
POLITECNICO DI MILANO
Degree in Master of Science of Computer System Engineering

Dipartimento di Elettronica e Informazione

Online Video Stabilization for UAV
Motion Estimation and Compensation for Unnamed Aerial

Vehicles

AI & R Lab
Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Relatore: Matteo Matteucci PhD

Master Degree Thesis of:
Rodrigo José Ortiz Cayón

Matricola 764561

Academic Year 2012-2013

All professors I have had, all my relatives and friends (who are my family
too). They have been fundamental part of my life, however I rather prefer

to mention one single person name who is not even here anymore. She left
long time ago, I was still a child nevertheless she taught me sensitivity,

humility and solidarity with the others.

Thanks for all your sacrifices and your constant affection given to me. I
keep on my mind your bravery, your desire to live and your words: “I must

take care of my little boy”.

to my mom

Carmen María Cayón Sánchez

Abstract

Unnamed Aerial Vehicles (UAV) are known for their application in surveil-
lance and tracking with on-board cameras. Videos from UAV usually suffer
from jitter and high frequency unintended movements which makes neces-
sary stabilize the footage. This is a Computer Vision problem, particularly
difficult due to level of noise in acquisition and different types of scenarios
which make hard to implement online stabilizer (on the fly).

The present thesis explains in depth algorithms, methods and implementa-
tions of the OpenCV module videostab1. We presented a version in C++ of
videostab (videostab_polimi2) in context of video from UAV.

Two main blocks constitute the current implementation: motion estimation
and motion stabilization. In the former, the system robustly estimates global
displacement in between every consecutive pair of frames. The latter can
be used in two possible ways: Assuming that estimated motion contains
intended UAV motion and high frequency vibrations or assuming that all
estimated motion is undesirable. The first case is solved with a Gaussian
filter to smooth motions and, in the second case, a filter called Zero Motion
was implemented to give sensation of stillness.

Results show that the implementation is robust and can work in different
scenarios of UAV. Moreover, it is possible to run it in a general purpose
computer with high speed performance. Online performance can be achieved
using some function with graphic processing unit (GPU).

1http: // docs. opencv. org/ trunk/ modules/ videostab/ doc/ videostab. html
2https: // github. com/ rodrygojose/ opencv/ tree/ videostab_ polimi/ modules/

videosta b

I

http://docs.opencv.org/trunk/modules/videostab/doc/videostab.html
https://github.com/rodrygojose/opencv/tree/videostab_polimi/modules/videosta
https://github.com/rodrygojose/opencv/tree/videostab_polimi/modules/videosta

Acknowledgments

I am very grateful with Professor Matteo Matteucci for propose me the
topic, make suggestions and reviewing the manuscript in spite of his very
busy schedule.

Also, I would like to thanks Ana Stella Martínez, Marta Korzec and
Anne-Sophie Petit for encourage me keep working on this written docu-
ment.

III

Contents

Abstract I

Acknowledgments III

1 Context 7

1.1 Overview . 7

1.2 Video Stabilization Methods 7

1.3 Thesis of the Scope . 10

1.4 Structure of the Thesis . 10

1.5 Problem Description . 11

1.6 Objectives . 12

1.6.1 Main Objective . 12

1.6.2 Specific Objectives . 12

1.7 Challenges . 12

2 State of Art 13

2.1 Digital Video Stabilization . 13

2.2 Camera Model . 13

2.3 Related Works in Motion Estimation 14

2.3.1 Motion Models . 14

2.3.2 Motion Estimation Methods 15

2.3.3 Error Metrics and Outliers in Estimation 17

2.4 OpenCV and GPU . 17

i

CONTENTS

3 Proposed Solution 19

3.1 Implementation Overview . 19

3.2 Motion Estimation . 20

3.2.1 Feature Tracking . 22

3.2.1.1 Lucas-Kanade Optical Flow 23

3.2.1.2 Inverse Compositional for Feature Tracking . 27

3.2.1.3 Pyramidal Lucas-Kanade Feature Tracker . . 30

3.2.1.4 Sub-pixel Accuracy 32

3.2.2 Feature Selection . 32

3.2.3 Global Motion Estimation with Affine Model 35

3.2.4 Global Motion Estimation with Homography 39

3.3 Motion Stabilizing . 42

3.3.1 Gaussian Motion Filter 43

3.3.2 Zero Motion Filter . 46

3.3.3 Image Alignment . 48

3.4 Diagrams . 49

4 Experiments and Discussion 51

4.1 Performance Analysis and Discussion 51

4.1.1 Feature Selection Quality: Texturedness 51

4.1.2 Feature Tracking Accuracy: Dissimilarity 53

4.1.3 Profiling . 56

4.1.4 Outlier Rejection in Global Motion Estimation 58

4.1.5 Motion Filtering . 59

5 Conclusion and Further Works 63

A Logic Project Documentation 65

A.1 Class Diagram . 65

A.2 Activity Diagrams . 65

B User Manual 75

ii

CONTENTS

C Result Examples 77

C.1 Affine vs Homography . 77

C.2 Amount of Correction . 77

Bibliography 79

iii

CONTENTS

iv

List of Algorithms

3.1 Pyramidal LK Tracking Algorithm. 31
3.2 Shi-Tomasi Feature Selection. 35
3.3 Isotropic Point Normalization. 38
3.4 RANSAC . 39
3.5 LMedS . 42

1

LIST OF ALGORITHMS

2

List of Figures

1.1 Frequency and Amplitude range for different vibrations sources.[19] 8

1.2 Optical Image Stabilization. 8

1.3 Mechanical stabilizer. 9

1.4 Stabilization methods on Frequency-Amplitude coverage. . . 10

1.5 Video Surveillance Scenarios. 11

2.1 Projective Geometry. 14

3.1 General steps of video stabilization algorithm. 20

3.2 Global Motion Estimation Process. 20

3.3 Frames and Motions. 21

3.4 Pixel values around features in consecutive frames. 23

3.5 Optical Flow for images of Figure 3.4. 24

3.6 Schematic diagram for Inverse Compositional Optical Flow
Tracker. 29

3.7 Pyramid Representation of the Image. 30

3.8 Computation of image levels. 31

3.9 Possible Problems in Feature Selection.[17] 32

3.10 Shi Tomasi regions for eigenvalues. 33

3.11 Impulse Response of Gaussian filter with r = 20. 45

3.12 Magnitude Response of Gaussian filter. 45

3.13 Phase Response of filter. 46

3.14 Schema for apply the filter to the video stream. 47

3.15 Aliment of two consecutive images. 49

3

LIST OF FIGURES

4.1 Test video frames. 51

4.2 Feature quality for frames in Figure 4.1. 52

4.3 Iteration Vs Error in tracking over four different combinations
of windows and pyramid level. 53

4.4 Iteration Vs Error for 2000 consecutive frames. 55

4.5 Motion Vectors. 55

4.6 Profile Pie Chart. 56

4.7 ε Vs Number of iterations. 57

4.8 Order of computational complexity for motion estimation. . . 57

4.9 Outlier Rejection. 58

4.10 Motions before and after filtering. 60

4.11 Translation before and after filtering. 61

A.1 Class Diagram . 66

A.2 Video Stabilizing. 67

A.3 Prepare Motion Estimation Builders. 68

A.4 Building Stabilizers. 69

A.5 Build Motion Estimators. 70

A.6 Running the system in the highest level of abstraction 71

A.7 Stabilize Next Frame. 72

A.8 Motion Estimation. 73

A.9 Motion Stabilizing. 73

4

List of Tables

2.1 Motion Models. 15

2.2 Parametric Motion Models. 16

4.1 Information about videos for testing. 52

4.2 Size of fames at maximum pyramid level. 54

5

LIST OF TABLES

6

Chapter 1

Context

1.1 Overview

Unmanned Aerial Vehicles, or UAVs are flying machines usually provided
with inexpensive on-board cameras used in situations where are required
small air-crafts without an on board pilot. The range of applications comes
from surveillance, sensing, search and rescue, exploration, among the others.
Depending on environmental conditions and specific characteristics of the
vehicle, different types of vibrations, at different levels, affect UAVs (see
Figure 1.1). Being UAVs unsteady platforms, the video obtained by the on
board camera is highly disturbed and should be stabilized to provide good
quality video. Furthermore, in applications as tracking a stabilization block
is required.

Video Stabilization is a time expensive process. The possibility of doing
online stabilization for UAV’s conditions is a interesting topic of research.
Additionally, this opens the door for using the stabilization process in other
applications such tuning the control parameters of a physical gimbal used
for active motion stabilization on an aerial vehicle.

1.2 Video Stabilization Methods

Depending on the approach to stabilize images from video, three types of
stabilizers are found: Optical Image Stabilization (OIS), Mechanical Image
Stabilization (MIS) and Digital Image Stabilization (DIS). Next, a brief
explanation of them.

7

CHAPTER 1. CONTEXT

Figure 1.1: Frequency and Amplitude range for different vibrations
sources.[19]

Optical Image Stabilization

Optical Image Stabilization systems, manipulates the image before it gets
to the camera sensor. When the lens moves, the light rays from the subject
are bent relative to the optical axis, resulting in an unsteady image because
the light rays are deflected. By shifting image stabilization lens group on
a plane perpendicular to the optical axis to counter the degree of image
vibration, the light rays reaching the image plane can be steadied. Two
vibration-detecting sensors for yaw and pitch are used to detect the angle
and speed of movement because vibrations might occur in both horizon-
tal and vertical directions. An actuator moves the lens group horizontally
and vertically thus counteracting the vibration and maintaining the stable
picture (Figure 1.21)[2].

Figure 1.2: Optical Image Stabilization.
1Canon Digisuper 100xs, Product Manual: http://www.canon.com/bctv/products/

pdf/100xs.pdf

8

http://www.canon.com/bctv/products/pdf/100xs.pdf
http://www.canon.com/bctv/products/pdf/100xs.pdf

CHAPTER 1. CONTEXT

Mechanical Image Stabilization

Mechanical image stabilization involves stabilizing the entire camera. This
type of stabilization can use a a motion sensor as a gyroscope or mechanical
devices such as shock absorbers for passively damp any kind of vibrations.
Mechanical stabilizer has the advantage of instantly smooth high frequency
vibrations. Commercial products of this type are available as Steadicam2

(see Figure 1.3).

Digital Image Stabilization

Digital Image Stabilization (DIS) systems, use electronic processing to con-
trol image stability. Unlike OIS, the image is manipulated after reaching the
sensor. DIS systems detects what they think is camera vibration, it slightly
moves the image so that it remains in the same place on the sensor. To
correct the camera vibration, the camera electronics detect the direction of
the movement and shifts the active field so that it meshes with the memo-
rized field. A major risk of this system is the level of noise for some scenes;
for instance, a large object moving in the frame may be interpreted as cam-
era vibration and the camera will attempt to stabilize the subject causing
a blurring of the image and reduction in picture resolution. An important
issue becomes the robustness of DIS systems.

In some DIS, the camera can also use motion sensors to detect vibrations.
Since this method senses movements in the camera and not the image, move-
ment of a object in image cannot fool it. Unfortunately, not all cameras are
equipped with motion sensors then it becomes necessary to use a Computer
Vision approach.

