
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Computer Engeneering

Dipartimento di Elettronica, Informazione e Bioingegneria

AN APPLICATION OF THE EXTENDED
KALMAN FILTER TO THE ATTITUDE

CONTROL OF A QUADROTOR

Advisor: Prof. Matteo MATTEUCCI
Co-Advisor: Dott. Andrea ROMANONI
Co-Advisor: Prof. Marco LOVERA

Master thesis by:
Leonardo ASCORTI, ID 745919

Academic year 2012-2013

Contents

List of Figures 5

List of Tables 6

Acknowledgements 7

Abstract 10

Estratto in lingua italiana 12

Introduction 17

1 Attitude estimate with the extended Kalman filter 23
1.1 Introduction to Kalman filtering . 23

1.1.1 Kalman filter for continuous time systems 24
1.1.2 The extended Kalman filter 25

1.2 Quadrotor dynamics . 26
1.2.1 Earth frame and body frames 26
1.2.2 Euler angles . 27
1.2.3 Angular velocities . 29

1.3 Rigid body dynamics . 31
1.3.1 Linear motion . 31
1.3.2 Angular motion . 32
1.3.3 Altitude . 32

1.4 Forces and controls . 33
1.5 On board sensors . 34

1.5.1 Gyroscope . 35
1.5.2 Accelerometer . 36
1.5.3 Magnetometer . 36
1.5.4 Barometer . 37

1.6 State space representation for the EKF 38
1.6.1 State-transition model . 38
1.6.2 Measurement model . 40
1.6.3 Linearizations . 41

3

2 Simulation model 45
2.1 Pre-existing model . 45

2.1.1 Dynamics block . 47
2.1.2 Control block . 48
2.1.3 DC motors block . 48

2.2 IMU model . 49
2.2.1 IMU blocks library . 50
2.2.2 Structure of the IMU subsystem 52

2.3 Kalman filter model . 54
2.3.1 Continuous time model . 54
2.3.2 Discrete time model . 55

3 Testing and performance analysis 59
3.1 Open loop performance analysis with simulated data 59

3.1.1 Hovering . 61
3.1.2 Altitude variation . 63
3.1.3 Linear movement . 63
3.1.4 Rotation around the Z axis 64
3.1.5 Complex trajectory . 67

3.2 Influence of the magnetic field direction on the estimation accuracy . 67
3.3 Closed loop simulations . 71

3.3.1 Stability problems . 71
3.3.2 Hovering . 73
3.3.3 Complex trajectories . 73

3.4 Simulations with errors in the estimates of the parameters 81
3.4.1 Errors in physical parameters 81
3.4.2 Errors in sensor calibration 84

4 Conclusion 91
4.1 Further developments . 92

Bibliography 93

A Mathematical derivation of the Kalman filter 97
A.1 Probability and Bayes filters . 97

A.1.1 Introduction to the probability theory in robotics 97
A.1.2 The concept of belief . 98
A.1.3 Bayes filter . 98
A.1.4 Mathematical derivation of the Bayes filter 99

A.2 Derivation of the Kalman Filter . 100
A.2.1 Derivation of the discrete time Kalman filter 101
A.2.2 Derivation of the Kalman-Bucy filter 104

B Matlab code 107

4

List of Figures

1 First prototypes of manned quadrotors. 19
2 The Parrot AR.Drone, a commercial smartphone-controlled quadrotor. 20

1.1 Model of the quadrotor with two Cartesian reference frames. 27
1.2 Visual representation of the Euler angles 30

2.1 Pre-existing Simulink model. 46
2.2 Simulink model of the dynamics block. 48
2.3 Simulink model of the control block. 48
2.4 Simulink model of the DC motors block. 49
2.5 Partial view of the updated Simulink model. 51
2.6 Simulink model of a generic MEMS sensor. 52
2.7 Simulink model of the IMU block. 53
2.8 Simulink model of the continuous time EKF. 54
2.9 Simulink model of the discrete time EKF. 55
2.10 Simulink model of the discrete time EKF. 57

3.1 Hovering simulation . 62
3.2 Altitude variation: the desired trajectory (red) and the actual one

(blue). 63
3.3 Altitude variation: state variables and estimates. 64
3.4 Linear movement: the desired trajectory (red) and the actual one

(blue) of the pitch angle. 65
3.5 Linear movement: state variables and estimates. 65
3.6 Rotation around the Z axis: the desired trajectory (red) and the

actual one (blue) of the yaw angle. 66
3.7 Yawing movement: state variables and estimates. 66
3.8 Complex trajectory: variables and estimates. 67
3.9 Continuous time filter performance with different values of the mag-

netic inclination. 69
3.10 Discrete time filter performance with different values of the magnetic

inclination. 70
3.11 Estimated linear velocity components with different magnetic decli-

nations. 71

5

3.12 Stability of the closed loop simulation using anti-aliasing filters of
different orders. 72

3.13 Trajectories of the state variables in closed loop: hovering. 74
3.14 Trajectories of the state variables in closed loop: linear movement

with altitude variation. 76
3.15 Actual trajectory of the quadrotor in the case of two perpendicualr

segments. 77
3.16 Trajectories of the state variables in closed loop: two perpendicualr

segments. 78
3.17 Trajectories of the state variables in closed loop: diagonal movement

with altitude variations. 80
3.18 Hovering simulation with errors in the Kalman filter parameters: con-

tinuous time filter estimates. 82
3.19 Hovering simulation with errors in the Kalman filter parameters: dis-

crete time filter estimates. 83
3.20 Hovering simulation with errors in sensor axis misalignment calibra-

tion: continuous time filter estimates. 85
3.21 Hovering simulation with errors in sensor axis misalignment calibra-

tion: discrete time filter estimates. 86
3.22 Hovering simulation with errors in sensor biases calibration: contin-

uous time filter estimates. 87
3.23 Hovering simulation with errors in sensor biases calibration: discrete

time filter estimates. 88
3.24 Closed loop simulation of a complex trajectory with sensor calibration

errors. 89

6

List of Tables

3.1 Default parameters used in the simulations. 60
3.2 Mean values of the estimated variables (hovering). 61
3.3 Mean value of the extimated roll angles with different magnetic incli-

nations (discrete time EKF). 68
3.4 Drift values in hovering condition of the closed loop system after 10

seconds. 73
3.5 Coordinates of the end points of the diagonal trajectory. 79

7

8

Acknowledgements

I am very grateful to my advisor, prof. Matteo Matteucci, who supported me through
all the stages of the development of my work, not only with great competence, but
also with remarkable courtesy and patience. I would also like to acknowledge my
two co-advisors, dott. Andrea Romanoni and expecially prof. Marco Lovera, his
knowledge and experience in aerospace engeneering was fundamental for this thesis.

A special thank goes to dott. Marco Bergamasco, who built the quadrotor that
inspired this research during his PhD course.

9

10

Abstract

The focus of this thesis is the application of the extended Kalman filter to the
attitude control system of a four-propellers unmanned aerial vehicle usually known
as quadrotor.

The Kalman filter is a mathematical tool well suited for an algorithmic imple-
mentation that estimates the state of a dynamic system influenced by random noise
given a set of measurements which are also corrupted by random noise. If the system
and measurement eqautions are linear functions of the state variables and the noises
are both normally distributed, the filter can be proven to be an optimal estimator.
In practice, the linearity conditions are often not satisfyed, but some rielaborations
of the filter algorithm have been used for more than fourty years in many nonlinear
applications with good results. The extended Kalman filter (EKF), used in this
thesis, is one of the first and best known nonlinear filter versions.

A quadrotor is a helicopter lifted and propelled by four rotors. Small sized
quadrotors are often used as UAVs (unamanned aerial vehicles) in research and am-
ateur projects, because of the simple symmetric structure and relatively easy control
law with respect to traditional helicopters. In this thesis, the extended Kalman filter
is applied to estimate the state of the quadrotor from the noisy measurements of
on board low-cost MEMS sensors. The estimated state is intended to be used by
a control algorithm (not discussed in this work) to maintain the desired attitude
during various maneouvers.

The EKF is implemented in Simulink in both continuous and discrete time, as
an extension of a pre-existing model, which simulates the dynamics and control of
a quadrotor. The performance and stability of the system is then analyzed with
many test cases, from simple hovering to complex trajectories, both with open and
closed loop control. The model is also tested for robustness in case of errors in the
measurements of physical parameters and incorrect sensor calibration.

11

12

Estratto in lingua italiana

Lo scopo di questa tesi è l’applicazione del filtro esteso di Kalman (abbreviato EKF)
al sistema di controllo dell’assetto di un elicottero quadrirotore.

Il filtro di Kalman è uno strumento matematico, facilmente applicabile in forma
di algoritmo, per stimare lo stato di un sistema dinamico perturbato da rumore sulla
base di un insieme di misure anch’esse corrotte da rumore. Il filtro in pratica è in
grado di compensare i due tipi di errore per ottenere una stima migliore di quella
che potrebbe essere ottenuta conoscendo solo il valore delle misure o il modello
del sistema dinamico. Nel caso in cui sia il sistema dinamico sia le equazioni che
descrivono le misure sono funzioni lineari delle variabili di stato ed entrambi i rumori
sono generati secondo distribuzioni gaussiane, è possibile dimostrare che il filtro
di Kalman è uno stimatore ottimo. I sistemi reali difficilmente soddisfano queste
condizioni, in particolare per quanto riguarda la linearità delle equazioni, tuttavia
la ricerca in questo campo ha sviluppato varianti del filtro originale che forniscono
risultati soddisfacenti (sebbene non ottimi in senso stretto) anche quando applicati
a sistemi non lineari. In particolare, in questa tesi è utilizzato il filtro di Kalman
esteso, uno dei primi algoritmi non lineari che negli anni è stato applicato a con
successo in diversi scenari, tra cui la guida automatica di veicoli ha una particolare
rilevanza.

I quadrirotori sono un tipo di velivolo senza pilota (UAV) a decollo e atterraggio
verticale (VTOL) che ha suscitato notevole interesse tra i ricercatori negli ultimi
anni, perché le leggi che ne governano il volo sono relativamente semplici rispetto a
quelle degli elicotteri propriamente detti e anche la loro realizzazione fisica è consi-
derevolmente meno complessa, dato che essi non hanno parti meccaniche come pale
inclinabili o flap, ma si manovrano esclusivamente variando la velocitá dei quattro
rotori e presentano comunque una buona agilitá di movimento. Tra le varie aree
di ricerca che coninvolgono questi velivoli, ha particolare importanza lo sviluppo di
algoritmi e leggi di controllo, sia per l’assetto sia per la navigazione.

In questa tesi, il filtro esteso di Kalman è impiegato per stimare lo stato del
velivolo in base alle misure fornite dai sensori di tipo MEMS a basso costo presenti
a bordo. Lo stato cos� stimato è poi utilizzato dal sistema di controllo (il cui funzio-
namento non è discusso in questa sede) per mantenere l’assetto richiesto nel corso
delle manovre di volo. Il modello completo del quadrirotore, dei sensori e del filtro di
Kalman è implementato in Simulink e i risultati di diverse simulazioni con differenti

13

condizioni sono analizzati per studiarne le prestazioni, la stabilità e la robustezza
agli errori.

Nel Capitolo 1 si ricava il modello matematico del sistema dinamico, sulla base
di leggi fisiche e aerodinamiche. Il modello prevede uno stato del sistema composto
da dieci variabili:

• le velocità lineari lungo i tre assi cartesiani nel sistema di riferimento del
velivolo;

• le velocità angolari attorno ai tre assi cartesiani nel sistema di riferimento del
velivolo;

• l’orientamento del velivolo rispetto ad un sistema di riferimento esterno, espres-
so in angoli di Eulero (rollio, beccheggio e imbardata);

• la quota rispetto al terreno.

Nello stesso capitolo si ricava anche il modello dei sensori, sulla base delle loro
caratteristiche generiche. Questo modello comprende delle costanti che devono essere
definite in sede di calibrazione. Da ultimo, i modelli del sistema e dei sensori sono
linarizzati (calcolandone la matrice jacobiana), come richiesto dall’algoritmo EKF.

Il Capitolo 2 è dedicato alla descrizione del modello Simulink utilizzato per le
simulazioni. Il modello è composto da una parte preesistente che rappresenta la
dinamica del quadrirotore, l’algoritmo di controllo e il modello dei motori e da una
parte realizzata nel corso di questa tesi, che modella i sensori MEMS e il filtro di
Kalman. Per ragioni tecniche, il modello dei motori è stato poi escluso dal sistema
utilizzato per le simulazioni. Il filtro di Kalman è implementato sia in versione a
tempo continuo che a tempo discreto. La versione a tempo continuo, anche se non
è implementabile su un velivolo reale, è utilizzata come termine di paragone per
verificare le prestazioni del filtro discreto.

Nel Capitolo 3 sono presentati e analizzati i risultati di diverse simulazioni del
modello. La prima serie di simulazioni riguarda le stime del filtro nel caso di tra-
iettorie di volo seguite in anello aperto, cioè con il sistema di controllo che agisce
sullo stato reale e non sull’uscita del filtro. In questo caso è possibile valutare le
prestazioni confrontando la traiettoria stimata con quella effettivamente seguita, che
è la migliore possibile data la legge di controllo. Si osserva inoltre il fatto che le pre-
stazioni del filtro aumentano all’aumentare dell’inclinazione del campo magnetico e
si fornisce una spiegazione del fenomeno. Il seguente gruppo di simulazioni contiene
traiettorie in anello chiuso, cioè con il controllore operante sull’uscita del filtro. Si
nota come la versione tempo continuo genera instabilità che possono essere risolte
applicando un filtro passabasso, mentre la versione a tempo discreto è stabile a patto
che il ritardo introdotto dal filtro anti-aliasing operante sui sensori sia sufficiente-
mente piccolo. L’ultimo gruppo di simulazioni rappresenta il comportamento del
sistema in caso di errori nell’impostazione dei numerosi parametri da cui dipende
il filtro di Kalman. Si osserva che il filtro a tempo discreto è più robusto rispetto

14

a questi errori, ma che in ogni caso piccoli errori nell’impostazione dei parametri
fisici, come la massa del velivolo, conducono a grossi errori nella stima, mentre la
tolleranza è maggiore nel caso di errori nella calibrazione dei sensori.

Il Capitolo 4 trae le conclusioni del lavoro, sottolineando i buoni risultati in caso
di corretta impostazione dei parametri, ma anche la scarsa robustezza nel caso di
errori nella stima degli stessi. Sono presentati anche alcuni possibili sviluppi futuri,
dalla correzione delle imprecisioni nel modello fino all’implementazione di un sistema
di navigazione che estenda il semplice controllo dell’assetto con informazioni sulla
posizione.

Per concludere, nell’Appendice A è fornita un’introduzione matematica ai filtri
bayesiani (di cui il filtro di Kalman fa parte) ed è presentata la dimostrazione mate-
matica rigorosa dell’ottimalit� del filtro di Kalman sia nella versione continua, sia in
quella discreta. L’Appendice B contiene invece tutto il codice Matlab utilizzato per
le simulazioni, in modo che gli esperimenti presentati siano facilmente riproducibili.

15

16

Introduction

Goals
This thesis focuses on an application of the extended Kalman filter to the attitude
control of a type of unmanned aerial vehicle (UAV) called quadrotor.

The filter is used to obtain an improved extimation of the attitude and speed
of the aircraft by integrating the data from the sensors with the predictions of the
aerodynamic model. Since the model is strongly nonlinear, the extended version of
the Kalman filter has been used.

The performance and the robustness of the filter have been tested in a simulated
environment modelled with Simulink

The Kalman filter
The Kalman filter is a very important discovery in the field of statistical estimation
theory. It can be informally described as an optimal mathematical tool to estimate
the state of a linear dynamic system perturbed by white noise by using measure-
ments which are also linear with respect to the state and corrupted by white noise.
Moreover, it is well suited for computer implementation, because it uses a finite
representation of the estimation problem and a discrete step algorithm (but a con-
tinuous time version is also possibile) [13]. The main limitation of the filter to be
optimal is the necessary condition that the dynamic system has to be linear. Since
the first years after the Kalman’s results, researchers have worked to adapt the filter
algorithm to nonlinear problems, which are more common in practical applications.
Two very popular nonlinear algorithms are the extended Kalman filter (EKF) [30],
which is the subject of this thesis, and the much more recent unscented Kalman
filter (UKF) [17, 38]. These algorithms have been experimentally proven to work
well in many pratical situations, but they are not optimal and even their stability
can be guaranteed only when the system meets some particular conditions that are
hard to verify in practice [22, 5, 29, 34].

For all these reasons, the Kalman filter and its extended version have been suc-
cessfully applied to many pratical problems in different fields, e.g., guidance and
control of vehicles like ships, aircrafts and spaceships, signal processing, economet-
rics, etc.

17

Quadrotors and their applications
A quadrotor is a helicopter lifted and propelled by four rotors. The rotors of a quad-
copter are usually fixed-pitch, so the aircraft is controlled by changing the relative
speed of the four rotors and thus increasing or decreasing their thrust and torque.
Some quadrotors have variable pitch blades, but even in this case the pitch can be
changed only as a group property of the blades of each rotor and not depending on
the position1.

Small sized quadrotors are often used as UAVs (unamanned aerial vehicles) in
research and amateur projects, because of the simple symmetric structure and rela-
tively easy control law. The main advantages of quadrotors with respect to conven-
tional helicopters are:

• quadrotors do not require mechanical linkages to change the pitch of the blades
and they do not even use mechanically driven control surfaces like other aircraft
types (flaps, rudders...), so they are much easier to design and build, expecially
in small size;

• the four rotors are smaller than the single rotor of a conventional helicopter
of comparable size, allowing them to posses less kinetic energy and thus cause
less damage in the case of an accidental crash;

• the symmetric structure and the fact that the movements of a quadrotor de-
pend only on the rotation rates of the propellers make them quite maneuvrable
with relatively simple control systems.

The first quadrotors were designed in the 20s as manned vehicles. The prototype
known as Oehmichen N°2, created by the French engineer �tienne Oehmichen, was
probably the first reliable VTOL (vertical take-off and landing) aircraft to be able
to carry a person for at least one kilometer2. Another early experimental quadrotor
was designed by George de Bothezat for the US army, but it had too many reliability
and control problems, so the project was soon canceled [12]. This two prototypes
are shown in Figure 1.

Nowadays, quadrotors are mainly employed as small scale UAVs for research
and entertainment purposes. In the last few years some models were successfully
introduced to the mainstream market, like the Parrot AR.Drone (Figure 2) which
can be controlled from an iPhone and includes some predefined gaming apps. More
relevant applications are surveillance and air photography and even the scouting of
buildings, thanks to their indoor flying capability. As stated above, quadrotors are
also often chosen by scholars and researchers as the reference platform for research
in the fields of robotics, autonomous vehicles and flight control algorithms.

1 In traditional helicopters, the pitch of the main rotor blades can be adjusted either globally,
using the so called collective control to change the altitude or depending on the blade position,
using the cyclic control, to change the direction of flight.

2 The first kilometer-long flight took place in 1924 and lasted 7 minutes and 40 second.
Oehmichen was awarded a price for this accomplishment.

18

(a) Ohemichen

(b) De Bothezat

Figure 1: First prototypes of manned quadrotors.

19

Figure 2: The Parrot AR.Drone, a commercial smartphone-controlled quadrotor.

20

State of the art
Most of the research interest about vertical take off and landing UAVs is focused on
the quadrotros. Some researchers developed their own platforms, such as the tiny
Mesicopter [21], the X4-flier [14] or the one by Castillo [8], while other worked on
commercially available models. The majority of the papers regards the development
and evaluation of control algorithms. Many different control tecniques that have
been proposed include:

• linear contollers (PID, PD) [4, 36];

• Lyapunov theory [8, 31];

• adaptive techniques [3, 27];

• visual feedback [26, 2];

• fuzzy algorithms [9];

• neural networks [11].

Other researches focus on the employs of this aerial vehicles, from multi-agent
patrolling and surveillance [16, 10] to more fancy ones, like structure building [23]
and river mapping [32].

The application of the extended Kalman filter to the quadrotors, which is the
topic of this thesis, is also described in some papers. An attitude determination
algorithm is proposed and tested by Liu and Zhou [24], while Abeywardena and
Munasinghe [1] analyze the performance of another algorithm using a Matlab sim-
ulation. The EKF is used to solve the state estimation problem in the works by
Kis [20], Soumelidis [33] and Hoffmann [15], which are however more focused on the
control system. Other researchers used the filter on visual informations to perform
navigation tasks [25, 35].

Structure of the thesis
The thesis is structured as follows:

Chapter 1 explains the basics of the extended Kalman filter and derives the dy-
namic and sensor model of the quadrotor in a form that is suitable for the
application of the filter.

Chapter 2 describes the Simulink model used to test the implementation of the
EKF. The model extends a pre-existing one created by Tommaso Bresciani
[6].

Chapter 3 analyzes the performance and the robustness of the Simulink EKF
model by presenting data from various simulated test cases.

21

Appendix A provides the formal mathematical derivation of both the discrete and
continuous time versions of the Kalman filter.

Appendix B contains all the Matlab code used by the Simulink model described
Chapter 2.

22

Chapter 1

Attitude estimate with the
extended Kalman filter

The first section of this chapter provides a very concise introduction to the Kalman
filter equations and implementation. A much more complete description of the filter
theory with mathematical proofs can be found in Appendix A. Section 1.2 derives
the dynamic equations that describe the quadrotor attitude and movements. In
Section 1.5 the on board sensors are described. Finally, in Section 1.6 the dynamic
system and the sensor model are put in an appropriate form for the EKF to be
applied and their linearizations are computed as required by the filter.

