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Abstract 

This paper considers the Generalized Autoregressive Conditional Heteroscedastic approach 

to model the Eurodollar spot and futures exchange rate’s volatilities using daily and weekly 

observations over the period of 19th June 2007 to 18th March 2013. In this paper, I estimate 

different symmetric and asymmetric bivariate models that capture most of the common 

stylized facts about exchange rates such as volatility clustering and leverage effect. I apply 

them in different currency futures hedging strategies which minimize the foreign exchange 

risk in USD. I observed the performance of the different models: dynamic strategies 

outperform the static strategies, the bivariate GARCH model with a diagonal VECH 

covariance was the most effective hedging model and the introduction of a TARCH term 

doesn’t increase the effectiveness. I could also observe a structural problem: the estimation 

based on daily data underestimates the optimal hedge ratio and causes poor hedging 

performances.   

Keywords Exchange rate volatility, multivariate GARCH models, Optimal Hedge ratio, 

Futures contracts, Hedging effectiveness 

Riassunto 

Questo documento considera l'approccio eteroschedastico condizionale autoregressiva 

generalizzata per modellare la volatilità del tasso di cambio spot e futuro del eurodollar 

utilizzando osservazioni giornaliere e settimanali nel periodo del 19 giugno 2007 al 18 marzo 

2013. In questo lavoro, ho stimato diversi modelli bivariate simmetrici e asimmetrici che 

catturano la maggior parte dei fatti stilizzati comuni sui tassi di cambio. Li applico nelle 

diverse strategie di copertura che riducano il rischio di cambio in USD. Ho osservato le 

prestazioni dei diversi modelli: le strategie dinamiche superano le strategie statiche, il 

modello GARCH bivariato con una covarianza di tipo diagonale VECH è stato il modello il più 

efficace e l'introduzione di un termine TARCH non aumenta l'efficacia. Ho potuto osservare 

anche un problema strutturale: la stima basata su dati giornalieri sottovaluta il rapporto di 

copertura ottimale e provoca povere efficacia di copertura. 

Parole chiave Tasso di cambio, Modelli multivariati GARCH, Tasso di copertura ottimo, 

Contratti Futuri, Efficacia di copertura  
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Introduction 

Since the collapse of the Bretton Woods agreement of fixed exchange rate in 1972, the 

movements and fluctuations of the currency exchange rates have become a central subject 

of academic research in macroeconomics as well as in empirical finance. Black (1976) and 

Mandelbrot (1963) were among the first to work on the volatility of stock prices. Later, all 

kind of asset prices such as foreign exchange rates became the subject of research in an 

attempt to model their behavior. It has become a particular topic of interest in a period of 

financial and economic crisis of the euro area where the euro exchange rate stability is 

questionable due to the raise of possible default for some European sovereign debt owners. 

The euro instability could affect international trade, competitiveness of economies, local 

inflation as well as security valuation, investment decisions and risk management. Modeling 

a currency exchange rate is therefore an important subject of research in econometrics.  

Among the numerous econometric models studied in the literature, I chose to focus on 

Bollerslev’s Generalized Autoregressive Conditional Heteroscedastic model (GARCH 

framework). According to Engle (1982) and Bollerslev (1986), time series’ models are more 

reliable for capturing the volatility in financial time series as these models are specifically 

designed for volatility modeling and capture some characteristics of financial time series. 

Brooks (2008) and Campbell (1996) describe in details in their books how they particularly 

suit for capturing the characteristics of exchange rates’ volatility.  

Besides,they are the volatility models the most commonly used by traders and structuring 

teams. Indeed, modeling exchange rates volatilities is essential in the determination of the 

hedging strategy for companies operating within different markets with different currencies. 

They are indeed exposed to the exchange rate risk which makes their foreign cash flows 

more uncertain and need to implement currency hedging strategies. Döhring (2008) reports 

to the E.U. commission how multinational companies operating in Europe try to manage the 

euro exchange rate volatility through financial or operational hedging. Its report illustrates 

the problem of currency hedging and the purpose of modeling and forecasting the exchange 

rate appreciation or depreciation. Financial hedging strategies can involve different financial 

instruments and requires the modeling of a joint distribution and the determination of an 

optimal hedge ratio. For this purpose, the literature proposes different approaches about 

the nature of the co-distribution, the model to employ, the purpose of the hedging and its 
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performance or the estimation method to employ. Most of the dynamic models will involve 

a multivariate GARCH framework for modeling the covariance matrix of the distribution. For 

example, Kroner and Sultan (1995) proposed a conditional constant correlation model for 

foreign exchange spot and futures prices and studied static and dynamic optimal hedge 

ratios minimizing the variance of the hedged portfolio. Some other models, easier to 

compute were proposed as well (see Jonhson in 1960). What remains is the complexity in 

the determination of an optimal hedging strategy due to the number of approaches and 

parameters to consider.  

My study focused on the case of a short term financial hedging strategy involving a simple 

currency derivative for which modeling volatility will be possible: three months futures 

contracts. I shortly describe in the two first parts the characteristics of foreign exchange 

rates from a macroeconomic point of view and the characteristics of financial time series. 

Then, I present the GARCH framework used to describe the distributions of exchange rates 

(spot and futures). Finally, I explain the different currency hedging strategies and apply some 

of them on the sample with different data frequency. The final objective is to see the 

benefits of the different hedging models and illustrate some structural aspect of the data 

that should be considered in an estimation process. My study should focus on the spot and 

future EUR/USD exchange rates: it is indeed a floating rate and the most traded asset on the 

FOREX market, giving it a good sensitivity to macro announcements and a stable level. The 

Historical Data of the spot exchange rates used in this study is provided by the Statistic Data 

Warehouse of the European Central Bank (http://sdw.ecb.europa.eu) and the Historical Data 

of daily quotations for the EUR/USD futures contracts is provided by the Wall Street Journal 

(http://wsj.com) whose source is Thomson Reuters. I use the daily average bilateral 

exchange rates for the spot rate and the settlement prices of 3-months futures contracts. 

The data covers from the 19th of June 2007 to the 18th of March 2013, period where the 

financial crisis has spread. The sample description and the different tests on individual series 

is performed with the software GRETL used in courses of Applied Econometrics at Politecnico 

di Milano but the estimations of the univariate and bivariate models used in our hedging 

strategy study are done with the software EVIEWS 6.  

http://sdw.ecb.europa.eu/
http://wsj.com/
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1. About Foreign Exchange Rates 

 

For more details, see https://en.wikipedia.org/wiki/Exchange_rate  and International 

Economics – Theory and Policy – 9th Edition - by Paul Krugman (2012). 

 

1.1. Definition 

The foreign-exchange rate is the value of one country’s currency in terms of another 

currency and is determined in the foreign exchange market, which is open to a wide range of 

different types of buyers and sellers and where currency trading is continuous (24 hours a 

day except weekends). The spot exchange rate refers to the current exchange rate and 

the forward or future exchange rate refers to an exchange rate that is quoted and traded 

today but for delivery and payment on a specific future date. Market convention gives most 

currencies in terms of EUR, GBP or USD and other common currencies with a 4 decimal 

quotation. I indicate the main currency codes: 

 USD: US Dollar 

 EUR: Euro 

 JPY: Japanese Yen 

 GBP: British Pound 

 CHF: Swiss Franc 

 CAD: Canadian Dollar 

 AUD: Australian Dollar 

For example, on the 8th of June 2013 at 3.43pm (Paris time), 1 Euro was worth and therefore 

quoted in average on the Foreign Exchange Market 1,3219 US Dollar (data provided by 

reuters.com). The quotation is given as 1,3219 EUR/USD.   

 

1.2. Exchange rate regime 

Every country manages the value of its currency and determines the exchange rate 

regime that will be applied: free-floating, fixed or hybrid.  

https://en.wikipedia.org/wiki/Exchange_rate
https://en.wikipedia.org/wiki/Foreign_exchange_market
https://en.wikipedia.org/wiki/Forward_exchange_rate
https://en.wikipedia.org/wiki/Exchange_rate_regime
https://en.wikipedia.org/wiki/Exchange_rate_regime


8 
 

If a currency is free-floating, its exchange rate is allowed to vary and is determined by the 

market forces of supply and demand.  A movable or adjustable peg system is a system 

of fixed exchange rates with a provision for the devaluation of a currency. For example, 

between 1994 and 2005, the Chinese Yuan (RMB) was pegged to the United States dollar at 

8.2768 RMB/USD. This system allows a government to keep their currency within a narrow 

range. As a result currencies become over-valued or under-valued, causing trade deficits or 

surpluses. Indeed, a weak exchange rate will make exportation cheaper for foreign markets 

and importations more expensive for the domestic market helping therefore domestic 

production and causing a trade surplus (exportation becomes superior to importations). 

That’s why it is interesting for an exportation based economy such as China to maintain an 

undervalued exchange rate. 

 

1.3. Exchange rate fluctuation: a macroeconomic overview 

A market-based exchange rate will change according to the force of supply and demand of 

the two component currencies. A currency will tend to become more valuable whenever 

demand for it is greater than the available supply (a depreciation does not mean people no 

longer want the currency, it just means they prefer holding their wealth in some other form 

or currency). Increased demand for a currency can be due to either an increased 

transaction demand for money or an increased speculative demand for money. The 

transaction demand is highly correlated to a country's level of business activity, gross 

domestic product (GDP), and employment levels. The more people that are unemployed, the 

less the public as a whole will spend on goods and services. Central banks typically have little 

difficulty adjusting the available money supply to accommodate changes in the demand for 

money due to business transactions. Speculative demand is much harder for central banks to 

accommodate, which they influence by adjusting interest rates. A speculator may buy a 

currency if the return (that is the interest rate) is high enough. In general, the higher a 

country's interest rates, the greater will be the demand for that currency.  

 

https://en.wikipedia.org/wiki/Fixed_exchange_rate
https://en.wikipedia.org/wiki/United_States_dollar
https://en.wikipedia.org/wiki/Kemal_Kurdas#Early_career:_Speaking_truth_to_power
https://en.wikipedia.org/wiki/Demand_for_money
https://en.wikipedia.org/wiki/Unemployed
https://en.wikipedia.org/wiki/Central_bank
https://en.wikipedia.org/wiki/Interest_rate
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1.4. Balance of payment model Versus Asset Market model 

The Balance of payment model holds that a foreign exchange rate must be at its equilibrium 

level which is the rate giving a stable current account balance : a nation with a trade 

deficit will experience reduction in its foreign exchange reserves, which ultimately 

depreciates the value of its currency. The cheaper currency renders the nation's goods more 

affordable in the global market place while making imports more expensive. After an 

intermediate period, imports are forced down and exports rise, thus stabilizing the trade 

balance and the currency towards equilibrium. The balance of payments model focuses 

largely on trade of goods and services, ignoring the increasing role of global capital flows. In 

other words, money is not only chasing goods and services, but to a larger extent, financial 

assets such as stocks and bonds. Their flows go into the capital account item of the balance 

of payments, thus balancing the deficit in the current account.  

The increase in capital flows has given rise to the asset market model: economic variables 

such as economic growth, inflation and productivity are no longer the only drivers of 

currency movements and the proportion of foreign exchange transactions generated from 

trading of financial assets became significant relatively to the extent of currency transactions 

generated from trading in goods and services.  The asset market approach views currencies 

as asset prices, traded in an efficient financial market. Like the stock exchange, money can 

be made on the foreign exchange market by investors and speculators buying and selling at 

the right times. Currencies can be traded at spot and forward rates as defined before but we 

observe as well a multitude of currency based products traded on different markets or over 

the counter (swaps, options, futures, …).  

 

1.5. Foreign Exchange Market (FOREX) 

The foreign exchange market assists international trade and investment by enabling 

currency conversion. It also supports direct speculation in the value of currencies, and 

the carry trade, speculation based on the interest rate differential between two currencies. 

In a typical foreign exchange transaction, a party purchases some quantity of one currency 

by paying some quantity of another currency.  The foreign exchange market is unique 

because of its huge trading volume representing the largest asset class in the world and 

https://en.wikipedia.org/wiki/Current_account
https://en.wikipedia.org/wiki/Trade_deficit
https://en.wikipedia.org/wiki/Trade_deficit
https://en.wikipedia.org/wiki/Foreign_exchange_reserves
https://en.wikipedia.org/wiki/Balance_of_payments
https://en.wikipedia.org/wiki/Stocks
https://en.wikipedia.org/wiki/Bond_(finance)
https://en.wikipedia.org/wiki/Capital_account
https://en.wikipedia.org/wiki/Economic_growth
https://en.wikipedia.org/wiki/Inflation
https://en.wikipedia.org/wiki/Productivity
https://en.wikipedia.org/wiki/Stock_exchange
https://en.wikipedia.org/wiki/Foreign_exchange_market
https://en.wikipedia.org/wiki/Currency_conversion
https://en.wikipedia.org/wiki/Carry_trade
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leading to high liquidity, its geographical dispersion, its continuous operations, the variety of 

factors that affect exchange rates, the low margins of relative profit compared with other 

markets of fixed income,  the use of leverage to enhance profit and loss margins. As such, it 

has been referred to as the market closest to the ideal of perfect competition.  

 

We present some of the characteristics of this market given by a survey of April 2010 from 

the Bank for International Settlements:  

 24 hour market, from Sunday 5pm EST through Friday 4pm EST; trading begins in the 

Asia-Pacific region followed by Middle East, Europe, and America  

 An average daily turnover estimated at 3.98 trillion USD, a growth of approximately 

20% over the 3.21 trillion USD daily turnover as of April 2007. It’s more than 12 times 

the daily turnover of global equity markets (about 320 billion USD) and an annual 

turnover more than 10 times the world GBP (about 58 trillion USD). The US & UK 

markets account for over 50% of daily turnover (37% for UK and 18% for US) and the 

US dollar is involved in over 80% of all foreign exchange transactions. 

 

The 3.98 trillion USD break-down per product is as follows: 

 1.490 trillion USD in Spot transactions (one third of daily turnover) 

 475 billion USD in Forward Contracts 

 1.765 trillion USD in Foreign Exchange Rates Swaps 

 43 billion USD in Currency Swaps 

 207 billion USD in Options and other products 

 

 

 

 

 

https://en.wikipedia.org/wiki/Liquidity
https://en.wikipedia.org/wiki/Exchange_rate
https://en.wikipedia.org/wiki/Leverage_(finance)
https://en.wikipedia.org/wiki/Perfect_competition
https://en.wikipedia.org/wiki/Bank_for_International_Settlements
https://en.wikipedia.org/wiki/Revenue
https://en.wikipedia.org/wiki/Foreign_exchange_spot
https://en.wikipedia.org/wiki/Forward_contract
https://en.wikipedia.org/wiki/Foreign_exchange_swap
https://en.wikipedia.org/wiki/Currency_swap
https://en.wikipedia.org/wiki/Foreign_exchange_option


11 
 

In 2013, the daily turnover of the FOREX market was estimated over 5 trillion USD. We 

indicate as well the average daily turnover by currency and currency pairs: 

Currency Share Currency pairs Share 

USD 84,9% EUR/USD 28% 

EUR 39,1% USD/JPY 14% 

JPY 19,0% GBP/USD 9% 

GBP 12,9% AUD/USD 6% 

AUD 7,6% USD/CAD 5% 

CHF 6,4% USD/CHF 4% 

CAD 5,3% EUR/JPY 3% 

HKD 2,4% EUR/GBP 3% 

SEK 2,2% EUR/CHF 2% 

Other 20,6% Other 26% 

Total 200% Total 100% 

The Total of the currency share should be 200% because two currencies are involved in every transaction.  

I chose to study the EUR/USD exchange rate, the most traded currency pair over all. 

 

1.6. Exchange rate volatility: definition and measurement 

Exchange rate volatility is a measure of the fluctuation in an exchange rate. It is also known 

as a measure of risk in asset pricing, risk management,… and is taken into account for a 

variety of economic decisions. It can be measured on an hourly, daily, weekly, monthly or 

annual basis. Based on the assumption that changes in an exchange rate follow a normal 

distribution for example, volatility provides an idea of how much the exchange rate can 

change within a given period. Volatility of an exchange rate, just like that of other financial 

assets, is usually calculated from the standard deviation of movements of exchange rates. 

Clearly, it is unobservable and its measure is a matter of serious contention.  

Two measures of volatility are commonly employed in financial calculations: historical and 

implied volatility. Historical volatility is calculated from the past values of an exchange rate. 

Given a series of past daily exchange rates, we can calculate the standard deviation of the 

daily price changes and then the annual volatility of the exchange rate. Historical volatility 
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provides a good assessment of possible future changes when the financial markets and 

economies have not gone through structural changes. Statistically, it is often measured as 

the sample standard deviation: 

 ̂  √
 

   
∑   

 

   

     

Where    is the returns on day t and   is the average return over the n-days period. 

Implied volatility is a forward looking measure of volatility and is calculated from the market 

participants’ estimates of what is likely to happen in the future. More precisely, implied 

volatility is estimated from the quoted price of a currency option when the values of all 

other determinants of the price of an option are known. The basis of this calculation is the 

Black Scholes option pricing model, according to which the price of an option is determined 

by the following parameters: the current price of the asset (the spot exchange rate), the 

strike price at which the option can be exercised, the remaining time for the maturity of the 

option, the risk free interest rate, and the volatility of the asset. For more details on option 

pricing theory, you can see Options, Futures and Other Derivatives by Hull (2005). Knowing 

the current price of the option and all the others parameters values we can therefore 

determine backwards the volatility implied by the option price. It is a good start for traders 

to observe the volatility implied by the market. 

Exchange rate volatility, like the volatility of any other financial asset, changes in response to 

information. Currency traders are sensitive to information that might influence the value of 

one currency in terms of another. The most important information is that about the 

macroeconomics performance of the economies behind the currencies. Changes in the levels 

of uncertainty about the future of either economy will cause traders to become restless and 

less willing to hold a particular currency. Uncertainty about the future is the most important 

reason for the change in the volatility of a currency. Central banks can also influence the 

volatility of their currencies. While it is commonly believed that central banks can influence 

the value of their currency at most in the short run, they can certainly cause a change in the 

volatility. 
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We will discuss further about the GARCH models used to investigate volatility characteristics. 