2http://www.steadicam.com/

Figure 1.3: Mechanical stabilizer.

9

CHAPTER 1. CONTEXT

Figure 1.4: Stabilization methods on Frequency-Amplitude coverage.

In Figure 1.4 an image for different types of stabilization is reported with
the range of Frequency-Amplitude they cover [19].

1.3 Thesis of the Scope

Motion in video images is caused by either object motion or camera move-
ment. Digital image stabilization system endeavors to produce a compen-
sated video sequence so that image motion due to camera’s undesirable
vibrations. The goal of this research is to explore and implement the state
of the art to stabilize sequences in context of UAV. The developed algo-
rithm should provide fast and robust stabilization system, and attempt on
line performance.

1.4 Structure of the Thesis

This thesis is organized into six chapters and three appendices. The first
chapter has presented the introduction, problem statement, mentions three
types of image stabilization methods and the goal of the research. Chapter
two describes in deep the research problem. Chapter three presents basic
concepts in the field of image processing which are necessary to understand
the method used to solve the problem being studied. Chapter four explains
the methods and the techniques used to implement the various algorithms.
Chapter five documents data resulted from the algorithms test. Chapter six
summarizes the research, including limitations and areas of future work.

10

CHAPTER 1. CONTEXT

1.5 Problem Description

One of the main applications of Unmanned Air Vehicles is to provide video
surveillance and target tracking. Video Surveillance systems use sequences
of images from a camera to monitor scene activities. Regard to camera
movement, situation of figure 1.5a or the one in figure 1.5b may raise.

The first situation shows a stationary camera, hence any differences between
two consecutive frames is due movement of objects in scene, noise in acqui-
sition or unexpected vibration in the camera. Examples of first situation are
the surveillance in a train station or bridge of highways having the cameras
on the bridge’s structure.

On the other hand, in Figure 1.5b the scene involves an Unmanned Air
Vehicle. This is a more complex situation because the recording device is
over an unsteady platforms then we have all possible motions form first
situation, but the intended motion of the camera, called Ego-motion, with
more intense unexpected vibrations. Ego-motion is the major influence of
wide disparities between consecutive frames and in tracking system with this
kind of video, and sometimes stabilization procedure must be performed.

OIS and MIS systems are not suitable for UAV. With the former, it is
necessary to use cameras with optical stabilizer. On the other hand, MIS
has difficulties of size, weight and usually consume power, which makes
mechanical video stabilization suitable for small UAVs at the current time.

Not generic online solutions exist for DIS. Some commercial ad hoc prod-
ucts as Acadia ILS-6000 [8] are expensive platform-based solutions for most
applications, avoiding the widespread use in computer vision applications.

(a) Stationary Camera. (b) Moving Camera.

Figure 1.5: Video Surveillance Scenarios.

11

CHAPTER 1. CONTEXT

1.6 Objectives

1.6.1 Main Objective

• Video stabilization in context of tracking with UAV.

1.6.2 Specific Objectives

• Estimate camera’s motions and measuring the amount of correction
needed to stabilize frames.

• Implement a way to smooth vibrations.

• Implement a way to cancel movements as is UAV is still.

• Attempt to do all this online.

1.7 Challenges

UAV is always moving itself even during station-keeping it is never perfectly
stable, making necessary to compensate images for applications as motion
detection, tracking and others. The challenge is to determine the vehicle’s
undesirable motions from the image sequence to compensate the motion
under UAV’s conditions: unexpected and quick movement, high frequency
vibration due the engine, with high noise rates.

Another challenge in to keep computation online to respect the constraint of
number of frame per second and also to keep latency as minimum as possible
for tracking applications.

12

Chapter 2

State of Art

2.1 Digital Video Stabilization

Video stabilization is the process of removing unwanted movement from a
video stream. Mechanical stabilization physically dampens out vibration or
unintended movement with gyroscopes or dampers. Optical stabilization is
when sensors detect mechanical movement and shift the lens slightly. Both of
these methods stabilize the image before digital conversion[5]. Digital video
stabilization modifies each input frame to maintain a steady image after it
is converted to digital. To do so, a transformation matrix is calculated via
different motion estimation methods and is used to move the image. In this
Chapter we mention common transformation matrix models and methods
for motion estimation.

2.2 Camera Model

An image is a 2D pattern resulting from the projection of a 3D scene
onto a 2D plane. In Figure 2.1 the basic pinhole camera model is used
to conveniently simplify a linear mapping from P3 to P2. Correspondences
under perspective projection between 3D camera coordinate points X =(
X Y Z

)T
and points x =

(
x y

)T
are formed by intersection of

the 2D image plane with a ray linking the camera lens and R [11].
If furthermore the scales of image and world coordinate systems match and
the focal length is f = 1, the projection of a world point onto image plane
is simplified in equation 2.1:

x̃ =
(
x
y

)
= 1
Z

(
X
Y

)
. (2.1)

13

CHAPTER 2. STATE OF ART

Figure 2.1: Projective Geometry.

The presence of motion manifests itself on the image plane by changes of
pixel intensity values. These changes are used to recover motion of objects in
scene. Thereafter, the 3D motion information of the objects is also projected
onto the image plane. The fact that a 3D scene is projected onto a 2D image
explains that a difference exists between the apparent and the real motion.

2.3 Related Works in Motion Estimation

In general, in motion estimation, firstly, we select a parametric model. This
represents our a priori knowledge about the camera movement. Then we
use data to fit the model. Data are usually the motion vectors produced by
pixel or feature-based approaches. We also need a criteria, to measure how
well the model represents the experimental data. The problem might be
stated as a optimization problem where the best model is the one which fits
better the data in the sense defined by a given criteria. An outlier method
is also needed to filter noisy samples.

2.3.1 Motion Models

Motion models establish the mathematical relationships for mapping pixel
coordinates from one image to another. A variety of such parametric motion
models are possible that basically reflects camera motions such as: dolly
(moving the camera forward or backward), track (moving the camera left
or right), boom (moving the camera up or down), pan (rotating the camera
around its Y axis), tilt (rotating the camera around its X axis), and roll
(rotating the camera around the view axis).

In Table 2.1, Models are organized hierarchically by the number of degrees
of freedom, showing transformation effects on a chessboard. Pixel loca-

14

CHAPTER 2. STATE OF ART

Transform D.O.F. Preserves Icon

Translation 2 Orientation

Rigid 3 Lengths

Similarity 4 Angles

Affine 6 Parallelism

Homography 8 Straight lines

Table 2.1: Motion Models.

tion x = (x, y) can be mapped to x′ by x′ = M x̃, where x̃ is th homoge-
neous coordinates version of x and M is the matrix transformation given
in Table 2.2. Same table gives motion Jacobians for 2D planar transforma-
tions.

2.3.2 Motion Estimation Methods

Pixel-based Methods

Pixel-based Methods use all pixel-to-pixel matching images. An example
is Fourier-based alignment, relying on the fact that Fourier transform of
a shifted signal has the same magnitude as the original signal but linearly
varying phase. In [15], and “Improved Fourier Mellin Invariant Method” was
implemented, with the hypothesis information for alignment is necessary
the whole image and not only sparse set of features. Fourier alignment
works well in featureless scenarios. Another example of pixel based is the
computational expensive Dense Lucas Kanade.

Feature-based Methods

The second class of algorithms works by extracting a sparse set of features
and then matching or tracking them frame to frame. Examples of these
algorithms are as Scale-invariant feature transform (SIFT), Speed up ro-
bust features (SURF), sparse Lucas Kanade and Geometric registration.
Feature-based approaches are widely used for their advantages. Feature-
based approaches have the advantage of being more robust against scene
movement and are potentially faster.

15

CHAPTER 2. STATE OF ART

Tr
an

sf
or
m

M
at
rix

Pa
ra
m
et
er
s

Ja
co
bi
an

J
x′

Tr
an

sla
tio

n
[1

0
t x

0
1

t y

]
(t
x
,t
y
)

[1
0

0
1

]

R
ig
id

[c θ
−
s θ

t x
s θ

c θ
t y

]
(t
x
,t
y
,θ

)
[1

0
−
s θ
x
−
c θ
y

0
1

c θ
x
−
s θ
y

]

Si
m
ila

rit
y

[1
+
a
−
b

t x
b

1
+
a

t y

]
(t
x
,t
y
,a
,b

)
[1

0
x
−
y

0
1

y
x

]

A
ffi
ne

[1
+
a

00
a

01
t x

a
10

1
+
a

11
t y

]
(t
x
,t
y
,a

00
,a

01
,a

10
,a

11
)

[1
0

x
y

0
0

0
1

0
0

x
y

]

H
om

og
ra
ph

y

 1
+
h

00
h

01
h

02
h

10
1

+
h

11
h

12
h

20
h

21
1

(h

00
,h

01
,h

02
,h

10
,h

11
,h

12
,h

20
,h

21
)

1 D

[x
y

1
0

0
0
−
x
′ x
−
x
′ y

0
0

0
x

y
1
−
y
′ x
−
y
′ y

]
D

=
h

20
x

+
h

21
y

+
1

Table 2.2: Parametric Motion Models.16

CHAPTER 2. STATE OF ART

2.3.3 Error Metrics and Outliers in Estimation

Once a suitable motion model is chosen to compare and describe the align-
ment between a pair of images, a method to estimate its parameters is
needed. In Computer Vision, the mathematical norm is a total size or length
of all vectors in a vector space or matrices is widely used. Error metrics for
functions F and G (it may be images) respect to displacement h.

• First order norm: L1(h) =
∑
|F (x + h)−G(x)|

• Second order norm: L2(h) =
(∑
|F (x + h)−G(x)|2

)1/2
First order norm is called Sum of Absolute Difference (SAD) and second
Sum of Squared Difference (SSD). We can make the above error metric
more robust to outliers by using a function that grows less quickly than the
quadratic penalty associated with least squares. SAD grows less quickly,
however, since this function is not differentiable at the origin, it is not well
suited to gradient-descent approaches.

Norms combined with outlier detection methods need to be implemented
to give robustness. A datum is considered to be an outlier if it will not
fit the true model instantiated by the true set of parameters within some
error threshold that defines the maximum deviation attributable to effects
of noise. In Computer Vision, RANSAC and LMedS methods are common
implementations for outlier filter out.

2.4 OpenCV and GPU

OpenCV (Open Source Computer Vision Library: http://opencv.org) is
an open-source BSD-licensed library that includes several hundreds of com-
puter vision algorithms. OpenCV 2.x API is essentially a C++ API, as
opposite to the C-based OpenCV 1.x API. OpenCV has a modular struc-
ture, which means that the package includes several shared or static libraries
[1]. Focus on real-time applications and with Intel Integrated Performing
Primitives (IPP) install it makes programmed code running faster. The
library comes with a GPU module (Graphic Processing Unit) implements
the compute unified device architecture (CUDA), Developed by NVIDIA, to
accelerate some time consuming functions. GPU module is specialized for
data parallel computing and uses more transistors to data processing than
flow control or data storage.

