

POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Master of Science in
Computer Engineering

STATISTICAL ANALYSIS OF
DACAPO BENCHMARK ON AMAZON

EC2

Supervisor: Prof.Marco Gribaudo

Master Graduation Thesis by: Seren Kuru

 Student Id. number 759894

 Academic Year 2012/2013

POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Corso di Laurea Specialistica in
Ingegneria Informatica

L'ANALISI STATISTICA DEI DACAPO
BENCHMARK SU AMAZON EC2

Relatore: Prof. Marco Gribaudo

Tesi di laurea di: Seren Kuru
 matr.759894

Anno Academico 2012/2013

Table of Contents

ABSTRACT ... 7

SOMMARIO .. 8

Chapter 1 Introduction... 9

1.1 Thesis Organization .. 10

Chapter 2 Background .. 11

2.1 Definition of Cloud Computing .. 11

2.2 Architecture of Cloud Computing ... 13

2.2.1 Distributed Computing.. 14

a) Cluster Computing ... 14

b) Grid Computing .. 14

c) Clouds .. 14

2.2.2 Cloud Service Models .. 16

2.2.3 Cloud Deployment Models ... 18

2.3 Amazon Elastic Compute Cloud (Amazon EC2) ... 18

2.3.1 Service Highlights .. 20

2.3.2 Selecting Instance Types ... 22

2.3.3 I/O Performance ... 22

2.4 Virtual Machines.. 23

2.5 Dacapo Benchmark... 25

Chapter 3 Envrionmental Setup .. 30

Page | 3

3.1 Preparing System.. 30

3.2 Bash Scripts .. 31

Chapter 4 Environmental Results ... 33

4.1 3-D Surface Charts .. 33

4.2 N-Workload Difference ... 37

4.3 CPU Allocation ... 39

4.4 Box Plot with Mean .. 41

Chapter 5 Conclusions and Future work ..45

REFERENCES...46

Page | 4

List of Figures

Figure 1 -Grids and Cloud Overview[6] ... 13

Figure 2 - Visual model of NIST Working Definition of Cloud Computing 15

Figure 3 - Avrora Box Plot ... 41

Figure 4 - Eclipse Box Plot .. 42

Figure 5 - Fop Box Plot ... 43

Figure 6 - H2 Box Plot ... 43

Figure 7 - Jython Box Plot ... 44

Figure 8 - Pmd Box Plot .. 45

Page | 5

List of Tables
Table 1 - DaCapo Benchmarks [16] .. 29

Page | 6

ABSTRACT

Currently, the usage of cloud computing is increasing exponentially.
Accessing data and various types of applications through cloud services
on internet provides flexibility. With multi-core systems becoming
widespread, virtual machines now can run also in multi core systems on
cloud servers. A range of core selection for different types of applications
exist in order to boost performance. Interaction between some applications
and multi-core processors, on the contrary, may present unpredictable
performances.

My final thesis work displays experimental results of flexible eight core
CPU provided by Amazon EC2, which is an IaaS provider. The objective is
to describe the relation between multi-core virtual machine and
applications. For that purpose, I ran some DaCapo Benchmark tests with
different workloads and numbers of threads. Graphs are sketched with
data collected from test results in order to interpret the relationship more
accurate.

Page | 7

SOMMARIO

Attualmente l’uso del cloud computing sta crescendo esponenzialmente.
Accedere a dati e vari tipi di applicazioni attraverso servizi cloud su
internet fornisce molta flessibilità. Con la vasta diffusione dei sistemi multi-
core, le virtual machine sono eseguite su questi sistemi su cloud server.
Esiste una gamma di selezione dei core per diversi tipi di applicazioni per
aumentare le prestazioni. L’interazione tra alcune applicazioni e
processori multi-core, al contrario, può presentare prestazioni
imprevedibili.

Il mio lavoro finale di tesi espone risultati sperimentali di un processore
flessibile 8-core fornito da Amazon EC2, che è un provider IaaS.
L’obiettivo è di descrivere la relazione tra la virtual machine multi-core e le
applicazioni. Per raggiungere questo scopo, ho eseguito alcuni test
DaCapo Benchmark con diversi carichi di lavoro e numero di thread. I
grafici sono disegnati con i dati raccolti da i risultati dei test, per
interpretare la relazione in modo più accurato.

Page | 8

Chapter 1

Introduction

In the beginning, when computing systems were very big computers which
were able to process a small amount of data by executing a single
application, that was written specifically for that hardware. In this condition
there was no need to share resources among multiple applications. As the
computational power of computers and the amount of applications started
to increase, it was necessary to develop systems capable of sharing the
available resources. Moreover, the applications have become more
complex and the opportunity to parallelize some portion of them has led to
the creation of multi-task applications. In this way the number of processes
running in a single computer has been increased.

To face the increasing request of computational power, the major
processor vendors, until recently, have tried to find a solution by
increasing the frequency and the circuit complexity. This choice has given
rise to problems relative to excessive heating and power consumption.
Therefore, the vendors have remedied by starting developing architectures
composed of multiple cores. Nowadays, a commercial personal computer
is capable of handling hundreds of processes that share up to eight cores.

Page | 9

On the other hand, it soon became obvious that computational power of a
personal computer can not be used effectively. This is because of the
complex interaction between several factors that affect the performance
including: application characteristics, operating system policies, and
architectural characteristics. These factors had been discussed in multiple
papers and theses.

In the modern world, the core of the computing infrastructure is made up
of vast server farms which are called clouds, with an abundance of
storage and processing cycles. Centralization of computation in these
clouds, allows for pervasive access to a highly-available virtual machines
with range of cores selection.

In this thesis, I focus on virtualized multi-core systems through a cloud
platform. The problem approach is, performance evaluation in virtualized
environment with types of applications. I executed different DaCapo
Benchmarks to find relation between application characteristics on
performance and impact on eight cores system.

1.1 Thesis Organization

The thesis is organized as follows.

Chapter 2 presents the key concepts that are considered necessary as a
background for the comprehension of all the aspects of the thesis. It is
described cloud computing, Amazon EC2, virtual machines used in clouds
and DaCapo Benchmark.

Chapter 3 defines and describes experimental setup, focuses on how
system prepared before starting, what were the priorities and how system
automated for tests.

Chapter 4 shows experimental results of analysis conducted over the
Dacapo Benchmark tests. It can be seen cumulative distribution charts, 3D
graphs and box plot.

Page | 10

Chapter 2

Background

Having given a short overview in the introduction, this chapter revisits the
key technologies and services related to this work. Its main purpose is to
introduce the theoretical framework of my research work.

