)| Û†

0 (t, t0)

= Û0(t, t0)ρI(t)Û†
0 (t, t0)

(1.41)

From the linearity of this derivation, the definition can be expanded to a sta-

tistical ensemble, i.e. a mixed state.

The evolution of the density matrix operator is governed by an equation

that is formally equivalent to the Liouville-von Neumann equation that in the

interaction picture become

d

dt
ρI(t) = − i

~

[

ĤI(t), ρI(t)
]

. (1.42)

From the perturbative expansion analogous to the one for the wavefunction, it

is possible to expand the density matrix operator in 1.42 obtaining

ρI(t) = ρI(t0) +

∞
∑

n=1

(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

[

ĤI(τn),
[

ĤI(τn−1),
[

. . .
[

ĤI(τ1), ρI(t0)
]

. . .
]]]

.

(1.43)

By multiplying from the left by the time evolution operator Û(t, t0) and by

its hermitian conjugate from the right, it’s possible to go back in the Schrödinger
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domain

ρ(t) = ρ(0)(t) +

∞
∑

n=1

(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

Û(t, t0) ·
[

ĤI(τn),
[

ĤI(τn−1),
[

. . .
[

ĤI(τ1), ρ(t0)
]

. . .
]]]

· Û†(t, t0).

(1.44)

that can be rewritten as

ρ(t) = ρ(0)(t) +

∞
∑

n=1

ρ(n)(t) (1.45)

simply by defining

ρ(n)(t) =

(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

Û(t, t0) ·
[

ĤI(τn),
[

ĤI(τn−1),
[

. . .
[

ĤI(τ1), ρ(t0)
]

. . .
]]]

· Û†(t, t0).

(1.46)

This last term ρ(n)(t) is the nth-order density matrices ordered by the weak

perturbation ĤI(t) whereas ρ(0) is the zeroth order density matrix operator

that evolves unperturbed.

Let’s define an equilibrium system defined by a density matrix operator

ρ(t0), it is reasonable to send t0 to −∞ just thinking that it won’t evolve in

time under a Hamiltonian H0. Defining the pertubative Hamiltonian as in Eq.

1.25 that can be written in a simpler way as

Ŵ (t) = µ̂ · E(t) (1.47)

Eq. 1.45 become

ρ(t) = ρ0(−∞) +
∞
∑

n=1

ρ(n)(t) (1.48)

with the nth-order density matrices

ρ(n)(t) =

(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1E(τn)E(τn−1) . . . E(τ1)

Û(t, t0) · [µ̂I(τn), [µ̂I(τn−1), [. . . [µ̂I(τ1), ρ(−∞)] . . . ]]] · Û†(t, t0).

(1.49)

with µ̂I(t) = Û†(t, t0)µ̂Û(t, t0) is the dipole operator in the interaction picture.

Note that in this formalism the operator is time dependent since the system is

evolving under the overall Hamiltonian Ĥ0, whereas in the Schrödinger picture

it is not.
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1.3 Nonlinear polarization

Linear polarization is defined as

~P = ǫ0χ
(1) · ~E (1.50)

where ǫ0 is the dielectric constant in vacuum, χ(1) is the linear electric suscep-

tibility and ~E is the electric field. It is possible to talk about linear polarization

when the generating incoming field is weak and, let’s say, it interacts only one

time with the material. Linear electric polarization will earn the same oscillatory

term of the incident radiation and then will evolve in time.

Working with ultrafast optical pulses means to deal with very high peak

energies and it is possible to think that the radiation interact several time with

the matter. This will lead to some nonlinear effect that are expressed by the

non linear polarization. Eq. 1.50 must be modified and becomes

~P = ǫ0

(

χ(1) · ~E + χ(2) · ~E · ~E + χ(3) · ~E · ~E · ~E + . . .
)

(1.51)

with non linear susceptibilities χ(n) tensors. In media with inversion symmetry

the first nonlinear term of polarization available is the third one, in all the other

it is possible to have also the second order polarization term.

Considering an ensemble the macroscopic polarization is defined as

P = N 〈µ̂〉 (1.52)

with N number of electric dipoles and µ̂ dipole momentum. Thanks to density

matrix operator the expectation value of an operator can be expressed as the

trace of the operator multiplied by the density matrix operator, that means

P = Tr [µ̂ρ(t)] (1.53)

that can be generalized to high power of the electric field and give

P (n) = Tr
[

µ̂ρ(n)(t)
]

(1.54)

In order to understand on which elements of density matrix operator the

polarization depend, let’s consider for example to a two level system. In this

case N=1 and

µ̂ =

(

0 µ̂12

µ̂21 0

)

. (1.55)
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First order polarization is

P = Tr

[(

0 µ̂12

µ̂21 0

)(

ρ11 ρ12

ρ21 ρ22

)]

= Tr

[(

µ̂12ρ21 µ̂12ρ22

µ̂21ρ11 µ̂21ρ12

)]

= µ̂12ρ21 + µ̂21ρ12.

(1.56)

Eq. 1.56 shows how polarization depend from off-diagonal terms of the density

matrix operator. This means that these terms are responsible of the interaction

between matter and radiation.

Inserting Eq. 1.49 into Eq. 1.54 it is possible to explicit the nth-order

polarization as

P (n) =Tr

[

µ̂

(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1E(τn)E(τn−1) . . . E(τ1)·

Û(t, t0) · [µ̂I(τn), [µ̂I(τn−1), [. . . [µ̂I(τ1), ρ(−∞)] . . . ]]] · Û†(t, t0)

]

(1.57)

Thanks to the invariance to cyclic permutation of the trace operator, it is pos-

sible to write Eq. 1.57 as

P (n) = Tr

[(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1E(τn)E(τn−1) . . . E(τ1)·

Û†(t, t0)µ̂Û(t, t0) · [µ̂I(τn), [µ̂I(τn−1), [. . . [µ̂I(τ1), ρ(−∞)] . . . ]]]

]

= Tr

[(

− i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1E(τn)E(τn−1) . . . E(τ1)·

µ̂I(t) · [µ̂I(τn), [µ̂I(τn−1), [. . . [µ̂I(τ1), ρ(−∞)] . . . ]]]

]

(1.58)

where in the last step the definition of dipole operator in the interaction picture

has been used µ̂I(t) = Û†
0 (t, t0)µ̂Û0(t, t0). A different set of temporal variable is

used instead of the absolute time τn, thus the time interval tn is preferred whit
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tn defined as

τ0 = 0

t1 = τ2 − τ1

t2 = τ3 − τ2

. . .

tn = t− τn

(1.59)

thus Eq. 1.58 become

P (n)(t) =Tr

[(

− i

~

)n ∫ ∞

0

dtn

∫ ∞

0

dtn−1 . . .

∫ ∞

0

dt1·

E(t− tn)E(t− tn − tn−1) . . . E(t− tn − tn− 1 − · · · − t1)·

µ̂I(tn + tn−1 + · · · + t1) · [µ̂I(tn−1 − · · · − t1), . . . [µ̂I(0), ρ(−∞)] . . . ]

]

.

(1.60)

Last equation shows how the nth-order polarization term can be written as a

convolution of n electric fields:

P (n)(t) =

∫ ∞

0

dtn

∫ ∞

0

dtn−1 . . .

∫ ∞

0

dt1·

E(t− tn)E(t− tn − tn−1) . . . E(t− tn − tn− 1 − · · · − t1)·

S(n)(tn, tn−1, . . . , t1)

(1.61)

with S(n)(tn, tn−1, . . . , t1) nth-nonlinear response function

S(n)(tn, tn−1, . . . , t1) =

(

− i

~

)n

·

Tr

[

µ̂I(tn + tn−1 + · · · + t1) · [µ̂I(tn−1 − · · · − t1), . . . [µ̂I(0), ρ(−∞)] . . . ]

]

.

(1.62)

From Eq. 1.62 it is possible to notice that the interactions at time t1, t1 +

t2, . . . , t1 + · · · + tn−1 are responsible of the non equilibrium density matrix

operator ρ(n) whose off-diagonal elements emit light at tn + tn−1 + · · · + t1.
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Figure 1.2: Double sided Feynman diagrams for linear response of
a two level system [1].

1.3.1 Double sided Feynman Diagrams

Liouville Pathways

Let’s try to go more in the detail for what concern the nonlinear response

function of a system S(n)(t1, . . . , tn). Due to simplicity let’s consider a two level

system that interacts with the electromagnetic field. When the commutator is

expanded there will be 2n terms acting either on the right or on the left of the

density matrix operator. For example the linear response function is

S(1)(t1) = − i

~
Tr

[

µI(t1) · [µ̂I(0), ρ(−∞)]

]

= − i

~
Tr

[

µ̂I(t1)µI(0)ρ(−∞) − µIρ(−∞)µI(0)

]

= − i

~

(

Tr

[

µI(t1)µI(0)ρ(−∞)

]

− Tr

[

µIρ(−∞)µI(0)

])

.

(1.63)

It is possible to represent this function with Feynman diagrams in which there

are two vertical lines, the one on the right correspond to the ket of the density

matrix operator, while the one on the right correspond to the bra. The interac-

tion are represented by sided arrow at different temporal time. In Fig 1.2 are

shown the two terms of the linear response function. The one on the right is the

complex conjugate of the one on the left, thus often it is unexpressed. Due to

simplicity, it is possible to consider only diagrams with the last interaction with

the ket. Solid sided arrow represent interactions with the density matrix opera-

tor that generate the non-equilibrium state, while dashed arrow is associated to

the last interaction that is responsible of the emitted light by the off-diagonal

terms, in accordance with Eq. 1.62.
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Figure 1.3: Double sided Feynman diagrams for third order re-
sponse function of a two level system [1].

The 3rd-order nonlinear response function instead is

S(3)(t3, t2, t1) ∝ Tr

[

µI(t3 + t2 + t1) · [µ̂I(t2 + t1), [µ̂I(t1), [µ̂I(0), ρ(−∞)]]]

]

= Tr

[

µ̂I(t3 + t2 + t1)µ̂I(t2 + t1)µ̂I(t1)µ̂I(0)ρ(−∞)

]

− Tr

[

µ̂I(t3 + t2 + t1)µ̂I(t2 + t1)µ̂I(t1)ρ(−∞)µ̂I(0)

]

− Tr

[

µ̂I(t3 + t2 + t1)µ̂I(t2 + t1)µ̂I(0)ρ(−∞)µ̂I(t1)

]

+ Tr

[

µ̂I(t3 + t2 + t1)µ̂I(t2 + t1)ρ(−∞)µ̂I(0)µ̂I(t1)

]

− Tr

[

µ̂I(t3 + t2 + t1)µ̂I(t1)µ̂I(0)ρ(−∞)µ̂I(t2 + t1)

]

+ Tr

[

µ̂I(t3 + t2 + t1)µ̂I(t1)ρ(−∞)µ̂I(0)µ̂I(t2 + t1)

]

+ Tr

[

µ̂I(t3 + t2 + t1)µ̂I(0)ρ(−∞)µ̂I(t1)µ̂I(t2 + t1)

]

− Tr

[

µ̂I(t3 + t2 + t1)ρ(−∞)µ̂I(0)µ̂I(t1)µ̂I(t2 + t1)

]

(1.64)

that can be written as

S(3)(t3, t2, t1) ∝ R4 −R∗
1 −R∗

2 +R3 −R∗
3 +R2 +R1 −R∗

4 (1.65)

where the complex conjugates are shown. It is possible to visualize these inter-

actions thanks to Feynman diagrams in Figure 1.3

where only 2n−1 terms are represented. Calculation of the nth-order po-

larization become even more complicated when the light field is explicitly ex-

pressed. In order to avoid all these algebra some approximations can be done

in order to simplify the analysis.

Considering Eq. 1.61 for high-order nonlinear polarization, it can be simpli-
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fied concerning the expression of the electric fields. Indeed semi-impulsive limit

allows to consider fields as three non overlapping, well temporal ordered pulses.

Thus µ̂I(0) is generated by E1(t) field, µ̂I(t1) by E2(t) and so on. Moreover since

the electric field is pulsed all of these terms can be treated as delta-functions

δ(t) since the dynamics of the system are slower than the temporal duration of

the pulses. Electric field is written as

E1(t) = E1δ(t)e
±ωt∓kr

E2(t) = E2δ(t− τ)e±ωt∓kr

E3(t) = E1δ(t− τ − T )e±ωt∓kr

(1.66)

thus 3rd order nonlinear polarization from Eq. 1.61 simplifies as:

P (3) = S(3)(t, τ, T ) (1.67)

that means that 3rd order nonlinear polarization in time ordering semi-impulsive

limit is exactly the physics of the system. From this equation it emerges the

importance of this nonlinear term of polarization. In this limit the number

of terms in the response function is reduced and that could be helpful for a

complete analysis of the problem. If other approximation are taken into account,

for example the rotating wave approximation and phase matching condition, the

number Feynman diagrams that survive is reduce to a number of two. This is

a much easier condition respect the starting point of the problem.
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Chapter 2

Nonlinear Spectroscopy

In this chapter there will be illustrated some techniques of spectroscopy. First

it will be introduced an example of linear spectroscopy and then some nonlinear

ultrafast methods of detection of the 3rd order polarization. For each technique

it will be presented the information it is possible to retrieve.