17

http://opencv.org

CHAPTER 2. STATE OF ART

18

Chapter 3

Proposed Solution

In this chapter, we present a solution using the state of the art in video sta-
bilization to implement an Online version with extra functionality suitable
for UAV. During developing of this thesis, OpenCV began the releases of
videostab module for C++ (see OpenCV’s change log1 at April 2012). The
module has been “under active development”.

“Under active development” means that videostab module is being continu-
ously improved. This brings us to use the “trunk” version of OpenCV which
is the cutting-edge since repository is been updated frequently.

We follow next methodology in this chapter:

• Section Section 3.1 gives a global view of current solution.

• In Section 3.2, we talk about the specific motion estimation algorithms
implemented in videostab module.

• In Section 3.3, we talk about stabilizing methods in videostab module.

• Then, in Section 3.4 we show the specific diagrams for the implemen-
tation of videostab to clarify how the Motion Estimation part and the
Stabilizing part are linked together.

3.1 Implementation Overview

Generic global steps of a digital video stabilization system are shown in
Figure 3.1. These include two blocks: Motion Estimation and Motion Sta-
bilizing. As an input we have a Video Stream object to be stabilized.

1http://code.opencv.org/projects/opencv/wiki/ChangeLog

19

CHAPTER 3. PROPOSED SOLUTION

Figure 3.1: General steps of video stabilization algorithm.

Final quality of stabilization for video (Stabilized Video Stream) and the
number of frames that system processes in time, depend mostly on Motion
Estimation process performed on Video Stream (see Figure 3.1). Motion
Stabilizing block smooths vibrations assuming that intended motions are in
low frequencies or simply there was no intention of motion at all.

Apart from the quality, another important fact is the number of frames
processed per minute or Throughput. Enforcing real time Throughput chal-
lenges such kind of systems. Throughput is mainly driven by the estimation
each pair of frames because this activity is an iterative time consuming
part. Exist a natural trade-off between computation speed and estimation
accuracy, which limits stabilization system throughput .

Next, we describe in detail content of these blocks and how they are imple-
mented in Section 3.2 and Section 3.3. We emphasize in detailed explana-
tion of Motion Estimation since, as we mentioned, this part has a significant
computational cost.

3.2 Motion Estimation

For Motion Estimation, we must find a mathematical relationships that
map pixel coordinates from one image to the other. Inside the Motion
Estimation block, we can differentiate between Frame-to-frame Motion and
Cumulative Motion (an Activity diagram is shown in Figure 3.2). In the

Figure 3.2: Global Motion Estimation Process.

20

CHAPTER 3. PROPOSED SOLUTION

H0 H1 ... Hr−1

Figure 3.3: Frames and Motions.

former, mapping is done between consecutive frames and its relation with
the latter is defined in equation 3.1.

Figure 3.3 shows a graphical representation of frames and motions Hi be-
tween every pair from frame 0 to frame r. Some commonly used parametric
models were reviewed in Section 2.3.1 so Hi can take the form of any of
them. To smooth motions in every frame, we need to consider estimation
for a number of forward frames and the same number of backward frames.
This number is the stabilization radius (r) and waiting for those 2r estima-
tions (r forward and r backward frames) introduces latency. More details
about this will be discussed later in Section 3.3.

Let Hi be the estimated motion model between frame i and i+1 in equation
3.1. EstimatesHi is called Forward Motion Estimation (or Backward Motion
Compensation). HCi,j represents Cumulative Motion from frame i to j and
it is computed as composition of all frame to frame estimations between i
and j.

HCi,,j = Hi ◦Hi+1 ◦ · · · ◦Hj−1. (3.1)

For image alignment, Szeliski[17] said that Feature-based methods offer
faster computation over pixel-based methods. Feature-based methods select
salient points in an image, then find the correspondent points in another
image. With point to point correspondences between consecutive frames,
we can compute feature motion vectors and use them as input data to feed
an algorithm for computing their parameters of a motion model. Motion
vectors represent displacements from each detected feature in the previous
frame (at t− 1) to current frame (at t). Section 3.2.2 and Section 3.2.1 ex-
plain how to select feature points and then how match them in consecutive
frames.

Although the logical order says first to find features, afterward track them;
we present the steps in invert order for a reason: feature selection pro-
cess was adapted to a specific tracking method called Lucas-Kanade Optical
Flow. Then we need to understand firstly Lucas-Kanade to understand the
feature selection method. Lucas-Kanade Optical Flow in its original version
was developed during 1981 in “An Iterative Image Registration Technique

21

CHAPTER 3. PROPOSED SOLUTION

with an Application to Stereo Vision”[10]. Later, a feature selection method
was presented in 1994 by Shi and Tomasi in a paper called “Good Fea-
tures to Track”[16]. Shi and Tomasi developed their ideas around Optical
Flow framework and they used some mathematical procedure that will be
explained in Section 3.2.1.

After computing accurate feature motion vectors, we use them to estimate
the model parameters handling outliers. Under condition of UAV, some
motion models have no sense. For instance, in [9] the author showed that
their translational model can not accurately classify motion that occur in
UAV and outlier rejection techniques become unreliable. This is because
aerial vehicles are continuously subjected to scaling and rotation movements
that Translational model can not deal with.

Affine Model offers better results; Section 3.2.3 explains in detail how the
videostab module estimates the parameters for the Affine matrix. Addition-
ally, same explanation is given for more complex motion model, Homography
in Section 3.2.4.

In next sub-sections, nomenclature and definitions are a consensus of the
most important papers of current videostab OpenCV implementations. To
summarize, the order of ideas is:

• Feature Tracking (in current frame).

• Feature Selection (using previous frame).

• Motion Estimation with Affine (between consecutive frames).

• Motion Estimation with Homography.

3.2.1 Feature Tracking

Let’s assume that we have already properly selected key-points in a video
frame. Now we need to retrieve a new frame and match on it the key-
points from the previous frame. These matches represent movement vectors
that are used in the upcoming step for frame to frame motion estimation.
A sample situation is in Figure 3.42. An example of selected feature in
frame t− 1 (upper part of Figure 3.4) was located at coordinates (121, 84)
with pixel value 0.9. A tracker must find the feature in frame t at position
(122, 102) taking advantage of small inter-frame displacements in video. The
feature moved 19 pixels (1 in x and 18 in y). Notice that pixel values around
the feature are not equal in both images, however they keep similar values.

2Test car video is available in Matlab Computer Vision System Toolbox.

22

CHAPTER 3. PROPOSED SOLUTION

Figure 3.4: Pixel values around features in consecutive frames.

Tracking features we estimate motion that occur at pixel of interest (Lo-
cal Motions). Current solution uses Optical Flow to track salient points.
Method for calculate Optical Flow is Lucas-Kanade’s method (LK). Follow-
ing section gives a detailed explanation of operation principle .

3.2.1.1 Lucas-Kanade Optical Flow

In 1981 Lucas and Kanade presented an iterative algorithm[10] for image
registration using spatial intensity gradient to align a pair of images. The
algorithm took advantage of proximity between a pair of images for some
applications as in case of consecutive frames from video record. Algorithm
could be used to estimate Optical Flow. An example of LK Optical Flow
result is presented in Figure 3.5 (yellow lines are motion vectors).

We represent input image I(x) (current frame at time t) where x = (x, y)T
are pixel coordinates. For some operation with matrices, pixel coordinate
must be in homogenous form as x = (x, y, 1)T , even though we keep same
notation x. Template image T (x) represents a region of interest extracted

23

CHAPTER 3. PROPOSED SOLUTION

Figure 3.5: Optical Flow for images of Figure 3.4.

around a single key-point located at c = (cx, cy) in the previous frame (at
t − 1). A region of interest is a square windows of size 2w + 1 centered at
coordinates c of a detected feature. In example of Figure 3.4 w = 2 so the
overall window size is 5.

Transformations of pixel positions from one image to another are given by
a parametrized function W with parameters p = (p1, p2, ..., pn)T . W (x,p)
represents the new (sub-pixel) location in the coordinates of I obtained
by warping the position of a pixel at x in coordinate frame of template T .
An important issue is how to interpolate sub-pixel values of an image I at
W (x; p) to compute I(W (x; p)). we will discuss about in Section 3.2.1.4,
but for now assume that new coordinates W (x,p) of x are always integer
values. An example of the form function W can take is the Affine warping
W (x,p) = Haffinex. The vector of parameters p = (p1, p2, p3, p4, p5, p6)T
fills the Affine matrix as it is shown in equation 3.2.

Haffine =
[

1 + p1 p3 p5
p2 1 + p4 p6

]
. (3.2)

Sum of squared differences is the error measure used for tracking in I a
features found at c = (cx, cy)T in a previous frame to I. The goal is to
minimize the error L2 norm between template and warped image. For 3.3
and for subsequent equations, symbol

∑
x

is a simplified representation of:

cx+w∑
x=cx−w

cy+w∑
y=cy−w

≡
∑

x
.

24

CHAPTER 3. PROPOSED SOLUTION

Minimization of 3.3 with respect to p is a non linear optimization problem.
In fact, no relationship exists between warped pixel coordinate W (x,p)
and pixel value. Newton-Raphson method offers an iterative approach to
compute displacement. Optimization process assumes to know a current
estimation of p (guess). Thus iteratively solves ∆p until ∆p 5 ε or a
maximum number of iterations. Parameter updating rule is given by 3.4.

∑
x

[I(W (x,p))− T (x)]2 . (3.3)

p← p + ∆p. (3.4)

Reasons to follow this scheme will be clarified as we move forward in ex-
plaining, but here are some valid assumptions:

1. LK makes assuming that ∆p ∼ 0. It makes sense in consecutive se-
quences from video with small patch changes (Temporal Persistence).

2. For most of videos recorded by UAVs, valid assumptions are Brightness
Constancy and Spatial Coherence. The first one assumes that a pixel
keep approximately its appearance frame to frame and the second one
says that points belonging to the same surface in the real world have
similar projected motion in image plane.

3. guess or initial guess can be initialized in 0. This has sense in pyramidal
implementation of LK (Section 3.2.1.3) and it is quiet useful for pass-
ing the results between levels as will be discussed in Section 3.2.1.3.

Equation 3.3 with guess presented to be minimized with respect to 4p
becomes equation 3.5.

arg min
4p

ε(∆p) ε(∆p) =
∑

x
[I(W (x,p + ∆p))− T (x)]2 . (3.5)

Equation 3.5 can be linearized with first order of Taylor expansion like this.

I(W (x; p + ∆p)) ≈ I(W (x; p)) + JP(I(W (x; p)))∆p. (3.6)

where Jp is the function that computes all first order partial derivatives
with respect to ∆p. This is called Jacobian.

Jp(I(W (x; p))) = ∂[I(W (x; p))]
∂p = ∇IJW , (3.7)

25

CHAPTER 3. PROPOSED SOLUTION

∇I =
[
∂I(W (x; p))

∂x
,
∂I(W (x; p))

∂y

]
,

JW = ∂W (x; p)
∂p .

Where gradient of image ∇I is evaluated at warp W (x; p) and JW is the
Jacobian matrix of the transformation (Jacobians for 2D planar transforma-
tion were shown in Table 2.2).