2.1 Definition of Cloud Computing

Nowadays, internet and new technologies are needs for businesses and
individuals. In developing world, information is available anywhere and
anytime. Few years ago ,traditional and only computer setup was
requiring you to be in the same location as your data storage device that
the cloud takes away that step.

Every day, we see in tech magazines or in any IT blogs, articles about
cloud computing. There is neither a formal definition of Cloud Computing
in literature nor a strict differentiation to its related concepts. When you
ask five different professionals what cloud computing is, you may get five
different answers. Even though not everyone agrees on what it is, there

Page | 11

have been many definitions of Cloud Computing by different researchers.
Barkley RAD defines Cloud Computing as:

“Cloud Computing refers to both the applications delivered as services
over the Internet and the hardware and systems software in the
datacenters that provide those services. The services themselves have
long been referred to as Software as a Service (SaaS). The datacenter
hardware and software is what we will call a Cloud. When a Cloud is made
available in a pay-as-you-go manner to the general public, we call it a
Public Cloud; the service being sold is Utility Computing. We use the term
Private Cloud to refer to internal datacenters of a business or other
organization, not made available to the general public. Thus, Cloud
Computing is the sum of SaaS and Utility Computing, but does not include
Private Clouds. People can be users or providers of SaaS, or users or
providers of Utility Computing.” [1]

Cloud Computing is a term used to describe both a platform and type of
application. As a platform it supplies, configures and reconfigures servers,
while the servers can be physical machines or virtual machines. On the
other hand, Cloud Computing describes applications that are extended to
be accessible through the internet and for this purpose large data centers
and powerful servers are used to host the web applications and web
services [2].

To understand cloud term, let's consider your webmail service. Your email
client takes care of all of the necessary hardware and software to support
your personal email account. Your email does not locate in your physical
computer. You access it through internet connection anywhere. This is
simple example of how cloud computing works. We can propagate
examples. Creating virtual albums to upload photos, running applications
and storing data in servers which are located in internet. Or basically,
entering a web page, beginning to use services that reside on remote and
sharing confidential information. As you can see, cloud computing has
popular usage among users and it is an evolving paradigm.

The cloud is a metaphor for the Internet and is an abstraction for the
complex infrastructure it conceals. As something users see like a cloud but
cannot see what is inside. There are some important points in the
definition to be discussed regarding Cloud Computing. Cloud Computing
differs from traditional computing paradigms as it is scalable, can be
encapsulated as an abstract entity which provides different level of
services to the clients, driven by economies of scale and the services are
dynamically configurable [4]

Page | 12

As a result, cloud makes it possible for us to access our information
anywhere at any time, and removes need of owning hardware and
software to run home/business applications. However, these services are
offered pay by demand or free. Users may be able to use a “pay-as-you-
go” billing methodology or alternatively one where quota-limited and/or
time limited access is enforced by the cloud system. Thus “billing” (or
more properly user accounting) is one way to differentiate between public
and private clouds. [11]

Cloud Computing infrastructure allows enterprises to achieve more
efficient use of their IT hardware and software investments. Even though it
is free or has a cost, this is helpful for businesses that cannot afford same
amount of hardware and storage space as big companies. In the
enterprise, the “adoption of Cloud Computing is as much dependent on
the maturity of organizational and cultural (including legislative) processes
as the technology, per se” [3] Additionally, if companies find less need of
anything such as storage, higher performance hardware, they can reduce
subscription or increase. Cloud computing is the delivery of computing as
a service rather than a product ,whereby shared resources like audio files,
videos files, data access ,software applications and storage resources are
provided to PC , smart phones and tablets over the web or internet without
requiring cloud users to know the location and other details of the
computing infrastructure. Form of cost –efficient and flexible usage of IT
services.

As a result cloud computing is broken down into three segments:
"application" "storage" and "connectivity." Each segment serves a different
purpose and offers different products for businesses and individuals
around the world. [12]

2.2 Architecture of Cloud Computing

Figure 1 -Grids and Cloud Overview[6]

Page | 13

2.2.1 Distributed Computing

Distributed computing refers to the very idea of using distributed systems
that are generally multiple computers connected to each other via
computer networks to collaboratively process a common goal. Those
computers communication can be homogeneous or heterogeneous,
distributed globally or locally. According to the characteristics of
localization or equality, distributed systems have different subsets, such as
supercomputers, grids, clusters, web 2.0 and clouds. [12]

In order to facilitate a clear understanding of what exactly is Cloud
computing, we compare Cloud computing with two other recent, widely-
adopted or explored computing paradigms: Cluster Computing and Grid
Computing.

a) Cluster Computing
"A cluster is a type of parallel and distributed system, which consists of a
collection of inter-connected stand-alone computers working together as a
single integrated computing resource." (Pfister and Buyya 2008) The
resources in clusters are located in a single administrative domain and
managed by a single entity. The schedulers in cluster systems focus on
enhancing the overall system performance and utility as they are
responsible for the whole system.

b) Grid Computing
"A Grid is a type of parallel and distributed system that enables the
sharing, selection, and aggregation of geographically distributed
`autonomous' resources dynamically at runtime depending on their
availability, capability, performance, cost, and users' quality-of-service
requirements." (Buyya, 2002 Grid Planet Conference , San Jose, USA)

 In Grid systems, resources are geographically distributed across multiple
administrative domains with their own management policies and goals. ,
the schedulers in Grid systems called resource brokers, focusing on
enhancing the performance of a specific application in such a way that its
end-users' QoS requirements are met.

c) Clouds

Page | 14

"A Cloud is a type of parallel and distributed system consisting of a
collection of inter-connected and virtualized computers that are
dynamically provisioned and presented as one or more unified computing
resource(s) based on service-level agreements established through
negotiation between the service provider and consumers."

Clouds seem to arrangement of clusters and grids. Clouds are appear to
be next generation data centers with nodes virtualized through hypervisor
technologies such VMs which is accessible as a composable service via
Web Service technologies.

Essential Characteristics of Cloud Computing
As described above, there are 5 essential characteristics of Cloud
Computing which explains there relation and difference from the traditional
computing. [8]

Figure 2 - Visual model of NIST Working Definition of Cloud Computing

On-demand-self-service

 A consumer can unilaterally provision computing capabilities, such as
server time and network storage, as needed automatically without
requiring human interaction with each service providerBroad Network

Page | 15

Access. It has capabilities over the network and accessed through
standard mechanism.

Resource Pooling

The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer
demand. There is a sense of location independence in that the customer
generally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a higher level of
abstraction (e.g., country, state, or datacenter)

Rapid Elasticity

Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available for provisioning often
appear to be unlimited and can be appropriated in any quantity at any
time.

