
POLITECNICO DI MILANO

Scuola di Ingegneria dei Sistemi

Corso di Laurea Specialistica in Ingegneria Matematica

Dipartimento di Matematica

Development of the "fdakma" R package for the
joint alignment and clustering of functional data:

application to neuronal spike trains data

Relatori: Dott.ssa SANGALLI Laura Maria
Dott. VANTINI Simone

Tesi di Laurea di:

Mirco PATRIARCA

Matr. 751737

Anno Accademico 2012–2013

i

Ebbe ma eh alloooora!
M. Patriarca, Gli anni milanesi

i

Sommario

In questo lavoro di tesi si presentano le principali caratteristiche dell’analisi

di dati funzionali, soffermandosi sugli ultimi sviluppi teorici di questa nuova

branca della statistica. In particolare si tratterà il problema della registrazione

di dati funzionali con l’obiettivo di dare un solido framework teorico al pro-

blema. Saranno presentati tre metodi di registrazione, tra i quali il K-Mean Ali-

gnment, capace di effettuare allo stesso tempo clusterizzazione e allineamento,

e un metodo basato sulla metrica di Fisher-Rao. Il K-Mean Alignment verrà in

seguito utilizzato per analizzare un dataset funzionale, in cui sono raccolte

le intensità dell’attività neuronale di una scimmia impegnata in un esercizio

manuale. Nell’ultima parte di questo lavoro é stato sviluppato il pacchetto

R fdakma, disponibile sul CRAN. Questo pacchetto riassume il metodo del K-

Mean Alignment e permette di clusterizzare e allineare dati funzionali usando

diverse metriche/semimetriche e diversi tipi di warping functions.

PAROLE CHIAVE: Analisi di dati funzionali; Clustering; Allineamento; Time

warping; Similarità; Spike trains.

Abstract

In this work we present the basics of functional data analysis, pointing out

the latest developments in this new branch of statistics and in particular in

the subfield of functional data registration, in order to give a solid theoreti-

cal framework for the solution of the registration problem. Three registration

methods are presented, including the K-Mean Alignment method, able to jointly

cluster and align functional data, and the one based on Fisher-Rao metric. The

K-Mean Alignment technique will be used to analyze a dataset containing spike

trains intensities, i.e., data coming from brain impulses of a monkey doing a

particular task using his hand. In the last part of this work we develop an R

package called fdakma. This package, available on CRAN, resumes the K-Mean

Alignment method and allows user to jointly cluster and align functional data

using different metrics/semimetrics and different types of warping functions.

KEYWORDS: Functional data analysis; Clustering; Alignment; Time warping;

Similarity; Spike trains.

Contents

1 Introduction 2

1.1 Framework and motivation . 2

1.2 Objectives of the study . 3

2 Functional Data Analysis (FDA) 5

2.1 Introduction to FDA . 5

2.1.1 Phase and amplitude variability 8

2.2 Registration of functional data . 10

2.2.1 Problem definition . 10

2.2.2 State of art . 10

2.3 Minimum eigenvalue method . 15

2.4 K-mean Alignment method . 16

2.4.1 K-mean Alignment algorithm 19

2.5 Other registration approaches . 21

2.5.1 Fisher-Rao method . 22

3 Spike Trains Data: K-mean Alignment application 27

3.1 Dataset description . 27

3.2 First approach: non-periodic data 34

3.2.1 k-mean clustering k = 4 35

3.2.2 Affine warping k = 4 . 37

3.3 Second approach: periodic data 41

3.3.1 Shift warping k = 1 . 43

3.3.2 Shift warping k = 2 . 48

4 R package: fdakma 55

4.1 Introduction to the package . 55

4.2 R documentation . 56

5 Conclusions 74

References . 77

List of Figures

2.1 Example of functional data: Berkley curves 7

2.2 Example of amplitude and phase variability 9

2.3 Example of Landmark Registration: simulated data 13

3.1 Connection between brain and parts of the body 28

3.2 Paths of the experiment . 29

3.3 Visual representation of the experiment 29

3.4 Example of a single recorded spike 30

3.5 Examples of the four paths . 31

3.6 All 240 original curves . 31

3.7 Original curves divided by paths: path 1,2 32

3.8 Original curves divided by paths: path 3,4 33

3.9 Mean similarity indexes with different numbers of clusters. Re-

sults of kma.compare function . 34

3.10 K-mean Clustering without alignment: result 36

3.11 K-Mean Alignment, affine registration: results 37

3.12 K-Mean Alignment, affine registration: results, paths 1-2 38

3.13 K-Mean Alignment, affine registration: results, paths 3-4 39

3.14 Mean similarity indexes with different numbers of clusters and

’shift’ as warping method. Results of kma.compare function. . . 42

3.15 Periodic approach: shfit registration, k = 1 43

3.16 Periodic approach: shift registration, k = 1, paths 1-2 44

3.17 Periodic approach: shift registration, k = 1, paths 3-4 45

3.18 Periodic approach: shift registration, k = 1. Warping functions. 46

3.19 Representation model of warping functions. 47

3.20 Periodic approach: shift registration, k = 2 48

3.21 Periodic approach: shift registration, k = 2, paths 1-2 49

3.22 Periodic approach: shift registration, k = 2, paths 3-4 50

3.23 Periodic approach: shift registration, k = 2. Warping functions . 51

3.24 Periodic approach: shift registration, k = 2. Warping functions

colored by group. 53

List of Tables

2.1 Metrics/semimetrics and corresponding warping functions . . 22

3.1 K-mean clustering without alignment: confusion matrix 36

3.2 K-mean alignment, affine warping: confusion matrix 40

3.3 Periodic approach, shift warping, k = 2: confusion matrix 52

1

Chapter 1

Introduction

1.1 Framework and motivation

This work aims to present and develop the basic theory behind a new branch

of statistics, the functional data analysis, whose importance has exponentially

grown through the last decades and started to be investigated thanks of the in-

tuition of some pioneers, like Ramsay et Silverman (2005), who proposed this

different approach in analyzing data coming from realizations of functional

random variables. At the present the statistics community is still looking for a

theoretical framework to finally fix the basis of this new domaine, so interest-

ing and useful for its new way to look at data.

It is for these reasons that in November 2012, in The Ohio State University,

(Columbus, Ohio) J. S. Marron (UNC), J. O. Ramsay (McGill), L. Sangalli (Po-

litecnico di Milano), A. Srivastava (Florida State) organized a workshop called

"Statistics of Time Warpings and Phase Variations". Four datasets have been

proposed and the groups who were invited analyzed them and presented their

results in this occasion. In this work we present the analysis we performed for

this event to one of the available datasets, precisely the "Spike train" dataset.

2

1.2. OBJECTIVES OF THE STUDY

It is in this framework that this work is born. In particular we will present

a new registration method, able to jointly cluster and register functional data

(we will present later the concept of "Registration of functional data"). This

new method, called K-Mean Alignment and described in Sangalli, Secchi, Van-

tini, et Vitelli (2010), will be applied, as already said, to a dataset containing

neuronal spike trains data, which means data deriving from the registration

of neuronal activity of a monkey doing a particular task using his hands. Fi-

nally, we developed an R package called fdakma, which will be available soon

on CRAN repository. This package is able to perform the K-Mean Alignment

algorithm.

1.2 Objectives of the study

The study, as said before, aims at presenting an introduction to FDA (Func-

tional Data Analysis). In chapter 2 we will discuss about the latest develop-

ment on this domaine, highlighting the properties that the couple "similarity

measure"-"group of warping functions" (ρ, W) should have. We will explain in

detail the new registration method we used, the K-Mean Alignment method de-

scribed in Sangalli et al. (2010) and also some other registration methods, like

the one based on the Fisher-Rao metric proposed in Srivastava, Wu, Kurtek,

Klassen, et Marron (2011) and the Minimum eigenvalue method presented in

Ramsay et Silverman (2005).

Then, in chapter 3, we will discuss the results of applying this method to the

neuronal "spike train" dataset presented in Wu et Srivastava (2011). We will

approach the analysis of this data from two different points of view with the

ambitious goal of gaining some informations about how our brain works and

exchanges messages through neurons.

3

1.2. OBJECTIVES OF THE STUDY

After the dataset analysis, in chapter 4 we will present the development of the

R package fdakma, which resumes the K-Mean Alignment method presented in

chapter 2. We created this package in order to allow the repetition of the study

presented in this work but above all to give to the community the possibility

to use this method in other analysis, hoping this will help and improve the

state of art of this new fascinating branch of statistics called Function Data

Analysis.

4

Chapter 2

Functional Data Analysis (FDA)

2.1 Introduction to FDA

First we give a definition of FDA. We will try to let the reader understand the

cases in which this kind of approach can be useful and revolutionary with re-

spect to other statistics procedures.

Functional data analysis is a branch of statistics that analyzes data providing

information about curves, surfaces or anything else varying over a continuum.

For example, this continuum can be represented by time, but also by spatial

location. The principal strength of this approach concerns the possibility to

consider data coming from a function. This gives the chance to analyze differ-

ent characteristics which are normally difficult to handle.

In particular, functional data analyses can consider informations present in the

slopes or curvatures of the functions. This is reflected in their derivatives. First

or second derivatives can sometimes reveal important aspects of the processes

standing behind the data. For this reason, a fundamental role in functional

data analysis is played by curve estimation techniques.

5

2.1. INTRODUCTION TO FDA

Given that, normally, at the beginning of a functional data analysis, we only

dispose of points that are evaluations of some functions, it is crucially impor-

tant to have some kind of process which enables us to work with true functions

and not only with its evaluations. This passage from "discrete points" to a con-

tinuum represents the first key step to a good functional data analysis. This

procedure is often called smoothing. In literature there are many methods able

to approximate functions defined by points. They can make use of a simple

histogram or more complicated means, like kernels but the goal remains the

same: to finally have functions defined over a continuum instead of functions

defined over a set of points. Obviously there is not a good solution for ev-

ery situation: sometimes it can be good to interpolate exactly our points with

splines, for example, other times the use of more sophisticated methods can

bring to light some important features of the phenomenon behind the data.

In this work we will not treat the functional smoothing, but it is important to

know that it represents a fundamental starting point of a good functional data

analysis. More informations about this preliminary part of FDA can be found

in Ramsay et Silverman (2005) and in Hastie, Tibshirani, et Friedman (2009).

In general, models and methods for the analysis of functional may seem simi-

lar to those used for the analysis of conventional multivariate data, including

linear and nonlinear regression models, principal components analysis, and

others. But the possibility of using derivative information considerably ex-

tends the power of these techniques, and leads to functional models like those

defined by differential equations.

As example, in figure 2.1 we present a classic benchmark of functional data.