Replacing 3.7 in 3.6 and 3.6 in 3.3 we obtain:

ε(∆p) =
∑

x
[I(W (x; p)) +∇IJW∆p− T (x)]2.

Applying partial derivation with respect to ∆p we have:

∂ε(∆p)
∂∆p = 2

∑
x

[I(W (x; p)) +∇IJW∆p− T (x)][∇IJW]T ,

1
2
∂ε(∆p)
∂∆p =

∑
x
∇IJW∆p[∇IJW]T +

∑
x

[I(W (x; p)− T (x)][∇IJW]T ,

1
2
∂ε(∆p)
∂∆p =

∑
x

[∇IJW]T∇IJW∆p+
∑

x
[I(W (x; p))−T (x)][∇IJW]T . (3.8)

In 3.8 the term ∇IJW is called steepest decent image. ∆p does not depend
in summation with respect to x, so we can represent the matrix of second
order partial derivatives

∑
x

[∇IJW]T∇IJW with H(W (x; p)). This is called
Hessian matrix. Difference I(W (x; p)) − T (x) represents an error image
δT (x). Using new representations in 3.8 we have a shorter equation 3.9.
Solution for ∆p is equation 3.10.

1
2
∂ε(∆p)
∂∆p = H(W (x; p))∆p +

∑
x
δT (x)[∇IJW]T . (3.9)

∆p = −H(W (x; p))−1∑
x
δT (x)[∇IJW]T . (3.10)

26

CHAPTER 3. PROPOSED SOLUTION

An inconvenient for finding final Optical Flow is the computational time.
Remember that p is computed iteratively and so for every new warpW (x; p)
we need to recomputeH(W (x; p)) and δT (x). Particularly it is an expensive
process to calculate the Hessian matrix evaluated in new warping and then
its inverse. Fortunately, the Inverse Compositional Method for LK Optical
Flow in Section 3.2.1.2 makes H independent ofW (x; p) therefore H−1 can
be precomputed for being reused in each iteration.

In original Lucas-Kanade algorithm used for Image Registration [10] the
authors used an Affine warp function to handle rotation, scaling and shear-
ing for template alignment. In our case, we need it for tracking indepen-
dently patches of key-points. It is enough so, to use Translational warps
for local motions because in further steps we can use a higher level mo-
tion model to estimate global motion. Moreover, experiments in [16] show
that the best choice for tracking is a pure translational model because of
its higher reliability and accuracy over the small inter-frame motion of cam-
era. Parameter vector has just two unknown p = (p1, p2)T and warping is
W (x,p) = Htransx, where Htrans and Jacobian of the warp JW are signifi-
cantly simpler:

Htrans =
[

1 0 p1
0 1 p2

]
JW =

[
1 0
0 1

]
.

3.2.1.2 Inverse Compositional for Feature Tracking

Inverse Compositional Lucas-Kanade inverts the role of T and I: we want
align a region of interest of an image I at time t to a template image from
time t− 1.

ε(∆p) =
∑

x
[T (W (x; ∆p))− I(W (x; p))]2 . (3.11)

Update rule becomes W (x; p) ← W (x; p) ◦W (x; ∆p)−1. When W is the
translation matrix the rule is simplified as the one used in equation 3.4 and
additionally, I(W (x; p)) is simplified to I(x + p)).

Linearization of 3.11 with Taylor looks like this:

T (W (x; ∆p)) ≈ T (W (x; 0)) + JP(T (W (x; 0)))∆p. (3.12)

For warping W (x; 0) = x because p1 and p2 are both zero. Rewriting 3.12:

T (W (x; ∆p)) ≈ T (x) + JP(T (x))∆p. (3.13)

27

CHAPTER 3. PROPOSED SOLUTION

Jp(T (x)) = ∇TJW = ∇T. (3.14)

Where ∇T is the template image gradient evaluated x. Pay attention that
it does not depend on W so it does not change on every iteration. ∇T is
computed in OpenCV with the Scharr operator with next kernel for Tx and
Ty respectively:

 +3 +10 +3
0 0 0
−3 −10 −3

 +3 0 −3

+10 0 −10
+3 0 −3

 .
Replacing 3.14 in 3.13 and 3.13 in 3.11 we obtain:

ε(∆p) =
∑

x
[T (x) +∇T∆p− I(x + p)]2,

∂ε(∆p)
∂∆p = 2

∑
x

[T (x) +∇T∆p− I(x+p)]∇T T ,

1
2
∂ε(∆p)
∂∆p =

∑
x

[∇T∆p∇T T]−
∑

x
[I(x + p)− T (x)]∇T T ,

1
2
∂ε(∆p)
∂∆p =

∑
x
∇T T∇T∆p−

∑
x

[I(x + p))− T (x)]∇T T ,

∑
x
∇T T∇T = H. (3.15)

I(x + p))− T (x) = δT (x). (3.16)

Hessian becomes a constant spatial gradient matrix for every computation in
a windows 2w+ 1 centered at coordinates c, also called co-variation matrix
of derivatives.

1
2
∂ε(∆p)
∂∆p = H∆p−

∑
x
δT (x)∇T T . (3.17)

∑
x
δT (x)∇T T = bk. (3.18)

Where bk is a gradient-weighted residual vector usually called mismatch
vector. Replacing 3.18 in 3.17 we finally have all those fancy equations

28

CHAPTER 3. PROPOSED SOLUTION

elegantly represented in system 3.19. Making ∂ε(∆p)
∂∆p = 0, and solving for

∆p we obtain equation 3.20.

H∆p = bk, (3.19)

∆p = H−1bk. (3.20)

Where bk is called image mismatch vector. Sub-index k is placed because
it changes on each iteration. Inspired by [3], we present a schematic dia-
gram of Inverse Compositional Algorithm for Optical Flow Computation in
Figure 3.6.

Figure 3.6: Schematic diagram for Inverse Compositional Optical Flow
Tracker.

29

CHAPTER 3. PROPOSED SOLUTION

Figure 3.7: Pyramid Representation of the Image.

3.2.1.3 Pyramidal Lucas-Kanade Feature Tracker

An issue of using conventional Lucas-Kanade algorithm is to accomplish
assumptions of Brightness Constancy and Temporal Persistence to track ro-
bustly. A way to do that is enforcing the use of high resolution cameras with
high rates of frame-rate sequences but this kind of constrains the range of ap-
plications. Also we can accomplish large movements with a large integration
window so more points fall within the local window. In fact, displacement
in Figure 3.4 must be actually found with a minimum windows of size 37
(w = 18) because y coordinate moved 18 pixels from one image to another
(see 3.21). A bigger windows allows bigger frame to frame displacements.

p = (p1, p2) ≤ (w,w)T . (3.21)

Nevertheless, enlarging the window around a key-point makes computa-
tion more expensive and also affects the precision (for instance at occluding
boundaries). Since videos recorded by UAV have large motions, robustness
is a necessary conditions while keeping accuracy. To deal with this tradeoff
between local accuracy and robustness OpenCV implemented a pyramidal
version of LK. At first, the algorithm builds recursively a pyramidal repre-
sentation with Lm + 1 image levels, being Lm height of the pyramid (see
Figure 3.73).

The highest resolution image (initial image I0) is the base of pyramid and
the top image is the lowest resolution built version (ILm). Equation 3.22
describes the maximum feature displacement in for pyramidal version. For
the example of Figure 3.4, if we want to keep w = 2, we need to build a
pyramid with Lm = 4 which would allow displacements of 32 pixels (max.
displacement 24 × 2):

p = (p1, p2) ≤ 2Lm × (w,w)T . (3.22)
3Image taken from http://www.sciencedirect.com/science/article/pii/

S0925231208000908

30

http://www.sciencedirect.com/science/article/pii/S0925231208000908
http://www.sciencedirect.com/science/article/pii/S0925231208000908

CHAPTER 3. PROPOSED SOLUTION

Figure 3.8: Computation of image levels.

Algorithm 3.1 Pyramidal LK Tracking Algorithm.
1. Build pyramid representation of images T and I.

2. Initialize pyramid guess: gLm = (0, 0)T

3. For L = Lm to 0 for each feature located at c:

(a) Locate c in TL: cL = c/2L

(b) Compute for current level in a window 2w + 1 around cL: ∇TL
as in 3.14 and H−1 inverse of 3.15

(c) Initialize iterative IC feature tacking algorithm: pk = (0, 0)T

(d) Do from k = 1 with step of 1 while k ≤ 30 and ‖4pk‖ < ε = 0.01
i. Compute k-th image difference at level L: δTk(x) as in 3.16
ii. Use ∇TL and δTk(x) to compute image mismatch vector bk

as in 3.18
iii. Compute 4pk with 3.20.
iv. Update parameters: pk ← pk +4pk

(e) Set guess for next level: gL−1 = 2(gL + pk)

4. Final optical from is g0 + pk and new location of feature is c + g0 + pk

In Figure 3.8 is displayed an image from the equation presented by Bouguet[4]
for building each level L of the pyramid representation. OpenCV does this
with the C++ function called buildOpticalFlowPyramid. In his paper,
Bouguet has a detailed explanation about how to build pyramid in includ-
ing what to do with boundaries and for cases whether image size is pair or
uneven.

The tracking process starts from lowest detailed version of image (top of
pyramid) applying iterative inverse compositional optical flow (Section 3.2.1.2)
and then going down to lower levels with finer details passing as a guess the
scaled estimation of found optical flow. Algorithm implemented in C++
by OpenCV Video Analysis module calcOpticalFlowPyrLK function is
presented in Algorithm 3.1.

31

CHAPTER 3. PROPOSED SOLUTION

(a) Aperture Problem. (b) Texture-less Region.

Figure 3.9: Possible Problems in Feature Selection.[17]

3.2.1.4 Sub-pixel Accuracy

In general, after transforming the coordinate x to a new location W (x; p)
we usually obtain non integer values. So, which pixel value should be assign
to I(W (x; p)) This is a crucial issue to keep precision in tracking. Problem
is addressed by pixel interpolation where the new image values are refined
by bi-linear function helping to calculate intensity of a transformed pixel
with better accuracy. Procedure well described in [4].

3.2.2 Feature Selection

Module videostab estimates frame motion by tracking features. Selecting
key-points that can be accurately tracked frame to frame is essential for
Optical Flow algorithm to work (described in Section 3.2.1.3). Figure 3.9
shows examples of problems that tracker can face if the selected points are
not adequate.
Which features should be selected and how to measure Feature quality? The
answer is given by [16]: “A good feature is one that can be tracked well, so
that the selection criterion is optimal by construction”. It means if equation
3.19 can be solved reliably. The problem is addressed making features iden-
tifiable and unique (concept of Texturedness in Section 3.2.2). Another
fact is to enforce that a key point exists from frame to frame (Dissimilarity
Section 3.2.2). Besides those problems, it is important that each key-point
provides new spatial information (Section 3.2.2).

Texturedness

The idea of Textureness is to provide a rating of texture to make features
within a windows identifiable and unique. For instance, lines are not good
features since are not unique (see Figure 3.9a).

32

CHAPTER 3. PROPOSED SOLUTION

Figure 3.10: Shi Tomasi regions for eigenvalues.