1.1 Introduction to Kalman filtering
The original formulation of the Kalman filter was developed by Rudolf Emil Kálmán
at the beginning of the ’60s [19, 18]. The filter algorithm assumes a discrete time
linear dynamic system that can be represented as a difference equation using the
state space model:

xk = Fkxk−1 +Bkuk−1 +wk, (1.1)

where Fk is the state matrix, xk is the vector of the state variables, Bk is the input
matrix, uk is the control vector and wk is a zero-mean, gaussian distributed process
noise. If the system is time invariant, the matrices F and B do not depend on the
time k. The filter also assumes the availability of a set of measurements that are
also linear functions of the state variables:

zk = Hkxk + vk, (1.2)

where Hk is the measurement matrix and vk is also a zero-mean, gaussian distributed
measurement noise uncorrelated with wk

The Kalman filter is a recursive algorithm that exploits the knowledge of the
expected covariance of the state variables to correct the a priori estimation of both
the state of the system and the covariance itself. The estimate obtained by the

23

Kalman filter is statistically optimal. The algorithm can be divided in two main
steps (in the following equations, a (−) after a variable indicates its estimated value
before the measurement update, while a (+) indicates the estimate after the update):

Prediction step: at this step, the state at time k is predicted according to the
system model:

x̂k(−) = Fk−1x̂k−1(+) +Bk−1uk−1. (1.3)
The covariance at time k is also predicted according to the equation:

Pk(−) = Fk−1Pk−1(+)F T
k−1 +Qk−1, (1.4)

where Qk is the covariance of the process noise wk in Equation (1.1).

Update step: at this step, the a priori estimate is updated according to the mea-
surements:

x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)] (1.5)
and the covariance estimate is also updated:

Pk(+) = [I −KkHk]Pk(−). (1.6)

The matrix Kk in Equations (1.5) and (1.6) is the optimal Kalman gain at
time k, which is computed as:

Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1, (1.7)

where Rk is the covariance of the measurement noise vk in Equation 1.2.

In practical applications, the error covariance matrices Q and R and the measure-
ment matrix H are often time invariant.

1.1.1 Kalman filter for continuous time systems
A version of the Kalman filter known as the Kalman-Bucy filter can be applied to
continuous time dynamic system. In this case, the system model is a differential
equation:

ẋ = F (t)x(t) +B(t)u(t) +w(t) (1.8)
and the measurement model is also a continuous linear function of the state:

z(t) = H(t)x(t) + v(t). (1.9)

The main diffrerence with respect to the discrete time version is that in the
continuous domain the update and the prediction steps are coupled and cannot be
distinguished, so the filter consists of only two equations:

˙̂x = F (x)x̂(t) +B(t)u(t) +K(t)[z(t)−H(t)x̂(t)], (1.10)

Ṗ (t) = F (t)P (t) + P (t)F T (t)−K(t)R(t)K
T
(t) +Q(t) (1.11)

24

and the Kalman gain is:
K(t) = P (t)HT (t)R−1. (1.12)

The equation (1.11) that expresses the covariance update is known as a Riccati
equation1.

1.1.2 The extended Kalman filter

One of the main limitations of the Kalman filter is the fact that it requires both
the dynamic system and the measurement functions to be linear with respect to the
state variables. In many pratical applications, these requirements are not satisfied.
The extended Kalman filter is a modified version of the standard Kalman filter that
can be applied when the system and/or the measurement models are nonlinear.

Equation (1.13) and (1.14) are respectively the nonlinear differential (for the
continuous case) and difference (for the discrete case) equations that describe the
system model:

ẋ(t) = f(x(t),u(t)) +w(t), (1.13)

xk = Φk−1(xk−1,uk−1) +wk−1. (1.14)

The nonlinear measurement model equation for the continuous and discrete time
version are respectively:

z(t) = h(x(t)) + v(t), (1.15)

zk = hk(xk) + vk. (1.16)

The nonlinear equations are used directly for the state prediction and to compute
the measurement residual, so Equation (1.3), (1.5) and (1.10) become respectively:

x̂k(−) = Φk−1(x̂k−1(+),uk−1), (1.17)
x̂k(+) = x̂k(−) +Kk[zk − hk(x̂k(−))], (1.18)

˙̂x(t) = f(x̂(t),u(t)) +K(t)[z(t)− h(x̂(t))]. (1.19)

The part concerning the covariance update is more complex. If the state transition
and measurement equations are nonlinear, the probability distribution of the state
vector becomes non-Gaussian, so it cannot be fully described by the mean and the
covariance matrix alone. The EKF linearizes the state transition and measurement
models around the current state estimate and it uses the Jacobians to update the
covariance estimate with the same equations used by the standard Kalman filter.
So in the discrete model we redefine Fk in Equation (1.4) and Hk in Equation (1.6)

1 A Riccati equation is any first order ordinary differential equation (in scalar or matrix form)
that is quadratic in the unknown function. It is named after the Italian matematician Jacopo
Francesco Riccati (1676-1754).

25

and (1.7) as:

Fk−1 =


∂Φ1
∂x1

· · · ∂Φ1
∂xn...

∂Φm
∂x1

· · · ∂Φm
∂xn


x̂k−1(+),uk−1

,

Hk =


∂h1
∂x1

· · · ∂h1
∂xn...

∂hm
∂x1

· · · ∂hm
∂xn


x̂k(−)

.

In the continuous model, we redefine F (t) and H(t) in Equation (1.11) and (1.12)
as:

F (t) =


∂f1
∂x1

· · · ∂f1
∂xn...

∂fm
∂x1

· · · ∂fm
∂xn


x̂(t),u(t)

;

H(t) =


∂h1
∂x1

· · · ∂h1
∂xn...

∂hm
∂x1

· · · ∂hm
∂xn


x̂(t)

.

Since the Jacobians have to be evaluated at the current estimate in real time, the
EKF is more complex than the standard Kalman filter from the computational point
of view.

1.2 Quadrotor dynamics
In order to provide the state-transition model to the extended Kalman filter, we need
a physical model of the quadrotor dynamics and kinematics that is both accurate
and simple enough to be mathematically analyzed and simulated on a computer
system. The proposed model is shown in Figure 1.2: the quadrotor is represented as
a symmetric cross-like structure with a spherical central mass and four propellers, the
front and the back ones rotate clockwise and the other two rotate counterclockwise.
The mass of the structure that connects the propellers to the central mass is assumed
negligible. The model is completed with the definition of two different Cartesian
reference frames: the earth frame and the body frame, which are fully described in
the following subsection.

1.2.1 Earth frame and body frames
As stated before, our dynamic model involves two different reference frames: the
earth frame is centered on a given point at ground level with the zf axis pointing
upwards, yf pointing towards the magnetic north and xf pointing to the east, while

26

Figure 1.1: Model of the quadrotor with two Cartesian reference frames. The red
arrow indicates the main direction of motion.

the body frame is centered at the mass center of the aircraft, with the xb axis
directed towards the main direction of motion (which is usually arbitrary because of
the symmetric structure of the quadrotor), the yb axis pointing to the left and the
zb axis pointing upwards with respect to the aircraft body. Both the frames follow
the right hand convention.

Once we have defined the two reference frames, we need a set of transformations
between them, so that any vector given in the earth frame can be expressed in the
body frame and vice-versa. These transformations are required because our goal
is to control the attitude of the object with respect to the enviroment, but the
measurements provided by the on-board sensors are referred to the body frame.
While the translations are quite straightforward and actually they are not even
really important for our purposes (an active control of the position is not developed
in this thesis), the three dimensional rotations are much more complex than their
two-dimensional counterpart, so a complete explanation is needed.

1.2.2 Euler angles
The Euler angles are one way to describe the orientation of a rigid body with respect
to a fixed reference frame. They were introduced by Leonhard Euler in the 18th
century, but are still widely used. The Euler angles can be explaind using the
rotations around the moving axes, known as intrinsec rotations, that are simple to
imagine: if we at first rotate the frame around the x axis, then the y axis will end up

27

pointing in a different direction than the initial one. A second rotation around the y
axis will rotate the frame around this new direction. In general, each new rotation
is referred to the direction that its axis has assumed after all the previous ones.

Given two cartesian reference frames with the same origin, the first frame can
be rotated to match the orientation of the second frame by applying three rotations
around the moving axes in a given order. The sequence of the three rotations
uniquely defines the orientation of the second reference frame with respect to the
first one. To avoid ambiguity, the chosen sequence of rotation axes must follow a
common convention. We will use the sequence z − y − x, which is conventional in
aerospace engineering. The resulting angles ψ, θ and φ are called respectively yaw,
roll and pitch2.

Rotation matrix

The rotations around the three axes of a Cartesian frame are analitically described
by the following matrices:

R(x, φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 ,
R(y, θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,
R(z, ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 .
It is important to notice that we have described the Euler angles using the rotations
around the moving axis, because they are easier to understand by intuition, but the
above matrices perform the rotations around the axes of the fixed reference frame
(called extrinsic rotations). However, it is possibile to prove that any sequence of
intrinsic rotations is equivalent to the same sequence of extrinsec rotations performed
in reverse order, in our case x − y − z is the opposite of z − y − x (that’s also the
reason why the Euler angles are usually listed as roll, pitch and yaw and not the
other way around as we did in the previous paragraph). So, the full rotation matrix
is computed in the following way3:

2 The angles defined according to this convention are more properly called Tait-Benn angles,
because the original Euler angles perform the first and the last rotations around the same axis.

3Remember that the matrix product is not commutative and the first rotation is associated to
the leftmost matrix.

28

R(φ, θ, ψ) = R(z, ψ)R(y, θ)R(x, φ) =

=

cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ

 .
(1.20)

The matrix R(φ, θ, ψ) and its inverse (which corresponds to its transpose because
it is an orthogonal matrix) can be used to switch between the body frame and the
earth frame: if x is a vector in the body frame, Rx expresses the same vector in the
earth frame, on the contrary, a vector y defined in the earth frame becomes RTy
in the body frame.

Geometric definition of the Euler angles

In the previous paragraphs we have defined the Euler angles in the Cartesian space
by an operative definition, decribing how to move one frame to make it conincident
with the second one, and in an analitic way, explaining how to obtain the body frame
by transforming the coordinates of the earth frame. However, the angles φ, θ and
ψ can also be described by a geometric definition, as shown in Figure 1.2.2. First
of all, we define the line of nodes as the interception between the earth frame xfyf
plane and the body frame ybzb plane4. Then, according to our previous convention,
the Euler angles are defined as follows:

• φ is the angle between yb and the line of nodes;

• θ is the angle between xb and its projection on the yfyf plane;

• ψ is the angle between yf and the line of nodes.

1.2.3 Angular velocities
Now we can use the Euler angles to express the angular velocity, which is defined
as:

ω =
dθ

dt
u (1.21)

where θ is the rotation angle and u is the versor oriented in the direction of the
rotation axis. If ω is the angular velocity of the quadrotor, it can be decomposed
along three directions: the line of nodes, the zf axis and the xb axis:

ω = ωn + ωzf + ωxb . (1.22)
4According to this definition, the line of nodes is undefined when θ = ±90°. In this case, two

of the three rotation axes become coincident and the system loses one degree of freedom. This is a
well-known problem of the Euler angles called the gimbal lock.

29

Figure 1.2: Visual representation of the Euler angles

These three directions are not an orthogonal basis, but it is convenient to use them
because they are the rotation axes of the Euler angles that we have just defined, so
we can write:

ω = φ̇xb + θ̇n+ ψ̇zf . (1.23)

Finally, we can find the angular velocity with respect to the body frame by trans-
forming the versors zf and n with the matrix RT :

RT zf = RT

00
1

 =

 − sin θ
cos θ sinφ
cos θ cosφ

 , (1.24)

RTn = RT

 0
− sinψ
cosψ

 =

 0
cosφ
− sinφ

 , (1.25)

ω = (φ̇− ψ̇ sin θ)xb + (θ̇ cosφ+ ψ̇ cos θ sinφ)yb + (−θ̇ sinφ+ ψ̇ cos θ cosϕ)zb.
(1.26)

The latter equation can be written in matrix form:

ωB =

pq
r

 = RR(φ, θ, ψ)

φ̇θ̇
ψ̇


with:

RR(φ, θ, ψ) =

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

 . (1.27)

30

In practice, since the sensors on the quadrotor directly measure the values of
p, q and r, the inverse of RR is much more useful. First of all, we note that
det(RR) = cos θ, so the matrix becomes singular for θ = ±90° (a consequence of
the gimbal lock). For θ ̸= ±90° the matrix is invertible and its inverse is:

RR(φ, θ, ψ)−1 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ

cos θ
cosφ
cos θ

 . (1.28)

1.3 Rigid body dynamics
The dynamic equations for the quadrotor are usually formulated in the body frame
rather than in the earth frame, because of some reasons:

• the inertia matrix is time-invariant;

• body symmetry can be exploited to simplify the equations;

• sensor measurements and driving forces are naturally expressed in the body
frame.

1.3.1 Linear motion
The well known Newton’s second law states that:

m
dv

dt
= F (1.29)

where F is the total force acting on the body center of mass.
Since Newton’s laws are valid only for inertial systems, we cannot directly apply

Equation (1.29) to the body frame. If we have a moving vector inside a reference
frame which, in turn, rotates with respect to a fixed frame, we can apply the equation
of Coriolis to relate the derivative of the vector in the body frame

(
dv
dt

)
b

to its
derivative in the inertial frame

(
dv
dt

)
i
:(

dv

dt

)
i

=

(
dv

dt

)
b

+ ωb/i × vb, (1.30)

where ωb/i is the angular velocity of the moving frame with respect to the fixed one.
Combining Equations (1.29) and (1.30) we can write:

m
(
v̇b + ωb/i × vb

)
= F ,

and then:
v̇b = −ωb/i × vb +

F

m
. (1.31)

31

1.3.2 Angular motion
Newton’s second law for the angular acceleration has the following form:

dh

dt
= τ , (1.32)

where h is the angular momentum of the rigid body and τ is the applied torque.
We can obtain its expression in the body frame using the same Equation (1.30) that
we used for the linear acceleration:

ḣb = −ω × hb + τ (1.33)

and then, since the angular momentum is the angular velocity multiplied by the
time-invariant inertia matrix J :

Jω̇ = −ω × Jω + τ , (1.34)

with ω = [p, q, r]T .

The moment of inertia tensor

The moment of inertia tensor for a rigid body is a positive semidefinite symmetric
matrix:

J =

JXX JXY JXZ
JXY JY Y JY Z
JXZ JY Z JZZ

 . (1.35)

As stated before, the quadrotor can be modeled as a central sphere of mass M
and radius R connected with four point masses m at distance l from the center
(representing the motors). According to this model, the quadrotor is symmetrical
about the three axes, so J becomes a diagonal matrix with:

JXY = JXZ = JY Z = 0,

JXX = JY Y =
2MR2

5
+ 2ml2,

JZZ =
2MR2

5
+ 4ml2.

1.3.3 Altitude
An attitude control system does not perform navigation tasks, so the estimation
of the linear position with respect to the earth frame is not needed. However the
vertical component z must be taken into account, because the system should avoid
unwanted and potentially dangerous altitude variations while manouvering. The
derivative of z is the vertical component of the velocity vector with respect to the
body frame, which can be computed from the body frame velocity values using the
matrix (1.28):

ż = − sin θu+ cos θ sinφv + cos θ cosφw. (1.36)

32

1.4 Forces and controls
The only variable that we can directly control to affect the motion of the quadrotor
is the speed of each propeller, so we have to relate their values to the torques τx, τy
and τz, which are the control variables described later in Equation (1.61). For most
flight conditions of practical interest, it can be proven that each motor generates a
force that is proportional to the square of its angular speed and perpendicular to
the rotor plane: Fi = bΩ2

i , where b is a constant. Thus the total force acting on
the quadrotor is always directed upwards with respect to the body frame and its
modulus is:

F = Fr + Fl + Ff + Fb = b(Ω2
r +Ω2

l +Ω2
f +Ω2

b). (1.37)

This force, combined with the proper roll and pitch angles, can be used to move the
quadrotor in any direction.

The rolling torque is the result of the difference between the forces of the left
and the right motors and the pitching torque is produced in the same way by the
difference between the forces of the front and the back motors:

τφ = l(Fl − Fr) = bl(Ω2
l − Ω2

r), (1.38)
τθ = l(Ff − Fb) = bl(Ω2

f − Ω2
b). (1.39)

In these two equations, l is the distance between the rotors and the mass centre of
the quadcopter. The yawing torque is generated by a different principle: according
to Newton’s third law, each rotor produces a yawing torque on the body of the
quadrotor in the opposite direction of the blades rotation, proportional to the square
of the angular speed: τi = dΩ2

i . The total yawing torque is then the sum of the
contributions of the single rotors5:

τψ = τr + τl − τf − τb = d(Ω2
r +Ω2

l − Ω2
f − Ω2

b). (1.40)

To be more accurate, the rotors, like every rotating object, are subject to the
gyroscopic effect. This implies that a torque perpendicular to the rotating plane
generates a precession movement perpendicular to both the rotating plane and the
torque. According to this principle, a pitch torque produces a roll and vice versa, so
the equations (1.38) and (1.39) become:

τφ = bl(Ω2
l − Ω2

r) + Jmq(Ωf +Ωb − Ωl − Ωr), (1.41)
τθ = bl(Ω2

f − Ω2
b) + Jmp(Ωl +Ωr − Ωf − Ωb) (1.42)

where Jm is the inertia of the motor. In these equations, the term due to the
gyroscopic effect is proportional to the difference between the speed of the motors
rotating clockwise and the ones rotating counter clockwise, because they generate

5The following equation is true if we assume that the left and right rotors rotate clockwise and
the front and back ones rotate counterclockwise, otherwise the signs are reversed.

33

two opposite torques that cancel out. This term is different from zero only when the
quadrotor is both yawing and rolling or pitching at the same time and even in that
case it is very small with respect to the other term of the equation, so the gyroscopic
effect is often negected for pratical applications.

Now we can choose the control variables to make the dynamic equations linear
with respect to them. The most natural choice is:

U1 = b(Ω2
f +Ω2

b +Ω2
l +Ω2

r),

U2 = bl(Ω2
l − Ω2

r),

U3 = bl(Ω2
f − Ω2

b),

U4 = bl(Ω2
r +Ω2

l − Ω2
f − Ω2

b).

If we write the previous equations in matrix form we obtain:

U = AΩsq =


b b b b
0 −bl 0 bl

−bl 0 bl 0
−bl bl −bl bl



Ω2
b

Ω2
r

Ω2
f

Ω2
l

 . (1.43)

Since matrix A is invertible, each control variable Ui can assume any value inde-
pendently from the others. Given the desired values of the control variables, the
angular speeds required to obtain them can be computed as:

Ωb =
√

1
4bU1 − 1

2blU3 − 1
4dU4

Ωr =
√

1
4bU1 − 1

2blU2 +
1
4dU4

Ωf =
√

1
4bU1 +

1
2blU3 − 1

4dU4

Ωl =
√

1
4bU1 +

1
2blU2 +

1
4dU4

. (1.44)

A problem arises if the quantities under the square roots are negative. In that case
we would have imaginary values of Ω, which obviously have no physical meaning,
thus the desired control is not achievable6.

1.5 On board sensors
Every aircraft has a set of sensors that provide the information needed by the at-
titude and the navigation control systems. This set of sensors is usually called an
IMU (inertial measurement unit). The IMU of a quadrotor contains the following
sensors:

6Actually, the rotor speed values of a real quadrotor are limited to some interval, so even besides
the imaginary case there is a big set of controls that are theoretically possibile, but cannot be
achieved in pratice. Some dedicated control system has to be implemented to handle this problem.

34

• an accelerometer;

• a gyroscope;

• a magnetometer;

• a barometer7.

A typical three-axis MEMS sensor is calibrated according to this linear model:yxyy
yz

 =

 1 Mxy Mxz

Myx 1 Myz

Mzx Mzy 1




1
Sx

0 0

0 1
Sy

0

0 0 1
Sz


xxxy
xz

+

bxby
bz

+

vxvy
vz

 . (1.45)

The variables used in the above equation are:

• xi: input value along the i-th axis;

• yi: sensor output for the i-th axis;

• bi: sensor bias on the i-th axis;

• vi: gaussian distributed random error on the i-th axis;

• Si: scale factor of the ith axis;

• Mij : sensitivity of the ith axis output to jth axis input.

In particular, the coefficientsMij and the scale factors Si reflect the fact that the axes
of these low cost sensors are not perfectly aligned and their sensitivity differs from
the nominal one. All the parameters vary with the temperature, but are assumed
to be constant during the flight time of the quadrotor so a dynamic calibration is
not required.

1.5.1 Gyroscope

The gyroscope measures the angular rates around the three axes. Its sensor model
is a simple application of Equation (1.45):

yg = MgSgω + bg + vg (1.46)

where ω = [p, q, r]T .

7 The barometer is used only to control the altitude and it is not a typical part of an IMU, so
it may be considered as an independet sensor.

35

1.5.2 Accelerometer

The accelerometer measures a quantity called proper acceleration along the three
axes. The proper acceleration is the sum of the linear acceleration (the derivative
of the linear velocity) and a constant pseudo-acceleration directed upwards with
respect to the body frame that has the same magnitude as the gravity vector g8.
If a is the proper acceleration vector in the body frame, from Equation (1.45) we
have:

ya = MaSaa+ ba + va. (1.47)

Following the definition of proper acceleration, the components of the vector a
can be written as: axay

az

 =

u̇v̇
ẇ

+

 g sin θ
−g cos θ sinφ
−g cos θ cosφ

 , (1.48)

where u̇, v̇ and ẇ are the time derivatives of the linear velocity vector. Substituting
in Equation (1.47) we have:

ya = MaSa

u̇v̇
ẇ

+

 g sin θ
−g cos θ sinφ
−g cos θ cosφ

+ ba + va. (1.49)

1.5.3 Magnetometer

A magnetometer is a sensor that measures the intensity and the direction of a
magnetic field. If the earth magnetic field vector is known, the sensor output can
be used to estimate the attitude of the quadrotor. According to Equation (1.45), in
absence of magnetic distortions, the output of the magnetometer is:

ym = MmSmmb + bm + vm, (1.50)

where mb is the magnetic field vector with respect to the body frame, S and M
are the matrices of scale and misalignment factors, bs is the sensor bias and vk is a
random gaussian white noise.