2.1 Linear Spectroscopy

Let’s start with a linear technique of spectroscopy, i.e. the measurement of the

linear absorption spectrum of a sample. In linear measurements there is only

one interaction between light and the sample. This yields to only the first-order

polarization, known as linear polarization. In order to understand how this term

is generated it is possible to look at Feynman diagram in Fig. 2.1 and for an

analytical analysis it is possible to explicit Eq. 1.61 for the simpler case of n=1.

The linear response function is proportional to

S(1) ∝ Tr

[

µ̂I(t1)µI(0)ρ(−∞) − µI(t1)ρ(−∞)µI(0)

]

(2.1)

that means that anything happens before the time zero. At t=0 the interac-

tion with a light pulse yields to coherences, i.e. to off diagonal density matrix

|0   0|><

|1   0|><

|0   0|><

Figure 2.1: Double sided Feynman diagram for linear spectroscopy.
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elements ρ10 and ρ01. These terms are proportional to the transition dipole

momentum

ρ01(0) ∝ µ̂10 (2.2)

Let’s think to a two level system which evolution is dictated by the Liouville-

von Neumann equation 1.20 and in a first instance let’s assume the stationary

case just setting Ŵ (t) = 0. The total Hamiltonian is equal to the unperturbed

one

Ĥ(t) = Ĥ0 =

(

ǫ1 0

0 ǫ2

)

(2.3)

hence the time evolution of the density matrix operator is

d

dt

(

ρ11 ρ12

ρ21 ρ22

)

= − i

~

[(

ǫ1 0

0 ǫ2

)(

ρ11 ρ12

ρ21 ρ22

)

−
(

ρ11 ρ12

ρ21 ρ22

)(

ǫ1 0

0 ǫ2

)]

= − i

~

(

0 (ǫ1 − ǫ2)ρ12

(ǫ2 − ǫ1)ρ21 0

)

.

(2.4)

Populations terms are constant while the coherences oscillate in time as

ρ̇12(t) = − i

~
(ǫ1 − ǫ2)ρ12 ⇒ ρ12 = e−i

(ǫ1−ǫ2)
~

tρ12(0)

ρ̇21(t) = − i

~
(ǫ2 − ǫ1)ρ21 ⇒ ρ21 = e+i

(ǫ1−ǫ2)
~

tρ21(0)

(2.5)

This is valid for pure states, but when mixed states are considered, in order to

make complete analysis, dephasing must be introduced. The simplest way to

introduce it is just to write Eq. 2.5 as

ρ̇12(t) = − i

~
(ǫ1 − ǫ2)ρ12 − Γρ12 ⇒ ρ12 = e−i

(ǫ1−ǫ2)
~

te−Γtρ12(0)

ρ̇21(t) = − i

~
(ǫ2 − ǫ1)ρ21 − Γρ21 ⇒ ρ21 = e+i

(ǫ1−ǫ2)
~

te−Γtρ21(0)

(2.6)

where Γ takes into account the dephasing of the system and is proportional to
1

T2
, where T2 is the dephasing time.

Let’s now consider the perturbation term in the dipole approximation, i.e.

Ŵ (t) = −µ̂E(t), the total Hamiltonian is

Ĥ(t) =

(

ǫ1 0

0 ǫ2

)

+

(

0 −µ̂12

−µ̂21 0

)

E(t) =

(

ǫ1 −µ̂12E(t)

−µ̂21E(t) ǫ2

)

(2.7)

from which, with some algebra, it is possible to retrieve that the evolution of

the density matrix operator evolution is somehow proportional to the electric
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dipole momentum, indeed it is possible to write

ρ12(t) ∝ e−i
(ǫ1−ǫ2)

~
te−Γtρ12(0). (2.8)

where the ρ12(0) contains the dependance from the dipole momentum: ρ12(0) ∝
µ̂12. Analogous equation is valid for ρ21(t).

Going back to the linear response function, at t=0 coherenses are excited

with a certain probability proportional to the dipole momentum which evolution

in time is described by Eq. 2.8. At t = t1 the off diagonal density matrix

elements emit light with a probability that is again proportional to the electric

dipole momentum. Thus the linear response is

S(1)(t1) ∝ µ̂2e−i
(ǫ2−ǫ1)

~
t1e−Γt1 . (2.9)

First order polarization is then described by Eq. 1.61 and hence, by setting

n = 1 is

P (1)(t) =

∫ ∞

0

dt1E(t− t1)S(1)(t1). (2.10)

Considering a pulsed electric field written as

E(t) = E0δ(t)(e
−iωt + eiωt) (2.11)

with the resonant case

ω =
(ǫ2 − ǫ1)

~
(2.12)

is is possible to develop Eq. 2.10 as follow

P (1)(t) ∝
∫ ∞

0

dt1E0δ(t− t1)(e−iω(t−t1) + eiω(t−t1))µ̂2e−iωt1e−Γt1

∝ E0µ̂
2e−iωt

∫ ∞

0

dt1δ(t− t1)e−Γt1 + E0µ̂
2eiωt

∫ ∞

0

dt1δ(t− t1)e−i2ωt1e−Γt1 .

(2.13)

Second term in this last equation oscillates faster than the first, this means

that thanks to the rotating wave approximation it can be neglected. The linear

polarization thus become

P (1)(t) = − i

~
E0µ̂

2e−iωte−Γt. (2.14)

This term emits an electric field with a phase locked at 90◦ with it,

E(1)(t) ∝ −iP (1)(t) (2.15)

23



DetectorSample

E0(t) E0(t)

E(1)(t)

Figure 2.2: Setup for linear spectroscopy

and this pulsed propagating field decays in time. This temporal behavior is

called free induction decay.

In order to record first order polarization and thus the E(1)(t), different ap-

proaches can be used. A simple method is shown in Fig. 2.2 where a spectrom-

eter and photodetector are involved. This kind of detector allow a measurement

of the intensity, i.e. the temporal average of the signal, since the temporal re-

sponse of the photodetector is very slow respect to the duration of the pulses.

Due to a phase matching conditions the emitted field is collinear with the gener-

ating incoming one, hence on the photodetector it will be measured the intensity

of the overlap between the two pulses resolved in the frequency domain. The

measured field thus is

|E0(ω) + E(1)(ω)|2 = |E0(ω)|2 + |E(1)(t)|2 + 2Re
{

E0(ω)E(1)(ω)
}

(2.16)

Due to the fact the generated field is weaker than the incident one, i.e. |E(1)(ω)| ≪
|E0(ω)|, second term on the right can be neglected. The measurement is a kind

of self-heterodyne detection due to the collinear geometry between the incoming

beam and the generated one. Hence the E0 is treated as the local oscillator for

this system. Looking at the absorption spectrum, that is to A = 1 −T where T

is the transmitted light, it is normalized and results

A(ω) ∝ 1 − I

I0
= 1 − |E0(ω) + E(1)(ω)|2

|E0(ω)|2

= −2Re
{

E0(ω)E(1)(ω)
}

|E0(ω|2 ∝ −2Re
{

E(1)(ω)
}

(2.17)

where in the last step it has been considered E0(ω) = const = E0, i.e. an

ultrashort broadband pulse assumed to be a delta function δ(t). Due to the

relation between E(1) and P (1) the absorption spectrum is

A(ω) ∝ 2Im
{

P (1)
}

∝ 2Re

{
∫ ∞

0

e−i(ω−ω0)te−Γt

}

= 2Re

{

1

i(ω − ω0) − Γ

}

=
2Γ

(ω − ω0)2 + Γ2
.

(2.18)
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Figure 2.3: Three pulses Photon Echo spectroscopy scheme.

As expected the absorption spectrum is a Lorentzian function with the broad-

ening that depends from the dephasing rate of the transition.

After this simple example of linear spectroscopy, let’s try to enlarge the

discussion and to go to third order polarization measurement techniques.

2.2 Three Pulses Photon Echo Spectroscopy

Going into nonlinear spectroscopy, three interaction between electric field and

matter must be taken into account. The first creates the first order coherences,

the second one projects them in population states, while the third creates the

third order coherences responsible of the nonlinear polarization. This multiple

interactions can generate different phenomena that can be explained very easily

for example considering a three level system.

The most general technique that allows to have access to the third order

polarization is the so called photon echo spectroscopy. This method involves

three pulses delayed by fixed delays τ and T as the basic scheme is represented

in Fig. 2.3. Since the three pulses are propagating in different directions, third

order polarization emits a field in the phase-matched directions kS given by the

following equations

kS = k3 + k2 − k1

kS = k3 + k1 − k2.
(2.19)

This directions are those that survive from the geometry involved. This

means that terms of Eq. 1.64 that survive are those represented in the double

sided Feynman diagram in Fig. 2.4. The generated third order fields are thus

background free and can be measured with a photodetector that integrates the

signal in time. Along these two direction signal is not the same: one direction

25



|0   0|><
|1   0|><

|1   0|><
|1   1|><

|0   0|><

+k1

-k2

+k3

|0   0|><
|1   0|><

|1   0|><
|0   0|><

|0   0|><

+k1

-k2

+k3

|0   0|><
|1   0|><

|2   1|><
|1   1|><

|1   1|><

+k1

-k2

+k3

|0   0|><
|0   1|><

|1   0|><
|1   1|><

|0   0|><

+k2

-k1

+k3

|0   0|><
|0   1|><

|1   0|><
|0   0|><

|0   0|><
+k2

-k1

+k3

|0   0|><
|0   1|><

|2   1|><
|1   1|><

|1   1|><

+k2

-k1

+k3

Stimulated

Emission
Bleach

Excited State

Absorption

a)

b)

Figure 2.4: Double sided Feynman diagram for photon echo spec-
troscopy. a) Non rephasing response function terms. b) rephasing
diagrams.

is the so called rephasing one, the other is non rephasing [8]. These two kind of

signals rise every time the third order polarization is generated, but often they

are overlapped. Photon echo allows to distinguish them.

The non rephasing signal is a signal that is generated by the third order

polarization and it is the free induction decay field, thus is a quite long pulse.

Indeed it’s duration depend from the time that polarization take to disappear,

i.e from the homogeneity of the material. This signal in generated immediately

by the polarization, that means in the instant in which the third pulse interacts

with matter.

Instead, the rephasing signal in photon echo experiments is a short pulse that

is emitted by the material after exactly a delay τ from the third pulse. This

emission is due to the recombination of all the electric dipole in the material

that after a certain time are again in phase one with each other. This rephasing

is somehow due to the second and third pulses of the photon echo experiment.

This pulse reverse the temporal axis, i.e. reverse the temporal evolution of all

the electric dipole in the material that recombine for a short time and emit the

rephasing field. It can be figured as the fist pulse is a π/2-pulse, that means a

pulse able to generate a coherence. It stimulates the sample and the dephasing

of all the electric dipoles. The second and the third pulse together act as a

π-pulse that is able to inverse the population of the system and generate a sort

of time inversion that is responsible of the echo.

The temporal scheme both for rephasing and non-rephasing signal is repre-

sented in Fig. 2.5 from which it is possible to understand the difference from
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Figure 2.5: Temporal scheme of three pulses photon echo spec-
troscopy. a) non rephasing field. The free induction decay field is
generated at the arrival of the third pulse. b) rephasing temporal
scheme. After the third pulse an echo appears at delay τ .

the two.

In photon echo experiments the rephasing signal is revealed thanks to a

photodetector that integrates in time the incoming signal. If the diffracted pulse

is detected for different values of T between the second and the third pulse, the

recorder signal decays with a time constant proportional to the decaying time of

the population state (the longitudinal decay time). If different measurement are

taken for different values of τ between the first and the second pulse, the signal

decays with a time constant proportional to the dephasing time (or transverse

decay time), i.e. the time needed by the system to lose coherence with the

perturbation.

Hence photon echo experiment allows to retrieve all the temporal constant

of the system. It is interesting to note that whit this experiments, many are

the degree of freedom that take place: ~k1, ~k2 and ~k3, concerning the spatial

components and t1, t2 and t3 for the temporal delays. Going to the relative

delays this means that with three pulse photon-echo it is possible to control τ1,

T and τ3 where in τ1 = τ3 = τ . It will be shown how not always these degree of

freedom will be accessible, and on the other hand, how these can be increased,

allowing to distinguish between the τ1 and τ3.

Three pulse photon echo allows to distinguish between system with a ho-

mogenous line broadening from one with an inhomogeneous broadening. This

is an important feature that makes photon echo a very interesting technique.

Let’s take a look at the diffracted direction of the rephasing and non rephasing

in Eq. 2.19. The only difference between the two is connected to the sign of the

first two interaction pulses. This means that by using negative delay between

the first and the second pulse, i.e. reversing their temporal order, non rephasing
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Figure 2.6: a) Diffracted signal in the −k1 + k2 + k3 in an homoge-
neous system at different τ . Either for positive and negative delays
a signal is detected. b) Diffracted signal in the −k1 + k2 + k3 in an
inhomogeneous system at different τ . Only at positive τ photon echo
is revealed.

signal can be measured in the rephasing direction. Measuring the energy in this

direction at various τ , either positive and negative, the detected field will look

different on the basis of the sample. If the sample is homogeneous an echo will

be revealed also for negative τ since all the dipoles are always in phase. If an

inhomogeneous target is analyzed, the echo will appear only for positive value

of τ . In Fig. 2.6 this difference is depicted.