To solve equation 3.19 it must be possible to invert the Hessian matrix. In
practice next conditions must be satisfied:

1. Equation 3.19 must be well-conditioned: its eigenvalues cannot differ
by several orders of magnitude.

2. Eigenvalues of Hessian overcome image noise levels λnoise: implies that
both eigenvalues of H must be large.

For the first condition we know that the greatest eigenvalue cannot be ar-
bitrarily large because intensity variations in a window are bounded by the
maximum allowable pixel value.

Regarding to second condition, being λ1 and λ2 two eigenvalues of H, fol-
lowing situations may rise (See Figure 3.104):

• Two small eigenvalues λ1 and λ2: means a roughly constant intensity
profile within a window (Pink region).

• A large and a small eigenvalue: means unidirectional texture patter
(Violet or gray region).

• λ1 and λ2 are both large: can represent a corner, salt and pepper tex-
tures or any other pattern that can be tracked reliably (Green region).

In practice, when the smaller eigenvalue of H is sufficiently large to meet
a threshold (noise criterion), equation 3.19 is usually also well conditioned.
OpenCV offers C++ function cornerMinEigenVal to calculate the mini-
mal eigenvalue of H.

4Image taken from http://www.aishack.in/.

33

http://www.aishack.in/

CHAPTER 3. PROPOSED SOLUTION

In conclusion, quality Λ of a feature is defined as:

Λ = min(λ1, λ2). (3.23)

Thus, we accept all windows satisfying:

Λ > λnoise. (3.24)

In practice, to make fast computation of this process, the Hessian used is
a simplified version (see equation 3.255) of the actual Hessian in equation
3.19. “Simplified” means to use a smaller windows to speed up computation
at selection time. The windows usually has w = 1 being a square block
neighborhood of 3× 3 represented by S(p).
Afterward, during tracking, the windows might be increased to enable cap-
turing larger displacements.

HS =

∑
S(p)

(dIdx)2 ∑
S(p)

(dIdx
dI
dy)2

∑
S(p)

(dIdx
dI
dy)2 ∑

S(p)
(dIdy)2

 . (3.25)

Dissimilarity

Texturedness does not guarantee that high rated features exist in consecutive
frames. For instance, a feature may be the result of an intersection that
does not exist in the real world as in cases of two edges at different depths.
Occlusion is another issue to deal with. Also, temporary noise (say salt and
pepper) may be consider a “good” feature to track. Mentioned cases are
quiet common in UAV context.
Those situations are not easy to identify during the selection process, but
They are possibly identifiable during tracking. Dissimilarity detects when
those situations appear with the error measure defined by equation 3.11.
Case when a feature is declared lost is explained by [4].

Non-Maximum Suppressor

Provide new information is another desirable characteristic for features; for
instance, tracking adjacent features does not give useful information to es-
timate displacement. Distribute even features over an image is not a good

5Derivatives are computed using Sobel() operator

34

CHAPTER 3. PROPOSED SOLUTION

Algorithm 3.2 Shi-Tomasi Feature Selection.
1. Function calculates corner quality measure at every pixel p in source

image:

(a) Calculates co-variation matrix of derivatives (Hessian) as in 3.25.
(b) Compute eigenvalues λ1, λ2 of HS .
(c) Calculate Λ as in 3.23.

2. Apply non maximal suppression in S(p) neighborhood.

3. Set threshold λnoise in 3.24 as the 10% of the maximum quality mea-
sured in image.

4. Points with the minimal eigenvalue less than λnoise are rejected (ap-
plication of equation 3.24).

5. Sort remaining features by quality measure in descending order.

6. Non maximal suppression is applied in feature qualities with Euclidean
distance less than minDistance.

7. Return the maximum number of desired features.

idea because we do not know where movement will appear. A solution is to
select points that are within a specified minimum separation distance ap-
plying non-maximum suppression over feature qualities. It means, to select
feature with local maximum rating within a minimum distance.

In summary, in Feature Selection the most prominent points in the image
are found as described in Algorithm 3.2 which is the current implementation
of function goodFeaturesToTrack in OpenCV.

3.2.3 Global Motion Estimation with Affine Model

The first model used to estimate motion between frames is the Affine Model.
This model was review in section Section 2.3.1. Because the model is linear
and two dimensional, it can not handle depth, nevertheless estimation is
computationally faster. Johansen demonstrated in [9] that motion of an
UAV can be approximated by the Affine model when objects are far enough
from the camera.

As stated before, to estimate motion, we need a set of correspondent points
in both frames, a model (Affine is this case) and an algorithm to compute the
parameters with error measure. In captured video by an UAV a large quan-

35

CHAPTER 3. PROPOSED SOLUTION

tity of points that do not fit Affine model are expected. Due to those noisy
points, a robust method should be used. Used method is Random Sample
Consensus (RANSAC [7]) and it will be discussed in detail in Section 3.2.3.
The used error measure is Least Squares with L2-norm as error metric.

Least Squares to Calculate Affine Parameters

Estimate parameters of Affine model with a set of n features motions (at
least three motions) can be done in Least Square sense. We have for each
motion vector, represented by a pair of points xi (in current frame) and
correspondent x′i (in next frame). Homogeneous coordinate expresses these
points as xi = (xi, yi, 1)T and x′i = (xi, yi, 1)T respectively.

For an Affine form matrix HAffine, the relationship between a pair of points
is given by equation 3.26

[
x′i
y′i

]
= Haffine

 xi
yi
1

 , (3.26)

where Haffine is presented in 3.27 with parameters we want to find

Haffine =
[
a b c
d e f

]
. (3.27)

Thus, computing the right side of 3.26 using 3.27 we have 3.28

[
x′i
y′i

]
=
[
axi +byi +c

dxi +eyi +f

]
. (3.28)

For n motion vectors we can represent 3.28 as a least square problem in 3.29

b = Ah. (3.29)

Where

b =
[
x′1 y′1 x′2 y′2 ... x′n y′n

]T
,

A =
[
a01 a11 a02 a12 ... a0n a1n

]
,T

36

CHAPTER 3. PROPOSED SOLUTION

a0i =
(
xi yi 1 0 0 0

)
,

a1i =
(

0 0 0 xi yi 1
)
,

h =
[
a b c d e f

]T
,

Affine matrix is found solving for h which gives the values in the right side
of equation 3.27.

arg min
hsol

(RMSE),

RMSE = 1
n
‖b−Ahsol‖ =

√∑
(b−Ahsol)2

n
. (3.30)

Solution hsol for 3.29 is found with Gaussian elimination to minimize the
Root Mean Squared Error (see equation 3.30). In videostab, this was imple-
mented with the function estimateGlobalMotionLeastSquares.

Isotropic Point Normalization

Solution for equation 3.29 dependents on the origin and the scale of the
coordinate system in the image. Thus, it is convenient to normalize input
points the coordinates in order to achieve better numerical stability.

Normalization consists in centering the coordinate and scale points to have
average distance from their origin equal to

√
2. Steps to compute the Affine

matrix with the isotropic point normalization are shown in Algorithm 3.3.

Implementation is found in videostab in global_motion.cpp with the name
normalizePoints.

Robust Estimation with RANSAC

The Affine model can adequately estimate motion between frames under
certain conditions in the scene. One condition is so the objects in scene are
far enough from camera that scene can be considered as a flat scene (without
depth). This is because Affine transformation lacks the ability to represent
a true three dimensional motion which occurs in a video captured from an
UAV. The approximation brings error in the estimation and it produces
outliers in the data set. Another outlier sources are objects moving in scene
with significant velocity with respect to the video frame rate. Other errors

37

CHAPTER 3. PROPOSED SOLUTION

Algorithm 3.3 Isotropic Point Normalization.
1. Compute similarity transformation T0 that takes points xi to a new

set of points x̃i and transform T1 that takes x′i to x̃i
′, such that new

centroid is the coordinate origin and their average distance from origin
is
√

2.

2. Solve 3.29 with x̃i and x̃′i instead of xi and x′i so that instead of
obtaining Haffine in 3.27 we will obtain H̃affine.

3. Actual Affine matrix is given by equation 3.31. Notice that to com-
pute the product in 3.31 matrices must be presented in homogeneous
coordinates adding at the bottom of each matrix the row

(
0 0 1

)
.

Haffine = T−1
1 H̃affineT0. (3.31)

occurs because condition of the scene, like in case of occlusion. All error
sources in UAV video oblige to implement a robust method for estimation.

Random Sample Consensus (RANSAC) is an iterative and re-sampling tech-
nique which generates candidate solutions by using the minimum number
of observations required to estimate the parameters of a predefined model.
It was proposed by Fischler [7] in 1981 and since then it has been widely
adopted by Computer Vision researchers to filter out outliers during esti-
mation.

RANSAC has the ability to deal with non zero mean noise; it assumes that
noise is uncorrelated and a minimum subset of data is correlated with respect
to the model. In our case all movements not described within a threshold
by the Affine model, will be interpreted as noise.

The RANSAC algorithm is presented in Algorithm 3.4. We start by com-
puting the number of iterations N with equation 3.32. In that equation,
m is the size of the minimum set of correspondences required to estimate
model parameters, ε is the maximum outliers ratio presented in the initial
data set and p is the probability of success (usually set in 99%)

N = log(1− p)
log(1− (1− ε)m) . (3.32)

The RANSAC algorithm attempts to find the best hypothesis: minimum
subset of motions that contains a maximum number of inliers within a
threshold τ . In our case this threshold is measured in pixels. Therefore,
the projected points that fit the estimated Affine transformation in every

38

CHAPTER 3. PROPOSED SOLUTION

Algorithm 3.4 RANSAC
1. Calculate the number N of iterations to perform.

2. Randomly select three feature points of current frame and their
correspondences in the next frame (current hypothesis).

3. Estimate Haffine−iterk by means of Least Squares.

4. Determine number of inliers with respect to obtained model and a
predefined threshold τ .

5. If the current inliers set contains the maximum number of found
inliers so far, save model as the best model (best hypothesis).

6. Reaped N times from step 2 to step 5.

7. Return the best found model.

iteration (Haffine−iterk) with an error less than τ are considered as inliers
(see equation 3.33, assuming homogeneous coordinates)

∥∥x′i −Haffine−iterkxi
∥∥ < τ. (3.33)

Each motion vector offers two equations (x and y for equation 3.28), then
we need at least three pairs of motions to estimate the six variables of equa-
tion 3.27 in an Affine model (m = 3). It means three non collinear points
in current frame and corresponding points in the next frame to obtain a
3×3 linearly independent system. Therefore, in each iteration we randomly
select three motion vectors and we find the model parameters as described
in Section 3.2.3. Next, determine how many points out of the whole set are
classified as inliers with equation3.33. This process is repeated N iterations
and, at the end, the set with the major number of inliers is used to calculate
the final model parameters and the final root mean squared error. Imple-
mentation in OpenCV has the name estimateGlobalMotionRansac in
videostab module.

3.2.4 Global Motion Estimation with Homography

Homography model (also known as Projective or Perspective transforma-
tion) is the second model for motion estimation. It operates on homogeneous
coordinates. Direct Linear Transformation is introduced in Section 3.2.4 as
procedure to calculate its parameters. To deal with outliers, a robust method

39

CHAPTER 3. PROPOSED SOLUTION

for Homography estimation is presented in Section 3.2.4 (Least Median of
Square Regression).