They have two distinct specifications: the conditional mean and the conditional variance. 

 

1.7. About Monetary Policy 

To understand fully the mechanism behind the exchange rate determination I present 

shortly the role of Monetary Policy. It is the process by which the monetary authority of a 

country such as Central banks controls the supply of money, the availability of money and 

the cost of money (rate of interests); it differs from fiscal policy, which refers 

to taxation, government spending, and associated borrowing. The purpose of controlling the 

money supply is often to promote economic growth and stability, relatively stable prices, 

and low unemployment. Each Central Bank has therefore a type of monetary policy with a 

given long term objective. For example, the European Central Bank has an Inflation Targeting 

policy  with an objective of a close to 2% inflation whereas the Federal Reserve has a Mixed 

Policy with a long term objective of a controlled inflation and low unemployment.  

We observe then two kind of monetary policy:  

 An expansionary policy which increases the total supply of money in the economy in 

order to reduce unemployment and stimulate economic growth by lowering interest 

rates in the hope that easy credit will help businesses into expanding.  

 A contractionary policy which reduces or expands more slowly than usual the money 

supply and intends to slow inflation in order to avoid the resulting deterioration of 

asset values.  

Numerous Keynesian Macroeconomics models (see the Dornbush Model proposed by 

Dornbush in 1976) describe the dynamic of exchange rates and how a shock such as a 

change in monetary aggregates or interest rates would impact on the exchange rate level on 

the short term (phenomenon called “overshooting” of the exchange rate) and how it could 

lead on the long term to for example an increased inflation and a new stable level of the 

exchange rate close to the previous one.    

To achieve their objectives the central banks can use a variety of tools such as interest rates 

or reserve requirement. For example, to achieve a contraction of money supply, the central 

bank can increase interest rates, reduce the monetary base, and increase reserve 

http://en.wikipedia.org/wiki/Monetary_authority
http://en.wikipedia.org/wiki/Supply_of_money
http://en.wikipedia.org/wiki/Fiscal_policy
http://en.wikipedia.org/wiki/Tax
http://en.wikipedia.org/wiki/Government_spending
http://en.wikipedia.org/wiki/Government_borrowing
http://en.wikipedia.org/wiki/Economy
http://en.wikipedia.org/wiki/Unemployment
http://en.wikipedia.org/wiki/Interest_rates
http://en.wikipedia.org/wiki/Interest_rates
http://en.wikipedia.org/wiki/Inflation
http://en.wikipedia.org/wiki/Monetary_base
http://en.wikipedia.org/wiki/Reserve_requirement
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requirements. The primary tool of monetary policy is open market operations: the 

management of the quantity of money in circulation through the buying and selling of 

various financial instruments, such as treasury bills, company bonds, or foreign currencies. 

All of these purchases or sales result in more or less base currency entering or leaving 

market circulation. In US style central banking, liquidity is furnished to the economy 

primarily through the purchase of Treasury bonds by the Federal Reserve System. The 

Eurosystem uses a different method. There are about 1500 eligible banks which may bid for 

short term repo contracts of two weeks to three months duration (a repo contract being the 

abbreviation for repurchase agreement which is the sale of securities together with an 

agreement for the seller to buy back the securities at a later date). The banks in effect 

borrow cash and must pay it back; the short durations allow interest rates to be adjusted 

continually. When the repo notes come due the participating banks bid again. An increase in 

the quantity of notes offered at auction allows an increase in liquidity in the economy. A 

decrease has the contrary effect. In facts, an increase in deposits in member banks, carried 

as a liability by the central bank, means that more money has been put into the economy. 

The other primary means of conducting monetary policy include: Discount window lending 

(lender of last resort), Fractional deposit lending (changes in the reserve requirement), 

Moral suasion (cajoling certain players to achieve specified outcomes), Open Mouth 

Operations (talking monetary policy with the market).  

It is also important for policymakers to make credible announcements: private agents must 

believe that these announcements will reflect actual future policy. 

Some papers such as Engle and Ng (1991) studied the effects of the differential impact of the 

different monetary measures used by Central Banks on the exchange rates level and 

volatility: they introduced Dummies in a simple GARCH framework for changes in interest 

rates, reserves requirement … or public announcements. My study will not focus on this 

matter.    

For more details on the role and tools of the European Central Bank, you can read La Banca 

Centrale Europea:  la politica monetaria nell’area dell’euro, by Pifferi and Porta (2003). 

 

 

  

http://en.wikipedia.org/wiki/Reserve_requirement
http://en.wikipedia.org/wiki/Open_market_operation
http://en.wikipedia.org/wiki/Federal_Reserve_System
http://en.wikipedia.org/wiki/Repurchase_agreement
http://en.wikipedia.org/wiki/Security_(finance)
http://en.wikipedia.org/wiki/Discount_window
http://en.wikipedia.org/wiki/Moral_suasion
http://en.wikipedia.org/wiki/Signalling_(economics)
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2. Stylized facts of Financial Time Series 

As explained in the introduction, this study involves modeling the EUR/USD exchange rates 

level and volatility and we will therefore be working on time series. Modeling financial time 

series is complex, not only because of the wide variety of series (stock prices, interest rates, 

exchange rates, … ), the influence of the observation’s frequency (second, minute, hour, day 

etc.) or the availability of very large sample but because of the existence of statistics 

regularities (stylized facts) common to a large number of financial series and difficult to 

artificially reproduce from stochastic models.  

Since the early work of Mandelbrot (1963), researchers have documented empirical 

regularities regarding these series. Due to a large body of empirical evidence, many of the 

regularities can be considered as stylized facts.  

We introduce first some notations: let    be the asset price at time t and                 ) 

the logarithm of the asset return. 

The series (  ) is often close to the one describing relative price changes:  

   
       

    
   or              .  

These two series have the advantage of being without unit, which facilitates comparisons 

between different assets. The following properties have been extensively discussed in the 

financial literature concerning daily series of stock prices though it can be observed for other 

series. Charpentier (2002) distinguished seven main properties. 

 

2.1. Non Stationary Process 

The stochastic process of    are usually not stationary at the second order whereas the 

processes built on asset return or price changes are. The price trajectories are actually close 

to that of a random walk without constant term. 

Let’s remind the definition of a strong and weak stationary process (or a process stationary 

at the second order). Let (        be a stochastic time process: 
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Definition of a stationary process 

The process (  ) is said to be strictly stationary if  the n values            such as,  

 i ⟦   ⟧, h  Z,                , the series (                      follow the same 

probability law as the series (                . 

Definition of a stationary process at the second order 

The process (  ) is said to be stationary at the second order if the following conditions are 

satisfied: 

(i)  t  Z,  E(   ) <  

(ii) t  Z,  E(  ) = m , independent of t 

(iii) (t, h)  Z², cov(  ,     ) = E[ (     -- m)(    – m) ] = γ(h), independent of t 

Especially for high-frequency data like exchange rates, volatility is highly persistent and there 

exists evidence of near unit root behavior of the conditional variance process (Longmore and 

Robinson, 2004). This means the characteristic equation could admit a unit root and the time 

series model could be non-stationary and therefore non stable. 

 

2.2. Auto-correlations of squared price changes 

We see that the series (  ) have very low autocorrelation, making it close to a white noise. In 

contrast, the series of squares (  ²) or absolute values (|  |)  are often highly auto-

correlated. 

These two properties are not incompatible, but show that the white noise is not 

independent. The non-existence of auto-correlations is a direct consequence of an efficient 

market. I won’t detail any further the theory of market efficiency and the test of the Efficient 

Market Hypothesis. Under this hypothesis, the price    incorporates all the pertinent 

information. 

 

2.3. Non normality: Existence of fat tails 

When one considers the sample distribution of returns or price changes, or the logarithm of 

the price changes, it is generally perceived that they do not correspond to a normal 

distribution. Conventional tests of normality tend to clearly reject the hypothesis of a normal 
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distribution. Specifically, the density probability function of these series have fat tails and 

spike in zero: they are called leptokurtic distributions.  

A measure of this effect is obtained from the coefficient of kurtosis: E [(
      

  
)
 

] with V(X) 

= σ² the variance of the distribution. This coefficient can be calculated with sample variance 

and average and is asymptotically equal to 3 for a normal distribution and is much higher for 

these series. This observation is also referred to as excess kurtosis.  

 

2.4. Volatility Clustering 

Large values of |  |, or price swings, tend to be followed by large values, and small by small. 

We see sub-periods of high agitation prices (we say that the market is more volatile), 

followed by sub-periods much calmer (called low volatility). As these sub-periods are 

recurrent but not periodic, the series of returns is not incompatible with a stationary 

process, in particular homoscedastic process (with constant marginal variance).  

However, since a high value of       appears to increase the probability of observing a high 

value for   ², the variance of    conditional on its past values do not seem constant. This 

phenomenon called conditional heteroscedasticity is not incompatible with a stationary 

process. 

 

2.5. Leverage effects 

In financial markets, it is a stylized fact that a downward movement (depreciation) is always 

followed by a higher volatility. This characteristic exhibited by percentage changes in 

financial data is termed leverage effects. According to past studies in this field, price 

movements are negatively correlated with volatility. Volatility is higher after negative shocks 

than after positive shocks of the same magnitude. This feature was first suggested for stock 

returns by Black (1976). 

 

2.6. Asymmetry of Gain-Loss 

The distribution of prices is usually asymmetric: there are stronger moves of depreciation 

than appreciation.  



18 
 

A measure of this effect is obtained from the coefficient of Skewness: E [(
      

  
)
 

] with 

V(X) = σ² the variance of the distribution. This coefficient can be calculated with sample 

variance and average and is asymptotically equal to 0 for a symmetric distribution. 

 

2.7. Seasonality 

Regular events like holidays and weekends have effects on exchange rate volatility. Studies 

indicate that volatility of exchange rates returns or percentage changes is lower during 

weekends and holidays than during the trading week. Many studies attribute this 

phenomenon to the accumulative effects of information during weekends and holidays. 
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3. The GARCH Framework 

The ARCH model was first applied in modeling the currency exchange rate by Hsieh in 1988. 

He showed that a generalized ARCH model could explain a large part of the nonlinearities for 

the five exchange rates of his study. Since then, applications of the GARCH family models 

have increased tremendously (see Danielsson, 1994; Christie, 1982; Brooks and Burke, 1998; 

Longmore and Robinson, 2004; Hafner and Herwartz, 2006). In many of the applications, it 

was found that a very high-order ARCH model is required to model the changing variance.  

The alternative and more flexible lag structure is the Generalised ARCH introduced by 

Bollerslev (1986). He is the one who indicated that the squared returns of not only exchange 

rates but all speculative price series exhibit autocorrelation and volatility clustering. It is also 

proven that small lag such as GARCH(1,1) is sufficient to model the variance changing over 

long sample periods (French, 1987; Choo, 1999; Brooks and Burke, 2003). Some other 

models based on the simple GARCH one has been proposed as well. Engle (1987) proposed 

the GARCH in the mean model (GARCH-M) to formulate the conditional mean as function of 

the conditional variance, standard deviation or logarithm of the variance and a constant; the 

conditional variance following a classic GARCH model. This model can be seen as a natural 

extension due to the suggestion of the financial theory that an increase in variance will result 

in a higher expected return. 

Even though the GARCH model can effectively remove the excess kurtosis and capture the 

volatility clustering in returns, it cannot capture the skewness of financial time series. A few 

modifications to the GARCH model have been proposed to take into account this 

phenomenon. Different alternatives were proposed: the Exponential GARCH or EGARCH 

model introduced by Nelson (1991) or the Threshold ARCH (TARCH) applied by Zakoïan 

(1994).  

Choo (1999), Longmore and Robinson (2004) or Engle (1993) among numerous authors 

studied the performance of these GARCH models in forecasting the stock market and other 

asset prices volatility and concluded the symmetric GARCH-M (1,1), asymmetric EGARCH 

(1,1) and TARCH (1,1) models were effective in modeling returns volatility. I will therefore 

present in a first time the symmetric GARCH model, more specifically the GARCH(1,1) and 
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the GARCH-M(1,1), before presenting the asymmetric models EGARCH(1,1) and TARCH(1,1). 

These models can be estimated using the Maximum Likelihood method.  

For more details on the theory and estimation methodology of the GARCH framework with 

financial time series, you can see Econometric Analysis by Greene (2011), The Econometrics 

of Financial Markets by Campbell (1996) or Introductory Econometrics for Finance by Brooks 

(2006). 

3.1. Testing for Autocorrelation and Heteroscedasticity  

One of the most important issues before applying the GARCH methodology is to first 

examine the residuals of the returns series of exchange rate for evidence of autocorrelation 

and heteroscedastocity in the residuals. To test it, the Lagrange Multiplier (LM) test 

proposed by Engle (1982) can be applied. In the study, I use the software GRETL which 

provides the LM statistic to test for ARCH effects once a first regression is done on the mean 

equation of the model via the Ordinary Least Squares method. 

In summary, the test procedure is performed by first obtaining the residuals   
  from the 

ordinary least squares regression of the conditional mean equation which might be an 

autoregressive (AR) process, moving average (MA) process or a combination of AR and MA 

process (ARMA). 

After obtaining the residuals    the next step is to do the regression of the squared residuals 

on a constant and q lags in the following equations: 

  
           

        
          

     

The null hypothesis there is no ARCH effect up o order q can be formulated as: 

                 

Against the alternative            for at least one i = 1, 2, …, q 

The test statistic for the joint significance of the q-lagged squared residuals is the number of 

observations times the R² from the regression. It is evaluated against the χ²(q) distribution. 
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3.2. The Generalized ARCH Model 

The GARCH model used in this study has only three parameters that allows for an infinite 

number of squared errors to influence the current conditional variance (volatility). The 

conditional variance determined through GARCH model is a weighted average of past 

squared residuals. However, the weights decline gradually but they never reach zero. 

Essentially, the GARCH model allows the conditional variance to be dependent upon 

previous own lags. The general framework of this model, GARCH (p, q), is expressed by 

allowing the current conditional variance to depend on the first p past conditional variances 

as well as the q past squared innovations: 

  
       ∑      

 

 

   

   ∑      
 

 

   

 

where p is the number of lagged σ² terms and q is the number of lagged ε² terms. 

In this study, the following simple specifications GARCH (1, 1) are used: 

  Mean equation             

  Variance equation    
              

          
  

 

where    > 0,     > 0 and    > 0 

   is the return of the asset at time t 

  is the average returns 

   is the residual returns defined as    =      where    is the standardized residual 

returns (i.e. iid random variable with zero mean and variance 1) and   
  is the 

conditional variance. 

The constraints   > 0,     > 0 and    > 0 are needed to ensure   
  is strictly positive. In this 

model, the mean equation is written as a function of constant with an error term. Since   
  is 

the one period ahead forecast variance based on past information, it is called the conditional 

variance. The conditional variance equation specified as a function of three terms: the 

constant term,  ; the news about volatility from the previous period, measured as the lag of 
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the square residuals from the mean equation,     
  ; and the last period forecast variance, 

    
 . 

The conditional variance equation models the time varying nature of volatility of the 

residuals generated from the mean equation. This specification is often interpreted in a 

financial context, where a trader predicts this period’s variance by forming a weighted 

average of a long term average (the constant), the forecast variance from last period and 

information about volatility observed in the previous period. If the asset return was 

unexpectedly large in either the upward or the downward direction, then the trader will 

increase the estimate of the variance for the next period. 

 

3.3. The GARCH in Mean model 

The GARCH-M model introduced by Engle (1987) allows the conditional mean to depend on 

its own conditional variance. The following GARCH-M (1,1) specifications are used: 

Mean equation                     

 Variance equation    
              

          
  

 

where    > 0,     > 0 and    > 0 

   is the return of the asset at time t 

  is the average returns 

   is the residual returns defined as    =      where    is the standardized residual 

returns (i.e. iid random variable with zero mean and variance 1) and   
  is the 

conditional variance. 

 

3.4. The Exponential GARCH model 

The GARCH model is not the best model to explain the leverage effects or the asymmetry 

observed in financial time series. Indeed, the conditional variance is a function only of the 

magnitudes of the past values and not their sign. The effects of a shock on the volatility are 
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asymmetric or in other words the effect of good news, a positive lagged residual, may be 

different from the effects of the bad ones, a negative lagged residual. The development and 

the presentation of EGARCH model done by Nelson (1991) takes into account such an 

asymmetric response to a shock and ensures the variance is always positive. In the general 

form, the conditional variance is written as: 

     
        ∑  {|

    

    
|   √

 

 
}     

    

    

 

   

    ∑         
  

 

   

 

The EGARCH model is asymmetric because the level  
    

    
 is included with coefficient    and 

since this coefficient is typically negative, positive returns shocks generate less volatility than 

negative shocks. 

The following EGARCH (1, 1) characteristics are used: 

Mean equation             

Variance equation       
          {|

    

    
|   √

 

 
}     

    

    
             

   

 

3.5. The Threshold ARCH model 

The TARCH model used by Zakoïan (1994) proposes the independence for the asymmetric 

effect of shocks. The conditional variance is written as: 

  
        ∑      

 

 

   

   ∑  

 

   

    
     ∑       

      
 

 

   

 

Where      
    ,

             
           

 

In the study I will use the following TARCH (1,1): 

Mean equation             

 Variance equation   
              

          
            

      
  

Where      
    ,
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In the TARCH model, good news     > 0 and bad news    < 0 have different effects on the 

conditional variance. When      , it can be concluded the news impact is asymmetric and 

there is presence of leverage effects. The difference between the TARCH and EGARCH is that 

TARCH assumes leverage effect as quadratic and the EGARCH assumes leverage effect as 

exponential.  
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4. A Currency Hedging Strategy 

Commercial transactions in foreign currencies are subject to exchange rate risk: changes in 

foreign exchange rates vary continuously on the FOREX market and can affect a company’s 

cash flow. If the exchange rate exposure has disappeared in the euro area, it is still present 

for trades with the rest of the world. Depending on the currency, you can record losses in 

your profit margin if the transaction is made in the currency of the foreign company with 

which you conduct your business operations. On the contrary, if the transaction is carried 

out in your currency is your counterparty is exposed to currency risk. 