Hard and soft iron distortions

Hard and soft iron distortions are caused by magnetic fields and metallic objects
surrounding the sensor. If the sources of the distortions are parts of the quadrotor
or its payload (motors, battery...), the distortions can be measured and corrected
statically [28].

8The formal definition of proper acceleration is much more complex and involves relativity theory.

36

Hard iron distortions The hard iron distortions are caused by objects that pro-
duce a magnetic field. These distortions introduce a fixed bias in the measurements,
so Equation (1.50) needs to be corrected by adding the bias vector hh:

ym = MmSmmb + bs + hh + vm. (1.51)

Soft iron distortions The soft iron distortions are caused by ferromagnetic ma-
terials surrounding the sensor. These distortions are more complex to model than
the hard iron ones, because they depend upon the direction of the magnetic field
with respect to the sensor. To be more precise, let the sensor freely rotate in the
space and let S be the set of all the possible values that the measured magnetic
field can assume. In absence of distortions, S is the surface of a sphere, because the
measured vector can assume any direction, but its module does not change. The soft
iron distortions apply a linear transformation to the measurement space, changing
S into an ellipsoid. A linear transformation in a tridimensional space is defined by
a 3-by-3 matrix, so the sensor model becomes:

ym = HsMmSmmb + bs + hh + vm. (1.52)

However, we can sum the two bias vector and consider them as a single bias bm
and multiply the matrices Hs and Mm to obtain a single transformation matrix G.
This way, the espression for the sensor model becomes very similar to the standard
Equation (1.45), except for the diagonal elements of G, which here can be different
from 1.

Since we want to use the sensor to determine the attitude of the quadrotor, it
is useful to express the magnetic filed vector in body frame mb as a function of
the euler angles φ, θ and ψ by using the inverse of the matrix R(φ, θψ) defined in
Equation (1.20): if mf is the magnetic field vector measured in the fixed frame we
have:

mb = RT (φ, θ, ψ)mf ,

so Equation (1.52) becomes:

ym = GRT (φ, θ, ψ)mf + bm + vm. (1.53)

1.5.4 Barometer
The barometer is different from the other sensors that we have described, because
it measures a scalar value, so the model in Equation (1.45) cannot be applied. We
want to use the barometer as an altimeter, so the instrument needs to know the
current value of the pressure at the ground level (or another reference altitude). A
static calibration is not possibile, because the ground pressure changes with weather
conditions. In practice, the pressure is measured before the take off and assumed to
be constant during the flight time. The pressure P and the altitude z are related
by this formula:

P = P0e
− g

RT
(z−z0), (1.54)

37

where P0 is the pressure at the known altitude z0 (usually the ground), g is the
gravitational acceleration, R is the dry air gas constant and T is the temperature at
the altitude z9. Since the quadrotor is expected to fly no higher that a few tenths
of meters, we can assume T to be a constant, equal to the value T0 measured on the
ground.

The sensor model used for the barometer is:

yb = kbxb + bb + vb. (1.55)

Combining the latter with Equation (1.54) and imposing z0 = 0 we obtain the output
of the sensor as a function of the altitude z:

ya = kaP0e
− g

RT
z + ba + va. (1.56)

1.6 State space representation for the EKF

In the previous sections we have provided a matemathical description of the quadro-
tor dynamics and controls and the operating principles of its sensors. Now we want
to rearrange these equations in a form that is suitable for the application of the
continuous time EKF. At first, we have to identify the system variables, which are
the variables that appear in the dynamic equations:

• u, v, w, the linear velocity components along the three axes of the body frame;

• p, q, r, the angular velocitiy components around the three axes of the body
frame;

• φ, θ and ψ, the Euler angles roll, pitch and yaw (in this order);

• z, the altitude of the quadrotor.

Therefore, we have to express both the state-transition model and the sensor model
according to this set of 10 variables.

1.6.1 State-transition model

The general state-transition model for the continuous time EKF is described by the
equation (1.8).

9A more accurate version of the equation (1.54) should take into account the relative humidity.
Note also that the assumption that P0 is constant is always true only for short periods of time,
because weather changes cause significant long-term pressure variations.

38

Linear velocity

The cross product in Equation (1.31) can be expressed in matrix form as:

ω × vb = [ω]× vb =

 0 r −q
−r 0 p
q −p 0

uv
w

 , (1.57)

where [·]× is the skew operator. We have to take into account also the gravitational
force, which generates a fixed acceleration of modulus g always directed downwards
with respect to the earth frame. The equation finally becomes:u̇v̇

ẇ

 =

 0 r −q
−r 0 p
q −p 0

uv
w

+

 g sin θ
−g cos θ sinϕ
−g cos θ sinϕ

+
1

m

FxFy
Fz

 (1.58)

=

rv − qw
pw − ru
qu− pv

+

 g sin θ
−g cos θ sinϕ
−g cos θ sinϕ

+
1

m

FxFy
Fz

 . (1.59)

Angular velocity

We can rewrite the equation (1.34) to explicit the derivatives of the angular velocity
components:ṗq̇
ṙ

 =

J−1
XX 0 0

0 J−1
Y Y 0

0 0 J−1
ZZ

 0 r −q
−r 0 p
q −p 0

JXX 0 0
0 JY Y 0
0 0 JZZ

pq
r

+

τφτθ
τψ


(1.60)

=


JY Y −JZZ
JXX

qr
JZZ−JXX

JY Y
pr

JXX−JY Y
JZZ

pq

+

J−1
XXτφ
J−1
Y Y τθ
J−1
ZZτψ

 . (1.61)

Euler angles

We do not have a dynamic equation that involves the derivatives of the Euler angles,
but we have used them to define the angular velocity with respect to the body frame,
so we can use the matrix RR(φ, θ, ψ)−1 in Equation (1.28) to express the derivatives
of φ, θ and ψ as functions of the angular velocity components p, q and r:

φ̇ = p+ sinϕ tan θq + cosϕ tan θr
θ̇ = cosφq − sinφr
ψ̇ = sinφ

cos θ q +
cosφ
cos θ r

. (1.62)

39

Complete model

We can now write the complete state-transition model by combining Equations
(1.59), (1.61), (1.62) and (1.36):



u̇ = rv − qw + g sin θ
v̇ = pw − ru− g cos θ sinφ
ẇ = qu− pv − g cos θ cosφ+ U1

m

ṗ = IY Y −IZZ
IXX

qr + 1
IXX

U2 − Jm
IXX

qΩR

q̇ = IZZ−IXX
IY Y

pr + 1
IY Y

U3 +
Jm
IY Y

pΩR

ṙ =
IXX−Iyy
IZZ

pq + 1
IZZ

U4

φ̇ = p+ sinφ tan θq + cosφ tan θr
θ̇ = cosφq − sinφr
ψ̇ = sinφ

cos θ q +
cosφ
cos θ r

ż = − sin θu+ cos θ sinφv + cos θ cosϕw

(1.63)

where ΩR = Ωl +Ωr − Ωf − Ωb.

1.6.2 Measurement model

The general measurement model for the EKF is described by Equation (1.9). We
have to express all the sensor equations as functions of the state variables.

Accelerometer

While the equations for the gyroscope, the magnetometer and the barometer de-
fined in Section 1.5 are already functions of the state variables, the equation of the
accelerometer (1.49) is a function of the derivative of the linear velocity. However,
we can substitute u̇, v̇ and ẇ for their expressions in the dynamic equation (1.31):

ya = MaSa

 rv − qw
pw − ru

qu− pv + U1
m

+ ba + va

 , (1.64)

which is a function of the state variables. It is important to note that this equation
contains also the control variable U1. In the standard EKF measurement model, the
control variables are not involved, but the filter should still work without modifica-
tions as long as the value of the variable is known without uncertainty. In any case,
this particular situation must be taken into account during the implementation.

40

Complete model

The complete measurement model can be obtained by combining Equations (1.64),
(1.50), (1.46) and (1.56):

ya = MaSa

 rv − qw

pw − ru

qu− pv + U1
m

+ ba + va

yg = MgSgω + bg + vg

ym = GRT (φ, θ, ψ)mf + bm + vm

yb = kbP0e
− g

RT
z + bb + vb

. (1.65)

1.6.3 Linearizations
As we said in Subsection 1.1.2, the extended Kalman filter requires both the state-
transition and the measurement models to be linearized using the Jacobians.

Jacobian of the state-transition model

If we ignore the gyroscope effect, which is almost always negligible, the Jacobian of
the state-transition model is a 10-by-10 sparse matrix10. Its nonzero elements are:

J1,2 = r;

J1,3 = −q;
J1,5 = −w;
J1,6 = v;

J1,8 = g cos θ;
J2,1 = −r;
J2,3 = p;

J2,4 = w;

J2,6 = −u;
J2,7 = −g cos θ cosφ;
J2,8 = g sin θ sinφ;
J3,1 = q;

J3,2 = −p;
J3,4 = −v;
J3,5 = u;

J3,7 = g cos θ sinφ;
10A matrix is sparse if more than an half of its elements are zeros. In this case, 60 of the 100

elements are zeros.

41

J3,8 = g sin θ cosφ;

J4,5 =
IY Y − IZZ

IXX
r;

J4,6 =
IY Y − IZZ

IXX
q;

J5,4 =
IZZ − IXX

IY Y
r;

J5,6 =
IZZ − IXX

IY Y
p;

J6,4 =
IXX − IY Y

IZZ
q;

J6,5 =
IXX − IY Y

IZZ
p;

J7,4 = 1;

J7,5 = sinφ tan θ;
J7,6 = cosφ tan θ;
J7,7 = cosφ tan θq − sinφ cos θr;

J7,8 =
sinφq + cosφr

cos2 θ ;

J8,5 = cosφ;
J8,6 = − sinφ;
J8,7 = − cosφr − sinφq;

J9,5 =
sinφ
cos θ ;

J9,6 =
cosφ
cos θ ;

J9,7 =
cosφq − sinφr

cos θ ;

J9,8 =
tan θ
cos θ (sinφr + cosφq);

J10,1 = − sin θ;
J10,2 = cos θ sinφ;
J10,3 = cos θ cosφ;
J10,7 = cos θ cosφv − cos θ sinφw;
J10,8 = − cos θu− sin θ sinφv − sin θ cosφw.

42

Jacobian of the measurement model

The jacobian of the sensor model is also a sparse matrix of the form:

J =


J1 J2 03×4

03×3 MgSg 03×4

03×3 03×3 Jm 0
01×9 Ja

 . (1.66)

The submatrices that compose the above matrix are:

• J1: the derivatives of the accelerometer equation with respect to the linear
velocity variables u, v, w;

• J2: the derivatives of the accelerometer equation with respect to the angular
velocity variables p, q and r;

• J3: the derivatives of the magnetometer equation with respect to the euler
angle variables φ, θ and ψ;

• Ja (scalar): the derivative of the altimeter equation with respect to the altitude
variable.

Their expressions are:

J1 = MaSa

 0 r −q
−r 0 p
q −p 0

 ; (1.67)

J2 = MaSa

 0 −w v
w 0 −u
−v u 0

 ; (1.68)

J3 =
[
G∂RT (φ0,θ0,ψ0)

∂φ mf G∂RT (φ0,θ0,ψ0)
∂θ mf G∂RT (φ0,θ0,ψ0)

∂ψ mf

]
; (1.69)

Ja = −kaP0g

RT
e−

g
RT

z. (1.70)

43

44

Chapter 2

Simulation model

This chapter contains the description of the Simulink model developed to test the
performance of the attitude control system based on the extended Kalman filter.
Our work actually extends a pre-existing model developed by Tommaso Bresciani
for his master thesis.

The first section of this chapter describes the pre-existing model, Section 2.2.1
regards the model of the on board sensors (which was missing in the model by
Bresciani) and finally Section 2.3 describes the model of the EKF both in continuous
and discrete time.

The simulink models of the system and its blocks are shown here, while the
Matlab code used to implement some blocks is listed in Appendix B.

2.1 Pre-existing model
The higher-level structure of the pre-existing model is shown in Figure 2.1. The
main signals that connect the blocks are:

pos-vel-acc: this signal groups together the information about the linear and an-
gular position, velocity and acceleration of the aircraft, so it is actually a mux
of 8 vector signals, each one of which has three components.

omega: this signal is a vector of four components that represent the angular rates
of the propellers.

Vcontrol: this signal is a vector of four components that represent the current
voltages generated by the control to power the engines.

target: this signal is generated by the user and contains the information about the
desired behaviour of the quadrotor. It has four components: roll, pitch, yaw
and altitude.

Here is a brief description of the blocks:

45

Figure 2.1: Pre-existing Simulink model.

46

dynamics: this block models the dynamics of the quadrotor as a physical system,
taking the angular rates of the propellers as input (signal omega) and outputs
the position, velocity and acceleration pos-vel-acc. The block is analyzed in
detail in Subsection 2.1.1.

IMU, IRs and SONARs: this block contains the model of the sensors. In practice,
the block is just a stub, because the behaviour of the sensors is not actually
modeled, but parts of the input signal pos-vel-acc are perturbed with noise
and directly passed to the output. Moreover, the infrared sensors (IRs) and
the sonars are not even used by the control system.

control: this block implements the control algorithm. It takes the target signal
and the output of the sensors as input and returns the voltages to be passed
to the motors to obtain the desired behaviour (signal Vcontrol). The block
is analyzed in Subsection 2.1.2.

DC motors block: this block models the engines that power the four rotors. It
takes the voltages Vcontrol as input and outputs the angular speeds of the
rotors (omega). This block is analyzed in Subsection 2.1.3.

task: this is a signal builder, a type of block that allows to define a signal with a
grahical interface. In this case, the signal builder is used to specify the target
values of the roll, pitch, yaw and altitude as functions of time.

3D scope: the code of this block draws a tridimensional view of the quadrotor that
is updated in real time. The resulting animation is very useful for an intuitive
understanding of the aircraft motion. The code that draws the quadrotor is
listed in Listing B.15.

pos-vel-acc scope: this block groups many scopes that plot the components of
the signal pos-vel-acc versus time. It can be used to monitor the whole
dynamic system.

omega scope: this block is a scope that plots the angular velocities of the rotors
versus time.

Before starting any simulation, the initialization script init.m must be executed.
It sets all the global variables and constants used by the model blocks. The code of
the script is listed in Listing B.1.

2.1.1 Dynamics block
The Simulink model of the dynamics block is shown in Figure 2.2. The main block
is dynamic_system, which contains the matlab code that implements the dynamic
equations (1.63) (Listing B.4). The integrator integrates the equations starting from
the initial conditions specified as parameters in the initialization script. The routing
block selects the right components of the state and its integral to generate the signal
pos-vel-acc.

47

Figure 2.2: Simulink model of the dynamics block.

Figure 2.3: Simulink model of the control block.

2.1.2 Control block
The Simulink model of the control block is shown in Figure 2.3. The block called
control contains the Matlab code that implements the logic of the proportional-
derivative (PD) controller (Listing B.2. The block force2Vcontrol (code in List-
ing B.3) converts the output of the controller to the corresponding voltage val-
ues to be passed to the motor block. A saturator is used to avoid out-of-range
voltage values. The manual switch inserted between the control block and the
force2Vcontrol block can be used to send the task signal directily to the motors,
excluding the control action.

2.1.3 DC motors block
This block is composed by four sub-blocks of the same type, one for each motor. The
Simulink model of the sub-blocks is shown in Figure 2.4. The signal Tload, which
represents the torque load of the rotor, is set to a constant. One problem of this
motor block is that the output values of the rotor angular rates do not match exactly
the ones expected by the controller. In other words, if the input signal Vcontrol is
set to a value that should correspond to the hovering condition (the thrust exactly

48

Figure 2.4: Simulink model of the DC motors block.

compensate the gravity), the actual omega output produced by the block is smaller
than the correct one, so the simulated quadrotor falls down.

2.2 IMU model
Before extending the model with the implementations of the sensors and the the
EKF, I applied some modifications to the pre-existing parts:

• the blocks that execute interpreted Matlab code have been replaced by com-
piled code blocks to improve their performance;

• the signal pos-vel-acc has been split into four simpler signals;

• the control block has been modified to directly output the control signal (not
transformed to the voltage control required by the motors) and the angular
rates of the propellers;

• a switch has been added to exclude the DC motors block.

This last two modification require a further explanation: since the state-transition
model used for the EKF in eq. (1.63) contains the control variables Ui, the block
that implements the filter must know its value from the controller. As we said in
Subsection 2.1.3, the motor block outputs a value of omega that is biased with respct
to the one expected by the controller. In the pre-existing model, the contoller itself
can compensate for this bias because it knows the actual position and velocity of
the quadrotor, but the Kalman filter cannot operate correctly if its predictions are
based on control variables that do not correspond to the real ones, because it is
designed to correct the random errors in the model, not a fixed bias.

49

Figure 2.5 shows the updated model, with the new IMU block and the ones
related to the discrete and continuous time versions of the EKF. The upper part of
the model is not visible, but it is substantially unchanged.

2.2.1 IMU blocks library

The IMU of the quadrotor is modeled according to the equations presented in Section
1.5. Some blocks inside the IMU model have been reused multiple times, so I put
them in a dedicated library.

Three-axis MEMS sensor

The block that models a generic three-axis MEMS sensor according to eq. (1.45)
is the most relevant of the ones included in the library. It has been used to model
all the sensors of the IMU excepts the barometer, which measures a scalar quantity.
This sensor block does not transform the measured physical quantity into a voltage
scale like a real sensor, the output instead has the same dimensions as the input,
so an implicit reconversion from the voltage to the corresponding physical quantity
is assumed. The block is composed by three subsystems of the same type, one for
each axis. The subsystem is shown in Figure 2.6: the signal from the main axis is
summed with the interferences from the other axes (misalignment factors), then the
result is multiplied by a global scale factor and a bias is added to the result. The
signal is then perturbed with Gaussian noise, optionally clipped (if isClipped is
true) and delayed. The main parameters of this block are:

• the bias on each axis;

• the variance of the Gaussian error on each axis;

• the upper and lower saturation limit (maximum and minimum values that can
be output by the sensor);

• the output delay.

The advanced parameters (listed in a different tab of the mask associated to the
Simulink block) are:

• the gains of the three axes (corresponding to the values Si in eq. (1.45));

• the misalignment factors of each axis on each other (corresponding to the
values Mij in eq. (1.45);

• the seeds used by the random generator that produces the noise on each axis.

50

Figure 2.5: Partial view of the updated Simulink model.

51

Figure 2.6: Simulink model of a generic MEMS sensor.

Other blocks in the library

The other blocks contained in the library are:

Scalar sensor: this block is used to model the barometer, it is very similar to the
one described in the previous paragraph for the three-axis sensor, but the
input and output signals are scalars and obviously there are no misalignment
factors;

Earth to body frame: this block converts a vector expressed in the earth frame
to its equivalent in the body frame, given the Euler angles. The block applies
the matrix defined in eq. (1.20), the Matlab code is in Listing B.5;

Euler to pqr conversion: this block takes the instantaneous orientation of the
quadrotor in Euler angles as input and computes its angular velocity with
respect to the body frame. The conversion is performed by applying the matrix
defined in eq. (1.27), the Matlab code is in Listing B.6.

2.2.2 Structure of the IMU subsystem
The complete Simulink model of the quadrotor on board IMU is shown in Figure
2.7. The subsystems are:

Real IMU: this subsystem contains the sensor blocks. The input is composed by the
quantities that the sensors need for their measurements (all expressed in body
frame): the linear velocity, the angular rates, the gravity vector, the magnetic
filed vector and the atmosferic pressure. The acceleration measured by the
accelerometer is not needed as an input, because it is computed internally as
the time derivative of the velocity plus the gravity (following the definition of
proper acceleration given in Subsection 1.5.2);

Body frame velocity and angular rates: this subsystem computes the linear
and angular velocity in the body frame given the velocity in the earth frame
and the Euler orientation in Euler angles. The subsystem operates the con-
version using the library blocks described in the previous subsection.

52

Figure 2.7: Simulink model of the IMU block.

Environmental variables: this subsystem generates the values of the atmosferic
pressure, the magnetic field and the gravitational acceleration with respect to
the body frame:

• the atmosferic pressure is computed according to eq. (1.54), as a function
of the altitude z (code in Listing B.7);

• the magnetic field vector is converted in the body frame and perturbated
with the hard and soft iron distortions:

• the gravitational acceleration vector (assumed to be constant) is just con-
verted in body frame.

The IMU block involves a lot of parameters, notably:

• the bias, scaling, error covariances and misalignment factors of all the sensors;

• the local values of the magnetic field, the ground pressure and the temperature;

• the hard and soft iron distortions (which depend on the physical structure of
the quadrotor).

If all these parameters are properly set (in the initialization file init.m, the simu-
lation of the sensors should be accurate enough for our purposes1. The two orange
blocks in Figure 2.7 are sets of scopes that are useful to check the behaviour of
the system: sensor monitor monitors the output of the sensors, state monitor
monitors the state variables of the Kalman filter (if everythig works as expected,
the output of the filter should be very similar to the state shown by these scopes).

1 A realistic MEMS sensor simulation would require a much more complex model that takes
into account other properties of the electro-mechanical system, like the impulse response and the
nonlinearities in the operating range.

53

Figure 2.8: Simulink model of the continuous time EKF.

2.3 Kalman filter model
The implementation of the extended Kalman filter in both the continous and discrete
time versions is the core of my work in Simulink. The most important parameters
that influence the behaviour of the filter are the initial estimates of the expected value
and the covariance of the state vector and the matrices Q and R, which represent
covariances of the process and the measurement models respectively. The filter
implementation must also know many other quantities related to the system and
sensor models (mass of the quadrotor, biases of the sensors etc.), these paramenters
used in the filter can be initialized independently from the corresponding one used
in the real-world simulation, so it is possible to test the performance of the EKF
when some of this values are not correctly estimated.