Direct Linear Transformation

Direct Linear Transform (DLT) is an algorithm that uses point correspon-
dences between source and destination planes to compute the homography
matrix H. In homogeneous coordinates, relationship between two corre-
spondent points xi and x′i is given by equation 3.34 where si is a non-zero
constant, xi =

(
xi yi 1

)T
, x′i =

(
x′i y′i 1

)T
and form of H is in

equation 3.35

si

 x′i
y′i
1

 ∼ H
 xi
yi
1

 , (3.34)

H =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 . (3.35)

From 3.35 and 3.34 we obtain 3.36, and then dividing first row by the third
row and the second row by the third row, we obtain equations 3.37 and 3.38

si

 x
′
i

y
′
i

1

 =

 h11xi h12yi h13
h21xi h22yi h23
h31xi h32yi h33

 , (3.36)

−h11xi − h12yi − h13 + (h31xi + h32yi + h33)x′
i = 0, (3.37)

−h21xi − h22yi − h23 + (h31xi + h32yi + h33)y′
i = 0. (3.38)

Equation 3.39 is the matrix representation of 3.37 and 3.38 for a number n
of point correspondences

0 = Ah. (3.39)

Where

A =
[
a01 a11 a02 a12 ... a0n a1n

]T
,

40

CHAPTER 3. PROPOSED SOLUTION

a0i =
(
−xi −yi −1 0 0 0 xix

′
i yix

′
i x

′
i

)
,

a1i =
(

0 0 0 −xi −yi −1 xiy
′
i yiy

′
i y

′
i

)
.

Each point correspondence provides two equations, so four motion vectors
are sufficient to solve h in 3.39 with restriction of no three collinear points.
To find the Homography we must find hsol that gives the values equation
3.35 and minimizes the Sum of Squared Difference (SSD) in 3.40.

arg min
hsol

(SSD),

SSD = ‖Ahsol‖2 =
∑

(Ahsol)2 . (3.40)

As stated for Affine, also for Homography estimation, to obtain a solution
independent from the coordinate system in the image, Isotropic Point Nor-
malization (as it was described in Algorithm 3.3) must be done in data
input.

Robust Estimation with Least Median of Squares

To achieve robustness in homography estimation with respect to outliers,
method Least Median of Squares (LMedS[14]) is used. LMedS tries to find
the parameters that produce the smallest value of median of squared resid-
uals in data set. This is done by replacing the Sum of Squared Difference of
equation 3.40 with Median of Squared Residuals (equation 3.41) and solving
the nonlinear minimization problem

arg min
hsol

(med{
i

r2
i (hsol)}),

r2(hsol) = (Ahsol)2. (3.41)

To solved equation 3.41, a search must be performed in the space of possible
estimated models. To avoid a full space search, a randomly subset of data
is chosen to be analyzed. Similarly as described for Ransac method, for
LMedS the size of subset is the minimum number of parameter needed to
estimate the model, which in case of Homography, four motions (with no
three collinear points). Also equation 3.32 is used to determine the number
of iterations. Algorithm for LMedS is outlined in Algorithm 3.5[6]. LMedS

41

CHAPTER 3. PROPOSED SOLUTION

has the advantage over RANSAC that it does not requires a prior knowledge:
no need to set a threshold (τ) neither how much error to expect (ε). However,
disadvantage is that LMedS does not work properly when more than the half
of data are outliers.

Algorithm 3.5 LMedS
1. Calculate the number N of iterations to perform.

2. A Monte Carlo type technique is used to randomly select 4 motions.

3. With four selected motions, estimate hsol−iterk with Direct Linear
Transformation.

4. Use hsol−iterkto determine median of the squared residuals, denoted in
equation 3.41, with respect to the whole set of motion.

5. Retain hsol−iterk if median of the squared residuals is minimal.

6. Reaped N times from step 2 to step 5.

7. Return found hsol−iterk in the form of 3.35 for which the median of the
squared residuals is minimal.

3.3 Motion Stabilizing

The problem statement in Section 1.5 gave an overview about motion sources
captured in video. Those sources are: intended motion, moving objects in
scene and unwanted jitter. A question is how to separate those motion
sources.
We consider motion of small objects in foreground as outlier in Global Mo-
tion Estimation process so we assume that the estimated transformation
matrix does not include motion of minor parts in first plane (for instance,
cars moving). Reason to say that is because those motions are small moving
areas which do not fit all together parametrized motion model (there is no
correlation between ego-motion and moving objects in scene). RANSAC and
LMedS method were in charge of filter out motion outliers. This is desirable
because those small moving areas might be useful information for tracking
applications.
The problem is now simplified to separate two motion sources: intended
motion and unwanted vibrations. In UAV, intended motions may be seen
as a low frequency component of the movement. Vibrations may be seen
as high frequency random deviation from intended motion, so we can use a
filter approach.

42

CHAPTER 3. PROPOSED SOLUTION

In [9], Johansen proposed a method named Parabolic Fit Camera to filter
out online vibrations. Author assumes that intended motion components
follow a parabolic behavior. Thus, adding a delay in a number of frames,
Johansen adjusts to a parabola a set of a motion components (treating inde-
pendently each motion component of an Affine model as scale, rotation and
translations). The result of adjustment is the estimated intended motion,
and removing from Affine transformation at each frame to frame to ob-
tain a transformation matrix corresponding only to unwanted jitters. This
method limits the usage of more complex motion models as Homography
and assumption of independence among motion components may be not
valid for aerial vehicles.

OpenCV videostab module implements a Gaussian filter approach to smooth
the whole motion model matrix. This enables to filter out vibrations also
for Homography transformations. Explication of how it works is given in
Section 3.3.1. Additionally, to simulate the situation of still camera, in
Section 3.3.2 we explained an implementation to filter all motion (including
ego-motion).

3.3.1 Gaussian Motion Filter

Assuming that intended motion is correlated within n consecutive frames
and unwanted displacements may be correlated within up to m consecutive
frames where n� m. We can smooth motions by weighting with coefficients
of a Normal distribution the cumulative movement of 2r frames around the
target frame (with m < 2r + 1 < n). Radius r represents the number
of forward frames (and the same number of backward frames) that Motion
Stabilizing process uses to filter out vibrations hence we need a buffer of size
2r + 1.

Retake idea of Figure 3.3, Hi is the transformation matrix from frame i to
i + 1. Redefining equation 3.1 to include cumulative motion computations
of backward frames, we have 3.42:

HCi,,j =

j−1∏
k=i

Hk, i < j(
i−1∏
k=j

Hk

)−1

, j < i

HCi,i i = j

. (3.42)

Where HCi,i is the 3× 3 identity matrix. Discrete Gaussian filter is an ap-
proximation by sampling and truncating the continuous Gaussian of equa-

43

CHAPTER 3. PROPOSED SOLUTION

tion 3.43. Parameter a is related to 3dB bandwidth-symbol time BTs given
by 3.44, where Ts is the sampling period[12][13]

h(t) =
√
π

a
e−

π2t2
a2 , (3.43)

BTs = 1
a

√
log 2

2 . (3.44)

In videostab, a discrete Gaussian impulse response is sampled in a finite
number of frames from −r to r is in equation 3.45, where G =

r∑
i=−r

e−(i
σ

)2

and k = [−r, r]. From equation 3.43 and 3.45 we have σ = a/π. Then, 3dB
bandwidth for 3.45 is in equation 3.46.

g[k] = 1
G
e−(k

σ
)2 |rk=−r, (3.45)

f3dB = 1
σπ

√
log 2

2 . (3.46)

Figure 3.11 plots equation 3.45 and its respective magnitude response in
Figure 3.12 with r = 20 and σ = 4. Parameter r also represents sampling
error or aliasing due to the fact that a Gaussian frequency response is not
really band-limited in a strict sense. Choosing r is a compromise with com-
putational effort and latency which appears because we need to fill the buffer
with r forward frames before computing corrections. Latency depends on
video stream rate (fps) as following: latency = r

fps .

Meaning of f3dB depends on video rate fps. In Figure 3.12 we can see
f3dB ≈ 0.0468 hence the value of fps× f3dB ≈ 1.4054 which means that the
energy of motions changing at 1.4054 frames per second, will be decreased
at the half of initial motion energy. For faster motions, attenuation would
be bigger than the half.

Another fact is the filter Phase Response. A linear phase is important
for avoid introducing distortions in filtering process. For a finite impulse
response filter, having symmetry in the equation 3.45 is enough condition
to get a linear phase (in the attenuation region) as is shown in Figure 3.13.

44

CHAPTER 3. PROPOSED SOLUTION

Figure 3.11: Impulse Response of Gaussian filter with r = 20.

Figure 3.12: Magnitude Response of Gaussian filter.

45

CHAPTER 3. PROPOSED SOLUTION

Figure 3.13: Phase Response of filter.

Mathematical description to obtain transformation matrix Hstab to stabilize
the current frame can be expressed as in equation 3.47. Transformation ma-
trix, Hstab stabilizes frame at position n. In Figure 3.14 there is a graphical
representation of how to obtain Hstab for filtering the video stream.

Hstab[n] =
r∑

k=−r
HCn,n+kg[n]. (3.47)

In Figure 3.14, having the buffer bHC of cumulative motions around n, Hstab

can be expressed in equation 3.48 as a convolution with the discrete filter g.

Hstab[n] = (bHC ? g)[n]. (3.48)

Particular cases rise for initial and final video frames when there is less
than r backwards frames or forwards respectively to fill the buffer of frame
to frame motions. In those cases, 3 × 3 identity matrix can be used while
buffer is filled. Gaussian motion filter is found in videostab module as a
class named GaussianMotionFilter inheriting attributes from abstract
class MotionFilterBase.

3.3.2 Zero Motion Filter

Zero Motion filter is an implementation assuming zero intended motion from
a specific frame at position z. All following frames must be transformed with

46

CHAPTER 3. PROPOSED SOLUTION

Figure 3.14: Schema for apply the filter to the video stream.

47

CHAPTER 3. PROPOSED SOLUTION

respect to frame at z with Hstab equals to the product of all consecutive
cumulative motions. There are two problems with this implementation.
First, we accumulate error on every estimation. Another problem is when
assumption of zero ego-motion is far to be accomplished. We have the risk
of not being able to transform the current frame into the reference frame
at z because the motion are out of the image range. A dummy solution for
both problems is to drop the reference frame, updating it every r frames to
initialize cumulative error. Implementation was named ZeroMotionFilter
inheriting attributes from abstract class MotionFilterBase.