The exchange rate at the time of settlement will be indeed different from the exchange rate 

at the billing time. During this period, the exchange rate’s fluctuations may significantly 

affect the final cash flow converted into your national currency. Furthermore, a change in 

exchange rate of one currency to another can affect the competitiveness of a company’s 

products: the prices offered to a foreign buyer can become more or less expensive for 

foreign buyers when the currency is appreciated or depreciated. For all these reasons, the 

choice of the currency plays a very important role. Given this currency exposure, you can 

either do nothing and run the risk of losses or protect yourself against the risk of exchange 

rates movements with the use of hedging strategies. A currency hedge will be an investment 

position intended to offset potential losses or gains that may happen for an investment in a 

foreign currency.  

Döhring (2008) describes in a report for the EU commission how multinational companies 

operating in Europe try to manage the euro exchange rate volatility with financial or 

operational hedging strategies. A structural hedging also called operational or natural hedge 

is a long term strategy where a company tries to match its cash flows of revenue and cost in 

the same local currency. For example, an exporter to the United States faces a risk of 

changes in the value of the U.S. dollar and chooses to open a production facility in that 

market to match its expected sales revenue to its cost structure. The structural hedging 

takes time but is proven to be more effective on the long term. Some other natural hedges 

are: 

 Currency loan: the company receives the amount of the deal immediately and suffers 

no change in the price. It will pay back later with the cash provided by the sales. 
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 The use of insurance policies: it allows the hedging of the exchange rate exposure 

through an insurance premium. If the company suffers a loss of exchange, it will be 

compensated, and if the company recorded a foreign exchange gain, it must be 

repaid to the insurer. 

A financial hedging will use financial instruments such as stocks, exchange traded funds, 

swaps, options and many types of over-the-counter and derivatives products. Here is a set of 

hedging instruments used for hedging purpose: 

 Forward exchange contract for currencies: once the company has signed a sales 

agreement with its counterpart abroad, it informs the bank the elements of the 

contract (billing currency, amount, … ) and settle a forward agreement on the 

exchange rate and amount of currencies it will exchange on a given date. Thus, the 

currency risk is fully hedged because the company knows the amount it will receive 

at maturity, with the forward rate that is set with the bank. 

 Currency future contracts: they are similar to forward contracts but are traded on 

regulated markets giving them some advantages I will explain later. 

 Money Market Operations for currencies 

 Forward Exchange Contract for interest 

 Money Market Operations for interest 

 Future contracts for interest 

 Currency option: it offers more flexibility. A currency option is a right to buy or sell an 

amount of currency, which means that whoever owns the option has the right to 

enforce it or not. The company can hedge against exchange loss but can also benefit 

from a gain in the spot foreign exchange rate. 

My study will focus on a short term financial hedging strategy involving three months futures 

contracts. I will first present the product and its use in currency hedging before presenting 

the methodology followed for the hedging strategy. I will focus in particular on the 

determination of the optimal amount of three months futures contracts to hold in a 

portfolio. I will use different data frequencies for the estimation process and for the 

observation of the hedged portfolio returns.  
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4.1. Futures contracts 

For more details on this topic, you can see Options, Futures and Other Derivatives by Hull 

(2005). The following definition of a futures contract is actually extracted from this book. 

“A futures contract, like a forward contract, is an agreement between two parties to buy or 

sell an asset at a certain time in the future for a certain price. Unlike forward contracts, 

futures are normally traded on an exchange which specifies certain standardized features of 

the contract. It also provides a mechanism which gives the two parties a guarantee that the 

contract will be honored. The largest exchanges on which futures are traded are the Chicago 

Board of Trade and the Chicago Mercantile Exchange. A very wide range of commodities and 

financial assets such as stock indices or currencies form the underlying assets of the 

contracts. The contract usually specifies the amount of the underlying asset, the delivery 

month or week of the month, how the futures price is to be quoted and possibly the limits on 

the amount by which the price can move in one day. Futures prices are regularly reported in 

the financial press and are determined on the floor of the exchange like other financial 

products by the force of supply and demand from investors. “ 

A currency future is therefore a futures contract to exchange one currency for another at a 

specified date in the future at a price (exchange rate) that is fixed on the purchase date. This 

rate fluctuates every day on the market where the contract is quoted. For most contracts, 

one of the currencies is the US dollar. For example, a contract will involve the sales of 

100000 EUR for 134250 USD, i.e. a price of 1,3425EUR/USD. To enter into a futures contract 

a trader needs to pay a deposit called an initial margin then his position will be tracked on a 

daily basis and whenever his account makes a loss for the day, the trader would receive a 

margin call requiring him to pay up the losses. Further details on issues such as margin 

requirements, daily settlement procedures, delivery procedures, bid-ask spreads, and the 

role of the exchange clearinghouse are exposed in Options, Futures and Other Derivatives by 

Hull (2005). Most contracts have physical delivery, so for those held at the end of the last 

trading day, actual payments are made in each currency. However, most contracts are 

closed out before that.  These contracts, mostly traded electronically, are traded on different 

markets: the International Monetary Market, the Euronext Liffe, Tokyo Financial Exchange, 

Intercontinental Exchange. The existence of futures markets is mainly due to the need and 

difficulty in finding counterparty for forward contracts.  

http://en.wikipedia.org/wiki/Futures_contract
http://en.wikipedia.org/wiki/Currency
http://en.wikipedia.org/wiki/Exchange_rate
http://en.wikipedia.org/wiki/United_States_dollar
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The futures contracts used in this study are EUR/USD contracts traded on the Chicago 

Mercantile Exchange in the United States. The contracts’ amount is 125000EUR, and the 

delivery months are March, June, September and December of the current year or the next 

year. The delivery occurs on the second day of the third week of the month. The quotation is 

expressed in term of exchange rate. For information, the Chicago Mercantile Exchange 

represented in 2009 a volume of more than 750 000 futures contracts a day and an average 

daily notional value close to 100 billion USD. 

 

4.2. Hedging using Futures 

The following definition of a futures hedging is extracted from Options, Futures and Other 

Derivatives by Hull (2005). 

“Investors use these futures contracts to hedge against foreign exchange risk. A company 

that knows it is due to sell an asset such as currencies at a particular time in the future can 

hedge by taking a short futures position (sales of futures contracts).  It is known as short 

hedge. If the price of the asset goes down, the company does not fare well on the sale of the 

asset but makes a gain on the short futures position. If the price goes up, the company gains 

from the sales of the asset but make a loss on the futures position. Similarly, a company that 

knows it is due to buy an asset in the future can hedge by taking a long futures position (the 

company buys futures). This is known as long hedge. For example, an investor based in the 

United States will receive 1,000,000EUR on December 1. The current exchange rate implied 

by the futures is 1.2347USD/EUR. He can lock in this exchange rate by selling 1,000,000EUR 

worth of futures contracts expiring on December 1. That way, he is guaranteed an exchange 

rate of 1.2347USD/EUR regardless of exchange rate fluctuations in the meantime. It is 

important to recognize that hedging does not necessarily improve the overall financial 

outcome. In fact, we can expect the outcome to be worse. The futures hedge exists to reduce 

risk by making the outcome more certain but has a cost. Besides, there is a number of 

reasons why hedging using futures works less than perfectly in practice: the asset whose 

price is to be hedged may not be exactly the same as the underlying of the contract; the 

hedger may be uncertain as to the exact date when the asset will be bought or sold; the 

hedge may require the futures contract to be closed out well before its expiration date. “ 

http://en.wikipedia.org/wiki/Hedge_(finance)
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We can easily summarize the pro and cons of hedging with futures: 

 (Pro) liquid and central market: with many market participants it is easy to buy or sell 

a futures contract. 

 (Pro) position easily closed out: a trader who has taken a position in futures can 

easily make an opposite transaction and close his position. 

 (Pro) leverage: a trader takes a large position with only a small initial deposit. 

 (Pro) convergence: spot and futures prices tend to converge at expiration of the 

contract. Besides, their prices’ fluctuations are highly correlated and are easy to 

model. 

 (Cons) legal obligation: if hedging is done with futures for a project whose cash flows 

are not yet estimated or won’t be estimated in a correct way the futures position 

becomes a speculative position. 

 (Cons) standardized features make perfect hedging difficult: it is close to impossible 

to find the amount or maturity matching with a project’s cash flows. 

 (Cons) Daily margin calls can cause significant cash flow burdens for traders. 

 (Cons) Futures hedging don’t allow the trader to benefit from a gain in the spot 

transaction. 

The disadvantages of futures contract can actually be solved by hedging with currency 

options, more flexible but because of the numerous futures hedging models proposed by the 

literature and the easy computability of these models, I choose to focus on the futures 

hedging strategies. I will therefore assume there aren’t any of these problems or any 

transaction costs and that the only available hedging instrument will be futures contracts. I 

will therefore be able to focus the study on the determination of the optimal ratio of futures 

needed to hedge our position. 

 

4.3. Optimal hedge ratio 

The following definition of an optimal hedge ratio is extracted from Options, Futures and 

Other Derivatives by Hull (2005). 
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“The hedge ratio is the ratio of the size of the position taken in futures contracts to the size of 

the exposure. Up to now we have always assumed a hedge ratio of 1. We now show that, if 

the objective of the hedger is to minimize risk, a hedge ratio of 1 is not necessarily optimal.” 

We can understand that different approaches are available for the determination of an 

optimal hedge ratio. For example, an approach could be to minimize the variance of the 

hedged portfolio. This approach proposed by Johnson (1960) is called the minimum variance 

(MV) hedge ratio. The following definition is based on this approach and uses some other 

implied assumptions: the hedge ratio is constant through time and we observe a constant 

correlation independent of the time and the hedge ratio. 

“We define: 

   : Change in spot price, S, during a period of time equal to the life of the hedge (gain or 

loss) 

   : Change in futures price, F, during a period of time equal to the life of the hedge (gain or 

loss) 

   : Standard deviation of     

   : Standard deviation of     

ρ : Coefficient of correlation between    and    

h : Hedge ratio 

The portfolio of the hedger is composed of a position in cash that we named S and the 

futures position that we named F. When the hedger is long in a currency and short in futures, 

the change in the value of the hedger’s position during the life of the hedge is therefore   

        . It is also called the payoff of the hedge. For a long hedge, the payoff will be   

         . 

In either case, the variance   of the change in payoff is given by 

    
      

          

So that   
  

  
      

         . Setting it equal to zero and noting that 
   

   
 is positive, we 

see that the value of h that minimizes the variance is  
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If ρ =1 and       then h = 1 but for example if ρ =1 and           then h = 0.5.” 

This definition shows us that the hedge ratio is not always equal to 1 (approach called naïve 

hedge) and that hedging a currency in practice doesn’t need the existence of a future on this 

particular currency but a future on an asset whose price is correlated to the price of this 

currency. This result illustrates the purpose of cross correlation between the different 

markets or financial instruments involved in the hedging strategy: it explains why a loss in 

some position can be offset by a gain in some other in order to reduce the variance of the 

returns. Because of the nature of the individual series, the multivariate GARCH models for 

the estimation of the covariance matrix of the joint distribution of spot and futures rates 

seem to be a natural framework.  

Other approaches different from the MV hedge ratio are studied in the literature: Cecchetti, 

Cumby and Figlewski (1988) incorporated the expected returns in the determination of the 

optimal hedge ratio. They tried to find the optimal dynamic futures hedge for 20-year 

Treasury bonds by maximizing the expected returns and minimizing the variance of the 

returns. It is called the Mean-Variance optimal hedge ratio and is more consistent with the 

mean variance framework proposed in section 3 for modeling the exchange rates’ 

distribution. This approach is also used by Kroner and Sultan in their paper from 1990 and 

1993 but under their assumption (the futures prices follow a martingale process i.e. the 

expected delivery price is the purchase price) they actually use a simplified expression of the 

hedge ratio which is the expression of the MV hedge ratio. The literature proposes as well 

the determination of an optimal hedge ratio based on the maximization of a utility function 

or an expected utility function of the investor. This approach has the inconvenient of the 

determination of a utility function. Some more recent papers proposed stochastic 

approaches: hedge ratios based on the generalized semi-variance or lower partial moments. 

In addition to the different definition of an optimal hedge ratio, the literature differs in term 

of the static or dynamic nature of the hedge ratio. Conventional approach to hedging will 

assume the hedge ratio is constant over time but it is clear that the distributions of spot and 

futures prices are changing through time, and estimating a constant hedge ratio may not be 

appropriate. The position to hedge evolves and might need a dynamic approach. In practice, 

a trader will anyway manage his position on a daily basis and a company will do it on a 



32 
 

weekly or monthly basis. Another matter needs to be considered: the data frequency we 

shoud use for the estimation of the hedge ratios. 

Finally, many different techniques are used to estimate the static and dynamic hedge ratios 

from the simple Ordinary Least Squares (OLS) to the Conditional Heteroscedastic (GARCH 

and ARCH), the random coefficient method, the cointegration method or the cointegration-

heteroscedastic method (Kroner and Sultan in 1993). A review of the different futures hedge 

ratios is proposed by Chen, Lee and Shrestha (2003). The models they proposed performed 

with varying degrees of effectiveness and the different papers available propose two 

different conclusions: a time invariant model performs better than a dynamic model against 

the opposite conclusion.  

In my study, I make the assumption that the objective of the hedger (i.e. the company) is to 

minimize the variance of his returns which is seen as the widely used MV approach. Then, I 

use different estimation methods for the constant and dynamic hedge ratios and observe 

the effectiveness of the hedge by constructing the hedge portfolio implied by the hedge 

ratios, observing its returns distribution and measuring the percentage of reduction in the 

variance of the spot price changes (Geppert 1995).  

I will also use different data frequencies (daily, weekly and monthly) for the estimation and 

the observation of the portfolio returns. This way, I can see if there is any relationship 

between the hedge ratio, data frequency and effectiveness of the hedge.  

 

4.4. The Conventional Hedging Model 

This model is constructed assuming the investor is looking for a minimization of his returns’ 

variance and that the only hedging instrument available is the futures contract. This model 

also considers the hedge ratio is static (i.e. it remains the same over time). 

Let’s     and    be the purchase price and settlement price of a futures contract, and    and 

   be the price of the spot at the time the future was purchased and the price at the time 

the future was settled. Then,                     denotes the random return for 

holding one unit of the spot and h units of the futures. A perfect hedge would be the one for 

which this return remains null (mean and variance null). The variance of the portfolio return 

is therefore: 
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By minimizing the variance with the first order condition with respect to h we can find the 

optimal number of futures contracts in the investor’s portfolio: 

   
    

   
  

The sign is just the indication of opposite position in spot and futures. This solution called 

the optimal MV constant hedge ratio gives the optimal proportion of the spot position which 

is hedged. Then, if the distribution of spots and futures is not changing through time, it 

becomes possible to extend this model to a multi-period framework with a given variance 

for each period and to find the optimal sequence of hedge ratios {          } for each 

period. Therefore, under these assumptions the optimal hedge could be calculated as the 

ordinary least squares estimator from a time series regression of changes in spot prices on 

changes in futures prices: 

              

where the estimate of the MV hedge ratio is given by (-β).  

In my study, the periods used for the regression are days, weeks and months. The OLS 

technique is quite robust and simple to use but some assumptions need to be satisfied. In 

particular, the error term cannot be heteroscedastic. The simplicity of the model brought 

several applications in the literature: Hill and Schneeweis (1982) used the model to show 

that foreign exchange futures can provide a good hedge for risk in foreign exchange markets. 

However, this model presents some disadvantages: it uses unconditional moments and 

therefore doesn’t account that the distributions (and therefore the variances and 

covariance) of spots and futures are changing through time as new information is 

incorporated to the prices.  

 

4.5. The Dynamic Hedging Model 

I consider here some alternatives allowing the variance and covariance to vary through time. 

It involves a bivariate GARCH framework for the joint distribution of spot and futures rates 

allowing therefore a time varying hedge ratio. The purpose of these models is to estimate 

the covariance matrix in order to give an estimation of the hedge ratio. Kroner and Sultan 
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(1990 and 1993) used this approach with a conditional constant correlation and a mean 

variance optimal hedge ratio under the assumption that the futures prices follow a 

martingale process. A review of the different multivariate models is proposed by Ding and 

Engle (2001). I considered here again the investor is looking for minimizing the variance of 

the hedged portfolio (MV approach). I present then shortly the different characteristics of 

the models I applied in my study. 

Let’s     and     be the changes in the prices of the spot and the futures between time 

  and  , and     the purchases of futures at time   . Then the payoff at time t, for purchasing 

one unit of the spot and    units of the future at some time     in the past, is: 

                             

The investor chooses his optimal one-period holdings of futures at each time t by minimizing 

his variance, the index t reminds that the variance is calculated conditional on all 

information available at time t. We have therefore a risk which is now measured by 

conditional, not unconditional, variances.  

Following the minimization at the first order respect to the hedge ratio, we find the optimal 

MV hedge ratio at time t: 

    
                  

           
 

This is similar to the conventional hedge ratio except that conditional moments replace 

unconditional moments. A direct consequence is that the optimal number of futures held 

will change through time because conditional moments are changing as new information is 

integrated to the prices. Kroner and Sultan (1993) called this model the conditional model 

since it’s based on conditional moments. 

In order to estimate the hedge ratio we need to specify the joint conditional distribution of 

the changes in prices. Because we need a stationary process, we choose the first log 

difference of spot price and the futures price (         with the condition of the first and 

second moments depending on time. I consider the bivariate GARCH framework: 

{
            
            

  with  (    
    

) |             and    [
    

      

         
 ] 
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Where       is the information available at time t and    is the covariance matrix. 

The different models estimation will then use different assumptions on the form of the 

covariance matrix but they will all be estimated with the maximum likelihood method and 

the estimation of the optimal hedge ratio will then be given by: 

  ̂   
     ̂

    
 ̂

 

A simple computation of the hedge ratio based on the expression of the covariance matrix 

expression will therefore give us the time varying hedge ratio.  

We understand here a new matter need to be considered: what is the form of this 

covariance matrix and how do we estimate it? The literature proposes again a multitude of 

different models among which I noticed some popular ones: the general VECH model, the 

Conditional Constant Correlation and the BEKK model. I expose shortly these models. 