Measured Service

Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate
to the type of service (e.g., storage, processing, bandwidth, and active
user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of
the utilized service.

Broad Network Access

Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick
client platforms (e.g., mobile phones, tablets, laptops, and workstations).

2.2.2 Cloud Service Models
There are 3 Cloud Services Models and these 3 fundamental
classifications are often referred to as “SPI model” i.e. software, platform
or infrastructure as a service.[7]

a) Cloud Software as a Service
Software as a service, or SaaS, is probably the most common type of
cloud service development. With SaaS, a single application is delivered to
thousands of users from the vendor’s servers. Customers don’t pay for

Page | 16

owning the software; rather, they pay for using it. Users access an
application via an API accessible over the web. Each organization served
by the vendor is called a tenant, and this type of arrangement is called a
multitenant architecture. The vendor’s servers are virtually partitioned so
that each organization works with a customized virtual application
instance. For customers, SaaS requires no upfront investment in servers
or software licensing. For the application developer, there is only one
application to maintain for multiple clients. Many different types of
companies are developing applications using the SaaS model.

As an example the so-called Google Apps offer software for business or
private entities online that can do the fundamental business action that a
usual on-premise office suite can provide. Google Apps involve document
collaboration within text documents, presentation and spreadsheets as
much as calendars and e-mail services.[17]

b) Cloud Platform as Service
In this variation of SaaS, the development environment is offered as a
service. The developer uses the “building blocks” of the vendor’s
development environment to create his own custom application. It’s kind of
like creating an application using Legos; building the app is made easier
by use of these predefined blocks of code, even if the resulting app is
somewhat constrained by the types of code blocks available.

Force.com is an example of platform as a service offered from Salesforce
providing a development platform that makes it very easy for developers to
build multi-tenant applications. The applications run on the data centers of
Salesforce, so there is no necessity to take care of maintenance, security
and back-ups.[17]

c) Cloud Infrastructure as Service
The capability provided to the consumer is to provision processing,
storage, networks, and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software, which can include
operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating
systems, storage, and deployed applications; and possibly limited control
of select networking components. Specifically, it provides an environment
in which external users can obtain exclusive access to raw metered
hardware nodes in an on-demand fashion, similar to obtaining VMs from
an IaaS provider. The system allows the software to be loaded and
network connectivity to be under user control. [8]

Amazon Web Services is one example of that, where infrastructure is
available on a pay-per-use self service basis and get servers, storage,

Page | 17

network configuration, set all that up and run it, while not having to worry
about co-location, rental or datacenters.

2.2.3 Cloud Deployment Models

Private cloud
 The cloud infrastructure is provisioned for exclusive use by a single
organization comprising multiple consumers (e.g., business units). It may
be owned, managed, and operated by the organization, a third party, or
some combination of them, and it may exist on or off premises.

Community cloud
The cloud infrastructure is provisioned for exclusive use by a specific
community of consumers from organizations that have shared concerns
(e.g., mission, security requirements, policy, and compliance
considerations). It may be owned, managed, and operated by one or
more of the organizations in the community, a third party, or some
combination of them, and it may exist on or off premises.

Public cloud
The cloud infrastructure is provisioned for open use by the general public.
It may be owned, managed, and operated by a business, academic, or
government organization, or some combination of them. It exists on the
premises of the cloud provider.

Hybrid cloud
The cloud infrastructure is a composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique entities,
but are bound together by standardized or proprietary technology that
enables data and application portability (e.g., cloud bursting for load
balancing between clouds).

2.3 Amazon Elastic Compute Cloud (Amazon EC2)

Amazon Elastic Compute Cloud, also known as "EC2", is a commercial
web service which allows paying customers to rent computers to run
computer applications on. It presents virtual computing environment and
allows scalable deployment of applications by providing a web services
interface through which customers can request an arbitrary number of
Virtual Machines, i.e. server instances, on which they can load any
software of their choice.

Page | 18

Amazon EC2's simple web service interface allows you to obtain and
configure capacity with minimal friction. It provides you with complete
control of your computing resources and lets you run on Amazon's proven
computing environment. Current users are able to create, launch, and
terminate server instances on demand, hence the term "elastic". Amazon
EC2 reduces the time required to obtain and boot new server instances to
minutes, allowing you to quickly scale capacity, both up and down, as your
computing requirements change.

An Amazon Machine Image (AMI) is an encrypted file stored in Amazon
S3. It contains all the information necessary to boot instances of your
software. Your AMIs are your unit of deployment. You might have just one
AMI or you might compose your system out of several building block AMIs
(e.g., webservers, appservers, and databases). Amazon EC2 provides a
number of command line tools to make creating an AMI easy. Once you
create a custom AMI, you will need to upload it to Amazon S3. Amazon
EC2 uses Amazon S3 to provide reliable, scalable storage of your AMIs
so that they can boot them when you ask them to do so. You can also
choose from a library of globally available AMIs that provide useful
instances. For example, if you just want a simple Linux server, you can
choose one of the standard Linux distribution AMIs. Once you have set up
your account and uploaded your AMIs, you are ready to boot your
instance.

The running system based on an AMI is referred to as an instance. All
instances based on the same AMI begin executing identically. Any
information on them is lost when the instances are terminated or if they
fail.

The Amazon implementation allows server instances to be created in
zones that are insulated from correlated failures. EC2 is one of several
Web Services provided by Amazon.com under the umbrella term Amazon
Web Services (AWS).

EC2 uses Xen Virtualization. Each virtual machine, called an instance, is a
virtual private server and can be one of several sizes. Instances are sized
based on EC2 Compute Units which is the equivalent CPU capacity of
physical hardware. In addition, servers in EC2—like any other server on
the Internet—can access Amazon S3 for cloud-based persistent storage.
EC2 servers in particular see both cost savings and greater efficiencies in
accessing S3. To secure your network within the cloud, you can control
virtual firewall rules that define how traffic can be filtered to your virtual
nodes. You define routing rules by creating security groups and
associating the rules with those groups.