Photon echo spectroscopy is the basic of all the nonlinear spectroscopy that

are presented in this chapter. Trying to reduce the number of pulses, other pos-

sible techniques has been explored. The easiest is the pump probe spectroscopy

presented in the next section.

2.3 Pump Probe Spectroscopy

Pump probe spectroscopy is another ultrafast third-order spectroscopy technique

that doesn’t involve directly three pulses. It instead exploits the high power of

the pump pulse and thus this pulse interacts two times with the sample. The

probe pulse, delayed respect the pump one by a variable delay T, is the one
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Figure 2.7: Pump probe spectroscopy setup.

that generates the third order polarization term. This simplification respect

to the previous case of course affects the number of degree of freedom of the

measurement. In pump probe spectroscopy the first two pulses have the same ~k-

vector, and the same is true for the third and a local oscillator pulse. Concerning

the delays between the pulse the only accessible one is T , i.e. the population

time. The situation is the following:

~k1 = ~k2 ⇒ τ1 = 0;

~k3 = ~kLO ⇒ τ3 = 0.
(2.20)

In Fig. 2.7 is represented the simple scheme that is involved for pump probe

experiments. Due to phase matching the third order polarization is generated

in the same direction of the the probe pulse.

It is possible to see pump probe spectroscopy as a special case of three photon

echo spectroscopy in which the first and the second pulse are collinear and

temporally overlapped, i.e. they are the same pulse. From Eq. 2.19 is clear

why the generated pulse has the same ~k-vector as the probe pulse. From this

equation emerge also that rephasing and non rephasing fields are emitted in the

same direction.

Macroscopically pump probe can be seen as a technique in which the pump

pulse excites the system and the probe reveals the behavior of the system at

different times. It is like the probe pulse registers the temporal evolution of

the state of the molecule under analysis. The condition sine qua non, is that

the pump must be at resonance with an excited state and that the probe is

at resonance with other allowed transitions of the molecule. In ultrafast non

linear spectroscopy, ultrashort pulses are involved and thus they allow to have

a temporal resolution of the order of their temporal duration, that means in the

order of 10−15 seconds.

To have a figurative idea of what happens into the sample, in Fig. 2.8 are

represented the energy levels of a three level system and the allowed transitions.
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Figure 2.8: Three level system energy levels.

After the pump pulse the system is in a population state |1〉. The probe pulse

is near resonance both with the |1〉 → |2〉 and the |2〉 → |1〉 transition, hence it

can induce an absorption (green arrow in figure) or an emission (dark blue arrow

in figure), called respectively photoinduced absorption and stimulated emission.

Another kind of signal that can be revealed is the so called photo bleaching

that is just the case in which the system, when the probe pulse arrives, is

not anymore able to absorb from the ground to the excited state even if the

pulse is at resonance with this transition. This generates an increasing in the

transmitted pulse from the sample.

Pump probe technique actually looks at a differential signal, indeed it reveals

a difference in transmission between the probe pulse in the case of pump-on and

pump-off, normalized with its transmission without pump. Thus each of the

photophysical signals have a certain sign associated. Let ∆T
T be the differential

signal registered by the pump probe signal detector, if stimulated emission (SE)

occurred ∆T
T will be positive. The same is true for the photobleaching signal

(PB). In the case of photoinduced absorption (PA) the transmission of the probe

pulse is reduced, thus the ∆T
T is negative.

Going back to a representation with the density matrix formalism, the double

sided Feynman diagrams are schematically the same than those for the photon

echo spectroscopy represented in Fig. 2.4. In this figure the interaction with

the pump pulses can be seen as these interact one just before the other.

Making the same approximation done for the third order nonlinear polar-

ization, Eq. 1.67 is valid. Once calculated the third order response function

the behavior of the polarization is known. Pump probe experiment reveals the

free induction decay generated by this nonlinear polarization term with an het-

erodyne detection made with the probe pulse that is in the same direction.

The detector integrates over time the signal and reveal the absorption. If the

pump pulse is modulated the detector can read the difference of the probe pulse

with the pump on, and without. From this it is possible to reconstruct the
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phenomenological behavior of the sample.

2.4 Two-dimensional Spectroscopy

In order to enlarge the number of information that ultrafast nonlinear spec-

troscopy allows to retrieve, it is possible to use multidimensional spectroscopy.

This technique exploits all the information that is possible to retrieve about the

third order nonlinear response.

The idea is quite simple: it starts from the photon echo theory but it tries

to enhance the spectral resolution of the gained information. In order to do

that let’s try to understand what it is needed for this kind of experiment. As

in all the nonlinear spectroscopy methods, the first pump pulse generates the

linear polarization, the second creates a population state, the third yields the

third order polarization. The critical aspect of this method is that it needs

a precise interferometric time control of the delay between the first and the

second pulse that must be phase-locked. This is due to the fact that in this way

the first two interaction between the sample and the electromagnetic radiation

are almost identical. The fine control of the delay between the two allows to

have an important information in the frequency domain. Indeed let’s take the

Fourier transform of two peaks, what it is obtained is a sinusoidal curve with

an oscillating period, i.e. a frequency, proportional to the temporal distance

between the two. Fig. 2.9 depicts what it has been said. This means that by

exciting with different delays between the first two identical pulses, different

modes in the sample are stimulated. Thus to have a complete information of

the behavior of an object in analysis, it is possible to scan this delay in order to

excite all the possible oscillating modes of matter.

Bidimensional spectroscopy starts from the photon echo, hence nonlinear

polarization emits fields in the rephasing an non rephasing directions. The

double sided Feynman diagrams for a two level system are the same than those

in Fig. 2.4. The main difference from photon echo is that instead of having an

homodyne detection, 2D-spectroscopy involves a fourth field for an heterodyne

detection. This local oscillator must be phase locked with the generated E(3)(t)

pulse. All these phase conditions make 2D spectroscopy quite challenging, and

the hardest part remain the fine control of the delay between the first and the

second pulse.

The involved fourth field actually allows to get more information respect to

the photon echo spectroscopy. Indeed by controlling the delay of this with the

free induction decay field, it is possible to make τ3 6= τ1. In this way the overall

degree of freedom on which it is possible to act are even more in this kind of

experiments.
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Figure 2.9: Pump pulses spectrum. If many delays are imposed, all
the resonant modes are excited [1].

Sample

tT

-k1+k2+k3

+k1-k2+k3

LO

Figure 2.10: Bidimensional spectroscopy setup.

The setup scheme is represented in Fig. 2.10. The delay between the first

and the second pulse is τ1 = τ which is the one that must be fine monitored,

while delay between the second and the third pulse is T . The detection is non

background free but the offset is easily subtracted. The measured field will be

|ELO(ωt)+E(3)(ωt, T, τ)|2 ≈ |ELO(ωt)|2+2Re
{

ELO(ωt)E
(3)(ωt, T, τ)

}

(2.21)

In ultrafast 2D spectroscopy all the approximation made are still valid, that

means that the semi-impulsive limit, the rotating wave approximation and the

phase matching condition are considered. Third order polarization thus is de-
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scribed by Eq. 1.67

P (3) = S(3)(t, T, τ) (2.22)

Since the third order nonlinear response is quite difficult to be visualized,

an important step of 2D spectroscopy is the Fourier transform of this function

in the frequency domain both respect to t and τ obtaining a spectral resolved

nonlinear response function S(ωt, T, ωτ ). This function now can be represented

in a 2D plot with two frequency resolved axis and the analysis become quite

intuitive. Varying the arrival of the third pulse, i.e. varying T , different maps

can be recorded, and this will provide complete information about the nonlinear

response function.

Each term of S(ωt, T, ωτ ) will have both a real and imaginary part that can

be considered alone, or by taking the absolute value of them together. Indeed

considering the rephasing direction the nonlinear response function terms are

R2(t, T, τ) = R3(t, T, τ) ∝ eiωt1e−Γt1e−iωt3e−Γt3 (2.23)

while for the non rephasing diagrams is

R1(t, T, τ) = R4(t, T, τ) ∝ e−iωt2e−Γt2e−iωt3e−Γt3 . (2.24)

By Fourier transforming these equations, the pathways become

R2,3(ωt, T, ωτ) ∝ 1

−i(ωτ − ω) − Γ
· 1

i(ωt − ω) − Γ
(2.25)

and respectively

R1,4(ωt, T, ωτ) ∝ 1

i(ωτ − ω) − Γ
· 1

i(ωt − ω) − Γ
. (2.26)

Due to the geometry of the setup, the third order field is emitted in two direc-

tions and hence both of them must be measured. From literature it is known

that the best 2D map in term of contrast and of sign coherence is obtained when

all the term of rephasing and non rephasing are summed up and than only the

real part is taken:

Rabs = Re {R2,3(ωt, T, ωτ) +R1,4(ωt, T, ωτ)} (2.27)

that generate the so called purely absorptive spectrum.

From what is has been said, bidimensional ultrafast spectroscopy plays a

very important role in the analysis of a sample. It reveals at least all the

information included in the third order nonlinear response, i.e. the composition
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Detector

Sample

tT

Figure 2.11: Pump probe geometry for 2D spectroscopy.

of the sample, the line broadening of the spectrum and the dynamics of the

molecules. In order to understand how this is possible let’s take a look of how

the 2D maps can be analyzed.

2.4.1 Maps analysis

Bidimensional spectroscopy is a nonlinear spectroscopy technique that allows to

measure directly the third order polarization. As seen in the previous section

this term is equal to the nonlinear response of the sample, that is exactly it’s

physical evolution. The algorithm that allows to analyze data is the Fourier

transform performed on both the time evolution and the temporal delay between

the first two pulses. The map obtained will be a false color map resolved in ωt

and ωτ . In order to understand the informations given by these maps let’s

consider in a first moment the so called pump probe geometry represented in

Fig. 2.11.

In this geometry the first two pulses have the same ~k-vector, while the third

doesn’t, and due to phase matching the nonlinear third order fields, rephasing

and non rephasing, are generated in the same direction of the third pulse, like

in the pump probe experimental setup. The first two phase-locked replicas

are called pump pulses, while the third pulse is the probe pulse. Due to the

collinearity between the probe and the third order field, the first is used as

local oscillator for the heterodyne detection. Since E(3) is generated from the

probe, these two pulses are already phase locked, and thus many experimental

problems are eluded.

Recorded signals of transmission can be either positive and negative. Positive

signals in these maps (red in figure) correspond to stimulated emission from

excited atomic levels or ground state photobleaching like those obtained in pump

probe experiments. Viceversa, negative signals (blue in figure) are associated
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Figure 2.12: Example of 2D spectroscopy map.

to photoinduced absorption from the sample.

In pump-probe geometry an example of 2D maps that can be obtained for

a coupled system is shown Fig. 2.12. The first information 2D maps give is

contained is the position of the peaks [9]. Resonant transitions are the diagonal

peaks that give the information about the possible transitions of the sample.

The information that can be retrieved are the same than the one obtained with

a simple absorptive spectroscopy measurement. In example in Fig. 2.12 these

signals are the stimulated emission or photobleaching of the ground state (tran-

sitions 1+2 and 3+4 in figure)and are associated to single harmonic oscillator

taken individually. It means they tell something about the each excitation mode

that can be activated.

On the other hand the hallmark of bidimensional spectroscopy are the cross

peaks that appear off the diagonal of the 2D matrix. These signals are due to any

coupling and energy transfer inside the molecule, i.e. inter-level de-excitation,

intersystem crossing, etc. In Fig. 2.12 these kind of transitions are both positive

or negative (transitions 5, 3, 7, 1) [7] [10] [11]. These terms represent all the

possible energy transfers that the ultrafast broadband pulses can stimulate.

From this statement it is clear why 2D spectroscopy is giving very important

information about the sample. The additional information gained is the spectral

resolution in terms of pumping frequencies that allows to identify the origin of

the emissions or absorptions.

There can be some other peaks positioned just by the diagonal ones (tran-

sitions 8 and 6). These are corresponding to some absorption from the excited

state, and thus correspond to excited state absorption. Their position just on

the side of the diagonal is due to anharmonicity of the oscillators. In the case of

perfect harmonic oscillator these peaks are positioned exactly on the diagonal
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Figure 2.13: a) Map obtained from a 2D spectroscopy experiment
on homogeneous isolated system. b) Map obtained from 2D spec-
troscopy experiment on inhomogeneous isolated system.

and thus they add perfectly with the other signals.