 

4.5.1. The Diagonal VECH model 

Under the assumption of a diagonal VECH model, the conditional covariance matrix of the 

dependent variables can follow a flexible dynamic structure. The VECH model is the most 

general model for the covariance matrix and was proposed by Bollersev, Engle and 

Wooldrige in 1988. It has the inconvenient to involve the determination of a prohibitive 

number of parameters (21 parameters just for my bivariate system). Another inconvenient is 

the estimated covariance matrix is not guaranteed to be positive. Bollerslev et al. (1988) 

proposed then the diagonal VECH model to reduce the number of parameters to estimate. 

The conditional covariance depends then only on its own past and on past shocks covariance 

(we only consider the case with 1 lag for the ARCH and GARCH terms): 

                                      

The covariance matrix is therefore given by: 

   [
    

      

         
 ]             
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Where    *
    
    

+ ,   *
     

     
+,   *

     

     
+ and   [

     

     
]  

This simplification let us 9 parameters to estimate. Ding and Engle (2001) proposed then 

different models based on the diagonal VECH with restrictions on these parameters allowing 

the covariance matrix to be positive semi-definite. EVIEWS 6 proposes to estimate the 

diagonal VECH and allows some of restrictions on the different matrix of parameters: I can 

impose a scalar, diagonal, rank 1 or full rank matrix for each of the parameters matrix.  I 

chose the simple model proposed by Ding and Engle (2001) for which I impose α and β to be 

scalars. It allows in a simple way the variance and covariance to vary through time. 

 

4.5.2. The Conditional Constant Correlation model (CCC) 

Another model of covariance is the conditional constant correlation (CCC) proposed by 

Bollerslev (1992). Under such assumption we have the following covariance matrix: 

   [
     

     
] [

  
  

] [
     

     
] 

where      
  and     

  follow a GARCH process. I consider only the GARCH (1,1) process in my 

study. It is the model used by Kroner and Sultan (1990 and 1993). This model has the 

inconvenient to consider a correlation constant through time which is sometimes unrealistic. 

Tse (1998) proposed then a simple test based on the Lagrange Multiplier (LM) test to 

determine if that hypothesis is sustainable. He found in his study that correlation could be 

considered constant for spot-futures and foreign exchange data but not for national stock 

market returns. 

 

4.5.3. The Diagonal BEKK model 

The last model proposed in my study is the diagonal BEKK based on the BEKK model first 

proposed by Baba, Engle, Kraft and Kroner (1991) and republished by Engle and Kroner 

(1995). This model imposes restrictions over parameters and includes all positive definite 

diagonal VECH models. It solves the problem of the positive definiteness. 
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The covariance matrix is given then by: 

   [
    

      

         
 ]             

          

In EVIEWS 6, a simplified diagonal BEKK model is proposed for which α and β are diagonal. 

The covariance follows then the same form of equations as for the diagonal VECH and the 

positive definitiveness is guaranteed.  
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5. The Data: Sample Description and Empirical Results 

Exchange rates used in this study are daily bilateral spot and futures rates from the 19th of 

June 2007, first trading date of the three months contract of September 2007, to the 18th of 

March 2013, last trading date of the three months contract of March 2013. I remind the data 

is provided respectively by the Statistic Data Warehouse of the European Central Bank for 

the spot rates and by The Wall Street Journal for the future rates. The study is limited to 

EUR/USD exchange rates. The spot rates are the average daily rates obtained from the ECB 

reference rate at 2.15p.m. (based on Bloomberg’s Data of the day). The futures rates are the 

settlement prices published by the Wall Street Journal whose source is Thomson Reuters for 

EUR/USD contracts traded on the Chicago Mercantile Exchange in the United States. Spot 

and Futures are quoted with 4 decimals and are expressed in terms of USD per EUR.  

The study is made with the help of two different software: GRETL for the sample description 

and the different tests on the individual series; EVIEWS 6 for the estimation of the univariate 

and bivariate GARCH models. GRETL is used and provided during the course of Applied 

Econometrics at Politecnico di Milano.  

 

5.1. Sample Description 

The Data set was constructed the following way: I collected first the daily spot for the 

EUR/USD; then, I collected daily settlement prices during the trading days for every three 

months futures contracts from 2007 to 2013. The trading days for spot and futures are the 

same since the data are provided for every day except weekends and holydays. When the 

future rate was missing for an unknown reason while the spot rate was provided, we kept 

the future rate of the previous trading date. I will not try to describe the seasonality effects 

on these series. I chose to focus only on the asymmetry, excess kurtosis and clustering 

effect. For the futures data, I proceed by collecting the sequential 60 to 64 trading days of 

the shortest term contract (a three months contract) until delivery before keeping the 

observations of the next three months contract. An example to illustrate the process: I 

collected the 64 daily quotations of the March2008 EUR/USD futures contract, from the 18th 

of December 2007 (first trading day after delivery of the previous contract) to the 17th of 

March 2008 (last trading day of the current contract); I then started collecting the daily 

settlement prices for the next contract (June2008 EUR/USD) from the first trading day after 
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delivery of the previous contract to the last trading day of the current contract.  

This filter process gives us a sequence of 1496 daily settlement prices for future rates and 

1496 average daily spot rates for the EUR/USD, for a total of 23 different three month 

futures contracts. I proceed then with the collect of weekly and monthly data by taking the 

average values of spot and futures rates for every weeks and month of the period of study. 

We obtain then 69 monthly spot and futures rates and 301 weekly spot and futures rates. 

 

A first plot of the daily spot and futures EUR/USD rates is provided as well as the summary 

statistics: 

Tab 5.1.Daily Spot and Three Month Futures EUR/USD exchange rates 
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Variable Mean Median Minimum Maximum 

S_EURUSD 1.37530 1.36410 1.19420 1.59900 

F_EURUSD 1.37501 1.36510 1.19240 1.59640 

 

Variable Std. Dev. C.V. Skewness Ex. kurtosis 

S_EURUSD 0.0887528 0.0645334 0.436533 -0.428354 

F_EURUSD 0.0878860 0.0639166 0.424231 -0.443976 

Tab 5.2. Summary Statistics, using the daily observations 2007/06/19 - 2013/03/18 

We can observe a stable level with a really small downward trend but without any structural 

changes. We consider therefore no linear trend in the spot or future rate over the period of 

study. The futures prices following the spot prices closely we can expect a high correlation 

factor in the joint distribution of returns. A first series of unit roots test is performed on the 

logarithms of the spot and futures prices using the Dickey Fuller test provided by GRETL with 

four lags and a constant: 

sample size 1496 

unit-root null hypothesis: a = 1 

 

test with constant 

model: (1-L)y = b0 + (a-1)*y(-1) + e 

1st-order autocorrelation coeff. for e: 0.012 

estimated value of (a - 1): -0.00586748 

test statistic: tau_c(1) = -2.05384 

p-value 0.2639 

Tab 5.3. Dickey-Fuller test for the logarithm of the daily Spot EURUSD rate 

 
sample size 1496 

unit-root null hypothesis: a = 1 

 

   test with constant  

   model: (1-L)y = b0 + (a-1)*y(-1) + e 

   1st-order autocorrelation coeff. for e: 0.037 

   estimated value of (a - 1): -0.00582157 

   test statistic: tau_c(1) = -2.04594 

   p-value 0.2672 

Tab 5.4. Dickey-Fuller test for the logarithm of the daily Future EURUSD rate 
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Based on the results, the number of lags chosen is sufficient (regarding the small 

autocorrelation coefficients) and I can’t reject the hypothesis of a unit root in the logarithm 

of the prices at the usual level of 5 or 10% of significance. These are therefore non-

stationary processes. Similar results are obtained with weekly and monthly data. 

As explained in the section about Financial Time series characteristics, I then need to work 

with the first log differences of the spot and the futures prices:         (
  

    
) and 

       (
  

    
).  

I proceed with the same tests and observe this time the log differences follow a stationary 

process for all the different data frequencies: 

sample size 1495 

unit-root null hypothesis: a = 1 

 

   test with constant  

   model: (1-L)y = b0 + (a-1)*y(-1) + e 

   1st-order autocorrelation coeff. for e: 0.000 

   estimated value of (a - 1): -0.99053 

   test statistic: tau_c(1) = -38.2387 

   p-value 5.692e-017 

Tab 5.5. Dickey-Fuller test for the first log difference of the daily Spot EURUSD rate 

 
sample size 1495 

unit-root null hypothesis: a = 1 

 

   test with constant  

   model: (1-L)y = b0 + (a-1)*y(-1) + e 

   1st-order autocorrelation coeff. for e: 0.001 

   estimated value of (a - 1): -0.966147 

   test statistic: tau_c(1) = -37.3527 

   p-value 1.144e-019 

Tab 5.6. Dickey-Fuller test for the first log difference of the daily Future EURUSD rate 
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sample size 69 

unit-root null hypothesis: a = 1 

 

   test with constant  

   model: (1-L)y = b0 + (a-1)*y(-1) + ... + e 

   1st-order autocorrelation coeff. for e: 0.014 

   lagged differences: F(2, 62) = 1.646 [0.2012] 

   estimated value of (a - 1): -0.910616 

   test statistic: tau_c(1) = -3.97255 

   asymptotic p-value 0.001567 

Tab 5.7. Dickey-Fuller test for the first log difference of the monthly Spot EURUSD rate 
 
 

sample size 69 

unit-root null hypothesis: a = 1 

 

   test with constant  

   model: (1-L)y = b0 + (a-1)*y(-1) + e 

   1st-order autocorrelation coeff. for e: 0.024 

   estimated value of (a - 1): -0.778508 

   test statistic: tau_c(1) = -6.47691 

   p-value 8.141e-007 

Tab 5.8. Dickey-Fuller test for the first log difference of the monthly Futures EURUSD rate 
 
 

sample size 301 

unit-root null hypothesis: a = 1 

 

   test with constant  

   model: (1-L)y = b0 + (a-1)*y(-1) + e 

   1st-order autocorrelation coeff. for e: -0.004 

   estimated value of (a - 1): -0.74477 

   test statistic: tau_c(1) = -13.2941 

   p-value 1.231e-024 

Tab 5.9. Dickey-Fuller test for the first log difference of the weekly Spot EURUSD rate 
 
 

sample size 301 

unit-root null hypothesis: a = 1 

 

   test with constant  

   model: (1-L)y = b0 + (a-1)*y(-1) + e 

   1st-order autocorrelation coeff. for e: 0.005 

   estimated value of (a - 1): -0.69076 

   test statistic: tau_c(1) = -12.5392 

   p-value 4.651e-023 

Tab 5.10. Dickey-Fuller test for the first log difference of the weekly Futures EURUSD rate 
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We can observe the unconditional distributions of     and     noted 

DLOG_S_EURUSD_”Frequency” and DLOG_F_EURUSD_”Frequency” and provide the 

summary statistics. I can already notice graphically that the futures movements follow the 

spot movements for the weekly and monthly data: 

 

Tab 5.11. First log difference of the daily Spot and Futures EURUSD prices 

 

Variable Mean Median Minimum Maximum 

DLOG_S_EURUSD_DAIILY -2.40680e-005 0.000136837 -0.0473544 0.0403771 

DLOG_F_EURUSD_DAILY -2.55541e-005 0.000000 -0.0305682 0.0311839 

Variable Std. Dev. C.V. Skewness Ex. kurtosis 

DLOG_S_EURUSD_DAIILY 0.00706512 293.548 -0.186343 3.14246 

DLOG_F_EURUSD_DAILY 0.00697277 272.863 -0.0960317 1.52958 

 
Tab 5.12. Summary Statistics, using the daily observations 2007/06/19 - 2013/03/18 
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Tab 5.13. First log difference of the weekly Spot and Futures EURUSD prices 

 

Variable Mean Median Minimum Maximum 

DLOG_S_EURUSD_WEEK

LY 

-6.38035e-005 -5.59813e-006 -0.0200856 0.0298877 

DLOG_F_EURUSD_WEEK

LY 

-6.09499e-005 0.000316682 -0.0185899 0.0196629 

Variable Std. Dev. C.V. Skewness Ex. kurtosis 

DLOG_S_EURUSD_WEEK

LY 

0.00582143 91.2400 0.130093 2.13894 

DLOG_F_EURUSD_WEEK

LY 

0.00560525 91.9648 -0.0649090 1.03258 

Variable 5% Perc. 95% Perc. IQ range Missing obs. 

DLOG_S_EURUSD_WEEK

LY 

-0.00916185 0.00788459 0.00768063 0 

DLOG_F_EURUSD_WEEK

LY 

-0.00885479 0.00913432 0.00725955 0 

Tab 5.14. Summary Statistics, using the weekly observations 2007/06/19 - 2013/03/18 
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Tab 5.13. First log difference of the monthly Spot and Futures EURUSD prices 

 

Variable Mean Median Minimum Maximum 

DLOG_S_EURUSD_monthly -0.000335000 0.00110758 -0.0496786 0.0388196 

DLOG_F_EURUSD_monthly -0.000224151 0.000989333 -0.0338319 0.0284620 

Variable Std. Dev. C.V. Skewness Ex. kurtosis 

DLOG_S_EURUSD_monthly 0.0160591 47.9375 -0.480466 0.751745 

DLOG_F_EURUSD_monthly 0.0123516 55.1041 -0.226084 0.196719 

Variable 5% Perc. 95% Perc. IQ range Missing obs. 

DLOG_S_EURUSD_monthly -0.0318133 0.0260604 0.0197944 0 

DLOG_F_EURUSD_monthly -0.0201764 0.0211196 0.0174264 0 

Tab 5.14. Summary Statistics, using the monthly observations 2007/06/19 - 2013/03/18 
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Variable Jarque-Bera test 

DLOG_S_EURUSD_monthly 4.27947, with p-value 0.117686 

 

DLOG_F_EURUSD_monthly 0.69907, with p-value 0.705016 

Tab 5.15. Test for Normality for the first log differences of monthly Spot and Future rates 

 

Variable Jarque-Bera test 

DLOG_S_EURUSD_WEEKLY 58.2277, with p-value 2.26992e-136 

 

DLOG_F_EURUSD_WEEKLY 13.5837, with p-value 0.00112291 

Tab 5.16. Test for Normality for the first log differences of weekly Spot and Future rates 

 

Variable Jarque-Bera test 

DLOG_S_EURUSD_DAIILY 624.205, with p-value 2.85543e-136 

 

DLOG_F_EURUSD_DAILY 148.135, with p-value 6.80647e-033 

Tab 5.17. Test for Normality for the first log differences of daily Spot and Future rates 

The same way, I don’t observe any linear trend but what looks like a random walk around a 

constant level for the daily and weekly data. They are non-normal, as evidenced by high 

skewness for the daily and weekly spot rates, high excess kurtosis for the daily and weekly 

spot and future rates and highly significant Bera-Jarque statistics. The excess kurtosis will be 

reduced with a GARCH framework and the asymmetry implied by the high skewness can be 

managed by asymmetric models. The monthly data doesn’t show any of the characteristics 

of the financial time series and the hypothesis of non-normality can’t be rejected. It could be 

explained by the low number of observations (69). 

A plot of the Correlogram giving the autocorrelation and partial autocorrelation functions for 

the first log differences of spot and futures rates for the different data frequencies is 

provided in Annex 1. It doesn’t seem to show any specific order of autocorrelation for the 

daily and monthly observations since we can’t observe any specific pattern or significance in 
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the autocorrelations but we can observe a significant first order correlation for the weekly 

data. 

But the test provided by GRETL for ARCH effects in the residuals from the mean equation 

regression via the OLS method confirmed the presence of autocorrelation and 

heteroscedasticity: I obtained LM statistic well above the χ²(10) critical value of 18,307 (for a 

5% level of confidence) for the daily data. 

 

Null hypothesis: no ARCH effect is present 

Test statistic: LM = 172.612 

with p-value = P(Chi-square(10) > 172.612) = 7.98013e-032 

Tab 5.18. Test for ARCH(10) in residuals of an OLS regression on the first log difference of 

daily Spot rates 

 

Null hypothesis: no ARCH effect is present 

Test statistic: LM = 120.878 

with p-value = P(Chi-square(10) > 120.878) = 3.35696e-021 

Tab 5.19 Test for ARCH(10) in residuals of an OLS regression on the first log difference of 

daily Future rates 

 

The similar tests are performed for weekly data and monthly data with 2 lags: I obtained LM 

statistic well above the χ²(2) critical value of 5,991 (at a 5% level of confidence) for the 

weekly data but no evidence of autocorrelation in the error term for the monthly data. 

Null hypothesis: no autocorrelation 

Test statistic: LMF = 10.3937 

with p-value = P(F(2,298) > 10.3937) = 4.33045e-005  

Tab 5.20. Test for ARCH(2) in residuals of an OLS regression on the first log difference of 

weekly Spot rates 

Null hypothesis: no autocorrelation 

Test statistic: LMF = 15.8056 

with p-value = P(F(2,298) > 15.8056) = 2.99178e-007 
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Tab 5.21 Test for ARCH(2) in residuals of an OLS regression on the first log difference of 

weekly Future rates 

Null hypothesis: no autocorrelation 

Test statistic: LMF = 0.310909 

with p-value = P(F(2,66) > 0.310909) = 0.733848 

Tab 5.22. Test for ARCH(2) in residuals of an OLS regression on the first log difference of 

monthly Spot rates 

Null hypothesis: no autocorrelation 

Test statistic: LMF = 1.94298 

with p-value = P(F(2,66) > 1.94298) = 0.151385 

Tab 5.23 Test for ARCH(2) in residuals of an OLS regression on the first log difference of 

monthly Future rates 

In conclusion, unlike the monthly data, the series of test performed on the weekly and daily 

data set shows that GARCH models seem appropriate for modeling the daily and weekly 

EUR/USD spot and future rates distributions and a bivariate GARCH framework seem 

therefore natural for modeling the joint distribution. I will now use the software EVIEWS 6 

for the estimation of the univariate and bivariate models. 

 

5.2. The GARCH framework: Empirical Results 

In this section, I quickly estimate the different models proposed in the literature on the 

individual daily and weekly series and try to determine which ones perform the best. The 

following univariate models estimation are performed with the Maximum Likelihood 

estimation method. I provide the full results of the estimation in the Annex.  