Page | 19

Amazon’s EC2 U.S. footprint spans three data centers on the East Coast
of the U.S. and two in Western Europe. You can sign up separately for an
Amazon European data center account, but you cannot mix and match
U.S. and European environments. The servers in these environments run
a highly customized version of the Open Source Xen hypervisor using
paravirtualization. This Xen environment enables the dynamic provisioning
and deprovisioning of servers, as well as the capabilities necessary to
provide isolated computing environment for guest servers. When you want
to start up a virtual server in the Amazon environment, you launch a new
node based on a predefined Amazon machine image (AMI). The AMI
includes your operating system and any other prebuilt software. Most
people start with creating a standard AMI containing their applications,
libraries, data and associated configuration settings. Or they use pre-
configured, templated images to get up and running immediately. Then,
they upload the AMI into Amazon S3. Amazon EC2 provides tools that
make storing the AMI simple. Amazon S3 provides a safe, reliable and fast
repository to store images. Amazon EC2 web service should be used to
configure security and network access. Start, terminate, and monitor as
many instances of your AMI as needed, using the web service APIs. Pay
only for the resources that you actually consume, like instance-hours or
data transfer. Amazon EC2 changes the economics of computing by
allowing you to pay only for capacity that you actually use.

Many competitors to Amazon also provide persistent internal storage for
nodes to make them operate more like a traditional data center.

2.3.1 Service Highlights

• Elastic
Amazon EC2 enables you to increase or decrease capacity within
minutes, not hours or days. You can commission one, hundreds or even
thousands of server instances simultaneously. Of course, because this is
all controlled with web service APIs, your application can automatically
scale itself up and down depending on its needs.

• Completely Controlled
You have complete control of your instances. You have root access to
each one, and you can interact with them as you would any machine.
Instances can be rebooted remotely using web service APIs. You also
have access to console output of your instances.

• Flexible

Page | 20

You have the choice of several instance types, allowing you to select a
configuration of memory, CPU, and instance storage that is optimal for
your application.

• Designed for use with other Amazon Web Services
Amazon EC2 works in conjunction with Amazon Simple Storage Service
(Amazon S3), Amazon SimpleDB and Amazon Simple Queue Service
(Amazon SQS) to provide a complete solution for computing, query
processing and storage across a wide range of applications.

• Reliable
Amazon EC2 offers a highly reliable environment where replacement
instances can be rapidly and reliably commissioned. The service runs
within Amazon's proven network infrastructure and datacenters.

• Features for Building Failure Resilient Applications
Amazon EC2 provides powerful features to build failure resilient
applications including:

o Multiple Locations
Amazon EC2 provides the ability to place instances in multiple locations.
Amazon EC2 locations are composed of regions and Availability Zones.
Regions are geographically dispersed and will be in separate geographic
areas or countries. Currently, Amazon EC2 exposes only a single region.
Availability Zones are distinct locations that are engineered to be
insulated from failures in other Availability Zones and provide
inexpensive, low latency network connectivity to other Availability Zones
in the same region. Regions consist of one or more Availability Zones. By
launching instances in separate Availability Zones, you can protect your
applications from failure of a single location.

o Elastic IP Addresses
Elastic IP addresses are static IP addresses designed for dynamic cloud
computing. An Elastic IP address is associated with your account not a
particular instance, and you control that address until you choose to
explicitly release it. Unlike traditional static IP addresses, however, Elastic
IP addresses allow you to mask instance or Availability Zone failures by
programmatically remapping your public IP addresses to any instance in
your account. Rather than waiting on a data technician to reconfigure or
replace your host, or waiting for DNS to propagate to all of your
customers, Amazon EC2 enables you to engineer around problems with
your instance or software by quickly remapping your Elastic IP address to
a replacement instance.

• Secure

Page | 21

Amazon EC2 provides web service interfaces to configure firewall settings
that control network access to and between groups of instances.

• Inexpensive
Amazon EC2 passes on to you the financial benefits of Amazon's scale.
You pay a very low rate for the compute capacity you actually consume.
Compare this with the significant up-front expenditures traditionally
required to purchase and maintain hardware, either in-house or hosted.
This frees you from many of the complexities of capacity planning,
transforms what are commonly large fixed costs into much smaller
variable costs, and removes the need to over-buy "safety net" capacity to
handle periodic traffic spikes.

2.3.2 Selecting Instance Types
Amazon EC2 instances are grouped into two families: Standard and High-
CPU. Standard Instances have memory to CPU ratios suitable for most
general purpose applications; HighCPU instances have proportionally
more CPU resources than memory (RAM) and are well suited for
compute-intensive applications. When choosing instance types, you
should consider the characteristics of your application with regards to
resource utilization and select the optimal instance family and size. One of
the advantages of EC2 is that you pay by the instance hour, which makes
it convenient and inexpensive to test the performance of your application
on different instance families and types. One good way to determine the
most appropriate instance family and instance type is to launch test
instances and benchmark your application.

2.3.3 I/O Performance
Amazon EC2 provides virtualized server instances. While some resources
like CPU, memory and instance storage are dedicated to a particular
instance, other resources like the network and the disk subsystem are
shared among instances. If each instance on a physical host tries to use
as much of one of these shared resources as possible, each will receive
an equal share of that resource. However, when a resource is under-
utilized user will often be able to consume a higher share of that resource
while it is available. The different instance types provide higher or lower
minimum performance from the shared resources depending on their size.
Each of the instance types has an I/O performance indicator (moderate or
high). Instance types with high I/O performance have a larger allocation of
shared resources. Allocating larger share of shared resources also
reduces the variance of I/O performance. For many applications, moderate
I/O performance is more than enough. However, for those applications
requiring greater or more consistent I/O performance, users may want to
consider instances with high I/O performance.

Page | 22

2.4 Virtual Machines

Most cloud service providers use machine virtualization techniques to
provide flexible and cost-effective resource sharing among users. The
Xen hypervisor , sometimes referred to generically as x86 a virtual
machine monitor, is an open-source software program that coordinates the
low-level interaction between virtual machines and physical hardware. A
Xen-based virtual machine consists of the following components:

• At least one virtual disk that contains a bootable operating system.
The virtual disk can be based on a file, partition, volume, or other
type of block device.

• Virtual machine configuration information, which can be modified by
exporting a text-based configuration file from xend or through
Virtual Machine Manager.

• A number of network devices, connected to the virtual network
provided by the controlling domain.[18]

Each virtual machine runs an instance of an operating system. A
scheduler is running in the Xen hypervisor to schedule virtual machines on
the processors. The original Xen implementation schedules virtual
machines according to the Borrowed Virtual Time (BVT) algorithm.

Particularly for network virtualization, Xen only allows a special privileged
virtual machine called driver domain, or domain 0 to directly control the
network devices. All the other virtual machines (called guest domains in
Xen) have to communicate through the driver domain to access the
physical network devices. The way Xen realizes this is, the driver domain
has a set of drivers to control the physical Network Interface Cards (NIC),
and a set of back-end interfaces to communicate with guest domains. The
back-end interfaces and physical drivers are connected by a software
bridge inside the kernel of the driver domain. Each guest domain has a
customized virtual interface driver to communicate with a back-end
interface in the driver domain. All the packets sent from guest domains will
be sent to the driver domain through the virtual interfaces and then sent
into the network. All the packets destined to a guest domain will be
received by the driver domain first, and then transferred to the guest
domain.