3.3.3 Image Alignment

After filtering frame In we obtain transformation matrix Hstab[n] to re-
move the current jitter creating an aligned frame In−stab by transforming
x = (x, y) to x′ = (x′, y′) as in 3.49. Alignment is the last step of the
process, done by OpenCV with functions warpAffine and warpPerspec-
tive for Affine model and for Homography model respectively. In general,
transformation domain values are not integer and for that reason we should
chose an interpolation methods for warping functions. Nearest-neighbor in-
terpolation was set for UAV since it is the fastest computationally

In−stab(x, y) = In(x′, y′), (3.49)

where, for Affine we have:

x′ = Hstab(1, 1)x+Hstab(1, 2)y +Hstab(1, 3),

y′ = Hstab(2, 1)x+Hstab(2, 2)y +Hstab(2, 3);

aFnd for Homography:

x′ = Hstab(1, 1)x+Hstab(1, 2)y +Hstab(1, 3)
Hstab(3, 1)x+Hstab(3, 2)y +Hstab(3, 3) ,

y′ = Hstab(2, 1)x+Hstab(2, 2)y +Hstab(2, 3)
Hstab(3, 1)x+Hstab(3, 2)y +Hstab(3, 3) .

An example of overlapping two consecutive images from UAV after align-
ment is in Figure 3.15. Regions in red are pixel values in which previous
images has bigger values than current image (vice versa, cyan regions). To
decrease the effect of annoying undefined pixels at borders, we can trim
frames borders to have smaller output video size. Furthermore, videostab
implements an Inpainting technique called Fast Marching[18] to make quick
correction in remaining undefined areas of video.

48

CHAPTER 3. PROPOSED SOLUTION

Figure 3.15: Aliment of two consecutive images.

3.4 Diagrams

A class diagram (in Section A.1) and Activity Diagrams (in Section A.2)
of implementations are presented for videostab module In Appendix A with
a high level of abstraction. The intention is to give a global view of modules
that make up the system and the relevant dynamic aspects, but it does not
exactly match the code.

49

CHAPTER 3. PROPOSED SOLUTION

50

Chapter 4

Experiments and Discussion

In this chapter we show experiments for some blocks and for the entire sys-
tem. We formulate some questions which are solved after analyzing graphical
results. Links to other experiments can be found in Appendix C.

4.1 Performance Analysis and Discussion

We analyze accuracy and computational time for different system blocks.
Different video scenes from real UAV were used for experimentation. Table 4.1
contains information about used videos for testing.

4.1.1 Feature Selection Quality: Texturedness

Section 3.2.2 describes the process of selecting points to track, but not how
many of them we should use. The question is important due to trading off
between accuracy and computational speed. To know this, we plot feature
quality values (from equation 3.23) for different images.

(a) Eiffel. (b) Hexacopter. (c) Traffic.

Figure 4.1: Test video frames.

51

CHAPTER 4. EXPERIMENTS AND DISCUSSION

Name Frame Size fps Length
Eiffel.mp4 360× 640 29 331

Hexacopter.mp4 720× 1280 29 481
Traffic.avi 23× 40 25 22

Table 4.1: Information about videos for testing.

Figure 4.2: Feature quality for frames in Figure 4.1.

Footage in Figure 4.1 were used for testing. Images were converted to gray
scale. Size of windows in equation 3.25 and minimum distance among fea-
tures were 3 and 1 pixels respectively. Figure 4.2 shows the result for the
first 500 key points in descend order by quality. Quality values were nor-
malized with respect to maximum pixel value. For example, if image was
coded with 8 bit per pixel, then normalization value is 255.

One conclusion is that order quality values does not depend of image size
but image scene. We see, for instance, values for picture 4.1a with Eiffel
tower in foreground overcomes other pictures, however, it was not the biggest
sized. As we expected, frame 4.1c presents lowest quality values since that
frame was slightly blurry.

A negative power decay was observed for all graphics. Same shape was
observed with other sample images. About the first 200 key points exhibit
remarkable value. It was more evident with an histogram where 10% of the
lowest rank values, consisted of about 300 feature points. In conclusion we
suggest to work with 200.

52

CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.3: Iteration Vs Error in tracking over four different combinations
of windows and pyramid level.

4.1.2 Feature Tracking Accuracy: Dissimilarity

Texturedness tries to alleviate some possible problem in tracking, as aperture
problem. On the other hand, dissimilarity shows how effective was tracking
by measuring aligning error around each tracked point. Three parameters
rule runtime tracking performance: pyramid maximum level Lm, window
size 2w + 1 and maximum number of iteration maxIter for displacement
computation at each pyramid level.

To know which parameter combination we should use, we propose plot the
tracking error with respect to number of iterations for a fixed pair (Lm, w).
Error is the average for all features (n = 200) of the L1 distance between
patches around the original and a point moved ∆x, divided by number of
pixels in a window (see equation 4.1)

1
n

n∑
i=1

[
1

(2w + 1)2L1 (∆xi)
]
. (4.1)

Lm defines the figure size at top of pyramid dividing the original size by
2Lm . Table 4.2 shows values of size at maximum level of the pyramid. For
Lm = 5 we found frame sizes too small if we take into consideration that
windows sizes values are around 20 and 60 pixels.

53

CHAPTER 4. EXPERIMENTS AND DISCUSSION

Lm Eiffel Hexacopter Traffic
2 90× 160 180× 320 120× 160
3 45× 80 90× 160 60× 80
4 23× 40 45× 80 30× 40
5 11× 20 23× 40 15× 20

Table 4.2: Size of fames at maximum pyramid level.

Window sizes (2w + 1) is another trade off among alignment precision and
robustness against local minimum. Additionally, combined with Lm gives
the maximum inter-frame pixel displacement 2Lm × w.

For testing we use two consecutive frames from video 4.1a. In Figure 4.3
we measure the error defined in equation 4.1 on each iteration for four com-
bination w and Lm using 200 key points. Error values were normalized to a
percentage of maximum pixel value.

In Figure 4.3, for black line, we could see that it did not converge with other
lines. The reason was to use a large Lm = 4. What probably happened is
that before reaching the bottom of pyramid (L = 0), the algorithm deviated
to a local minimum. For Lm = 2 (blue line), iterations at L = 0 start
with a higher error value compare with the others. The reason is that there
were not enough pyramid levels for reaching to level zero with an accurate
guessing.

Then we found, the optimal maximum pyramid level should be equal to
3 and more specifically to use a windows with w = 11 (green line) which
offer slightly lower error, keeping a pertinent range of maximum allowable
frame to frame pixel displacement of 88 pixels (23 × 11). For this test, on
average, the final misalignment error was 3.4% by feature with 15 iteration
on each pyramid level. It means on average the precision for tracking at
every tracked point was 96.6%. Drift error may occur for many factors,
including noise in acquisition, illumination variation, among others.

To figure out if we can use a lower number of iterations we tested tracking
using 200 features points, a window of size 23 (2× 11 + 1) and Lm = 3. We
Showed in Figure 4.4 iteration versus error (not normalized) in a sequence
of 2000 frames for video Eiffel.

We observed a nearly constant tendency after 5 iterations. This is because
when we arrive to the lowest level of pyramid, initial guess contributes to
start with a low error from the first iteration. It means that we can set the
algorithm with a maximum number of iterations around 7 saving computa-
tional time and running it in constant time.

For more graphical results in Figure 4.5 we show tracking between 2 con-
secutive frames. Parameters were set as following: 200 feature, w = 11,

54

CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.4: Iteration Vs Error for 2000 consecutive frames.

Figure 4.5: Motion Vectors.

55

CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.6: Profile Pie Chart.

Lm = 3 and 5 iterations. Two consecutive frames are overlapped. Regions
in red are pixel values in which previous images has bigger values than pixels
in current image (vice versa for cyan regions). Motion vectors are plotted
in yellow.

4.1.3 Profiling

Profiling is an important aspect of software programming. Through profiling
one can determine the parts in program code that are time consuming and
need to be optimized. To attempt make the program faster, we use gprof
which is a GNU profiler tool1. We obtained a profile table with all functions
in videostab.
Sorting the mentioned table by time consumed and calls by function, we se-
lected the 8 more expensive function and graph them in a pie char (see
Figure 4.6). Function estimateGlobalMotionRansac was clearly the
most time expensive with about 80% of total execution time.
We saw in Section 3.2.3, that, to ensure robustness estimateGlobalMo-
tionRansac executes N iterations to guarantee (with probability p) outlier
rejection (for threshold τ) from a set with maximum outliers ratio ε. In
Figure 4.7 we plot the number of iterations for RANSAC with 0.99% of
success probability and the subset m = 3 for the Affine. The domain repre-
sents the maximum outliers ratio ε.
Accordingly, transformation matrix for n points is computed N times. The
computational complexity or computational order gives an idea of the num-
ber of instructions executed for an algorithm. The order to compute trans-
formation matrix is O (2× n). Hence, the total order OT (•) for robust
motion estimation is given by equation 4.2.

OT = O (N)× 2O (n) = N × n. (4.2)
1http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html

56

http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html

CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.7: ε Vs Number of iterations.

Figure 4.8: Order of computational complexity for motion estimation.

57

CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.9: Outlier Rejection.

In Figure 4.8 we graph the number of computations. Iterations do not vary
linearly because they depend on ε as in Figure 4.7. For N = 30 (ε = 0.48)
and n = 200 we have 9783 computations. With these values we keep in dark
blue part of the graphic, with computation of the order of 103 instead of
104.

4.1.4 Outlier Rejection in Global Motion Estimation

An example of outlier rejection result with parameter set as in previous
subsection (ε = 0.48 and n = 200) and threshold τ = 0.5 is shown in
Figure 4.9. Inliers are drawn in yellow (in total 66 inliers around Eiffel
tower).

Some motion vectors in blue are evidently outliers due to their orientation
(see for instance, the ones in tower’s top and the ones at right side). More
than 48% of data were considered outliers (134 motion vectors). The conclu-
sion is that we can not accomplish the assumption with 99% as we assumed
with ε = 0.48. The reason is the strict threshold of 0.5 which means that
model must fit sub-pixel precision of 0.5 pixels. We should use a less con-
strained τ = 0.75.

58

CHAPTER 4. EXPERIMENTS AND DISCUSSION

4.1.5 Motion Filtering

We can not give a precise numeric value of motion filtering quality because
the final effectiveness depends on many factors changing frame by frame as:
motion estimation, characteristics of the scene (type of vibration, motion of
the objects in scene, relative speeds, texture of the images, so on). However,
we can obtain the motion from estimated Affine model and show visual
results after smoothing.

Affine has 6 degree of freedom. However, we use 4 to show movements
in 2D and scaling as for similarity motion model (see equation 4.3). This
model allows for rotation (θ), uniform x and y scaling (s), and x and y
translation(Tx,Ty).

HAffine =

 s cos(θ) −s sin(θ) Tx
s sin(θ) s cos(θ) Ty

0 0 1

 . (4.3)

From 4.3, we obtain an approximation to displacements, rotations and scales
as:

Displacement =
[
Tx Ty

]T
≈ [HAffine(1, 3) HAffine(2, 3)]T ,

Rotation = θ ≈
(

arctan(−HAffine(1, 2)
HAffine(1, 1)) + arctan(HAffine(2, 1)

HAffine(2, 2))
)
×2−1 = θApprox.,

Scaling = s ≈
(
HAffine(1, 1)
cos(θApprox.)

+ HAffine(2, 2)
cos(θApprox.)

)
× 2−1.

