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ogni cosa: è delle poche persone con cui posso parlare di spazi di Sobolev e due minuti

dopo saltare all’Eneide. Ogni mio passo in avanti è anche vostro.
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Abstract

This thesis work has a two-fold structure. In the first part we apply recently de-

veloped, but consolidated, techniques of functional data analysis to a problem that

has been studied since the 1980s: development of an automated system for animal

fibers classification, through feature extraction from electron microscope images. Our

contribution was in facing this well-known issue thanks to functional principal compo-

nent analysis, performed on radii of the fibers as functions of the curvilinear abscissa

(dataset FIBER). Scores variables obtained in this way have a similar meaning to the

modules of the Fourier transform of radii. We compare the performance of discrimi-

nant analysis carried out on scores and on other features (mean radius and standard

deviation, modules of Fourier transform and their logarithms), varying the number of

groups taken into consideration.

In the second part we face the problem of metric selection in the functional data anal-

ysis framework. We consider the possibility of getting a data-driven sparse Sobolev

metric, that gives nonzero weights to the most statistically significant derivatives and

zero to others. The procedure is a innovative extension of multivariate techniques for

feature selection and penalized matrix decomposition. Some corrections are required,

due to the not homogeneous nature of data; we make two proposals in this sense,

responding to measure unit and normalization needs. The output is a dissimilarity

matrix, that enables unsupervised classification. We run hierarchical clustering on two

synthetic datasets and on FIBER data.

Keywords: Functional Data, Functional Principal Component Analysis, Fourier

transform, Hierarchical Clustering, Discriminant Analysis, Gaussian Mixture Models,

Sobolev Metrics, Convex Optimization, Penalized Matrix Decomposition.



Abstract

Questo lavoro di tesi ha una duplice struttura. Nella prima parte applichiamo

tecniche sviluppate di recente, ma ormai consolidate, afferenti all’analisi di dati fun-

zionali a una questione che stata studiata fin dagli anni Cinquanta: lo sviluppo di

un sistema automatico per la classificazione di fibre animali, tramite l’estrazione di

variabili significative da immagini al microscopio elettronico. Il nostro contributo è

stato affrontare tale problema grazie all’analisi delle componenti principali funzionali,

effettuata sui raggi delle fibre, guardati come funzioni dell’ascissa curvilinea (dataset

FIBER). Le variabili di scores ottenute in questo modo hanno un significato analogo

ai moduli della trasformata di Fourier dei raggi. Andiamo a confrontare la perfor-

mance dell’analisi discriminate effettuata sugli scores e su altre variabili (raggi medi e

deviazioni standard, moduli della trasformata di Fourier e loro logaritmi), variando il

numero di gruppi presi in considerazione.

Nella seconda parte affrontiamo il problema della selezione della metrica nel contesto

dell’analisi dei dati funzionali. Consideriamo la possibilità di ottenere una metrica di

Sobolev sparsa e adattiva, che dia pesi non nulli alle derivate statisticamente significa-

tive e nulli alle altre. La procedura è un’estensione innovativa di tecniche multivariate

per la selezione di variabili e la decomposizione di matrici con vincoli di penalità. Si ren-

dono necessarie alcune correzioni, a causa della natura non omogenea dei dati; facciamo

due proposte in tale direzione, per rispondere a esigenze relative a differenze nell’unità

di misura e a esigenze di normalizzazione. L’output è una matrice di dissimilarità,

che rende possibile la classificazione non supervisionata delle funzioni. In particolare

effettuiamo il clustering gerarchico su due dataset sintetici e sui dati FIBER.

Parole Chiave: Dati Funzionali, Analisi delle Componenti Principali Funzionli,

trasformata di Fourier, Clustering Gerarchico, Analisi Discriminante, Modelli di Mis-

tura di Gaussiane, Metriche di Sobolev, Ottimizzazione Convessa, Decomposizione di

Matrici con Vincoli di Penalità.



Chapter 1

Introduction

Functional Data Analysis (FDA) is a recent, but in quickly growing branch of statis-

tics, that deals with datasets consisting of curves and surfaces, treated as realizations of

random functions, i.e. random variables whose image is an infinite-dimensional func-

tional space. This type of data appears today spontaneously in numerous domains

of applications, like geophysics (satellite images), econometrics (stock indices), biome-

chanics (analysis of human movements), chemometrics (spectrometric curves), genetics

(microarray data), medicine (electrocardiograms, electroencephalograms magnetic res-

onance imaging).

Although theoretical studies on infinite-dimensional random variables are dated to the

early 1920s, first applications to real data start in the last decade of the same century.

This gap is attributable to the deferred technology development. Only recently we

succeeded in acquiring measurements almost continuous in time and/or space on the

one hand, and to deal with this type of data with appropriate computational facilities

on the other. Since the 1990s, research activity on functional data has grown to the

point that a number of monographs have been published, concerning both theory and

applications (e.g. Ramsay and Silverman 2002; Ramsay and Sylverman 2005; Ferraty

and Vieu 2006). As a results of these recent developments, it is not so surprising that a

well-known problem in textile industry, such the construction of an automated system

for animal fibers classification, has not been analyzed through FDA techniques yet, as

far as we know.

The differences in cost between different types of fibers are remarkable and subject

to fluctuations related to the market demand and availability. They are also influenced

by factors such the climate and the political situation in places of origin of the raw

materials.

Identification of the fibers contained in a textile product is a priority in order to guaran-

tee the quality and protection of producers and consumers. Cashmere is a luxury fiber,

rare and expensive, that stimulates commercial fraud, just because of its economic

1



value. Increased competition and the growing demand for this fiber have brought the

substitution of cashmere with other animal fibers (mainly wool) to worrying levels.

This phenomenon penalizes the image of the most important exporter textile indus-

tries, which must be protected from unfair competition.

Current regulation on quality control is described in ISO 17751:2007 normative. It

is based on morphological analysis of the fibers with electronic or optical microscope,

providing an objective criterion for identification, based on cuticular height and on

fibers diameters. Since its first formulation in the mid-80s (see the early works from

Robson et al.), attempts have been made in order to define an automatic procedure

for implementing fibers identification. Though also techniques of different nature have

been recently explored (e.g., DNA analysis, mass spectroscopy) currently morphologi-

cal analysis remains the most established and taken as a reference. In the literature,

various techniques have been explored to get automatic morphological analysis, using

several image processing procedures, several types of geometric indicators (diameter,

shape and size of the scales, or more sophisticated analyses, as wavelet analysis of the

texture, see Zhang et al., 2010) and several types of classifiers (e.g., Bayesian classifiers,

neural networks).

In the first part of the present work we consider the problem of getting a small

classification error about the fibers composing FIBER dataset, consisting of of n = 894

fibers gray-scale bidimensional images, belonging to g = 9 groups of materials: 5 kinds

of cashmere and 4 kinds of wool. Our objective is to build, thanks to functional data

techniques, a classifier able to discriminate at least two macro-groups (cashmere and

wool). The dataset is quite complex, but we focus only on a single important factor, as

the evolution of the radius along the curvilinear abscissa is. In particular, we follow the

approach proposed by Ramsay and Silverman (2005), performing functional principal

components analysis, that results in scores variables having a meaning analogous to

modules of the Fourier transform coefficients.

We make some comparisons varying the number of groups and the features (scores, DFT

modules and log-modules) used in building a quadratic classifier. We conclude that

scores variables, with two groups (cashmere fibers and a mixture model for wool fibers)

have the best performance among the various solutions taken into consideration. The

percentage of not correctly classified fibers is lower even with respect to the case of using

synthetic multivariate indices (longitudinal mean radius and its standard deviation).

In the second part of the thesis we deal with a problem that arises in the functional

data framework: the choice of the norm (or semi-norm) used for measuring closure of

the data deeply influences the results of statistical procedures, not only in terms of

convergence, but especially in the possibility of identifying the real between-functions

variability.
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The problem is treated in recent works (see Ferraty and Vieu 2006; Ferraty et al.

2010): they stress tha for the purposes of a good statistical analysis, the functional

space which data belong to have to be a metric space. But this is not sufficient: it is

necessary that the chosen metric correctly represents the variability in the data. This is

shown for example by Ferraty and Vieu (2002), that, in a framework of non-parametric

functional regression, provide real applications and simulation studies examples of how

the use of semi-metrics different from the one induced by the L2 norm can improving

the predictive power of the regression model.

Up to now statisticians are leaved two possibilities: either choosing the metric space

a priori, depending on what they think best represents the data, or doing analyses in

more than one metric space and seeing a posteriori which one is better. Both ways have

weak points: the firs one is likely to be too subjective, the second one too expansive.

A solution could be to make the choice of the metric space to become an integrated

passage of statistical analysis, building a semi-metric adapted to functional variables

(Ferraty et al. 2010), by searching at least in a certain class of metric spaces.

This is precisely the objective of the second part of this work: construction of a Sobolev

data-driven semi-metric, where adaptivity means identifying which derivatives are more

responsible for the between-functions differentiation. In order to do achieve this, we

attribute a weighting coefficient to each term of the Sobolev metric (corresponding

to a derivative order): such coefficients should be null if there is variability along

that derivative order, null otherwise. We propose an optimization procedure aimed

at finding a system of weights that meets this requirement, extending the work of

Tibshirani and Witten (2010) regarding a multivariate feature selection framework. In

particular we extend what they call sparse hierarchical clustering, which is indeed a

technique that can be applied to any method that takes a dissimilarity matrix as its

input. The main novelty that we introduce is in the type of data between which the

dissimilarity is computed (functions and their derivatives), and not in the steps of the

optimal algorithm used to construct the optimal weights.

Some corrections are necessary due to the not homogeneous nature of our data, and

we make two proposals: the first one is concerned with unit measure need, the second

with normalization need. We analyze their effect on two synthetic datasets and on

FIBER dataset.

In details the thesis is structured as follows.

In Chapter 1, we study FIBER dataset by mens of functional data analyses. We

perform functional principal component analysis on the values of the radii of fibers as

functios of the curvilinear abscissa. Nine group of materials are present in the dataset.

Hierarchical clustering of the Gaussian probability functions, estimated on the data,

indicates that we should consider the existence of two groups: cashmere and a mixture

of wool. This allows us to perform discriminant analysis on fibers of different materials.

3



In Chapter 2, we show the general framework for future selection proposed by

Tibshirani and Witten (2010) and its extension for our purposes of data-driven Sobolev

metric selection; we also discuss the meaning of complementary metrics made available

by the method. The outcome are a dissimilarity matrices that enable unsupervised

classification.

Chapter 3 contains simulations on two synthetic datasets (polynomial and trigono-

metric), that reveal that some corrections are necessary to the method proposed in

Chapter 3, due to the not-homogeneous nature of data. We make two proposal and

discuss them. The chapter is ended by the application to FIBER dataset.

Conclusions and future developments are drawn in Chapter 4, while Appendices

report some proofs and details omitted in the central part of the thesis.

All computer analyses were made thanks to statistical software R.
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Chapter 2

FIBERS Dataset

2.1 Introduction

FIBER dataset is based on bi-dimensional images of n = 894 textile fibers, belonging

to g = 9 groups of materials: 5 kinds of cashmere and 4 kinds of wool. Percentages of

the materials don’t differ significantly from 1/9, since the sample sizes of the groups are

as follows: (97, 100, 100, 100, 100, 97, 100, 100, 100), two subgroups having less images,

because they could not focus and were not replaced.

Through an electron microscope, a bi-dimensional array of gray-scale pixels is produced

for each fiber. An euclidean skeletonisation algorithm provides the two spatial coordi-

nates of the centerline (computed as the set of centers of maximal circumferences that

can pointwise be inscribed in the fiber section), its bifurcations and the radius of the

maximal inscribed circumference (Figure 2.1). Several scalar indicators are obtained,

concerning the global and the internal morphology and the texture of the fibers; many

of the indicators are related to the scales of the fibers. Nevertheless in the present work

we investigate how to classify the fibers in the framework of functional data analysis

(FDA), as defined below, focusing only on the evolution of the radius along the curvi-

linear abscissa.

Figure 2.1: Example of a fiber image. The white lines represent the centerline and the circumferences

that allow to identify the pointwise radius.

Especially in recent years, in numerous domains of applications appear sponta-

neously situations in which the collected data are curves or surfaces. This made aris-

ing, in modern statistics, the recent by quickly growing branch devoted to functional
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data analysis, that treats these kind of data as realizations of functional variables or

random functions. To fix ideas, we can give the following general definition:

Definition 1. A random variable X (ω) is called functional variable if it takes values

in an infinite dimensional, or functional, space (E, E). An observation χ of X (ω) is

called a functional data. Here E is is an appropriate σ-algebra on E.

Definition 1 is generic, in order to take into account the fact that, as anticipated,

the random variable X (ω) can belong to a wide class of objects: real functions, surfaces

or n-dimensional (with n ≥ 2, n ∈ N) vector of functions. In the present work we deal

with random one-dimensional curves, thus X (ω) = {X (ω, s) : s ∈ T , T ∈ R} and

consequently χ = {χ(s) : s ∈ T , T ∈ R}.

2.2 Functional Principal Component Analysis

In the rest of this chapter we assume to deal with random functions that take value in

(L2(a, b), E): with respect to Definition 1 we have E = L2, T = (a, b), E an opportune

σ-algebra, for example Lebesgue σ-algebra.

Let (Ω,F ,P) be a probability space and let P(dω) be the Lebesgue measure. The

ith fiber is represented by the function

fi : Si ⊂ R −→ R3

s 7−→ fi(s) = (xi(s), yi(s), ri(s)) , 1 ≤ i ≤ n

where each ri(s) is the radius of the maximal inscribed circumference centered in (xi(s),

yi(s)) and is a realization of one of the following nine random functions (corresponding

to the nine groups)

Rh(ω, s) : Ω −→ L2(ah, bh), 1 ≤ h ≤ g.

When not ambiguous we will denote by Rh(s) the random function Rh(ω, s), avoiding

to express the dependence on the case ω. The abscissa parameter s measures the

distance along the fiber, from the first section to the last (after acquisition, images are

cut to have terminal sections orthogonal to the centerline). Functions xi(s) and yi(s)

map s into the left-right and up-down coordinates of the corresponding point of the

centerline. The nine random functions are supposed to have value in L2(ah, bh), thus

we can analyze their mean function and their covariance function:

µh(s) = E [ (Rh(s) ] =

∫
Ω

Rh(ω, s)P(dω) (2.1)

Σh(t, s) = E [ (Rh(t)− µh(t)) (Rh(s)− µh(s)) ] , 1 ≤ h ≤ g. (2.2)
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Analogous quantities (µ(s) and Σ(t, s)) can be defined for a unique random func-

tion (R(s)), representing all the data, without distinction of groups (the choice of the

number of groups is faced in Section 2.3).

As a matter of fact, the reconstruction algorithm provides centerlines and radius

profiles only on a fine grid of points; the number of points available for each fiber

ranges from 1686 to 4003, and is almost perfectly correlated to the approximate length

of the reconstructed centerlines, which in turn varies from 0.17 mm to 0.46 mm. Due

to the necessity of managing with valuations of the radius we interpolate data. Before

interpolating and in order to have nearly the same interpolation step, we decide to

cut the images, symmetrically from the center, adapting the length of their curvilinear

abscissa to that of the image with the shortest length of curvilinear abscissa.

Let R=[r1
′(s), . . . , rn

′(s)], 1 ≤ s ≤ p, denote the n × p data matrix obtained,

with n = 894 observation and p = 1706 features, representing the value of the ra-

dius along the curvilinear abscissa, shown in Figure 2.2. Looking at the sample

mean curves (in black), we can see that the cashmere groups have a mean value

beneath 200 µm, while the wool groups have a mean value of about 200 µm, with

the exception of wool 3, that could be better discriminated. In Section 2.3 we will

show how the wool group can be treated as a mixture of wool 3 and all the the

other kind of wool. Note that in the implementation we deal with the sample mean

µ̂ = R =
1

n

∑n
i=1 ri ∈ Rp, and the sample unbiased covariance matrix Σ̂ ∈ Rp×p,

Σ̂(t, s) = 1
n−1

∑n
i=1

[
(ri(t)−R(t))(ri(s)−R(s))

]
, 1 ≤ s, t ≤ p. We could similarly de-

fine Rh and Σ̂h for sample estimations in every group.

We now proceed with the the functional principal component analysis (FPCA),

as described for example in Ramsay and Silverman (2005). The overall mean µ(s) is

subtracted from each function ri(s) in order to center the coordinate system in zero.