It shows the heights of 39 men and 54 girls measured at a set of 31 ages in

6

2.1. INTRODUCTION TO FDA

the Berkeley Growth Study in Tuddenham et Snyder (1954). Note that the

ages are not equally spaced: we have four measurements when the child is

one year old, one measurement per year from two to eight years, and finally

height biannual measurements. Even if each record involves discrete values,

these values can be interpreted as part of the realization of a functional random

variable, that is we can consider them as evaluations of an height function. We

can then assume that our dataset is composed by 93 functional observations.

Figure 2.1: Example of functional data: men and women heights in Berkeley
study.

7

2.1. INTRODUCTION TO FDA

2.1.1 Phase and amplitude variability

First of all, let us give the definition of a functional data.

Definition 1. A random variable X is a functional variable if it takes values in a

infinite dimensional space F (normed functional space).

Functional data can be characterized by two types of variability: phase variabil-

ity and amplitude variability. In order to understand these two concepts, let us

take a look at the following examples.

In figure 2.2 we present two simple cases where 5 functions have been sim-

ulated. The black curve, as stated in the legend, is the function y = sin(x).

In the first case the other four functions have been generated by changing

their amplitude, that is y = a ∗ sin(x) with a taking the following values:

0.8, 0.9, 1.1, 1.2. In the second case, instead, the other four functions have been

generated by changing their phase, that is y = sin(x + a) with a taking the

following values: −0.5,−0.25, 0.25, 0.5.

We now understand what we mean by phase and amplitude variability. A

difference in the evaluations of functions can be interpreted as amplitude vari-

ability and, more important for a correct functional analysis, a difference in the

occurrence of a particular characteristic of the functions can assessed as phase

variability.

8

2.1. INTRODUCTION TO FDA

Figure 2.2: Example of amplitude and phase variabilities.

9

2.2. REGISTRATION OF FUNCTIONAL DATA

2.2 Registration of functional data

2.2.1 Problem definition

In functional dataset, most of the time, both amplitude and phase variability

are present. Before starting any analysis, in order to gain in significance, it is

necessary to decouple these two variabilities. We call this procedure Alignment

or Registration of functional data.

More precisely, to align a set of functions means that we have to find the trans-

formation of function independent variable (let us call it t) which allows us to

remove phase variability from data.

Formally, if we consider n functions

x1(t), ..., xn(t), xi : R→ R ∀i ∈ {1, ..., n}

to be able to align them we need to find n strictly monotonous functions

h1(t), ..., hn(t), hi : R→ R ∀i ∈ {1, ..., n}

such that x1(h1(t)),...,xn(hn(t)) will have no phase variability. The functions

h1,...,hn are known as Warping Functions.

2.2.2 State of art

Even if FDA represents a "green" way to look at data, many approaches to the

problem of registration have been already developed. Here we present three

different approaches that solve the problem, each one with his own ability to

capture hidden characteristics of functions.

10

2.2. REGISTRATION OF FUNCTIONAL DATA

The first one, called Landmark registration, is able to line up some important

features of our functional data, imposing a nonlinear transformation to the ab-

scissa and allowing to align functions around a key point shared by all of them;

obviously the point is known a priori. The second one, known as Continuous

registration, is a more general method, with the advantage of considering, in

the registration process, the entire domain in a continuous way.

Landmark registration

The Landmark registration is for sure the simplest method to align functional

data. Despite of his simplicity, it requires a certain knowledge of the phe-

nomenon standing beyond data.

In general, this method allows to align functions in a given point of abscissa,

but one has to be sure about the trend of the functions (or of their derivatives

in case we are dealing with them) in that point. Substantially, let us suppose

that we know where the point with this shared property is; we name it Land-

mark point. Given that, all functions share this characteristic, say a maximum

(it can also be a minimum, ora a zero etc..). It is then reasonable to ask all

functions to have this maximum in the same abscissa point. In other words,

one should align functions so that all of them will show this same characteristic

in the Landmark abscissa point. It will be then possible to do a proper analysis.

It is fundamental to specify that, if one wants to choose this kind of approach,

it is necessary to know perfectly, without any doubts, what happens to all func-

tions in the Landmark point. That is, the choice of the Landmark point play a key

role in fact we are transforming data and obliging all functions to have that

kind of characteristic in that given point. If it is not the case , we will be misled

in next analysis by this false hypothesis.

11

2.2. REGISTRATION OF FUNCTIONAL DATA

Of course, this reasoning is also valuable when we can find more than one

Landmark point.

Formally, let us consider n functions defined on the interval [0,T]:

x1(t), ..., xn(t), xi : [0, T]→ R ∀i ∈ {1, ..., n}

Supposing we can find k ≥ 1 landmark points. Let τ1(xi), ..., τk(xi) be the

function landmarks. For each landmark let us compute the mean, i.e., τ j =

E[τ j(xi)]. We can now estimate the warping functions of the i-th curves sim-

ply interpolating these points (and of course the points (0,0) and (T,T)).

We can do this using linear interpolation or more complex methods (Hermite

splines can also be used, in order to maintain the monotony of warping func-

tions).

In order to better understand this method, we give a simple example, based

on functions of figure 2.3. The 5 functions have been simulated modifying a

gaussian function so that each one has a unique maximum. Following the pro-

cedure just described, we align them so that all curves present the maximum

in the same abscissa point. In figure 2.3 we show the original functions and

the aligned one using Landmark registration. We can also see the warping

functions estimated using a simple linear interpolation.

12

2.2. REGISTRATION OF FUNCTIONAL DATA

Figure 2.3: Example of Landmark Registration: simulated data. Left panel:
original functions; right panel: registered functions. Bottom: warping func-
tions

13

2.2. REGISTRATION OF FUNCTIONAL DATA

Continuous registration

Continuous registration represents for sure a more advanced registration meth-

ods than the previous one because, as stated before, it takes in account the en-

tire domaine during the registration process.

Suppose we have two functions x1(t) e x2(t) and we want to align x2(t) to

x1(t) (in this case we will refer to x1(t) as the center or template). In order

to choose the best warping function we will define a similarity/dissimilarity

measure which will tell us how much the two functions are similar/dissimilar.

The best warping function h(t) will be the one minimizing/maximizing the

similarity/dissimilarity measure between x1(t) e x2(h(t)).

Two natural questions arise:

– which kind of warping functions are we allowed to choose to transform

x2(t) ?

– which kind of similarity/dissimilarity measure between functions should

we consider ?

During the last years, thanks to the works of Sangalli et al. (2010), Vantini

(2012) and Srivastava et al. (2011), the statistics community has agreed to the

fact that the answer to the first question is strongly linked to the answer to the

second question.

Hence, to define a continuous registration technique we need to define two

"objects": the similarity/dissimilarity measure and the warping function space.

They must have some fundamental properties, which will be presented later.

It is important to highlight that choosing these two elements will be a determi-

14

2.3. MINIMUM EIGENVALUE METHOD

nant aspect of our analysis. Above all, they will define the meaning of phase

and amplitude variability with which we will deal. In general the specification

of a space of possible warping functions will define a precise concept of phase

variability. The amplitude one, instead, will be defined by choosing a similar-

ity/dissimilarity measure between functions.

In the next three paragraphs we will describe three continuous registration

techniques. First we present the one described in Ramsay et Silverman (2005):

known as the Minimum eigenvalue method, this approach gives a general prospec-

tive on how one can deal with the problem of registering one function to an-

other. Then we will describe the so-called K-Mean Alignment method presented

in Sangalli et al. (2010). Finally, in the last paragraph of this chapter, we will

show a technique developed in Srivastava et al. (2011) involving a particular

metric, the Fisher-Rao metric.

2.3 Minimum eigenvalue method

Ramsay and Silverman solve the problem choosing the following type of warp-

ing functions:

h(t) = C0 + C1

∫ t

0
exp W(u)du

where W is a function W : R → R and C0 e C1 are fixed assuring that h(t) = t

at the lower and upper interval limits of the domaine. Let us suppose we have

the evaluations of the two functions x1(t) e x2(t) over a fine mesh of n values of

t (t1, t2, ..., tn). We consider the pairs of values (x1(ti), x2(ti)) with i ∈ 1, 2, ..., n.

We can state that, if the two functions are such that the plot of these couples is

a straight line, then they are equal, hence they do not need to be aligned. So

the natural technique to analyze their differences can be the Principal Compo-

15

2.4. K-MEAN ALIGNMENT METHOD

nent Analysis: if the plot of previous couples is actually a straight line, then the

PCA will held to only one positive eigenvalue, that is, the second eigenvalue

will tell us how much the two functions have to be registered.

Given that we are dealing with functions, let us consider the functional ana-

logue of the cross-product matrix X′X :

T(x1, x2) =

[∫
x1(t)2dt

∫
x1(t)x2(t)dt∫

x1(t)x2(t)dt
∫

x2(t)2dt

]

Naturally we end up defining the criterion for stating how much the two func-

tions need to be registered (their "distance"):

MINEIG(h) = µ2[T(x1, x2(h))]

where the functionµ2 represents the size of the second eigenvalue. If MINEIG(h) =

0 then the two functions are aligned and the corresponding h will be the right

warping function.

2.4 K-mean Alignment method

The second method we are going to present is the one developed in Sangalli

et al. (2010). It is important to highlight that this method, like the next one

(based on the Fisher-Rao metric), also represents the first attempt to create a

solid framework for the registration problem.

The K-mean Alignment method is able to jointly cluster and align functional

data. Even if, as we will see in the next, it only enables affine transformations

of the abscissa, it allows to differentiate functions and find hidden groups in-

side the functional dataset.

16

2.4. K-MEAN ALIGNMENT METHOD

As said before, to register one function to another one is necessary to define a

couple of elements:

– ρ: measure to quantify how "far" the two functions are

– W: warping function space

The elements of the couple (ρ, W) have to be chosen very carefully; in fact they

need to satisfy some fundamental coherence properties.

- Coherence properties of the couple (ρ, W)

The measure ρ has to satisfy the following properties:

– ρ ≤ 1 (boundedness),

– ρ(x, x) = 1, ∀x ∈ X (reflexivity),

– ρ(x1, x2) = ρ(x2, x1), ∀x1, x2 ∈ X (simmetry),

– [ρ(x1, x2) = 1 ∧ ρ(x2, x3) = 1] =⇒ ρ(x1, x3) = 1, ∀x1, x2, x3 ∈ X (tran-

sitivity).

The space of warping functions W has to be:

– a complex vector space,

– a group with respect to the operation of composition ◦.

The couple (ρ, W) has to satisfy the following property:

– ρ(x1, x2) = ρ(x1 ◦ h, x2 ◦ h), ∀h ∈W, ∀x1, x2 ∈ X.