2.3.1 Continuous time model
The Simulink model of the continuous time EKF is shown in Figure 2.8. The input
of the system is the output of the IMU block and the control variables. The blocks
are explained below, the reference to the Matlab code in Appendix B is in brackets:

State-transition model: this block implements the system in Equation (1.63),
without the negligible terms related to the gyroscope effect (the ones containing
the terms with Ωr (Listing B.8);

Sensor model: this block implements the system in Equation (1.65) (Listing B.9);

Covariance update: this block computes both the covariance update according to
eq. (1.11) and the Kalman gain according to eq. (1.12) (Listing B.10);

F and H: these two blocks compute the Jacobians of the state-transition model and
the sensor model respectively around the current estimate, the structure of

54

Figure 2.9: Simulink model of the discrete time EKF.

these sparse matrices is described in detail in Subsection 1.6.3 (Listing B.11
and Listing B.12).

The output of this subsystem is the estimate of the instantaneous value of the
state variables at any time (since it is continuous, there are no time steps).

2.3.2 Discrete time model

The continuous time model proposed in the previous paragraph is useful to test
the best performance achievable with the EKF, but it is not suitable for a digital
implementation on the quadrotor, because digital systems always work in the dis-
crete domain and the MEMS sensors themselves have a limited maximum output
frequency2. In order to develop a model that can be useful for practical applications,
the discrete time version of the EKF must be used.

Discretization of the model

The mathematical discipline that studies the algorithms to solve ordinary difference
equations (ODEs) that do not admit an analytical solution is a part of the numerical
analysis. There are diffrent methods to discretize a system of differential equations,
from the very simple forward Euler to the most sophisticated ones, like the higher
order Runge-Kutta methods, but all of these algorithms involve the intgration over
discrete time steps (either fixed or variable). We will use the forward Euler metohd
to discretize the state-transition model.

2 Matlab and Simulink are computer programs themselves, so when a continuous time model is
simulated, the system actually solves it using some sophisticated numerical algorithm that involves
discretization.

55

Forward Euler. The forward Euler is the simplest numerical algorithm to solve
an ordinary differential equation. Given the ODE:

ẏ = f(t, y(t))

we can approximate the derivative as:

ẏ ≈ y(t+ h)− y(t)

∆t
,

then by expliciting y(t+ h) and substituting ẏ:

y(t+ h) = y(t) + f(t, y(t)) ·∆t. (2.1)

In practice, a fixed time step h is chosen and the function in eq. (2.1) becomes a
sequence:

yn+1 = yn + f(tn, yn) ·∆t. (2.2)

where tn is an element of the sequence of sampling time instants t0, t0+h, ..., t0+nh:
In our case, we can trasform the Equation (1.63), which is in the form of eq. (1.13)
to the form of eq. (1.14) by imposing:

Φk−1(xk−1, uk−1) = y(tk−1) + f(y(tk−1), u(tk−1)) ·∆t. (2.3)

The forward Euler method is not widely used, because it is less accurate and
converges more slowly that the other algorithms, so a smaller time step (and a larger
number of steps) is required to obtain a good solution. However, we are working on
a system that has intrinsec uncertainty, so as long as the error introduced by the
discretization is smaller than the one introduced by the plant and the measurement
noieses, it can be handled by the extended Kalman filter.

Sensor sampling

The sensor model of the EKF is quite easy to discretize: susbstituting the function
x(t) with the values xk at the sampling time instants tk is enough. The discretization
of the continuous time signals from the real IMU model is more complex: the well-
known Nyquist-Shannon sampling theorem states that a signal can be sampled at the
sampling rate 1/Ts without aliasing problems if and only if its frequency components
are below the Nyquist frequency fN = 1/2Ts. The practical consequence of this
theorem is the necessary application of adequate lowpass filters to every signal that
needs to be downsampled, these filters are called anti-aliasing filters.

The subsystem called Sensor sampler in Figure 2.5 applies an anti-aliasing FIR
filter to the signals from the sensors and samples the filtered signal at the sampling
time Ts using a zero-order hold method (the output signal is constant between time
steps). The parameters of the anti-aliasing filter can be specified in the initialization
file, the one that I used for the simulations is a second order Butterworth filter with
cutoff frequency 0.8/Ts.

56

Figure 2.10: Simulink model of the discrete time EKF.

Control signal. The control signal, which contains the instantaneous values of
the control variables Uk, is also filtered and sampled with the same anti-aliasing
filter (and obviously the same sampling time) as the signals from the sensors.

System structure

Figure 2.9 shows the Simulink model of the discrete time EKF. The structure is
simple: one block performs the prediction step (equations (1.3) and (1.4)) and the
other one performs the update step (equations (1.5) and (1.6)), computing also the
Kalman gain (eq. (1.7))3. The discrete state-transition and sensor models and
their Jacobian matrices are computed in the same two blocks to obtain a simpler
structure. This semplification is possible in the discrete time version because the
state-transition model and the related Jacobian are needed only by the prediction
step while the sensor model and its Jacobian are needed only by the update step (the
two steps are not distinguished in the continuous time version). The Matlab code of
the predict and update blocks is listed in Listing B.13 and Listing B.14 respectively.

The output to_cont on the bottom left of Figure 2.9 sends the state to the
control system. Since the controller needs also the vertical speed, which is a state
variable, it is computed as the derivative of the altitude z and added to the state
vector.

3 The equations in brackets actually describe the linear version of the Kalman filter, the necessary
modifications to apply them to the extended version are described in Subsection 1.1.2.

57

58

Chapter 3

Testing and performance
analysis

In this chapter, we analyze the performance of the Simulink implementation of the
EKF extended Kalman filter.

The Simulink model has a large number of parameters that can affect the be-
haviour of the simulation. The default values of the parameters are listed in Table
3.1, these values are used unless otherwise specified and correspond to the ones in
Listing B.1. If an experiments is performed with some parameters set to a different
values, the ones that differ are listed in the description of the experiment.

3.1 Open loop performance analysis with simulated data
In the experiments presented in this section, the controller is not fed with the output
of the filter, but with the actual state, so the actual trajectories are close to the target
ones and the predictions of the filter can be easily compared to the real evolution of
the state. Moreover we assume no calibration errors in the sensor and measurement
models of the Kalman filter, i.e., all the parameters used by the filter have the same
values of the corresponding ones used for the real system simulation.

The trajectories covered in this section are the following:

• hovering (no movement);

• altitude variation (without horizontal movements);

• horizontal movement along the X axis (actually a pitch angle variation);

• simple rotation on the Z axis (yaw);
1The magnetic field is specifies only as a versor, its modulus is ignored. The versor in the

example corresponds to the orentation of the field in Milan, according to the website http://www.
ngdc.noaa.gov/geomag-web/.

59

http://www.ngdc.noaa.gov/geomag-web/
http://www.ngdc.noaa.gov/geomag-web/

Physical constants
Magnetic field versor1: [0.48,−0.01,−0.87]

Gravitational acceleration: 9.81 m/s2

Pressure at ground level: 101325 Pa

Dry air specific gas constant: 286.9 J/(kg ·K)

Air temperature: 283.15 K

Mechanical parameters
Mass of the quadrotor: 0.5 kg

Thrust factor: 7.8−5 (m · kg)/(s2 · rad2)
Drag factor: 1.1−5

Diagonal elements of the inertia matrix: 5−3 kg ·m2, 5−3 kg ·m2, 9−3 kg ·m2

Distance between the motors and the
center of mass:

0.25 m

Sensor parameters
Accelerometer error variance (all axes): 0.01

Gyroscope error variance (all axes): 0.01

Magnetometer error variance (all axes): 0.01

Barometer error variance: 10

Kalman filter parameters
Initial state estimate covariance: 0.001 · I10
Measurement noise covariance: corresponds to the actual sensor noise

variances.
Process noise covariance: 0.001 · I10
Sampling time for discrete EKF: 0.05 s (20 Hz)
Anti-aliasing filter for sensor discretiza-
tion:

Butterworth order 1, cutoff 8 Hz

Table 3.1: Default parameters used in the simulations.

60

Variable Continuous EKF Discrete EKF
Velocity on X [m/s] 0.0013 −0.017

Velocity on Y [m/s] −0.0189 −0.0687

Velocity on Z [m/s] 2.749−5 7.637−5

Roll angular rate [rad/s] 9.777−4 8.535−4

Pitch angular rate [rad/s] 1.732−4 4.656−4

Yaw angular rate [rad/s] −5.238−5 −6.988−5

Roll angle [rad] 1.759−4 9.347−4

Pitch angle [rad] 3.112−5 −3.623−4

Yaw angle [rad] −6.35−4 −0.002

Altitude [m] 0.002 0.002

Table 3.2: Mean values of the estimated variables (hovering).

• an example of complex trajectory, where the quadrotor performs many linear
and angular movements at the same time.

This set of trajectories may seem too limited with respect to the large number of
possible manouvers, however the experiments show that the performance of the filter
are similar (and quite good) in all this cases, so further tests seemed unnecessary at
this stage.

3.1.1 Hovering
The simplest flight trajectory for a quadcopter is the hovering: in this case, the
aircraft just mantains a fixed position in the air. The value of all the state variables
is expected to be zero and not to change in time.

Figure 3.1 shows the predictions of both the continuous time (black) and discrete
time (blue) EKF about the linear velocity components and the angular positions
(the other state variables are not shown, because they are less relevant in this case).
As expected, the estimates of the discrete time filter are less accurate, because it
uses only a subset of the sensor and control data. However, the mean values of
the estimates are more significative than the local error, because the variables are
integrated over time to determine the behaviour of the system and in particular the
position is known only as the integral of the velocity. Table 3.2 contains the mean
values over time of the estimated state variables from both the implementations of
the filter.

The linear velocity components on X and Y are the variables whose mean value
differs more from zero in both the discrete and continuous time filter estimates,
because they cannot be directly measured, but only inferred by integrating the data
from the accelerometers. In particular, the estimate of the Y component by the
discrete filter is particulary poor, because it settles on the value −0.1 m/s, which is
not negligible, expecially for indoor flight applications. According to the dynamic
model, a negative acceleration on the Y axis is generated by a positive roll angle: as

61

Figure 3.1: Hovering simulation

expected, the mean value of the estimated roll angle by the discrete time filter is much
bigger than the one estimated by the continuous time filter. This error, however, is
not systematic, because reproducing the simulation with different random seeds for
the sensor noises leads to totally different results. The cause may be a small bias
randomly introduced in the noise by the discretization process.

Another variable that the discrete time filter estimates with much less accuracy
than the continuous one is the yaw angle, however this error is not likely to be a
problem, because a bias of 0.002 rad is still irrelevant for the common practical
applications.

62

Figure 3.2: Altitude variation: the desired trajectory (red) and the actual one (blue).

3.1.2 Altitude variation

In this simulation, the target trajectory is a simple altitude variation: the quadrotor
goes up for two meters and returns to the initial position. The desired trajectory
and the actual one are shown in Figure 3.2, in red and blue respectively. As the
figure shows, the PD controller lacks integral action, so it is not able to follow the
ramp signal in real time and reach the maximum point.

Figure 3.3 compares the actual trajectory (the dashdotted red line) and the
estimates of the two filters. While the continuous time filter estimate matches almost
exactly the trajectory, so the red line is not even visible, the discrete time filter
estimate is also very accurate, but it has a delay proportional to the order of the
anti-aliasing filter. The magenta line shwos the result of a first attempt with a
Butterworth filter of order 4, since the delay of more than 0.25 s appeared too large,
the filter was reduced to order 1 (the one specified in Table 3.1, that will be used
for all the simulations from now on).

3.1.3 Linear movement

The third simple trajectory analyzed here is a limited horizontal movement along
the X axis. The movement along the X direction is produced by tilting forward
the quadrotor for a short time: the positive pitch angle produces an acceleration
that increases the velocity. The movement is then stopped by a backward tilt of the
pitch angle of the same amount and duration of the forward one, which produces a
corresponding negative acceleration. As shown in Figure 3.4, the controller is not
able to follow the fast ramps of the target signal, so the maximum of the actual
pitch angle is only half of the desired one.

Figure 3.5 compares the actual trajectory and the estimated values of the relevant
state variables. The actual trajectory is represented as a red dashdotted line, the
continuous time filter estimate is in black and the discrete time estimate is in blue.
The resulting linear velocity is about 2m/s and the quadrotor moves forward for
about 14 meters. The presence of a linear velocity on the Z axis when the pitch

63

Figure 3.3: Altitude variation: the actual trajectory (red), the continuous time
estimate (black), the discrete time estimate with an anti-aliasing filter of order 1
(blue) and the discrete time estimate with an anti-aliasing filter of order 4 (magenta)
of the relevant state variables.

angle is different from zero does not imply a vertical movement: remembering that
the state variables are expressed in the body frame, the velocity on Z is w = sin vx,
where vx is the linear velocity on the X axis of the earth frame. As for the altitude
change experiment, the continuous time filter estimate is very accurate, while the
discrete time estimate is also quite accurate, but it is delayed by the anti-aliasing
filter.

3.1.4 Rotation around the Z axis
In this simulation, the target trajectory is a sequence of rotations on the Z axis: a
clockwise rotation of one radian between two smaller counterclockwise rotations of
0.2 radians. As shown in Figure 3.6, the actual trajectory produced by the controller
is significantly different with respect to the target one: it is sinusoidal, the amplitude
is smaller and even the phase is delayed, so that at the end of the simulation the
quadrotor is still at the maximum of the conterclockwise rotation, while it should
have returned to the initial position.

The actual trajectories and the ones estimated by the continuous and discrete
time version of the filter for the yaw angle and angular velocity are shown in Figure
3.7. The results are similar to the ones described in the previous experiments: the
continuous time filter estimate is so accurate that the red line which marks the
actual trajectory is not visible, the discrete time estimate is delayed as an effect of
the anti-aliasing filter.

64

Figure 3.4: Linear movement: the desired trajectory (red) and the actual one (blue)
of the pitch angle.

Figure 3.5: Linear movement: the actual trajectory (red), the continuous time esti-
mate (black) and the discrete time estimate (blue) of the relevant variables.

65

Figure 3.6: Rotation around the Z axis: the desired trajectory (red) and the actual
one (blue) of the yaw angle.

Figure 3.7: Yawing movement: the actual trajectory (red), the continuous time
estimate (black) and the discrete time estimate (blue) of the relevant variables.

66

Figure 3.8: Complex movement: the actual trajectory (red), the continuous time
estimate (black) and the discrete time estimate (blue) of the state variables.

3.1.5 Complex trajectory
This last simulation presents a complex trajectory, where the quadrotor moves on
all the six degrees of freedom. In this case, all the variables are relevant and the
results of the simulation are shown in Figure 3.8. As usual, the continuous time
filter provides very accurate results and the discrete time one is also accurate, but
its estimates are delayed. The only estimates that have a noticeable difference with
respect to the target on the graphs in Figure 3.8 are the ones relative to the velocity
on Y and the roll angular speed, but these differences are still very small.

3.2 Influence of the magnetic field direction on the es-
timation accuracy

The inclination of the magnetic field on the surface of the Earth varies from 0° at
the magnetic equator to ±90° at the magnetic poles, it points downwards (negative
sign) in the north emisphere and upwards (positive sign) in the south emisphere. In
the previous simulations, the magnetic field inclination was supposed to be about
−61°, a value that corresponds to the latitude of northern Italy. The experiments
presented in this section show that the magnetic field inclination has a relevant
influence on the accuracy of the attitude estimation with the Kalman filter.

67

Magnetic field inclination Mean value of φ̂
0° -0.0101
-30° -0.0100
-60° -0.0058
-90° -0.0016

Table 3.3: Mean value of the extimated roll angles with different magnetic inclina-
tions (discrete time EKF).

Figures 3.9 and 3.10 show the estimates of the two versions of the Kalman filter
with a hovering trajectory of 15 seconds and different values of the magnetic field
inclination, from 0 to -90°. All the simulation were performed with the same random
seed for sensor noise to obtain results that are directly comparable. The two figures,
and in particular the one that regards the discrete time filter, which is less accurate,
clearly show that the filter performance increases when the magnetic inclination is
large and they are particularly poor when the inclination is zero. To explain this ap-
pearently strange behaviour, we must consider that the magnetometer, which is the
primary sensor used to determine the Euler angles, cannot detect a rotation around
the direction of the magnetic field vector. If the vector has the same direction as the
X axis, the roll angle cannot be measured at all, so it can be inferred only by indirect
measurements, like by integrating the data from the gyroscope, but the estimate is
obviously less accurate and if the filter estimates a fake roll angle that cannot be
corrected in the update step, according to the state transition model it will result
in an acceleration on the Y axis that does not correspond to reality. The more the
magnetic filed vector differs from the horizontal plane, the more the magnetometer
is able to provide meaningful information about the attitude. The mean values of
the estimated roll angle in Table 3.3 (referred to the discrete time filter, where the
effect is more noticeable) confirm the explanation: the mean becomes closer to zero
when the inclination increases.

The explanation given above can be proved by another experiment. If the mag-
netic field inclination is 0°, but the field is aligned with the Y axis instead of the X
one2, the angle that the filter cannot estimate well is now the pitch and this should
produce a fake acceleration on the X axis. If the field is aligned to the bisector of
the first and the third quadrants, the fake acceleration should be aligned with the
bisector of the second and fourth quadrants (represented as an acceleration on bot
the X and Y axis, with opposite signs). This third case is not so easy to under-
stand: since the bisector is the fixed line, the movement that the magnetometer
cannot sense is when a positive roll and a negative pitch occur togheter. In general,
the fake acceleration is always more or less perpendicular to the direction of the
magnetic field. These predictions are confirmed by the results in Figure 3.11.

2The orientation of the magnetic field vector (or its projection) on the XY plane is called magnetic
declination.

68

Figure 3.9: Continuous time filter performance with different values of the magnetic
inclination: 0° (red), -30° (magenta), -60° (blue), -90° (black).

69

Figure 3.10: Discrete time filter performance with different values of the magnetic
inclination: 0° (red), -30° (magenta), -60° (blue), -90° (black).

70

Figure 3.11: Estimated linear velocity components with different magnetic declina-
tions: field vector parallel to the X axis (black), parallel to the Y axis (magenta)
and parallel to the bisector of the first and the third quadrants (blue).

3.3 Closed loop simulations
The simulations analyzed in Section 3.1 show that the estimates of the extended
Kalman filter are qualitatively good, but we want also to know how the controller
performs when fed with these estimates instead of the actual state, which is obvi-
ously unknown in real applications. In this section, we present the results of some
simulations where the control loop is closed around the EKF (both the continuous
and dicrete time versions), i.e., its output is used as the input of the control system.

Augmented state The state variables defined in Subsection 1.6.1 are not enough
for the controller: the derivative of the altitude is also needed. This derivative is
computed from the value of the altitude itself using a standard Simulink block, as
it is visible in the lower right angle of Figure 2.9 (the continuous time version of
the derivative is computed in the same way, although that part of the model is not
visible in the figures shown in Chapter 2).

3.3.1 Stability problems
Instability introduced by the anti-aliasing filter

It is known from control system theory that a time delay can lead to instability in
a feedback system. In Subsection 3.1 we saw that the anti-aliasing filter introduces

71

Figure 3.12: Stability of the closed loop simulation (hovering trajectory) using the
discrete time EKF and anti-aliasing filters of order 4 (magenta), 2 (blue) and 1 (red).

a delay in the discrete time EKF response which is proportional to the order of the
filter. Figure 3.12 shows the trajectories of the altitude and the velocity along the
Y axis (the other state variables have similar behaviours) for hovering simulation in
closed loop using the discrete time EKF with anti-aliasing filters of different order.
The filter of order 4 which was used in the open loop simulations introduces a great
instability, the filter of order 2 and 1 produce similar stable result for the Y axis
velocity, but the altitude trajectory produced by the second order filter shows an
oscillating behaviour that looks close to the limit of stability, this is probably a
consequence of the fact that the computation of the derivative of z introduces an
extra delay on this variable. Considering these results, the first order anti-aliasing
filter alredy used for the open loop examples is the only one that is usable in closed
loop simulation3.

Instability in the continuous time filter

Another important source of instability regards the continuous time filter, which
generates instability with almost all the trajectories (except hovering) and causes
Simulink to terminate the simulation after few seconds with an error message. The
problem is probably caused by the high frequency components in the response and

3A first order lowpass filter does not attenuate the high frequency as well as a fourth order one,
however it is a minor problem with respect to the system instability. The delay can be reduced also
by using a shorter discretization time step, but in a real world application the on board processor
may not have enough computational power.

72

Quantity Discrete time Continuous time
Position on X 0.93 m 0.61 m

Position on Y 1.54 m −0.15 m

Position on Z 0.02 m 0.01 m

Yaw angle 0.01 rad −0.02 rad

Table 3.4: Drift values in hovering condition of the closed loop system after 10
seconds.

can be overcome by adding a lowpass filter to the output of the EKF block (visible
in Figure 2.5 on the left). We choose a Butterworth filter of order 4 with a cutoff
frequency of 50 Hz, which is used in all the following simulations except the hovering
trajectory.

3.3.2 Hovering

The hovering trajectory is simple to analyze quantitatively, so it provides a lot of
information about the overall performance of the system. The plots of the state
variables in Figure 3.13 show that the discrete and continuous time versions of
the filter produce similar results for some of them, like the velocity on X and the
altitude, while the results are very different for some other ones, like yaw angle and
the velocity on Y. Table 3.4 lists the final drift values from the fixed position after
10 seconds of simulation (these values are referred to the body frame and, excluding
the yaw angular drift, they cannot be directly inferred from the state variables).

The data from Figure 3.13 and Table 3.4 confirm what we have alredy noted,
that the linear velocity is more difficult to control than the other state variables,
because it cannot be directly measured. The residual linear velocity is sufficient
to cause a drift of almost two meters (considering both the X and Y axes) in ten
seconds for the discrete time filter and about one meter for the continuous time
version4. On the contrary, the altitude and the yaw angle are controlled with much
higher precision.

3.3.3 Complex trajectories

In this subsection, we analyze the performance of the closed loop system with some
trajectories composed by different moviments.

Forward moviment with altitude variation

The target trajectory is composed by three movements:
4The drift movements are random, so if the simulation is repeated with different random seeds

for the sensor noises the result can be much diffrent. The values in the table are useful only to give
a general idea of the control system precision.