An analysis based on the autocovariance is preferred to the alternative analysis based

on the autocorralation function because the values of the functions are homogeneous.

Given the random function R(s) and the deterministic function φ(s) ∈ L2(a, b), the

inner product 〈φ,R−µ〉 =
∫ b
a
φ(s)(R(s)−µ(s))ds is a random function, representing the

projection of (R(s)− µ(s)) on φ(s), with mean function E[〈φ,R − µ〉] = 〈φ, µ− µ〉 =

0 and covariance function V ar[〈φ,R − µ〉] = 〈φ, VΣφ〉 , where VΣ is defined as the

covariance operator

VΣ : L2(a, b) −→ L2(a, b)

φ 7−→ VΣ(t) =

∫ b

a

Σ(t, s)φ(s)ds.

Details are given in the Appendix A. Note that V ar[〈φ,R− µ〉] = V ar[〈φ,R〉]. FPCA

aims then at finding a sequence of orthonormal functions {φk(s)}+∞
k=1, called loadings,
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Figure 2.2: Radius of the 9 groups along the curvilinear abscissa. The black line represent the sample

mean curves.

that capture the highest quantity of variance of the random function 〈φ,R〉 in the

residual orthogonal subspace at each iteration. In particular:

� the first loading is the solution of

φ1 = argmax
φ∈L2(a,b)

‖φ‖=1

V ar[〈φ,R〉]; (2.3)

� the k-th loading is the solution of

φk = argmax
φ∈L2(a,b)

‖φ‖=1

φk⊥φi,i=1,...,k−1

V ar[〈φ,R〉]. (2.4)

It can be demonstrated that, if we write the spectral decomposition of the covari-

ance function as Σ(t, s) =
∑+∞

k=1 λkφk(s)φk(t), the eigenfuctions φk(s) corresponding to

eigenvalues λk decreasing in module, according to the eigenequation VΣφk(s) = λkφk(s),

are the solution of the maximization problem above. The maximum values of the vari-

ances are realized by the eigenvalues. This result is an extension to infinite-dimensional

framework of a well known fact in multivariate analysis; the proof can be found in Ram-

say and Silverman (2005), Chapter 8.

Finally by scores or principal components we mean the projections of the random func-

tion R(s)−µ(s) on the eigenfunctions φk(s): Ck = 〈R−µ, φk〉 =
∫
S
(R(s)−µ(s))φkds.

The following relation holds:

R(s) = µ+
+∞∑
k=1

Ckφk(s). (2.5)
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Figure 2.3: Estimate (left) of the variances of the radius along the curvilinear abscissa R(s) (top-left),

estimate of the variances of the first 6 scores Ck, k = 1, . . . , 6 in logarithmic scale (bottom-left) and

estimate of the variances ratio (right). Estimate (right) of the first 6 eigenfuctions φk(s), k = 1, . . . , 6.

Relation (2.5) is by itself a dimensional reduction, since let us pass from a non numer-

able infinity of random values (R(s)) to a numerable infinity (Ck). A further reduction

is performed if the summation is truncated to m values: R̃(s) = µ +
∑m

k=1Ckφk(s).

In order to chose m, we make the ratio between the explained variance and the total

variance under a fixed threshold B ∈ [0, 1], usually B = 0.8:

E[‖R̃− µ‖2]

E[‖R− µ‖2]
=

∑m
k=1 λk∑+∞
k=1 λk

≤ B. (2.6)

Details on the first equality of equation (A.1) are explained in the Appendix A.

In the computer implementation we can estimate only p eigenvectors φ̂k ∈ Rp and p

eigeinvalues λ̂k, only n−1 of which are nonzero, since rank(Σ̂) = min{n−1, p} = n−1.

For each of the n vectors ri(s), a vector of p scores Ĉi, is calculated.

Figure 2.3 on the left shows, ∀1 ≤ s ≤ p, Σ̂(s, s) (the estimate of the variances of the

values of the radius along the curvilinear abscissa), the logarithm of the variances of

the first six scores and the variances ratio in equation (A.1). It suggests a reduction

only to the first score, since it explains 97.13 % of the total variance; this would lead

to not multivariate analysis, thus in the present work we don’t use FPCA just to

perform dimensional reduction, but to interpret the meaning of the transformation of

the variables that capture the highest quantity of residual variance, with the aim of

building a classifier with them.

This is done looking at the eigenfunctions in the right part of Figure 2.3: they are clearly
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sinusoidal functions, with decreasing period (increasing frequency). The estimate of the

first loading φ̂1(s) indicates that, for each function ri(s), the first score C1 represents

its mean along the curvilinear abscissa: since φ̂1(s) is negative, high positive values

are associated with narrower fibers, high negative values are associated with wider

fibers. The second score C2, corresponding to the second loading φ̂2(s), quantifies the

tapering effect: higher (positive or negative) values are associated with more tapered

fibers (towards one of the two extremities), lower values are associated with less tapered

fibers. The third score C3, corresponding to the third loading φ̂3(s), quantifies the

narrowing or widening toward the center effect (depending on the sign of the score):

higher values are associated with more deformed toward the center fibers, lower values

are associated with less deformed toward the center fibers.

We can generalize, interpreting the principal components as the modules of the Discrete

Fourier Transform of each fiber, shortly explained in Subsection 2.2.1; from now on, our

analyses will be based on Fourier-transformed variables (more precisely on modules of

their Fourier transform) and comparisons with scores variables will be made in Section

2.4.

The choice of the number of Fourier frequencies and associated modules taken into

consideration will be explained in Section 2.4, where we perform discriminant analysis

based on a Gaussian Mixture Model (GMM).

2.2.1 Discrete Fourier Transform

In this Subsection we recall the notation of the Discrete Fourier Transform (DFT) and

make some considerations and comparisons with the FPCA. Typically, in functional

data analysis, DFT is faced as one of the so called not data driven techniques for

dimensional reduction, but, on the contrary, in our case FPCA, a data driven technique,

led us toward it.

We speak of Fourier series of a function if we mean to expand quantities depending

from a continuous variable (in our case the random function R(s)); its analogous for

discrete samples is the DFT. Like in FPCA, the aim is to project the random function

R(s) (and its realizations ri(s)) on a L2(a, b)-dense basis {φk(s)}+∞
k=1, and then decide

to truncate the projection to a certain number of basis components, performing a

reduction that will allow multidimensional standard analyses. Since the mean µ(s)

of the random function R(s) is related to the the frequency f = 0, now we don’t

subtract it.

In the Fourier series, a relation similar to that in equation (2.5) holds, if we take the
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following orthonormal deterministic basis, called Fourier basis :

φ0(s) =
1√
b− a

, φ2k(s) =

cos

(
2πk(s− a)

b− a

)
√

(b− a)/2
, φ2k−1(s) =

sin

(
2πk(s− a)

b− a

)
√

(b− a)/2
,

s ∈ (a, b), 1 ≤ k ≤ ∞.
Then we call Fourier coefficients the random coefficients Ck = 〈R(s), φk(s)〉; note that

C0 φ0(s) = µ(s).

At implementation level, passing from the Fourier series to the DFT requires some

technicalities, such as the usage of the Eulero’s ralation for complex numbers, truncat-

ing the expansion to the maximum number of available samples for each function (p),

and introducing a discrete scalar product to define the discrete Fourier coefficients.

This allows writing each of the p components of the sample realizations ri, 1 ≤ i ≤ n,

in the following way:

ri(s) =

p∑
k=1

Ĉi(k)ej
2π
p

(k−1)(s−1), 1 ≤ s ≤ p, (2.7)

where

Ĉi(k) =
1

p

p∑
s=1

ri(s)e
−j 2π

p
(k−1)(s−1), 1 ≤ k ≤ p (2.8)

are the discrete Fourier coefficients. The transformation {ri} 7→ {Ĉi}, 1 ≤ i ≤ n,

described in equation (2.8), is the Discrete Fourier Transform (DFT). It provides a

matrix Ĉ, of the same dimensions of R, that is calculated with the help of algorithms

that reduce the computational complexity (Fast Fourier Transform). The elements of

the matrix Ĉ are the modules of the k-th complex term of the summation in equation

(2.7), relative to k-th frequency 2πk/p. Figure 2.4 shows the modules corresponding

to the first two frequencies, divided in the nine groups of materials.

A graphic of variances similar to that on the bottom-left in Figure 2.3 would show

that the variances of the variables Ck are not monotonically decreasing, even if they

present a global decreasing trend. We point out that a high variance in the k-th feature

Ck is not directly connected with the possibility of reducing the classification error if

we use it in the construction of the classifier, but this is a first approach to feature

selection problem. Moreover we will show that in our case-study this heuristic approach

perform quite well. In Section 2.4 we see that Fourier-modules related to the first (low)

frequencies and a group of modules related to middle-high frequencies are significant,

while some central frequencies and the highest one should not be taken into account.
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Figure 2.4: Modules Ĉk, k = 1, 2, corresponding to the first two frequencies in the 9 groups.

2.3 Hierarchical Clustering

In this Section we support the decision of considering only two groups of materials (wool

and cashmere) in the discriminant analysis performed in Section 2.15. The choice of

the number of groups deeply influences the entity of the classification actual error rate

(AER), i.e. the probability for a new case to be misclassified. For example the trivial

classifier, the one that assign to all the samples the class of the group that has the

higher prior density (corresponding to higher size if we estimate the priors with the

sample information), would approximately get AER = 4/9 ' 0.44 if we consider only

two groups, and AER = 8/9 ' 0.89 if we consider nine groups.

In order to perform the next analyses, a multivariate normality assumption on the

distributions of the features variables must be verified. In fact we make use of densities

estimated on data and follow the frequent approach of using the Gaussian model. We

denote with g the number of groups (initially g = 9), to which correspond a label

parameter L ∈ {1, . . . , g}, and with {Chk}+∞
k=0 , 1 ≤ h ≤ g, the sequence of Fourier

coefficients relative to the g-th group. By means of multivariate Shapiro tests on the

first 4 features, reported in Table 2.1 we are induced to transform the sequences {Chk}k
into the new sequences {Xhk}k, where Xhk = log(Chk), since sets of m variables drawn
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Table 2.1: P-values of multivariate (4 features) Shapiro-tests based on 2500 Monte Carlo iterations,

relative to the 5 Cashmere groups and to the 4 Wool groups. The high sample size cause the tests to

be extremely powerful; the transformed variables {Xhk}k better meet the Gaussian hypothesis.

C1 C2 C3 C4 C5 W1 W2 W3 W4

{Chk}k 0 0 8× 10−4 0 76× 10−4 0.01 0 0 56× 10−4

{Xhk}k 0.66 0 0 16× 10−4 0 0 0.01 0.39 76× 10−4
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Figure 2.5: QQplot of Fourier-modules Ch1 (left) and of their logarithms Xh1 = log(Ch1) (right)

from {Xhk}k better meet the normality hypothesis. This is confirmed by qqplot of the

first variable in each group, shown in Figure 2.5.

Thus we perform a hierarchical clustering (HC) using as data fh(x|µh,Σh) =

fh(x|L = h), the Guassian probability density function of the random vector Xh =

(Xh1, . . . , Xhm), whose components are the logarithms of the m Fourier coefficients that

we find useful for our analyses. In the computer implementation we use m = 1 in order

to avoid multidimensional integration, being aware that an increase in the number of

features taken into account should cause an increase in the number of stable cluster

found by the algorithm.

The second input necessary to HC is a dissimilarity matrix between the densities:

D =


0 d12 · · · d1g

d21 0 · · · d2g

...
...

. . .
...

dg1 dg2 · · · 0

 ,

dij = d(f(x|L = i), f(x|L = j)), 1 ≤ i, j ≤ g.

We recall that, if G is the set of absolutely continuous distributions on Rm, f(x), g(x) ∈
G, x ∈ Rm, then the dissimilarity between f(x) and g(x) is a positive function d(f, g) :

G ×G −→ [0,+∞) such that d(f, f) = 0 and d(f, g) = d(g, f). In the present work we
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used a symmetrized version (adding the second term in equation (2.9)) of the frequently

used Kullback-Leibler divergence (see Dykstra 2005) between two distributions f and g:

dKB(f, g) =

∫
Rm

f(x) log

(
f(x)

g(x)

)
dx +

∫
Rm

g(x) log

(
g(x)

f(x)

)
dx. (2.9)

Finally we need to select a dissimilarity between clusters. Given the sets U, V ⊆ X ,

and denoting with #U the cardinality of set U , some typical choices are:

1. single linkage dSL(U, V ) = min{d(f, g), f ∈ U, g ∈ V };

2. complete linkage dCL(U, V ) = max{d(f, g), f ∈ U, g ∈ V };

3. average linkage dAL(U, V ) =
1

#U#V

∑
f∈U

∑
g∈V d(f, g).

Computations are performed for all of the three methods and then they are compared.

Algorithm 1: Hierarchical Clustering

Data: D, dissimilarity between sets

Result: dendrogram grouping data from g = 9 to g = 1 clusters, in function of

the dissimilarity level

initialization: D0 ← D, g ← 9 clusters;

while g 6= 1 do

the two less dissimilar clusters;

calculate the new matrix Di;
g ← g − 1;

end

HC algorithm is summarized in pseudo-code (1), and the dendrograms obtained

by the three methods are proposed in Figure 2.6. The procedure leave us the task of

deciding at what level to cut the tree: a long vertical line means that the for a wide

range of dissimilarities the current grouping is stable. A blue box is plotted in order to

identify which densities are grouped together if we decide to form two clusters, while a

red box is plotted in case we decide to form three clusters. Single and average linkage

methods give a similar solution: they point out that the group W2, associated to label

L = 7, is a wool very different both from other wool and cashmere groups. In the first

case this is due to the fact that SL tends to aggregate nearby elements, despite they

belong to different groups.

The classical way to evaluate the goodness of the linkage method is to compare

the original dissimilarity-matrix with the matrices containing the dissimilarity level at

which that method aggregates elements f(x|L = i) and f(x|L = j); the more they
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Figure 2.6: Histogram obtained according to the three between-clusters dissimilarities methods.

resemble, the more reliable is the result. Figure 2.7 shows a matrix-plot: dark colors

suggest low dissimilarities, while light colors suggest high ones. The visual impression

that matrices produced by SL and CL resemble more the original one is quantified

by the cophenetic correlation coefficient ρcoph = Corr(D,Dm),m ∈ {SL, CL, AL} .

The synthetic notation Corr(D,Dm) indicates the calculus of the correlation coefficient

after vectorizing the matrices following the same order. Table 2.2(a) gives the three

values.

In conclusion we would be induced to consider the existence of three group in order

to be able to separate all the wool from the cashmere groups. But not to throw away the

information on the fact that W7 is a wool, even if more distinguishable from cashmere,

we treat the whole wool group as a Gaussian Mixture Model (GMM) of the subgroups

WA = W−7 and WB = W7 (W−7 are the not-W7 groups), with weights given by prior

probabilities (pA ' 3/4, pB ' 1/4). Thus the wool likelihood is:

f(x | µW ,ΣW ) = pAf(x | µA,ΣA) + pBf(x | µB,ΣB) (2.10)

where f(x | µA,ΣA) and f(x | µB,ΣB) are Gaussian multidimensional probability

density functions (pdf).

P-values from Shapiro 4-dimensional tests are reported in Table 2.2(b): low values are

again caused by the high number of samples.
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Figure 2.7: Matrix-Plot of the dissimilarity matrix D (top) and of matrices reprenting the dissimilarity

level at which f(x|L = i) and f(x|L = j) are joined in a cluster by the method (bottom).

Table 2.2: (a)Cophenetic correlation coefficients for the single, complete and average linkage meth-

ods; (b) p-values from Shapiro 1-dimensional and 4-dimensional tests, based on 2500 Monte Carlo

iterations, for the three groups Cashmere (C), WoolA (WA), WoolB (WB).

(a) Cophenetic coefficients

S.L. C.L. A.L

ρcoph 0.82 0.58 0.82

(b) Shapiro p-values

C WA WB

1-dim p-value 0.032 0.546 0.059

4-dim p-value 0 4× 10−4 96× 10−4

2.4 Discriminant Analysis

In this Section we perform a discriminant analysis and do some comparisons with

respect to the choice of the number of features, the number of groups and the variables

used in the construction of the classifier.