We refer to the last property as the consistency property. It is maybe the most

important one, in fact it states that, given any couple of elements x1, x2 ∈ X

and an element h ∈ W, the distance between x1 and x2 has to be invariant un-

der the composition of x1 and x2 with h.

17

2.4. K-MEAN ALIGNMENT METHOD

We understand that at the beginning of a registration process we have to deal

with the choice of two elements, ρ and W. There are many couples which re-

spect these properties. Let us introduce the first one, which is the couple we

will use to analyze the spike train dataset in the next chapter.

Consider x1 e x2 ∈ L2(R,R). We can define then a measure linked to the angle

θ between the two functions in this space:

cos(θ) =
〈x1, x2〉
‖x1‖‖x2‖

The inner product and the norm have to be considered on L2 :

〈x1, x2〉 =
∫
R

x1(t)x2(t)dt

‖x1‖ =
∫
R

x1(t)2dt

Let us consider the functional space

X = {x(t) : R→ R
∣∣ x ∈ L2, x′ ∈ L2, x′ 6= 0}

We can then define a "distance" between x1, x2 ∈ X considering the cosine of

the angle between the two function first derivatives, that is:

ρ(·, ·) : X× X → R ρ
(
x1, x2

)
=

∫
R x1

′(t)x2
′(t) dt√∫

R x1
′(t)2 dt

√∫
R x2

′(t)2 dt
(2.1)

This measure is also an index, in fact:

−1 ≤ ρ(x1, x2) ≤ 1 ∀x1, x2 ∈ X

Following this definition we can state that two functions x1, x2 are equal iif

ρ(x1, x2) = 1. This means that x1, x2 are equal if they differ by a multiplicative

or additive factor, i.e., for dilation or translation along the ordinate axis:

ρ(x1, x2) = 1⇔ ∃m ∈ R+, q ∈ R : x1(t) = m ∗ x2(t) + q

18

2.4. K-MEAN ALIGNMENT METHOD

If the functions we are considering are multi-dimensional, i.e., x1, x2 ∈ Rd:

X = {x(t) : R→ Rd ∣∣ x ∈ L2, c′ ∈ L2, c′ 6= 0}

we will define the similarity index between x1 and x2 as the mean among the

d components:

ρ
(
x1, x2

)
=

1
d

d

∑
p=1

∫
R x1p

′(t)x2p
′(t) dt√∫

R x1p′(t)2 dt
√∫

R x2p′(t)2 dt

where xip is the p-th component of the function xi.

Finally, we have to choose the space of warping functions. This will be the

space of affine transformations:

W = {h : h(s) = ms + q with m ∈ R+, q ∈ R} (2.2)

We can now have a clear definition of phase variability, which involves, in this

particolar case, only translations and dilations of the independent variable t.

The warping function that aligns x2 to x1 will be the function h∗ such that:

h∗ = arg max
h∈W

ρ(x1, x2 ◦ h)

2.4.1 K-mean Alignment algorithm

Consider the problem of clustering and aligning N functions x1(t), ..., xN(t) ∈
X where X = {x(t) : R → Rd

∣∣ x ∈ L2, x′ ∈ L2, x′ 6= 0} with respect to k

function centers (or templates)ϕ = {ϕ1 ...,ϕk} and also consider the similar-

ity index and the space of warping functions just defined.

First some useful definitions.

Definition 2. We define domain of attraction ofϕ j:

∆ j(ϕ) = {x ∈ X : sup
h∈W

ρ(ϕ j, x ◦ h) ≥ sup
h∈W

ρ(ϕr, x ◦ h), ∀r 6= j} j = 1, ..., k

19

2.4. K-MEAN ALIGNMENT METHOD

Definition 3. We define the labelling function as follows:

λ(ϕ, x) = min{r : x ∈ ∆r(ϕ)}

Hence λ(ϕ, x) = j implies that the similarity index obtained by aligning x to

ϕ j is larger or equal to the similarity index obtained aligning x to any other

center. Soϕλ(ϕ,x) will be the center the function x can be best aligned to.

The K-Mean Alignment is an iterative method. We have to initialize it choosing

k centers. Let us suppose we already run (q − 1) iterations of the algorithm.

We have now k centers computed at the iteration (q− 1):

ϕ[q−1] =ϕ1[q−1], ...,ϕk[q−1]

We also have the registered curves until the last iteration:

x1[q−1](t), ..., xN[q−1](t)

and each function has been assigned to a certain cluster.

The q-th iteration of the algorithm is composed by three steps:

Step 1) Template identification step

For all the k clusters we compute the new center using the functions we

assigned to that cluster at the last iteration. In order to compute this

center we use the Frechét mean:

ϕ j[q] = arg max
ϕ∈X

∑
i:λi= j

ρ(ϕ, xi[q−1]) (2.3)

We have then the k centersϕ[q] =ϕ1[q], ...,ϕk[q].

20

2.5. OTHER REGISTRATION APPROACHES

Step 2) Assignment and alignment step

The functions x1[q−1](t), ..., xN[q−1](t) are clustered and aligned to the k

centersϕ1[q], ...,ϕk[q]. Now for i = 1, ..., N:

– the function xi is assigned to the cluster λ(ϕ[q], xi),

– the function xi is aligned toϕλ(ϕ[q] ,x), i.e., to the center of the group it is

assigned to. In order to have the warping function h∗ responsible for

this alignment we compute the following optimization:

h∗ = arg max
h∈W

ρ(ϕλ(ϕ[q] ,x), xi ◦ h)

Step 3) Normalization step

For each cluster we normalize the warping functions of the functions as-

signed to that cluster so that the mean of the applied warping functions

will be the identity function.

At each iteration the algorithm computes the similarity indexes between each

function and the center the function is assigned to. The method stops when all

functions present an increment of similarity lower than a fixed tolerance. The

method stops also if a maximum number of iterations, which can be specified

in input, is achieved.

We implemented this method into an R-package called fdakma, available on

CRAN. In chapter 4 we will present in a detailed way all the parameters which

need to be provided for a successful running of the algorithm.

2.5 Other registration approaches

A said before, there are many couples (ρ, W) which satisfy the previous prop-

erties. The one presented in the K-Mean Alignment is among them. In the

21

2.5. OTHER REGISTRATION APPROACHES

following table we resume the principal ones. All couples but the last one

mentioned in this table have been implemented in the package fdakma, hence

user can choose a couple "measure"-"warping functions" respecting the prop-

erties. Note that D is the intersection of the domains of x1(t) and x2(t) and all

norms and inner product are computed over D.

Metric/Semimetric Warping functions
〈x1 ,x2〉L2
‖x1‖L2‖x2‖L2

y = m*t + q

〈x′1 ,x′2〉L2
‖x′1‖L2‖x′2‖L2

y = m*t + q

‖x1−x2‖L2
|D| y = t + q

‖x′1−x′2‖L2
|D| y = t + q

‖(x1−x1)−(x2−x2)‖L2
|D| y = t + q

‖(x′1−x′1)−(x′2−x′2)‖L2
|D| y= t + q

‖sign(x′1)
√
‖x′1‖L2 − sign(x′2)

√
‖x′2‖L2

‖L2 y = h(t)
h(t) diffeomorphism

Table 2.1: Metrics/semimetrics and corresponding warping functions

On the left column of table 2.1 we listed the metric (or semi metrics) considered

and on the right column we show the class of warping functions that can be

chosen to align data.

2.5.1 Fisher-Rao method

In this paragraph we will present another registration technique based on a

very particular metric, the metric of Fisher-Rao. This method has been devel-

oped in Srivastava et al. (2011) and here we will try to resume the most impor-

22

2.5. OTHER REGISTRATION APPROACHES

tant features of this approach.

Consider the following function space:

F =
{

f : [0, 1]→ R, f absolutely continuous
}

Consider also the following space of warping functions:

Γ =
{
γ : [0, 1]→ [0, 1], γ(0) = 0, γ(1) = 1, γmon. incr. , γ diffeomorphism

}
Let us define a new distance on F using the Fisher-Rao metric. This metric is

defined on Tf (F), the space tangent to the variety F.

Definition 4. For all f ∈ F and v1, v2 ∈ Tf (F), the Fisher-Rao metric is defined as:

〈〈·, ·〉〉 f : Tf (F)× Tf (F)→ R 〈〈v1, v2〉〉 f =
1
4

∫ 1

0

v̇1(t)v̇2(t)
| ḟ (t)| dt (2.4)

The Fisher-Rao distance between two functions f e g is defined as the geode-

tic distance between f e g on the variety F. To be able to find this distance

we should look for the geodetic path which connect f e g with respect to the

Fisher-Rao metric. The minimization of this quantity is therefore quite chal-

lenging. This is why a new representation of the functions has been intro-

duced.

Definition 5. The square-root velocity function (SRVF) q of a function f ∈ F is

defined in the following way. Let Q be a continuous map:

Q : R→ R Q(x) =

{
x/
√
‖x| se |x| 6= 0

0 otherwise

We can write:

q : [0, 1]→ R q(t) = Q(ḟ (t)) =
ḟ (t)√
| ḟ (t)|

= sign(ḟ (t))
√
| ḟ (t)| (2.5)

23

2.5. OTHER REGISTRATION APPROACHES

It can be proved that, if f is absolutely continuous, then q ∈ L2.

Moreover, for all functions q ∈ L2, there exist a function f ∈ F whose q is its

SRVF. This can be derived from formula 2.5.

q(t)|q(t)| = sign(ḟ (t))| ḟ (t)| = ḟ (t). (2.6)

Integrating:

f (t) = f (0) +
∫ t

0
q(s)|q(s)|ds.

We can then state that the representation f ⇐⇒ (f (0), q) is biunique.

In Srivastava et al. (2011) a fundamental property of this metric is shown: un-

der the SRVF representation, the Fisher-Rao metric becomes the L2 norm.

In L2 space the geodetic distance is simply the L2 norm. So we understand that

dFR(f1, f2) = ‖q1 − q2‖L2 .

We want to study the action of the group Γ on the space F. The action of γ ∈ Γ

on f ∈ F is represented by the composition of the two functions:

(·, ·) : F× Γ → F, (f ,γ) 7→ f ◦ γ.

In order to find the corresponding action on the SRVF space we compute the

SRVF q̃ of f ◦ γ:

q̃(t) =
d
dt(f ◦ γ)(t)√
| d

dt(f ◦ γ)(t)|
=

(ḟ ◦ γ)(t) γ̇(t)√
|(ḟ ◦ γ)(t) γ̇(t)|

=
(ḟ ◦ γ)(t)√
|(ḟ ◦ γ)(t)|

√
γ̇(t) = (q ◦γ)(t)

√
γ̇(t).