73

Figure 3.13: Trajectories of the state variables in a closed loop hovering simulation,
continuous time filter (without the lowpass filter) in black and discrete time filter in
blue.

74

1. a pitch angle tilt of 0.6 rad for one second, which produces an acceleration
along the X axis;

2. an altitude reduction of 1 m, followed by a corresponding increase;

3. a negative pitch angle tilt of the same amount as the initial one, which should
stop the linear movement.

As expected from the results in Figure 3.4, the actual pitch angles achieved by the
controller will be about one half of the target one, in this case ±0.3 rad.

Figure 3.14 shows the actual trajectories of the state variables in open loop (red
dashdotted line), in closed loop with the continuous time version of the filter (black
line) and in closed loop with the discrete time version of the filter (blue line). It can
be noted that the relevant trajectories are followed quite well, in particular the value
of z does not drop lower than the target, so the manouver can be performed safely
even at low altitudes. As ususual, the velocity is hard to control, so there is a drift
on the Y axis, however its modulus (1 m for the continuous time filter and 1.5 m
for the discrete time one) is relatively small with respect to the main movement on
the X axis (about 25 m).

Two perpendicular segments

This target trajectory is composed by the following movements:

1. a pitch angle tilt of 0.4 rad for one second, compensated by an opposite tilt
one second later;

2. a yawing rotation of 90°;

3. another pitch angle tilt of 0.4 rad compensated by an opposite one, the sub-
sequence is identical to the first one.

The resulting path should be similar to a couple of perpendicular segments of the
same length. In pratice, the maximum pitch tilt is just 0.2 rad and the actual
trajectory in the ideal case (the controller operates on the exact state variables) is
the one showed in Figure 3.15. Since the quadrotor has a residual movement while
it yaws, the second leg of the track is longer and there is a significant lateral drift
that reduces the angle between the two segments.

As shown in Figure 3.16, the ideal trajectories and the ones obtained with the
two versions of the filter are more different than the ones in the previous example.
In particular, the residual velocity on Y, which generates the drift, is higher with
the continuous time filter and the one obtained with the discrete time filter it is
even lower that the one produced by the open loop control. This is the only case
analyzed until now where the discrete time filter performs better than the continuous
time one. On the contrary, the discrete time filter produces a velocity on X that is

75

Figure 3.14: Trajectories of the state variables in closed loop: linear movement with
altitude variation. The ideal trajectory is in red dashdotted, the one obtained with
the discrete time filter is in blue and the one obtained with the continuous time filter
is in black.

76

Figure 3.15: Actual trajectory of the quadrotor in the case of two perpendicualr
segments. The trajectory is in magenta.

notably higher on the second leg of the path5. It can also be noted that the yaw is
followed particularly well by both version of the filter.

Diagonal movement with altitude variations

This last target trajectory is composed by the following movements:

1. a pitch angle tilt of 0.5 rad, compensated by an opposite tilt six seconds later;

5Rembember that the state variables are expressed in body frame, so even if the two segments
that compose the trajectory are perpendicular, since the quadrotor rotates on the Z axis between
them, they are both seen as movements on the X axis.

77

Figure 3.16: Trajectories of the state variables in closed loop: two perpendicular
segments. The ideal trajectory is in red dashdotted, the one obtained with the
discrete time filter is in blue and the one obtained with the continuous time filter is
in black.

78

Control system X Y
Open loop 13.6 m 17.3 m

Closed loop discrete time 14.9 m 13.7 m

Cosed loop continuous time 12.8 m 8.9 m

Table 3.5: Coordinates of the end points of the diagonal trajectory.

2. a roll angle tilt of −0.5 rad, compensate by an opposite one six seconds later
(both contemporary to the corresponding roll tilt);

3. an altititude reduction of 2 m, followed by an increase of 4 m and another two
meters reduction (the quadrotor should return to the initial altitude at the
end of the movement.

The effect of the two simultaneous tilts should be a diagonal movement along the
bisector of the first quadrant, in pratice the velocity on Y axis produced by the open
loop control is slightly greater than the one on the X axis, so the actual diagonal
trajectory forms an obtuse angle with the X axis.

The trajectories of the state variables in Figure 3.17 show that the system with
the discrete time filter in closed loop follows more precisely the velocity components
on both the X and Y axes, but in particular the Y component is much lower than
the target value with the continuous time filter in closed loop. Table 3.5 lists the
coordinates of the end points of the trajectory with the open loop control and the
two versions of the closed loop one. The more the values of the two coordinates are
similar, the closer the achieved trajectory is to the ideal diagonal. Given the values
in the table, the closed loop control with the discrete time filter seems to perform
even better than the open loop one, however this must be just a casual compensation
of the control and estimation errors, because in the open loop system the controller
operates on the exact state (maximum information), so no real improvements are
possibile without changing the control algorithm. From Figure 3.17 can also be noted
that the closed loop control with both the filters produces a minimum altitude that
is more than half a meter lower than the target one, this may be a problem if the
manouver is performed near the ground.

Conclusion

The closed loop simulations presented in this subsection, although they provide
quite a small dataset with respect to the huge number of possible trajectories, show
that the quadrotor can be controlled using the discrete time version of the EKF to
estimate the state and the control algorithm implemented by Bresciani in the pre-
existing model [6] without instabilities (with a first order anti-aliasing filter), and the
performance achieved, although far from being perfect, should be good enough to
perform complex manouvers without flipping or crashing6. The closed loop control
with the continuous time version of the filter has shown some problems, like the need

79

Figure 3.17: Trajectories of the state variables in closed loop: diagonal movement
with altitude variations. The ideal trajectory is in red dashdotted, the one obtained
with the discrete time filter is in blue and the one obtained with the continuous time
filter is in black.

80

of a lowpass filter in series with it to produce a state estimate than can be used for
a stable control. This lowpass filter is probably the cause of the bad performance of
the system in some cases, which is worse than the ones obtained by the discrete time
system, while in the open loop examples analyzed in Section 3.1 the continuous time
EKF never performed worser than the discrete time one. Anyway, the discrete time
system is more important in this case, because it is the one that can be implemented
on a real quadrotor.

3.4 Simulations with errors in the estimates of the pa-
rameters

In the previous simulation, we have supposed that the parameters used in the ex-
tended Kalman filter are correctly estimated, so their values correspond to the real
world quantities they refer to. However, in practice measurement and calibration
errors may occur, so we are interested in analyzing the behaviour of the system when
the filter parameters differ from the actual values.

3.4.1 Errors in physical parameters
Some of the parameters used by the Kalman filter, both in the state-transition and
in the measurement models, represent the physical quantities that affect the sys-
tem. These parameters might be set to incorrect values either because of erroneous
measurements (high precision instruments are not always available) or small envi-
ronmental changes during flight (expecially for groud pressure and temperature).
The main physical parameters are:

• the mass of the quadrotor;

• the magnetic field versor;

• the athmosferic pressure at ground level;

• the gas constant of the air (which depends on the humidity);

• the air temperature;

• the diagonal values of the quadrotor inertia matrix.

The results of an hovering simulation where the estimated values of the param-
eters listed above are corrupted by a random generated error are shown in Figures
3.18 and 3.19 for the continuous and discrete time EKF respectively. The additive

6The main purpose of an attitude control system is to avoid instability and altitude loss during
the manouvers, the control of the position and velocity is the task of the navigation system, which
has to employ some sort of position measurements, but it is not discussed in this thesis. In this
sense, the relatively small altitude loss obtained with the closed loop control in the third trajectory
of this section is more relevant than the bigger horizontal drifts that occur in every simulation.

81

Figure 3.18: Continuous time filter estimates for an howering simulation with errors
in the physical parameters of the Kalman filter. The errors are generated from
a Gaussian distribution with a variance of 0.5% (black), 0.1% and 0.05% of the
corresponding variable.

error is generated from a Gaussian distribution with different values of the vari-
ance. The continuous time filter shows a divergent behaviour, while the discrete
time one appears to be much more error tolerant, however the altitude estimate
is unacceptably wrong (∼ 5 m) even with an error variance of just 0.05% in the
parameters.

The high sensitivity to parameter estimation errors that emerges from these
results is one of the main problems of this EKF implementation. The absolute value
of the error added to the quadrotor mass parameter in the simulation, for example,
was in the order of 10−4 kg, which is about the weight of a feather. That means that
even the smallest payload applied to the quadrotor would require a weighting on an
high precision scale, not to mention what could happen if a leaf fell on it during the
flight.

82

Figure 3.19: Discrete time filter estimates for an howering simulation with errors
in the physical parameters of the Kalman filter. The errors are generated from
a Gaussian distribution with a variance of 0.5% (black), 0.1% and 0.05% of the
corresponding variable.

83

3.4.2 Errors in sensor calibration
In this subsection, we test the behaviour of the system when there are errors in the
sensor calibration. According to Equation (1.45), the model of a three-axis MEMS
sensor contains a misalignment matrix and a bias vector. In the first simulation, the
values of the misalignment matrices were corrupted by a random error generated
from a Gaussian distribution with diffrent variance values, the results are shown
in Figures 3.20 and 3.21 (continuous and discrete time filter respectively). In the
second simulation, the same type of error was applied to the bias vectors, the results
are visible in Figures 3.22 and 3.23 (continuous and discrete time filter respectively).

The misalignment calibration errors produce quite a strange result with the
continuous time filter: the blue lines in Figure 3.20, which corresponds to an error
variance of 0.01, show a divergent behaviour for many variables, while the error
variance of 0.05 (magenta lines) produces a quite large, but bounded estimation
error. It is not easy to understand why the filter diverges with a sensor calibration
error of 0.01 and not with a larger value such as 0.05, however if the simulation
is repeated with different random error values generated with the same variance,
the instability appears only in some cases, so maybe some particular sets of random
values trigger a singulartity in the dynamic equations, while other do not. As for the
errors in physical parameters, the discrete time Kalman filter is more error tolerant
and predictable: the no instability is generated, and the larger the error variance
value the lower the accuracy in the estimate (except for the roll angle and the related
velocity on Y, but it is likely to be just a coincidence).

The bias calibration errors produce the same results with both the versions of the
filter: while the variance of 0.05 causes a divergent behaviour, the two smaller values
produce a relatively small estimation error. Since the discrete time filter appeared
to be quite robust with respect to the sensor calibration error, a closed loop simu-
lation using a complex trajectory was performed. The chosen trajectory combines
a movement on Y (produced and stopped by roll tilts), an altitude variation and a
yawing rotation, simulated with an error variance of 0.01 on both the misalignment
matrices and the bias vectors. The results (limited to the most relevant variables)
are shown in Figure 3.24, compared with the ones obtained by the control system
in open loop (red dashdotted line). Although the closed loop trajectory cannot be
defined satisfying, because of the large errors that are evident expecially in the al-
titude, the yaw angle and the velocity on Y, the system remains stable (at least for
the time interval of the simulation) and does not produce dangerous movements,
like flips or dives.

84

Figure 3.20: Continuous time filter estimates for an howering simulation with errors
in the calibration of the sensor axis misalignment matrices. The errors are generated
from a Gaussian distribution with variance of 0.005 (black), 0.01 (blue) and 0.05
(magenta).

85

Figure 3.21: Discrete time filter estimates for an howering simulation with errors in
the calibration of the sensor axis misalignment matrices. The errors are generated
from a Gaussian distribution with variance of 0.005 (black), 0.01 (blue) and 0.05
(magenta).

86

Figure 3.22: Continuous time filter estimates for an howering simulation with errors
in the calibration of the sensor biases. The errors are generated from a Gaussian
distribution with variance of 0.005 (black), 0.01 (blue) and 0.05 (magenta).

87

Figure 3.23: Discrete time filter estimates for an howering simulation with errors
in the calibration of the sensor biases. The errors are generated from a Gaussian
distribution with a variance of 0.005 (black), 0.01 (blue) and 0.05 (magenta).

88

Figure 3.24: Closed loop simulation of a complex trajectory with calibration errors
in both the sensor misalignment matrices and biases, the errors are generated from
a Gaussian distribution with a variance of 0.01. Discrete time filter trajectories in
blue and open loop system trajectorie in red dashdotted.

89

90

Chapter 4

Conclusion

The results presented in this thesis show that an implementation of the extended
Kalman filter can provide an estimate of the attitude of a quadrotor that can be
used as input by a PD control algorithm. If all the parameters are correctly set,
the continuous time EKF has better accuracy, but since it is not implementable
on an embedded system, it can be used only as a reference. The simulations show
that a discrete time version of the filter working at a frequency of 20 Hz (suitable
for an on-board implementation) can provide satisfying results in most situations,
moreover it is much more robust to sensor calibration errors than the continuous
time version.

The large number of parameters that must be set with high precision is still the
main problem of this application of the extended Kalman filter. In particular, even
small errors in the measurements of various physical quantities that influence both
the sensor and the state-transition models may result in large estimation errors and
even instability when the control loop is closed around the filter. The discrete time
EKF seems more robust against sensor calibration errors, however they are less likely
to occur in real world, since the calibration can be performed with high accuracy in
a laboratory, while physical quantities like the atmosferic pressure, the temperature
and even the mass of the aircraft if a payload is carried have to be measured at the
moment for each flight.

Other limitations to the validity of the results presented in this thesis come from
the assumptions used to simplify the simulation model, in particular:

• the dynamics are simulated by a system that exaclty matches the state-transition
model of the Kalman filter, so a null Kalman gain would always lead to perfect
estimates as long as the physical parameter are correctly set;

• the model does not take into account the response of the engines, which may
be influent expecially in the case of fast manouvers, because they may not be
enough reactive to change the angular rates of the propellers as required by
the controller;

91

• the output of real-world MEMS sensors is not continuous in time, moreover
they may operate at diffrerent frequencies and the samples may not be syn-
chronized.

Because of the simplifications listed above, the thesis do not guarantee the factibility
of a real world implementation of the described system, instead it provides only a
theoretical analysis of its achievable performance and the related problems.

4.1 Further developments
The first improvement to the simulation model described in this thesis is the correc-
tion of the limitations listed in the previous paragrah. In particular, the performance
of the filter when the state-transition model is also affected by random noise should
be studied in depth, since the main purpose of the Kalman filter is the correction of
both measurement and system errors.

Simulation with real data The Simulink model of the discrete time EKF can
also be tested with real-world data. In this kind of experiment, the signals from
the sensors and the controller are substituded with the ones registered by the IMU
and the control unit of an actual quadrotor during a short flight. The estimates
produced by the filter are then compared to the actual trajectory recorded by a
sufficently accurate motion tracking system. The main difficulty of this experiment,
apart from the alredy mentioned parameter calibration, is the synchronization of
the data from the different sources, which is definitely non trivial, because different
clocks, starting times and frequency are likely to be involved and interpolation may
be necessary.

Embedded implementation of the system After the simulation stage, if the
system is proven to be efficent and feasible, it can be implemented on board of
a quadrotor. The problems that may arise at this stage are many. The real time
measurement may come from the sensor at different time instant, so it may be better
to design the update step of the filter in such a way that it can work for each sensor
separately. The embedded hardware platform may also impose limitation to the
maximum operating frequency of the filter (and the controller).

Navigation system As noted more than once in the thesis, this attitude control
system cannot handle the position or the velocity of the quadrotor with accuracy
(with the exception of the altitude), because the IMU sensors cannot maesure this
quantities directly. The attitude control can be completed by a navigation system,
which may be implemented with the Kalman filter too and may extend the same
state-transition model. The navigation system must rely on some kind of position
measurements, thay may come from a GPS for medium distance outdoor flights or
may be vision based for indoor flight.

92

Bibliography

[1] DMW Abeywardena and SR Munasinghe. Performance analysis of a kalman
filter based attitude estimator for a quad rotor uav. In Ultra Modern Telecom-
munications and Control Systems and Workshops (ICUMT), 2010 International
Congress on, pages 466–471. IEEE, 2010.

[2] Erdinc Altug, James P Ostrowski, and Camillo J Taylor. Quadrotor control
using dual camera visual feedback. In Robotics and Automation, 2003. Proceed-
ings. ICRA’03. IEEE International Conference on, volume 3, pages 4294–4299.
IEEE, 2003.

[3] Boris Andrievsky, Alexander Fradkov, and Dimitri Peaucelle. Adaptive control
experiments for laas ”helicopter” benchmark. In 2005 International Conference
on Physics and Control, PhysCon 2005, pages 760–765, 2005.

[4] Samir Bouabdallah, Andre Noth, and Roland Siegwart. Pid vs lq control tech-
niques applied to an indoor micro quadrotor. In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on,
volume 3, pages 2451–2456. IEEE, 2004.

[5] M Boutayeb, H Rafaralahy, and M Darouach. Convergence analysis of the
extended kalman filter used as an observer for nonlinear deterministic discrete-
time systems. Automatic Control, IEEE Transactions on, 42(4):581–586, 1997.

[6] Tommaso Bresciani. Modelling, identification and control of a quadrotor heli-
copter. Master’s thesis, Lund university, October 2008.

[7] Richard Snowden Bucy and Peter D Joseph. Filtering for stochastic processes
with applications to guidance, volume 326. American Mathematical Soc., 1987.

[8] Pedro Castillo, Alejandro Dzul, and Rogelio Lozano. Real-time stabilization
and tracking of a four-rotor mini rotorcraft. Control Systems Technology, IEEE
Transactions on, 12(4):510–516, 2004.

[9] Cosmin Coza and CJB Macnab. A new robust adaptive-fuzzy control method
applied to quadrotor helicopter stabilization. In Fuzzy Information Processing
Society, 2006. NAFIPS 2006. Annual meeting of the North American, pages
454–458. IEEE, 2006.

93

[10] Lefteris Doitsidis, Stephan Weiss, Alessandro Renzaglia, Markus W Achte-
lik, Elias Kosmatopoulos, Roland Siegwart, and Davide Scaramuzza. Optimal
surveillance coverage for teams of micro aerial vehicles in gps-denied environ-
ments using onboard vision. Autonomous Robots, 33(1-2):173–188, 2012.

[11] J Dunfied, M Tarbouchi, and G Labonte. Neural network based control of
a four rotor helicopter. In Industrial Technology, 2004. IEEE ICIT’04. 2004
IEEE International Conference on, volume 3, pages 1543–1548. IEEE, 2004.

[12] Davide Forti and Luca Lamparelli. Analisi e controllo della dinamica di un
elicottero quadrotore. Master’s thesis, Politecnico di Milano, 2009.

[13] M.S. Grewal and A.P. Andrews. Kalman Filtering: Theory and Practice Using
MATLAB. Wiley, 2008.

[14] Nicolas Guenard, Tarek Hamel, and Laurent Eck. Control laws for the tele op-
eration of an unmanned aerial vehicle known as an x4-flyer. In Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pages 3249–3254.
IEEE, 2006.

[15] Gabriel M Hoffmann, Haomiao Huang, Steven L Waslander, and Claire J Tom-
lin. Quadrotor helicopter flight dynamics and control: Theory and experiment.
In Proc. of the AIAA Guidance, Navigation, and Control Conference, pages
1–20, 2007.

[16] Aldo Jaimes, Srinath Kota, and Jose Gomez. An approach to surveillance an
area using swarm of fixed wing and quad-rotor unmanned aerial vehicles uav
(s). In System of Systems Engineering, 2008. SoSE’08. IEEE International
Conference on, pages 1–6. IEEE, 2008.

[17] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to
nonlinear systems. In AeroSense’97, pages 182–193. International Society for
Optics and Photonics, 1997.

[18] Rudolph E Kalman and Richard S Bucy. New results in linear filtering and
prediction theory. Journal of basic Engineering, 83(3):95–108, 1961.

[19] Rudolph Emil Kalman et al. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960.

[20] Laszlo Kis, Gergely Regula, and Bela Lantos. Design and hardware-in-the-loop
test of the embedded control system of an indoor quadrotor helicopter. In
Intelligent Solutions in Embedded Systems, 2008 International Workshop on,
pages 1–10. IEEE, 2008.

[21] Ilan Kroo and Peter Kunz. Development of the mesicopter: A miniature au-
tonomous rotorcraft. In American Helicopter Society (AHS) Vertical Lift Air-
craft Design Conference, San Francisco, CA, 2000.

94

[22] Barbara F La Scala, Robert R Bitmead, and Matthew R James. Conditions for
stability of the extended kalman filter and their application to the frequency
tracking problem. Mathematics of Control, Signals and Systems, 8(1):1–26,
1995.

[23] Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. Construction of cubic
structures with quadrotor teams. Proc. Robotics: Science & Systems VII, 2011.

[24] Cheng Liu, Zhaoying Zhou, and Xu Fu. Attitude determination for mavs using
a kalman filter. Tsinghua Science & Technology, 13(5):593–597, 2008.

[25] Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. Pix-
hawk: A system for autonomous flight using onboard computer vision. In
Robotics and automation (ICRA), 2011 IEEE international conference on,
pages 2992–2997. IEEE, 2011.

[26] Najib Metni, Tarek Hamel, and François Derkx. Visual tracking control of aerial
robotic systems with adaptive depth estimation. In Decision and Control, 2005
and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference
on, pages 6078–6084. IEEE, 2005.

[27] Yannick Morel and Alexander Leonessa. Direct adaptive tracking control of
quadrotor aerial vehicles. In Florida Conference on Recent Advances in Robotics,
pages 1–6, 2006.

[28] Talat Ozyagcilar and Freescale Semiconductor Inc. Calibrating an ecompass
in the presence of hard and soft-iron interference. Application note, 01 2012.
Document number AN4246.

[29] Konrad Reif, Stefan Gunther, Engin Yaz, and Rolf Unbehauen. Stochastic
stability of the discrete-time extended kalman filter. Automatic Control, IEEE
Transactions on, 44(4):714–728, 1999.

[30] Rush D Robinett, Gordon G Parker, Hanspeter Schaub, John L Junkins,
JF BELLANTONI, and KW DODGE. A square root formulation of the kalman-
schmidt filter. AIAA journal, 5(7):1309–1314, 1967.