Discriminant Analysis (DA) aims at building a classifier δ∗(x), i.e. a partition of

the features space Rm, that minimize the Expected Cost of Misclassification (ECM):

ECM(δ) =

g∑
h=1

∫
Th

∑
i 6=h

pi fi(x|L = i) c[h|i] dx. (2.11)

In expression (2.11), g = 2 is the number of groups (L = 1 being related with cashmere,

L = 2 with wool), pi is the prior probability of the i-th group, fi(x|µi,Σi) = fi(x|L = i)
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Figure 2.8: Estimates of 1-dim (left) and 2-dim (right) regions T ∗
i , i ∈ {1, 2}, created by the Bayesian

classifier. On the left is presented the equality in equation (2.12); black points on the right are the

sample means of the groups.

is the pdf of the random vector X = (X1, . . . , Xm), whose components are the loga-

rithms of modules of the m Fourier coefficients: a Gaussian model for L = 1 and a

Gaussian mixture model for L = 2, as described in Section 2.3; Th is the m-dimensional

region of euclidean space predicted as belonging to the h-th group by the classifier, co-

efficients c[h|i] represent the cost of classifying as belonging to the h-th group a fiber

belonging to the i-th group. In the present work we imposed all the extra-diagonal

values of the costs matrix C equal to one, supposing the misclassification equally signifi-

cant in both directions, but this choice could be easily modified, getting other estimates

of ECM.

This cause the optimal classifier δ∗ to become a Bayesian classifier: the posterior prob-

ability density function of belonging to all groups is valuated for each fiber, that is

labeled with the group which has the maximal posterior, as shown in equation (2.12)

T ∗i = {x ∈ Rm : c[j|i] pi fi(x|L = i) ≥ c[i|j] pj fj(x|L = j)}
= {x ∈ Rm : p(L = i|X = x) ≥ p(L = j|X = x)}, i, j ∈ {1, 2}, i 6= j.(2.12)

We recall the notation on the posterior probability functions:

p(L = i|X = x) =
pi fi(x|L = i)∑g
j=1 pj fj(x|L = j)

. (2.13)

If, besides c[i|j] = c, ∀ 1 ≤ i, j ≤ g, i 6= j, c constant, we assume the Gaussian

model to hold for probability density functions (X|L = i ∼ Nm(µi,Σi)), optimal

regions T ∗i are separated by quadratic functions (2.14) and the whole method results
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in Quadratic Discriminant Analysis (2.15):

dQi (x) = −1

2
log |Σi| −

1

2
(x− µi)′Σ−1

i (x− µi) + log(pi) (2.14)

T ∗i = {x ∈ Rm : dQi (x) > dQh (x), ∀ 1 ≤ h ≤ g}}. (2.15)

Figure 2.8 shows estimates of the 1-dimensional and 2-dimensional optimal regions

T ∗i , 1 ≤ i ≤ 2 created by the Quadratic classifier. Apparent Error Rate (AER) is the

ECM computed using sample parameters in the densities and it is in turn estimated

typically in two ways: Apparent Error Rate (APER) and cross-validation estimate

(AERCV ). In both cases the integrals are estimated creating the confusion matrix

and dividing the number of misclassified fibers with the total number of fibers in the

group; in the first case the matrix is computed directly on the sample, while in the sec-

ond case it is computed extracting one fiber at time, building the Quadratic classifier

with the remaining fibers and classifying the removed one (leave-one-out algorithm).

Referring to Figure 2.8, the 1-dimensional classifier (the one using only the first fea-

ture) has APER = 26.84%, AERCV = 26.95%, while the 2-dimensional classifier has

APER = 23.82%, AERCV = 24.16%. APER estimate is globally decreasing towards

zero if we increase the number of features used in the construction of the classifier,

while AERCV estimate initially decreases and then start increasing again, due to the

overfitting phenomenon; this trend is shown in Figure 2.9, where we plot the errors

in function of the modules related to the first 50 frequencies. We characterize the

features to be used as those that contribute to decreasing AERCV . We have chosen

the log-modules X1÷4 (low frequencies), X13÷15 and X26 (middle frequencies); the final

classifier has APER = 17.89% and AERCV = 19.91%.

We now compare it with the followings: first we keep log-modules as features and

change the number of groups into g = 3 or g = 9, then we do the same analyses

changing the features considered (modules of DFT and scores instead of log-modules).

2.4.1 Comparisons changing number of groups and features

In the present Subsection we first show the result obtained varying the number of

groups, fixing the DFT log-modules as features variables. Definition of ECM in equa-

tion (2.11) confirms the intuitable concept that increasing the number of groups causes

a growth of the error, since each of the summations has more than one non-negative

term. Figures 2.10(b) and 2.11(b) show that both with three and nine groups even

sample means of some groups are misclassified, unlike the case in which we considered

wool being the mixture of two groups. The size of the error with one feature (the

starting point in Figures 2.10(c) and 2.11(c)) is comparable with that of the trivial
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modules considered), while AERCV presents a minimum.

classifier (approximately AER = 4/9 ' 0.44 if g = 3 and AER = 8/9 ' 0.98 if g = 9).

We have also tried to see what happens if we take into account three groups in the

construction of the Quadratic classifier (so that three regions T ∗i are detected) and to

estimate AER considering a posteriori the costs c[WA|WB] and c[WB|WA] null. It is

not properly a correct procedure, but we can justify it with the fact the two subgroups

belong to the same macro-group. Moreover, even if the error is under that estimated

in the correct way with three groups (Figure 2.10(c)), it does not improve with respect

to the error obtained with the Gaussian Mixture Model, as shown in the first line of

Table 2.3. The reason can be understood looking for example at Figure 2.10(a): pdf of

Gaussian densities mixture of the groups WA and WB (blue and lightblue densities) is

higher than the single WA-density in the borderline cashmere-wool region. This means

that in the not-GMM there are some borderline wool fibers classified as cashmere, that

are correctly classified in the GMM.

We have then made similar analyses changing the features from DFT log-modules

into DFT modules and into scores; results, related to the Gaussian mixture model

GMM (g = 2) and to the case of g = 3 groups used in building the classifier and

g = 2 groups used in evaluating the errors, are reported in Table 2.3. If we look

only at AERCV , we notice the case with g = 3 has worse performances than the case

g = 2. APER estimate is always too optimistic and less stable; moreover APER values

differ slightly between the left and the right part of the table. Secondly, among the

three transformations taken into account, the scores present the lower AERCV , even if
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Figure 2.10: 1-dim and 2-dim classifier and estimates of AER in the case g = 3.
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Figure 2.11: 1-dim and 2-dim classifier and estimates of AER in the case g = 9.

the multivariate normality hypothesis is not as well met as by the log-modules. This

indicate that, even if capturing the higher quantity of residual variance is not directly

connected with the possibility of reducing classification error, in the present case-study

this happen. Errors related to scores and log-modules are very similar, but maybe a

classifier built with a more appropriate pdf for the scores would make the difference

more marked. Finally we ascribe the high estimates of the errors of the DFT-modules

classifier to the sharp asymmetry of they distribution, in which case the Gaussian

assumption clearly fails.

Figure 2.12 gives a synthetic insight of the errors relative to different variables we

considered in Table 2.3. With respect to it, we have added some more cases. The

meaning of indices on the abscissa (features used in building the Quadrtic classifier) is

presented in Table 2.4. Compared to the three groups of variables already analyzed,

we have taken into consideration also the longitudinal mean (RLi = 1
p

∑p
s=1 ri(s)) and

standard deviation (SLi =
√

1
p

∑p
s=1(ri(s)−RLi) of the radii, and the first four scores

for the i-th fiber, 1 ≤ i ≤ n. The first ones are the most simple features usable
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Table 2.3: Comparisons of APER and AERCV when changing the number of groups (left vs. right

part of the table) and the features (different lines of the table).

g=2, GMM g=3, Error as if g=2

features APER AERCV features APER AERCV

log(DFT) 1÷4, 17.89% 19.91% 1÷3, 10, 13÷15 21.14% 22.15%

13÷15, 26 26

DFT 1÷3, 19.35% 20.69% 1÷3, 11÷15, 16.67% 16.89%

12÷17, 24 24÷25, 28

Scores 1÷3, 5÷6, 16.89% 18.23% 1÷5, 15.21% 17.56%

28÷32 26÷33

in multivariate analysis, while the second are a number of sequential scores, without

selection of those responsible of AERCV decreases.

The horizontal line represents the errors of the trivial classifiers (4/9 ' 0.44), which

attributes to all the fibers the label of the group with the highest sample size. All

the classifiers, with any combination of features, perform better than the trivial one.

APER and AERCV are plotted also for a quadratic classifier built considering only two

groups of fibers (without mixture). Optimal features are

� 1÷ 3, 13÷ 15, for the DFT log-modules;

� 1÷ 3, 12÷ 15, for the DFT modules;

� 1÷ 6, 28÷ 29, for the scores.

Since building the classifier with three groups and computing the error only with two

is not properly a correct procedure, we have plotted its errors, but we should not focus

on them. This is confirmed by the fact that the error in this case have an anomalous

trend, decreasing with DFT modules as fetures, instead of increasing with respect to

DFT log-modules, like errors of other classifiers do.

As we expected, AERCV in the case with two groups is higher than in the mixture

model, since we lose in precision ignoring the fact that the group WB can easily be

identified. The only exception is represented by the DFT-modules features, but they

do not meet at all the Normality assumption, and, in any case, the error is comparable

with the mixture model.

Looking at the figure, we conclude that a Gaussian mixture model, with an optimal

choice of scores, and, if possible, a better estimation of their multivariate probability

density function, should be the final proposal from a mathematical point of view, in

order to perform discriminant analysis of FIBER dataset, if we consider only the radii

information. They are derived from the statistical procedure of computing functional
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Table 2.4: Meaning of indices on the abscissa in Figure 2.12.

1 mean radius and standard deviation

2 scores 1÷ 4

3 optimal scores

4 optimal DFT log-modules

5 optimal DFT modules

1 2 3 4 5

0.
15
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45

Classification Errors

indices

APER_2G
AER_2G
APER_2G_GMM
AER_2G_GMM
APER_3G_2G
AER_3G_2G
TRIVIAL

Figure 2.12: APER (light lines) and AERCV (dark lines) committed by the classifier build with 2

groups (green lines), with the Gaussian mixture model (red lines) and with 3 groups, computing the

error as if they were 2 (blue lines). The error the trivial classifier, the same for the three cases, is

plotted in black.

principal components.

An alternative proposal, maybe more common and easy to accept in an industrial

context, could be using DFT log-modules and a classifier that takes into account the

existence of two groups or use the Gaussian mixture model for wool fibers; its has

namely AERCV = 19.91%, while the longitudinal mean radius and standard deviation

provide AERCV ' 24.6%.

In this case-study functional analysis has let us improve the error committed with

respect to that committed if we use only the synthetic information contained in RLi
and SLi for the i-th fiber. We leave to future work to study if there are improve-

ments analyzing in a functional framework features more sophisticated than radii and

proposed in technical literature, such as the height of the scales (see Robson 1997).

22



Chapter 3

Sparse Sobolev Metrics

3.1 Introduction

In this chapter we deal with the problem of the choice of the metric space, which

functional data belong to, as anticipated in the Introduction.

When we treat functional data, we immediately face an important statistical problem.

The space E in which the variables are taking their values, as in Definition 1, is an

infinite dimensional space. We are concerned with the selection of a norm in that

space (and the metric induced by it) both for convergence needs (not all the norms are

equivalent, unlike in the multivariate framework) and for representation needs: some

metric better highlight differences between functions than others.

Let (Ω,F ,P) be a probability space and let T be an open subset of R. We denote

by Hk(T ) = {f : T → R, s.t.Djf ∈ L2,∀j ≤ k, j ∈ N} the Sobolev space, subset of

L2(T ), consisting of the equivalence classes of functions with weak derivatives Djf in

L2, for each derivation order j ≤ k. The definition of weak derivative is given in the

Appendix B; we recall that, when existing, the classic derivative of each order coincides

with the weak one. It can be demonstrated that Hk(T ) is a Hilbert space endowed

with the inner product:

〈f, g〉Hk =
∑
j≤k

〈Djf,Djg〉L2 =
k∑
j=0

∫
T
Djf(s), Djg(s)ds. (3.1)

It is also a Banach space with respect to the induced norm:

‖f‖Hk =

{∑
j≤k

‖Djf‖2

L2

} 1
2

. (3.2)

Depending on whether or not we consider the belonging to a group, we make one of

the following assumptions. We make this distinction only for simplicity of notation.
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Assumption 1. We suppose to have g functional random variables Xh(ω, s) : Ω →
Hk(Th), 1 ≤ h ≤ g, i.e. g measurable functions whose realizations are our functional

data xh,i(s) : Th → R, 1 ≤ i ≤ nh, belonging toHk(Th); nh is the number of observation

for each of the random functions Xh. We suppose that ∩hTh = T 6= ∅.
Assumption 2. We suppose to have n functional random variables Xi(ω, s) : Ω →
Hk(T ), with realizations the functional data xi(s) : Th → R, 1 ≤ i ≤ n, belonging to

Hk(T ).

When not ambiguous we will denote by X(s) the random function X(ω, s), omitting

to express the dependence on the case ω. Observe that we treat the scalar case (T ∈ R)

for simplicity of computation and notation, but the results we give are extensible.

The choice ofHk(T ) to be a Hilbert space is not necessary, since, as already stressed

in the Introduction, recent works on functional data are based on the metric (or semi-

metric) nature of the functional space which data belong to. Thus one could think

to take into account more general Sobolev spaces, subsets of Lp(T ). Our choice is

motivated by the first part of the work, in which we performed FPCA on random

functions in L2: the whole procedure of maximization is based on Theorem A.2 and

on the concept of orthogonality induced by the inner product, with which the Hilbert

spaces are endowed.

The aim of this Section is to provide an algorithm for computing a new Sobolev metric

(or semi-metric), in which each term of the metric in equation (3.2) (expressed as

‖f‖Hk = dHk(f, 0)) is multiplied with coefficients that give weights to those derivatives

that allow an optimal (in a sense that will be specified) unsupervised classification.

We remember that a semi-metric is defined in the same way of a metric except for the

axiom of identity of indiscernible elements, as follows:

Definition 2. A semi-metric on a given set H is a function dH : H ×H → R, which

satisfies the following properties for all the elements f, g, h ∈ H:

1. dH(f, g) ≥ 0;

2. dH(f, f) = 0, but possibly dH(f, g) = 0 for some f 6= g;

3. dH(f, g) = dH(g, f);

4. dH(f, h) ≤ dH(f, g) + dH(g, h).

Our aim is then to build the following semi-metric for functional data:

Definition 3. Let f, g : T → Hk(T ) be two functions, and let w ∈ Rk be a vector

s.t. wj ≥ 0, ∀j ≤ k, j ∈ N; then a Sobolev weighted semi-metric (or semi-norm) is the

function dw
Hk : Hk(T )×Hk(T )→ R, s.t.

dw
Hk(f, g) =

{∑
j≤k

wj‖Djf −Djg‖2

L2

} 1
2

.
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It is not hard to see that dw
Hk satisfies the requirements in definition (3), and is thus

a semi-metric, for every admissible value of w, while it is a metric only if w0 6= 0.

We aim at finding an optimal vector of weights w∗ that, beyond the positivity constraint

necessary in order to allow dw
Hk to be a semi-metric, meets the following two conditions:

1. to maximize (or at least accentuate with respect to the not weighted case) the

dissimilarity between functional data that are not belonging to the same group

(i.e. that are realizations of the random functional variables Xhi and Xkj, h 6= k)

if used to build the dissimilarity matrix in a problem of not supervised classifi-

cation;

2. to provide sparsity in the choices of derivatives, assigning exactly zero-weights to

those terms that less accentuate the dissimilarity between functions of different

groups.

We are able to formalize these requirements in the form of an optimization problem

and to write an iterative algorithm for its solution taking inspiration from the work of

Tibshirani and Witten (2010). They propose two methods for the variable selection

problem in a framework of unsupervised classification of high-dimensional data: the

first method is a form of sparse k- means clustering, while the second one is a sparse

hierarchical clustering. Both approaches are a variation of a general sparse clustering

framework, that we recall in the next Section 3.2; we focus then on showing how their

second approach for variable selection can be made into an approach for metric selection

in Section 3.3.