Amazon Elastic Compute Cloud EC2 , provides a number of virtual
machines based on a Xen hypervisor that manages physical servers and

Page | 23

provides a selection of virtual machine types: small, consisting of one
virtual CPU core; large, containing two CPU cores: and extra large, with
four cores.

There might be several Xen virtual machines running on one physical
server. Each Xen virtual machine is called an instance in Amazon EC2.
There are several types of instances. Each type of instance provides a
predictable amount of computing capacity. The small instance is the
primary instance type, which is configured with 1.7GB memory, 1 EC2
compute unit and 160GB instance storage. According to Amazon, ”one
EC2 compute unit provides the equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor.” For applications requiring higher
computing capacity, Amazon EC2 provides several high-capacity
instances which are configured with 4 to 20 EC2 compute units. The input-
output (I/O) capacities of these types of instances are not specified clearly.

Allocated EC2 instances can be placed at different physical locations.
Amazon organizes the infrastructure into different regions and availability
zones. There are two regions, useast-1 and eu-west-1, which are located
in the US and in Europe respectively. Each region is completely
independent and contains several availability zones that are used to
improve the fault tolerance within the region. It is suspected that each
availability zone is an isolated data center which is powered by its own
powerline. Different availability zones in the same region are placed very
close to each other. The region useast-1 has three availability zones, us-
east-1a, us-east-1b and us-east-1c. The region eu-west-1 has two
availability zones, eu-west-1a and eu-west-1b.

The use of virtual machine technology for cloud computing decouples the
number of virtual and physical CPUs. There is a practical upper bound on
the number of virtual machines and virtual processors that can be
deployed on a server system. If a cloud computing service is
oversubscribed, the system will become slow and unreliable, and new
requests for service will be denied. Conversely, if the system is
undersubscribed, the costs of maintaining unutilized capacity will be
unrecoverable over time, and reduce profits.

Page | 24

2.5 Dacapo Benchmark

Benchmarks are typically used to evaluate new system features and
optimizations after explored by researchers. If an idea doesn't produce a
set of interesting benchmarks, community is unlikely to accept it.

In academia or industry, SPEC Java benchmarks are typically used for
Java. When SPEC introduced these benchmarks, their evaluation rules
and the community’s evaluation metrics glossed over some of the key
questions for Java benchmarking. For example, SPEC reporting of the
“best” execution time is taken from multiple iterations of the benchmark
within a single execution of the virtual machine, which will typically
eliminate compile time. In addition to steady state application
performance, a key question for Java virtual machines (JVMs) is the
tradeoff between compile and application time, yet SPEC does not require
this metric, and the community often does not report it. Also, SPEC does
not require reports on multiple heap sizes and thus does not explore the
spacetime tradeoff automatic memory management (garbage collection)
must make.

Also to SPEC, prior Java benchmark suits include Java Grande, Jolden
and Ashes. The Java Grande Benchmarks include programs with large
demands for memory, bandwidth, or processing power. They focus on
array intensive programs that solve scientific computing problems. The
programs are sequential, parallel, and distributed. They also include
microbenchmark tests for language and communication features, and
some cross-language tests for comparing C and Java. DaCapo also
focuses on large, realistic programs, but not on parallel or distributed
programs. The DaCapo benchmarks are more general purpose, and
include both client and server side applications. The Jolden benchmarks
are single-threaded Java programs rewritten from parallel C programs that
use dynamic pointer data structures. These programs are small kernels
(less than 600 lines of code) intended to explore pointer analysis and
parallelization, not complete systems. The Soot project distributes the
Ashes benchmarks with their Java compiler infrastructure, and include the
Jolden benchmarks, a few more realistic benchmarks such as their
compiler, and some interactive benchmarks. The DaCapo benchmarks
contain many more realistic programs, and are more ambitious in scope.

For Dacapo benchmarking efforts, start was given in mid 2003, when
Dacapo research group decided that the existing Java benchmarks were
limiting the progress. This benchmark suite is intended as a tool for Java
benchmarking by the programming language, memory management and

Page | 25

computer architecture communities. It consists of a set of open
source, real world applications with non-trivial memory loads. The initial
release of the suite was the culmination of over five years work at eight
institutions, as part of the Dacapo Benchmark Project, which was funded
by a National Science Foundation ITR Grant.

 It was followed with effort of identifying suitable benchmarks and develop
a suite of analyses to characterize candidate benchmarks and evaluate
them for inclusion. It started with the following criteria;

1. Diverse real applications.It was required applications that were widely
used to provide a compelling focus for the community’s innovation and
optimizations, as compared to synthetic benchmarks.

2. Ease of use. Applications to be relatively easy to use and measure.
3.Responsive. Adapt the suite as circumstances change.

4.Open source. Encourage community feedback and enable analysis of
benchmark sources.

These criteria was implemented as follows.

1. Only open source benchmarks and libraries was chosen.

2. Diverse programs to maximize coverage of application domains and
application behaviors was chosen.

3. On the client-side benchmarks that are easy to measure in a completely
standard way, was focused with minimal dependences outside the scope
of the host JVM.

4. GUI applications was excluded since they are difficult to benchmark
systematically. In the case of eclipse, exercise a non-GUI subset.

5. Range of inputs was provided. With the default input sizes, the
programs are timely enough that it takes hours or days to execute
thousands of invocations of the suite, rather than weeks. With the
exception of eclipse, which runs for around a minute, each benchmark
executes for between 5 and 20 seconds on contemporary hardware and
JVMs.

The main contributions of research are new, more realistic Java
benchmarks, an evaluation methodology for developing benchmark suites,
and performance evaluation methodologies. Needless to say, the DaCapo
benchmarks are not definitive, and they may or may not be representative
of workloads that vendors and clients care about most.

Page | 26

Around 20 students and faculty at six institutions had began an iterative
process of identifying, preparing, and experimenting with candidate
benchmarks. To realize the difficulty of identifying a good benchmark
suite, it was made the DaCapo benchmark project open and transparent,
inviting feedback from the community. As part of this process, it had been
released three beta versions.

It was systematically analyzed by each candidate to identify ones with
non-trivial behavior and to maximize the suite’s coverage.It was included
most of the benchmarks evaluated, excluding only a few that were too
trivial or whose license agreements were too restrictive, and one that
extensively used exceptions to avoid explicit control flow.