Based on the Akaike Info Criterion, I notice the models which performed the best for the 

individual series are: 

 For the daily data: the GARCH-M (1,1) performed the best for modeling the first log 

difference of the spot rates and the GARCH (1,1) performed the best for the futures 

rates. 

 For the weekly data: the TARCH (1,1) performed the best for modeling both the first 

log difference of the spot and futures rates. 
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5.2.1. The daily data: GARCH-M (1, 1) and GARCH (1,1) 

The complete estimation is provided in Annex 2 and 8. I have the following results for the 

first log difference of the spot rates: 

                          
       

            (0,000147)     (17,81152) 

    
                                  

                   
  

     (0,0000000234)      (0,006091)                (0,006966) 

The log likelihood for the model is 6643,905 and the Akaike info criterion (AIC) is -8,875541. 

And for the first log difference of the futures rates:  

                   

               (0,0000669) 

    
                                  

                   
  

       (0,0000000231)      (0,006146)                 (0,006825) 

The log likelihood for the model is 6650,967 and the Akaike info criterion (AIC) is -8,886319. 

 

5.2.2. The weekly data: TARCH (1,1) 

The complete estimation is provided in Annex 7. We have the following results for the first 

log difference of the spot rates: 

                   

               (0,000315) 

    
                              

                 
                 

        
  

                      (0,000000781)   (0,055863)              (0,041816)               (0,045386) 

Where        
    {

               

           
 

The log likelihood for the model is 1144,168 and the Akaike info criterion (AIC) is -7,569226. 

And for the first log difference of the futures rates:  

                  

               (0,000307) 

    
                                

                   
                     

        
  

                (0,000000689)     (0,050386)                  (0,038817)                   (0,049545) 
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Where        
    {

               

           
 

The log likelihood for the model is 1152,272 and the Akaike info criterion (AIC) is -7,623072. 

 

5.2.3. Conclusion 

The results confirmed the clustering effect: highly significant coefficient on the GARCH terms 

of the variance equations. It also confirmed the variance has negative effects on the spot 

returns. I notice the asymmetry for the weekly data with a higher coefficient for the 

downwards movement than the upwards movements of the residuals. These results 

promote therefore the use of bivariate GARCH models for the estimation of the optimal 

hedge ratio and the introduction of a TARCH term in the case of the weekly data.  

 

5.3. The Optimal Hedge Ratio: Empirical Results 

The bivariate models of our study are estimated in EVIEWS with the Autoregressive method. 

5.3.1. The conventional hedging model 

Here we consider the case of a constant variance and hedge ratio (no GARCH and ARCH 

terms in the variance equation) for the spot and future rates distributions. We can therefore 

apply this model for the daily, weekly and monthly data. The optimal hedge is calculated as 

the ordinary least squares estimator from a time series regression of changes in spot prices 

on changes in futures prices. The complete estimation is provided in Annex 10. I obtained 

the following results (standard error in parentheses): 

 
Daily data:                                     
        (0,0000747)       (0,024675) 

Weekly data:                                     
          (0,000167)         (0,029836) 

Monthly data:                                    
          (0,001137)      (0,092751) 
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The implied hedge ratios would be: 

      
̂             

       
̂            

        
̂            

If the variances and covariance are constant through time then this set of ratios would be 

the optimal risk-minimizing hedge ratio based on daily, weekly and monthly data. I can 

notice right away the differences in the value of the hedge ratio depending on the frequency 

of the data I used. It seems the longer is this frequency, the bigger is the hedge ratio. This 

result suggests a structural feature of the daily spot and future prices: it seems the daily spot 

and futures prices have a low correlation unlike weekly and monthly prices. Indeed, by 

taking a closer look at the daily data and the weekly, I can clearly see that daily spot and 

futures prices are not perfectly correlated unlike weekly spot and futures prices. I took 

random sub-samples of 5 weeks of data and clearly observed that daily futures prices 

movements follow daily spot prices movements but with a time lag of one or two days.  Here 

is a print of the feature:  

 

Tab 5.24. First log differences of spot and futures prices over a random period of 5 weeks 
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This result actually shows that the futures market needs time to incorporate the information 

in its prices and therefore suggests that hedging using daily observations for estimating the 

optimal hedge ratio might not be appropriate because the correlation between spot and 

futures prices will be underestimated. The time lag should be taken into consideration. The 

application of the dynamic hedge ratios models using daily observations for the estimation 

process and the measure of the hedging effectiveness will confirm this result.  

Anyway, point was clear from the sample description: variances and covariance have a time 

varying nature for the individual daily and weekly time series, implying that the hedge ratio 

should also be continually changing.  

   

5.3.2. The dynamic hedging model 

5.3.2.1. The bivariate GARCH (1,1) and restricted diagonal VECH covariance model 

The model is estimated using the maximum likelihood and the results are in Annex 11. I 

indicate here the expression for the covariance matrix I obtained and used for the 

computation of the optimal hedge ratio: 

 

For the daily data:            
                               

                
  

                     
                               

                 
    

                                                                 

 
For the weekly data:            

                             
                 

  

                     
                             

                 
   

                                                                 

 

5.3.2.2. The bivariate GARCH (1,1) and the CCC covariance model 

The model is estimated using the maximum likelihood and the results are in Annex 12. I 

found the following expression for the covariance matrix: 

For the daily data: 
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And  ̂           with standard error 0,021881. We remark again the unusual low 

correlation between the spot and futures rates movements. 

 

For the weekly data: 

    
                                   

                   
  

 
    

                                  
                   

  

And  ̂           with standard error 0,010628. We remark here the high correlation 

between the spot and futures rates movements which is more consistent with the 

description of the individual series. 

 

5.3.2.3. The bivariate GARCH(1,1) and the diagonal BEKK covariance model 

 The model is estimated using the maximum likelihood and the results are in Annex 13. I 

found the following expression for the covariance matrix: 

For the daily data:   

    
                                

                   
  

    
                                 

                   
  

                                                              

 

For the weekly data:   

     
                               

                   
  

                
                               

                 
  

                                                                     

 

5.3.2.4. The bivariate TARCH(1,1) 

This model adds a TARCH term in the variance and covariance expressions to solve the 

problem of asymmetry. Based on the results for the individual series in section 5.2 I use this 

model only with the weekly data. The model is estimated using the maximum likelihood and 
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the results are in Annex 14, 15 and 16. The following results are obtained for the covariance 

matrix: 

For the CCC model: 

    
                                 

                   
                    

        
  

    
                                 

                  
                     

        
  

          

Where        
    {

               

           
 and       
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And  ̂           with standard error 0,011395.  

 

For the diagonal VECH model with the scalar restriction on parameters: 

    
                                 

                   
                    

        
  

    
                                

                  
                    

        
  

                                                            

                               
       

  

 

Where        
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For the diagonal BEKK model: 
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5.3.2.5. The time varying hedge ratio 

I compute the within sample hedge ratio from the results of the conditional models: I first 

compute the residuals, then the expression of variances and covariance and finally calculate 

within sample the time varying hedge ratio from the following expression.  

 

  ̂   
     ̂

    
 ̂

 

I took a positive hedge ratio to be more convenient, the result needs to be multiplied by (-1) 

for indicating the opposite position taken in the futures. The expression of the variances and 

covariance are estimated from daily and weekly data. I obtained the following results for the 

daily hedge ratios: 

 

 HEDGE_DAILY_VECH HEDGE_DAILY_CCC HEDGE_DAILY_BEKK 

 Mean  0.323192  0.335304  0.330585 

 Median  0.321690  0.333626  0.325854 

 Maximum  1.000000  1.000000  1.000000 

 Minimum -0.042380  0.267157 -0.044729 

 Std. Dev.  0.138781  0.029378  0.144043 

 

Tab 5.25. The daily GARCH hedge ratios statistics 

 

Despite the time varying nature of the hedge, we can observe the same problem as for the 

static hedge. Estimations based on daily observations give a really low hedge ratio and 

clearly doesn’t take in consideration the time lag existing between the spot and futures 

market. It underestimates the correlation between spot and futures prices and gives 

therefore an underestimated hedge ratio. The measure of the effectiveness of the hedge 

should confirm this observation. We can still clearly see a difference between the models 

allowing the correlation to vary through time and the conditional constant correlation 

model. The diagonal VECH and BEKK models give similar results for the hedge ratios which 

vary widely through time unlike the CCC hedge ratio. 
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Tab 5.26. Daily time varying hedge ratios from 06-19-2007 to 03-18-2013 for the bivariate 

GARCH models 

 

In the next pages, I give the results for the hedge ratios estimated from weekly data. We can 

see different group of results for the level and variance of the hedging ratio: we have similar 

results for all the models except for the GARCH_BEKK and the TARCH_CCC models which 

gave significant different levels of hedge and a higher variance in the hedge ratio. The level 

of hedging, close to 1 for the main group of models is consistent with the high correlation I 

observed between the spot and futures prices.  

Both daily and weekly models show clearly the hedge ratio is not constant through time.  
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Tab 5.27. Weekly time varying hedge ratios from 06-19-2007 to 03-18-2013 for the bivariate 

GARCH and TARCH models 
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HEDGE_WEEKLY_

GARCH_VECH 

HEDGE_WEEKLY_

GARCH_CCC 

HEDGE_WEEKLY_

GARCH_BEKK 

HEDGE_WEEKLY_

TARCH_VECH 

HEDGE_WEEKLY_

TARCH_CCC 

HEDGE_WEEKLY_

TARCH_BEKK 

 Mean  0.918207  0.929151  0.544791  0.914909  1.411344  0.903957 

 Median  0.924843  0.932670  0.524989  0.930430  1.395024  0.921961 

 Maximum  1.082921  1.090554  1.019252  1.043922  1.943310  1.053432 

 Minimum  0.658798  0.781582  0.319020  0.673815  0.000000  0.702367 

 Std. Dev.  0.074329  0.060364  0.120402  0.070704  0.193896  0.076278 

 

Tab 5.28. The weekly GARCH and TARCH hedge ratios statistics 
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5.4. The effectiveness of the different models 

This section focuses on the effectiveness of the different hedging models from an investor 

point of view. Two approaches are proposed: I first observe the distribution of the hedged 

portfolio returns knowing that a perfect hedge would have a zero mean and zero variance; 

then, I measure the hedge effectiveness as the percentage of reduction in the variance of 

the spot price changes. The last measure of effectiveness was proposed by Geppert (1995) 

for his study on stock and futures prices.  The computation requires to build the hedged 

portfolio implied by the hedge ratios and to calculate the variance of the hedged returns 

over a given hedge horizon, i.e. we evaluate                over the hedge horizon 

where     and     are the prices changes. Finally, the degree of effectiveness can be 

expressed as follows: 

                       

        
 

The higher it is, the more effective is the hedge over the given period. 

 

5.4.1. The distribution of returns 

I begin with the observation of the return distribution for the daily and weekly returns with 

different hedge ratios: a null hedge ratio (    ), a naïve hedge ratio (     ), the 

different constant hedge ratios and the different dynamic hedge ratios. I use dynamic daily 

hedge ratios for the daily returns and dynamic weekly hedge ratios for the weekly returns: 

 

 

NULL 

HEDGE 

NAIVE 

HEDGE 

CONST_DAILY 

HEDGE 

CONST_WEEKLY 

HEDGE 

CONST_MONTHLY 

HEDGE 

 Mean  8.89E-06  1.02E-05  9.32E-06  0.135926  1.02E-05 

 Median  0.000144  6.92E-05  0.000263  0.135348  3.85E-05 

 Maximum  0.041203  0.041715  0.040336  0.190372  0.041831 

 Minimum -0.046251 -0.031917 -0.035953  0.083720 -0.032743 

 Std. Dev.  0.007056  0.008075  0.006643  0.013866  0.008301 

 

Tab 5.29. Summary statistics for the daily returns with constant hedge ratios 
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Tab 5.30. Daily returns of the hedged portfolio with the constant hedge ratios 
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I give now the distribution of the daily returns for the dynamic daily hedge ratios: 

 

Tab 5.31. Daily returns of the hedged portfolio with the dynamic hedge ratios 
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 DAILY_VECH HEDGE DAILY_CCC HEDGE DAILY_BEKK HEDGE 

 Mean  4.80E-05  1.64E-05  4.22E-05 

 Median  0.000181  0.000274  0.000192 

 Maximum  0.040588  0.040339  0.040603 

 Minimum -0.026657 -0.034878 -0.026490 

 Std. Dev.  0.006414  0.006632  0.006413 

Tab 5.32. Summary statistics for the daily returns with dynamic hedge ratios 

We can’t notice any real effectiveness in the hedging strategies using a constant hedge ratio 

for the daily returns. In facts, the hedging with the constant ratio estimated with daily 

observations decreased a bit the variance of the portfolio and the hedging using a constant 

hedge ratio estimated from weekly data actually made it worse. For the dynamic hedging 

strategies, we observe better results: they all decreased the variance of the portfolio. We 

clearly see here it is difficult to evaluate the effectiveness of the hedging strategy by simply 

observing the distribution of returns.  

Finally, we observe the weekly returns with the different constant hedge ratios and the 

dynamic weekly hedge ratios: 

 

 

NULL 

HEDGE 

NAIVE 

HEDGE 

CONST_DAILY 

HEDGE 

CONST_WEEKLY 

HEDGE 

CONST_MONTHL

Y HEDGE 

 Mean -1.94E-05  1.67E-05  1.87E-05  1.31E-05 -7.07E-06 

 Median  0.000371  0.000203  9.99E-05  0.000296  0.000315 

 Maximum  0.071242  0.025453  0.026241  0.029969  0.055580 

 Minimum -0.045196 -0.023629 -0.023837 -0.023259 -0.030863 

 Std. Dev.  0.013471  0.006794  0.006960  0.006681  0.009876 

 

Tab 5.33. Summary statistics for the weekly returns with constant hedge ratios 
 

The results shows the hedging strategies are actually effective in reducing the variance of 

our portfolio. The best performance is obtained with the constant hedge ratio estimated 

from weekly data.  
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Tab 5.34. Weekly returns of the hedged portfolio with the constant hedge ratios 
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Tab 5.35. Weekly returns of the hedged portfolio with the dynamic hedge ratios 
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VECH 

HEDGE 

CCC 

HEDGE 

BEKK 

HEDGE 

TARCH_VECH 

HEDGE 

TARCH_CCC 

HEDGE 

TARCH_BEKK 

HEDGE 

 Mean  3.85E-05 -2.67E-05  0.000239  2.17E-05  0.000428  0.000119 

 Median  0.000263  0.000142  0.000606  0.000401 -9.45E-05  0.000282 

 Maximum  0.023703  0.026033  0.024571  0.023892  0.037740  0.033230 

 Minimum -0.023481 -0.023878 -0.022808 -0.023366 -0.049453 -0.023064 

 Std. Dev.  0.006304  0.006536  0.007200  0.006389  0.010519  0.006573 

Tab 5.36. Summary statistics for the weekly returns with dynamic hedge ratios 

 

We can see that all the dynamic models helped reducing the variance of the portfolio and 

the introduction of a TARCH term in the covariance expression for the asymmetry isn’t really 

improving the results except for the diagonal BEKK model. Here, the best strategy is the 

GARCH model with diagonal VECH covariance. In term of minimizing the variance of the 

portfolio, it performs better than the constant hedge model. 

 

5.4.2. The variance of spot prices 

I apply now the effectiveness measure proposed by Geppert (1995) who defined it as the 

percentage of reduction in the variance of the spot price changes. This measure is easier to 

use as it only involves the calculation of a percentage and is more flexible since it allows us 

to calculate the variance of the prices changes for different hedging horizons. I used the 

same way different hedge ratios: a null hedge ratio (    ), a naïve hedge ratio (     ), 

the different constant hedge ratios and the different dynamic hedge ratios. I compute this 

coefficient for the daily returns and the weekly returns. I use the dynamic hedge ratios 

estimated from daily data for the daily returns and the dynamic hedge ratios estimated from 

weekly data for the weekly returns.  

I first consider the full period of study as the hedging horizon (69 months). The following 

results are obtained for the null hedge, naïve hedge and the different constant and dynamic 

hedge ratios: 
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 Daily returns Weekly returns 

Null hedge 0 0 

Naïve hedge -0,3096 0,7456 

Constant hedge (daily) 0,1138 0,4625 

Constant hedge (weekly) -2,8612 0,7540 

Constant hedge (monthly) -0,3840 0,7331 

GARCH with diagonal VECH 0,1738 0,7810 

GARCH with CCC 0,1167 0,7646 

GARCH with diagonal BEKK 0,1742 0,7143 

TARCH with diagonal VECH  0,7751 

TARCH with CCC  0,3902 

TARCH with diagonal BEKKK  0,7619 

Tab 5.37. Effectiveness of the hedging strategies for a 69 months hedging horizon 

 

We can make a first series of observations:  

 A hedging strategy is necessary to decrease the variance of the spot price (by 

definition of the coefficient). 

 Hedging strategies are clearly more effective overall when observing the weekly 

returns and we observed poor hedging performance for the daily returns, some 

strategies actually increased the spot prices variance.  

 The time varying hedge ratios strategies clearly outperform the constant hedge ratios 

strategies with both daily and weekly returns. 

 The constant hedge ratio estimated from daily data doesn’t perform well for the 

weekly returns confirming the observation in section 5.3.1: we need to use weekly 

data for the estimation of a constant hedge ratio.  

 The diagonal BEKK and VECH models which allow the correlation to vary through 

time are the most effective for both series of returns. 

 The introduction of the TARCH term in the covariance doesn’t improve the 

effectiveness of the hedge except for the BEKK model 
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The following results are obtained for a hedging horizon of three months (the life time of the 

futures contract) and one year. I didn’t indicate the results for the null hedge knowing it will 

always be ineffective by definition. The full results are provided in Annex17. 