3.2 Sparse Feature Selection in Clustering

In the present Section we assume to deal with a multivariate high-dimensional dataset,

in order to explain the construction performed by Tibshirani and Witten (2010). Let

X denote a n × p matrix, with p � n, with n observations and p variables and let

Xj ∈ Rn denote feature j and xi the observation i. Call di,i′,j a dissimilarity between

observations i and i′ along the feature j (e.g. d could be the squared Euclidean distance

di,i′,j = (Xij − Xi′j)
2); d is assumed to be additive in the features, i.e. d(xi,xi′) =∑p

j=1 di,i′,j. The authors show that under these hypotheses many clustering methods

can be expressed as an optimization problem of the form

maximize
Θ∈D

{
p∑
j=1

fj(Xj,Θ)} (3.3)

where fj(Xj,Θ) is a function that involves only the jth features, and Θ is a parameter

restricted to lie in a set D. We observe that a high number of variable is not a necessary
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condition for the methods proposed to work, but is instead the context that motivates

the whole analysis; thus the fact that the hypothesis is not met by the construction we

make in Section 3.3 is not problematic.

Example 1. An intuitive example of a clustering method turned in the form (3.3) is

that of K -means, where fj(Xj,Θ) =
∑p

j=1( 1
n

∑n
i=1

∑n
i′=1 di,i′,j−

∑K
k=1

1
nk

∑
i,i′∈Ck di,i′,j)

is the between cluster sum of squares (BCSS) for feature j, and Θ is a partition of the

observations into K disjoint sets of cardinality nk, i.e. it is a vector Θ ∈ Rn with

components 1 ≤ Θj ≤ K. We will explain the hierarchical clustering case in Section

3.3, since some more passages are necessary.

Then Tibshirani and Witten (2010) define sparse clustering as the solution to the

problem

maximize
w;Θ∈D

{
p∑
j=1

wj fj(Xj,Θ)}

subject to ‖w‖2
2 ≤ 1, ‖w‖1 ≤ c,

wj ≥ 0 ∀j,

(3.4)

where wj is a weight corresponding to feature j and c is a tuning parameter. It turns out

that, for both the constraint to be active, it must be 1 ≤ s ≤ √p. This is shown in the

Appendix C, where we give proofs and considerations about the solving algorithm for a

quite less general problem, that turns out to be the one necessary for the construction

of the sparse Sobolev metric. The construction (3.4) for sparse clustering is motivated

by the authors with the following observations:

1. If w1 = . . . = wp in (3.4), then the criterion reduces to (3.3).

2. The L1 penalty on w results in sparsity for small values of the tuning parameter

c, causing some of the wj’s to be zero.

3. The L2 penalty is necessary since, without it, the solution would not be bounded:

weights wj would not have limited components.

4. The value of wj can be interpreted as the contribution of feature j to the resulting

sparse clustering: a large value of wj indicates a feature that contributes greatly,

while wj = 0 means that feature j is not involved in the clustering.

It is immediate to prove that, for the solution not to be trivially w = 0, it is necessary

that fj(Xj,Θ) > 0 for some or all j, while if fj(Xj,Θ) > 0, then the nonnegativity

constraint on wj has no effect.

An iterative solving algorithm (Algorithm 2, where aj = fj(Xj,Θ)) is proposed in this

general framework: it does not allow to reach a global optimum of the problem (3.4),
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but guarantees that the objective function is incremented at each iteration, which is

composed by two steps. In the first step, holding w fixed, (3.4) is optimized with

respect to Θ; this step is typically an application of a standard clustering procedure

to a weighted version of the data. In the second one, holding Θ fixed, we optimize

with respect to w. This second reduced problem is convex (linear objective function

and convex constraints) and it is solved thanks to optimization techniques, as stated

by the following theorem.

Theorem 1. Let x+ denotes the positive part of x (x+ = x if x > 0, x+ = 0 if x ≤ 0)

and define the soft-thresholding operator S(x, c) = sign(x)(|x| − c)+. Then the solution

to the convex sub-problem

maximize
w

{
p∑
j=1

wj aj}

subject to ‖w‖2
2 ≤ 1, ‖w‖1 ≤ c,

wj ≥ 0 ∀j

(3.5)

is given by w =
S(a,∆)

‖S(a,∆)‖2

, where ∆ = 0 if that results in ‖w‖1 ≤ c; otherwise, ∆ > 0

is chosen to yield ‖w‖1 = c.

The proof of the theorem is given in the Appendix C, in theorem (C.5; it follows

from the Karush-Kuhn-Tucker first order conditions (see e.g. Nocedal and Wright

(2006), Chapter 5). Note that the stopping criterion of the iterative algorithm involves

the value wr, which is the set of weights obtained at iteration r, and ε, a sufficiently

small value for the relative error (e.g. 10−4).We will make some more considerations on

the stopping criterion in Section 4.1; from now on we will indicate it with the general

notation of convergence

Algorithm 2: Sparse Clustering

Data: aj = fj(Xj,Θ);

Result: w, Θ;

Initialization: w1 = . . . = wp =
1
√
p

;

while

∑p
j=1 |wrj − w

r−1
j |∑p

j=1 |w
r−1
j |

> ε do

1. maximize
Θ∈D

{
p∑
j=1

wj aj} by clustering reweighted data;

2. w← S(a,∆)

‖S(a,∆)‖2

;

end
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The authors then cast problem (3.4) in a version of sparse K -means and sparse hi-

erarchical clustering, providing a method for an optimal choice of the tuning parameter

c and the R-package sparcl for simulations and analysis (see Tibshirani and Witten

(2013)). For our purposes we are interested in the second method: we provide some

details on it in the next Section 3.3, where we analyze directly the problem of metric

selection.

3.3 Sparse Sobolev Metrics Selection in Clustering

We aim at building a Sobolev weighted semi-metric, as in definition (3), i.e. a vector

of weights w∗ satisfying the optimality and sparsity requirements explained at the

beginning of this Section. We follow what Tibshirani and Witten (2010) call sparse

hierarchical clustering, which is indeed a technique that can be applied to any method

that takes a dissimilarity matrix as its input. The main novelty that we introduce is

in the type of data between which the dissimilarity is computed, and not in the steps

of the optimal algorithm used to construct w∗. We suppose to be in the conditions

expressed in Assumption 2, dealing with random functions Xi(s) : T → R, with

realizations xi(s), 1 ≤ i ≤ n belonging to the Sobolev space Hk(T ). Our novel idea

is then to attribute to the levels of derivation the role assumed by the features in the

multivariate framework. So we give a definition of dissimilarity between two observed

functions according to the following associative scheme between the multivariate and

the functional case:

X =


X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

. . .
...

Xn1 Xn2 · · · Xnp

 −→ X̃ =


X1(s) D1X1(s) · · · DkX1(s)

X2(s) D2X2(s) · · · DkX2(s)
...

...
. . .

...

Xn(s) D1Xn(s) · · · DkXn(s)

 .

Definition 4. Let xi(s), xi′(s) : T → R be two functional data, belonging to the

Sobolev space Hk(T ). We define dissimilarity along the feature j as the square of the

L2-norm of the difference between their j -th derivative (denoting with zero-derivative

the function itself): di,i′,j = ‖Djxi(s)−Djxi′(s)‖
2

L2 , 0 ≤ j ≤ k, 1 ≤ i, i′ ≤ n.

Note that the dissimilarities along features are the single terms of the square of the

Sobolev norm of the difference between the two functions ‖xi(s)− xi′(s)‖2
Hk . Note also

that d is additive in features (and we call overall dissimilarity between functions the

quantity Ui,i′ =
∑
di,i′,j, that is just equivalent to ‖xi(s)− xi′(s)‖2

Hk), as required in

the general framework for sparse feature selection in Section 3.2.

We now present the procedure both in the not sparse and in the sparse version, getting
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optimization problems of the form (3.3) and (3.4). We anticipate that, writing their

sparse version of hierarchical clustering in the multivariate context, Tibshirani and

Witten (2010) recognize the possibility of seeing it in the light of the penalized matrix

decomposition (PMD) method that they had proposed in a previous work (Hastie,

Tibshirani, Witten, 2009). This leads to the possibility of constructing clusterings

that are complementary in a statistical sense (nearly orthogonal, in a mathematical

sense). Be warned that this results has not in output a mathematical object with the

properties of a metric, in particular it lacks the property of positivity. It provides

instead a quantity that indicates the dissimilarity between data/functions in a way

that is is compatible with the characteristics of insensitivity to translations of some

classifiers such as hierarchical clustering.

In both the not sparse and sparse construction, we have in input the between

function dissimilarities di,i′,j along feature j, and in output U∗ a synthetic dissimilarity

symmetric n×n matrix that can be used for unsupervised classification. In the first case

U∗ is the overall dissimilarity already introduced, whose elements are Ui,i′ =
∑

j di,i′,j;

in the second case we have an additional output, the vector w∗ ∈ R(k+1): then

it results that the elements of U∗ are Ui,i′ =
∑

j w
∗
jdi,i′,j and they have to be in-

terpreted as the square of the Sobolev weighted semi-norms (dw∗

Hk(xi(s), xi′(s)))
2

=∑
j≤k wj‖Djxi(s)−Djxi′(s)‖

2

L2 .

Since scaling the dissimilarity matrix by a factor does not affect the output of a unsuper-

vised classification methods, such as hierarchical clustering, we ignore proportionality

normalization constants in the following discussion. From now on, let p = k+ 1. Then

we can state the following theorem.

Theorem 2. Let U∗ optimize the following criterion

maximize
U

{
p∑
j=1

n∑
i,i′

di,i′,jUi,i′}

subject to
n∑
i,i′

U2
i,i′ ≤ 1.

(3.6)

Then U∗i,i′ ∝
∑

j di,i′,j

The proof of theorem (2) is a simple application of theorem (C.5) in the Appendix,

if we recast the data structure. In fact we are in the same conditions of that theorem

if we call D ∈ Rn2×p the matrix in which column j consist of the elements di,i′,j strung

out into a vector and u ∈ Rn2
, the vector obtained by stringing out U. Notice that the

vector a of the theorem (C.5) is now equivalent to U1, where 1 ∈ Rp is a vector with

unitary components.

As a consequence, if we can think of the not sparse construction of U∗ as resulting

from the criterion (3.6), then to obtain sparsity in features (i.e. in the choices of the
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derivatives used in building the Sobolev metric) we modify (3.6) by multiplying each

element of the summation over j, by a weight wj, subject to constraints on the weights,

as stated in the following theorem.

Theorem 3. Let U∗∗ optimize the following criterion

maximize
w,U

{
p∑
j=1

wj

n∑
i,i′

di,i′,jUi,i′}

subject to
n∑
i,i′

U2
i,i′ ≤ 1,

‖w‖2
2 ≤ 1, ‖w‖1 ≤ c, wj ≥ 0 ∀j.

(3.7)

Then U∗∗i,i′ ∝
∑

j di,i′,jwj.

Observe that (3.6) takes the form (3.3) with Θ = U, fj(Xj,Θ) =
∑p

j=1

∑n
i,i′ di,i′,jUi,i′ .

It follows directly that (3.7) takes the form (3.4), and so sparse construction of the dis-

similarity matrix fits into the framework of Section 3.2. The proof of theorem (3) is

the same of theorem (C.6) in the Appendix, since we can rewrite criterion (3.7) in the

following way:

maximize
w,u

u′Dw

subject to ‖u‖2
2 ≤ 1,

‖w‖2
2 ≤ 1, ‖w‖1 ≤ c, wj ≥ 0 ∀j,

(3.8)

and the nonnegativity constraint on w can be dropped if di,i′,j ≥ 0. Then, since the

optimization problem (3.9) is bi-convex in u and w (with w fixed it is convex in u, and

vice versa), we can write a simple solving optimization algorithm, analogous to Algo-

rithm 6 in the Appendix relative to the rank-1 penalized matrix decomposition PMD

(·, L1) approach presented by Hastie, Tibshirani, Witten (2009); notice also that it is

a particular case of Algorithm 2, relative to the general problem of feature selection in

clustering.
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Algorithm 3: Sparse Sobolev Metric Construction

Data: D;

Result: w, u;

Initialization: initialize w as w1 = . . . = wp =
1
√
p

;

while not convergence do

1. u← Dw

‖Dw‖2

;

2. w← S(a,∆)

‖S(a,∆)‖2

, where a = D′u, and ∆ = 0 if that results in ‖w‖1 ≤ c,

otherwise ∆ > 0 is chosen to be a positive constant such that ‖w‖1 = c;

end

rewrite u as a n× n matrix U.

Our purpose was to build a Sobolev metric that emphasize the dissimilarity between

functions not belonging to the same class, with respect to the usual not-weighted

Sobolev metric, and that is sparse in features (derivatives used).

As regards the first objective, we will show how experimental results evidence the

necessity of some corrections, that we explain in Chapter 4.

Our second objective is reached imposing the L1-constraint on u, varying the tuning

parameter. As in Section 3.2, c is restricted to lie between 1 and
√
p. It is important

to stress that, in order to gain sparsity, it’s necessary that p > 2, as explained in the

Appendix C.2: in our case this is equivalent to require that we consider at least the

functions and their first derivative. Nevertheless we will not perform computations with

a too high order of derivation, due to the numerical problems that arise, as we proceed

increasing it. Tibshirani and Witten (2010) propose a method for choosing the value of

c, that is closely related to the gap statistic of Hastie, Tibshirani and Walther (2001) for

selecting the number of clusters K in the standard K-means clustering. We report it in

the next Subsection 3.3.1, even if we don’t use this criterion in our simulations; in fact

the sparcl R-package provide a function for computing it for multivariate data, that

should be reimplemented for functional data in an efficient way, so we simply perform

simulations for a range of values of c, choosing the one that appears to perform better.

More considerations on c are made in Chapter 4.

Finally we end the present Section presenting the possibility of constructing com-

plementary sparse Sobolev metrics and we explore their meaning.
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3.3.1 Selection of Tuning Parameter for Sparse Sobolev Met-

ric Selection

We note that the parameter c cannot simply be chosen to maximize the objective

function in problem (3.7), since as s is increased, the objective function will increase

as well. A possible way of choosing the tuning parameter is the permutation approach

consisting of the following steps:

1. obtain permuted datasets X̃1, . . . , X̃B by independently permuting the observed

functions and their derivatives in the matrix X̃ ;

2. chose a number of candidate tuning parameter c;

3. for each candidate:

(a) compute O(c) =
∑p

j=1wj
∑n

i,i′ di,i′,jUi,i′ , the objective function obtained by

performing sparse Sobolev metric selection with tuning parameter c on data

X̃ ;

(b) for b = 1, . . . , B compute Ob(c), the objective function obtained by per-

forming sparse Sobolev metric selection with tuning parameter c on data

X̃b;

(c) calculate Gap(c)=log(O(c))− 1

B

∑B
b=1 log(Ob(c));

4. choose c∗ corresponding to the largest value of Gap(c); alternatively choose c∗

to equal the smallest value for which Gap(c∗) is within a standard deviation of

log(Ob(c
∗)) of the largest value of Gap(c).

The approach is based on the idea that, while there my be strong correlation between

features (different order derivatives) in the original data X̃ , the features in the permuted

datasets X̃b are uncorrelated with each other. The gap statistic measures the strength

of the clustering obtained on null data, i.e. the data that do not contain subgroups.

The optimal tuning parameter value occur when this quantity is greatest.

3.3.2 Complementary Sparse Functional Data Hierarchical Clus-

tering

Here we report a construction that Tibshirani and Witten (2010) do in order to find

complementary sparse clustering, in the light of a previous work of Nowak and Tibshi-

rani (2007) on complementary clustering. As well as standard hierarchical clustering,

even sparse hierarchical clustering reveals to be often dominated by a single group of

features that have high variance and are highly correlated with each other. Then they

propose a method that allows for the discovery of a secondary sparse clustering after
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removing the signal found in the standard sparse hierarchical clustering. This objective

is gained building a matrix that takes the role of the overall dissimilarity, but is not a

linear combination of the feature-wise dissimilarity matrices composing D.

In this Subsection we try to extend this method to our functional framework; even

if we do not succeed in finding a complementary Sobolev metric, we are able to improve

directly a classification method such as hierarchical clustering.