For testing this, we use a video of size 480× 640 called taking_off.avi. The
scene is an highly shaky footage with an UAV taking off from the ground.
Parameters for estimation were set as we discussed in this section. Stabi-
lization radius r was set to 20.

In Figure 4.10 we show result of cumulative motions before (upper part of
each graph) and after filtering. We could see the effect of previous and
consecutive frames. With some intuition we can see that the UAV rises up
since there are positive translations in y. At the very beginning of each
graph there was no much motion, which corresponds to the real video when
the UAV starts turning on helix. For rotation we saw a phase change at
the middle of footage. For scaling we observed that cumulative depth of
background is less than 1 which means we moved away (at the beginning,
ground was at foreground).

59

CHAPTER 4. EXPERIMENTS AND DISCUSSION

(a) Translation estimation: blue x, red y

(b) Estimated Rotation.

(c) Scaling Estimation.

Figure 4.10: Motions before and after filtering.

60

CHAPTER 4. EXPERIMENTS AND DISCUSSION

Another example in Figure 4.11 shows x and y axis together. We can ob-
serve that even with large (x, y) displacement (dashed line without markers
at the right side of figure), the filtering process smoothly interpolate po-
sitions. In conclusion, it is possible, to measure the amount of correction
needed by a visual motion compensation algorithm to stabilize the images by
combining estimated displacements, rotations and scaling at running time
and make correction of UAV’s engine.

Figure 4.11: Translation before and after filtering.

61

CHAPTER 4. EXPERIMENTS AND DISCUSSION

62

Chapter 5

Conclusion and Further
Works

Video stabilization for UAVs highly consumes computational time mainly
because we want to ensure robustness during motion estimation, neverthe-
less, UAV’s video provides large set of data inherently corrupted by high
noise levels. Feature-based method, with Tomasi-Shi and Lucas-Kanade al-
gorithms, help to quickly select input data to estimate inter-frame motion,
however not all samples adequately fit motion models. Not only because
changes in assumptions of external situations in feature selection and track-
ing with mentioned algorithms (brightness constancy, spatial coherence,
temporal persistence, flat world) but also because of internal conditions:
noise in acquisition system, image distortion due to camera parameters and
more complexity of real world motions than parametrized motion models.

An evidence of the latter asseveration can be found testing ZeroMotion-
Filter using Affine model versus Homography model (In Appendix C, see
example for Section C.1).

A solution to increase quality in alignment is to include camera parameters
in computations by measure them before UAV starts recording. Knowing
the distortion that the camera introduces in footage allows to correct each
frame and to have better alignment. Furthermore, after correction, probably
many motion vector will not longer be consider as outliers, allowing us to
decrease outlier ratio, hence decrease the iterations in motion estimation,
making faster computations.

To increase fidelity of motion estimation and even do it faster, another idea
is dynamically change the motion model (Rigid, Affine, Homography). To
do so, the system should be able to identify when it is necessary a more
complex motion model than Affine, then jump to projective (full homogra-
phy). The other way around is when at some moment, it is enough to use

63

CHAPTER 5. CONCLUSION AND FURTHER WORKS

less computational complex motion model as similarity, rigid or translation.

Talking about smoothing movements, with Gaussian FIR filter we can suc-
cessfully achieve online stabilization paying an unavoidable price of latency
due the radius of stabilization. As a further work, another stabilizing sub-
system might be implemented and compared with current version. It might
be either filter-based (as Kalman filter, particle filter, among others), lin-
ear programing-based or any other stabilizing method. Class diagram in
Figure A.1 provides a structure to easily integrate new stabilizer solutions
in motion_stabilizing package with the class MotionFilterBase imple-
menting the interface IMotionStabilizer.

Finally, we saw in Section 4.1.5 that measured movements corresponds to
real motion of UAV. Displacement, rotation and scaling from Affine might
be used as index of the amount of correction needed to stabilize the aerial
vehicle. This opens the door for using the stabilization process in tuning
the control parameters from UAVs. To see a graphical test showing a global
index of measured vibration while UAV is on the flight, refer to Section C.2
in Appendix C.

64

Appendix A

Logic Project Documentation

A.1 Class Diagram

A.2 Activity Diagrams

65

APPENDIX A. LOGIC PROJECT DOCUMENTATION

Figure A.1: Class Diagram

66

APPENDIX A. LOGIC PROJECT DOCUMENTATION

Figure A.2: Video Stabilizing.

67

APPENDIX A. LOGIC PROJECT DOCUMENTATION

Figure A.3: Prepare Motion Estimation Builders.

68

APPENDIX A. LOGIC PROJECT DOCUMENTATION

Figure A.4: Building Stabilizers.

69

APPENDIX A. LOGIC PROJECT DOCUMENTATION

Figure A.5: Build Motion Estimators.

70

APPENDIX A. LOGIC PROJECT DOCUMENTATION

Figure A.6: Running the system in the highest level of abstraction

71

APPENDIX A. LOGIC PROJECT DOCUMENTATION

Figure A.7: Stabilize Next Frame.

72

APPENDIX A. LOGIC PROJECT DOCUMENTATION

Figure A.8: Motion Estimation.

Figure A.9: Motion Stabilizing.

73

APPENDIX A. LOGIC PROJECT DOCUMENTATION

74

Appendix B

User Manual

To use the code clone or fork from repository in GitHub: https://github.
com/rodrygojose/opencv/tree/videostab_polimi/modules/videostab_
polimi

Folder named include contains header files. Folder named src contains
.cpp files. Inside src, videostab.cpp contains main function and interface
for input parameters. To the parameter use –help.

To compile the code, the minimum OpenCV version is 2.4.0.

75

https://github.com/rodrygojose/opencv/tree/videostab_polimi/modules/videostab_polimi
https://github.com/rodrygojose/opencv/tree/videostab_polimi/modules/videostab_polimi
https://github.com/rodrygojose/opencv/tree/videostab_polimi/modules/videostab_polimi

APPENDIX B. USER MANUAL

76

Appendix C

Result Examples

C.1 Affine vs Homography

http://www.youtube.com/watch?v=SzHAAutvjaE

C.2 Amount of Correction

http://www.youtube.com/watch?v=ZyMAllty7DA

77

http://www.youtube.com/watch?v=SzHAAutvjaE
http://www.youtube.com/watch?v=ZyMAllty7DA

APPENDIX C. RESULT EXAMPLES

78

Bibliography

[1] The OpenCV Reference Manual - Release 2.4.5.0. 2.4

[2] Mohammed A. Alharbi. Fast video stabilization algorithms. Master’s
thesis, Department of Electrical and Computer Engineering, Air Force
Institute of Technology, 2006. 1.2

[3] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unify-
ing framework. Int. J. Comput. Vision, 56(3):221–255, February 2004.
3.2.1.2

[4] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade
Feature Tracker: Description of the Algorithm. Technical report, Intel
Corporation Microprocessor Research Labs, 2000. 3.2.1.3, 3.2.1.4, 3.2.2

[5] Nicholas Stewart Cross. Onboard video stabilization for unmanned air
vehicles, 2011. 2.1

[6] Elan Dubrofsky. Homography estimation, 2009. 3.2.4

[7] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, June 1981.
3.2.3, 3.2.3

[8] SRI International. Acadia, real-time video processors. 1.5

[9] David L. Johansen. Video stabilization and target localization using
feature tracking with small uav video. Master’s thesis, Brigham Young
University, December 2006. 3.2, 3.2.3, 3.3

[10] Bruce D. Lucas and Takeo Kanade. An iterative image registration
technique with an application to stereo vision. pages 674–679, 1981.
3.2, 3.2.1.1, 3.2.1.1

[11] Xavier Marichal. Motion Estimation and Compensation for Very Low
Bitrate Video Coding. PhD thesis, Universite catholique de Louvain,
1998. 2.2

79

BIBLIOGRAPHY

[12] Signal Processing Toolbox MathWroks. Fir gaussian pulse-shaping filter
design. 3.3.1

[13] Y. Matsushita, E. Ofek, Weina Ge, Xiaoou Tang, and Heung-Yeung
Shum. Full-frame video stabilization with motion inpainting. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 28(7):1150–
1163, 2006. 3.3.1

[14] PJ Rousseeuw. Least median of squares regression. Journal of the
American statistical association, pages 79 (388), 871–880, 1984. 3.2.4

[15] S. Schwertfeger, A. Birk, and H. Bulow. Using ifmi spectral registration
for video stabilization and motion detection by an unmanned aerial
vehicle (uav). In Safety, Security, and Rescue Robotics (SSRR), 2011
IEEE International Symposium on, pages 61–67, 2011. 2.3.2

[16] Jianbo Shi and C. Tomasi. Good features to track. In Computer Vision
and Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE
Computer Society Conference on, pages 593 –600, jun 1994. 3.2, 3.2.1.1,
3.2.2

[17] Richard Szeliski. Image alignment and stitching: a tutorial. Found.
Trends. Comput. Graph. Vis., 2(1):1–104, January 2006. (document),
3.2, 3.9

[18] A. Telea. An image inpainting technique based on the fast marching
method. Journal of Graphics Tools, 9(1):23–34, 2004. 3.3.3

[19] J. Windau and L. Itti. Multilayer real-time video image stabilization. In
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, pages 2397–2402, 2011. (document), 1.1, 1.2

80

	Abstract
	Acknowledgments
	Contents

	1 Context
	1.1 Overview
	1.2 Video Stabilization Methods
	1.3 Thesis of the Scope
	1.4 Structure of the Thesis
	1.5 Problem Description
	1.6 Objectives
	1.6.1 Main Objective
	1.6.2 Specific Objectives

	1.7 Challenges

	2 State of Art
	2.1 Digital Video Stabilization
	2.2 Camera Model
	2.3 Related Works in Motion Estimation
	2.3.1 Motion Models
	2.3.2 Motion Estimation Methods
	2.3.3 Error Metrics and Outliers in Estimation

	2.4 OpenCV and GPU

	3 Proposed Solution
	3.1 Implementation Overview
	3.2 Motion Estimation
	3.2.1 Feature Tracking
	3.2.1.1 Lucas-Kanade Optical Flow
	3.2.1.2 Inverse Compositional for Feature Tracking
	3.2.1.3 Pyramidal Lucas-Kanade Feature Tracker
	3.2.1.4 Sub-pixel Accuracy

	3.2.2 Feature Selection
	3.2.3 Global Motion Estimation with Affine Model
	3.2.4 Global Motion Estimation with Homography

	3.3 Motion Stabilizing
	3.3.1 Gaussian Motion Filter
	3.3.2 Zero Motion Filter
	3.3.3 Image Alignment

	3.4 Diagrams

	4 Experiments and Discussion
	4.1 Performance Analysis and Discussion
	4.1.1 Feature Selection Quality: Texturedness
	4.1.2 Feature Tracking Accuracy: Dissimilarity
	4.1.3 Profiling
	4.1.4 Outlier Rejection in Global Motion Estimation
	4.1.5 Motion Filtering

	5 Conclusion and Further Works
	A Logic Project Documentation
	A.1 Class Diagram
	A.2 Activity Diagrams

	B User Manual
	C Result Examples
	C.1 Affine vs Homography
	C.2 Amount of Correction

	Bibliography