DaCapo 9.12 Benchmark Suite has a range of multithreaded benchmarks.
The following table will show the nature of the threading in the some of
existing benchmarks and their definition.

Page | 27

Benchmarks Description Threading

Avrora Simulates a number of
programs run on a grid of
AVR microcontrollers.

Driven by a single external
thread, but it is internally
multithreaded with each
simulated element using a
thread (i.e. each node in a
grid of simulated nodes is
threaded). Avrora
demonstrates a high
volume of fine granularity
interactions between
simulator threads.

Eclipse Executes some of the
(non-gui)jdt performance
tests for the Eclipse IDE.

Driven by a single external
thread it is internally
multithreaded. However, some
worker thread activity seems to
be serialised, while others seem
to engage in some fine
granularity interactions. As such,
eclipse exhibits periods of little
concurrency and brief periods of
moderate granularity
concurrency.

Fop Takes an XSL-FO file,
parses it and formats
it,generating pdf file.

H2 Executes a JDBCbench -
like in-memory
benchmark, executing a
number of transactions
against a model of a
banking application,
replacing the hsqldb
benchmark

Multithreaded, it is driven by one
client thread per hardware
thread and internally has a
server thread for each client
thread as well as other support
threads. The number of client
threads for the default
benchmark size is set a one per
hardware thread.

Jython Interprets a the pybench
Python benchmark.

Driven by a single thread.
Internally it uses one thread per
hardware thread, but the bulk of
the Jython tests are single
threaded.

Pmd Analyzes a set of Java
classes for a range of

Driven by a single client thread it
is internally multithreaded using
one worker thread per hardware

Page | 28

source code problems. thread.

Tomcat Runs a set of queries
against a Tomcat server
retrieving and verifying the
resulting web pages.

Multithreaded, driven by a client
thread per hardware thread,
each client thread performing a
series of requests which are
dealt with by a server thread for
that client thread.

Table 1 - DaCapo Benchmarks [16]

Page | 29

Chapter 3

Experimental Setup
Experimental setup chapter indicates operations which were completed
during preparation of system, execution of codes and collection of results.
Virtual machine had been chosen and then arranged according to test
requirements with latest release DaCapo benchmark. Later test codes had
been executed and collection of results had been collected.

3.1 Preparing System

Prof. Piazzolla had created credential that grants me an access to
Amazon Virtual machines. Since instances require hourly cost, it was
utilized DEI's budget for my performance tests. After it had chosen region
of server (US East N. Virginia), Amazon Linux AMI 2013.03.1 was
selected for future instance types. Amazon Linux AMI which was 64 bit,
includes Linux 3.4, AWS tools and Tomcat. Instance type for our tests
were chosen among "on demand" and "general purposed" instances which
require hourly costs to be used. For DaCapo tests, it was demanded to
run tests on eight cores machine.

After M3 Double Extra Large (m3.2xlarge) had been chosen as eight cores
machine (hourly cost/$1.00), instance required a new key pair. There is
an option without a key pair. However user will not be able to connect to
his/her instance unless s/he knows the password built in to that AMI. On
the other hand, public/private key pairs allow users to securely connect to
user's instance after it launches. For Linux server instances, a key pair
allows user to SSH into user's instance. Then new key pair was
downloaded. (.pem file) The rest had been followed as in the default
configuration. When instance setup had been completed, it began to start.

Page | 30

To reach virtual machine, two more programs which are called
puttygen.exe and putty.exe, were needed to be configured. PuTTY key
generator (puttygen.exe), generates pairs of public and private keys to be
used in PuTTY. Already downloaded .pem file was imported into
PuTTYgen, then it was saved as private key to be used in future instance
launches. On the other hand PuTTY is a free SSH client for Windows
systems. After private key had been obtained, its file location was used to
be indicated for file authentication in PuTTY's SSH Auth section. Instance
always starts with a unique public DNS which is used for hostname
section in PuTTY, to create connection between terminal and virtual
machine. After it had been connected and verified the server's host key, it
was asked to login with a username which was ec2-user. When client was
connected to server, if there was required updates, they were shown and
applied. Finally, system had been ready for installation of DaCapo
Benchmark.

FileZilla client is a free and cross platform FTP software. In virtual
machine, it had been used to create and arrange directories, files and
folders. Two main folders, one for DaCapo benchmark jar file and the
other had been for test results. Latest DaCapo benchmark is DaCapo-
9.12-bach.jar file which was released in 2009 and used in tests. It had
been installed via "wget[URL]" command into virtual machine. Other test
bash files had been transferred via FileZilla since they had been small
files. Then bash files had been converted to executable files with "chmod
A + X filename " command.

3.2 Bash Scripts

 In Linux, a .sh file is a shell script file that has been written using the
BASH language. The shell's interface features a command line that you
can enter text instructions into. Bash scripts had been used to achieve
performance tests for eight cores virtual machine. After scripts had been
uploaded and become executable, main.exe run with manually set number
of threads active. In this headline, I would like to describe which features
of bash scripts had been used for test results.

Tests had been done automatic. First, test environment had been
prepared by setting active CPU cores. Then, Dacapo benchmarks need to
start with some parameters. They are number of threads, N-workload and
number of iteration. After execution of benchmark had been completed,
bash script had collected the response time of each instances discarding
the values that did not satisfy the experiment assumptions. In particular,
another bash script had removed the initial and final transient of the

Page | 31

experiments when the number of concurrent instances was not constant.
In the bash scripts, it had been used "awk utility" as a data extraction and
reporting utility.

Page | 32

Chapter 4

Experimental Results
In this section, I describe the results obtained from the executions of the
DaCapo Benchmarks in a controlled in environment of eight core Amazon
EC2. Since experiment's results had been too much, I filtered them into
result sets which had been done with thread one, to work on them. Four
charts had been chosen among the others.

4.1 3-D Surface Charts

First group of experimental results, shows us levels of average execution
time which had been produced by each activated core with different
workloads . Before drawing surface charts, data had been grouped under
core numbers with values of average time. X-axis has numbers from one
to ten, they represent number of workloads. Y- axis has range of average
time. Z- axis shows which cored had been active.

Page | 33

Graph 1 - 3D Jython Benchmark

As expected when one core had been active, it had consumed longest
time, when compared with other cores. In core two and core three, we see
exponential increase in average of time. However, between core six and
core seven, there is a visible performance decrease. Core seven from
workload one to six, falls behind core six. Core eight is the fastest. When
we look at general picture, average time differences between cores and
workloads are close each other which produces small scaled legend to
show details in chart .