From a mathematical point of view, removing the nonnegativity constraint on w, we

can recognize in criterion (3.9) the rank-1 penalized matrix decomposition PMD (·, L1)

apprroach persented by Hastie, Tibshirani, Witten (2009) that we mention in the Ap-

pendix C.2.1. It is possible to generalize it, in order to obtain the rank-k penalized

matrix decomposition, whose details useful for our purposes are briefly explained in

the Appendix C.2.2. This reflects in the possibility of writing a number r = rank(D)

optimization problems analogous to problem (3.9), with an additional orthogonality

constraint on the vectors uks, 1 ≤ k ≤ r. Here below we write the first subsequent

optimization problem, but it could be generalized; however, according to the meaning

we give to the solutions of these orthogonal problems, one should not exceed in the

orthogonality order of the problem, since we risk capturing less and less significant phe-

nomena. Call u1 and w1 the optimal solutions to criterion (3.9) that is, U1 (obtained

by writing u1 in a matrix form) is a weighted linear combination of the feature-wise

dissimilarity matrices componing D, and w1 denotes the corresponding weights. Then

the criterion

maximize
w2,u2

u2
′Dw2

subject to ‖u2‖2
2 ≤ 1, u1

′u2 = 0

‖w2‖2
2 ≤ 1, ‖w2‖1 ≤ c, w2j ≥ 0 ∀j,

(3.9)

results in a dissimilarity matrix obtained by writing u2 as a n × n matrix U2, and

in a vector of weights w2. Note that in the above construction we don’t impose an

orthogonality constraint between vectors w1 and w2, since it is not required (nor

it is clear if it is desirable) in order to obtain a rank-2 PMD. In fact the output

vector u2 of the iterative solving Algorithm 4 is not proportional to Dw2, but instead

u2 ∝ (I− u1u1
′)Dw2, i.e. it is a linear combination of feature-wise matrices composing

D, projected in the linear space orthogonal to that generated by the columns of U.

That is, we are not gaining orthogonality by multiplying the same matrix D with

orthogonal weights (which, in conjuction with the nonnegatity constraint on w2, would

lead to a choice of different derivatives in building a second sparse Sobolev metric).

Nevertheless we can suppose (and we have experimental evidence in our simulations)

that w1 and w2 are likely to be almost orthogonal, since in the solution they are each

associated with orthogonal uks, k = 1, 2.

As we already observed, the matrix U2 is not a dissimilarity matrix, since its elements

can be negative, due to the constraint that u1
′u2 = 0, while it has zeroes on the
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diagonal. Thus, if U1i,i′ = dw1

Hk(xi(s), xi′(s)) meets the requirements to be a semi-

metric (and in particular a Sobolev sparse semi-metric), U2i,i′ does not. However the

matrix U2 still indicates in what extent two functions are dissimilar, and in particular

how do they differ if we project their dissimilarities in a orthogonal space. Thus, as

suggested by Tibshirani and Witten (2010), it can be used to perform unsupervised

classification techniques that are not affected by adding a constant to the off-diagonals

elements and do not make use of the diagonal ones. Hierarchical clustering behaves in

this way, so that we will perform directly what we call complementary sparse functional

data clustering : without finding a complementary sparse Sobolev metric, that might be

a preferable result, we classify directly our data in a somewhat orthogonal way. From

now on, with an abuse of notation, we will call U1 primary metric and U2 secondary

metric. In Section 4.1 we show that it is worth looking at both these metrics and at

the resulting clustering.

It remains open the more abstract problem of what to do with two metrics. A first

idea could be to create multidimensional labels for the data, comparing the results of

both, but more work should be done in this field. Moreover we leave to our future

investigations to find out properties of the sparse Sobolev metric that we could build

creating the dissimilarity matrix U3 ∝ Dw2, where w2 are the almost orthogonal to

w1 weights obtained thanks to Algorithm 4; another possibility could be to analyze

Ũ3 ∝ Dw̃2, where w̃2 are exactly orthogonal to w1 obtained thanks to Algorithm 3

not applied to D, but a matrix where we removed the derivatives levels used in building

w1. In this case some attention should be paid on the fact that the tuning parameter

c isn’t more the same used in finding the primary metric.

Algorithm 4: Complementary Sparse Sobolev Metric Construction

Data: D ,u1 ,w1;

Result: w2, u2;

Initialization: initialize w2 as w21 = . . . = w2p =
1
√
p

;

while not convergence do

1. u2 ←
(I− u1u1

′)Dw2

‖U⊥1 Dw2‖2

, where U⊥1 is a basis orthogonal to u1;

2. w2 ←
S(a,∆)

‖S(a,∆)‖2

, where a = D′u2, and ∆ = 0 if ‖w2‖1 ≤ c,

otherwise ∆ > 0 is chosen to be a positive constant s.t. ‖w2‖1 = c;

end

rewrite u2 as a n× n matrix U2.
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Chapter 4

Corrections to the Metric and

Simulations

4.1 Introduction

From a theoretical point of view, we should be able to implement the procedure that

we have proposed in Section 3.1, and that extend to the functional framework the

multivariate one. However, there are some corrections that we think necessary before

running Algorithms 3 and 4, precisely because of the different nature of our data. The

corrections are motivated by different needs (measure units and variability): we will

see that the first one works well, even if it is only necessary but not sufficient to make

improvements, while the second is a proposal, on which more studies should be done

in future. In the next Sections we expose them separately, after showing the results of

the clustering without corrections, displaying what happens on two synthetic dataset,

consisting of polynomial and trigonometric functions. We have close formulations for

the derivatives, so that we are not concerned with numerical estimations. Here we

consider the belonging to a group of functional data, adopting the notation expressed

in Assumption 1, in order to be able to make considerations on the errors committed.

Note that it is a posteriori information and that all the construction holds in a not

supervised classification framework.

Dataset 1. We deal with two functional random variables Xh(s), 1 ≤ h ≤ 2 pro-

jected on the polynomial basis, with Gaussian coefficients, and a 100 samples balanced

functional dataset. That is:

Xh(s) = Ah0 + Ah1

( x
T

)
+ . . .+ Ahn

( x
T

)n
, 1 ≤ h ≤ 2, (4.1)

are the two functional random variables, and

xhi(s) = ah0i + ah1ix+ . . .+ ahnix
n, 1 ≤ h ≤ 2, 1 ≤ i ≤ 50 (4.2)
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are their realizations. The randomness is expressed by the coefficients Ahk, 0 ≤ k ≤ n,

that are realizations of 11-variate Gaussian variables: {Ahk}nk=0 = Ah ∼ Nn+1(µh,Σ).

For simplicity we assume that the covariances matrices Σ = σ2I are the same in the

two groups, and that the difference between groups is expressed only by the means.

Then it is easy to see that the j-th derivative of the random function Xh(s) is

DjXh(s) =


∑n

k=1

k!

(k − j)!
Ahkx

(k−j), 0 ≤ j ≤ n

0, j > n.
(4.3)

Dataset 2. We deal with two functional random variables Yh(s), 1 ≤ h ≤ 2 projected

on the Fourier basis, with finite terms, with Gaussian amplitudes, and a 100 samples

balanced functional dataset:

Yh(s) = Bh0φ0 +Bh1φ1 + . . .+Bhnφn, 1 ≤ h ≤ 2, (4.4)

are the functional random variables, and

yhi(s) = bh0iφ0 + bh1iφ1 + . . .+ bhniφn, 1 ≤ h ≤ 2, 1 ≤ i ≤ 50 (4.5)

are their realizations, with

φ0(s) = 1, φ2k−1(s) = sin

(
2πks

T

)
, φ2k(s) = cos

(
2πks

T

)
, 1 ≤ k ≤ n/2.

Again Bh ∼ Nk+1(µh,Σ) and Σ = σ2I is the same for the two groups. Also in this case

there is a close formula for the j-th derivative; in particular, denoting with mod (r, s)

the rest of the integer division between r and s, we have:

DjYh(s) = (2πk)j


∑n/2

k=1Bh,2k−1φ2k−1 +Bh,2kφ2k, mod (k, 4) = 0∑n/2
k=1Bh,2k−1φ2k −Bh,2kφ2k−1, mod (k, 4) = 1∑n/2
k=1−Bh,2k−1φ2k−1 −Bh,2kφ2k, mod (k, 4) = 2∑n/2
k=1−Bh,2k−1φ2k +Bh,2kφ2(k−1), mod (k, 4) = 3

j ≥ 1.(4.6)

Observe that we are normalizing the independent variable s, so that changes in the

measure unit (and consequently in the length of T ) don’t vary the information brought

by a function, leaving the same shape it has for T = (0, 1).

In our analysis we vary the following quantities: mean (µh) and variance (σ2) of the co-

efficients, measure unit of the independent variable ([s]), value of the tuning parameter

(c).

4.2 Simulations Without Corrections

Here we report the results of the primary and the secondary weighted Sobolev semi-

metrics obtained according to methodologies described in Section 3.1. We analyze the
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Table 4.1: Instances of Dataset 1, varying the mean and the variance of the coefficients.

instance mean vectors variances σmin

|∆µmax|

POL1
µ1 = (2, 1, 0, 3, 2, 1.8,−0.5, 2, 1.5, 1, 1)

10−3, 10−2 30%
µ2 = (2.1, 0.9,−0.1, 3.1, 2.1, 1.7,−0.6, 1.9, 1.6, 0.9, 1.1)

POL2
µ1 = 1′11

0.2, 1, 1.5 22%
µ2 = 3 ∗ 1′11

POL3
µ1 = (2, 1, 0, 3, 2, 1.8, 0, 0, 0, 0, 0) 10−12, 10−11

10−5

µ2 = (2.1, 0.9,−0.1, 3.1, 2.1, 1.7, 0, 0, 0, 0, 0) 10−10, 10−1

POL4
µ1 = (1′6,0

′
5) 10−10, 10−9

5 ∗ 10−6

µ2 = (3 ∗ 1′6,0
′
5) 10−8, 10−1

goodness of the results through quantitative and qualitative comparisons with the not

sparse Sobolev and the L2 square norms. In particular we build the confusion ma-

trix for the output of the hierarchical clustering method implemented on the matrices

U1 and U2 provided by the optimization algorithms and we count the percentage of

misclassified functions; image-plot of the matrices and the function ColorDendrogram

available in the R-package sparcl (see Tibshirani and Witten (2013)), allows us a quick

insight of the result.

4.2.1 Polynomial Dataset

We are going to analyze four instances of Dataset 1, as in Table 4.1. They are effectively

10-degree polynomial functions, since we impose variability also on null coefficients.

Remember that we compare the (square) norms of the differences of the functions, so

the various cases correspond to the following situations. An index which explains how

robust is our method is the ratio CV = σmin/|∆µmax|, where σmin is the the first lower

standard deviation that we considered acceptable in terms of the error committed by

a hierarchical clustering and dissimilarities build with the standard Sobolev norm, and

|∆µmax| is the larger difference between the mean coefficients.

POL1 : the differences between the functions represent noise with mean’s components

in {−0.1, 0.1}. The method behave well also with quite high CV;

POL2 : there is a shift between functions, that are well separated 10- degree polyno-

mials. The method is quite robust;

POL3 and POL4 : in in our intents these last two instances correspond to 5-degree

polynomial functions with noise (the polynomials are mixed in the first case

and well separated in the second). We are aware that there are better models
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Figure 4.1: 10-degree overlapped and separated polynomials; realizations of X1(s) are in orange, while

those of X2(s) are in green (a), (b); 5-degree overlapped and separated polynomials, with 6 to 10-

degree polynomial noise; realizations of X1(s) are in orange, while those of X2(s) are in green (c),

(d).

representing this situation, such as B - splines, and that no one would really

use it, but we were interested in seeing how much robust our procedure is. We

anticipate that the last two situations are those that perform poorly. The decision

of putting differences on the first terms is due to the fact that we know what we

should expect from a good method: high weights wj, 0 ≤ j ≤ n, on the lower

derivatives and low weights on the higher ones. In a symmetrical problem with

differences on the high-degree terms, we don’t expect a symmetric behavior, since

also the first derivatives are generally relevant.

In our simulations we estimate numerically the integrals implicit in the norm symbol

withe the rectangle method and a stable grid. Figure 4.1 shows the four cases for

T = (0, 1), a 100-points grid, and the lowest variances taken into consideration in each

case: increasing the variances the functions get closer (and do overlap in the instances

POL1 and POL3).

The results of the simulations relative to T = (0, 1) are summarized in Table

4.2. We use as features all the 11 nonzero derivatives, even if in the applications one

rarely goes beyond the 4−th, always with the aim of testing robustness. Observe that

this cause that, when considering the sparse Sobolev metric, the admissible range for

the tuning parameter is 1 ≤ c ≤
√

11 = 3.31: we do computations for the values
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c = (1.01, 1.5, 2, 2.5,
√

11), and observe which perform better. We leave to future

work the implementation of the optimal tuning parameter selection, as explained in

Subsection 3.3.1. The errors represent the percentage of fibers misclassified by hierar-

chical clustering algorithm performed using Ward’s between cluster dissimilarity, which

usually behaves better than those explained in the first part of this work (for details

see Fionn and Legendre (2011)). Errors are relative to the following metrics:

� Sobolev: the dissimilarities between functions are computed weighting in the

same way all the submatrices contained in D, i.e. all the derivatives;

� L2: the dissimilarities are computed with w0 = 1 and wj = 0, 1 ≤ j ≤ k.;

� Sparse Sobolev (primary and secondary), varying the tuning parameter we obtain

more or less sparsity: in Table 4.3 are represented the nonzero weights wj, 0 ≤
j ≤ k, for c→ 1, and the significantly nonzero weights for c→

√
11; we compare

them with the features that are visually significant, detected trough inspection

of image plots shown in the Appendix D. With all we mean that the image plots

reveal differences in all the derivatives (and in particular in those indicated),

while null means that no derivative allows clear detection of clusters.

The first thing to observe is that there is not an ordering on the performance of

the three methods. As one might expect, increasing variability makes all the methods

work worse. The quite surprising thing is that varying the tuning parameter has not

so a grate effect on the sparse Sobolev metric, at least in these simulations in which

no correction has been made. According to us, the reason is the same for which, even

if more information is available in the Sobolev and in the sparse Sobolev metrics with

respect to the L2 metric, due to the derivative terms, the latter almost always has

better performance. We can summarize our observations as follows.

1. Let’s start comparing Sobolev with L2 metrics. The lower error produced using L2

metric in the instances POL2 and POL4 is consistent with the fact that functions

do not overlap, but probably their derivatives (surely the high order ones) do.

Even the image plot reported in figures D.2 and D.4 in the Appendix D confirm

that giving a nonzero weights to terms different from D0, . . . , D6 increases the

error, since they add noise to the dissimilarities on which the clustering bases. On

the contrary when the natural variability between functions could be observed

on high derivatives, as in POL1, the Sobolev metric perform better than L2, at

least for not too high variance, when noise dominates. The instance POL3 is

an almost degenerate input for every method, since we valuate the differences

between functions that has similar means and variances in all the polynomial

degrees. Only with very low variances the methods present acceptable errors, even

if decreasing continuously variances makes the errors to decrease in a discontinue
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Table 4.2: HC errors on instances of Dataset 1, varying the metric, σ2 and c, without corrections, for

T = (0, 1).

POL1(%) POL2(%)

σ2 = 10−3 10−2 0.2 1 1.5

Sobolev 7 65 0 16 17

L2 37 40 0 1 2

Sp.Sob.1 c = 1.01 7 29 7 16 23

c 6= 1.01 7 64 7 16 23

Sp.Sob.2 ∀c 52 44 17 24 24

POL3(%) POL4(%)

σ2 = 10−12 10−11 10−10 0.1 10−10 10−9 10−8 0.1

Sobolev 0 45 48 48 0 0 56 48

L2 0 0 0 39 0 0 0 0

Sp.Sob.1 c = 1.01 0 45 45 45 0 45 45 45

c 6= 1.01 0 48 47 45 0 56 47 47

Sp.Sob.2 ∀c 50 51 51 51 49 0 51 51

way. This instability of the Sobolev metric could be observed also in instance

POL4, and a reason could be the too high polynomial degree, that make the error

dominate above a certain variance threshold and be not significant under it.