Bidimensional spectroscopy allows to obtain also other information about

the composition of the sample. Indeed not only from the position of the peaks

but also from their shape it is possible to retrieve important features of the tar-

get. One of them is directly connected to the line broadening of the spectrum,

i.e. it is possible to distinguish between homogeneously and inhomogeneously

lineshapes. If spots are perfectly circular, this means that only a certain os-

cillatory mode has been activated. This is the case of homogenous broadening

in which the pump pulses are resonant with the characteristic oscillation of the

dipoles of the sample. For inhomogeneous samples the spots assume an elliptical

shape with the elongation in along the diagonal direction. The physical meaning

of this behavior is that pumping with ultrashort broadband pulses many reso-

nant harmonic oscillators are excited. Graphically the elliptical shape obtained

by this systems can be seen as many adjacent rounded spots, each centered at

its own resonant frequency. In Fig. 2.13 are compared the two cases of homo-

geneous and inhomogeneous broadening, while in Fig. 2.14 is represented the

schematically explanation for the elongated shape of mixed states.

2.4.2 Setup geometries

The more complicated but complete possible geometry is called boxcar geom-

etry. In this configuration the three excitating pulses are neither collinear nor

coplanar like is possible to see in Fig. 2.15.b). The pulses instead are posi-

tioned at the vertices of a square so that the E(3)(t) rephasing field is generated

along the fourth corner, i.e. along the k1 − k2 + k3 direction. The local oscilla-
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Figure 2.14: Schematically explanation of inhomogeneous broad-
ening elliptical shape.

tor pulse is thus sent along this direction and the heterodyne detection occurs.

The interesting feature of this configuration is that the free induction decay

field is background free, hence problems connected to saturation of the detec-

tor are avoided. Since in two-dimensional spectroscopy both the rephasing and

non rephasing signals must be collected, an interesting trick can be used. The

phase-matched direction of the non rephasing is −k1 + k2 + k3 where only the

first to are signs of ~k vector are inverted. Therefore by reversing the temporal

delay between the first and the second pulse the non rephasing signal is revealed

at the fourth corner of the square. Thus boxcar geometry allows to perform the

analysis very easily. The amount of information retrieved by this setup are the

widest possible since it is possible to play on quite all the degree of freedom

of the measurement. On the other hand its main limit is to set up the phase

relation between all these pulses and their delay control.

For these reasons another geometry can be introduced: this is the pump

probe geometry that has the two pump pulses with the same propagating di-

rection. The third pulse, also called probe pulse due to the strict connection

with the pump-probe experimental configuration, is tilted respect to that direc-

tion. In Fig. 2.15.c) this setup is sketched. The advantage of this technique

is that the nonlinear polarization emits the field along the same direction of

the probe pulse, making these two pulse collinear. Since the two pump pulses

have the same ~k vectors both the rephasing and non rephasing signals have the

same direction. This make the measurement easier not involving the reversing

of the order of the two pump pulses. Between the probe and the generated

pulses there is a well-defined phase relation since one is almost generated by

the other. This is very useful for the heterodyne detection that need that the

local oscillator is phase locked with the free induction decay field. From what

has been said, it follows that the most challenging experimental part in this
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Figure 2.15: a) Setup for Boxcar 2D spectroscopy. Red pulses are
those that generate the population state. Blue pulse stimulate the
third order polarization that is detected by heterodyne detection with
the green pulsed local oscillator (LO) on the detector. b) Pump-probe
configuration for 2D spectroscopy experiment. The two red pump
pulses are collinear. The probe pulse is collinear with the target
signal and thus it acts as local oscillator for the detection.

configuration remain connected to the delay and phase relation between the

pump pulses. Many technique have been proposed in order to resolve this task.

These will be presented for different spectral regions in the next chapter. To

conclude this kind of geometry allows to obtain many information, even if they

are limited by the number of factors on witch it is possible to play. Indeed in

this case like in Pump probe spectroscopy the ~k-vectors of the first two pulses

and of the last two are the same but this time it is possible to control the delay

between the pump pulses. The situation is thus:

~k1 = ~k2 ⇒ τ1 6= 0;

~k3 = ~kLO ⇒ τ3 = 0.
(2.28)
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Chapter 3

Two-dimensional

spectroscopy with

birefringent wedges

As presented in the previous chapter, two bidimensional spectroscopy geometries

are possible and both present advantages and drawbacks. The photon-echo

signal can be detected via an homodyne detection (pump probe configuration) or

via heterodyne detection (boxcar geometry). The main advantage of the former

is that the signal of interest is generated along the probe direction. Since in

our laboratory the pump-probe setup are at the bases of all the measurements,

it’s quite immediate to think that turning this into a 2DES setup in the pump

probe geometry is the easier and more common choice.

In order to collect 2D signal it is crucial to control the relative phase be-

tween the pulses. In particular, in the pump probe configuration it is required

that the first two pump pulses must be phase-locked to avoid interferometric

instabilities. To do that, several devices are available and will be discussed in

the chapter. In our group has been recently proposed an innovative method

based on birefringence of the material in order to control the relative phase of

the pulse. In this chapter this new and compact device will be presented and

characterized.
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3.1 Techniques of phased-locked pair pulse gen-

eration

Due to the strictly condition on the phase relation of the first two pulses in the

bidimensional spectroscopy, many solutions have been proposed. The easiest one

is based on a simple Mach-Zehnder interferometer but other more sophisticated

techniques are developed, based on pulse shaper or on birefringent media and

here are reported.

3.1.1 Generation of phased locked pulses by Mach-Zehnder

interferometer

A very intuitive way to obtain a phased locked pair of pulses involves a Mach-

Zehnder interferometer visible in Fig. 3.1 [2]. A first beam splitter (BS in

figure) divides an incoming pulse into two weaker identical replicas that are

then recombined by a second beam splitter with a certain delay one respect the

other. The delay introduced is given by the difference of optical path between

the two arms of the interferometer. By controlling with a motorized translation

stage the position of the optical delay line (ODL), it is possible to finely control

the delay between the two pulses. This solution is very easy to implement, but

its main disadvantage is that the two pulses see different optical components

that, due to their vibration, introduce different phase contributions. This means

that this device fits mainly with wavelength long enough respect the vibration

introduced by the optics: the less is the number of optics, the lower are these

phase fluctuations. Indeed this set-up is used with IR radiation where the

wavelength is on the order of µm. If shorter wavelength are involved, those

vibrations give a non negligible contribution. This means that for visible or UV

light this system of pair pulse generation is not suitable and other devices must

be used.

3.1.2 Generation of phased locked pulses by pulse shaper

A more complicated and expensive solution to the non-trivial problem of the

generation of the two pump pulses involves a pulse shaper. A pulse shaper is a

system that allows to have fully access to the spectral phase and spectral inten-

sity of a pulse. The schematic idea is represented in Fig. 3.2. It is composed of

two gratings and two lenses. The first grating disperses the spectral component

of the impingent pulse in different direction, while the first lens collimates this

divergent beam since it is positioned at a distance equal to its focal length f .

From the lens the beam is collimated and travels until the second lens positioned
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Figure 3.1: Mach-Zehnder interferometer scheme for the generation
of a pair of phased locked pulses in the IR spectral region. The two
beamsplitter (BS) divide and then recombine the pulse. The optical
delay line (ODL) allows to control the delay between the two replica.
[2]

at a distance equal to 2f from the first. The effect of this optical element is to

focus the beam on the second grating that recombine all the spectral component.

Due to the physics of this system, in the between of the two lenses, at a

distance f from both, there is the Fourier transform of the pulse, and thus it

is possible to directly act on its the spectral phase and intensity. Here is where

the shapingacts and the associated plane is called Fourier plane. By inserting

different kind of modulators it is possible to give a phase modulation or an

amplitude modulation in order to be able to obtain any desired pulse at the

output of the pulse shaper.

Pulse shaper can be realized both in transmission or in reflection. The

geometry is always the same but working in reflection space and costs can be

limited. Concerning a pulse shaper in the reflection geometry, on the Fourier

plane there must be some reflective optical media, like a mirror. To modulate

it can be used for example deformable mirrors [12] [13] [14].

In order to generate two pulses one possibility is to put an acousto-optic

modulator (AOM) on that plane and to deform it in a suitable way. As it has

been said on the Fourier plain there is the Fourier transform of the pulse, i.e.

its spectrum and thus multiplying it by a certain function it can be modulated.

Indeed mathematically this can be explained by thinking that

Eout(ω) = Ein(ω)M(ω) (3.1)
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Figure 3.2: 4-f pulse shaper scheme.

where M(ω) is the mask function. To generate two pulses delayed bu τ the

mask function can be written as:

M(ω) =
1

2
(eiωτ + 1) (3.2)

which Fourier transform is a train of two deltas function one centered at t = 0

and the other at t = τ . Thus this mask function generates a fixed pulse at t = 0

and one at delay τ . By controlling via software the acousto-optic modulator it

is possible to finely control the delay τ . [15]

Basically the acousto-optic modulator is an acoustic wave that propagates

into a material. Since light is faster than this wave, this wave acts as a transient

grating that deflect the desired frequencies with specified intensity and phase.

This wave is controlled by a waveform generator in a computer in order to be

able to apply different delays τ . The scheme just presented can be seen in Fig.

3.3.

The pair of pulses generated by the pulse shaper is phased locked since the

two pulses pass through the same optical elements. The main advantage of this

device is the tunability from IR to UV radiation: the shaper can be re-adapted

by changing the type of grating and the lenses. The drawbacks of this system

is the complexity of the device and the high cost.

3.1.3 Generation of phased locked pulses by birefringent

media

An alternative solution proposed in our group exploits the birefringence of the

optical material. The difference of the refractive index along different crystallo-
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AOM

Figure 3.3: Example of acousto-optic pulse shaper.

graphic axis, i.e. birefringence, is used to generate two pulses that travel with

different group velocity along different polarization axis. By changing the thick-

ness of the birefringent material it is possible to vary the temporal delay between

the pulses. This innovative device is called TWINS: Translating Wedge Based

Identical Pulses eNcoding System.

Thus the birefringence creates two orthogonally polarized replicas from the

incident beams and, thanks to a translating wedges system, it is possible to

control the delay of these two with high accuracy. Let’s go more in the detail

of how this setup works.

3.2 TWINS

3.2.1 Birefringence

Optical crystals are ordered anisotropic media that behaves in different way

depending on the optical properties of an incident beam. In these kind of

optical object it is possible to define three orthogonal directions, the so called

main axis, along which different refractive indices are detected.

Linear polarization is a non isotropic function of space and thus

~P = ǫ0χ~E (3.3)

where χ is the electric susceptivity that is a tensorial operator. In the crystal-

lographic frame of reference it can be diagonalized and the polarization can be
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expressed as

~Px = ǫ0χx
~Ex

~Py = ǫ0χy
~Ey

~Pz = ǫ0χz
~Ez

(3.4)

where the Cartesian coordinates of the polarization and the electric field are

related by the main values of the electric susceptivity. On the basis of this

values it is possible to define three classes of anisotropic crystals:

• Isotropic Crystals. These crystals have χx = χy = χz. The electric field

is thus parallel to the generated polarization.

• Uniaxial Crystals. When two of the main values are identical but one is

different, i.e. χx = χy 6= χz, the media is called uniaxial crystal. This

class can be used as isotropic crystals if an electromagnetic field propagate

along the z-axis. In this case the ellipsoid can be seen as a rotation along

this axis and hence it is called optical axis.

• Biaxial Crystals. This is the case of χx 6= χy 6= χz that means the the crys-

tal has not a preferential crystallographic direction for the polarization.

This class of anisotropic material is used for trirefringent experiments.

The class of interest in the TWINS setup is the second one, i.e. the uniaxial

crystals. Let’s define as optical axis the only axis of the crystal identified by the

χz term. If χz > χy, χx the material is defined as uniaxial positive, otherwise if

χz < χy, χx it is called uniaxial negative.

If now the refractive index n is introduced, due to the connection to the

electrical susceptivity (n =
√

1 + χ), in any anisotropic material it has different

values along different directions. In particular it is possible to demonstrate that

it depends on the direction of the propagation of an incoming electromagnetic

radiation and on its polarization, i.e.

n = n(~k, polarization). (3.5)

This equation takes the name of index ellipsoid and it describes the magnitude

of the refractive indices in crystals. Due to the definition of the refractive index

it is possible to define refractive indices nx, ny and nz that are respectively

the indices seen along the x, y and z direction, they are defined as the main

refractive indices. The anisotropic crystals can be classified in the same three

classes seen before but on the basis on the refractive index.
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Figure 3.4: Index ellipsoid for anisotropic crystals.
a) Isotropic Crystal nx = ny = nz.
b) Uniaxial Crystal nx = ny, nx < nz.
c) Biaxial Crystal nx < ny < nz.

Figure 3.5: Index ellipsoid seen by the electromagnetic field.

The index ellipsoids in these three type of crystals are represented in Fig.

3.4.

From what it has been said, the optic axis in an uniaxial crystal is the

direction along which an electromagnetic wave can propagate seeing only an

ordinary refractive index for any polarization. The behavior of the crystal in

this case is the same than the one of an isotropic media.

When the electromagnetic wave impinges the crystal, we can define the π

plane as the one orthogonal to the direction of the propagation (and so to the
~k-vector) and the main plane as the one delimited by the optical axis and the ~k-

vector. The field components are projected along the π plane, in the orthogonal

and parallel direction respect to the main plain. In this way the refractive

indices seen by the electromagnetic radiation are defined. The parameter that

influence the amplitude of these refractive indecis is the angle θ in the main

plain between the ~k-vector and the optical axis. Fig. 3.5 represents all these

components.