We can now express the action of γ ∈ Γ on the SRVF q:

(·, ·) : L2 × Γ → L2, (q,γ) 7→ (q ◦ γ)√γ̇. (2.7)

Definition 6. We define the orbit as

[f] =
{
(f ◦ γ) | γ ∈ Γ

}
.

24

2.5. OTHER REGISTRATION APPROACHES

In F we have

‖ f1 − f2‖L2 6= ‖ f1 ◦ γ − f2 ◦ γ‖L2 .

In SRVF space L2:

‖q1 − q2‖L2 = ‖(q1,γ)− (q2,γ)‖L2 . (2.8)

If we apply a warping function to a SRVF we are in the same orbit. But the

important thing is that the distance does not change and the orbits are said to

be parallel.

We are able now to define the meanings of phase and amplitude variabilities.

Definition 7. We define the phase variability γ21 of f1 with respect to f2 as

γ21 = arg inf
γ∈Γ

‖q1 − (q2,γ)‖.

Definition 8. We define the amplitude variability da between two functions:

da(f1, f2) = inf
γ∈Γ
‖q1 − (q2,γ)‖.

The amplitude variability is characterized by the following properties:

– da(f1, f2) = da(f2, f1) (simmetry)

– da(f1, f3) ≤ da(f1, f2) + da(f2, f3) (triangle inequality)

– da(f1, f2) = 0 if f2 ∈ [f1] (if two functions are in the same orbit, their

distance is null)

– da(f1 ◦ γ1, f2 ◦ γ2) = da(f1, f2) with γ1, γ2 ∈ Γ (invariance by composi-

tion with a warping function)

Thanks to the first three properties we deduce that da is a semi metric.

The method aims to compute a center for all the functions. Hence the last step

is to find the right warping function able to align them to that center. This last

25

2.5. OTHER REGISTRATION APPROACHES

step is achieved by performing the following optimization:

γ∗i = arg min
γ∈Γ

‖µ − (qi ◦ γ)
√
γ̇‖L2 .

As it should be clear by now, the Fisher-Rao metric has an important "quality".

The warping function space play a fundamental role in registration procedure,

in fact it determines the type of transformation we want to be possible for the

abscissa. In the K-Mean Alignment method this space was the affine transforma-

tion space. In the Fisher-Rao method we are able to extend the space of warping

functions, allowing almost all kind of transformations, with the only constraint

to be a diffeomorphism. This leads to a very large class of transformations and

hence, generally, to a better result in aligning functional data.

Although it currently represents the most powerful registration method to

align functional data, this enormous quality also represents its biggest limit.

With this method we are capable of aligning quite everything, thanks to its

very large class of warping functions, but it is important to highlight that it is

also possible that two curves, in this framework, will be aligned even if they

do not require to be.

Another weak point of this method is represented by the difficulty in interpret-

ing the warping functions. It is a very important aspect, because they store all

the informations about the misalignment of data. In the K-Mean Alignment

method we can simply understand what an affine transformation of abscissa

could mean in terms of the physics of the phenomenon. Instead in the Fisher-

Rao approach it is quite difficult to link a characteristic of the warping functions

to something physically meaningful for our functional data.

26

Chapter 3

Spike Trains Data: K-mean
Alignment application

In this chapter we are going to apply the K-Mean Alignment algorithm to a par-

ticular dataset, provided by Wei Wu (Department of Statistics, Florida State

University) for the contest of the Ohio workshop mentioned in the introduc-

tion.

3.1 Dataset description

Human and animal brain processes neural informations via spikes (action po-

tentials) from neurons. These spikes are often called the language of the brain.

So if we would like to understand how the brain works, we should understand

how neurons exchange messages among each other, how they decide to send

a particular message instead of an other one. This work aims to help neuro-

scientists in this direction, conscious that we are actually far from the ultimate

understanding of this incredibly complex organ called Brain. We will try to

extract from data any information who can tell us something about the func-

tioning of the brain when, as we will see, a monkey does a particular job using

his hands.

27

3.1. DATASET DESCRIPTION

Figure 3.1: Connection between brain and parts of the body: the primary mo-
tor cortex is dedicated to the control of arms movement.

In the experiment from which the dataset arises, a rhesus monkey, using his

hands, has to follow a light which illuminates buttons located right in front of

him. This light follows four precise paths, as described in figure 3.2.

The first path (form button 1 until reached again button 1, indeed closing the

cycle clockwise) has been done 60 times by the monkey and the same for the

other paths. The electrode implanted in the arm and in the primary motor

cortex (the part of the brain dedicated to the control of arms movement, as ex-

plained in figure 3.1) aimed to register his neuronal activities (i.e., his action

potentials, spikes activity) during the experiment. For a better visualization of

the experiment, see figure 3.3.

28

3.1. DATASET DESCRIPTION

Figure 3.2: The four paths the monkey had to follow

Figure 3.3: Visual representation of the experiment

As we can see in figure 3.4, in each neuron all spike waveforms have nearly the

29

3.1. DATASET DESCRIPTION

same shape, and the information is encoded in the firing time of each spike.

Figure 3.4: Single recorded spike

So at first the dataset was a collection of 1’s and 0’s indicating that in that

moment a spike had been fired or not. In order to analyze spike trains as func-

tional data, they have been smoothed using a gaussian kernel with width σ =

50 ms. This turned the data in an intensity function instead of functions with

only 1’s and 0’s.

So practically, for the analysis, the dataset will consist in a matrix in which

each row represents the evaluation of a function (i.e., a statistic unity, a trial

in the experiment). This function represents, as said before, the intensity of

neuronal activity during one of the four paths. An example of these curves is

given in figure 3.5. In this figures we can see a trial, so a function, for each path.

Let us see now the complete dataset. In figure 3.6 we can see all original curves

(the path colors of figure 3.2 have been used as convention).

What we can immediately see is that a data registration seems to be quite chal-

lenging in this case. The curves are very different from each other and this

representation does not help for an initial understanding. Let us draw the

curves by paths to allow a better visual primary study (figures 3.7, 3.8).

30

3.1. DATASET DESCRIPTION

Figure 3.5: Examples of the four paths

Figure 3.6: All 240 original curves

31

3.1. DATASET DESCRIPTION

Figure 3.7: Original curves divided by paths: path 1,2

32

3.1. DATASET DESCRIPTION

Figure 3.8: Original curves divided by paths: path 3,4

33

3.2. FIRST APPROACH: NON-PERIODIC DATA

3.2 First approach: non-periodic data

To start the analysis we use an useful function, called kma.compare, imple-

mented in the R package fdakma. This function allows the user to run the kma

function for several numbers of clusters and types of warping. We run this

function with n.clust set to c(1,2,3,4,5) and warping.method set to c(’NOalignment’,

’shift’, ’dilation’, ’affine’). The variable which controls the similarity measure is

similarity.method and for the analysis of this chapter we will set it to ’d0.pearson’

which is the first measure listed in table 2.1 in chapter 2.

We report the output of the kma.compare function in figure 3.9, that is a graphic

containing the means of the similarity indexes of all the functions of the dataset

in all cases, i.e., for all elements of n.clust and warping.method.

0.
5

0.
6

0.
7

0.
8

0.
9

1

unalign. k=1 k=2 k=3 k=4 k=5

without alignment

shift

dilation

affine

Mean similarity

Figure 3.9: Mean similarity indexes with different numbers of clusters. Results
of kma.compare function

34

3.2. FIRST APPROACH: NON-PERIODIC DATA

We can see that in quite all kind of warping method, the elbow is present for

k = 4. This means that the number of cluster suggested for our data is 4. For

this reason in the next we will draw and analyze the results for k = 4 in two

cases:

– k-mean clustering, without registration (warping.method =′ NOalignment′)

– affine registration (warping.method =′ a f f ine′)

3.2.1 k-mean clustering k = 4

Given the type of experiment behind the data, it is reasonable to ask whether it

is possible to classify the curves. The reason is evident: the curves come from

different paths, so it would a first success to be able to predict which path the

curve belongs to, that is, disposing of the intensity of his neuronal activity, we

can deduce which path the monkey is following.

We present the results of the K-Mean Alignment algorithm, that is, the kma func-

tion of fdakma package with the parameters warping.method set to NOalignment

and n.clust set to 4. In order to only perform clustering of data, we did not

allow for any transformation. The labels assigned by the kma function to the

240 functions are represented in the following confusion matrix (table 3.1). The

results of the clustering seem to be very good.

The graphical results can be seen in figure 3.10, where each function has been

colored with respect to the cluster it has been assigned to.

35

3.2. FIRST APPROACH: NON-PERIODIC DATA

Figure 3.10: K-mean Clustering without alignment: result

true
labels

labels

1 2 3 4

1 56 2 1 1

2 6 53 1 0

3 0 4 55 1

4 0 0 0 60

Table 3.1: K-mean clustering without alignment: confusion matrix

36

3.2. FIRST APPROACH: NON-PERIODIC DATA

It is now clear that, in order to classify the data and predict which path the

monkey is following, there is no need for registration. The k-mean clustering

is sufficient to cluster data.

3.2.2 Affine warping k = 4

Given that our goal is not only to classify data, but also to study the phase

variability, we try to align the curves allowing affine warping. In this case we

present the results of the kma function with the parameters warping.method set

to affine and n.clust set to 4.

The first results, in figure 3.11, are not very exciting from a registration point of

view. To be more clear, we also draw separately the results of the four clusters

given by kma output in figures 3.12 and 3.13.

Figure 3.11: K-Mean Alignment, affine registration: results

37

3.2. FIRST APPROACH: NON-PERIODIC DATA

Figure 3.12: K-Mean Alignment, affine registration: results, paths 1-2

38

3.2. FIRST APPROACH: NON-PERIODIC DATA

Figure 3.13: K-Mean Alignment, affine registration: results, paths 3-4

39

3.2. FIRST APPROACH: NON-PERIODIC DATA

As before, we report the confusion matrix in this case (table 3.2), in which we

can see that there is no gain in classification using affine warping compared to

the confusion matrix obtained without warping and presented in table 3.1.

true
labels

labels

1 2 3 4

1 57 2 0 1

2 4 54 1 1

3 1 5 52 2

4 1 0 2 57

Table 3.2: K-mean alignment, affine warping: confusion matrix

During the running of the K-Mean Alignment algorithm on the spike trains

data, a need for a control of "anomalous" updates of the warping functions

have been introduced. This was due to the very high amplitude variability of

data. The problem has been solved with an extra control at the end of each

iteration. More precisely, when a shift or dilation value represented an outlier

with respect to the warping values of the other curves computed in the same

iteration, they were re-optimized in a new fence, that is with new lower and

upper bounds, represented by the first and third quartile of the distributions

40

3.3. SECOND APPROACH: PERIODIC DATA

of shifts and dilations computed in the same iteration. In this way, we avoided

the possibility to have anomalous warpings.