2. When in Section 3.1 we defined optimality for the sparse Sobolev metric, we

intended to build a metric able to behave in an adaptive way, being, for example,

more like L2 in instances POL2 and POL4 and more like Sobolev in instance

POL1. However the simulations show that, fixed a scenario, the metric seems to

give always the same weights to the same terms. We think that it is due to what

we call derivative effect : the not homogeneity in magnitude between different

derivatives that we are going to explain, and that justifies the two corrections we

propose. As confirmed by the second step of the iterative Algorithm 3, we can

empirically observe that, at least when c → √p, each weight wj is in a strictly

relationship with the quantity SJ =
∑

i,i′ di,i′,j, 0 ≤ j ≤ k, that is the sum of

each respective sub-matrix, composing D, relatively to each derivative order. The

main open issue we leave for future studies is to try to quantify this relationship,

since we think that the second proposal of correction we do doesn’t behave so

well due to the approximation we have made on it. In particular, observing the
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Table 4.3: Indexes of matrices composing D, where differentiation is observed through image plots;

indexes of nonzero weights wj for the primary and secondary sparse Sobolev metrics

POL1 POL2

σ2 = 10−3 10−2 0.2 1 1.5

IP 7÷10 null all, 0÷3 all, 0÷5 all, 0÷3

Sp.Sob.1 c = 1.01 10 10 10 10 10

c 6= 1.01 9÷10 9÷10 9÷10 9÷10 9÷10

Sp.Sob.2 ∀c 9 9 9 9 9

POL3 POL4

σ2 = 10−12 10−11 10−10 0.1 10−10 10−9 10−8 0.1

IP 0÷5 0÷5 null null 0÷5 0÷ 5 0÷ 5 0÷1

Sp.Sob.1 c = 1.01 6, 10 10 9÷10 9÷10 5 10 10 9÷10

c 6= 1.01 6, 10 10 9÷10 9÷10 4÷5 5,10 9÷10 9÷10

Sp.Sob.2 c = 1.01 9÷10 9 9 9 10 4÷5 9 9

c 6= 1.01 9÷10 9 9 9 9÷10 4÷5 9 9

function wj = h(Sj), we can note that h has a quadratic-like shape. Thus from

now on we consider that wj = αS2
j . The experimental facts on which we base

our hypotheses are shown in Figure 4.2(a), where the relationship wj = h(Sj)

is plotted for c =
√

11, and in Figure 4.2(b), where Sj and the weights of the

primary and secondary sparse Sobolev metrics are presented. Both figures are

relative to the POL2 instance, with σ2 = 0.2. Changing the variance σ2 in the

same instance, and changing instance, similar graphics are obtained, but with

different slope (different α under our hypothesis).

Then we call derivative effect this relationship in conjunction to the fact that Sj
is not always a faithful representation of the real variability between data along

the features (derivative orders), as happens in instance POL2, to which Figure

4.2 refers. Comparing the black line that represents Sj, we see high values on

S8:10, while image plot presented in Figure D.2 in the Appendix tells us that the

derivative orders for which the greater between-groups differences can be observed

are the 1th to the 5th. The discrepancy is attributable to the not homogeneity

between derivatives: first of all they have not the same measure unit, as we explain

in details in Section 4.3, and secondly they have intrinsic different magnitudes.

To fix the ideas, in this simple polynomial case, increasing the derivative order j,

the multiplicative factor k!/(k− j)! in expression (4.3) increases, while the power
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Figure 4.2: POL2, σ2 = 0.2: (a) quadratic-like relationship between wj and Sj , for c =
√

11; (b)

derivative effect : black curve represent Sj , the blue sold lines are the weights of the primary metric

and the red dashed those of the secondary metric, varying the tuning parameter.

term xk−j decreases, and they vary with different rates. Image plots compare the

relative values of dissimilarities di,i′,j for a fixed j, while the plot of Sj gives us a

synthetic information about their absolute values. It is thus possible, as in this

case, that some derivative order have high weight wj even if they are not really

responsible for differentiation.

3. Observe that if we do computations with a low variance (it is sufficient σ2 = 0.1)

in POL2, Sobolev and sparse Sobolev metric do allow good classification, with

null error; what changes are not the weights wj, nor the shape of Sj, but the fact

that in image plots we are able to identify block structures also for high derivative

orders, as in Figure D.2, with σ2 = 0.2

In other situations (such as in instances POL3 and POL4) there is instead a change

in the shape of wj and of Sj as shown in Figure 4.3(a), relative to σ2 = 10−12

and (b), relative to σ2 = 10−10. Compatibly the image plots in Figure D.3 of
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the two cases are similar, meaning that, in both of them, low derivatives counts

toward classification. With high variance the method fails, while low variance

let the method to recognize that the real variability lies in low derivative terms.

As already stressed, the fact that this happens at so low variances and with

discontinuity should be attribute to the high polynomial degree. At this point

we can add to considerations regarding the Sobolev metric, that if σ2 is so low

that there is very few distinction between functions of the same group, also the

Sobolev metric perform well (null error); even if it takes into consideration all the

derivatives, the magnitude of the higher is null if compared to that of the lower

ones, as we can see in the graphic of Sj, in figure 4.3.

4. The previous observations allow to guess that the stronger and more important

of the corrections we are going to propose is the one aimed at override the intrin-

sic derivative effect, and not the one that avoid considering the unit measures,

looking at adimensional phenomena. In fact even if making variance to decrease

does not makes comparable the derivatives measure unit, both the Sobolev and

the sparse Sobolev primary metrics allow good classification. This indicate that

removing the dimensions is necessary for a good formulation of the problem, but

not sufficient.

5. Note that another important aspect on which the corrections we are going to

propose have impact is the convergence criterion used in the optimization algo-

rithms. They stop iterating when at iteration r holds the following relation on

the relative error: ∑p
j=1 |wrj − w

r−1
j |∑p

j=1 |w
r−1
j |

> ε

where ε is a sufficiently grate number. If weights wrj are affected by different

measure units and intrinsic distortion, also this criterion is. It arises again the

necessity of corrections.

6. We close this Section with considerations on the secondary metric, represented

in red in the figures. As already stressed in Subsection 3.3.2, it is not a metric,

if used on matrices orthogonal to D, that is what we have done in computing

the errors reported in Table 4.2. The number of functions misclassified is bigger

with respect to the primary metric, but the intent of Tibshirani and Witten

(2010) in the multivariate context was not to build a feature selection method

with low errors, but capable of capturing orthogonal high-variance structures.

This happens also in our functional framework, as we can see looking to typical

dendrograms in output from the hierarchical clustering (see Figure 4.4, relative

to instances POL1, σ2 = 0.001, POL2, σ2 = 0.2 and POL4, σ2 = 10−10,).

We can see that the functions are well separated if we use the primary metric,
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while they are mixed if we use the secondary. As we have anticipated, more

studies should be done on the statistical meaning of the secondary metric, either

if we use it on a matrix orthogonal to D, or if we use it directly on D. The

only exception is POL3, for σ2 = 10−9 when the secondary metric assumes the

role that for lower variances will be covered by the primary metric, showing the

presence of a double attractor for the solution of the iterative Algorithm 3.
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Figure 4.3: Changes in the metric caused by changes in variability; (a) POL3 instance with σ2 = 10−10;

(b) POL3 instance with σ2 = 10−12. Black curve represent Sj , the blue sold lines are the weights of

the primary metric and the red dashed those of the secondary metric, varying the tuning parameter.
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Figure 4.4: Dendrograms in output from hierarchical clustering, in instances POL1, σ2 = 0.001 (a),

POL2, σ2 = 0.2 (b), and POL4, σ2 = 10−10 (c).
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4.2.2 Fourier Dataset

We present two instances of the Fourier Dataset 2. In this case we found more stabil-

ity (if a stable grid is used for computations) then in the polynomial instances: low

derivatives allow generally to well discriminate functions, even if there is some variabil-

ity along high derivatives. Details of the instances are presented in Table 4.4. They are

Fourier expansions truncated to the 10-th harmonic, with the same variance on terms

with null and not null mean. Remember that in order to avoid aliasing, according to

Shannon’s theorem (see Shannon (1949)), it in necessary to work with a number of

samples corresponding to a frequency that is at least twice the maximal frequency of

the phenomenon. In our case f0 = 5, fmax = 10× 5 = 50 since we have 10 harmonics,

2fmax = 100 (we work under the hypothesis |T | = (0, 1), which mean seeing 5 periods).

We have experimented however that the grid must be more dense (500 samples), if we

want to achieve stability of the integrals approximating the norms (further increases

in the number of samples do not change the results, fixed the remaining parameters).

FOU1 : the differences between functions of different groups correspond to the case

of a Fourier expansion with not null mean on the low-frequency (the first 3)

harmonics, and (statistically) null mean otherwise;

FOU2 : the differences are functions with both high and low (the first 3 and the last

3) frequency components.

Graphics of instance FOU1, σ2 = 0.05 and FOU1, σ2 = 0.2 are shown in Figure

4.5, while Table 4.5 contains the errors committed if we run hierarchical clustering

algorithm using Sobolev, L2, or sparse Sobolev (semi-)metrics. In these simulations

we analyze differences between functions and their derivatives until the 4-th: k = 4, so

admissible values for the tuning parameter are 1 ≤ c ≤
√

5 ' 2.23. As for polynomial

instances, we try a number of values: c = (1.01, 1.4, 1.8,
√

5); nevertheless one can see

that without making corrections to the procedure, the choice of the tuning parameter

is not so influential, due to the implicit derivative effect.

In the same table we indicate in brackets the positions for which we have significantly

Table 4.4: Instances of Dataset 2, varying the mean and the variance of the coefficients. Indices of

vectors µh start from 0: µh0 = 0, h = 1, 2.

instance nonzero elements of µ variances

FOU1
µ1,1÷6 = 2

0.05, 0.1, 0.2, 0.5
µ2,1÷6 = 2.5

FOU2
µ1,1÷6 = 1

0.2, 0.5, 1
µ2,16÷21 = 1
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nonzero weights for sparse Sobolev primary and secondary metrics. Increasing variance

makes the methods commit higher errors and there is not a strict sorting. Observe that

primary sparse Sobolev metric perform well both in instance FOU1, where implicit

derivative effect agrees with the natural differentiation along low derivatives, and in

FOU2, where it is able to capture more variability than L2 (giving small weights also

to derived functions) and than Sobolev (since all the derivatives allow differentiation,

but the low one more).

Similar considerations to those done for polynomial instances holds about the quadratic

relationship between wj and Sj (Figure 4.6(a)) and about the role of the secondary

metric (Figure 4.6(b) and 4.6(c)); both figures are relative to instance FOU2, σ2 = 0.5.

Table 4.5: HC errors on instances of Dataset 2, varying the metric, σ2 and c, without corrections, for

T = (0, 1). In brackets we indicate significantly nonzero weights for sparse Sobolev metrics, and those

visually detected in image plots (IP).

FOU1(%) FOU2(%)

σ2 = 0.05 0.1 0.2 0.5 0.2 0.5 1

IP (0) (0) (null) (null) (1:4) (1:4) (null)

Sobolev 1 14 34 56 0 9 23

L2 0 8 40 43 0 4 31

Sp.Sob.1 ∀c 0 5 43 43 0 3 15

(0) (0) (0) (0) (0) (0) (0)

Sp.Sob.2 c = 1.01 52 53 53 45 70 31 30

(1) (1) (1) (1) (1) (1) (1)

c 6= 1.01 52 53 53 45 70 31 30

(1+2) (1+2) (1+2) (1+2) (1+2) (1+2) (1+2)
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Figure 4.5: 10-degree overlapped and separated fourier expansions: (a) low-frequency differences, (b)

low and high frequency differences; realizations of Y1(s) are in orange, while those of Y2(s) are in

green.
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Figure 4.6: FOU2, σ2 = 0.5, no correction: (a) quadratic relationship between wj and Sj ; (b) sparse

Sobolev primary and secondary metrics; (c) dendrograms obtained with them.
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4.3 Π-Correction

The first correction we propose is concerned with a practical matter: units of measures.

In the multivariate application proposed by Tibshirani and Witten (2010) such a need

is not felt, since the features they treat are homogeneous (micro-array gene data).

However in general applications, the quantities we are dealing with have a natural

unit of measure, related to their physical meaning. The functional framework is very

sensitive in this sense. To fix the ideas one can think that the independent variable s

represents time (for example measured in seconds) and that the dependent functional

variable x(s) represents space (expressed for example in meters). Then we have that

the unit of the first derivative is in [D1x(s)] = m1s−1, and generally that of the j-th

derivative is [Djx(s)] = m1s−j, 0 ≤ j ≤ k. This causes that every term of the Sobolev

square norm ‖x(s)‖2
Hk has a different unit, that we can express as

[
‖Djx(s)‖2

L2

]
=

m2s1−2j, taking into consideration also the dimensionality introduced by integration.

We are in general able to state the following proposition.

Proposition 1. Let [x(s)] denote the measure unit of the amplitude of functional data

x(s), and let [s] denote the measure unit of the independent variable s ∈ T . Then[
‖Djxi(s)−Djxi′(s)‖

2

L2

]
= [x(s)]2[s]1−2j 0 ≤ j ≤ k. (4.7)

This means that if we want to perform a weighted summation of such terms through

coefficients wj in order to obtain the Sobolev weighted semi-norm dw
Hk(xi(s), xi′(s))

(Definition 3), the weights wj must have different units. In particular if the squared

distance between functions (dw
Hk)

2 has unit [x(s)]2, then each weight must have unit

[s]1−2j, 0 ≤ j ≤ k. This fact has two consequences: we are not able to compare directly

the weights, since their values are conditioned by their units and, above all, the method

is not invariant to change of measure unit. For example in Table 4.6 we show what

happens to the L2, Sobolev and the sparse Sobolev (with c = 1.5) metrics if we impose

T = (0, 5), in the polynomial instances introduced in Subsection 4.2.1. The values

have to be compared with those in Table 4.2, relative to T = (0, 1). This change in

length of domain corresponds to varying the measure unit of the independent variable,

without varying the information contained in the data, since we have normalized the

functions dividing the independent variable with T .

In some cases there is an improvement, in other a worsening of the error. What is

important is that there is a change not justified, since the available information is

not changed. Observe that also the weights are differently shaped from those when

T = (0, 1), as shown for example in Figure 4.7(a), to be compared with Figure 4.2(b),

that is relative to T = (0, 1), POL2, σ
2 = 0.2.

We aim at correcting this dependence from measure unit with a procedure inspired

to the Buckingham’s theorem (also known as π-theorem) used especially in fluid dy-

namics theory (see Buckingham (1914)). Let us indicate with wa the original vector of
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Figure 4.7: Shape of the weights wa
j (a) and shape of the weights wb

j (b), for |T | = (0, 5), POL2, σ
2 =

0.2. Black curve represent Sj , the blue sold lines are the weights of the primary metric and the red

dashed those of the secondary metric, varying the tuning parameter.

weights obtained performing the optimization Algorithm 3 on the original data matrix

D. These weights have different measure unit. We pass to analyzing the phenomenon

in a demensionless framework by transforming data contained in D, obtaining a new

input matrix D̃, on which we run the algorithm. Call Dj, ∀0 ≤ j ≤ k each n × n

sub-matrix composing Dj and containing between functions dissimilarities relative to

j − th order derivatives. Call D̃j the correspondent transformed matrices. It follows

from Proposition 1 that the right transformation to perform is

D̃j =
Dj

|T |1−2j
∀j = 0, . . . , k..

As output we have a new vector of weights w̃, that are no more sensitive to changes

of unit measure. In particular they reveal to be numerically the same to wa that we

have if T = (0, 1). In general the relationship w̃j = wj|T |1−2j holds. The vector w is

generally different from wa, since the optimization process is not linear. Call this new
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Table 4.6: HC errors on instances of Dataset 1, varying the metric, σ2, for c = 1.5, without corrections,

for T = (0, 5).

T = (0,5) POL1(%) POL2(%)

σ2 = 10−3 10−2 0.2 1 1.5

Sobolev 20 32 0 17 18

L2 37 40 0 1 2

Sp.Sob.1 c = 1.5 9 32 0 15 17

T = (0,5) POL3(%) POL4(%)

σ2 = 10−12 10−11 10−10 0.1 10−10 10−9 10−8 0.1

Sobolev 0 54 47 45 0 0 45 45

L2 0 0 0 39 0 0 0 0

Sp.Sob.1 c = 1.5 45 48 45 48 0 53 45 48

vector wb: if we want to go back to the dimensional world, we have to transform the

weights w̃, in order to obtain new weights wb. These last are such that the weighted

semi-metric constructable with the pair (wb,D) is the same constructable with (w̃, D̃).

In particular:

wbj =
w̃j
|T |1−2j

, ∀j = 0, . . . , k.

The following scheme shows synthetically the procedure we have explained.