 

Tab 5.38. Effectiveness of the hedging strategies for daily returns with a 12 months hedging 

horizon 

 

Tab 5.39. Effectiveness of the hedging strategies for weekly returns with a 12 months 

hedging horizon 
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Tab 5.40. Effectiveness of the hedging strategies for weekly returns with a 3 months hedging 

horizon 
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I don’t provide the results for the daily returns with a three months hedging horizon since I 

obtained poor performances like for the 12 and 69 months horizons. A first conclusion would 

therefore be that we can’t use daily returns to measure the effectiveness of the hedge and 

that the estimation of a hedge ratio from daily data leads to an underestimated hedge ratio 

which brings poor hedging performance. The time lag between the spot and futures market 

seems to enable the estimation of an effective optimal hedge ratio from daily data. The 

performance for the 12 months hedging horizon clearly shows the poor performance of all 

the strategies in 2009 indicating the pick of the financial crisis and instability of the different 

markets. As observed before, the introduction of the TARCH term doesn’t improve the 

hedging performance. Finally, we can see the dynamic approach improves a bit the hedging 

effectiveness and that the flexibility of the VECH and BEKK models allowing the correlation 

to vary through time gives better results. 

I have to remind the assumption of the model that the futures contract is the only available 

hedging instrument is violated in practice. The model should be therefore extended to 

multiple hedging instruments. I remind finally the results above are computed within 

sample, the constant and dynamic optimal hedge ratios are not forecasted. An analysis of 

the out of sample hedging performance could be done by working on a sub-sample to 

estimate the model and forecast the optimal hedge for the next period. This process being 

iterative we can obtain a series of forecast optimal hedge. We would probably obtain then 

similar results for the variance of our portfolios as suggested by the literature. 
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Conclusion 

It is an acknowledged fact that Multinational companies are exposed to foreign exchange 

risk and that they need to use effective operational or financial hedging strategies. My study 

proposed to examine a short term financial hedging strategy involving the EUR/USD 

exchange rate and a three months currency futures contract. I focused especially on the 

determination of the optimal hedge ratio that minimizes the variance of the hedged 

portfolio’s returns. For this purpose, I use different approaches. One involved the modeling 

of the time varying joint distribution of spot and futures prices. I therefore presented and 

applied the different multivariate GARCH models proposed by the literature with daily, 

weekly and monthly data and measured the effectiveness of the different hedging models 

with daily and weekly returns. The results are clear: a dynamic hedge ratio is more effective 

than a static one. Among the different dynamic models I applied, the bivariate GARCH model 

with a diagonal VECH covariance allowing a time varying correlation between spot and 

futures prices is the most effective hedging model. This study also showed that despite the 

observable asymmetry of individual series for the weekly data, the hedging effectiveness is 

not improved with the introduction of a TARCH term in the covariance model. Concerning 

the data frequency, I noticed that the estimation of the different models based on daily data 

caused ineffective hedging strategies: the hedge ratio is indeed underestimated since I could 

see an unusual correlation of spot and futures prices (about 0,3). A quick observation of the 

data showed a structural problem: we observe a time lag between the daily spot prices and 

the daily futures prices. Finally, the results showed we need to use weekly returns to 

measure the effectiveness of the hedging strategy. I remind that multiple hedging 

instruments are actually available for companies and that the study could therefore be 

extended to incorporate them in the hedging strategy. A way to do it could be to consider a 

multitude of portfolios, each involving a different hedging instrument and then estimate 

their optimum weights in the final portfolio.  
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Annex 1. Correlogram of the log difference of spot and futures rates 
Annex 1. Correlogram of the log difference of spot and futures rates
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Annex 2. GARCH(1,1) for the daily spot and futures rates  

 

Dependent Variable: 
DLOG_S_EURUSD_DAILY   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 06/29/13   Time: 22:16   
Sample (adjusted): 6/19/2007 3/18/2013  
Included observations: 1496 after adjustments  
Convergence achieved after 10 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 5.66E-05 6.92E-05 0.818388 0.4131 
     
      Variance Equation   
     
     C 7.75E-08 2.34E-08 3.317385 0.0009 

RESID(-1)^2 0.033731 0.005734 5.882893 0.0000 
GARCH(-1) 0.958327 0.006603 145.1426 0.0000 

     
     R-squared -0.000478     Mean dependent var -1.05E-05 

Adjusted R-squared -0.002490     S.D. dependent var 0.003068 
S.E. of regression 0.003072     Akaike info criterion -8.874509 
Sum squared resid 0.014082     Schwarz criterion -8.860310 
Log likelihood 6642.133     Hannan-Quinn criter. -8.869219 
Durbin-Watson stat 1.978162    

     
     

 

 

Dependent Variable: DLOG_F_EURUSD_DAILY   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 06/29/13   Time: 22:16   
Sample (adjusted): 6/19/2007 3/18/2013  
Included observations: 1496 after adjustments  
Convergence achieved after 10 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 4.72E-05 6.69E-05 0.704891 0.4809 
     
      Variance Equation   
     
     C 6.98E-08 2.31E-08 3.029280 0.0025 

RESID(-1)^2 0.033016 0.006146 5.371632 0.0000 
GARCH(-1) 0.959340 0.006825 140.5689 0.0000 

     
     R-squared -0.000371     Mean dependent var -1.11E-05 

Adjusted R-squared -0.002382     S.D. dependent var 0.003028 
S.E. of regression 0.003032     Akaike info criterion -8.886319 
Sum squared resid 0.013715     Schwarz criterion -8.872120 
Log likelihood 6650.967     Hannan-Quinn criter. -8.881029 
Durbin-Watson stat 1.931575    
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Annex 3. GARCH(1,1) for the weekly spot and futures rates  

 

Dependent Variable: DLOG_S_EURUSD_WEEKLY  
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 07/12/13   Time: 02:07   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Convergence achieved after 12 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000190 0.000314 0.606823 0.5440 
     
      Variance Equation   
     
     C 1.65E-06 1.08E-06 1.526689 0.1268 

RESID(-1)^2 0.100236 0.043250 2.317614 0.0205 
GARCH(-1) 0.850417 0.065784 12.92740 0.0000 

     
     R-squared -0.001912     Mean dependent var -6.38E-05 

Adjusted R-squared -0.012033     S.D. dependent var 0.005821 
S.E. of regression 0.005856     Akaike info criterion -7.558046 
Sum squared resid 0.010186     Schwarz criterion -7.508782 
Log likelihood 1141.486     Hannan-Quinn criter. -7.538332 
Durbin-Watson stat 1.486094    

     
      

Dependent Variable: DLOG_F_EURUSD_WEEKLY  
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 07/12/13   Time: 02:10   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Convergence achieved after 9 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000234 0.000318 0.736640 0.4613 
     
      Variance Equation   
     
     C 1.70E-06 9.99E-07 1.703732 0.0884 

RESID(-1)^2 0.088238 0.038711 2.279403 0.0226 
GARCH(-1) 0.856763 0.059501 14.39912 0.0000 

     
     R-squared -0.002780     Mean dependent var -6.09E-05 

Adjusted R-squared -0.012909     S.D. dependent var 0.005605 
S.E. of regression 0.005641     Akaike info criterion -7.609759 
Sum squared resid 0.009452     Schwarz criterion -7.560495 
Log likelihood 1149.269     Hannan-Quinn criter. -7.590046 
Durbin-Watson stat 1.377411    
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Annex 4. EGARCH(1,1) for the daily spot and futures rates 

Dependent Variable: DLOG_S_EURUSD_DAILY   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 06/29/13   Time: 22:11   

Sample (adjusted): 6/19/2007 3/18/2013  

Included observations: 1496 after adjustments  

Convergence achieved after 14 iterations  

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(4) 

        *RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 6.10E-05 7.02E-05 0.868747 0.3850 
     
      Variance Equation   
     
     C(2) -0.200449 0.044767 -4.477576 0.0000 

C(3) 0.089521 0.013646 6.560090 0.0000 

C(4) 0.000678 0.007743 0.087551 0.9302 

C(5) 0.988626 0.003408 290.0891 0.0000 
     
     R-squared -0.000542     Mean dependent var -1.05E-05 

Adjusted R-squared -0.003226     S.D. dependent var 0.003068 

S.E. of regression 0.003073     Akaike info criterion -8.868172 

Sum squared resid 0.014083     Schwarz criterion -8.850423 

Log likelihood 6638.393     Hannan-Quinn criter. -8.861559 

Durbin-Watson stat 1.978036    
     
     

 

Dependent Variable: DLOG_F_EURUSD_DAILY   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 06/29/13   Time: 22:13   

Sample (adjusted): 6/19/2007 3/18/2013  

Included observations: 1496 after adjustments  

Convergence achieved after 14 iterations  

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(4) 

        *RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 4.65E-05 6.69E-05 0.694693 0.4872 
     
      Variance Equation   
     
     C(2) -0.163911 0.032390 -5.060499 0.0000 

C(3) 0.067295 0.013290 5.063726 0.0000 

C(4) -0.012356 0.007694 -1.605908 0.1083 

C(5) 0.990365 0.002459 402.7388 0.0000 
     
     R-squared -0.000362     Mean dependent var -1.11E-05 

Adjusted R-squared -0.003045     S.D. dependent var 0.003028 

S.E. of regression 0.003033     Akaike info criterion -8.879875 

Sum squared resid 0.013714     Schwarz criterion -8.862126 

Log likelihood 6647.147     Hannan-Quinn criter. -8.873262 

Durbin-Watson stat 1.931592    
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Annex 5. EGARCH(1,1) for the weekly spot and futures rates 

Dependent Variable: DLOG_S_EURUSD_WEEKLY  
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 07/12/13   Time: 02:13   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Convergence achieved after 24 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + 
C(4) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000119 0.000310 0.384910 0.7003 
     
      Variance Equation   
     
     C(2) -0.628863 0.275083 -2.286087 0.0222 

C(3) 0.153105 0.082614 1.853259 0.0638 
C(4) -0.067347 0.033703 -1.998254 0.0457 
C(5) 0.951455 0.022961 41.43855 0.0000 

     
     R-squared -0.000993     Mean dependent var -6.38E-05 

Adjusted R-squared -0.014520     S.D. dependent var 0.005821 
S.E. of regression 0.005864     Akaike info criterion -7.554281 
Sum squared resid 0.010177     Schwarz criterion -7.492701 
Log likelihood 1141.919     Hannan-Quinn criter. -7.529639 
Durbin-Watson stat 1.487459    

     
      
 

    
Dependent Variable: DLOG_F_EURUSD_WEEKLY  
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 07/12/13   Time: 02:16   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Convergence achieved after 17 iterations  
Presample variance: backcast (parameter = 0.7) 
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + 
C(4) 
        *RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000154 0.000297 0.520350 0.6028 
     
      Variance Equation   
     
     C(2) -0.624224 0.263635 -2.367762 0.0179 

C(3) 0.127911 0.069608 1.837583 0.0661 
C(4) -0.075376 0.036418 -2.069718 0.0385 
C(5) 0.950114 0.023153 41.03601 0.0000 

     
     R-squared -0.001482     Mean dependent var -6.09E-05 

Adjusted R-squared -0.015016     S.D. dependent var 0.005605 
S.E. of regression 0.005647     Akaike info criterion -7.611734 
Sum squared resid 0.009440     Schwarz criterion -7.550154 
Log likelihood 1150.566     Hannan-Quinn criter. -7.587092 
Durbin-Watson stat 1.379197    
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Annex 6. TARCH(1,1) for the daily spot and futures rates 

Dependent Variable: DLOGS   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 06/29/13   Time: 22:07   
Sample (adjusted): 6/19/2007 3/18/2013  
Included observations: 1496 after adjustments  
Convergence achieved after 14 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) + 
        C(5)*GARCH(-1)   

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 6.09E-05 7.07E-05 0.862232 0.3886 
     
      Variance Equation   
     
     C 7.90E-08 2.45E-08 3.222624 0.0013 

RESID(-1)^2 0.036514 0.007280 5.015358 0.0000 
RESID(-1)^2*(RESID(-

1)<0) -0.003691 0.009400 -0.392678 0.6946 
GARCH(-1) 0.957373 0.006791 140.9675 0.0000 

     
     R-squared -0.000542     Mean dependent var -1.05E-05 

Adjusted R-squared -0.003226     S.D. dependent var 0.003068 
S.E. of regression 0.003073     Akaike info criterion -8.873235 
Sum squared resid 0.014083     Schwarz criterion -8.855486 
Log likelihood 6642.180     Hannan-Quinn criter. -8.866622 
Durbin-Watson stat 1.978036    

     
     Dependent Variable: DLOGF   

Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 06/29/13   Time: 22:09   
Sample (adjusted): 6/19/2007 3/18/2013  
Included observations: 1496 after adjustments  
Convergence achieved after 11 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) + 
        C(5)*GARCH(-1)   

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 3.58E-05 6.92E-05 0.516492 0.6055 
     
      Variance Equation   
     
     C 6.83E-08 2.13E-08 3.200763 0.0014 

RESID(-1)^2 0.023534 0.008245 2.854543 0.0043 
RESID(-1)^2*(RESID(-

1)<0) 0.013222 0.010410 1.270111 0.2040 
GARCH(-1) 0.961997 0.006638 144.9175 0.0000 

     
     R-squared -0.000240     Mean dependent var -1.11E-05 

Adjusted R-squared -0.002923     S.D. dependent var 0.003028 
S.E. of regression 0.003033     Akaike info criterion -8.885821 
Sum squared resid 0.013713     Schwarz criterion -8.868072 
Log likelihood 6651.594     Hannan-Quinn criter. -8.879208 
Durbin-Watson stat 1.931828    
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Annex 7. TARCH(1,1) for the weekly spot and futures rates 

Dependent Variable: DLOG_S_EURUSD_WEEKLY  

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 07/12/13   Time: 02:22   

Sample: 6/20/2007 3/20/2013   

Included observations: 301   

Convergence achieved after 16 iterations  

Presample variance: backcast (parameter = 0.7) 

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) + 

        C(5)*GARCH(-1)   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 9.46E-05 0.000315 0.300473 0.7638 
     
      Variance Equation   
     
     C 1.41E-06 7.81E-07 1.799201 0.0720 

RESID(-1)^2 0.003462 0.041816 0.082792 0.9340 

RESID(-1)^2*(RESID(-1)<0) 0.113940 0.045386 2.510448 0.0121 

GARCH(-1) 0.893005 0.055863 15.98570 0.0000 
     
     R-squared -0.000743     Mean dependent var -6.38E-05 

Adjusted R-squared -0.014266     S.D. dependent var 0.005821 

S.E. of regression 0.005863     Akaike info criterion -7.569226 

Sum squared resid 0.010174     Schwarz criterion -7.507646 

Log likelihood 1144.168     Hannan-Quinn criter. -7.544584 

Durbin-Watson stat 1.487830    
     
     

 
 

Dependent Variable: DLOG_F_EURUSD_WEEKLY  

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 07/12/13   Time: 02:24   

Sample: 6/20/2007 3/20/2013   

Included observations: 301   

Convergence achieved after 15 iterations  

Presample variance: backcast (parameter = 0.7) 

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) + 

        C(5)*GARCH(-1)   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.000133 0.000307 0.433359 0.6648 
     
      Variance Equation   
     
     C 1.33E-06 6.89E-07 1.930865 0.0535 

RESID(-1)^2 -0.011850 0.038817 -0.305270 0.7602 

RESID(-1)^2*(RESID(-1)<0) 0.121800 0.049545 2.458387 0.0140 

GARCH(-1) 0.904059 0.050386 17.94259 0.0000 
     
     R-squared -0.001204     Mean dependent var -6.09E-05 

Adjusted R-squared -0.014734     S.D. dependent var 0.005605 

S.E. of regression 0.005646     Akaike info criterion -7.623072 

Sum squared resid 0.009437     Schwarz criterion -7.561492 

Log likelihood 1152.272     Hannan-Quinn criter. -7.598430 

Durbin-Watson stat 1.379580    
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Annex 8. GARCH-M(1,1) for the daily spot and futures rates 

Dependent Variable: 
DLOG_S_EURUSD_DAILY   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 06/29/13   Time: 19:38   
Sample (adjusted): 1 1496   
Included observations: 1496 after adjustments  
Convergence achieved after 18 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     GARCH -32.31904 17.81152 -1.814501 0.0696 

C 0.000292 0.000147 1.992402 0.0463 
     
      Variance Equation   
     
     C 8.07E-08 2.43E-08 3.326061 0.0009 

RESID(-1)^2 0.035079 0.006091 5.759524 0.0000 
GARCH(-1) 0.956635 0.006966 137.3227 0.0000 

     
     R-squared 0.002315     Mean dependent var -1.05E-05 

Adjusted R-squared -0.000361     S.D. dependent var 0.003068 
S.E. of regression 0.003069     Akaike info criterion -8.875541 
Sum squared resid 0.014042     Schwarz criterion -8.857792 
Log likelihood 6643.905     Hannan-Quinn criter. -8.868928 
F-statistic 0.865088     Durbin-Watson stat 1.983390 
Prob(F-statistic) 0.484192    

     
     

Dependent Variable: DLOG_F_EURUSD_DAILY   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 06/29/13   Time: 19:39   
Sample (adjusted): 1 1496   
Included observations: 1496 after adjustments  
Convergence achieved after 17 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     GARCH -22.60476 18.02173 -1.254305 0.2097 

C 0.000211 0.000146 1.444662 0.1486 
     
      Variance Equation   
     
     C 7.20E-08 2.34E-08 3.084755 0.0020 

RESID(-1)^2 0.033817 0.006322 5.348716 0.0000 
GARCH(-1) 0.958301 0.006981 137.2714 0.0000 

     
     R-squared 0.000321     Mean dependent var -1.11E-05 

Adjusted R-squared -0.002361     S.D. dependent var 0.003028 
S.E. of regression 0.003032     Akaike info criterion -8.885942 
Sum squared resid 0.013705     Schwarz criterion -8.868192 
Log likelihood 6651.684     Hannan-Quinn criter. -8.879329 
F-statistic 0.119839     Durbin-Watson stat 1.933286 
Prob(F-statistic) 0.975456    
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Annex 9. GARCH-M(1,1) for the weekly spot and futures rates 

 

Dependent Variable: DLOG_S_EURUSD_WEEKLY  
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 07/12/13   Time: 02:29   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Convergence achieved after 21 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     GARCH -18.99962 24.76473 -0.767205 0.4430 