[31] S Salazar-Cruz, A Palomino, and R Lozano. Trajectory tracking for a four
rotor mini-aircraft. In Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on, pages 2505–2510. IEEE,
2005.

[32] Sebastian Scherer, Joern Rehder, Supreeth Achar, Hugh Cover, Andrew Cham-
bers, Stephen Nuske, and Sanjiv Singh. River mapping from a flying robot:
state estimation, river detection, and obstacle mapping. Autonomous Robots,
33(1-2):189–214, 2012.

95

[33] Alexandros Soumelidis, Péter Gáspár, Gergely Regula, and Béla Lantos. Con-
trol of an experimental mini quad-rotor uav. In Control and Automation, 2008
16th Mediterranean Conference on, pages 1252–1257. IEEE, 2008.

[34] Samanmalee Sugathadasa, Clyde Martin, and WP Dayawansa. Boundedness
of covariance estimates of extended kalman filtering with directional measure-
ments and linear state dynamics. In Decision and Control, 2001. Proceedings
of the 40th IEEE Conference on, volume 4, pages 3790–3795. IEEE, 2001.

[35] Metin Tarhan and Erdinç Altuğ. Ekf based attitude estimation and stabilization
of a quadrotor uav using vanishing points in catadioptric images. Journal of
Intelligent & Robotic Systems, 62(3-4):587–607, 2011.

[36] Abdelhamid Tayebi and Stephen McGilvray. Attitude stabilization of a vtol
quadrotor aircraft. Control Systems Technology, IEEE Transactions on,
14(3):562–571, 2006.

[37] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Intelligent robotics
and autonomous agents series. Mit Press, 2005.

[38] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for
nonlinear estimation. In Adaptive Systems for Signal Processing, Communica-
tions, and Control Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158.
IEEE, 2000.

96

Appendix A

Mathematical derivation of the
Kalman filter

This appendix explains the mathematical fundations of the Kalman Filter. The first
section provides some general notions about the probability theory applied to the
robotics and proves the Bayes filter algorithm. Section A.2 contains the derivation
of the Kalman filter in both the continuous and discrete time versions. It will be
shown that the Kalman filter is just a particular case of the Bayes filter that can be
applied when all the probability distributions are Gaussian.

A.1 Probability and Bayes filters
In robotics and autonomous systems theory, almost always the system decides its
behaviour on the basis of the estimated value of some state variables. The state
variables may represent many different things, like the position of the robot, some
environmental conditions or the presence of other entities to interact with, but in any
case, usually their value is not known a-priori and/or it cannot be directly measured.
In order to make the right decisions, the system has to guess the expected value of
the state variables, so the probability theory began to gain a major role in the field,
leading to the so called probabilistic robotics [37].

A.1.1 Two fundamental theorems
Although a complete explanations of the basic concepts of the probabilty theory is
beyond the scope of this appendix, there are two fundamental theorems that will be
used in the mathematical derivations, so they are worth to be recalled.

Total probability theorem

The total probability theorem states that the probabilty distribution p(x) can be
computed from the conditional probability p(x|y) (the probability of the event x

97

given the event y) and the total probability p(y) using the formula:

p(x) =

∫
p(x|y)p(y) (A.1)

Bayes rule

The Bayes rule relates the conditional probabilty of x given y to the conditial prob-
ability of y given x, according to the formula1:

p(x|y) = p(y|x)p(x)
p(y)

=
p(y|x)p(x)∫
p(y|x′)p(x′)dx′

. (A.2)

The integrals in both (A.1) and (A.2) become summations if the domains of the
random variables x and y are discrete.

A.1.2 The concept of belief
A key concept in probabilistic robotics is the belief. The belief represent the internal
knowledge of the system about the probability distribution of the state variables. A
robotic system can estimate the value of the state variables on the basis of both the
measurements of the sensors and the past control actions. The system updates its
previous estimate at every control action and every time it receives a new measure-
ment, so the estimation is a recursive process. We can formally define the belief at
time t as the probability distribution of the state variables conditioned by all the
previous measurements and controls:

bel(xt) = p(xt|z1:t, u1:t). (A.3)

Sometimes it is useful to compute the belief after the last control action ut, but before
the last measurement zt. This probability distribution is usually called prediction
and is denoted as bel(xt):

bel(xt) = p(xt|z1:t−1, u1:t). (A.4)

The calculation of bel(xt) from bel(xt) by incorporating the measurement zt is called
measurement update.

A.1.3 Bayes filter
The Bayes filter is a general recursive algorithm to calculate the believes. This
algorithm is divided in two steps:

1. the prediction step calculates the prediction bel(xt) from the previous belief
bel(xt−1) and the last control action ut;

1This formulation assumes that P (y) > 0 as an existance condition of the fraction.

98

2. the measurement update step computes the final belief bel(xt) from the pre-
diction bel(xt) (obtained in the previous step) and the measurement zt.

Like every recursive algorithm, the Bayes filter requires the initial condition at
time t0, in this case the probability distribution bel(x0). If the initial state of the
system is known with certainty, the initial belief is a point mass distribution centered
in x0, if the state is totally unknown, bel(x0) may be a uniform distribution over
the domain of x. If the initial state is only partially known, the initial belief can
be any other probability distribution that is appropriate for the case, but the most
frequent situations in pratice are the perfect knowledge or the complete ignorance.

Prediction step

In the prediction step, bel(xt) is computed as the integral of the product of two
probability distribution: the belief at time xt−1 bel(xt−1) and the probability that
the control ut induces a transition from the state xt−1 to the state xt. The equation
of the prediction step is

bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dx. (A.5)

Measurement update step

In the measurement update step, the prediction bel(xt) is multiplied by the proba-
bility that the measurement zt may be observed in the state xt. Since the product
generally does not integrate to 1 (as required by the definition of probability distri-
bution), the result is normalized my the normalization constant µ. The equation of
this step is:

bel(xt) = νp(zt|xt)bel(xt). (A.6)

Any practical implementation of the Bayes filter requires the knowledge of three
probability distributions: the initial belief bel(xt), the measurement probability
p(zt|xt) and the state-update probability p(xt|ut, xt−1).

A.1.4 Mathematical derivation of the Bayes filter

The correctenss of the Bayes filter algorithm can be proved by induction. We have
to prove that the filter can calculate the correct distribution p(xt|z1:t, u1:t) given
the distribution at the previous step p(xt−1|z1t−1, u1:t−1). Before proceding with
the proof, we have to make an important assumption: we assume that the state xt
contains all the necessary information to make predictions about the future and in
particular the knowledge of the past measurements and control would not help us
predicting the measurement zt2. Formally

p(zt|xt, z1:t−1, u1:t) = p(zt|xt). (A.7)

99

We start with the application of the Bayes rule in eq. (A.2) to the target belief:

p(xt|z1:t, u1:t) =
p(zt|xt, z1:t−1, u1t)p(xt|z1:t−1, u1:t)

p(zt|z1:t−1, u1t)
, (A.8)

if we consider the denominator as a scaling factor, the above equation becomes:

p(xt|z1:t, u1:t) = µp(zt|xt, z1:t−1, u1t)p(xt|z1:t−1, u1:t). (A.9)

Considering the assumption in eq. (A.7) and recalling the definitions of bel(xt) and
bel(xt) the latter can be further simplified as:

bel(xt) = µp(zt|xt)bel(xt), (A.10)

which is the measurement update step in eq. (A.6). Now we can expand the term
bel(xt) according to the theorem of total probability in eq. (A.1) :

bel(xt) = p(xt|z1:t−1, u1:t) =

∫
p(xt|xt−1, z1:t−1, u1:t)p(xt−1|z1:t−1, u1:t)dxt−1.

(A.11)
According to the assumption that the state is complete, if we know xt−1, the past
measurements and controls cannot provide us any information regarding xt, so:

p(xt|xt−1, z1:t−1, u1:t) = p(xt|xt−1, ut). (A.12)

We can also note that, if the controls are randomly chosen, the control ut can be
removed from the conditioning variables in p(xt−1|z1:t−1, u1:t). Finally, eq. (A.11)
becomes:

bel(xt) =

∫
p(xt|xt−1, ut)p(xt−1|z1:t−1, u1:t−1)dxt−1, (A.13)

which is the prediction step equation (A.5).

A.2 Derivation of the Kalman Filter
The practical implementation of the Bayes filter can be very difficult or even im-
possible if the involved probability distributions have a complex shape. On the
contrary, if all the distributions are Gaussian, the filter becomes simpler. It can be
proved that an optimal estimator based on the Bayes filter can be developed if the
following conditions are satisfied:

• the state variables have a continuous domain;

• the initial probability distribution of the state variables bel(x0) is Gaussian;
2 If the state x satisfies this condition, it is called complete.

100

• the state-transition equation of the underlying dynamic model is linear;

• the measurement equation (the function from the state variables to the ex-
pected sensor output) is also linear;

• all the errors or noises in the system are additive and have a Gaussian distri-
bution.

In this case, the optimal estimator is the Kalman filter, a particular case of the
Bayes filter. The reason why the probability distributions are required to be Gaus-
sian is the fact that a normal distribution is fully defined by just its mean and its
variance. The linearity of the transformations and the noises ensures that the initial
Gaussian distribution will remain Gaussian at any time in the future, because a
linear transformation applied on a Gaussian function always changes it into another
Gaussian.

A.2.1 Derivation of the discrete time Kalman filter

The derivation of the discrete Kalman filter algorithm that I propose in this appendix
is based on the one presented in [13]3. Before proceding with the derivation, there
are two important principles that have to be exposed (the proof of these principles
is too long to be included in this appendix):

Linear optimal estimator Given a random process x(t), an estimator x̂(t) which
is a function of the measurements z(t) is optimal if it minimizes the expected value
of a quadratic loss function of the error x(t)− ˆx(t) with the probabilities conditioned
by z(t):

E
⟨
[x(t)− ˆx(t)]TM [x(t)− ˆx(t)]|z(t)

⟩
, (A.14)

where the matrix M is a symmetric, positive-definite weighting matrix. It is possible
to proof that, if x(t) and z(t) are jointly Gaussian (i.e they are both normally
distributed and the distribution of their joint probability is a multivariate Gaussian),
the optimal estimator is a linear function of the measurements:

x̂(t) =
k∑
i=1

αizi (A.15)

Orthogonality principle The orthogonality principle states that, given a random
process x(t) and an estimator x̂(t) function of the measurements z(t), the estima-
tor achieves the minimum variance (this proposition is equivalent to say that it is

3 The derivation proposed in [37], for example, is much more mathematically oriented, relying
on the theory of probability.

101

optimal) if and only if it satisfies the two following equations:

E ⟨x(t)− x̂(t)⟩ = 0, (A.16)
E
⟨
[x(t)− x̂(t)]z(t)T]

⟩
= 0. (A.17)

Equation (A.16) alone defines an unbiased estimator, while Equation (A.17) means
that the estimation error of the optimal estimator is orthogonal with respect to the
measurements. If the process x(t) is zero-mean, Equation (A.16) is not necessary.

Now we can proceed with the derivation of the Kalman filter. Suppose that we
want to update the current estimate of the state xk of a dynamic system at time
tk with the information from the measurement zk, which is related to the state by
a linear equation zk = Hkxk + vk, where Hk is the measurement sensitivity matrix
and vk is the measurement noise. We also assume that the process xk and the
measurements zk are jointly Gaussian, so the optimal estimator is a linear function
of the a priori estimate x̂k(−) and the measurement zk:

x̂k(+) = K1
k x̂k(−) +Kkzk, (A.18)

where x̂k(+) is the updated estimate, x̂k(−) is the a priori estimate and the coeffi-
cient matrices K1

k and Kk are the optimal gains to be determined. In particular,
Kk is the Kalman gain defined in Equation (1.7).

We have observed that the optimal estimator is the one that satisfies the orthog-
onality principle in Equation (A.17) (it is written for the continuous case, but it can
be easly applied to the discrete one), so we exploit this theorem to find the unknown
gains. If we substitute the state update formula (1.1) for x(t) and Equation (A.18)
for x̂(t), we obtain:

E
⟨
[Φk−1xk−1 + wk−1 −K1

k x̂k(−) +Kkzk]z
T
i

⟩
= 0, i = 1, ..., k − 1. (A.19)

But considering the measurement model (1.2), Equation (A.19) can be further
rewritten as

E
⟨
[Φk−1xk−1 −K1

k x̂k(−) +KkHkxk −Kkvk]z
T
i

⟩
= 0, i = 1, ..., k − 1. (A.20)

The latter equation can be reduced through some passages:

ΦkE⟨xk−1z
T
k ⟩ −K1

kE⟨x̂(−)kzi⟩ −KkHkΦkE⟨xk1zTi ⟩ −KkE⟨vkzTi ⟩ = 0, (A.21)
ΦkE⟨xk−1z

T
k ⟩ −K1

kE⟨x̂(−)kzi⟩ −KkHkΦkE⟨xk1zTi ⟩ = 0, (A.22)
E
⟨
[xk −KkHkxk −K1

kxk]−K1
k(x̂k(−)− xk)

⟩
zTi = 0, (A.23)

[1−K1
k −KkHk]E⟨xkzTi ⟩. (A.24)

In passage (A.22) we have canceled the term E⟨vkzti⟩, because we assume that the
error vk is uncorrelated with the measurements zi. Equation (A.24) is satisfied for
any xk if we choose

K1
k = I −KkHk. (A.25)

102

Now we have to find the optimal value for Kk. We define the following errors:

x̃k(+) ≡ x̂k(+)− xk, (A.26)
x̃k(−) ≡ x̂k(−)− xk, (A.27)

z̃k ≡ zk(−)− zk = Hkx̂k(−)− zk. (A.28)

Accroding to the orthogonality principle, we can write:

E
⟨
[xk − x̂k]ẑ

T
k]
⟩
= 0, (A.29)

and subtracting Equation (A.17) from the discrete version of Equation (A.29):

E
⟨
[xk − x̂k]z̃

T
k]
⟩
= 0. (A.30)

Substituting the variables xk, x̂k(+) and z̃k(−) respectively from Equations (1.1),
(A.18) and (A.28):

E
⟨
[Φk−1xk−1 + wk−1 −K1

k x̂k(−)−Kkzk][Hkx̂k(−)− zk]
T
⟩
= 0. (A.31)

Considering that E⟨wkzTk ⟩ = 0, E⟨wkx̂Tk (−)⟩ = 0 and E⟨x̃k(−)vTk ⟩ = 0 and substi-
tuting for K1

k , zk and x̃k(−), Equation (A.31) can be rewritten as:

E
⟨
[−x̂k(−) +KkHkx̃k(−)−Kkvk][Hkx̃k(−)− vk]

T
⟩
= 0 (A.32)

The error covariance matrix before the update is defined as:

Pk(−) = E⟨x̃k(−)x̃Tk (−)⟩ (A.33)

and satisfies the equation:

[I −KkHk]Pk(−)HT
k −KkRk = 0, (A.34)

so the Kalman gain can be expressed as a function of the a priori covariance:

Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
T (A.35)

By substituting Equation (A.25) into Equation (A.18) we obtain:

x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)], (A.36)

and after substituting zk according to Equation (1.2), we can subtract xk from both
sides to obtain:

x̃k(+) = (I −KkHk)x̃k(−) +Kkvk. (A.37)
By substituting the latter into the definition of the covariance matrix after the
update Pk(+) = E⟨x̃k(+)̃(x)Tk (+)⟩ we obtain:

Pk(+) = E
⟨
[I −KkHk]x̃k(−)x̃Tk (−)[I −KkHk]

T +Kkvkv
T
kK

T
k

⟩
(A.38)

= (I −KkHk)Pk(−)(I −KkHk)
T +KkRkK

T
k . (A.39)

103

Equation (A.39) is called the Joseph form of the covariance update equation. It was
derived by P. D. Joseph[7]. If we substitue Kk from Equation (A.35), we can reduce
it to the simpler form:

Pk(+) = (KkHk)Pk(−), (A.40)

which is commonly used for computations and corresponds to Equation (1.6).
The last equation of the Kalman filter that we have to derive is the error covari-

ance extrapolation (1.4). We can subtract xk from both sides of the state-update
equation (1.3) and then substitue xk from Equation (1.1) to obtain the propagation
of the estimation error:

x̂k(−)− xk = Φkx̂k−1(+)− xk,

x̃k(−) = Φkx̂k−1(+)− (Φkxk−1 + wk)

x̃k(−) = Φk[x̂k−1(+)− xk−1]− wk−1

x̃k(−) = Φkx̃k−1(+)− wk−1

We can use the latter in the definition of the error covariance:

Pk(−) ≡ E⟨x̃kx̃Tk ⟩
= Φk−1E⟨x̃k−1(+)x̃Tk−1(+)⟩ΦT

k−1 +E⟨wk−1w
T
k−1⟩

= Φk−1Pk−1(+)Φk−1 +Qk−1,

which corresponds to Equation (1.4).

A.2.2 Derivation of the Kalman-Bucy filter
The derivation of the Kalman-Bucy filter (the continuous time version of the Kalman
filter) is similar to the derivation of the discrete case. We want to finde an estimate
x̂(t) of the random (vector) variable x(t) which is a linear function of the measure-
ments z(t) and which minimizes the cost function in Equation (A.14). If we consider
the time interval ∆t = [tk−1, tk], we can integrate the state-transition equation (1.8)
as:

Φ(tk, tk−1) = Φk = I + F (tk−1)∆t+O(∆t2), (A.41)

where O(∆t2) represents the terms with powers of ∆t greater than 1. The measure-
ment noise becomes

Rk =
R(tk
∆t

(A.42)

and the process noise
Qk = G(tk)Q(tk)Q(tk)

T∆t. (A.43)

If we combine the Equations (A.40) and (1.6) and substitute for the above relations,
we have:

Pk(−) = [I+F (t)∆t][I−Kk−1Hk−1]Pk−1(−)[I+F (t)∆t]T +G(tk)Q(tk)Q(tk)
T∆t,

(A.44)

104

this last equation can be rewritten to explicit the variation of P (−) over the time
interval:

Pk(−)− Pk−1(−)

∆t
= F (t)Pk−1(−) + Pk−1(−)F (t)T +G(tk)Q(tk)Q(tk)

T

− Kk−1Hk−1Pk−1(−)

∆t
− F (t)Kk−1Hk−1Pk−1(−)F T (t)∆t

+O(∆t2).

(A.45)

We can write the limit for ∆t→ 0 in the Kalman gain expression in Equation (A.35):

K(t) = lim
∆t→0

[
Kk − 1

∆t

]
= lim

∆t→0
Pk−1(−)HT

k−1[Hk−1Pk−1(−)HT
k−1∆t+R(t)]−1

= PHTR−1.

(A.46)

Substituting Equation (A.46) in Equation (A.45) and taking the limit, we obtain
the Riccati equation4:

Ṗ (t) = F (t)P (t) + P (t)P (t)T +G(t)Q(t)G(t)T −K(t)R(t)K
T
(t), (A.47)

which corresponds to Equation (1.11).

4 Note that the identity

K(t)R(t)K
T
(t) = P (t)HT (t)R−1(t)R(t)R−1(t)H(t)P (t)

has been used to simplify the equation.

105

106

Appendix B

Matlab code

In this appendix the complete Matlab code used by the Simulink model described
in Chapter 2.

Initialization script

The script init.m initializes all the variables, the constants and the parameters
used in the model. The values of some parameters have been changed from the
configuration listed here during testing.