Let’s write the index ellipsoid as

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1 (3.6)
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Figure 3.6: Sellmeier equation for α-BBO.

If the field has the main plain along xz this equation simplifies as

x2

n2
x

+
z2

n2
z

= 1 (3.7)

By expressing the Cartesian axis as the precession of the index it is possible to

see that the extraordinary index depends on θ by

1

n2
e(θ)

=
cos2(θ)

n2
o

+
sin2(θ)

n2
e(θ)

(3.8)

Let’s consider an example of uniaxial crystals, the α-BBO. In Fig. 3.6 are

represented the Sellmeier equation associated to this material. An incoming

beam can be projected along the two optical refractive index so that two replicas

of the pulse can be generated at different times, due to the dispersion of the

material. α-BBO is a negative uniaxial crystal since ne < no. The phase velocity

is defined as the speed of any frequency, being c the speed of light in vacuum,

vphase =
c

n
(3.9)

while the group delay is the speed of the wavepacket defined as

vgroup =
c

ngroup
(3.10)

where ngroup is calculated as

ngroup = n(λ0) − λ0

[

dn

dλ

]

λ0

(3.11)

with λ0 defined as the central wavelength of the pulse.
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Due to this velocity mismatch the two orthogonal component of the inci-

dent radiation can be delayed one respect the other. How this is done will be

presented in the next section.

3.2.2 Setup

In the 2D pump probe configuration (Fig. 2.7), the two pump pulses must be

collinear, phase-locked and relatively delayed with high accuracy. The TWINS

device is a compact and easy to implement system that generates such pulses.

TWINS set-up can be presented as three different blocks: A,B and C, as

represented in Fig. 3.8. [16] The difference between these components is in the

direction of the optical axis. Let’s consider a set of Cartesian coordinates x, y

and z where z is the propagating direction of the incident pulse. First block A

has the optical axis, i.e. the extraordinary axis, along the y-direction (y-cut),

block B has it oriented along x-direction (x-cut), while the third component

C has this axis parallel to the z-direction (z-cut). These three blocks differ

not only for the direction of the extraordinary axis, they are different in shape:

block A must have a constant thickness dA, while blocks B and C can vary their

thicknesses dB and dC respectively, but under a certain condition:

dB + dC = const. (3.12)

In this way the overall thickness of the TWINS will be constant too. In order

to have these degree of freedom on dB and dC these blocks are not rectangular

shaped, as block A is, but they are both wedges pairs. By extracting or inserting

one wedge respect to the other for each block, the single thickness of a block can

be varied. To satisfy Eq. 3.12 if dB is reduced, i.e. one of the wedges of block

B is extracted, dC must increase of the same amount, meanings that one of the

two wedges of the C block must be inserted, in order to maintain constant the

overall thickness the the setup. In order to be able to control the movement of

both the two wedges they are mounted on the same translation stage.

Let’s consider an incident pulse propagating in the z-direction, polarized at

45◦ respect x and y. When light hits the block A the π-plain by construction

is the xy-plain while the main one is the xz-plain. This means that the electric

field component are projected from 45◦ to the x and the y axis with the same

intensity. Since block A is y-cut, on the y-direction light sees the extraordi-

nary refractive index, while on the x-direction there is the ordinary one. This

difference of refractive indices affect the velocity of the two electromagnetic com-

ponents. The one that sees ne will travel faster than the one that sees no since

α-BBO is a negative uniaxial crystal. The relative delay at the end of block A
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between the two orthogonally polarized component results

τ1 = dAδeo (3.13)

with δeo = 1
vge

− 1
vgo

, and vge and vgo group velocities of the extraordinary and

ordinary beam.

Out of block A the two replicas travel again with the same speed but delayed

by τA. When these two hit the x-cut B block, the first pulse now sees the higher

refractive index, while the x component detects the smaller ne. This is very

important since the two replicas in this way can be set again at a zero delay by

varying the thickness dB and moreover it will be possible to scan from negative

to positive relative delays. At the exit of this block the relative delay is expressed

by

τ2 = (dA − dB)δeo. (3.14)

The block B has two main roles: the first is connected to the control of the delay

by a linear dependence from variation of dB , ∆dB . The second is connected to

the phase lock, that is ensured to the fact the both the pulses pass through the

same optical elements.

Let’s now analyze the role of the third block C. It is again a pair of wedges

and it has been already said it is needed to maintain the overall thickness of

TWINS constant. It doesn’t introduce any additional delay between the two

pulses because of the position of the optical axis that this time is parallel to

the propagation direction of the beams. The main role of this block is thus to

valid Eq. 3.12. In this way the pulse that sees the same no refractive index in

the last two blocks, i.e. the y-component, will arrive always at a fixed delay

t0. The x component will be delayed by τ2 respect to the fixed one. Since one

of the two pulses sees always a fixed optical path, it is possible to know the

dispersion introduced by the birefringent material. The GDDo calculated on

the x component thus is fixed and can be compensated. This is very important

when working with transform limited pulses in ultrafast nonlinear spectroscopy.

It is possible to verify that the wedges movement affects the GDD of the y pulse

by a factor (GVDe −GVDo)∆dB , where GVD is the group velocity dispersion.

In most of the cases this variation can be neglected since is very small.

After these three blocks thus there are two delayed phased locked pulses.

In order to have the same polarization for both of them a polarizer must be

introduced after block C.

For this 2DES experiment the already cited α-BBO is used which refractive

indices a represented in Fig. 3.6. From their trends it is possible to see that this

uniaxial crystal is transparent in a very wide spectral region, and so it has good

optical properties even using ultrashort broadband pulses from UV to near IR.
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Figure 3.7: Sellmeier equation for Lithium Niobate (LiNbO3).

In the case of mid-IR radiation this kind of wedges will not be the best solution,

but they can be easily changed. Instead of α-BBO negative uniaxial crystal, it

can be used a Lithium Niobate (LiNbO3) which Sellmeier equations are shown

in Fig. 3.7 [17].

Due to the difference between the phase velocity and the group velocity,

defined in Eq. 3.9 and 3.11, between the two phase-locked pulses a delay-

dependent phase difference is detected. Defining δgp as 1
vg

− 1
vp

with vp referred

to the carrier frequency, it is possible to estimate this phase slip as

∆φ = (δgpx − δgpy)∆dB

= (δgpx − δgpy)
∆τ

δeo

(3.15)

where δgpx and δgpy are the δgp for the x and y component respectively, while

∆τ is the relative delay variation due to ∆dB . This phase contribution will

appear in the characterization of TWINS.

Note that blocks A, B and C are independent from each other and thus their

disposition can be mixed and reversed. It will be shown later how the final setup

looks in order to have a precise control of the position of the two sliding wedges.

3.2.3 Test of the setup

This setup has been tested in order to verify its stability and accuracy. The

test involves the spectral interferometry, powerful instrument that can be used

to retrieve many information on the pulses, even if it doesn’t allow to retrieve

the spectral phase and shape of it.

In Fig. 3.9 it is reported the experimental realization of the device. Since

each component is independent the idea is to put the two translating wedge
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Figure 3.8: TWINS. Block A has a fixed thickness and introduces
a fixed delay τ1 between the two orthogonally polarized component
of an incoming beam polarized at 45◦. Block B by the movement
of one of the two wedges is able to inverse the delay between the
two replicas. The final delay is τ2 = (dA − dB)δeo. Block C is
needed in order to maintain the overall thickness of TWINS constant
dA + dB + dC = const.
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together on a single translation stage in order to be sure that the two were

moving of the same amount. Due to different cut of the wedges the second

pair of mixed wedges is necessary to guarantee that the two beam travel again

perfectly parallel. Since the thickness of the third block is kept fixed during the

experiment, the other two wedges are placed at the minimum insertion.

The translation stage has a spatial resolution of 0.0086 µm. The wedges

have a wedge angle of 7◦, a minor thickness of 0.5 mm and a major thickness of

almost 3 mm. Thus the delay resolution that TWINS have in this geometry is

around 0.44 as (at λ = 500 µm).

The first test performed on the wedges is aimed to check if the setup is able

to maintain fixed the delay of the fixed delay replica. This is done by spectral

interferometry (SI). On one arm of an interferometer the TWINS device is placed

while on the other arm, the light is freely propagating. Making interference

between the fixed replica, i.e. the y component, and the same component of

the free propagating beam, by scanning the stage it is possible to see that the

interference pattern remained fixed. The setup used is sketched in Fig. 3.10.

Once that all the imperfection due to a misalignment or to some irregularities

in the crystal were corrected by the opto-mechanical mounts to verify that by

moving the stage the arrival time of the fixed replica is always the same t0.

Trying to analyze all the properties of the setup other tests have been per-

formed. In particular a first simple test done is a spectrally resolved auto-

correlation measurement of TWINS. In Fig. 3.11 are represented the pulse pair

spectra associated to different wedges position, i.e. to different delay. These

spectra are resolved respect the probe frequency in the NIR spectral region

(vertical axis in figure). The bidimensional map obtained is the typical fringed

pattern that can be obtained from auto-correlation measurements. The position

associated to the zero delay between the two replica is detected by the dashed

white line in the map. As it is possible to see on the left the fringes have a

negative slope, while on the right, i.e. for delays bigger than zero, the slope is

positive. This tilt is even bigger going to longer delays.

By making the Fourier transform with respect to τ (horizontal axis) of the

2D map, it is obtained the Fourier-dependent calibration of group delay τ , the

residual group delay dispersion (GDD) and the relative phase slip ∆φ introduced

by a given wedge movement. The Fourier transform is shown in Fig. 3.12.

From the tilt angle of the trace it is clear that different spectral components

see different phase velocity. The new horizontal axis of the Fourier transform

is composed by the so called pseudo-frequencies ντ , i.e. the physical variable

associate to the Fourier transform of the delay (or wedges position). From the

figure it easy to see that there is a shift between the probe frequency and the

horizontal axis, indeed the transform is slightly shifted respect to the diagonal.
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①

②

Figure 3.9: Setup of TWINS. The two translating wedges are com-
bined together on the same translation stage. The fixed pair of
wedges is needed to make the two beam walk again parallel. This
variance of the setup is possible thanks to the independence of each
element in the setup.

Figure 3.10: Simple interferometer involved in the measurement of
the fixed delay t0 of the y-polarized replica out of the TWINS.
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Figure 3.11: Interference fringes between the two pump pulses due
to one complete scan of the translation stage. The white dashed line
correspond to the zero delay position of the stage.

In order to be able to associate pump frequencies to the pseudo-frequencies

hence a small contribution, approximately linear, must be taken into account.

This shift of frequencies is due to the rotating frame related to the phase slip

previously introduced. The calibration of the TWINS device hence contains all

these information and is necessary for the analysis of the maps obtained from

the 2D spectroscopy.

Another information that can be retrieved from the auto-correlation on the

TWINS device it the auto-correlation function of the pump pulse. In Fig 3.13 is

represented its the temporal behavior. Since the measurement is not performed

symmetrically respect to the zero delay, the temporal trace is not centered at

time zero. The nice shape of this function is due to the high precision and

resolution of the considered setup.

3.2.4 Realization of the opto-mechanical components

To conclude this chapter it is presented the project and the realization of the

opto-mechanical setup designed for TWINS. This concept must take into ac-

count all the imperfections connected to the imperfection of the shape of the

wedges, to the cut of the crystals and the misalignment. Many idea were pre-

sented but the final one is sketched in Fig. 3.14. All the wedges are positioned

as close as possible in order to reduce all the walk off between the two orthog-

onally polarized pulses. The home-made final setup is visible in Fig. 3.15.
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Figure 3.12: Fourier transform of the interference pattern obtained
from the TWINS. Each frequency have a different phase velocity and
thus the transform is tilted. The position off the diagonal (dashed
white line) is due to the rotating frame related to the phase slip. From
this data is retrieved the calibration needed in the 2D maps analysis.
It allows to associate the right pump frequency to the relative delay
of the pump pulses.

−400 −390 −380 −370 −360 −350 −340 −330 −320 −310

2

3

4

5

6

7

8

x 10
6

Group Delay (fs)

A
u
to

c
o
rr

e
la

ti
o
n
 F

u
n
c
ti
o
n
 (

a
.u

.)

Figure 3.13: Auto-correlation function of the pump pulses retrieved
by the auto-correlation measurement of the TWINS device.
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Figure 3.14: CAD project of the TWINS setup.
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Figure 3.15: Real aspect of the TWINS.

Figure 3.16: Real aspect of the TWINS. Top view.
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Chapter 4

Experimental setup

This chapter describes the setup realized in the laboratory in order to perform

bidimensional electronic spectroscopy experiments (2DES). It is first presented

the light source used in the laboratory, then it is described the optical param-

eter amplifier (OPA) used for the experiment. The NIR radiation is energetic

enough to excite electronic transitions, and thus to electronic spectroscopy [18].

This OPA emits ultrashort transform limited pulses in the near infrared (NIR)

spectral region. The last paragraph describes setup built for the 2DES mea-

surement.