Scheme 1. ∀ 1 ≤ i, i′ ≤ n :

(dwa

Hk(xi(s), xi′(s)))
2

=
∑
j

waj︸︷︷︸
[s]1−2j

‖Djxi(s)−Djxi′(s)‖
2

L2︸ ︷︷ ︸
[x(s)]2[s]−(1−2j)

↓

(dw̃
Hk(xi(s), xi′(s)))

2
=

∑
j

w̃j︸︷︷︸
[1]

‖Djxi(s)−Djxi′(s)‖
2
L2

|T |1−2j︸ ︷︷ ︸
[x(s)]2

=
∑
j

w̃j
|T |1−2j

‖Djxi(s)−Djxi′(s)‖
2

L2

=
∑
j

wbj︸︷︷︸
[s]−(1−2j)

‖Djxi(s)−Djxi′(s)‖
2

L2

= (dwb

Hk (xi(s), xi′(s)))
2
.
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Some relevant observations have to be made:

1. weights wb do not respect the L1 constraint (‖wb‖1 
 c), since the optimization

procedure isn’t performed on them. We can see it in Figure 4.7(b), where it is

given insight of what looks like vector wb in instance POL2, σ2 = 0.2. Remember

that w̃ is the same as wa when T = (0, 1) and for instance POL2 they are

presented in Figure 4.2;

2. weights w̃ are adimensional in order to let the squared weighted Sobolev semi-

metric built with them to have dimension [x(s)]2;

3. a priori (but rarely from the experimental point of view) we lose sparsity in

weights wb, but we gain independence from measure unit. Both needs (spar-

sity and independence from measure unit) follows our concept of a data-driven

Sobolev semi-metric, but the second is maybe a more necessary condition;

4. the Sobolev weighted semi-metric w̃ is the correct one from a dimensional point

of view, even if it is still dependent from the intrinsic derivative effect, as we

have seen in Subsection 4.2.1; hence this first proposal is only necessary, but not

sufficient in order to capture the real variability between functions.

4.4 Normalization Correction

In the present Section we propose a correction aimed at overriding what in Section 4.2

we called implicit derivative effect. Remember that with this term we indicate the fact

that the real differentiation between functions can lie in derivative orders that have an

absolute magnitude smaller than other derivative orders.

In particular, with magnitude we mean the absolute value of the summation of between

functions dissimilarities along feature (derivative) j, 0 ≤ j ≤ k: Sj =
∑

i,i′ di,i′,j. A

qualitative insight of real between functions differentiation is obtainable looking at

image plots of matrices Dj, presented in the Appendix D for polynomial and Fourier

instances. Remember that dark colors indicate low dissimilarities and light colors high

ones: a block-like structure means groups differentiation. Than we have observed,

especially in the polynomial dataset, that Sj has not always maximum and high values

in correspondence of the j-th level for which the block-like structure is sharper in

image plots. The arising problem, requiring a correction to the method proposed until

now, is that weights wj strictly follows the values of Sj, at least in the not sparse

case c →
√
k + 1 (but decreasing c makes going to zero wj values close to zero when

c is big, without moving the position of the maximum). Note that this behavior is a

peculiarity of datasets in which features are not homogeneous not only from a measure

unit point of view, but especially from a magnitude point of view. Again, as for the first
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correction, the work of Tibshirani and Witten (2010) is not affected by this problem

as they treat homogeneous quantities, but the construction we are going to propose is

valid also in the multivariate framework.

As anticipated, we make the following assumption on the relationship between wj and

Sj, for which an empirical justification was given in Section 4.2.

Assumption 3. Let α ∈ R+, let w ∈ Rk+1 be the optimal vector of weights in output

from optimization Algorithm 3, for c→
√
k + 1, and let Sj =

∑
i,i′ di,i′,j, ∀ 0 ≤ j ≤ k.

Then we assume that the following relation holds:

wj = αS2
j . (4.8)

We want to stress that the relationship is only approximate, and that the true one

is the outcome of the iterative Algorithm 3, in which we use the threshold operator S.

Remember that at each step we impose:

w =
S(a,∆)

‖S(a,∆)‖2

, (4.9)

with a = D′u, and ∆ = 0 if that results in ‖w‖1 ≤ c, otherwise ∆ > 0 is chosen to be

a positive constant such that ‖w‖1 = c.

According to us this is one of the reasons for which the correction we are going to

propose doesn’t always gain optimality (i.e. a performance of the weighted Sobolev

semi-norm that is always equal or better than that of both the Sobolev and the L2

one). Nevertheless an indication that we are on track is the fact that, as we show both

in synthetic and in CLASH datasets, it never provide the bigger error. We leave to

future work the task of exploring if improvements in understanding the relationship

can be made. As we are going to show, there is also a computational failure of the

algorithm, that should be corrected, or, at least, studied more deeply.

Our idea is to make the changing in sparsity parameter let to pass from a situation

in which components of w are equal to each other, if c →
√
k + 1, to a situation in

which only some of the components are nonzero, if c → 1. The first case correspond

to an equivalence between sparse Sobolev semi-metric and Sobolev metric, while the

second case should let emerge the derivative order(s) along which the functions really

differentiate (e.g. making sparse Sobolev equivalent to L2 metric if the difference is in

not derived functions).

We show two attempts in doing this, the first non successful, due to a lack in the

algorithm or in its implementation, the second works, but not optimally, due to a

failure of the algorithm and to the approximation in Assumption 3. Both of them

are based on the following Scheme 2. As in the π- correction, we pass from weights

wa relative to the not transformed input D, to weights w̃ relative to a transformed

input D̃ for Algorithm 3. In particular, if Dj are the n× n matrices composing D, we

55



normalize each as

D̃j =
Dj

Smj
, m ∈ R, ∀j = 0, . . . k.

We conclude going back to new weights wbj = w̃j/S
m
j , relative to input D, that are such

that the pair (w̃, D̃) furnishes the same weighted Sobolev semi-metric as (wb,D).

Scheme 2. Let c→
√
k + 1. ∀ 1 ≤ i, i′ ≤ n, ∀m ∈ R, for Sj =

∑
i,i′ di,i′,j, ∀ 0 ≤ j ≤

k:

(dwa

Hk(xi(s), xi′(s)))
2

=
∑
j

waj ‖Djxi(s)−Djxi′(s)‖
2

L2

Ass. 3
=⇒ wj = αS2

j

↓

(dw̃
Hk(xi(s), xi′(s)))

2
=
∑
j

w̃j
‖Djxi(s)−Djxi′(s)‖

2
L2

Smj

Ass. 3
=⇒ w̃j = αS̃2

j = α
S2
j

S2m
j

=
∑
j

w̃j
Smj
‖Djxi(s)−Djxi′(s)‖

2

L2

=
∑
j

wbj‖Djxi(s)−Djxi′(s)‖
2

L2

= (dwb

Hk (xi(s), xi′(s)))
2
.

It follows that wbj =
w̃j
Smj

= αS2−3m
j .

One can think to realize our proposal of having weights equal to each other for

c →
√
k + 1 in two ways. Or we impose w̃0 = . . . = w̃k = α, which means enforcing

m = 1, and deriving the resulting wbj , or we impose wb0 = . . . = wbk = α, which means

enforcing m = 2/3.

Observe that the first correction (m = 1) has a further statistical meaning. Since,

given a functional random variable X

E
[
‖X‖2

L2

]
=

∫
Ω

∫
T
|X(ω, s)|2dsP(dω),

to less than an additive constant, S1
j =

∑
i,i′ di,i′,j =

∑
i,i′

∫
T (Djxi(s)−Djxi′(s))

2ds

is something similar to an estimate of the variance of a random function representing

the j-th derivative. Thus, dividing Dj with S1
j is how to operate a standardization.

However, as already said, this operation cause the algorithm (or its implementation)

to fail: we have an output that does not respect the L1 constraint ‖w‖1 ≤ c for c→ 1

(or in general, for low values of c). Remember that, as in the π-correction, differently

from weights w̃, weights wb have not to respect the constraints. We suppose that this

behavior can be due to the presence of unstable equilibria that arise just because, if

m=1, then S̃j = α and it is not set a direction toward which the solution w has to

56



Table 4.7: Statistical correction: weights w̃ for m = 1, c = 1.01, POL2, σ2 = 0.2.

w̃0 w̃1 w̃2 w̃3 w̃4 w̃5 w̃6 w̃7 w̃8 w̃9 w̃10

POL1 0.26 0.27 0.28 0.29 0.29 0.30 0.30 0.31 0.32 0.32 0.33
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Figure 4.8: Normalization correction: weights w̃ for m = 1, instance POL2, σ2 = 0.2. Black curve

represent S̃j , the blue sold lines are the weights of the primary metric and the red dashed those of the

secondary metric, varying the tuning parameter.

move. We show in Figure 4.8 what happens in the polynomial instance POL2, σ2 = 0.2,

but the same effect is present also in other instances, and in the multivariate framework

if we standardize variables. Values of w̃ for c = 1.01 are reported in Table 4.7. From

now on we analyze the case m = 2/3, in the polynomial and in the Fourier instances.
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4.4.1 Polynomial Dataset

We analyze what happens to the four polynomial instances presented in Subsection

4.2.1 if we apply the normalization correction for m = 2/3 to sparse Sobolev semi-

metric. In Table 4.8 we report the errors gained varying the variances, in the case

T = (0, 1). In order to have an idea of how do weights wb are arranged (we would like

to see if they respect the real variability responsible derivative levels presented in the

image plots better than weights without correction wa), we plot them in Figures 4.10

and 4.11, in correspondence of the lower variance taken into consideration. Note the

following facts.

1. As for π-correction, weights wb have not to respect the L1 constraint, even if

in this case they do so, since the transformation we operate makes them very

low. This reflects in the fact that the vector has not to be sparse for decreasing

values of c. Therefore it would have been preferable to succeed in implementing

the normalization correction with m = 1, if it had not caused the algorithm to

fail. However we experimentally observe sparsity, for m = 2/3 and c→ 1, so we

report the results obtained in this case, leaving space for future researches.

2. The arrangement of the weights wb is globally similar to that obtained without

correction (wa), but, unlike it, it doesn’t follow strictly the shape of Sj for every

c. The construction makes wb to have constant values for c →
√
k + 1: this

is respected quite well at least for small variances, as we can see in Figure 4.9,

where we plot the instance POL2 (analogous to POL1) and POL3 (analogous to

POL4) for σ2 = 10−20. Observe that in instance POL3 the curve is not perfectly

horizontal and we justify it with the fact that Assumption 3 is only an approxi-

mation.

This let this corrected metric behave like the Sobolev one for high values of c

and like the sparse Sobolev for low ones. It was our intent make it highlight the

derivative orders really responsible of variability for c→ 1, but we didn’t succeed

in it, since the optimization process is performed on w̃ and not on wb.

However we have allowed more degrees of freedom, with respect to the not cor-

rected metric, which makes the error almost always intermediate between the

three metrics considered in Subsection 4.2.1. Our proposal of correction give

worse results only in instance POL3 for σ2 = 10−12: in our opinion it is due to

the fact that it is a transitional value of variance for which even small differences

in weights can make the difference.
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Table 4.8: HC errors on instances of Dataset 1, with normalization correction (m = 2/3), for weighted

Sobolev semi-metric, varying σ2 and c, for T = (0, 1). * for c = 2, err = 29%; ** for c = 2, err = 49%.

POL1(%) POL2(%)

σ2 = 10−3 10−2 0.2 1 1.5

Sp.Sob.1 c = 1.01 7 64 7 16 23

c = 1.5 7 28 0 16 17

c 6= {1.01, 1.5} 7 28∗ 0 16 17

Sp.Sob.2 c = 1.01 52 48 17 24 24

c = 1.5 52 48 17 24 24

c 6= {1.01, 1.5} 52 48∗∗ 17 24 24

POL3(%) POL4(%)

σ2 = 10−12 10−11 10−10 0.1 10−10 10−9 10−8 0.1

Sp.Sob.1 c = 1.01 47 47 47 47 0 47 47 47

c = 1.5 45 45 48 45 0 48 48 45

c 6= {1.01, 1.5} 28 48 48 45 0 45 48 45

Sp.Sob.2 c = 1.01 0 51 51 51 49 0 51 51

c = 1.5 0 0 50 50 50 0 55 50

c 6= {1.01, 1.5} 0 0 50 50 50 0 48 50
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Figure 4.9: Statistical correction: shape of the weights wb
j (a) POL2,, (b) POL3, σ

2 = 10−20, for

|T | = (0, 1). The blue sold lines represents the weights of the primary metric and the red dashed

those of the secondary metric, varying the tuning parameter.
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Figure 4.10: Normalization correction: shape of the weights wb
j (a) POL1, σ

2 = 0.001, (b) POL2, σ
2 =

0.2, for |T | = (0, 1). The blue sold lines represents the weights of the primary metric and the red

dashed those of the secondary metric, varying the tuning parameter.
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Figure 4.11: Statistical correction: shape of the weights wb
j (a) POL3, σ

2 = 10−12, (b) POL4, σ
2 =

10−10, for |T | = (0, 1). The blue sold lines represents the weights of the primary metric and the red

dashed those of the secondary metric, varying the tuning parameter.
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4.4.2 Fourier Dataset

Experimental observations feasible in this second synthetic dataset do confirm those

obtained in the polynomial dataset. Note first of all that corrected sparse Sobolev

semi-metric isn’t forced to respect L1 constraint ant to gain sparsity for c → 1, but

it does. And we can see that letting c →
√

5 makes the corrected metric behave

like the Sobolev, with some little variations from weights exactly constant, due to

approximation implicit in Assumption 3. Since the order of magnitude of weights is

low, the method isn’t stable to these small changing (compare for example instance

FOU2, with σ2 = 1, c ≥ 1.4: the corrected metric generate an error of 15%, against

the 23%error generated by the Sobolev metric).

Vice versa, if we let c → 1, the corrected metric is like the sparse Sobolev one: the

correction has generated an improvement, since we can choose to which of the two

move. However, as for the polynomial case, we have not exactly reached our objective

of making emerge the natural level of variability (for example high-order derivatives in

some FOU1 instances), along which functions differ the most. We leave this task to

future works.

Observe finally that even here, increasing the variance of the coefficients makes

things worse, which, jointly to sensibility to small values changes, can cause worse

performances, compared to the two extreme metrics (see FOU1, with σ2 = 0.5, c ≥ 1.4

with error 62%, versus Sobolev metric with error 56%).

Table 4.9: HC errors on instances of Dataset 2, with normalization correction (m = 2/3), for weighted

Sovolev semi-metric, varying σ2 and c, for T = (0, 1).

FOU1(%) FOU2(%)

σ2 = 0.05 0.1 0.2 0.5 0.2 0.5 1

IP (0) (0) (null) (null) (1:4) (1:4) (null)

Sp.Sob.1 c = 1.01 0 5 45 43 0 3 12

c 6= 1.01 0 5 38 62 0 3 15

Sp.Sob.2 c = 1.01 50 49 53 45 70 31 30

c = 1.4 50 53 47 49 34 33 32

other c 48 48 52 49 69 65 62
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Figure 4.12: Normalization correction: shape of the weights wb
j (a) FOU1, σ

2 = 0.05, (b) FOU2, σ
2 =

0.2, for |T | = (0, 1). The blue sold lines represents the weights of the primary metric and the red

dashed those of the secondary metric, varying the tuning parameter.

4.4.3 FIBER Dataset

In this Subection we analyze dataset FIBER explained in Chapter 2, where we have

performed the functional principal component analysis. We build the sparse Sobolev

metric and its second correction, based on Assumption 3. As in simulation examples,

we make comparisons with results obtained using Sobolev and L2 metrics, getting a

dissimilarity matrix on which we run hierarchical clustering algorithm.

Remember that each fiber is represented by a function ri(s), 1 ≤ i ≤ n, n = 894,

that indicates the evolution of the radius along the curvilinear abscissa s; the number

of materials groups taken into consideration can vary from 1 to 9: we fix two groups

(wool and cashmere). This is equivalent to computing the error by cutting the den-

drogram at a height at which two clusters could be seen, building a 2 × 2 confusion

matrix and dividing the number of extra diagonal elements with n.

We valuate derivatives up to the third, thus k + 1 = p = 4 is the number of fea-

tures, causing the tuning parameter c have limits 1 ≤ c ≤ 2 (we have tested c ∈
{1, 1.3, 1.61.82}). In this example we have computed derivatives using the DFT repre-

sentation of each fiber, described in equation (2.7) in Chapter 2:

ri(s) =

p∑
k=1

Ĉi(k)ej
2π
p

(k−1)(s−1), 1 ≤ s ≤ p.
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Table 4.10: HC errors for FIBER dataset, varying the metric.