Listing B.1: Initialization script (init.m.
1 % −−−
2 % PARAMETERS FOR SYSTEM SIMULATION
3 % −−−
4 % This s c r i p t i n i t i a l i z e s a l l the parameters requ i red
5 % by the simul ink model. The s c r i p t must be ca l l e d
6 % before execut ing the s imu la t i on .
7 % −−−
8

9 % Simulation time (seconds)
10 T_sim=10;
11

12 % −−−
13 % Parameters used by the motor block
14 % −−−
15 Vdd=11.1 ;
16 Km=38.46e −3; % Km=4.3e −3;
17 Ke=Km;
18 R=0.67 ;
19 L=500e−6;
20 J=3.4e −5;
21 tau_elet=L/R;
22 tau_mech=R*J/(Km*Ke) ;
23

24 % −−−

107

25 % Environmental parameters
26 % −−−
27 g loba l g ; % Grav i tat iona l a c c e l e r a t i on
28 g loba l mag_field ; % Magnetic f i e l d vector
29 g loba l P0 ; % Pressure at ground l e v e l [Pa] .
30 g loba l Ra ; % Gas constant o f the a i r [J/(Kg*K)] .
31 g loba l T0 ; % Temperature at ground l e v e l [K] .
32

33 mag = [cos (1) ; −0.1 ; −s in (1)] ;
34 mag_field = mag / norm(mag) ;
35 g = 9 .81 ;
36 P0 = 101325; % Mean value at sea l e v e l .
37 Ra = 286 .9 ;
38 T0 = 293 .15 ;
39

40 % −−
41 % I n i t i a l cond i t i ons
42 % −−
43 g loba l x0 ;
44 g loba l y0 ;
45 g loba l z0 ;
46 g loba l phi0 ;
47 g loba l theta0 ;
48 g loba l ps i0 ;
49 g loba l dx0 ;
50 g loba l dy0 ;
51 g loba l dz0 ;
52 g loba l dphi0 ;
53 g loba l dtheta0 ;
54 g loba l dpsi0 ;
55

56 x0=0;
57 y0=0;
58 z0=0;
59 phi0=0;
60 theta0=0;
61 ps i0=0;
62 dx0=0;
63 dy0=0;
64 dz0=0;
65 dphi0=0;
66 dtheta0=0;
67 dpsi0=0;
68

69 % −−
70 % Mechanical parameters
71 % −−
72 g loba l m; % Mass o f the quadrotor
73 g loba l b ; % Thrust f a c t o r
74 g loba l d ; % Drag f a c t o r
75

76 % Diagonal elements o f the i n e r t i a matrix
77 g loba l Ix ;

108

78 g loba l Iy ;
79 g loba l Iz ;
80

81 g loba l Jr ; % Rotor i n e r t i a
82 g loba l l ; % Center o f mass−motor d i s tance
83

84 m=0.5 ;
85 b=7.2e −5; % 2 .9e −5; ca l cu l a t ed as b=(m*g/4) / (omega hoovering)^2
86 d=1.1e −5;
87 Ix=5e−3;
88 Iy=5e−3;
89 Iz=9e−3;
90 Jr=3.4e −5;
91 l=0.25 ;
92

93 % Graphics i n i z i a l i z a t i o n f o r draw_mod funct ion
94 g loba l index_view ;
95 g loba l o ld_pos it ion ;
96

97 index_view = 0;
98 old_pos it ion = [0 0 0] ;
99

100

101 % −−
102 % KALMAN FILTER PARAMETERS
103 % The fo l l ow ing parameters are used by the blocks
104 % re l a t ed to the Kalman f i l t e r . Many of them reproduce
105 % the parameters used in the system simulat ion , but
106 % are d i s t ingu i shed by the s u f f i x _e.
107 % −−
108 % Physica l and environmental parameters
109 g_e = g ;
110 m_e = m;
111 mf_e = mag_field ;
112 P0_e = P0 ;
113 T0_e = T0 ;
114 Ra_e = Ra;
115 Ix_e = Ix ;
116 Iy_e = Iy ;
117 Iz_e = Iz ;
118

119 % Sensor parameters
120 Ma_e = eye (3) ;
121 ba_e = zeros (3 ,1) ;
122 Mg_e = eye (3) ;
123 bg_e = zeros (3 ,1) ;
124 G_e = eye (3) ;
125 bm_e = zeros (3 ,1) ;
126 kb_e = 1 ;
127 bb_e = 0 ;
128

129 % Plant and measurement no i se covar iances
130 R_e = 0 .01 *eye (10) ; % Measurement no i se

109

131 R_e(10 ,10) = 1 ;
132 Q_e = 0 .005 *eye (10) ; % Process no i se
133

134 % I n i t i a l expected value and var iance o f the s ta t e ve c to r .
135 Ex = zeros (10 ,1) ;
136 Varx = 0 .05 *eye (10) ;
137

138 % Lowpass f i l t e r parameters
139 [b_f i l t , a_ f i l t] = butter (4 , 50 , ’ s ’) ;
140

141 % −−
142 % Parameters f o r the d i s c r e t e time EKF
143 % −−
144 % Samplig t ime.
145 Ts = 0 .05 ;
146

147 % Sensor anti−a l i a s i n g f i l t e r parameters
148 [zeros_aa , poles_aa , gain_aa] = butter (1 , 0 . 8 /Ts , ’ s ’) ;
149

150

151 disp (’ i n i t i a l i z a t i o n done ’)

Control subsystem
The code of the control algorithm has not been changed from the model by Tommaso
Bresciani [6]:

Listing B.2: Control algorithm.
1 funct ion out=cont ro l (x , task , m, g , Ix , Iy , Iz)
2 % −−
3 % This s c r i p t app l i e s the cont ro l laws to the input
4 % data i n f e r r ed from the sensor s to obtain the values
5 % of the four cont ro l va r i ab l e s Ui .
6 % −−
7 %#codegen
8

9 % State i n f e r r ed from the sensor s
10 phi = x (1) ; % angular po s i t i on s
11 theta = x (2) ;
12 ps i = x (3) ;
13 dphi = x (4) ; % angular v e l o c i t i e s
14 dtheta = x (5) ;
15 dpsi = x (6) ;
16 z = x (7) ;
17 dz = x (8) ;
18

19 % Task data
20 heightd = task (1) ;
21 r o l l d = task (2) ;
22 pitchd = task (3) ;
23 yawd = task (4) ;

110

24

25 % Control parameters
26 k1 = 4 ;
27 k2 = 2 ;
28 k3 = 4 ;
29 k4 = 2 ;
30 k5 = 4 ;
31 k6 = 2 ;
32 k7 = 2 ;
33 k8 = 2 ;
34

35 % Control laws
36 control_1 = −k1*(z − heightd) − k2*dz ;
37 U1 = (m*g+control_1) /(cos (phi) * cos (theta)) ;
38 U2 = Ix*(−k3*(phi − r o l l d) − k4*dphi) ;
39 U3 = Iy*(−k5*(theta − pitchd) − k6*dtheta) ;
40 U4 = Iz*(−k7*(ps i − yawd) − k8*dpsi) ;
41

42 out = zeros (4 ,1) ;
43 out (1) = U1;
44 out (2) = U2;
45 out (3) = U3;
46 out (4) = U4;

The control subsystem contains also the block force2Vcontrol:

Listing B.3: forces2Vcontrol block.
1 funct ion [out , Omega] = force2Vcontro l (in , b , d , l)
2 % −−
3 % This s c r i p t converts the values o f the cont ro l
4 % var i ab l e s Ui into the corresponding vo l tage values
5 % to power the motor b lock . Note that some values
6 % of the cont ro l value generate a complex output ,
7 % in th i s case the cont ro l act ion i s not f e a s i b l e in
8 % rea l wor ld.
9 % −−

10 %#codegen
11

12 % Control va r i ab l e s
13 U1=in (1) ;
14 U2=in (2) ;
15 U3=in (3) ;
16 U4=in (4) ;
17

18 % The cont ro l va r i ab l e s are converted into the corresponding
19 % angular ra t e s
20 U=[b b b b ;0 − l *b 0 l *b;− l *b 0 l *b 0;−d d −d d] ;
21 Omega=sqrt (complex (U\ [U1 ;U2 ;U3 ;U4])) ; %[rad/ s]
22

23 % The angular ra t e s are converted into the vo l tage values
24 Vcontrol=(Omega−1.4) /26; %[V]
25

111

26 out = complex (zeros (4 ,1)) ;
27 out (1)=Vcontrol (1) ;
28 out (2)=Vcontrol (2) ;
29 out (3)=Vcontrol (3) ;
30 out (4)=Vcontrol (4) ;

Dynamics subsystem
Here is the code of the block that implments the dynamic equations:

Listing B.4: Dynamic system equations.
1 funct ion out=dynamic_system(in , m, b , d , g , Ix , Iy , Iz , Jr , l)
2 % −−
3 % This s c r i p t models the movements o f the quadrotor
4 % as a dynamic system.
5 % −−
6 %#codegen
7

8 % Angular po s i t i on (Euler ang les)
9 phi=in (4) ; % Rol l

10 theta=in (5) ; % Pitch
11 ps i=in (6) ; % Yaw
12

13 % Linear v e l o c i t y components
14 dx=in (7) ;
15 dy=in (8) ;
16 dz=in (9) ;
17

18 % Angular v e l o c i t y components
19 dphi=in (10) ;
20 dtheta=in (11) ;
21 dpsi=in (12) ;
22

23 % Angular ra t e s o f the ro to r s
24 omega=in (13 :16) ;
25

26 % Driving f o r c e s computed from the rotor angular ra t e s
27 U1=b*(omega (1)^2+omega (2)^2+omega (3)^2+omega (4) ^2) ;
28 U2=l *b*(omega (4)^2−omega (2) ^2) ;
29 U3=l *b*(omega (3)^2−omega (1) ^2) ;
30 U4=d*(−omega (1)^2+omega (2)^2−omega (3)^2+omega (4) ^2) ;
31 OMEGA=−omega (1)+omega (2)−omega (3)+omega (4) ;
32

33 % −−
34 % Dynamic system equat ions
35 % −−
36 out = zeros (12 ,1) ;
37 out (1)=dx ;
38 out (2)=dy ;
39 out (3)=dz ;
40 out (4)=dphi ;

112

41 out (5)=dtheta ;
42 out (6)=dpsi ;
43 out (7)=(cos (phi) * s in (theta) * cos (ps i)+s in (phi) * s in (ps i)) *U1/m;
44 out (8)=(cos (phi) * s in (theta) * s in (ps i)−s in (phi) * cos (ps i)) *U1/m;
45 out (9)=−g+(cos (phi) * cos (theta)) *U1/m;
46 out (10)=dtheta*dpsi *(Iy−Iz) /Ix−Jr*dtheta*OMEGA/Ix+U2/Ix ;
47 out (11)=dphi* dpsi *(Iz−Ix) / Iy+Jr*dphi*OMEGA/Iy+U3/Iy ;
48 out (12)=dpsi *dtheta *(Ix−Iy) / Iz+U4/ Iz ;

IMU subsystem and library
The library created to make the useful blocks in the IMU model reusable contains
two blocks implemented with Matlab code: Earth to body frame and Euler to
pqr conversion.

Listing B.5: Earth to body frame conversion.
1 funct ion y = fix2body (u , ang)
2 %#codegen
3 % −−
4 % This funct ion converts the vector u from the earth
5 % frame to the body frame , given the orentat ion of the
6 % body in Euler ang l e s .
7 % −−
8

9 % Euler ang les
10 phi = ang (1) ;
11 theta = ang (2) ;
12 ps i = ang (3) ;
13

14 % Rotation matrix
15 R = [cos (ps i) * cos (theta) , ...

cos (p s i) * s in (theta) * s in (phi)−s in (ps i) * cos (phi) , . . .
16 cos (ps i) * s in (theta) * cos (phi)+s in (ps i) * s in (phi) ;
17 s in (ps i) * cos (theta) , ...

s i n (ps i) * s in (theta) * s in (phi)+cos (ps i) * cos (phi) , . . .
18 s in (ps i) * s in (theta) * cos (phi)−cos (ps i) * s in (phi) ;
19 −s in (theta) cos (theta) * s in (phi) cos (theta) * cos (phi)] ;
20

21 y = R’*u ;

Listing B.6: Euler angles to pqr conversion.
1 funct ion pqr = euler2pqr (ang , dang)
2 %#codegen
3 % −−
4 % This funct ion converts the angular ra t e s expressed
5 % in the earth frame to the body frame angular v e l o c i t y
6 % components p , q and r . The funct ion needs to know
7 % al so the o r i en ta t i on of the body frame in Euler

113

8 % ang l e s .
9 % −−

10

11 % Euler ang les
12 phi = ang (1) ;
13 theta = ang (2) ;
14 % Note : the angle ps i i s not ac tua l l y needed by the func t i on .
15

16 A = [1 0 −s in (theta) ;
17 0 cos (phi) s in (phi) * cos (theta) ;
18 0 −s in (phi) cos (phi) * cos (theta)] ;
19

20 pqr = A*dang ;

The IMU subsystem contains also the code that computes the pressure as a
function of the altitude, inside the Environmental variables block:

Listing B.7: Pressure as a function of the altitude.
1 funct ion P = pressure_al t i tude (pos , P0 , T, Ra, g)
2 %#codegen
3 % −−
4 % This funct ion c a l c u l a t e s the value o f the
5 % atmospheric pres sure given the a l t i t ud e and
6 % the temperature.
7 % The pressure at sea l e v e l P0 i s assumed to be a
8 % constant parameter.
9 % −−

10

11 % Extract the a l t i t ude from the pos i t i on ve c t o r .
12 z = pos (3) ;
13

14 P = P0*exp(−(g*z) /(T*Ra)) ;

Continuous time EKF
The continuous time extended Kalman filter implementation contains many bocks
with Matlab code: the state-transition model, the sensor model, the covariance
update and the Jacobians are all computed in different blocks.

Listing B.8: State-transitiom model.
1 funct ion f = sta t e_trans i t i on (x , U, Ix_e , Iy_e , Iz_e , g_e , m_e)
2 %#codegen
3 %
4 % −−
5 % Nonlinear state−t r an s i t i o n model o f the EKF
6 % −−
7

8 % −−
9 % State va r i ab l e s

114

10 % −−
11 % Linear v e l o c i t y components
12 u = x(1) ;
13 v = x (2) ;
14 w = x(3) ;
15

16 % Angular v e l o c i t y components
17 p = x(4) ;
18 q = x (5) ;
19 r = x (6) ;
20

21 % Angular po s i t i on (Euler ang les)
22 phi = x (7) ;
23 theta = x (8) ;
24

25 f = zeros (10 ,1) ;
26

27 % −−
28 % State−t r an s i t i o n equat ions
29 % −−
30 f (1) = r*v − q*w + g_e* s in (theta) ;
31 f (2) = p*w − r *u − g_e* cos (theta) * s in (phi) ;
32 f (3) = q*u − p*v − g_e* cos (theta) * cos (phi) + U(1) /m_e;
33 f (4) = (Iy_e − Iz_e)*q* r/Ix_e + U(2) /Ix_e ;
34 f (5) = (Iz_e − Ix_e)*p* r/Iy_e + U(3) /Iy_e ;
35 f (6) = (Ix_e − Iy_e)*p*q/Iz_e + U(4) /Iz_e ;
36 f (7) = p + s in (phi) *tan (theta) *q + cos (phi) *tan (theta) * r ;
37 f (8) = cos (phi) *q − s in (phi) * r ;
38 f (9) = (s in (phi) *q)/ cos (theta) + (cos (phi) * r) / cos (theta) ;
39 f (10) = −s in (theta) *u − cos (theta) * s in (phi) *v + cos (theta) * cos (phi) *w;

Listing B.9: Sensor model.
1 funct ion y = sensor_model (x , U, Ma_e, ba_e , Mg_e, bg_e , G_e, mf_e , ...

bm_e, . . .
2 kb_e , P0_e , g_e , Ra_e, T0_e , bb_e , m_e)
3 %#codegen
4 % −−
5 % Sensor model o f the EKF
6 %
7 % These equat ions compute the expected sensor output
8 % for a given value o f x . The equat ions have a l o t o f
9 % parameters , which represent the est imated or measured

10 % values o f the environmental va r i ab l e s and the sensor
11 % ca l i b r a t i on parameters .
12 % −−
13

14 % −−
15 % State va r i ab l e s
16 % −−
17 % Linear v e l o c i t y components
18 u = x(1) ;

115

19 v = x (2) ;
20 w = x(3) ;
21

22 % Angular v e l o c i t y components
23 p = x(4) ;
24 q = x (5) ;
25 r = x (6) ;
26

27 % Angular po s i t i on (Euler ang les)
28 phi = x (7) ;
29 theta = x (8) ;
30 ps i = x (9) ;
31

32 % Alt i tude
33 z = x(10) ;
34

35 % −−
36 % Rotation matrix
37 % −−
38 R = [cos (ps i) * cos (theta) , ...

cos (p s i) * s in (theta) * s in (phi)−s in (ps i) * cos (phi) , . . .
39 cos (ps i) * s in (theta) * cos (phi)+s in (ps i) * s in (phi) ;
40 s in (ps i) * cos (theta) , ...

s i n (ps i) * s in (theta) * s in (phi)+cos (ps i) * cos (phi) , . . .
41 s in (ps i) * s in (theta) * cos (phi)−cos (ps i) * s in (phi) ;
42 −s in (theta) cos (theta) * s in (phi) cos (theta) * cos (phi)] ;
43

44 % −−
45 % Sensor equat ions
46 % −−
47 % Accelerometer
48 ya = Ma_e* [r *v − q*w; p*w − r *u ; q*u − p*v + U(1) /m_e] + ba_e ;
49

50 % Gyroscope
51 yg = Mg_e* [p ; q ; r] + bg_e ;
52

53 % Magnetometer
54 ym = G_e*R’*mf_e + bm_e;
55

56 % Altimeter (barometer)
57 yb = kb_e*P0_e*exp(−(g_e*z) /(Ra_e*T0_e)) + bb_e ;
58

59 % Output
60 y = [ya ; yg ; ym; yb] ;

Listing B.10: Covariance update.
1 funct ion [K, dP] = covar_update (P, H, F, Q_e, R_e)
2 %#codegen
3 % −−
4 % Covariance update and Kalman gain
5 %

116

6 % This d i f f e r e n t i a l equation updates the covar iance
7 % matrix o f the probab i l i t y d i s t r i bu t i on and computes
8 % the Kalman ga in .
9 % −−

10

11 % Kalman gain
12 K = P*H’/R_e;
13

14 % Covariance update
15 dP = F*P + P*F’ − K*R_e*K’ + Q_e;

Listing B.11: Jacobian of the state-transition model.
1 funct ion H = H(x , Ma_e, Mg_e, G_e, kb_e , g_e , P0_e , Ra_e, T0_e , mf_e)
2 %#codegen
3 % −−
4 % Jacobian matrix that l i n e a r i z e s the sensor model
5 % equat ions .
6 % −−
7

8 % −−
9 % State va r i ab l e s

10 % −−
11 % Linear v e l o c i t y components
12 u = x(1) ;
13 v = x (2) ;
14 w = x(3) ;
15

16 % Angular v e l o c i t y components
17 p = x(4) ;
18 q = x (5) ;
19 r = x (6) ;
20

21 % Angular po s i t i on (Euler ang les)
22 phi = x (7) ;
23 theta = x (8) ;
24 ps i = x (9) ;
25

26 % Alt itude
27 z = x(10) ;
28

29 % −−
30 % Part i a l d e r i va t i v e s o f the ro ta t i on matrix with
31 % respect to phi , theta and p s i .
32 % −−
33 Rdphi = [
34 0 , 0 , 0 ;
35

36 cos (ps i) * s in (theta) * cos (phi) + s in (ps i) * s in (phi) , . . .
37 s in (ps i) * s in (theta) * cos (phi) − cos (ps i) * s in (phi) , . . .
38 cos (theta) * cos (ps i) ;
39

117

40 −cos (ps i) * s in (theta) * s in (phi) + s in (ps i) * cos (phi) , . . .
41 −s in (ps i) * s in (theta) * s in (phi) − cos (ps i) * cos (phi) , . . .
42 −cos (theta) * s in (phi)
43] ;
44

45 Rdtheta = [
46 −cos (ps i) * s in (theta) , . . .
47 −s in (ps i) * s in (theta) , . . .
48 −cos (theta) ;
49

50 cos (ps i) * cos (theta) * s in (phi) , . . .
51 s in (ps i) * cos (theta) * s in (phi) , . . .
52 −s in (theta) * s in (phi) ;
53

54 cos (ps i) * cos (theta) * cos (phi) , . . .
55 s in (ps i) * cos (theta) * cos (phi) , . . .
56 −s in (theta) * cos (phi)
57] ;
58

59 Rdpsi = [
60 −s in (ps i) * cos (theta) , cos (ps i) * cos (theta) , 0 ;
61

62 −s in (ps i) * s in (theta) * s in (phi) − cos (ps i) * cos (phi) , . . .
63 cos (ps i) * s in (theta) * s in (phi) − s in (ps i) * cos (phi) , . . .
64 0 ;
65

66 −s in (ps i) * s in (theta) * cos (phi) + cos (ps i) * s in (phi) , . . .
67 cos (ps i) * s in (theta) * cos (phi) + s in (ps i) * s in (phi) , . . .
68 0
69] ;
70

71

72 % −−
73 % Linea r i z a t i on s o f the sensor model equat ions
74 % −−
75 % Accelerometer
76 J1 = Ma_e*[0 r −q ; −r 0 p ; q −p 0] ;
77 J2 = Ma_e*[0 −w v ; w 0 −u ; −v u 0] ;
78

79 % Magnetometer
80 J3 = [G_e*Rdphi*mf_e G_e*Rdtheta*mf_e G_e*Rdpsi*mf_e] ;
81

82 % Altimeter
83 Ja = −(kb_e*P0_e*g_e) /(Ra_e*T0_e)*exp(−(g_e*z) /(Ra_e*T0_e)) ;
84

85 % Final matrix
86 H = eye (10) ;
87 H(1 : 3 , 1 : 3) = J1 ;
88 H(1 : 3 , 4 : 6) = J2 ;
89 H(4 : 6 , 4 : 6) = Mg_e;
90 H(7 : 9 , 7 : 9) = J3 ;
91 H(10 ,10) = Ja ;

118

Listing B.12: Jacobian of the sensor model.

1 funct ion F = F(x , g_e , Ix_e , Iy_e , Iz_e)
2 %#codegen
3

4 % −−
5 % Jacobian matrix that l i n e a r i z e s the state−t r an s i t i o n
6 % model equat ions .
7 % −−
8

9 % −−−
10 % State va r i ab l e s
11 % −−−
12 % Linear v e l o c i t y components
13 u = x(1) ;
14 v = x (2) ;
15 w = x(3) ;
16

17 % Angular v e l o c i t y components
18 p = x(4) ;
19 q = x (5) ;
20 r = x (6) ;
21

22 % Angular po s i t i on (Euler ang les)
23 phi = x (7) ;
24 theta = x (8) ;
25

26 % Note : the va r i ab l e s ps i and z are not requ i red f o r the Jacobian of
27 % the state−t r an s i t i o n model
28

29 % I n i t i a l i z e the matrix
30 F = zeros (10) ;
31

32 % −−−
33 % Nonzero en t r i e s o f the Jacobian matr ix .
34 % −−−
35 F(1 ,2) = r ;
36 F(1 ,3) = −q ;
37 F(1 ,5) = −w;
38 F(1 ,6) = v ;
39 F(1 ,8) = g_e*cos (theta) ;
40 F(2 ,1) = −r ;
41 F(2 ,3) = p ;
42 F(2 ,4) = w;
43 F(2 ,6) = −u ;
44 F(2 ,7) = −g_e* cos (theta) * cos (phi) ;
45 F(2 ,8) = g_e* s in (theta) * s in (phi) ;
46 F(3 ,1) = q ;
47 F(3 ,2) = −p ;
48 F(3 ,4) = −v ;
49 F(3 ,5) = u ;
50 F(3 ,7) = g_e*cos (theta) * s in (phi) ;
51 F(3 ,8) = g_e* s in (theta) * cos (phi) ;
52 F(4 ,5) = (Iy_e − Iz_e)* r/Ix_e ;

119

53 F(4 ,6) = (Iy_e − Iz_e)*q/Ix_e ;
54 F(5 ,4) = (Iz_e − Ix_e)* r/Iy_e ;
55 F(5 ,6) = (Iz_e − Ix_e)*p/Iy_e ;
56 F(6 ,4) = (Ix_e − Iy_e)*q/Iz_e ;
57 F(6 ,5) = (Ix_e − Iy_e)*p/Iz_e ;
58 F(7 ,4) = 1 ;
59 F(7 ,5) = s in (phi) *tan (theta) ;
60 F(7 ,6) = cos (phi) *tan (theta) ;
61 F(7 ,7) = cos (phi) *tan (theta) *q − s in (phi) * cos (theta) *q ;
62 F(7 ,8) = (s in (phi) *q + cos (phi) * r) / cos (theta) ^2;
63 F(8 ,5) = cos (phi) ;
64 F(8 ,6) = −s in (phi) ;
65 F(8 ,7) = −cos (phi) * r − s in (phi) *q ;
66 F(9 ,5) = s in (phi) / cos (theta) ;
67 F(9 ,6) = cos (phi) / cos (theta) ;
68 F(9 ,7) = (cos (phi) *q − s in (phi) * r) / cos (theta) ;
69 F(9 ,8) = s in (theta) *(s in (phi) * r + cos (phi) *q)/ cos (theta) ^2;
70 F(10 ,1) = −s in (theta) ;
71 F(10 ,2) = cos (theta) * s in (phi) ;
72 F(10 ,3) = cos (theta) * cos (phi) ;
73 F(10 ,7) = cos (theta) * cos (phi) *v − cos (theta) * s in (phi) *w;
74 F(10 ,8) = −cos (theta) *u − s in (theta) * s in (phi) *v − ...

cos (theta) * s in (theta) *w;

Discrete time EKF

The discrete time version of the extended Kalman filter contains only two blocks
with Matlab code: one perform the prediction step and the other one performs the
update step.