The package fdakma already has this control, but it can be deactivated setting

the input variable fence to FALSE. It is important to notice that, in case the

algorithm find a lot of outlighers, it will repeat the optimization step many

times, leading to an increase of complexity of the algorithm. It is then sug-

gested to set it to FALSE when the dimension of the problem is considerable.

Finally, to resume the results of the non-periodic approach we found an

absence of phase variability, so we do not need to align the functions in order

to cluster. Moreover the form of the cluster centers seems to tell us that,

starting from the upward movement, the hand job for the monkey seems to be

always less difficult to do, in fact the neuronal activity slightly decreases.

3.3 Second approach: periodic data

In a second attempt to find new informations from data, we thought it would

be interesting to interpret data as periodical. So we artificially reproduced

the functions five times in the domaine [-10,15] making them periodical with

period equal to 5, that is the original domain of our curves.

We repeated the analyses on this new dataset, but this time we allowed only a

shift warping, so the output graphics of the kma.compare function (figure 3.14)

will present only two curves, the first relative to warping.method=’NOalignment’

and the other one to warping.method=’shift’.

41

3.3. SECOND APPROACH: PERIODIC DATA

The similarity measure, in this case, has been computed in the domain of

interest, that is [0,5]. Moreover the amount of total shift for each curve was

bounded, precisely it had to be in the interval [-2.5,2.5].

0.
5

0.
6

0.
7

0.
8

0.
9

1

unaligned k=1 k=2 k=3 k=4 k=5

without alignment

shift

Mean similarity

Figure 3.14: Mean similarity indexes with different numbers of clusters and
’shift’ as warping method. Results of kma.compare function.

The black line, the one relative to k-mean clustering procedure, is obviously

the same than before, but the blue line, relative to the shift warping, suggests

to consider two clusters. However, let us present the results of the analyses

for k = 1 and k = 2.

42

3.3. SECOND APPROACH: PERIODIC DATA

3.3.1 Shift warping k = 1

In figure 3.15 we can see all the curves aligned with a shift warping, the

center of the unique cluster (k = 1) is represented with a black line. To better

visualize the original clusters (the four paths), we plot them in four different

plots (figures 3.16, 3.17).

Figure 3.15: Periodic approach: shfit registration, k = 1

43

3.3. SECOND APPROACH: PERIODIC DATA

Figure 3.16: Periodic approach: shift registration, k = 1, paths 1-2

44

3.3. SECOND APPROACH: PERIODIC DATA

Figure 3.17: Periodic approach: shift registration, k = 1, paths 3-4

45

3.3. SECOND APPROACH: PERIODIC DATA

As largely explained in the second chapter, in a registration procedure it is

important to analyze the warping functions. Given that we are allowing

only for shift registration, we can represent the warping functions in the way

proposed in figure 3.18.

Figure 3.18: Periodic approach: shift registration, k = 1. Warping functions.

About the top panel of the graphic, we can clearly see a strong association

between shifts and paths. It is normal if we think at the experiment: the

monkey has to follow four different paths, but touching the same buttons. It

does not seem strange at all that, allowing a shift warping to all curves, they

will be aligned so that the values of the first 60 curves corresponding to the

46

3.3. SECOND APPROACH: PERIODIC DATA

movement "button D" - "button A" will be at the same place that, for example,

the values of the second 60 curves corresponding to the same movement.

To understand the meaning of the second part of figure 3.18, we introduce a

new representation model for this kind of warping. In figure 3.19 we can see

that the value of the shifts imposed to the curves by the registration process

can be drawn in a circle.

Figure 3.19: Representation model of warping functions.

The meaning of this representation is the following: a shift of 2.5s has to be

interpreted exactly like a shift of -2.5s, because we are dealing with periodic

functions with a domain of length 5s. For the same reason a shift of 1.25s

has to be considered completely opposite to a shift of -1.25s. Even with this

representation it is clear how each function is aligned so that the movements

of each path correspond to the same abscissa values.

47

3.3. SECOND APPROACH: PERIODIC DATA

3.3.2 Shift warping k = 2

Searching for a number of cluster different from 1 means that we are looking

for something that can differentiate the four paths from each other. The

figure 3.14 seems to suggest a number of cluster equal to 2. Let us draw

the registered curves and the centers of the two clusters found with the kma

function (figure 3.20).

As before, the plot is not perfectly clear, because of the high number of

functions involved. For a better visualization of the results for each path, let

us draw them separately (figures 3.21, 3.22).

Figure 3.20: Periodic approach: shift registration, k = 2

48

3.3. SECOND APPROACH: PERIODIC DATA

Figure 3.21: Periodic approach: shift registration, k = 2, paths 1-2

49

3.3. SECOND APPROACH: PERIODIC DATA

Figure 3.22: Periodic approach: shift registration, k = 2, paths 3-4

50

3.3. SECOND APPROACH: PERIODIC DATA

Let us now analyze the warping functions in figure 3.23. They seem to be

quite similar to the previous case (k = 1), in fact we can notice the strong

association between shifts and paths.

Figure 3.23: Periodic approach: shift registration, k = 2. Warping functions

51

3.3. SECOND APPROACH: PERIODIC DATA

Looking at the confusion matrix (table 3.3) we can see that the two clusters

found by the algorithm are not related to the original four paths.

true
labels

labels

1 2

1 42 18

2 51 9

3 45 15

4 43 17

Table 3.3: Periodic approach, shift warping, k = 2: confusion matrix

A confirmation of the last result is given by the analysis of figure 3.24. What

we have done is a simple change of colors. In figure 3.23 the colors are the

same than the original paths, but we can not see the two clusters found by

the kma function. To visualize them we have colored the warping functions

considering the clusters the functions belong to.

We can clearly see that the clustering is orthogonal to paths, in the sense that

the two found clusters contain functions from all the paths in a indistinct way.

This means that we can cluster data in two groups, that have nothing to do

52

3.3. SECOND APPROACH: PERIODIC DATA

Figure 3.24: Periodic approach: shift registration, k = 2. Warping functions
colored by group.

with the four different paths.

We advanced some hypothesis which can explain this phenomenon but, of

course, a confirmation by a specialist in the sector should be necessary. At first

we thought the reason could be strictly related to the experiment itself, while

other hypothesis concern the physics of the subject. Unfortunately we do not

53

3.3. SECOND APPROACH: PERIODIC DATA

dispose of such informations and for the moment these hypothesis can not be

confirmed.

54

Chapter 4

R package: fdakma

4.1 Introduction to the package

In the last chapter of this work we are going to present the conception of an R

package called fdakma, whose aim is to resume the K-Mean Alignment method

for functional data registration described in chapter 2.

The package will be available on CRAN, so that it can be used to repeat

the analysis done in this work and also be useful for any functional data

registration and/or clustering purpose. In order to build the package, we

followed the guide lines given in R Development Core Team (2013) and in

Team (2010). Some inspiring concepts also came from Ramsay, Hooker, et

Graves (2005) and Ramsay, Jim O. and Silverman, Bernard (2002).

Using the package the user will quickly understand its usefulness, but despite

all the good thing, some problems are still present and a lot of improvement

can be done.

For example, like every k-means procedure, there is a certain dependence on

the choice of the initial curves. In the K-Mean Alignment algorithm, having

55

4.2. R DOCUMENTATION

also the alignment goal, the problem seems to be even more delicate.

Another important feature that one has to consider when using for the first

time this package is the complexity and hence the time required for the

complete execution of the algorithm. If the functions present a lot of noise

and/or a lot of variations, it is important to understand the meaning of the

parameter fence. This parameter, if set to TRUE, activates a control at the end

of each iteration. This control can cause an increase of time needed for the

completion of the running. This happens because other optimizations are run

for the curves which present values of shift or dilation that are outlier with

respect to ones of the other curves.

4.2 R documentation

In the following pages we report the R help which will also be available on

CRAN repository. All the details of the package are explained, as well as all the

input and output parameters. The R documentation also includes an example

for each function of the package, so that one can easily learn how to use it on

his own data.

56

Package ‘fdakma’
June 24, 2013

Type Package

Title Clustering and alignment of a functional dataset

Version 1.0

Date 2013-06-23

Author Mirco Patriarca, Laura Sangalli, Piercesare Secchi, Simone Vantini, Valeria Vitelli.

Maintainer Simone Vantini <simone.vantini@polimi.it>

Description The package fdakma jointly performs clustering and alignment of a multidimen-
sional or unidimensional functional dataset.

License GPL (>= 3)

R topics documented:
fdakma-package . 1
kma . 3
kma.compare . 7
kma.data . 11
kma.show.results . 12
kma.similarity . 13

Index 17

fdakma-package Functional Data Analysis: K-Mean Alignment

Description

fdakma jointly performs clustering and alignment of a functional dataset (multidimensional or uni-
dimensional functions).

Details

Package: fdakma
Type: Package
Version: 1.0
Date: 2013-05-04
License: GPL-31

4.2. R DOCUMENTATION

57

2 fdakma-package

Author(s)

Mirco Patriarca, Laura Sangalli, Piercesare Secchi, Simone Vantini, Valeria Vitelli.

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering".
Computational Statistics and Data Analysis, 54, 1219-1233.

See Also

kma.compare, kma.similarity, kma.data, kma, kma.show.results

Examples

data(kma.data)

x <- kma.data$x # abscissas
y0 <- kma.data$y0 # evaluations of original functions
y1 <- kma.data$y1 # evaluations of original function first derivatives

Plot of original functions
matplot(t(x),t(y0), type=’l’, xlab=’x’, ylab=’orig.func’)
title (’Original functions’)

Plot of original function first derivatives
matplot(t(x),t(y1), type=’l’, xlab=’x’, ylab=’orig.deriv’)
title (’Original function first derivatives’)

Example: result of kma function with 2 clusters,
allowing affine transformation for the abscissas
and considering ’d1.pearson’ as similarity.method.
fdakma_example <- kma (

x=x, y0=y0, y1=y1, n.clust = 2,
warping.method = ’affine’,
similarity.method = ’d1.pearson’,
center.method = ’k-means’,
seeds = c(1,21)

)

kma.show.results(fdakma_example)

names(fdakma_example)

Labels assigned to each function
fdakma_example$labels

Total shifts and dilations applied to the original
abscissa to obtain the aligned abscissa
fdakma_example$shift
fdakma_example$dilation

4.2. R DOCUMENTATION

58

kma 3

kma Clustering and alignment of functional data

Description

kma jointly performs clustering and alignment of a functional dataset (multidimensional or uni-
dimensional functions). To run kma function with different numbers of clusters and/or different
alignment methods see kma.compare.