Page | 34

Graph 2 - 3D H2 Benchmark

When we compare with Jython benchmark, we can't see small ranges in
the legend. In the beginning, it shows slow performance to H2 benchmark
but in the end with eight core and workload ten, it is faster. Between core
three and core four, between core five and core six, between core seven
to core eight, till workload six, these couples' average times are really
close to each other. The difference between them starts with workload six.

Page | 35

Graph 3 - 3D Eclipse Benchmark

Eclipse benchmark shows highest average of time which is the result of
slow work. After core two, there is a dramatic increase in time. Core five
stays slower until workloads nine and ten but catches core six and seven.
On the other hand, core six and core seven returns response times almost
equal. However, core eight still owns lowest average time.

Graph 4 - 3D Pmd Benchmark

Page | 36

Pmd benchmark shows similar characteristics with Jython benchmark.
After core two there is a crucial decrease in time almost half to half. Core
eight and seven, gives results with nearly same average of time.

4.2 N-Workload Difference

Six example charts had been chosen for demonstration. These charts
represent cumulative distribution function. First three of charts have 1
core, other three have 4 cores. Each curve represents the behavior of the
selected benchmark run with a given cores configuration with an
increasing number N of concurrent benchmark instances. X-axis gives
response times of benchmark in a increasing order. Y-axis is the mean of
number of times, to have correct progression of values over axis. As
expected, when the workload N increases, response time is increasing
too.

Pmd, Eclipse and H2 have a stable response time R in core 1. Also, for
Eclipse and H2, when 4 cores are activated, they maintain stable
response time R as long as N is below or equal to 4. On the other hand,
Pmd does not behave this way. For pmd, response time starts to increase
even when N is below the number of core. Probably this is due to the
workload characteristics of the benchmark which includes both CPU and
I/O operations.[20]

Graph 5 - 1 Core and Pmd

Page | 37

Graph 6 - 4 Cores and Pmd

Graph 7 - 1 Core and Eclipse

Graph 8 - 4 Cores and Eclipse

Page | 38

Graph 9 - 1 Core and H2

Graph 10 - 4 Cores and H2

4.3 CPU Allocation

In this section, I try to evaluate benchmarks with different cores. I started
by fixing number of basic iterations of each load. For N5 and
N10,respectively iteration number was 13 and 10, regardless of the
considered benchmarks. In this way all benchmarks had run with same
amounts of workload but with different response time. This measured
response time gives performance of CPU. Results are shown in figures
13,14,15.

As expected, core 1 have the highest response time and core 8 has the
lowest. In Eclipse, Jython and Pmd, response time difference between
core 1 and core 3 is high. Also it is obvious that spread of lines narrow
from core 1 to core 8 and results are more stable. In this case, I assume
each core handles at most one of the N benchmark instances.

I have to take into consideration threads of each application. Since Pmd
and Eclipse are driven by a single external thread which is internally

Page | 39

multithreaded, software parallelization is possible and charts show more
stable response time for them. However, Jython is single threaded and
response time increase even N is below the number of cores.

Graph 11 - Eclipse and multicore processor

Graph 12 - Jython and multicore processor

Page | 40

Graph 13 - Pmd and multicore processor

4.4 Box Plot with Mean

This chapter shows results using box and whisker plot. X-axis shows
number of cores. Y-axis shows response time. Each core was tested with
equal number of N loads which is from 1 to 10. These charts will give an
overview of virtual machine performance for each benchmark.

Figure 3 - Avrora Box Plot

Page | 41

Avrora has less improvement when passing from single core to double
core. In core 2 whiskers have same length as the box, so data is compact
but least stable. Since core 2 box is the largest, variance is more than
others. Except core 7 and 8, other cores have long upper whiskers, their
median slips down and mean value stands on upper quartile. I assume,
these cores have high response time but they get more stable with
ascending number of cores. On the other hand, core 7 is stable in
response time but it still gives high response time. Core 8 behaves well
balanced and stable.

Figure 4 - Eclipse Box Plot

Eclipse was executed with high response time among the other
benchmarks. Core 1 is wide with two long whiskers. I interpret core 1 as
well-balanced with high variance. From core 1 to core 3, I see rational fall
in response time and begin to become more stable. There is a slight
performance difference between core 3 and core 4 which is faster. Core 5
has longer lower quartile than core 6 and shorter upper whisker than core
7. I suppose in general, core 5 gives low response time than core 6 and 7
and works faster for eclipse benchmark. Core 8 is narrow but data varies.

Page | 42

Figure 5 - Fop Box Plot

In the first two cores, upper quartiles involve mean of response time and
they are skewed right. So I can assume performance of both cores is slow
and response times are least stable. With core 3, an exponential decrease
in response time begins till core 8 and boxes get narrow. Upper and lower
whiskers get short and it becomes well balanced.

Figure 6 - H2 Box Plot

In H2, single core and double core plots symmetric boxes because they
evenly split at median and mean is almost same as median. Whiskers are
about the same length. These two cores have approximately same

Page | 43

variation in the data. The rest of cores seem to pair with each other in
means of data spread. Core 7 and 8, are stable because of the less
variation in data and spread than other cores.

Figure 7 - Jython Box Plot

In general distribution of data for each core is right skewed with high
response time, except core 7. On the contrary, core 7 is left skewed and
most narrow data set in whole cores. In this core, data spread is wider in
low quartile this means high amount in low response time.

From core 2 to core 3, there is a large gap between data sets because
system start to give high performance. Core 3 and 4, seems similar in data
variation. Also core 5 and 6, are showing similarity between them.

Page | 44

Figure 8 - Pmd Box Plot

Both single and double cores are symmetric and well balanced. But they
have high variance in response time. Core 3 seems much faster than core
4. Core 5 and 6 have approximately same data variation and spread. Also
we see same situation for core 7 and 8. As a result, I can say for pmd
benchmark, instead of 8, we can run application with 7 core machine and
this would be less costly.

Page | 45

Chapter 5

Conclusions and Future Works

Nowadays, we are accessing our applications, storage and services over
internet through clouds. Since 2006, Amazon Web Services (AWS)
provide cloud computing to external costumers. Virtual machines are one
of the utility we use on AWS. In AWS, virtual machines have multi core.
From single core to eight cores, we can select and make use for our
applications. Unfortunately, there are few researches about performance
of these VMs.