C 0.000760 0.000774 0.981897 0.3262 
     
      Variance Equation   
     
     C 1.83E-06 1.19E-06 1.542885 0.1229 

RESID(-1)^2 0.104412 0.044649 2.338491 0.0194 
GARCH(-1) 0.841017 0.070707 11.89437 0.0000 

     
     R-squared 0.008417     Mean dependent var -6.38E-05 

Adjusted R-squared -0.004983     S.D. dependent var 0.005821 
S.E. of regression 0.005836     Akaike info criterion -7.553245 
Sum squared resid 0.010081     Schwarz criterion -7.491665 
Log likelihood 1141.763     Hannan-Quinn criter. -7.528603 
F-statistic 0.628140     Durbin-Watson stat 1.497862 
Prob(F-statistic) 0.642776    

     
      

 

Dependent Variable: DLOG_F_EURUSD_WEEKLY  
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 07/12/13   Time: 02:31   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Convergence achieved after 26 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     GARCH -41.26577 29.70371 -1.389246 0.1648 

C 0.001409 0.000893 1.576801 0.1148 
     
      Variance Equation   
     
     C 2.09E-06 1.08E-06 1.927462 0.0539 

RESID(-1)^2 0.095594 0.043323 2.206513 0.0273 
GARCH(-1) 0.837026 0.064431 12.99110 0.0000 

     
     R-squared 0.016914     Mean dependent var -6.09E-05 

Adjusted R-squared 0.003629     S.D. dependent var 0.005605 
S.E. of regression 0.005595     Akaike info criterion -7.608947 
Sum squared resid 0.009266     Schwarz criterion -7.547367 
Log likelihood 1150.146     Hannan-Quinn criter. -7.584305 
F-statistic 1.273175     Durbin-Watson stat 1.406067 
Prob(F-statistic) 0.280553    
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Annex 10. The conventional hedging model: OLS with daily, weekly 

and monthly data 
 

Dependent Variable: DLOG_S_EURUSD_DAILY  
Method: Least Squares   
Date: 07/12/13   Time: 02:37   
Sample: 6/19/2007 3/12/2013   
Included observations: 1496   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DLOG_F_EURUSD_DAI

LY 0.342069 0.024675 13.86281 0.0000 
C -6.66E-06 7.47E-05 -0.089110 0.9290 
     
     R-squared 0.113972     Mean dependent var -1.05E-05 

Adjusted R-squared 0.113379     S.D. dependent var 0.003068 
S.E. of regression 0.002889     Akaike info criterion -8.854361 
Sum squared resid 0.012471     Schwarz criterion -8.847262 
Log likelihood 6625.062     Hannan-Quinn criter. -8.851716 
F-statistic 192.1776     Durbin-Watson stat 2.242505 
Prob(F-statistic) 0.000000    

     
      

 
 

Dependent Variable: DLOG_S_EURUSD_WEEKLY  
Method: Least Squares   
Date: 07/12/13   Time: 02:33   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DLOG_F_EURUSD_WEEK

LY 0.901367 0.029836 30.21093 0.0000 
C -8.87E-06 0.000167 -0.053095 0.9577 
     
     R-squared 0.753239     Mean dependent var -6.38E-05 

Adjusted R-squared 0.752414     S.D. dependent var 0.005821 
S.E. of regression 0.002897     Akaike info criterion -8.843917 
Sum squared resid 0.002509     Schwarz criterion -8.819285 
Log likelihood 1333.009     Hannan-Quinn criter. -8.834060 
F-statistic 912.7002     Durbin-Watson stat 2.852626 
Prob(F-statistic) 0.000000    
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Dependent Variable: DLOG_S_EURUSD_MONTHLY  
Method: Least Squares   
Date: 07/12/13   Time: 02:58   
Sample: 2007M06 2013M02   
Included observations: 69   

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     DLOG_F_EURUSD_MONTH

LY 1.055477 0.092751 11.37970 0.0000 
C -9.84E-05 0.001137 -0.086519 0.9313 
     
     R-squared 0.659029     Mean dependent var -0.000335 

Adjusted R-squared 0.653940     S.D. dependent var 0.016059 
S.E. of regression 0.009447     Akaike info criterion -6.457670 
Sum squared resid 0.005980     Schwarz criterion -6.392913 
Log likelihood 224.7896     Hannan-Quinn criter. -6.431979 
F-statistic 129.4975     Durbin-Watson stat 2.761424 
Prob(F-statistic) 0.000000    
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Annex 11. Bivariate GARCH(1,1) with a restricted diagonal VECH 

covariance 
 

System: DAILY DATA   
Estimation Method: ARCH Maximum Likelihood (Marquardt) 
Covariance specification: Diagonal VECH  
Date: 07/12/13   Time: 02:55   
Sample: 6/19/2007 3/12/2013   
Included observations: 1496   
Total system (balanced) observations 2992  
Presample covariance: backcast (parameter =0.7)  
Convergence achieved after 12 iterations  

     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 5.78E-05 6.68E-05 0.865252 0.3869 

C(2) 3.44E-05 6.65E-05 0.517968 0.6045 
     
      Variance Equation Coefficients  
     
     C(3) 9.24E-08 2.21E-08 4.187666 0.0000 

C(4) 1.40E-07 4.28E-08 3.266056 0.0011 
C(5) 9.36E-08 2.66E-08 3.516188 0.0004 
C(6) 0.032698 0.005484 5.961909 0.0000 
C(7) 0.042058 0.006983 6.022496 0.0000 
C(8) 0.034088 0.006351 5.367487 0.0000 
C(9) 0.957130 0.006476 147.7988 0.0000 
C(10) 0.896544 0.021989 40.77145 0.0000 
C(11) 0.955062 0.007296 130.9067 0.0000 

     
     Log likelihood 13392.54 Schwarz criterion -17.85071 

Avg. log likelihood 4.476117 Hannan-Quinn criter. -17.87521 
Akaike info criterion -17.88976    

     
          

Equation: DLOG_S_EURUSD_DAILY = C(1)  

R-squared -0.000495     Mean dependent var -1.05E-05 
Adjusted R-squared -0.000495     S.D. dependent var 0.003068 
S.E. of regression 0.003069     Sum squared resid 0.014082 
Durbin-Watson stat 1.978129    

     
Equation: DLOG_F_EURUSD_DAILY = C(2)  

R-squared -0.000226     Mean dependent var -1.11E-05 
Adjusted R-squared -0.000226     S.D. dependent var 0.003028 
S.E. of regression 0.003029     Sum squared resid 0.013713 
Durbin-Watson stat 1.931854    

     
     
     Covariance specification: Diagonal VECH  

GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) 
M is an indefinite matrix   
A1 is an indefinite matrix   
B1 is an indefinite matrix   

     
      Tranformed Variance Coefficients 
     
      Coefficient Std. Error z-Statistic Prob.   
     
     M(1,1) 9.24E-08 2.21E-08 4.187666 0.0000 
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M(1,2) 1.40E-07 4.28E-08 3.266056 0.0011 
M(2,2) 9.36E-08 2.66E-08 3.516188 0.0004 
A1(1,1) 0.032698 0.005484 5.961909 0.0000 
A1(1,2) 0.042058 0.006983 6.022496 0.0000 
A1(2,2) 0.034088 0.006351 5.367487 0.0000 
B1(1,1) 0.957130 0.006476 147.7988 0.0000 
B1(1,2) 0.896544 0.021989 40.77145 0.0000 
B1(2,2) 0.955062 0.007296 130.9067 0.0000 

     
      

 

System: WEEKLY DATA    
Estimation Method: ARCH Maximum Likelihood (Marquardt) 
Covariance specification: Diagonal VECH  
Date: 07/12/13   Time: 17:14   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Total system (balanced) observations 602  
Presample covariance: backcast (parameter =0.7)  
Convergence achieved after 21 iterations  

     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 0.000187 0.000290 0.643764 0.5197 

C(2) 0.000187 0.000289 0.646388 0.5180 
     
      Variance Equation Coefficients  
     
     C(3) 1.27E-06 4.81E-07 2.630020 0.0085 

C(4) 1.13E-06 4.17E-07 2.703542 0.0069 
C(5) 1.18E-06 4.00E-07 2.954133 0.0031 
C(6) 0.103248 0.016312 6.329730 0.0000 
C(7) 0.873055 0.018574 47.00503 0.0000 

     
     Log likelihood 2531.017 Schwarz criterion -16.68466 

Avg. log likelihood 4.204347 Hannan-Quinn criter. -16.73638 
Akaike info criterion -16.77087    

     
          

Equation: DLOG_S_EURUSD_WEEKLY = C(1)  

R-squared -0.001862     Mean dependent var -6.38E-05 
Adjusted R-squared -0.001862     S.D. dependent var 0.005821 
S.E. of regression 0.005827     Sum squared resid 0.010186 
Durbin-Watson stat 1.486168    

     
Equation: DLOG_F_EURUSD_WEEKLY = C(2)  

R-squared -0.001962     Mean dependent var -6.09E-05 
Adjusted R-squared -0.001962     S.D. dependent var 0.005605 
S.E. of regression 0.005611     Sum squared resid 0.009444 
Durbin-Watson stat 1.378537    

     
     
     Covariance specification: Diagonal VECH  

GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) 
M is an indefinite matrix   
A1 is a scalar    
B1 is a scalar    

     
      Tranformed Variance Coefficients 
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 Coefficient Std. Error z-Statistic Prob.   
     
     M(1,1) 1.27E-06 4.81E-07 2.630020 0.0085 

M(1,2) 1.13E-06 4.17E-07 2.703542 0.0069 
M(2,2) 1.18E-06 4.00E-07 2.954133 0.0031 

A1 0.103248 0.016312 6.329730 0.0000 
B1 0.873055 0.018574 47.00503 0.0000 
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Annex 12. Bivariate GARCH(1,1) with a CCC covariance 

System: DAILY DATA   

Estimation Method: ARCH Maximum Likelihood (Marquardt) 

Covariance specification: Constant Conditional Correlation 

Date: 06/29/13   Time: 22:18   

Sample: 6/19/2007 3/18/2013   

Included observations: 1496   

Total system (balanced) observations 2992  

Presample covariance: backcast (parameter =0.7)  

Convergence achieved after 8 iterations  
     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 7.05E-05 6.87E-05 1.026169 0.3048 

C(2) 5.75E-05 6.69E-05 0.859415 0.3901 
     
      Variance Equation Coefficients  
     
     C(3) 6.59E-08 2.04E-08 3.229996 0.0012 

C(4) 0.030559 0.005234 5.838660 0.0000 

C(5) 0.962852 0.005911 162.8945 0.0000 

C(6) 6.04E-08 2.14E-08 2.826405 0.0047 

C(7) 0.029602 0.005624 5.263527 0.0000 

C(8) 0.963870 0.006265 153.8592 0.0000 

C(9) 0.330101 0.021881 15.08602 0.0000 
     
     Log likelihood 13378.76 Schwarz criterion -17.84206 

Avg. log likelihood 4.471511 Hannan-Quinn criter. -17.86211 

Akaike info criterion -17.87401    
     
          

Equation: DLOGS = C(1)   

R-squared -0.000697     Mean dependent var -1.05E-05 

Adjusted R-squared -0.000697     S.D. dependent var 0.003068 

S.E. of regression 0.003069     Sum squared resid 0.014085 

Durbin-Watson stat 1.977729    

     

Equation: DLOGF = C(2)   

R-squared -0.000513     Mean dependent var -1.11E-05 

Adjusted R-squared -0.000513     S.D. dependent var 0.003028 

S.E. of regression 0.003029     Sum squared resid 0.013717 

Durbin-Watson stat 1.931300    

     
     
     Covariance specification: Constant Conditional Correlation 

GARCH(i) = M(i) + A1(i)*RESID(i)(-1)^2 + B1(i)*GARCH(i)(-1) 

COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))  
     
      Tranformed Variance Coefficients 
     
      Coefficient Std. Error z-Statistic Prob.   
     
     M(1) 6.59E-08 2.04E-08 3.229996 0.0012 

A1(1) 0.030559 0.005234 5.838660 0.0000 

B1(1) 0.962852 0.005911 162.8945 0.0000 

M(2) 6.04E-08 2.14E-08 2.826405 0.0047 

A1(2) 0.029602 0.005624 5.263527 0.0000 

B1(2) 0.963870 0.006265 153.8592 0.0000 

R(1,2) 0.330101 0.021881 15.08602 0.0000 
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System: WEEKLY DATA   
Estimation Method: ARCH Maximum Likelihood (Marquardt) 
Covariance specification: Constant Conditional Correlation 
Date: 07/12/13   Time: 02:45   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Total system (balanced) observations 602  
Presample covariance: backcast (parameter =0.7)  
Convergence achieved after 20 iterations  

     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 0.000349 0.000258 1.352659 0.1762 

C(2) 0.000369 0.000249 1.482988 0.1381 
     
      Variance Equation Coefficients  
     
     C(3) -3.81E-08 3.72E-07 -0.102474 0.9184 

C(4) 0.095103 0.023084 4.119807 0.0000 
C(5) 0.916823 0.020559 44.59370 0.0000 
C(6) 8.28E-08 2.85E-07 0.290644 0.7713 
C(7) 0.074988 0.019579 3.829933 0.0001 
C(8) 0.930272 0.017276 53.84801 0.0000 
C(9) 0.900656 0.010628 84.74657 0.0000 

     
     Log likelihood 2530.493 Schwarz criterion -16.64326 

Avg. log likelihood 4.203476 Hannan-Quinn criter. -16.70975 
Akaike info criterion -16.75410    

     
          

Equation: DLOG_S_EURUSD_WEEKLY = C(1)  

R-squared -0.005036     Mean dependent var -6.38E-05 
Adjusted R-squared -0.005036     S.D. dependent var 0.005821 
S.E. of regression 0.005836     Sum squared resid 0.010218 
Durbin-Watson stat 1.481474    

     
Equation: DLOG_F_EURUSD_WEEKLY = C(2)  

R-squared -0.005906     Mean dependent var -6.09E-05 
Adjusted R-squared -0.005906     S.D. dependent var 0.005605 
S.E. of regression 0.005622     Sum squared resid 0.009481 
Durbin-Watson stat 1.373131    

     
     
     Covariance specification: Constant Conditional Correlation 

GARCH(i) = M(i) + A1(i)*RESID(i)(-1)^2 + B1(i)*GARCH(i)(-1) 
COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))  

     
      Tranformed Variance Coefficients 
     
      Coefficient Std. Error z-Statistic Prob.   
     
     M(1) -3.81E-08 3.72E-07 -0.102474 0.9184 

A1(1) 0.095103 0.023084 4.119807 0.0000 
B1(1) 0.916823 0.020559 44.59370 0.0000 
M(2) 8.28E-08 2.85E-07 0.290644 0.7713 
A1(2) 0.074988 0.019579 3.829933 0.0001 
B1(2) 0.930272 0.017276 53.84801 0.0000 
R(1,2) 0.900656 0.010628 84.74657 0.0000 

     
     



94 
 

Annex 13. Bivariate GARCH(1,1) with a diagonal BEKK covariance 
 

System: DAILY DATA   
Estimation Method: ARCH Maximum Likelihood (Marquardt) 
Covariance specification: BEKK   
Date: 07/12/13   Time: 02:56   
Sample: 6/19/2007 3/12/2013   
Included observations: 1496   
Total system (balanced) observations 2992  
Presample covariance: backcast (parameter =0.7)  
Convergence achieved after 10 iterations  

     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 5.55E-05 6.75E-05 0.821246 0.4115 

C(2) 3.05E-05 6.69E-05 0.455514 0.6487 
     
      Variance Equation Coefficients  
     
     C(3) 7.64E-08 2.05E-08 3.730832 0.0002 

C(4) 2.44E-08 8.58E-09 2.838527 0.0045 
C(5) 7.85E-08 2.46E-08 3.191526 0.0014 
C(6) 0.178076 0.014234 12.51060 0.0000 
C(7) 0.181405 0.016128 11.24814 0.0000 
C(8) 0.980176 0.002985 328.3777 0.0000 
C(9) 0.979183 0.003378 289.8927 0.0000 

     
     Log likelihood 13381.37 Schwarz criterion -17.84555 

Avg. log likelihood 4.472382 Hannan-Quinn criter. -17.86559 
Akaike info criterion -17.87749    

     
          

Equation: DLOG_S_EURUSD_DAILY = C(1)  

R-squared -0.000462     Mean dependent var -1.05E-05 
Adjusted R-squared -0.000462     S.D. dependent var 0.003068 
S.E. of regression 0.003069     Sum squared resid 0.014082 
Durbin-Watson stat 1.978194    

     
Equation: DLOG_F_EURUSD_DAILY = C(2)  

R-squared -0.000189     Mean dependent var -1.11E-05 
Adjusted R-squared -0.000189     S.D. dependent var 0.003028 
S.E. of regression 0.003029     Sum squared resid 0.013712 
Durbin-Watson stat 1.931926    

     
     
     Covariance specification: BEKK   

GARCH = M + A1*RESID(-1)*RESID(-1)'*A1 + B1*GARCH(-1)*B1 
M is an indefinite matrix   
A1 is diagonal matrix   
B1 is diagonal matrix   

     
      Tranformed Variance Coefficients 
     
      Coefficient Std. Error z-Statistic Prob.   
     