Usage

kma(x, y0 = NULL, y1 = NULL, n.clust = 1, warping.method = "affine",
similarity.method = "d1.pearson", center.method = "k-means", seeds = NULL,
optim.method = "L-BFGS-B", span = 0.15, t.max = 0.1, m.max = 0.1, n.out = NULL,
tol = 0.01, fence = TRUE, iter.max = 100, show.iter = 0)

Arguments

x matrix n.func X grid.size or vector grid.size: the abscissa values where each
function is evaluated.
n.func: number of functions in the dataset.
grid.size: maximal number of abscissa values where each function is evaluated.
The abscissa points may be unevenly spaced and they may differ from function
to function. x can also be a vector of length grid.size. In this case, x will be used
as abscissa grid for all functions.

y0 matrix n.func X grid.size or array n.func X grid.size X d: evaluations of the set
of original functions on the abscissa grid x.
n.func: number of functions in the dataset.
grid.size: maximal number of abscissa values where each function is evaluated.
d: (only if the sample is multidimensional) number of function components, i.e.
each function is a d-dimensional curve.
Default value of y0 is NULL. The parameter y0 must be provided if the chosen
similarity.method concerns original functions.

y1 matrix n.func X grid.size or array n.func X grid.size X d: evaluations of the set
of original functions first derivatives on the abscissa grid x.
Default value of y1 is NULL. The parameter y1 must be provided if the chosen
similarity.method concerns original function first derivatives.

n.clust scalar: required number of clusters.
Default value is 1. Note that if n.clust=1 kma performs only alignment without
clustering.

warping.method character: type of alignment required.
If warping.method=’NOalignment’ kma performs only k-mean clustering (with-
out alignment). If warping.method=’affine’ kma performs alignment (and
possibly clustering) of functions using linear affine transformation as warping
functions, i.e., x.final = dilation*x + shift. If warping.method=’shift’ kma
allows only shift, i.e., x.final = x + shift. If warping.method=’dilation’ kma
allows only dilation, i.e., x.final = dilation*x. Default value is ’affine’.

4.2. R DOCUMENTATION

59

4 kma

similarity.method

character: required similarity measure.
Possible choices are: ’d0.pearson’, ’d1.pearson’, ’d0.L2’, ’d1.L2’,
’d0.L2.centered’, ’d1.L2.centered’. Default value is ’d1.pearson’. See
kma.similarity for details.

center.method character: type of clustering method to be used.
Possible choices are: ’k-means’ and ’k-medoids’. Default value is ’k-means’.

seeds scalar or vector: indexes of the functions to be used as initial centers.
If seeds=NULL centers are randomly chosen among the n.func original functions.
Default value of seeds is NULL.

optim.method character: optimization method chosen to find the best warping functions at each
iteration.
Possible choices are: ’L-BFGS-B’ and ’SANN’. See optim function for details.
Default method is ’L-BFGS-B’.

span scalar: the span to be used for the loess procedure in the center estimation step
when center.method=’k-means’.
Default value is 0.15. If center.method=’k-medoids’ value of span is ig-
nored.

t.max scalar: t.max controls the maximal allowed shift, at each iteration, in the align-
ment procedure with respect to the range of curve domains.
t.max must be such that 0<t.max<1 (e.g., t.max=0.1 means that shift is bounded,
at each iteration, between -0.1*range(x) and +0.1*range(x)). Default value is
0.1. If warping.method=’dilation’ value of t.max is ignored.

m.max scalar: m.max controls the maximal allowed dilation, at each iteration, in the
alignment procedure.
m.max must be such that 0<m.max<1 (e.g., m.max=0.1 means that dilation is
bounded, at each iteration, between 1-0.1 and 1+0.1). Default value is 0.1. If
warping.method=’shift’ value of m.max is ignored.

n.out scalar: the desired length of the abscissa for computation of the similarity in-
dexes and the centers. Default value is round(1.1*grid.size).

tol scalar: the algorithm stops when the increment of similarity of each function
with respect to the corrispondent center is lower than tol.
Default value is 0.01.

fence boolean: if fence=TRUE a control is activated at the end of each iteration. The
aim of the control is to avoid shift/dilation outlighers with respect to their com-
puted distributions.
If fence=TRUE the running time can increase considerably. Default value of
fence is TRUE.

iter.max scalar: maximum number of iterations in the k-mean alignment cycle. Default
value is 100.

show.iter boolean: if show.iter=TRUE kma shows the current iteration of the algorithm.
Default value is FALSE.

Value

The function output is a list containing the following elements:

iterations scalar: total number of iterations performed by kma function.

4.2. R DOCUMENTATION

60

kma 5

x as input.

y0 as input.

y1 as input.

n.clust as input.

warping.method as input.
similarity.method

as input.

center.method as input.

x.center.orig vector n.out: abscissa of the original center.

y0.center.orig matrix 1 X 2*grid.size: the unique row contains the evaluations of the original
function center.
If warping.method=’k-means’ there are two scenarios:
- if similarity.method=’d0.pearson’ or ’d0.L2’ or d0.L2.centered the
original function center is computed via loess procedure applied to original data;
- if similarity.method=’d1.pearson’ or ’d1.L2’ or d1.L2.centered it is
computed by integration of first derivatives center y1.center.orig.
If warping.method=’k-medoids’ the original function center is the medoid of
original functions.

y1.center.orig matrix 1 X 2*grid.size: the unique row contains the evaluations of the original
function first derivatives center.
If warping.method=’k-means’ the original center is computed via loess pro-
cedure applied to original function first derivatives.
If warping.method=’k-medoids’ the original center is the medoid of original
functions.

similarity.orig

vector: original similarities between the original functions and the original cen-
ter.

x.final matrix n.func X grid.size: aligned abscissas.

n.clust.final scalar: final number of clusters.
Note that n.clust.final may differ from initial number of clusters (i.e., from
n.clust) if some clusters are found to be empty. In this case a warning message
is issued.

x.centers.final

vector n.out: abscissas of the final function centers and/or of the final function
first derivatives centers.

y0.centers.final

matrix n.clust.final X 2*grid.size: rows contain the evaluations of the final func-
tions centers.
y0.centers.final is NULL if y0 is not given as input.

y1.centers.final

matrix n.clust.final X 2*grid.size: rows contains the evaluations of the final
derivatives centers.
y1.centers.final is NULL if the chosen similarity measure does not concern
function first derivatives.

labels vector: cluster assignments.
similarity.final

vector: similarities between each function and the center of the cluster the func-
tion is assigned to.

4.2. R DOCUMENTATION

61

6 kma

dilation.list list: dilations obtained at each iteration of kma function.

shift.list list: shifts obtained at each iteration of kma function.

dilation vector: dilation applied to the original abscissas x to obtain the aligned abscissas
x.final.

shift vector: shift applied to the original abscissas x to obtain the aligned abscissas
x.final.

Author(s)

Mirco Patriarca, Laura Sangalli, Piercesare Secchi, Simone Vantini, Valeria Vitelli.

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering".
Computational Statistics and Data Analysis, 54, 1219-1233.

See Also

kma.compare, kma.similarity, fdakma, kma.data, kma.show.results

Examples

data(kma.data)

x <- kma.data$x # abscissas
y0 <- kma.data$y0 # evaluations of original functions
y1 <- kma.data$y1 # evaluations of original function first derivatives

Plot of original functions
matplot(t(x),t(y0), type=’l’, xlab=’x’, ylab=’orig.func’)
title (’Original functions’)

Plot of original function first derivatives
matplot(t(x),t(y1), type=’l’, xlab=’x’, ylab=’orig.deriv’)
title (’Original function first derivatives’)

Example: result of kma function with 2 clusters,
allowing affine transformation for the abscissas
and considering ’d1.pearson’ as similarity.method.
kma_example <- kma (

x=x, y0=y0, y1=y1, n.clust = 2,
warping.method = ’affine’,
similarity.method = ’d1.pearson’,
center.method = ’k-means’,
seeds = c(1,21)
)

kma.show.results(kma_example)

names(kma_example)

Labels assigned to each function
kma_example$labels

4.2. R DOCUMENTATION

62

kma.compare 7

Total shifts and dilations applied to the original
abscissa to obtain the aligned abscissa
kma_example$shift
kma_example$dilation

kma.compare kma.compare runs kma with different numbers of clusters and different
warping methods.

Description

In kma.compare the user can specify multiple values for n.clust and warping.method. kma.compare
runs the K-Mean Alignment algorithm (kma function) for all couples of specified values of n.clust
and warping.method.

Usage

kma.compare(x, y0 = NULL, y1 = NULL, n.clust = c(1, 2),
warping.method = c("NOalignment", "shift", "dilation", "affine"),
similarity.method = "d1.pearson", center.method = "k-means", seeds = NULL,
optim.method = "L-BFGS-B", span = 0.15, t.max = 0.1, m.max = 0.1, n.out = NULL,
tol = 0.01, fence = TRUE, iter.max = 100, show.iter = 0, plot.graph = 0)

Arguments

x matrix n.func X grid.size or vector grid.size: the abscissa values where each
function is evaluated.
n.func: number of functions in the dataset.
grid.size: maximal number of abscissa values where each function is evaluated.
The abscissa points may be unevenly spaced and they may differ from function
to function. x can also be a vector of length grid.size. In this case, x will be used
as abscissa grid for all functions.

y0 matrix n.func X grid.size or array n.func X grid.size X d: evaluations of the set
of original functions on the abscissa grid x.
n.func: number of functions in the dataset.
grid.size: maximal number of abscissa values where each function is evaluated.
d: (only if the sample is multidimensional) number of function components, i.e.
each function is a d-dimensional curve.
Default value of y0 is NULL. The parameter y0 must be provided if the chosen
similarity.method concerns original functions.

y1 matrix n.func X grid.size or array n.func X grid.size X d: evaluations of the set
of original functions first derivatives on the abscissa grid x.
Default value of y1 is NULL. The parameter y1 must be provided if the chosen
similarity.method concerns original function first derivatives.

n.clust vector: n.clust contains the numbers of clusters with which kma.compare runs
kma function.
Default value is c(1,2). See details.