Listing B.13: Prediction step of the discrete time EKF.
1 funct ion [x_p, P_p] = EKF_predict (x_old , U_old , P_old , Ix_e , Iy_e , ...

Iz_e , . . .
2 g_e , m_e, Ts , Q_e)
3 %#codegen
4 % −−
5 % PREDICTION STEP of the d i s c r e t e time EKF
6 % −−
7

8 % −−
9 % State va r i ab l e s

10 % −−
11 % Linear v e l o c i t y components
12 u_old = x_old (1) ;
13 v_old = x_old (2) ;
14 w_old = x_old (3) ;
15

16 % Angular v e l o c i t y components
17 p_old = x_old (4) ;
18 q_old = x_old (5) ;

120

19 r_old = x_old (6) ;
20

21 % Angular po s i t i on (Euler ang les)
22 phi_old = x_old (7) ;
23 theta_old = x_old (8) ;
24

25 % Note : the s ta t e va r i ab l e s psi_old and z_old are not requ i red
26 % in th i s s t ep .
27

28 % −−
29 % State pred i c t i on
30 % −−
31 ∆_x = zeros (10 ,1) ;
32

33 % State equat ions d i s c r e t i z e d using the forward Euler method.
34 ∆_x(1) = r_old*v_old − q_old*w_old + g_e* s in (theta_old) ;
35 ∆_x(2) = p_old*w_old − r_old*u_old − g_e* cos (theta_old)* s in (phi_old) ;
36 ∆_x(3) = q_old*u_old − p_old*v_old − g_e* cos (theta_old)* cos (phi_old) + . . .
37 U_old(1) /m_e;
38 ∆_x(4) = (Iy_e − Iz_e)*q_old*r_old/Ix_e + U_old(2) /Ix_e ;
39 ∆_x(5) = (Iz_e − Ix_e)*p_old*r_old/Iy_e + U_old(3) /Iy_e ;
40 ∆_x(6) = (Ix_e − Iy_e)*p_old*q_old/Iz_e + U_old(4) /Iz_e ;
41 ∆_x(7) = p_old + s in (phi_old)*tan (theta_old)*q_old +. . .
42 cos (phi_old)*tan (theta_old)*r_old ;
43 ∆_x(8) = cos (phi_old)*q_old − s in (phi_old)*r_old ;
44 ∆_x(9) = (s in (phi_old)*q_old)/ cos (theta_old) + . . .
45 (cos (phi_old)*r_old)/ cos (theta_old) ;
46 ∆_x(10) = −s in (theta_old)*u_old − cos (theta_old)* s in (phi_old)*v_old +. . .
47 cos (theta_old)* cos (phi_old)*w_old ;
48

49 x_p = x_old + Ts*∆_x;
50

51 % −−−
52 % Covariance pred i c t i on
53 % −−−
54 % Part i a l d e r i va t i v e s o f the s ta t e equat ions .
55 F_old = eye (10) ;
56 F_old (1 ,2) = r_old ;
57 F_old (1 ,3) = −q_old ;
58 F_old (1 ,5) = −w_old ;
59 F_old (1 ,6) = v_old ;
60 F_old (1 ,8) = g_e*cos (theta_old) ;
61 F_old (2 ,1) = −r_old ;
62 F_old (2 ,3) = p_old ;
63 F_old (2 ,4) = w_old ;
64 F_old (2 ,6) = −u_old ;
65 F_old (2 ,7) = −g_e* cos (theta_old)* cos (phi_old) ;
66 F_old (2 ,8) = g_e* s in (theta_old)* s in (phi_old) ;
67 F_old (3 ,1) = q_old ;
68 F_old (3 ,2) = −p_old ;
69 F_old (3 ,4) = −v_old ;
70 F_old (3 ,5) = u_old ;
71 F_old (3 ,7) = g_e*cos (theta_old)* s in (phi_old) ;

121

72 F_old (3 ,8) = g_e* s in (theta_old)* cos (phi_old) ;
73 F_old (4 ,5) = (Iy_e − Iz_e)*r_old/Ix_e ;
74 F_old (4 ,6) = (Iy_e − Iz_e)*q_old/Ix_e ;
75 F_old (5 ,4) = (Iz_e − Ix_e)*r_old/Iy_e ;
76 F_old (5 ,6) = (Iz_e − Ix_e)*p_old/Iy_e ;
77 F_old (6 ,4) = (Ix_e − Iy_e)*q_old/Iz_e ;
78 F_old (6 ,5) = (Ix_e − Iy_e)*p_old/Iz_e ;
79 F_old (7 ,4) = 1 ;
80 F_old (7 ,5) = s in (phi_old)*tan (theta_old) ;
81 F_old (7 ,6) = cos (phi_old)*tan (theta_old) ;
82 F_old (7 ,7) = 1 + cos (phi_old)*tan (theta_old)*q_old − ...

s i n (phi_old)* cos (theta_old)*q_old ;
83 F_old (7 ,8) = (s in (phi_old)*q_old + cos (phi_old)*r_old)/ cos (theta_old) ^2;
84 F_old (8 ,5) = cos (phi_old) ;
85 F_old (8 ,6) = −s in (phi_old) ;
86 F_old (8 ,7) = −cos (phi_old)*r_old − s in (phi_old)*q_old ;
87 F_old (9 ,5) = s in (phi_old)/ cos (theta_old) ;
88 F_old (9 ,6) = cos (phi_old)/ cos (theta_old) ;
89 F_old (9 ,7) = (cos (phi_old)*q_old − s in (phi_old)*r_old)/ cos (theta_old) ;
90 F_old (9 ,8) = s in (theta_old) *(s in (phi_old)*r_old + ...

cos (phi_old)*q_old)/ cos (theta_old) ^2;
91 F_old (10 ,1) = −s in (theta_old) ;
92 F_old (10 ,2) = cos (theta_old)* s in (phi_old) ;
93 F_old (10 ,3) = cos (theta_old)* cos (phi_old) ;
94 F_old (10 ,7) = cos (theta_old)* cos (phi_old)*v_old − ...

cos (theta_old)* s in (phi_old)*w_old ;
95 F_old (10 ,8) = −cos (theta_old)*u_old − s in (theta_old)* s in (phi_old)*v_old ...

− . . .
96 cos (theta_old)* s in (theta_old)*w_old ;
97

98 F_old = Ts*F_old ;
99

100 % Covariance matrix update
101 P_p = F_old*P_old*F_old ’ + Q_e;

Listing B.14: Update step of the discrete time EKF.
1 funct ion [x , P, K] = EKF_update(x_p, P_p, sensors , U, Ma_e, ba_e , Mg_e, ...

bg_e , . . .
2 G_e, mf_e , bm_e, kb_e , P0_e , g_e , Ra_e, T0_e , bb_e , m_e, R_e)
3 %#codegen
4 % −−
5 % UPDATE STEP of the EKF
6 % −−
7

8 % −−
9 % State va r i ab l e s

10 % −−
11 % Linear v e l o c i t y components
12 u = x_p(1) ;
13 v = x_p(2) ;
14 w = x_p(3) ;

122

15

16 % Angular v e l o c i t y components
17 p = x_p(4) ;
18 q = x_p(5) ;
19 r = x_p(6) ;
20

21 % Angular po s i t i on (Euler ang les)
22 phi = x_p(7) ;
23 theta = x_p(8) ;
24 ps i = x_p(9) ;
25

26 % Alt itude
27 z = x_p(10) ;
28

29 % −−
30 % Rotation matrix
31 % −−
32 R = [cos (ps i) * cos (theta) , ...

cos (p s i) * s in (theta) * s in (phi)−s in (ps i) * cos (phi) , . . .
33 cos (ps i) * s in (theta) * cos (phi)+s in (ps i) * s in (phi) ;
34 s in (ps i) * cos (theta) , ...

s i n (ps i) * s in (theta) * s in (phi)+cos (ps i) * cos (phi) , . . .
35 s in (ps i) * s in (theta) * cos (phi)−cos (ps i) * s in (phi) ;
36 −s in (theta) cos (theta) * s in (phi) cos (theta) * cos (phi)] ;
37

38 % −−
39 % Sensor equat ions
40 % −−
41 % Accelerometer
42 ya = Ma_e* [r *v − q*w; p*w − r *u ; q*u − p*v + U(1) /m_e] + ba_e ;
43

44 % Gyroscope
45 yg = Mg_e* [p ; q ; r] + bg_e ;
46

47 % Magnetometer
48 ym = G_e*R’*mf_e + bm_e;
49

50 % Altimeter (barometer)
51 yb = kb_e*P0_e*exp(−(g_e*z) /(Ra_e*T0_e)) + bb_e ;
52

53

54 % −−
55 % Part i a l d e r i va t i v e s o f the ro ta t i on matrix
56 % with re spec t to phi , theta and p s i .
57 % −−
58 Rdphi = [
59 0 , 0 , 0 ;
60

61 cos (ps i) * s in (theta) * cos (phi) + s in (ps i) * s in (phi) , . . .
62 s in (ps i) * s in (theta) * cos (phi) − cos (ps i) * s in (phi) , . . .
63 cos (theta) * cos (ps i) ;
64

65 −cos (ps i) * s in (theta) * s in (phi) + s in (ps i) * cos (phi) , . . .

123

66 −s in (ps i) * s in (theta) * s in (phi) − cos (ps i) * cos (phi) , . . .
67 −cos (theta) * s in (phi)
68] ;
69

70 Rdtheta = [
71 −cos (ps i) * s in (theta) , . . .
72 −s in (ps i) * s in (theta) , . . .
73 −cos (theta) ;
74

75 cos (ps i) * cos (theta) * s in (phi) , . . .
76 s in (ps i) * cos (theta) * s in (phi) , . . .
77 −s in (theta) * s in (phi) ;
78

79 cos (ps i) * cos (theta) * cos (phi) , . . .
80 s in (ps i) * cos (theta) * cos (phi) , . . .
81 −s in (theta) * cos (phi)
82] ;
83

84 Rdpsi = [
85 −s in (ps i) * cos (theta) , cos (ps i) * cos (theta) , 0 ;
86

87 −s in (ps i) * s in (theta) * s in (phi) − cos (ps i) * cos (phi) , . . .
88 cos (ps i) * s in (theta) * s in (phi) − s in (ps i) * cos (phi) , . . .
89 0 ;
90

91 −s in (ps i) * s in (theta) * cos (phi) + cos (ps i) * s in (phi) , . . .
92 cos (ps i) * s in (theta) * cos (phi) + s in (ps i) * s in (phi) , . . .
93 0
94] ;
95

96 % −−
97 % Jacobian of the sensor equat ions .
98 % −−
99 % Accelerometer

100 J1 = Ma_e*[0 r −q ; −r 0 p ; q −p 0] ;
101 J2 = Ma_e*[0 −w v ; w 0 −u ; −v u 0] ;
102

103 % Magnetometer
104 J3 = [G_e*Rdphi*mf_e G_e*Rdtheta*mf_e G_e*Rdpsi*mf_e] ;
105

106 % Altimeter
107 Ja = −(kb_e*P0_e*g_e) /(Ra_e*T0_e)*exp(−(g_e*z) /(Ra_e*T0_e)) ;
108

109 % Final matrix
110 H = zeros (10) ;
111 H(1 : 3 , 1 : 3) = J1 ;
112 H(1 : 3 , 4 : 6) = J2 ;
113 H(4 : 6 , 4 : 6) = Mg_e;
114 H(7 : 9 , 7 : 9) = J3 ;
115 H(10 ,10) = Ja ;
116

117 % −−
118 % State update

124

119 % −−
120 % Measurement r e s i dua l
121 y_res = sensor s − [ya ; yg ; ym; yb] ;
122

123 % Innovation covar iance
124 S = H*P_p*H’ + R_e;
125

126 % Kalman gain
127 K = P_p*H’/S ;
128

129 % Updated s ta t e est imate
130 x = x_p + K*y_res ;
131

132 % Updated estimated covar iance
133 P = (eye (10) − H*K)*P_p;

3D animation
The code of the block 3D scope draws the quadrotor in a tridimensional environment
at different time frames, producing an animation.

Listing B.15: Code of the block 3D scope.
1 funct ion draw_mod(po s i t i on)
2 % −−
3 % Draws the quadrotor in 3d during the s imu la t i on .
4 % This s c r i p t i s invoked once f o r each animation frame.
5 % −−
6 %#codegen
7

8 g loba l o ld_pos it ion ;
9 g loba l index_view ;

10 g loba l quad ;
11

12 x=pos i t i on (1) ;
13 y=pos i t i on (2) ;
14 z=pos i t i on (3) ;
15 phi=pos i t i on (4) ;
16 theta=pos i t i on (5) ;
17 ps i=pos i t i on (6) ;
18

19 % Code executed only the f i r s t time that the s c r i p t i s
20 % ca l l e d .
21 i f index_view == 0
22

23 % I n i t i a l i z e the f i g u r e
24 screen = get (0 , ’ s c r e en s i z e ’) ;
25 v i sua l = f i gu r e (1) ;
26 s e t (v i sua l , ’ po s i t i on ’ , [2 65 screen (3)−4 screen (4) −170]) ;
27 c l f (v i sua l) ;
28 hold on ;
29 cameratoolbar (’ show ’) ;

125

30 ax i s vis3d ;
31 view (3) ;
32 zoom(0 .6) ;
33

34 % The fo l l ow ing two l i n e s can be de le ted f o r bet te r per formances .
35 s e t (gcf , ’menubar ’ , ’ f i g u r e ’ , ’ renderer ’ , ’ opengl ’) ;
36 s e t (gca , ’ V i s i b l e ’ , ’On ’ , ’Box ’ , ’On ’ , ’XGrid ’ , ’ on ’ , ’YGrid ’ , ...

’ on ’ , ’ ZGrid ’ , . . .
37 ’ on ’ , ’ p ro j e c t i on ’ , ’ pe r spec t ive ’) ;
38

39 % Draw f i xed frame r e f e r enc e
40 l i n e ([0 , 0 . 5] , [0 , 0] , [0 , 0] , ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ red ’) ;
41 l i n e ([0 , 0] , [0 , 0 . 5] , [0 , 0] , ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ black ’) ;
42 l i n e ([0 , 0] , [0 , 0] , [0 , 0 . 5] , ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ green ’) ;
43 l i n e ([−1 , 1] , [1 , 1] , [0 , 0] , ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ black ’) ;
44 l i n e ([−1 ,1] , [−1 , −1] , [0 ,0] , ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ black ’) ;
45 l i n e ([1 , 1] , [−1 , 1] , [0 , 0] , ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ black ’) ;
46 l i n e ([−1 , −1] , [−1 ,1] , [0 ,0] , ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ black ’) ;
47

48 text (0 .6 , 0 , 0 , ’X’ , ’ f o n t s i z e ’ ,13) ;
49 text (0 ,0 .6 , 0 , ’Y’ , ’ f o n t s i z e ’ ,13) ;
50 text (0 ,0 ,0 .6 , ’Z ’ , ’ f o n t s i z e ’ ,13) ;
51

52 % This part i s not executed the f i r s t time the s c r i p t
53 % i s c a l l e d .
54 e l s e
55

56 % Delete the quadrotor drawing in the old po s i t i on
57 drawnow ;
58 de l e t e (quad.a) ;
59 de l e t e (quad.b) ;
60 de l e t e (quad.c) ;
61 de l e t e (quad.d) ;
62 de l e t e (quad.e) ;
63 de l e t e (quad. f) ;
64 l i n e ([o ld_pos it ion (1) ,x] , [o ld_pos it ion (2) ,y] , [o ld_pos it ion (3) , z] , . . .
65 ’ l inewidth ’ ,1 , ’ c o l o r ’ , ’ ye l low ’) ;
66 end
67

68 % Rotation matrix
69 rot=[cos (ps i) * cos (theta) , ...

−s in (ps i) * cos (phi)+cos (ps i) * s in (theta) * s in (phi) , . . .
70 s in (ps i) * s in (phi)+cos (ps i) * s in (theta) * cos (phi) ; . . .
71 s in (ps i) * cos (theta) , ...

cos (p s i) * cos (phi)+s in (ps i) * s in (theta) * s in (phi) , . . .
72 −cos (ps i) * s in (phi)+s in (ps i) * s in (theta) * cos (phi) ; . . .
73 −s in (theta) , cos (theta) * s in (phi) , cos (theta) * cos (phi)] ;
74

75 % Quadrotor sketch
76 circ_x=[0 .15 0 .1 0 −0.1 −0.15 −0.1 0 0 .1 0 .15] ;
77 circ_y=[0 0 .1 0 .15 0 .1 0 −0.1 −0.15 −0.1 0] ;
78 circ_z=[0 0 0 0 0 0 0 0 0] ;
79

126

80 % Draw the quadrotor
81 points=[−0 .25 0 .25 ;0 0 ;0 0] ;
82 quad.a=l i n e (x+rot (1 , :) *points , y+rot (2 , :) *points , z+rot (3 , :) *points , . . .
83 ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ black ’) ;
84 points=[0 0;−0 .25 0 .25 ;0 0] ;
85 quad.b=l i n e (x+rot (1 , :) *points , y+rot (2 , :) *points , z+rot (3 , :) *points , . . .
86 ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ black ’) ;
87 points=[circ_x+0.25 ; circ_y ; c irc_z] ;
88 quad.c=l i n e (x+rot (1 , :) *points , y+rot (2 , :) *points , z+rot (3 , :) *points , . . .
89 ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ red ’) ;
90 points=[circ_x ; circ_y+0.25 ; c irc_z] ;
91 quad.d=l i n e (x+rot (1 , :) *points , y+rot (2 , :) *points , z+rot (3 , :) *points , . . .
92 ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ blue ’) ;
93 points=[circ_x−0.25 ; circ_y ; c irc_z] ;
94 quad.e=l i n e (x+rot (1 , :) *points , y+rot (2 , :) *points , z+rot (3 , :) *points , . . .
95 ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ blue ’) ;
96 points=[circ_x ; circ_y−0.25 ; c irc_z] ;
97 quad. f=l i n e (x+rot (1 , :) *points , y+rot (2 , :) *points , z+rot (3 , :) *points , . . .
98 ’ l inewidth ’ ,2 , ’ c o l o r ’ , ’ blue ’) ;
99

100 % Save the current po s i t i on f o r the path p lot
101 old_pos it ion=[x , y , z] ;
102

103 % Set the camera pos i t i on and target
104 camtarget_x=pos i t i on (1) /2 ;
105 camtarget_y=pos i t i on (2) /2 ;
106 camtarget_z=pos i t i on (3) /2 ;
107 campos_x=(camtarget_x/2+camtarget_y) *6−2;
108 campos_y=(camtarget_y/2−camtarget_x) *6−1;
109 campos_z=camtarget_z+sqr t (campos_x^2+campos_y^2)/6+3;
110

111 camtarget ([camtarget_x , camtarget_y , camtarget_z]) ;
112 campos ([campos_x , campos_y , campos_z]) ;
113

114 % Count the i t e r a t i o n s
115 index_view = index_view + 1;

127

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Estratto in lingua italiana
	Introduction
	Attitude estimate with the extended Kalman filter
	Introduction to Kalman filtering
	Kalman filter for continuous time systems
	The extended Kalman filter

	Quadrotor dynamics
	Earth frame and body frames
	Euler angles
	Angular velocities

	Rigid body dynamics
	Linear motion
	Angular motion
	Altitude

	Forces and controls
	On board sensors
	Gyroscope
	Accelerometer
	Magnetometer
	Barometer

	State space representation for the EKF
	State-transition model
	Measurement model
	Linearizations

	Simulation model
	Pre-existing model
	Dynamics block
	Control block
	DC motors block

	IMU model
	IMU blocks library
	Structure of the IMU subsystem

	Kalman filter model
	Continuous time model
	Discrete time model

	Testing and performance analysis
	Open loop performance analysis with simulated data
	Hovering
	Altitude variation
	Linear movement
	Rotation around the Z axis
	Complex trajectory

	Influence of the magnetic field direction on the estimation accuracy
	Closed loop simulations
	Stability problems
	Hovering
	Complex trajectories

	Simulations with errors in the estimates of the parameters
	Errors in physical parameters
	Errors in sensor calibration

	Conclusion
	Further developments

	Bibliography
	Mathematical derivation of the Kalman filter
	Probability and Bayes filters
	Introduction to the probability theory in robotics
	The concept of belief
	Bayes filter
	Mathematical derivation of the Bayes filter

	Derivation of the Kalman Filter
	Derivation of the discrete time Kalman filter
	Derivation of the Kalman-Bucy filter

	Matlab code