4.1 Light source

The laser used in the laboratory is a Libra Ti:sapphire pulsed laser from Coher-

ent. The basis of this laser is the Kerr-lens mode-locking technique that allow

to have high pick energies pulses with short temporal duration. The limiting

factor for pulses is the time-bandwidth product that limits the temporal duration

of a pulse:

∆t∆ω ∼= 1. (4.1)

It is possible to define this product to different pulse shape. Table 4.1 shows

the time-bandwidth product for the more common pulse shapes.

Pulse shape Time-Bandwidth product ∆t∆ν
Square 0.886

Gaussian 0.441
Hyperbolic secant square 0.315
Single sided exponential 0.110

Table 4.1: Time-bandwidth product for different pulse shapes.
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In the time-bandwidth product formula the equality holds for transform

limited pulses. If the different frequencies of the wavepacket are dispersed,

equation 4.1 becomes

∆t∆ω > 1. (4.2)

The Libra Ti:sapphire laser is characterized by a pulse duration of less than

100 fs, by a 30 nm bandwidth centered at 790 nm (corresponding to 14 THz)

and by a mean power at the output of 5 W at 1 kHz of repetition rate. Fig.

4.1 shows the constitutive blocks of the Libra system.

First block is the Vitesse that is the seed generator. This pulse is amplified

in a regenerative stage based on a Ti:sapphire crystal pumped by the Evolution.

In order to enhance the peak intensity of the outgoing pulse the amplification

system used exploit the chirped pulse amplification. Thus a stretching stage and

a compressing stage are present too.

In the Vitesse box there is a pump Verdi CW laser at 532 nm that is used into

a cavity to pump a nonlinear crystal in order to generate a mode-locked seed.

The generation is made into a Ti:sapphire crystal in which, after a perturbation,

thanks to self focusing and hence Kerr lensing, mode-locking pulse emission take

place. Out from the cavity thus there is a mode-locked seed that must amplified.

The amplification is realized into another Ti:sapphire crystal pumped by the

second harmonic of a Q-switched laser at 527 nm generated in the Evolution

cavity with a Nd:YLF crystal. This pump pulse is sent twice into the amplifi-

cation crystal in order to maximize the pump efficiency. Working with pulses

means to deal with extremely high peak energies and thus amplification pro-

cesses must take into account different steps. The incoming seed is firstly sent

into a stretcher that reduces the peak energy and disperse all the frequency

components. Then the beam passes into the crystal several time in order to

obtain a certain amplification. After some bounces the beam goes out from the

regenerative stage and goes into the compressor that is a negative image of the

stretcher, and thus put all the frequencies together enhancing again the peak

energy. The outcoming beam thus will be transform limited and with a very

high peak energy.

In order to control the amplification, two Pockels cells are introduced in

the regenerative stage. Their role is to control the number of bounces into the

amplification crystal. The more these bounces are, the higher the energy of the

pulse is. In Fig. 4.2 is represented a scheme of chirp pulse amplification process

while in Fig. 4.3 is depicted the only regenerative amplifier.

Pockels cells (PC-1 and PC-2 in figure) control the number of bounces of

the stretched seed into the crystal. The first allows the entrance of the seed in
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Figure 4.1: Setup of Libra laser from Coherent.
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Figure 4.2: Scheme of chirped pulse amplification.

the regenerative stage, while the second controls the ejection of the amplified

pulse. In standard configuration seed passes through the crystal five times. By

controlling the delay of the Pockels cell it is possible to vary the number of

reflection and thus the power of the laser. In the regenerative stage the pulse

from the stretcher goes into the cavity and if the Pockels cells are OFF passes

through the quarter-wave plate two times and thus its polarization is rotated by

90◦. If the incoming pulse is s-polarized, thus it gain a p-polarization. Then the

PC-1 is switched ON in order to maintain this polarization as long as the pulse

remain in the cavity. Remind that with p-polarization it is possible to reduce the

reflection losses by choosing the Brewster angle between light and amplification

crystal. When the pulse has made enough bounces PC-2 is switched on and

rotates the polarization of the beam again to s. Now the prism act as a mirror

and reflects this polarized pulse away towards the compressor.

At the end of all these steps the resulting pulse outcoming from the Libra is

transform limit with 5 W of mean power with a repetition rate of 1 kHZ and

p-polarized.

In order to measure the beam size, a knife edge measurement it has been

performed just out from the laser. The waist is almost round with circularity of

0.9 meanings that the horizontal waist is slightly bigger than the vertical waist.

The mean value of the waist is near 4mm, meanings that the diameter of the

whole beam is near 8mm. In Fig. 4.4 is reported an image of the beam made

by an apposite camera from Coherent.
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Figure 4.3: Regenerative stage of the Libra laser from Coherent.
The green pump is folded in order to maximize its effect. The signal
is passing through the amplification crystal a number of time set by
the Pockels cells (PC1 and PC2).

Figure 4.4: Beam spot of Libra laser from Coherent.
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Figure 4.5: Second order nonlinear effects. a) Sum frequency gen-
eration. The two incoming pulse have the same frequency ω1 and
thus ω2 = 2ω1. b) Sum frequency generation. The two incident beam
have different energies and sum up. c) Difference frequency genera-
tion. The third generated pulse is the difference of the first two. d)
Optical rectification. The incoming two pulses have energies that are
very close and thus the generated pulse is in the THz region.

4.2 Optical Parametric Amplifier

The Libra laser beam is used to yield broadband pulses. Such pulses can be

generated by optical parametric amplification, a process occurring in nonlin-

ear crystals. In particular it is a second order process like second harmonic

generation (SH), sum frequency generation (SFG), difference frequency gener-

ation (DFG) and optical rectification (OR). All these phenomena represented

in Fig. 4.5 involve two incoming beams that interact in order to generate the

third, maintaining the overall energy constant. Optical parametric amplifica-

tion (OPA) is a difference frequency generation process in which one of the two

incoming pulses is more intense respect to the other.

Second harmonic generation is a nonlinear interaction where two identical

pulses generates a pulse with twice the energy of the first two. Its frequency is

thus ω2 = 2ω1, where ω1 is the angular frequency of the incident pulses and ω2 is

the one of the generated beam. Sum frequency generation is the general case of

second harmonic generation: if two incident pulses are different, the generated

beam has a angular frequency that is the sum of the first two. Difference

frequency generation instead is the a second order interaction in which from

a high energy pulse, it is generated a low energy one. Since there is the need

of three pulses a second incident pulse is needed and the relation between the

angular frequencies is ω1 − ω2 = ω3, where ω1 > ω2, ω3. Optical rectification

can be seen as a particular case of the previous case in which the two incoming

pulses have almost the same energy. The generated pulse has a very slow angular

velocity and thus is in the THz region.

All these effect are present every time that the two interacting pulses are

synchronized in time and space when pass through a second order nonlinear

crystal. It is possible to select one respect to the other thanks to the phase
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matching that allows to make one of these nonlinear effect more efficient respect

to the others. Phase matching can be done by angle tuning or by temperature

tuning. In both the cases one second order process is enhanced.

Optical parametric amplification (OPA) is a second order nonlinear process

in which the three acting pulse are defined as pump, signal and probe pulse. The

pump pulse is the more energetic one at ωP , the signal is the second incident

beam, i.e. the seed at ωS while the idler is the generated third pulse at ωI.

Thus the relation between the three angular frequencies is ωP > ωS , ωI . Due to

energy conservation, while the idler is generated, the signal pulse is amplified,

i.e. for each pump pulses signal and idler pulses are generated (parametric down

conversion).

In this amplification all the transitions that play role in the second order

processes, are made upon virtual level and not upon real levels, as it occurs for

laser amplification. This affects the band of the generated pulses that can be

very broad. For this reason OPAs are very useful: it is possible to generate

broadband ultrashort pulses in different spectral regions.

In order to understand how this amplification works let’s consider a birefrin-

gent negative uniaxial crystal of BBO (β-Barium BOrate or β-BaB2O4) that

allows to have second order polarization terms, i.e. it is a non-centrosymmetric

crystal. The parametric amplification take place when the pump and the signal

are overlapped in space and time. Thus OPAs must have a very accurate system

for the delay tuning. In order to maximize the efficiency of the amplification

the group velocity mismatch must be taken into account. The best condition

for OPA is when the pump travels in the between of the idler and the signal, in

this way the amplification is more efficient.

In order to understand what it has been said, it is necessary to consider the

group velocity mismatch between two pulses and the pump defined as

δS−P =
1

vgS
− 1

vgP

δI−P =
1

vgI
− 1

vgP

(4.3)

where vgS and vgI are the velocity of the signal and idler respectively, and vgP

is the group velocity of the pump. If the pulse splitting length is the maximum

spacial length in which two pulses interact, it is defined as

LS−P =
τ

|δS−P |
LI−P =

τ

|δI−P | .
(4.4)

The term τ in the equation is the maximum interaction time that is supposed to
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Figure 4.6: Best condition for optical parametric amplification. The
pump pulse has a velocity that is between the one of the signal and
the one of the idler.

be exactly equal to the pulse duration, that to simplify the analysis, is considered

the same between the two interacting pulses. Considering the velocity of the

signal and idler respect the pump, it is possible to see that

δS−P δI−P > 0 ⇒ vP < vS , vI ∨ vP > vS , vI

δS−P δI−P < 0 ⇒ vI < vP < vS ∨ vS < vP < vI .
(4.5)

In the fist case the overall interaction length L will smaller than the one of the

second case where it is bigger than the two pulse splitting length individually.

This is due to the fact that if the pump travels between the signal and the idler,

each time that the DFG occurs between the pump and the signal, the idler pulse

will move in the direction of the pump. The same is true when the nonlinear

effect occurs between the pump and the idler. Fig. 4.6 shows the optimum

solution.

In order to maximize the tunability of these instruments the seed is a white

light supercontinuum, in this way many component can be amplified in the same

time. In order to extend the phase-matching band a non collinear geometry is

chosen. This configuration is called NOPA: Non collinear Optical Parametric

Amplifier. In this geometry the pump and the signal are not collinear and thus

thanks to the angle that they form with the optical axis of the BBO, it is possible

to play with the extraordinary refractive index seen by one of the two. This

degree of freedom helps for the group velocity matching of the three pulses and

hence on the bandwidth that linearly depend from this term [19]:

∆νF W HM ∝ 1

|δS−P | (4.6)

After the parametric amplification it is possible to write the parametric gain

of the signal and the idler as function of the pump pulse intensity IP as

G ∝ e
√

IP . (4.7)
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Figure 4.7: NIR-NOPA setup.

4.2.1 NIR-NOPA

The ultrashort broadband source realized for the experiment is a NOPA in the

near infrared spectral region (NIR). In Fig. 4.7 is sketched the setup. Light

from laser enters in the setup through Iris 1 and is divided into two replica by

a beam splitter (BS) with reflectivity of 30% and transmission of 70%. The

weaker replica is used for the white light generation by supercontinuum into a

sapphire plate of 2 mm of thickens. The transmitted part is used as pump. Due

to conservation of energy, to obtain a NIR pulse from the OPA, the pump must

be the second harmonic of the laser beam (400 nm) and thus a second harmonic

crystal is used. In order to remove all the residual non converted light two color

glass filter (CGF1 and CGF2 in figure) are put into the path of the pump pulse.

Pump and signal are crossed at a certain angle in order to take advantage from

the noncollinear geometry. In order to amplify only the near infrared region of

the white light, a black filter (CGF3) is introduced after the white generation:

this filter removes all the visible components of the generated supercontinuum,

leaving the infrared one passing through. In the focal spot where the pump and

the seed are overlapped in space and time is positioned another BBO crystal

that is the one that amplifies the frequencies of interest. In order to control the

temporal overlap between pump and seed an optical delay line (ODL) is put

along the pump walk.

Due to the geometry chosen the amplified signal is generated in the same

direction of the incoming seed, while the idler pulse is generated in the opposite

side respect the pump pulse. By tuning the angle of the BBO, i.e. by changing

the phase matching, it is possible to tune the generated NIR pulse near the

800 nm or more in the infrared spectral region near 1050 nm. Due to phase

matching by varying the central wavelength of the amplified signal, the idler is
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Figure 4.8: Signal wavelength dependence of the phase-matching
angle in a BBO crystal with a 390 nm pump wavelength. [3]

also changing. For a signal tuned at 900 nm the idler is centered around 700

nm.

In order to obtain the widest bandwidth possible there are some rules to

take into account in the realization of the setup. The main is the control of the

angle between the pump and the seed. The best solution is to have an angle

of ∼ 4◦ between the two, that means that at 35 cm from the BBO crystal the

two beams must be at 2.5 cm one from the other. The BBO OPA crystal must

have an angle of ∼ 30◦ respect the pump pulse. The best choice is thus to put

a 32◦ cut crystal with the optical axis parallel to the polarization of the pump

(i.e. horizontal) and to tilt it slightly. This can be seen also from Fig. 4.8

where is represented the signal wavelength dependence of the phase-matching

angle in a BBO crystal with a 390 nm pump wavelength [3] [19]. In the NIR

region, not represented in figure there is the need to tilt slightly the crystal.