4.2. R DOCUMENTATION

63

8 kma.compare

warping.method vector: warping.method contains the types of alignment with which kma.compare
runs kma function. See details.

similarity.method

character: required similarity measure.
Possible choices are: ’d0.pearson’, ’d1.pearson’, ’d0.L2’, ’d1.L2’,
’d1.L2.centered’, ’d0.L2.centered’. Default value is ’d1.pearson’. See
kma.similarity for details.

center.method character: type of clustering method to be used.
Possible choices are: ’k-means’ and ’k-medoids’. Default value is ’k-means’.

seeds vector max(n.clust): indexes of the functions to be used as initial centers.
Length of seeds must be equal to max(n.clust). If seeds=NULL, centers are
randomly chosen among the n.func original functions. Default value of seeds
is NULL.

optim.method character: optimization method chosen to find the best warping functions at each
iteration.
Possible choices are: ’L-BFGS-B’ and ’SANN’. See optim function for details.
Default method is ’L-BFGS-B’.

span scalar: the span to be used for the loess procedure in the center estimation step
when center.method=’k-means’.
Default value is 0.15. If center.method=’k-medoids’ value of span is ig-
nored.

t.max scalar: t.max controls the maximal allowed shift, at each iteration, in the align-
ment procedure with respect to the range of curve domains.
t.max must be such that 0<t.max<1 (e.g., t.max=0.1 means that shift is bounded,
at each iteration, between -0.1*range(x) and +0.1*range(x)). Default value is
0.1. If warping.method=’dilation’ value of t.max is ignored.

m.max scalar: m.max controls the maximal allowed dilation, at each iteration, in the
alignment procedure.
m.max must be such that 0<m.max<1 (e.g., m.max=0.1 means that dilation is
bounded, at each iteration, between 1-0.1 and 1+0.1). Default value is 0.1. If
warping.method=’shift’ value of m.max is ignored.

n.out scalar: the desired length of the abscissa for computation of the similarity in-
dexes and the centers. Default value is round(1.1*grid.size).

tol scalar: the algorithm stops when the increment of similarity of each function
with respect to the corrispondent center is lower than tol.
Default value is 0.01.

fence boolean: if fence=TRUE a control is activated at the end of each iteration. The
aim of the control is to avoid shift/dilation outlighers with respect to their com-
puted distributions.
If fence=TRUE the running time can increase considerably. Default value of
fence is TRUE.

iter.max scalar: maximum number of iterations in the k-mean alignment cycle. Default
value is 100.

show.iter boolean: if show.iter=TRUE kma shows the current iteration of the algorithm.
Default value is FALSE.

plot.graph boolean: if plot.graph=TRUE, kma.compare plots a graphic with the means of
similarity indexes as ordinate and the number of clusters as abscissa.
Default value is FALSE.

4.2. R DOCUMENTATION

64

kma.compare 9

Details

Example of use: if n.clust=c(1,2,3) and warping.method=c(’shift’,’affine’), kma.compare
runs kma function with number of clusters equal to 1, 2 and 3 using warping.method=’shift’ and
warping.method=’affine’. Note that the kma.compare function always runs with the required
number of clusters and warping.method=’NOalignment’ as well, even if not specified by users.

Value

The function output is a list containing the following elements:

Result.NOalignment

list of outputs of kma function with warping.type=’NOalignment’.
The sublist Result.NOalignment[[k]] corresponds to the results when num-
ber of clusters is n.clust[k].

Result.shift list of outputs of kma function with warping.type=’shift’.
The sublist Result.shift[[k]] corresponds to the results when number of
clusters is n.clust[k]. Note that if ’shift’ is not chosen as warping.type,
then Result.shift will be NULL.

Result.dilation

list of outputs of kma function with warping.type=’dilation’.
The sublist Result.dilation[[k]] corresponds to the results when number of
clusters is n.clust[k]. Note that if ’dilation’ is not chosen as warping.type,
then Result.dilation will be NULL.

Result.affine list of outputs of kma function with warping.type=’affine’.
The sublist Result.affine[[k]] corresponds to the results when number of
clusters is n.clust[k]. Note that if ’affine’ is not chosen as warping.type,
then Result.affine will be NULL.

n.clust as input.
mean.similarity.NOalignment

vector: mean similarity indexes of functions after running kma function with all
elements of n.clust and warping.type=’NOalignment’.
mean.similarity.NOalignment contains the ordinates of the black curve ("with-
out alignment" in the legend) of the output graphic of the kma.compare function
(if plot.graph=1).

mean.similarity.shift

vector: mean similarity indexes of curves after running kma function with all
elements of n.clust and warping.type=’shift’.
mean.similarity.shift contains the ordinates of the blue curve ("shift" in the
legend) of the output graphic of the kma.compare function (if plot.graph=1).

mean.similarity.dilation

vector: mean similarity indexes of curves after running kma function with all
elements of n.clust and warping.type=’dilation’.
mean.similarity.dilation contains the ordinates of the green curve ("di-
lation" in the legend) of the output graphic of the kma.compare function (if
plot.graph=1).

mean.similarity.affine

vector: mean similarity indexes of curves after running kma function with all
elements of n.clust and warping.type=’affine’.
mean.similarity.affine contains the ordinates of the orange curve ("affine"
in the legend) of the output graphic of the kma.compare function (if plot.graph=1).

4.2. R DOCUMENTATION

65

10 kma.compare

Author(s)

Mirco Patriarca, Laura Sangalli, Piercesare Secchi, Simone Vantini, Valeria Vitelli.

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering".
Computational Statistics and Data Analysis, 54, 1219-1233.

See Also

kma, kma.similarity, fdakma, kma.data, kma.show.results

Examples

data(kma.data)

x <- kma.data$x # abscissas
y0 <- kma.data$y0 # evaluations of original functions
y1 <- kma.data$y1 # evaluations of original function first derivatives

Plot of original functions
matplot(t(x),t(y0), type=’l’, xlab=’x’, ylab=’orig.func’)
title (’Original functions’)

Plot of original function first derivatives
matplot(t(x),t(y1), type=’l’, xlab=’x’, ylab=’orig.deriv’)
title (’Original function first derivatives’)

Example: results of kma function with 3 different
numbers of clusters (1,2,3) combined with four alignment
methods (’NOalignment’ by default, ’shift’, ’dilation’,
’affine’) and considering ’d1.pearson’ as similarity.method.
kma.compare_example <- kma.compare (

x=x, y0=y0, y1=y1, n.clust = 1:3,
warping.method = c(’affine’),
similarity.method = ’d1.pearson’,
center.method = ’k-means’,
seeds = c(1,21,30),
plot.graph=1)

names (kma.compare_example)

To see results for kma function with n.clust=2
and warping.method=’affine’.
kma.show.results (kma.compare_example$Result.affine[[2]])

Labels assigned to each function for the
kma function with n.clust=2 and warping.method=’affine’.
kma.compare_example$Result.affine[[2]]$labels

4.2. R DOCUMENTATION

66

kma.data 11

kma.data Simulated Data

Description

kma.data is a functional dataset displaying both amplitude and phase variability.

Usage

data(kma.data)

Format

List of 3 elements:

$x : abscissa values where each function is evaluated

$y0: evaluations of the original functions on the abscissa grid kma.data$x

$y1: evaluations of the original function first derivatives on the abscissa grid kma.data$x.

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering".
Computational Statistics and Data Analysis, 54, 1219-1233.

See Also

kma.compare, kma.similarity, fdakma, kma, kma.show.results

Examples

data(kma.data)

x <- kma.data$x # abscissas
y0 <- kma.data$y0 # evaluations of original functions
y1 <- kma.data$y1 # evaluations of original function first derivatives

Plot of original functions
matplot(t(x),t(y0), type=’l’, xlab=’x’, ylab=’orig.func’)
title (’Original functions’)

Plot of original function first derivatives
matplot(t(x),t(y1), type=’l’, xlab=’x’, ylab=’orig.deriv’)
title (’Original function first derivatives’)

4.2. R DOCUMENTATION

67

12 kma.show.results

kma.show.results Auxiliary function plotting results of kma function.

Description

kma.show.results graphically shows the output results of kma function or one of the outuput results
of kma.compare function.

Four or six plots are generated (depending on the presence of y0 and/or y1 among the inputs):

- Plot of original functions with center (if y0 is given as input in kma/kma.compare function).

- Plot of aligned functions with centers (if y0 is given as input in kma/kma.compare function).

- Plot of original function first derivatives with center (if y1 is given as input and the chosen
similarity.method concerns function first derivatives).

- Plot of aligned function first derivatives with centers (if y1 is given as input and the chosen
similarity.method concerns function first derivatives).

- Plot of warping functions.

- Boxplot of similarity/dissimilarity indexes of original and aligned functions.

Usage

kma.show.results(Result)

Arguments

Result list: output of kma function or one of the outputs of kma.compare functions.

Author(s)

Mirco Patriarca, Laura Sangalli, Piercesare Secchi, Simone Vantini, Valeria Vitelli.

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering".
Computational Statistics and Data Analysis, 54, 1219-1233.

See Also

kma, kma.compare, kma.similarity, fdakma, kma.data

Examples

data(kma.data)

x <- kma.data$x # abscissas
y0 <- kma.data$y0 # evaluations of original functions
y1 <- kma.data$y1 # evaluations of original function first derivatives

kma function with 2 clusters, allowing affine
transformation for the abscissas and considering
’d1.pearson’ as similarity.method.
kma.show.results_example1 <- kma (

4.2. R DOCUMENTATION

68

kma.similarity 13

x=x, y0=y0, y1=y1, n.clust = 2,
warping.method = ’affine’,
similarity.method = ’d1.pearson’,
center.method = ’k-means’,
seeds = c(1,21)

)

Example: kma.show.results shows the results of kma function
kma.show.results(kma.show.results_example1)

Not run:
Example using outputs of kma.compare function

Results of kma function with 3 different
numbers of clusters (1,2,3) combined with four alignment
methods (’NOalignment’ by default, ’shift’, ’dilation’,
’affine’) and considering ’d1.pearson’ as similarity.method.
kma.show.results_example2 <- kma.compare (

x=x, y0=y0, y1=y1, n.clust = 1:3,
warping.method = c(’affine’),
similarity.method = ’d1.pearson’,
center.method = ’k-means’,
seeds = c(1,21,30),
plot.graph=1)

names (kma.show.results_example2)

To see results for kma function with n.clust=2
and warping.method=’affine’.
kma.show.results (kma.show.results_example2$Result.affine[[2]])

Labels assigned to each function for the
kma function with n.clust=2 and warping.method=’affine’.
kma.show.results_example2$Result.affine[[2]]$labels

End(Not run)

kma.similarity Similarity/dissimilarity index between two functions

Description

kma.similarity computes a similarity/dissimilarity measure between two functions f and g. Users
can choose among different types of measures.