     M(1,1) 7.64E-08 2.05E-08 3.730832 0.0002 

M(1,2) 2.44E-08 8.58E-09 2.838527 0.0045 
M(2,2) 7.85E-08 2.46E-08 3.191526 0.0014 
A1(1,1) 0.178076 0.014234 12.51060 0.0000 
A1(2,2) 0.181405 0.016128 11.24814 0.0000 
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B1(1,1) 0.980176 0.002985 328.3777 0.0000 
B1(2,2) 0.979183 0.003378 289.8927 0.0000 

     
      

 

System: WEEKLY DATA   
Estimation Method: ARCH Maximum Likelihood (Marquardt) 
Covariance specification: BEKK   
Date: 07/12/13   Time: 02:54   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Total system (balanced) observations 602  
Presample covariance: backcast (parameter =0.7)  
Convergence achieved after 36 iterations  

     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 0.000219 0.000270 0.810711 0.4175 

C(2) 0.000198 0.000252 0.785019 0.4324 
     
      Variance Equation Coefficients  
     
     C(3) 3.08E-06 9.05E-07 3.399679 0.0007 

C(4) 2.05E-06 5.50E-07 3.725958 0.0002 
C(5) 1.16E-06 3.21E-07 3.607646 0.0003 
C(6) 0.365563 0.027562 13.26320 0.0000 
C(7) 0.256729 0.026116 9.830503 0.0000 
C(8) 0.877657 0.018225 48.15772 0.0000 
C(9) 0.947912 0.006871 137.9600 0.0000 

     
     Log likelihood 2538.272 Schwarz criterion -16.69495 

Avg. log likelihood 4.216399 Hannan-Quinn criter. -16.76144 
Akaike info criterion -16.80580    

     
          

Equation: DLOG_S_EURUSD_WEEKLY = C(1)  

R-squared -0.002370     Mean dependent var -6.38E-05 
Adjusted R-squared -0.002370     S.D. dependent var 0.005821 
S.E. of regression 0.005828     Sum squared resid 0.010191 
Durbin-Watson stat 1.485415    

     
Equation: DLOG_F_EURUSD_WEEKLY = C(2)  

R-squared -0.002145     Mean dependent var -6.09E-05 
Adjusted R-squared -0.002145     S.D. dependent var 0.005605 
S.E. of regression 0.005611     Sum squared resid 0.009446 
Durbin-Watson stat 1.378285    

     
     
     Covariance specification: BEKK   

GARCH = M + A1*RESID(-1)*RESID(-1)'*A1 + B1*GARCH(-1)*B1 
M is an indefinite matrix   
A1 is diagonal matrix   
B1 is diagonal matrix   

     
      Tranformed Variance Coefficients 
     
      Coefficient Std. Error z-Statistic Prob.   
     
     M(1,1) 3.08E-06 9.05E-07 3.399679 0.0007 

M(1,2) 2.05E-06 5.50E-07 3.725958 0.0002 
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M(2,2) 1.16E-06 3.21E-07 3.607646 0.0003 
A1(1,1) 0.365563 0.027562 13.26320 0.0000 
A1(2,2) 0.256729 0.026116 9.830503 0.0000 
B1(1,1) 0.877657 0.018225 48.15772 0.0000 
B1(2,2) 0.947912 0.006871 137.9600 0.0000 
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Annex 14. Bivariate TARCH(1,1) with a restricted diagonal VECH 

covariance 
 
 

System: WEEKLY DATA    
Estimation Method: ARCH Maximum Likelihood (Marquardt) 
Covariance specification: Diagonal VECH  
Date: 07/12/13   Time: 17:17   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Total system (balanced) observations 602  
Presample covariance: backcast (parameter =0.7)  
Convergence achieved after 21 iterations  

     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 5.02E-05 0.000281 0.178565 0.8583 

C(2) 2.86E-05 0.000288 0.099349 0.9209 
     
      Variance Equation Coefficients  
     
     C(3) 1.12E-06 3.60E-07 3.102951 0.0019 

C(4) 1.01E-06 3.16E-07 3.195549 0.0014 
C(5) 1.07E-06 3.16E-07 3.377083 0.0007 
C(6) 0.028029 0.015487 1.809908 0.0703 
C(7) 0.113506 0.026027 4.361082 0.0000 
C(8) 0.891915 0.015117 58.99919 0.0000 

     
     Log likelihood 2536.506 Schwarz criterion -16.70218 

Avg. log likelihood 4.213466 Hannan-Quinn criter. -16.76128 
Akaike info criterion -16.80071    

     
          

Equation: DLOG_S_EURUSD_WEEKLY = C(1)  

R-squared -0.000385     Mean dependent var -6.38E-05 
Adjusted R-squared -0.000385     S.D. dependent var 0.005821 
S.E. of regression 0.005823     Sum squared resid 0.010171 
Durbin-Watson stat 1.488363    

     
Equation: DLOG_F_EURUSD_WEEKLY = C(2)  

R-squared -0.000256     Mean dependent var -6.09E-05 
Adjusted R-squared -0.000256     S.D. dependent var 0.005605 
S.E. of regression 0.005606     Sum squared resid 0.009428 
Durbin-Watson stat 1.380888    

     
     
     Covariance specification: Diagonal VECH  

GARCH = M + A1.*RESID(-1)*RESID(-1)' + D1.*(RESID(-1)*(RESID(-
1)<0)) 
        *(RESID(-1)*(RESID(-1)<0))'D1.*(RESID(-1)*(RESID(-
1)<0))*(RESID( 
        -1)*(RESID(-1)<0))' + B1.*GARCH(-1)  
M is an indefinite matrix   
A1 is a scalar    
D1 is a scalar    
B1 is a scalar    

     
      Tranformed Variance Coefficients 
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 Coefficient Std. Error z-Statistic Prob.   
     
     M(1,1) 1.12E-06 3.60E-07 3.102951 0.0019 

M(1,2) 1.01E-06 3.16E-07 3.195549 0.0014 
M(2,2) 1.07E-06 3.16E-07 3.377083 0.0007 

A1 0.028029 0.015487 1.809908 0.0703 
D1 0.113506 0.026027 4.361082 0.0000 
B1 0.891915 0.015117 58.99919 0.0000 
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Annex 15. Bivariate TARCH(1,1) with a CCC covariance 
 
 

System: WEEKLY DATA   
Estimation Method: ARCH Maximum Likelihood (Marquardt) 
Covariance specification: Diagonal VECH  
Date: 07/12/13   Time: 02:48   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Total system (balanced) observations 602  
Presample covariance: backcast (parameter =0.7)  
Convergence achieved after 150 iterations  

     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 0.000178 0.000289 0.615005 0.5386 

C(2) 0.000152 0.000281 0.540654 0.5887 
     
      Variance Equation Coefficients  
     
     C(3) 1.23E-06 3.57E-07 3.456632 0.0005 

C(4) 1.17E-06 2.90E-07 4.039521 0.0001 
C(5) 1.07E-06 2.82E-07 3.810531 0.0001 
C(6) -0.022932 0.018443 -1.243367 0.2137 
C(7) -0.030361 0.015691 -1.935004 0.0530 
C(8) -0.018822 0.017639 -1.067107 0.2859 
C(9) 0.301991 0.042680 7.075676 0.0000 
C(10) 0.271534 0.046520 5.836919 0.0000 
C(11) 0.934751 0.016514 56.60218 0.0000 
C(12) 0.943367 0.013450 70.13797 0.0000 
C(13) 0.944369 0.015342 61.55454 0.0000 

     
     Log likelihood 2554.322 Schwarz criterion -16.72575 

Avg. log likelihood 4.243060 Hannan-Quinn criter. -16.82179 
Akaike info criterion -16.88586    

     
          

Equation: DLOG_S_EURUSD_WEEKLY = C(1)  

R-squared -0.001731     Mean dependent var -6.38E-05 
Adjusted R-squared -0.001731     S.D. dependent var 0.005821 
S.E. of regression 0.005826     Sum squared resid 0.010184 
Durbin-Watson stat 1.486362    

     
Equation: DLOG_F_EURUSD_WEEKLY = C(2)  

R-squared -0.001450     Mean dependent var -6.09E-05 
Adjusted R-squared -0.001450     S.D. dependent var 0.005605 
S.E. of regression 0.005609     Sum squared resid 0.009439 
Durbin-Watson stat 1.379242    

     
     
     Covariance specification: Diagonal VECH  

GARCH = M + A1.*RESID(-1)*RESID(-1)' + D1.*(RESID(-1)*(RESID(-
1)<0)) 
        *(RESID(-1)*(RESID(-1)<0))'D1.*(RESID(-1)*(RESID(-
1)<0))*(RESID( 
        -1)*(RESID(-1)<0))' + B1.*GARCH(-1)  
M is an indefinite matrix   
A1 is an indefinite matrix   
D1 is a rank one matrix   
B1 is an indefinite matrix   
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      Tranformed Variance Coefficients 
     
      Coefficient Std. Error z-Statistic Prob.   
     
     M(1,1) 1.23E-06 3.57E-07 3.456632 0.0005 

M(1,2) 1.17E-06 2.90E-07 4.039521 0.0001 
M(2,2) 1.07E-06 2.82E-07 3.810531 0.0001 
A1(1,1) -0.022932 0.018443 -1.243367 0.2137 
A1(1,2) -0.030361 0.015691 -1.935004 0.0530 
A1(2,2) -0.018822 0.017639 -1.067107 0.2859 
D1(1,1) 0.091199 0.025778 3.537838 0.0004 
D1(1,2) 0.082001 0.022792 3.597723 0.0003 
D1(2,2) 0.073731 0.025264 2.918460 0.0035 
B1(1,1) 0.934751 0.016514 56.60218 0.0000 
B1(1,2) 0.943367 0.013450 70.13797 0.0000 
B1(2,2) 0.944369 0.015342 61.55454 0.0000 
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Annex 16. Bivariate TARCH(1,1) with a diagonal BEKK covariance 
 
 

System: WEEKLY DATA    
Estimation Method: ARCH Maximum Likelihood (Marquardt) 
Covariance specification: BEKK   
Date: 07/12/13   Time: 15:17   
Sample: 6/20/2007 3/20/2013   
Included observations: 301   
Total system (balanced) observations 602  
Presample covariance: backcast (parameter =0.7)  
Convergence achieved after 140 iterations  

     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) 0.000158 0.000291 0.544266 0.5863 

C(2) 0.000122 0.000287 0.424936 0.6709 
     
      Variance Equation Coefficients  
     
     C(3) 1.55E-06 4.99E-07 3.108674 0.0019 

C(4) 1.48E-06 3.64E-07 4.078950 0.0000 
C(5) 1.32E-06 3.51E-07 3.770146 0.0002 
C(6) -0.049993 0.089597 -0.557977 0.5769 
C(7) 0.076482 0.081691 0.936228 0.3492 
C(8) -0.298575 0.045873 -6.508686 0.0000 
C(9) -0.262365 0.043879 -5.979238 0.0000 
C(10) 0.948225 0.012817 73.98426 0.0000 
C(11) 0.955505 0.009876 96.75016 0.0000 

     
     Log likelihood 2553.054 Schwarz criterion -16.75525 

Avg. log likelihood 4.240953 Hannan-Quinn criter. -16.83651 
Akaike info criterion -16.89072    

     
          

Equation: DLOG_S_EURUSD_WEEKLY = C(1)  

R-squared -0.001460     Mean dependent var -6.38E-05 
Adjusted R-squared -0.001460     S.D. dependent var 0.005821 
S.E. of regression 0.005826     Sum squared resid 0.010182 
Durbin-Watson stat 1.486765    

     
Equation: DLOG_F_EURUSD_WEEKLY = C(2)  

R-squared -0.001068     Mean dependent var -6.09E-05 
Adjusted R-squared -0.001068     S.D. dependent var 0.005605 
S.E. of regression 0.005608     Sum squared resid 0.009436 
Durbin-Watson stat 1.379768    

     
     
     Covariance specification: BEKK   

GARCH = M + A1*RESID(-1)*RESID(-1)'*A1 + D1.*(RESID(-1)*(RESID( 
        -1)<0))*(RESID(-1)*(RESID(-1)<0))'D1*(RESID(-1)*(RESID(-1)<0)) 
        *(RESID(-1)*(RESID(-1)<0))'*D1 + B1*GARCH(-1)*B1 
M is an indefinite matrix   
A1 is diagonal matrix   
D1 is diagonal matrix   
B1 is diagonal matrix   

     
      Tranformed Variance Coefficients 
     
      Coefficient Std. Error z-Statistic Prob.   
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     M(1,1) 1.55E-06 4.99E-07 3.108674 0.0019 

M(1,2) 1.48E-06 3.64E-07 4.078950 0.0000 
M(2,2) 1.32E-06 3.51E-07 3.770146 0.0002 
A1(1,1) -0.049993 0.089597 -0.557977 0.5769 
A1(2,2) 0.076482 0.081691 0.936228 0.3492 
D1(1,1) -0.298575 0.045873 -6.508686 0.0000 
D1(2,2) -0.262365 0.043879 -5.979238 0.0000 
B1(1,1) 0.948225 0.012817 73.98426 0.0000 
B1(2,2) 0.955505 0.009876 96.75016 0.0000 
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Annex 17. Measure of Hedging Effectiveness  
 

  2007 2008 2009 2010 2011 2012 2013 

Naïve hedge -0,1727 0,01607 -0,3878 -0,3855 -0,471 -0,6806 -0,3656 

Constant hedge (daily) 0,16075 0,22756 0,0773 0,08837 0,07209 -0,0055 0,03698 

Constant hedge (weekly) -1,5673 -2,2443 -2,1544 -1,8951 -1,9309 -2,1086 -0,1128 

Constant hedge 
(monthly) 

-0,2395 -0,0408 -0,4639 -0,4642 -0,5578 -0,7775 -0,4281 

GARCH with diagonal 
VECH 

0,22319 0,30337 0,1193 0,13358 0,14424 0,05059 0,11733 

GARCH with CCC 0,16192 0,23056 0,08264 0,09009 0,0731 0,00176 0,02509 

GARCH with diagonal 
BEKK 

0,22262 0,30419 0,11921 0,13439 0,14437 0,05058 0,11834 

Daily returns with a 12 months hedging horizon  

 

  2007 2008 2009 2010 2011 2012 2013 

Naïve hedge 0,74559 0,8876 0,48999 0,80632 0,65533 0,6491 0,93073 

Constant hedge 
(monthly) 

0,73293 0,88533 0,47273 0,79192 0,63068 0,62743 0,92511 

Constant hedge (weekly) 0,75408 0,87825 0,50915 0,81659 0,68331 0,67264 0,92585 

Constant hedge (daily) 0,46269 0,50157 0,33845 0,50312 0,45863 0,4437 0,53841 

GARCH with diagonal 
VECH 

0,7811 0,90949 0,53571 0,82879 0,71185 0,7224 0,92943 

GARCH with CCC 0,76472 0,90364 0,48266 0,82369 0,69987 0,70223 0,92184 

GARCH with diagonal 
BEKK 

0,71491 0,87487 0,48779 0,73985 0,65832 0,58427 0,69586 

TARCH with diagonal 
VECH 

0,77517 0,90281 0,52826 0,82538 0,70857 0,71009 0,92599 

TARCH with CCC 0,38929 0,46859 0,06139 0,4757 0,31257 0,43721 0,87632 

TARCH with diagonal 
BEKK 

0,76194 0,88233 0,51923 0,81499 0,69825 0,69499 0,93101 

Weekly returns with a 12 month hedging horizon 
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  Naïve hedge 
constant hedge 
(monthly) 

constant hedge 
(weekly) 

constant 
hedge 
(daily) 

GARCH with 
diagonal VECH 

GARCH 
with CCC 

GARCH 
with 
diagonal 
BEKK 

TARCH 
with 
diagonal 
VECH 

TARCH 
with CCC 

TARCH 
with 
diagonal 
BEKK 

2007 

Q3 0,9675 0,9650 0,9573 0,5466 0,9680 0,9669 0,8856 0,9669 0,8691 0,9687 

Q4 0,8469 0,8578 0,8183 0,4287 0,8572 0,8572 0,6737 0,8434 0,8676 0,8451 

2008 

Q1 0,9167 0,9124 0,9100 0,5255 0,9268 0,9242 0,7733 0,9215 0,7989 0,9193 

Q2 0,9708 0,9760 0,9489 0,5191 0,9716 0,9657 0,7715 0,9698 0,9278 0,9623 

Q3 0,9386 0,9297 0,9385 0,5553 0,9456 0,9429 0,8481 0,9470 0,6084 0,9440 

Q4 0,9878 0,9874 0,9742 0,5501 0,9902 0,9876 0,9638 0,9900 0,4125 0,9866 

2009 

Q1 0,4792 0,4649 0,4941 0,3212 0,5532 0,5000 0,6198 0,5430 -0,0283 0,5104 

Q2 0,7449 0,7405 0,7409 0,4306 0,7529 0,7511 0,6312 0,7256 0,4294 0,6886 

Q3 0,3362 0,3249 0,3484 0,2300 0,3639 0,3401 0,2636 0,3581 0,1532 0,3596 

Q4 0,7744 0,7495 0,8011 0,5259 0,8072 0,8026 0,6461 0,8058 0,5673 0,8055 

2010 

Q1 0,5036 0,4825 0,5285 0,3609 0,5383 0,5224 0,5273 0,5229 0,1262 0,5147 

Q2 0,7345 0,7180 0,7488 0,4709 0,7771 0,7689 0,6892 0,7780 0,2953 0,7699 

Q3 0,7515 0,7358 0,7646 0,4778 0,7791 0,7790 0,6860 0,7773 0,4677 0,7726 

Q4 0,9288 0,9220 0,9257 0,5418 0,9344 0,9284 0,8169 0,9289 0,7776 0,9082 

2011 

Q1 0,3831 0,3532 0,4231 0,3279 0,4820 0,4464 0,4799 0,4555 0,0048 0,4350 

Q2 0,7106 0,6858 0,7380 0,4898 0,7791 0,7649 0,7095 0,7902 0,4700 0,7749 

Q3 0,4413 0,4176 0,4709 0,3361 0,5054 0,4887 0,4547 0,4987 0,0513 0,4862 

Q4 0,7915 0,7676 0,8163 0,5312 0,8294 0,8291 0,7823 0,8286 0,3987 0,8235 

2012 

Q1 0,2828 0,2193 0,3752 0,4013 0,5119 0,4609 0,5577 0,4804 -0,2385 0,4376 

Q2 0,7168 0,6988 0,7338 0,4672 0,7385 0,7430 0,5663 0,7403 0,5319 0,7384 

Q3 0,7385 0,7334 0,7356 0,4298 0,7589 0,7532 0,5878 0,7560 0,6003 0,7499 

Q4 0,8215 0,8070 0,8316 0,5118 0,8525 0,8446 0,6957 0,8354 0,6477 0,8277 

2013 Q1 0,9295 0,9302 0,9151 0,5135 0,9281 0,9133 0,6643 0,9245 0,9025 0,9261 

Weekly returns with a 3 month hedging horizon 

 