The main contribution of this paper has been evaluating performance of
DaCapo benchmarks and has been measuring performance of multi-core
virtual machine in Amazon EC2. Obtained results were used to
demonstrate and evaluate a good estimation about performance. Since
plain results were pointless, I created cumulative distribution charts, box
and whisker plots and 3-D graphs to prove my points. Even though, i had
done experiments with more than one threads, I showed results only with
one thread. So I reduced result sets. But even with diminished set, I had a
lot of data to have an idea about performance of an instance in Amazon.

For the future works, I consider, the impact of software multi threading on
the behavior of the DaCapo benchmarks under different cores
configurations. As a result, we can see how higher number of threads
improve the response time performance of the benchmarks. And
advantages can be discussed, if there are.

Although virtual machines on clouds are used for their efficiency,
provisioning of a single core with many cores can be more costly than
provisioning of many single-core machines. On this case, efficiency tests
should be done with different benchmarks and also with different IaaS

Page | 46

providers. Typically, to meet customer needs the existing providers offer
different numbers of virtual machines which varies according to their CPU
types. So tests can also be done to see overall performance.

Page | 47

REFERENCES
[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski,
A., Lee, G., Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M. (2009).
Above the Clouds: A Berkeley View of Cloud Computing. Technical
Report. University of California at Berkeley.

[2] Boss, G., Malladi, P., Quan, D., Legregni, L., Hall, H. (2007), Cloud
Computing.
ww.ibm.com/developerworks/websphere/zones/hipods/.

[3] Fellowes, W. (2008). Partly Cloudy, Blue-Sky Thinking About Cloud
Computing.

[4] Foster I, Kesselman C (1998) Computational Grids.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.4939

[5] Foster I, Kesselman, C, Tuecke S (2001) The Anatomy of the Grid:
Enabling Scalable Virtual Organization. International Journal of High
Performance Computing Applications

[6] Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud Computing and Grid
Computing 360- Degree Compared. In: Grid Computing Environments
Workshop (GCE’08).

[7] Michael Miller (2009) Cloud Computing: Web-Based Applications
That Change the Way You Work and Collaborate Online

[8] Mell P., Grance T,The Nist Definition of Cloud Computing
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[9] Huth A. , Cebula J. ,(2011) The Basics of Cloud Computing
http://www.us-
cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf

Page | 48

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.us-cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf
http://www.us-cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf

[10] Bitzer F, (2008) Management Framework for Amazon EC2
http://cloud42.net/files/thesis.pdf

[11] Ahson S., Ilyas M. (2011) Cloud Computing and Software Services
Theory and Techniques

[12] Gupta S., (2012) , Cloud Computing Technologies Overview and
Comparison – “Microsoft Azure vs Amazon EC2”

[13] Buyya R., Yeo C., Venugopal S. ,Broberg J., Brandic Ivona (2008)
Cloud Computing and Emerging IT Platforms: Vision,Hype and Reality for
Delivering Computing as 5th Utility.

[14] Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2, 2008.

[15] BlackBurn S.,Garner R.,Hoffmann C.,Khan A.,McKinley S.,Bentzur
R.,Diwan A.,Feinberg D.,Frampton D., Guyer S., Hirzel M.,Hosking A.,
Jump M.,Lee H.,Moss J.,Phansalkar A.,Stefanovic D., VanDrunen T.,
Dincklage D.,Wiedermann B., (2009) The Dacapo Benchmarks: Java
Benchmarking Development and Analysis

[16] The Dacapo Benchmark Suite web site.
http://www.dacapobench.org/

[17] Giacomo D.,Brunzel T., (May,2010) Cloud Computing Evaluation,
How It Differs to Traditional IT Outsourcing

[18] Chapter 1: Introduction to Xen Virtualization
http://doc.opensuse.org/products/draft/SLES/SLES-
xen_sd_draft/cha.xen.vhost.html

[19] Wang G., Ng E., The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center

[20] D.Cerotti, M.Gribaudo, P.Piazzolla, G.Serazzi, Flexible CPU
provisioning in clouds: a new source of performance unpredictability

[21] D.Cerotti, M.Gribaudo, P.Piazzolla, G.Serazzi,(2013) , End-to-End
performance of multi-core systems in cloud environments

Page | 49

http://cloud42.net/files/thesis.pdf
http://www.dacapobench.org/
http://doc.opensuse.org/products/draft/SLES/SLES-xen_sd_draft/cha.xen.vhost.html
http://doc.opensuse.org/products/draft/SLES/SLES-xen_sd_draft/cha.xen.vhost.html

	POLITECNICO DI MILANO
	Scuola di Ingegneria dell’Informazione
	POLO TERRITORIALE DI COMO
	Master of Science in
	Computer Engineering
	POLITECNICO DI MILANO
	Scuola di Ingegneria dell’Informazione
	Corso di Laurea Specialistica in
	Ingegneria Informatica
	ABSTRACT
	SOMMARIO
	Chapter 1

	1.1 Thesis Organization
	Chapter 2

	2.1 Definition of Cloud Computing
	2.2 Architecture of Cloud Computing
	2.2.1 Distributed Computing
	a) Cluster Computing
	b) Grid Computing
	c) Clouds
	Essential Characteristics of Cloud Computing
	On-demand-self-service
	A consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with each service providerBroad Network Access. It has capabilities over the network ...
	Resource Pooling
	The provider’s computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to consumer demand. There is a sense of location indep...
	Rapid Elasticity
	Capabilities can be elastically provisioned and released, in some cases automatically, to scale rapidly outward and inward commensurate with demand. To the consumer, the capabilities available for provisioning often appear to be unlimited and can b...
	Measured Service
	Cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be...
	Broad Network Access
	Capabilities are available over the network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets, laptops, and workstations).

	2.2.2 Cloud Service Models
	a) Cloud Software as a Service
	b) Cloud Platform as Service
	c) Cloud Infrastructure as Service

	2.2.3 Cloud Deployment Models
	Private cloud
	Community cloud
	Public cloud
	Hybrid cloud

	2.3 Amazon Elastic Compute Cloud (Amazon EC2)
	2.3.1 Service Highlights
	• Elastic
	• Completely Controlled
	• Flexible
	• Designed for use with other Amazon Web Services
	• Reliable
	• Features for Building Failure Resilient Applications
	o Multiple Locations
	o Elastic IP Addresses

	• Secure
	• Inexpensive

	2.3.2 Selecting Instance Types
	2.3.3 I/O Performance

	2.4 Virtual Machines
	2.5 Dacapo Benchmark
	Chapter 3

	3.1 Preparing System
	3.2 Bash Scripts
	4.1 3-D Surface Charts
	4.2 N-Workload Difference
	4.3 CPU Allocation
	4.4 Box Plot with Mean
	Chapter 5