Usage

kma.similarity(x.f = NULL, y0.f = NULL, y1.f = NULL,
x.g = NULL, y0.g = NULL, y1.g = NULL, similarity.method, unif.grid = TRUE)

4.2. R DOCUMENTATION

69

14 kma.similarity

Arguments

x.f vector: abscissa grid where function f and his first derivatives f ′ is evaluated.
x.f must always be provided.

y0.f vector: evaluations of function f on the abscissa grid x.f.
Default value of y0.f is NULL. The vector y0.f must be provided if the chosen
similarity.method concerns original functions.

y1.f vector: evaluations of f first derivative, i.e., f ′, on the abscissa grid x.f.
Default value of y1.f is NULL. The vector y1.f must be provided if the chosen
similarity.method concerns function first derivatives.

x.g vector: abscissa grid where function g and his first derivatives g′ is evaluated.
x.g must always be provided.

y0.g vector: evaluations of function g on the abscissa grid x.g.
Default value of y0.g is NULL. The vector y0.g must be provided if the chosen
similarity.method concerns original functions.

y1.g vector: evaluations of g first derivative, i.e., g′, on the abscissa grid x.g.
Default value is of y1.g NULL. The vector y1.g must be provided if the chosen
similarity.method concerns function first derivatives.

similarity.method

character: similarity/dissimilarity between f and g.
Possible choices are: ’d0.pearson’, ’d1.pearson’, ’d0.L2’, ’d1.L2’,
’d0.L2.centered’, ’d1.L2.centered’. Default value is ’d1.pearson’. See
details.

unif.grid boolean: if equal to TRUE the similarity measure is computed over an uniform
grid built in the intersection domain of the two functions, that is an additional
discretization is performed. If equal to FALSE the additional discretization is not
performed, so the functions are supposed to be already defined on the same ab-
scissa grid and the grid is supposed to be fine enough to well compute similarity.

Details

We report the list of the currently available similarities/dissimilarities. Note that all norms and inner
products are computed over D, that is the intersection of the domains of f and g. f and g denote
the mean value, respectively, of functions f and g.

1. ’d0.pearson’: this similarity measure is the cosine of the angle between the two functions f
and g.

< f, g >L2

‖f‖L2‖g‖L2

2. ’d1.pearson’: this similarity measure is the cosine of the angle between the two function
derivatives f ′ and g′.

< f ′, g′ >L2

‖f ′‖L2‖g′‖L2

3. ’d0.L2’: this dissimilarity measure is the L2 distance of the two functions f and g normalized
by the length of the common domain D.

4.2. R DOCUMENTATION

70

kma.similarity 15

‖f − g‖L2

|D|

4. ’d1.L2’: this dissimilarity measure is the L2 distance of the two function first derivatives f ′ and
g′ normalized by the length of the common domain D.

‖f ′ − g′‖L2

|D|

5. ’d0.L2.centered’: this dissimilarity measure is the L2 distance of f − f and g− g normalized
by the length of the common domain D.

‖(f − f)− (g − g)‖L2

|D|

6. ’d1.L2.centered’: this dissimilarity measure is the L2 distance of f ′−f ′ and g′−g′ normalized
by the length of the common domain D.

‖(f ′ − f ′)− (g′ − g′)‖L2

|D|

For multidimensional functions, if similarity.method=’d0.pearson’ or ’d1.pearson’ the sim-
ilarity/dissimilarity measure is computed via the average of the indexes in all directions.

The coherence properties specified in Sangalli et al. (2010) imply that if similarity.method is set
to ’d0.L2’, ’d1.L2’, ’d0.L2.centered’ or ’d1.L2.centered’, value of warping.method must
be ’shift’ or ’NOalignment’. If similarity.method is set to ’d0.pearson’ or ’d1.pearson’
all values for warping.method are allowed.

Value

scalar: similarity/dissimilarity measure between the two functions f and g computed via the simi-
larity/dissimilarity measure specified.

Author(s)

Mirco Patriarca, Laura Sangalli, Piercesare Secchi, Simone Vantini, Valeria Vitelli.

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering",
Computational Statistics and Data Analysis, 54, 1219-1233, 2010.

See Also

kma, kma.compare, kma.show.results, fdakma, kma.data

4.2. R DOCUMENTATION

71

16 kma.similarity

Examples

data(kma.data)

x.f <- kma.data$x # abscissas of f and f’
x.g <- kma.data$x # abscissas of g and g’

y0.f <- kma.data$y0[1,] # evaluations of f on the abscissa grid x.f
y1.f <- kma.data$y1[1,] # evaluations of f’ on the abscissa grid x.f
y0.g <- kma.data$y0[3,] # evaluations of g on the abscissa grid x.g
y1.g <- kma.data$y1[3,] # evaluations of g’ on the abscissa grid x.g

Plot of the two functions f and g
plot(t(x.f),t(y0.f), type=’l’, xlab=’x’, ylab=’y’)
points(t(x.g),t(y0.g), type=’l’, col=’red’)
title (’f and g’)
legend(’bottomleft’, legend=c(’f’,’g’),

col=c(’black’,’red’), lty=c(1,1), cex = 0.5)

Example: ’d0.pearson’
kma.similarity (x.f=x.f, y0.f=y0.f, x.g=x.g, y0.g=y0.g, similarity.method=’d0.pearson’)

Example: ’d0.L2’
kma.similarity (x.f=x.f, y0.f=y0.f, x.g=x.g, y0.g=y0.g, similarity.method=’d0.L2’)

Plot of the two function first derivatives f’ and g’
plot(t(x.f),t(y1.f), type=’l’, xlab=’x’, ylab=’y’)
points(t(x.g),t(y1.g), type=’l’, col=’red’)
title ("f’ and g’")
legend(’bottomleft’, legend=c("f’","g’"),

col=c(’black’,’red’), lty=c(1,1), cex = 0.5)

Example: ’d1.pearson’
kma.similarity (x.f=x.f, y1.f=y1.f, x.g=x.g, y1.g=y1.g, similarity.method=’d1.pearson’)

Example: ’d1.L2’
kma.similarity (x.f=x.f, y1.f=y1.f, x.g=x.g, y1.g=y1.g, similarity.method=’d1.L2’)

4.2. R DOCUMENTATION

72

Index

∗Topic Alignment
fdakma-package, 1

∗Topic Functional Data Analysis
fdakma-package, 1

∗Topic K-Mean Clustering
fdakma-package, 1

∗Topic Registration
fdakma-package, 1

∗Topic Similarity
kma.similarity, 13

∗Topic Time Warping
fdakma-package, 1

fdakma, 6, 10–12, 15
fdakma (fdakma-package), 1
fdakma-package, 1

kma, 2, 3, 7–12, 15
kma.compare, 2, 3, 6, 7, 11, 12, 15
kma.data, 2, 6, 10, 11, 12, 15
kma.show.results, 2, 6, 10, 11, 12, 15
kma.similarity, 2, 4, 6, 8, 10–12, 13

loess, 4, 5, 8

optim, 4, 8

17

4.2. R DOCUMENTATION

73

Chapter 5

Conclusions

In this work we analyzed in detail the problem of registration of functional

data. We tried to capture the qualities of the different continuous registration

methods present in literature with the ambitious goal of building solid

theoretical foundations for this young and fascinating area of statistics called

Functional Data Analysis.

At first we presented the different approaches that solve this problem. Then

we studied in deep the continuous approach, describing the K-Mean Alignment

method presented in Sangalli et al. (2010). We compared it to the other

registration methods present in literature, finding that the K-Mean Alignment

procedure is the only method allowing to jointly cluster and align functional

data, that is a remarkable quality with respect to the other methods.

We applied the K-Mean Alignment method to the neuronal "spike train" dataset.

The aim was to align the neuronal intensities of a monkey doing a particular

task with his hand. We finally discovered that there is no need for registration

if we want to cluster the four different paths. The k-mean procedure allows to

reach this goal in a very satisfying way. In a second approach, we considered

data as periodic functions. With this hypothesis we allowed only for shift

74

registration. We finally found a strong correlation between shifts and paths

when searching for one cluster. In the case of two clusters (i.e., the correct

number of clusters suggested by the kma.compare function of the R package

fdakma), we discovered that they are not related to the paths. Of course, for

an explanation from a neuroscientific point of view, we would require the

intervention of a specialist in the sector.

Finally, we developed the R package called fdakma, which will be soon avail-

able on CRAN repository. When we started this work, a little implementation

of the algorithm was already present. We then extended the possibilities of the

algorithm: it is now possible to align functional data with several numbers of

clusters and types of warping functions and to automatically plot the results of

the clustering/alignment procedure. The estimation of the cluster(s) center(s)

has also been implemented, so that, in all cases, users can easily recognize

the general trend of the functions given by the shape of the final cluster(s)

center(s).

As a conclusive remark, let me point out that a lot of improvements can still

be done to the fdakma package, as well as to the K-Mean Alignment procedure.

The K-Mean Alignment scheme gives the possibility to insert other couples

measure-warping functions respecting the rules listed in chapter 2. For example,

it would be interesting to implement the Fisher-Rao metric in it. In fact the

flexibility regarding the space of warping functions of the Fisher-Rao metric

makes this measure naturally insertable in the framework of Sangalli et al.

(2010). At the same time, the K-Mean Alignment procedure does not depend

on the chosen metric or the space of warping functions we allow for our

functions. Hence it is naturally thinkable to extend the K-Mean Alignment

75

algorithm allowing the choice of the Fisher-Rao metric as measure to register

functional data.

In a future prospective, it would also be useful to work on the complexity of

the algorithm. For example, the R package optim does all the optimization

jobs, but, given that the optimization step represents an important part of

the algorithm, we could gain a lot in term of execution time improving its

efficiency. Always in this prospective, a parallelization of the code would also

be an important amelioration. This is possible because many parts of the code

are independent from each other, hence they can easily be parallelized. Of

course this would considerably reduce the complexity of the algorithm.

76

References

References

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learn-
ing: data mining, inference and prediction (2e éd.). Springer.

R Development Core Team. (2013). R: A Language and Environment for Statis-
tical Computing [Manuel de logiciel]. Vienna, Austria. (ISBN 3-900051-
07-0)

Ramsay, J. O., Hooker, G., & Graves, S. (2005). Functional data analysis with R
and MATLAB. Dordrecht ; Springer, c2009.

Ramsay, J. O., & Silverman, B. (2005). Functional data analysis. New York :
Springer, c1997.

Ramsay, Jim O. and Silverman, Bernard. (2002). Applied Functional Data
Analysis.

Sangalli, L. M., Secchi, P., Vantini, S., & Vitelli, V. (2010). K-Mean Alignment for
Curve Clustering. Computational Statistics & Data Analysis, 54(5), 1219–
1233.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E., & Marron, J. S. (2011). Registra-
tion of Functional Data Using Fisher-Rao Metric.

Team, R. D. C. (2010). Writing R Extensions [Manuel de logiciel].
Tuddenham, R., & Snyder, M. (1954). Physical growth of California boys and

girls from birth to age 18. Univ. Calif. Publ. in Child Develop..
Vantini, S. (2012). On the definition of phase and amplitude variability in

functional data analysis. TEST, 21(4), 676.
Wu, W., & Srivastava, A. (2011). An information-geometric framework for sta-

tistical inferences in the neural spike train space. Journal of Computational
Neuroscience, 31(3), 725–48.

77