The phase matching is a Type II, that means that the signal and the idler

will be orthogonally polarized. In the NIR-OPA realized the signal is vertically

polarized this means that it sees the ordinary refractive index in the crystal.

In the final setup from the Libra laser only 400mW with 1kHz of repetition

rate enters in the NIR-NOPA. The 70% will act as pump that passes through

a second harmonic BBO. This second order process has an efficiency of almost

the 30% but, due to filters set to remove the residual 800 nm radiation, the blue

pump pulse has an energy of 40mW . The white light generation is performed

with only a portion of the radiation and thus it is done with only 2mW of power.

The output generated signal has an average power of 2 µW at 950 nm and a

band of nearly 100nm. Since the generation is performed in dispersive media

there is the need to compress the generate pulse after the optical parametric

amplification. In next section is described how this can be done in the NIR

spectral region.
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Figure 4.9: Prisms pair compressor.

4.2.2 Pulse compression

Dispersive media, i.e. all the optical materials involved in the setup, act in

different manner on the different spectral component of the pulses going to vary

the duration and the quality of the pulse. Thus the overall amplified pulse has

a certain chirp that must be compensated. The dispersive media that affect

the NIR pulses are the air and all the optical transmitting component that are

involved in the setup, i.e. lenses, sapphire plate and crystals.

Pulse compression must act on the different spectral component individually

in order to be able to remove the different optical path seen by each. Thus there

must be introduced other dispersive media but with a overall dispersion that has

the opposite sign of the one generated in the setup. Since all the dispersive media

involved introduce a positive dispersion, the pulse compression is performed by

the insertion of a negative dispersion component.

Many are the solution that allows to compress the pulses, such as chirped

mirror, pair of gratings, pair of prisms or pulse shapers. The simpler one that

can work in the NIR spectral region is the prisms compressor. This setup works

as it can be seen in Fig. 4.9. There are two identical isosceles prisms of fused

silica (SiO2) with angles of 60◦ that are crossed by the pulse twice. First prism

divides all the spectral component giving to each a different deviation angle.

Due to the Sellmeier equation of the fused silica, the low frequencies arrive

before the high ones, and thus it introduces a positive chirp. The red is less

deflected respect to the blues and thus while entering in the second prism it

passes through less amount of glass. After the second prism there is a reflecting

mirror that folds the beam backward so that out of the fist prism the pulse has

all the spectral component overlapped again.

This prism compressor introduces an overall negative dispersion due to the

geometry and thus it slows the lower frequencies respect to the higher ones. The
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Figure 4.10: NIR non-collinear optical parametric amplifier spec-
trum tuned ad 900 nm.

same is true for the third order dispersion, thus it can be written

D2 = D2,compressor +D2,glass

D3 = D3,compressor +D3,glass

(4.8)

where D2,compressor and D3,compressor are negative and bigger than D2,glass and

D3,glass that are positive and all are proportional to the distance L between the

prisms.

In order to reduce the reflection losses on the surface on the prisms, they

are positioned at Brewster angle respect the beam that must be p-polarized.

In this way these losses are avoided. Moreover prisms are put at the minimum

insertion, meaning that the overall amount of glass is minimized.

In order to compress the NIR pulse the degree of freedom on which it is

possible to play is the distance between the prisms edge L. By measuring the

duration of the NIR pulse after compression it has been found that the optimum

distance L is around 16.3 cm.

4.2.3 Pulse characterization

The NIR-OPA has been characterized by measuring the pulse duration and

pulse spectrum. The NOPA is pumped with 400 mW, the 390 nm pump has a

power of 40 mW and the white light is generated with 2 mW. The outer NIR

pulse has a maximum power of 2 mW ca. The optimized spectrum associated

is centered at 900 nm and is reported in Fig. 4.10. The ∆λ is in the order of

magnitude of 100 nm, thus the NIR pulse has a band of 40 THz ca.

The temporal duration of the pulse is investigated by a nonlinear technique,

i.e. the second harmonic FROG (SH-FROG). The measured auto-correlation

function is analyzed with a quite complex algorithm that allows to retrieve

information about spectral phase and spectral intensity of an unknown pulse.

In Fig. 4.11 is reported a FROG trace showing that the pulse duration is less
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Figure 4.11: FROG trace of the NIR pulse and spectral phase and
pulse duration retrieved from the map.
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Figure 4.12: Pump probe geometry for 2DES.

than 15 fs, near the transform limited value.

4.3 2D setup

The bidimensional electronic spectroscopy set-up is schematized in Fig. 4.12.It

can be easily implemented since it is based on a simple auto-correlator. In one

arm the free propagating probe passes through an optical delay line so that it

can be delayed respect the pump pulses.

In the other arm of the auto-correlator the two pump pulses are generated

by the TWINS setup. Due to the dispersion introduced by the wedges the two

pump pulses must be compressed. This can be done thanks to some particular

chirped mirror that work in the NIR region [20] [21].
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Chirped mirror are dielectric multilayer mirrors that are able to give a certain

negative dispersion. Dielectric mirror made by multiple thin layers of dielectric

material grown on a substrate. The choice of the material and the thickness of

the layers allow to generate high reflective mirror for certain spectral regions.

The succession of low and high refractive index layers is the responsible of

the final behavior of the mirror. Indicating with dH the thickness of the high

refractive index layer and by dL the one of the other layers, it is possible to

represent the dielectric mirror as in Fig. 4.13.a). Defining nH and nL the high

and low refractive index respectively the reflectivity of the mirror results:

R =

[

( n0

ns
)( nL

nH
)2n − 1

( n0

ns
)( nL

nH
)2n + 1

]2

(4.9)

where n is the number of couple of layers. To be able to reflect a certain

wavelength λ, there must be positive interference from all the reflections. This

fix the thicknesses of the layers at certain values:

dH =
λ

2nH
dL =

λ

4nL
. (4.10)

Chirped mirror are based on these kind of mirrors but are used in optics

as media able to give a negative dispersion able to compensate the positive

dispersion of the many optical material. Positive chirp given for example from

the air to a pulse act on it by slowing the bluer component respect to the redder.

Chirped mirror must do the reverse, i.e. they must be able to make propagate

more the redder spectral components. This is done by varying the thickness

of the layers gradually in order to be able to reflect in the former layers the

blue light, while the red is reflected in the latters. In Fig. 4.13.b) is shown the

behavior of the dielectric chirped mirror when hit by a broadband pulse. This

result is quite difficult to be obtained since the control on the thickness of the

layers must be very accurate.

Chirped mirror are often used in pairs, because the control of the group delay

dispersion is rarely as good as it is needed. It is often an oscillating function

and thus by combining the effect of one double chirped mirror (DCM) with

another it become at least linear. The drawback of chirped mirror is that they

introduce a certain dispersion for each reflection. By changing the number of

bounces between the chirped mirror, different dispersion are given to the pulse.

The more the bounces are, the more the introduced negative dispersion is. To

be able to finely control the dispersion of a pulse, chirped mirror should be used

together with come other continuum dispersive media like is represented in Fig.

4.14.

The chirped mirror used in the 2D setup are actually designed to be used
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Figure 4.13: a) Dielectric multilayer mirror scheme. Low refractive
index layers interchange with high refractive index layers always with
the same thicknesses. b) Chirped mirror scheme. The thickness of
the layers is changing inside the mirror in order to reflect different
wavelength at different depths.

Figure 4.14: Fine compressor. Dispersion introduced by a discrete
number of bounces on the double chirped mirror (DCM) is finely
controlled by pair of prisms.
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Figure 4.15: Double chirped mirror reflectivity and group delay
dispersion.
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Figure 4.16: FROG trace of the NIR pulse after the TWINS setup
and spectral phase and pulse duration retrieved from the map.

in the fs Ti:sapph lasers after the regenerative stage. In Fig. 4.15 are reported

the reflectivity and the group delay introduced: one can see that they work in a

very broadband spectral region from 600 nm to 1200 nm. Moreover the DCMs

were designed with an analytical method for computing dispersion of multilayer

coatings and generate the exact negative dispersion to compensate the path and

the optics into laser cavity. [21, 20]

By using these mirror to compress the pump pulses it has been found that

after three bounces per mirror the compression is not the best. The FROG

trace of the pump pulse is reported in Fig. 4.16. It is possible to see that the

pulse is not compressed completely and this is due to the discrete contributions

of the DCM used. Thus pump pulses have nearly 30 fs of temporal duration.

On the pump arm there are the TWINS setup and these chirped mirror. The
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Figure 4.17: 2DES setup.

TWINS setup is composed by one half-wave plate that turn the polarization of

the NIR-NOPA by 45◦, two pair of wedges orthogonally cut, one α-BBO plate

1.6 mm thick and one polarizer aimed at turning the two polarized pumps again

at 45◦. All these optical component introduce a positive dispersion that can be

compressed by the chirped mirrors since these elements introduce a negative

dispersion. The only limit of the DCMs is that they work with discrete steps,

i.e. with discrete number of bounces. By measuring the pump pulse duration

for the fixed replica that sees always the ordinary refractive index, it is has been

found that the optimum corresponds to three bounces on each mirror giving as

a result less than 28 fs. The compensation of the chirped mirror thus is not

optimal and should be finely adjusted in some other way.

The final setup is shown in Fig. 4.17. The probing area where the electro-

magnetic radiation interacts with the sample is made with concave mirror with

radius of 500 mm and hence with a focal length of 250 mm. The pump pulse

is spatially blocked by an iris while the probe with the target beam propagate

together. They are finally focused on a the revelation camera.

In order to perform the measurement on the electronic transitions on a sam-

ple of Carbon Nanotube (CNT), that will be described in the next chapter,

both the pump pulses and the probe were coming from the same NIR-NOPA.

Thus experiment is a degenerate bidimensional spectroscopy measurement in
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Figure 4.18: Pump and probe are orthogonally polarized during
the measurement.

the pump probe geometry. Due to this choice of pump and probe wavelength,

the signal is affect to scattering from the pump that interferes with the probe

pulse. The solution adopted is to set an angle between the pump and the probe

polarizations [22]: while the pump pulses from the wedges are polarized at 45◦,

the probe pulse’s polarization is turned at -45◦ respect the vertical axis. In this

way the two orthogonally polarized pulses should not see one the other. Due

to the sample nature it is possible to detect some signal even if it is pumped at

a crossed polarization. In the setup hence a polarizer is introduced also in the

pathway of the probe pulse. Pump and probe polarization is sketched in Fig.

4.18.
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Chapter 5

Experimental Results

In this chapter is presented a measurement of bidimensional electronic spec-

troscopy (2DES) on a single wall carbon nanotubes (SWNTs). This experiment

is performed with the setup described earlier with the NIR pulse generated from

the noncollinear optical parametric amplifier. In the first section is briefly pre-

sented the sample. The aim of the experiment is to look at the inhomogeneous

broadening in such a system (see Appendix ??). Several 2D maps has been

recorded at different T time in order to follow the photoexcited dynamics of the

SWNTs.

5.1 Carbon nanotube

Carbon nanotube (CNT) are allotropes of Carbon (C) that due to its valence

can grows in different forms. Diamonds, graphite, graphene and fullerenes are

different kind of allotropes that can be found. Carbon nanotubes belong to the

last group together with some spherical and ellipsoidal formation.

Carbon nanotubes are at least what can be considered a one-dimensional

(1D) system: it has one atom in thickness, few tens of atoms in circumference

and many microns in length [4]. CNT are formed from a rolled one-atom thick

carbon layer, that is the graphene.

The structure and the physical properties of this sample are strictly con-

nected to its chiral vector ~Ch. In order to understand how this vector is, let’s

consider the hexagonal honeycomb lattice in the real space of the graphite drawn

in Fig. 5.1. Being ~a1 and ~a2 the real space basis vector, the chiral vector ~Ch is

defined as
~Ch = n~a1 +m~a2 ≡ (n,m) (5.1)

where n and m indicate the number of bases vector ~a1 and ~a2 contained in the
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Figure 5.1: Graphite sheet structure. Chiral vector connects two
identical point in the real space of the material [4].

chiral one. This vector is crossed with the ~a1 direction at an angle θ that is

defined chiral angle.

The chiral vector connects two crystallographically equivalent sites O and A

on a two-dimensional (2D) graphene sheet where a carbon atom is located at

each vertex of the honeycomb structure. The graphite plane is thus rolled and

the junction is along the two parallel direction OB and AB’.

The diameter dCNT of the resulting nanotube is hence connected to the

chirality i.e. to (n,m) as follows

dCNT =
Ch

π
=

3
1
2 aC−C

(

m2 +mn+ n2
)

π
(5.2)

where Ch is the amplitude of the chiral vector and aC−C is the nearest-neighbor

C-C distance. The chiral angle θ is define as

θ = tan−1

[

3
1
2

m

(m+ 2n)

]

. (5.3)

A CNT can be thus identified from the chiral vector ~Ch or also from ts

diameter dCNT and chiral angle θ. From these parameter it is possible to retrieve

several information also about the physics of the sample. It must be considered

that carbon nanotube can be either metallic or semiconductor. From literature

it is possible to establish one rule that allows to distinguish the one from the
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Figure 5.2: Density of state (DOS) of 1-D semiconducting carbon
nanotube. Discontinuous spikes are the Van Hove singularities. [5]

other. If n and m indices satisfy the following equation

2n+m = integer (5.4)

CNT behaves as a metal.

Since CNT are a model of 1-D system it density of state (DOS) is not contin-

uum but it is discrete with discontinuous spikes called Van Hove singularities.

By looking at the transitions in Fig. 5.2 the only allowed are between v1 → c1

or v2 → c2, etc. labeled as E11 and E22, etc. The energy of the Van Hove

singularities depend on the type of nanotube and hence from the chirality.

The optical transitions Eii thus are intrinsically defined from the type of

CNT considered. Since the transition is quite sharp, the optical signal allows

to detect without ambiguity the nanotube under test [5].

One topic of big interest is the study of the dynamics of the CNT in order

to analyze the photoexcitational transfer along the tube. Moreover it is very

interesting the study of energy transfer between two different nanotube coupled

in a system [23] [24] [25] [26].

Carbon nanotube are nowadays a hot topic since they have interesting elec-

tric, thermal and mechanical properties that make them promising for many

application from optoelectronic to photovoltaic.
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Figure 5.3: Absorbance of the carbon nanotube prepared at the
University of Würzburg.

5.1.1 CNT (6,4) and (7,5)

The carbon nanotube analyzed in our laboratory is a coupled system in which

the predominant chiralities are (6,4) and (7,5). It has been studied the first

excitonic transition of the system whose absorption spectrum is represented in

Fig. 5.3. The sample shows two peaks at 900 nm and 1000 nm (335 THz and

300 THz respectively). From literature it is possible to relate these absorption

frequency to the two cited nanotubes [5]. From the spectrum it can be seen

that there is a shoulder around 320 THz maybe due to the presence of the (6,5)

carbon nanotube.

In the bidimensional spectroscopy experiment it has been used the NIR

characterized pulse from the NOPA that allows to excite both the two nanotubes

together. The aim of the experiment is twofold: first of all to look at the

inhomogeneous lineshape of the nanotube, and in second instance to check if

some energy transfer take place between the two CNTs.

5.2 2D maps

The very first results recorded in the 2DES experiments are represented in this

paragraph. The temporal trace at different delays between the pump pulses

is represented in Fig. 5.4. By Fourier transforming this map respect to the

horizontal axis and considering the calibration obtained from the wedges it is

obtained the bidimensional map as a function of two frequency axis, the pump

and the probe frequency (Fig. 5.5). The resolution along the pump spectral

components is the additional information given by 2DES. The 2D maps have

been recorded at 50 fs, 100 fs, 200 fs, 500 fs and 1 ps of T delay.
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Figure 5.4: Temporal trace recorded in the 2DES experiment.

In the maps the positive signal represent a strong transient bleaching signal

assigned to population on the first excitonic state E11. Fig. 5.5.A) is the map

at 50 fs of delay. It is possible to see both the excitations of the (6,4) and (7,5)

nanotubes. Fig. 5.5.B), C), D) and E) report the situation at 100 fs, 200 fs

500 fs and 1 ps T delays. It is observed an elongated peak at 900 nm (335

THz) that changes in shape at later delays, reflecting the inhomogeneity of the

system. From these maps is represented also the dynamic of the first excited

state that is slowing relaxating.

In the very first time the CNT is excited and probed at the same frequencies

(signal on the diagonal). That means that the CNT excited at a certain pump

frequency remembers this pump energy and is probed at the same one. After

some time CNT looses the memory of the pump and thus the spot become less

defined and more spread in frequency. This can be explained by a zoom of the

most intense peak in Fig. 5.5. In Fig. 5.7.A), B) and C) are thus displayed a

zoom on the (6,4) CNTs signal at 50 fs, 200 fs and 1 ps of T delay. It is possible to

see that the spot is not perfectly circular due to the inhomogeneous broadening

of the sample. It is easily detected in 2D maps by a direct comparison with

the homogeneous broadening that is the width of the spot in the anti-diagonal

direction (white arrows in figure). At bigger T the system looses memory of the

excitation (dephasing) and the spot increases in size and is more blurred. This

change in shape can be interpreted as a spectral diffusion of the system. Kowing

the homogeneous broadening is very important because from its evolution, it

is possible to evaluate the dephasing time of the system. From Fig. 5.7 the

homogeneous broadening at 50 fs, 200 fs and 1 ps respectively, has a linewidth

of 5.94 THz, 6.26 THz and 8.658 THz. As expected this value is increasing in

time.

The homogeneous absorption spectra as retrieved in Eq. 2.18 is a Lorentzian
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Figure 5.5: 2DES maps at different delays between the second pump
pulse and probe.
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Figure 5.6: Lorentzian lineshape. The FWHM is related to the
dephasing time.

A)

50 fs 200 fs 1 ps

Figure 5.7: Zoom on the (6,5) CNT 2D map at different T delays.
The white arrows indicate the homogeneous broadening. It is possible
to see that the spot is even more blurred as the delay T increases.

function that is directly related to the dephasing time:

A(ω) ∝ Γ

(ω − ω0)2 + Γ2
(5.5)

where Γ is

Γ ∝ 1

T2
(5.6)

and T2 is the dephasing time of the system. The maximum value of this lineshape

is when ω = ω0 and thus it is proportional to 1
Γ . Thus the FWHM of the

Lorentzian displayed in Fig. 5.6 is

FWHM = 2Γ ∝ 2

T2
. (5.7)

From the complete maps in Fig. 5.5 it seems that there is no relevant

energy exchange between the two nanotubes. More measurement can help to

understand if the absence of the cross peaks is due to the sample itself. Since
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Figure 5.8: Marginals of the 2D maps at 50 fs, 200 fs and 1 ps of
T delay.

in literature ([23]) it seems that an energy transfer should relate two coupled

nanotube, the possible reason of the absence of the formation of cross peaks in

the maps in Fig. 5.5 can be due to the fact that the carbon nanotube are quite

far and thus don’t interact each other.

In order to prove the importance of bidimensional spectroscopy these results

are compared to those obtained from a simple pump probe experiment. 2DES

bases its great potential to the spectral resolution along the pump axis and on

the possibility to read all the information available with other nonlinear spec-

troscopy techniques. Thus if the integral over the pump axis is performed the

resulting data are equivalent to those retrieved from a pump-probe experiment.

This marginals evaluated from the 2D maps are shown in Fig. 5.9 at all the

different population delays T. From this data it is possible to measure the decay

of the excitation of the first excited state. It seems that both the peaks decay

in time with almost the same temporal constant. This validate the hypothesis

of non-coupled carbon nanotubes in the sample.

From pump-probe experiment any information about the inhomogeneity of

the sample can be retrieved. By plotting the singularity normalized spectra at

different T, the only difference that can be seen in the central frequency of the

peak. In Fig. 5.8 are plotted the temporal spectra of the most intense peak of

the (6,4) CNT. It is visible a very small red shift of the peak, while the shape is

almost the same. Anything can be said about the composition of the sample. By

looking at the same delays displayed in Fig. 5.7 it is evident the great potential

of the bidimensional spectroscopy since it says something about the lineshape

of the CNT.

To understand if the absence of energy transfer between the CNTs is an issue

of the sample, a complementary fluorescence experiment could be performed.

82



280 290 300 310 320 330 340 350 360
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (THz)

∆
 
T
/
T
 
(
a
.
u
.
)

 

 

50 fs
100 fs
200 fs
500 fs
1 ps

Figure 5.9: Marginal of the 2D map. This data correspond to those
obtained from a pump probe experiment. The spectral resolution
along the pump axis is lost.

Fluorescence measurements loose the temporal resolution of the dynamics ad-

dress the question of a possible energy transfer in this system.

It should be said that many can be the reasons why this couplings are not

displayed. The fact the pump pulses and the probe one have crossed polarization

can be one, but also the analysis performed with broadband pulses that excite

both the CNTs can give wrong results.

Many are the improvements that can be done on the setup. First of all

the the pulses involved must be optimized since the one used in these experi-

ments were still not the optimal. The compression of the wedges must be finely

controlled and for example, using the NIR pulses, this could be easily done by

moving the prisms of the compression stage. In this way, since the measurement

is an auto-correlator experiment, the probe pulse will be chirped, but the tem-

poral resolution of the experiment would be better respect the opposite case of

chirped pump.

From the maps it is possible to see that the signal retrieved is quite noisy

and this is due to some scattering between the two pumps in the sample. By

playing with their polarization these problem can be avoided but this solution

will limit the number of samples that can be measured.

Another test that can be done is to focus on the sample with a shorter focal

length. In this way pump and probe will be crossed at a bigger angle and thus

scattering from the pump can also be spatially filtered.

In light of all it has been said many other measurement can be performed

but it is evident that bidimensional spectroscopy has a very important role in

the analysis of systems.
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5.3 Conclusion

In this thesis I focused my attention on the development of a new nonlinear

spectroscopy system, the 2DES. In order to be able to realize a bidimensional

spectroscopy setup in our laboratory, we started from the realization of a near

infrared non collinear optical parametric amplifier (NIR-NOPA). The NIR pulse

has been compressed by a prisms compressor and then characterized with a

FROG technique from which we extracted a pulse duration near to the transform

limit value: 13 fs.

In order to develop a bidimensional spectroscopy setup in the pump-probe

configuration an auto-correlator has bean realized. On one arm a translation

stage allows the control of the population delay T (waiting time) while in the

other the TWINS device leads to the generation of a phased-locked delayed

pump pulses. TWINS is a system based on birefringence phenomena that gen-

erates two replicas locked in phase starting from a single incoming pulse. Thanks

to the possibility to finely control the temporal delay τ it is possible to obtain

a 2D map characterized by the spectral resolution on the pump axis.

We then recorder preliminary results obtained on a single walled carbon

nanotubes (SWNTs) sample. It is evident the great potential of this technique:

thanks to pump frequency resolved axis many features of samples can be de-

tected, like the inhomogeneous broadening. Carbon nanotubes absorb in the

NIR spectral range and thus in the recorded maps the bleaching signal of the

first excited state can be seen. We observed the inhomogeneous broadening by

looking at the shape of the spot of the signal. By measuring different maps in

function of T it can be also studied the evolution of the sample. In the case un-

der analysis we showed how the spot changes in shape proposing as a tentative

explanation a possible spectral diffusion in the nanotubes.

To conclude we showed how bidimensional spectroscopy can be more com-

plete respect to other nonlinear spectroscopy technique (as the pump-probe)

leading to a deeper analysis of matter.
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Appendix A

Homogeneous and

Inhomogeneous broadening

Homogeneoug and Inhomogeneous broadening of a sample are phenomena that

affect the spectrum of any material. This is due to all the interaction of the

system with all that is around. As a result of the broadening the linsehape of

the system is changing.

Let’s consider an atom. It has only one resonance frequency ω0 and thus

its absorption spectrum should be only a δ-function. But this is not true since

many factors make the lineshape wider. It is possible to distinguish between

causes of homogeneous and inhomogeneous broadening.

Homogeneous broadening happens when the lineshape is changing in the

same way and in any direction of the spectrum, non-depending on the resonant

frequency. This mechanism actually broadens the lineshape in the same way

for each atom. This make the δ-function a Lorentzian function. For example

this results when a system collides elastically with gases or when spontaneous

emission occurs (natural broadening). In Fig. A.1 is represented an example of

homogeneous lineshape: a Lorentzian.

When the broadening is not the same for every frequency, but is is different

it is the case of inhomogeneous broadening. It happens that the resonance fre-

quencies ωR of an atoms are distributed around some central frequency ω0 with

a certain distribution function. The mechanism thus distributes the resonance

frequencies over a spectral range. Many are the cause of this kind of broad-

ening. For example in a solid local electric and magnetic field (Stark effect)

generate a discontinuity in the lattice that is the responsible of this resonant

frequency distribution. Another possible reason is connected to phonons in a

material that modify the local potential of a sample. The resulting lineshape
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Figure A.1: Homogeneous broadening. Lorentzian lineshape.
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Figure A.2: Inhomogeneous broadening. Gaussian lineshape as a
conribution of many Lorentzian ones.

can be seen as many homogenous line composed toghether and resulting in a

Gaussian lineshape. In Fig. A.2 is displayed this concept.

Considering one single atom if different broadening mechanisms occur the

resulting lineshape is the convolution of the lineshape broadening contributes.

That mean that if only Lorentzian broadening take place, the final lineshape is

a Lorenztian. The same is true when only inhomogeneous Gaussian broadening

occurs, giving a final Gaussian lineshape. When both homogeneous and inho-

mogeneous broadenings affect the spectrum of an atom, the final lineshape is

the integral of the two curves, Lorentzian and Gaussian. This curve is defined

as Voigt profile [27].

In spectroscopy the analysis is performed on a ensable of atoms and molecules,

and thus revealing of homogeneous broadening is a quite hard purpose. The

principal contribute of the lineshape therefore is strictly connected to the in-
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homogeneous broadening that is responbile of the lineshape of the absorption

and emission spectrum of a sample, that hence will have a dominant Gaussian

lineshape.

In spectroscopy knowing the lineshape of a sample is very important since

from it it could be retrieved the dephasing time of the excited coherences.
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