2 groups(%)

Sobolev 40.15

L2 24.81

Sp.Sobolev.1 ∀c 40.26

Sp.Sobolev.2 ∀c 46.42

Sp.Sobolev.1.c ∀c 40.26

Sp.Sobolev.2.c ∀c 41.94

It can be proved that in this case the L2 square norm of differences between h-th

derivatives of functions ri(s) and ri′(s), 1 ≤ i, i′ ≤ n, 0 ≤ h ≤ k, can be written in the

following way:

‖Dhri(s)−Dhri
′(s)‖2

2 =

(
2π

p

)2h p∑
k=1

Ĉi(k)ej
2π
p

(k−1)(s−1), 1 ≤ s ≤ p. (4.10)

Numerical results are reported in Table 4.10, while Figure 4.13 gives an insight of the

sparse Sobolev weights without correction (a) and with correction (b).

Three main observations can be made: first of all, errors committed using the pri-

mary metrics (without and with correction) are slightly lower than the one committed

by the trivial classifier (4/9 ' 44.4%), and remarkably lower only if we use L2 metric.

Qualitative matrices plot are not possible due to the high number of samples, but this

fact means that more differences between functions can be seen along low derivatives

than along higher derivatives orders.

Secondly sparse Sobolev metrics do not depend from the tuning parameter. From the

optimization point of view this corresponds to the fact that the L1−constraint is not

active, because it is already satisfied for c = 1. As for the metrics without corrections

this can be due to the high absolute value of higher derivatives; this reflects in the cor-

rected metrics, that have the same qualitative trend and not an intermediate behavior

between the Sobolev metric and the sparse not corrected metric, as we observed in

simulation examples.

Thus, as third observation, we can infer that the correction proposed in Assumption

3 is not valid for these data, and more studies should be done. We leave it to future

work, having provided in the meanwhile a quadratic classifier, derived from functional

data analysis techniques, that performs the error obtained with multivariate analyses,

for this industrial problem.
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Figure 4.13: Sparse Sobolev weights for FIBER dataset, without correction (a) and with correction

(b).
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Chapter 5

Conclusions and Future

Developments

In the first part of this work we have faced the problem of natural fibers classification

trough data coming from bidimensional electronic microscope images, with the aim of

implementing automatic morphological analysis for fraud situations detection. As far

as we know only multivariate analysis have been performed until now and this is the

first attempt in a functional framework.

Functional principal component analysis carried on radii of FIBER dataset, seen as

functions of the curvilinear abscissa, let us obtain scores functions, defining the most

important mode of variation of radii, subject to each mode being orthogonal to all

modes defined on previous steps. It does not follow directly that a classifier built with

scores (or an optimal selection of their valuations) have good performances, directions

of maximal residual variability have not to coincide with those along which we see

between-groups differences.

Nevertheless we have concluded that this happens in the FIBER dataset, by com-

puting AERCV estimates of quadratic discriminant analysis by varying both the number

of groups and the features used in building the classifier. Since inspection of eigenfunc-

tions of covariance function has indicated that scores meaning is similar to coefficients

of radii DFT, we have compared scores, DFT modules, DFT log-modules (that better

meet Normality assumption than the second), longitudinal mean radius and standard

variation (the simpler indices used in multivariate analysis). All of them have an error

below that of the trivial classifier, either we consider the existence of two or three

groups (as suggested by hierarchical clustering on densities) and either the two groups

are pure or the wool group is seen as a mixture of two sub-groups

The best result we have reached is obtained by combining a selection of optimal

scores and a gaussian mixture model for the groups (AERCV = 18.23%). However,

in the eventuality that in the industrial context it appears more immediate, even the

application of DFT log-modules let us gain a good classifier, both in terms of Normality
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assumption and error (AERCV = 19.91%, while longitudinal mean radius and standar

deviation gives ARECV ' 24.6%, for each choice on the number of groups). Given

these positive results, more future work is encouraged in order to obtain even better

perfomance:

� optimal scores have been selected through visual inspection, by looking at what

of them caused a decrease in AERCV ; better features selection techniques could

improve the classifier;

� Normality assumption is only a first attempt on the variables distribution; a

different hypothesis would cause a use of more generic, but hopely more precise,

variants of discriminant analysis;

� variables different from radius, such as scales height, perimeter and area, that

in multivariate framework bring substantial improvement, could be studied in

functional context, in order to see if they retain this trend;

� FPCA performed on radii derivatives, instead of functions themselves, might

bring more information (consider e.g. that roughness of materials is connected

to 2-nd derivative).

In the second part of the work we have dealt with a more theoretical issue: the

importance of the choice of the metric in functional data analysis. A direction in

which this modern branch of statistics could be addressed is the integration of this

passage in the analytic process; our work has been a first approach to Sobolev-like

semi-metrics.

We have attempted to extend the hierarchical clustering optimization algorithm

proposed by Tibshirani and Witten (2010), relative to future selection in multivari-

ate framework when n >> p. The innovation of our proposal has been changing the

data on which the algorithm is run: we have replaced feature variables whit functions

derivatives, without altering the structure of the optimization process based on KKT

conditions.

The method gives in output a weight vector, whose components are referred each to a

derivative order, and the between-functions dissimilarity n× n matrix built weighting

by means of it, that allows running hierarchical clustering algorithm. Constraints on

weights provide sparsity, so that decreasing the tuning parameter makes only some

components non-zero: adaptivity of the method is reached if non-zero weights corre-

spond to derivatives along which functions of different groups differentiate.

In this point we have experimented the influence of different nature of data with

respect to the multivariate case, or better to homogeneity of the variables the for which

the algorithm was originally thought. Studying empirically the relationship between

weights and Sj (the summation of single Sobolev norm terms for differences between
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functions, relative to j−th derivative) we have noticed that they have a similar pat-

tern, at least in the not-sparse case. This let us understand that j-th weight is defined

according to the absolute value of Sj, which, in functional case, is likely not to signif-

icantly indicate if along that differentiation order exists between-functions variability.

This phenomenon (implicit derivative effect) isn’t present in micro-array gene data

studied by Tibshirni and Witten.

We have analyzed two synthetic datasets (polynomial and a trigonometric) and

FIBER data, noting sensibility to the fact that measure unit of derivatives changes

when derivative order is changed, and to implicit derivative effect, both linked to not

homogeneity in data. As a consequence we have proposed two corrections: the first

provides independence from changes of measure unit of the independent variable; the

second one is a normalization guess on which more work should be done in future. In

particular:

� the authors of the iterative solving algorithm don’t propose a close solution for

weights: some theoretical studies should be made in order to understand if any

property could be inferred by induction, in order to do more appropriate correc-

tions;

� if, in our second proposal of correction, one chooses to standardize Sj, the algo-

rithm (or its implementation) fails, not respecting the L1 constraint: a deeper

understanding of such a failure should be gained and an eventual correction to

the algorithm should be made. It would be interesting (and necessary) verifying

if the problem presents even in multivariate framework, when variables are not

homogeneous and one decides to standardize;

� a unique proposal of correction should be made, bringing together both needs:

measure units and implicit derivative effect.

Another area that allows future investigations is relative to the so called secondary

metric, that isn’t indeed a metric, but a index quantifying how much two functions

differ, made naturally available by the method, and allowing hierarchical clustering. It

provides orthogonality of final global dissimilarity matrices and something similar to

orthogonality on weights with respect to the primary metric. Orthogonality of matrices

is obtained weighting an input matrix different from that used for the primary metric.

If we use secondary metric weights and the primary metric input matrix then in output

we properly have dissimilarities in output; almost orthogonality between primary and

secondary weights and nonnegativity constraint suggest that these new dissimilarities

should select derivatives that hasn’t been selected by the primary metric: studies of

their properties and simulations appear necessary to us.

Since without correction the tuning parameter has little effect and the function for

its selection by maximizing the gap statistic, provided in sparcl package isn’t suitable
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for our data, we have made simulations for a number of values and chosen the best

parameter a posteriori. We leave to future work the implementation of an automatic

way for the parameter selection, according to this or any other criterion of optimality.

Finally it would be interesting trying to extend our work to other metrics than

Sobolev-like metrics. Theoretically it sounds feasible, but we expect new not homo-

geneity of data to arise, requiring new corrections, in order to make this approach for

metric selection able to really identify between functions variability.
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Appendix A

FPCA Proofs

Here we formalize some statements made in the Chapter relative to functional principal

component analysis.

Theorem A.1. Given the random function R(s) and the deterministic function φ(s) ∈
L2(a, b), the inner product 〈φ,R − µ〉 =

∫ b
a
φ(s)(R(s)− µ(s))ds is a random function,

representing the projection of (R(s)−µ(s)) on φ(s), with mean function E[〈φ,R−µ〉] =

〈φ, µ− µ〉 = 0 and covariance function V ar[〈φ,R− µ〉] = 〈φ, VΣφ〉

Proof. As regards mean function:

E [〈φ,R− µ〉] = E

[∫ b

a

φ(s)(R(s)− µ(s))ds

]
=

∫ b

a

E [φ(s)(R(s)− µ(s))ds]

= 0.

As for the covariance function:

V ar[〈φ,R− µ〉] = E
[
(〈φ(R− µ)〉)2

]
= E

[∫ b

a

φ(s)(R(s)− µ(s))ds

∫ b

a

φ(t)(R(t)− µ(t))dt

]
=

∫ b

a

∫ b

a

φ(s)Σ(s, t)φ(t)ds dt

= 〈φ, VΣφ〉,

where VΣ is defined as the covariance operator

VΣ : L2(a, b) −→ L2(a, b)

φ 7−→ VΣ(t) =

∫ b

a

Σ(t, s)φ(s)ds.

70



Theorem A.2. Let R(s) = µ +
∑+∞

k=1Ckφk(s) be the representation of a random

function through its projections on φk(s), the eigenfunctions of the covarince function

Σ(s, t), a ≤ s, t ≤ b. Let R̃(s) = µ +
∑m

k=1 Ckφk(s) be a random function expressing

the truncation of such a representation to m terms. The following relation on the ratio

between the variance of R(s) that of R̃(s) holds:

E[‖R̃− µ‖2]

E[‖R− µ‖2]
=

∑m
k=1 λk∑+∞
k=1 λk

. (A.1)

Proof. Consider the variance of R(s). By means of the spectral decomposition Σ(t, s) =∑+∞
k=1 λkφk(s)φk(t), we can write:

E
[
‖R− µ‖2] = E

[∫ b

a

(R(s)− µ(s))2ds

]
=

∫ b

a

E
[
(R(s)− µ(s))2

]
ds

=

∫ b

a

+∞∑
k=1

λkφk(s)φk(s)ds

=
+∞∑
k=1

λk

∫ b

a

φk(s)φk(s)ds︸ ︷︷ ︸
=1, φk orthonormal

=
+∞∑
k=1

λk.

Analogous considerations can be made on E[‖R̃− µ‖2].
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Appendix B

Weak Derivative

Let T be an open set of R and let f : T → R be a Lebesgue measurable function.

We denote by C∞(T ) the vectorial space of the functions that are derivable in (T ) an

infinite number of times and with C∞0 (T ) its vector subspace consisting of functions

that have a compact support contained in T .

Definition B.1. We say that f is a locally integrable function in T (we write f ∈
L1
loc(T )) if its Lebesgue integral is finite on all compact subsets K of T :∫

K

|f |ds <∞.

In particular if f ∈ L1
loc(T ) and φ ∈ C∞0 (T ), with supp(φ) = {s ∈ T s.t.φ(s) 6= 0}

then fφ is integrable in T and∫
T
f(s)φ(s)ds =

∫
supp(φ)

f(s)φ(s)ds.

Definition B.2. Let α ∈ N and f ∈ L1
loc(T ). We say that a function ν ∈ L1

loc(T ) is

the weak derivative of f (we write ν = Dαf) if the following relation holds∫
T
ν(s)φ(s)ds = (−1)α

∫
T
f(s)Dαφ(s)ds (B.1)

for each φ ∈ C∞0 (T ).

It can be demonstrated that the relation (B.1) univocally determines the weak

derivative of a function.
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Appendix C

Details on Sparse Feature Selection

and Sparse Hierarchical Clustering

The considerations and proofs of theorems we set out in Section 3.1 come out from a

general optimization framework, which is for example described in Hastie, Tibshirani,

Witten (2009). Their construction is in turn founded on the necessary Karush-Kuhn-

Tucker optimality conditions for constrained problems (see e.g. Nocedal and Wright

(2006)). Thus we recall here the elements we need to motivate why the admissible

value for the tuning parameter s is 1 < s <
√
p, and to prove theorems (1), (2), (3).

C.1 Karush-Kuhn-Tucker Conditions

Let’s start recalling the Karush-Kuhn-Tucker first order necessary conditions for opti-

mality of a constrained problem. We write them in the case that all the constraints are

inequality constraints and there are not set constraints {x ∈ S}. We suppose moreover

that f, gi ∈ C1(Rn). These hypotheses can be relaxed; we are assuming them since

the problems we face are in the form

maximize
x

f(x)

subject to gi(x) ≤ 0, i ∈ I = {1, . . . ,m},
f, gi ∈ C1,

x ∈ Rn.

(C.1)

Suppose that the feasible region is not empty:

S = {x ∈ Rn : gi(x) ≤ 0, i ∈ I} 6= ∅.

Definition C.1. Let x ∈ S be a feasible point. We define the following sets:
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1. cone of feasible directions

D(x) = {d ∈ Rn : ∃ α > 0 s.t. x + αd ∈ S,∀α ∈ [0, α]};

2. set of indices of active constraints, i.e. of constraints valid with equality

I(x) = {i ∈ I : gi(x) = 0} ⊆ I;

3. cone of directions limited by the directions of active constraints

D(x) = {d ∈ Rn : ∇′(gi(x))d ≤ 0, ∀i ∈ I(x)}.

It is easy to show that D(x) can be an open set and that D(x) ⊆ D(x), where

D(x) denote the topological closure of D(x). Then we are able to write a first theorem

giving a necessary condition for optimality.

Theorem C.1. Let f ∈ C1(S) and let x∗ ∈ S be a local maximum of f on S. Then

∇′(f(x∗))d ≥ 0, ∀d ∈ D(x∗), i.e. all feasible directions are ascendant.

The problem is that this result is not easy to use, since it is difficult to characterize

D(x). We give then an explicit name to the case when D(x) = D(x).

Definition C.2. Let x ∈ S be a feasible point. Then we say that the constraint

qualification (CQ) condition holds, if

D(x) = D(x).

In this framework we are able to write the Karush-Kuhn-Tucker optimality condi-

tions.

Theorem C.2. Let f, gi ∈ C1(S) and assume the CQ holds in x ∈ S. If x is a local

maximum of f on S, then exists a vector λ = (λ1, . . . , λm)′ ≥ 0 (KKT multipliers),

such that x and u are the solution of the system{
∇(f(x))−

∑m
i=1 λi∇gi(x) = 0

λigi(x) = 0, ∀i ∈ I (λi = 0, ∀i ∈ I\I(x)).
(C.2)

Notice that theorem (C.2) gives only necessary conditions and that we have nor

established yet a way to verify the QC. The following definitions and theorems reveal

helpful.

Definition C.3. Let f : C → R be a real-valued function, with C ∈ Rn.

� f is a linear function if

f(δ1x1 + δ2x2) = δ1f(x1) + δ2f(x2), ∀x1,x2 ∈ C, ∀δ1, δ2 ∈ R.
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� f is a convex function if

f(δx1 + (1− δ)x2) ≤ δf(x1) + (1− δ)f(x2), ∀x1,x2 ∈ C, ∀δ ∈ [0, 1].

Theorem C.3. The following conditions are equivalent for CQ to hold ∀x ∈ S :

� gi(x) is a linear function ∀i ∈ I;

� gi(x) is a convex function and ∃ a s.t. gi(a) < 0, ∀i ∈ I.

Theorem C.4. If (C.1) is a convex optimzation problem (convex objective function

f and convex constraints gi) and the CQ condition is respected, then x∗ is a global

optimum for f if and only if the KKT conditions (C.2) hold.

C.2 Optimization Framework for Sparse Hierarchi-

cal Clustering

In this part we report a quite general framework for optimization proposed by Hastie,

Tibshirani, Witten (2009). They present a penalized matrix decomposition (PMD)

and derive a method for sparse principal components (SPC). Here we both recall the

results relative to the general problem, without going into details of the PMD, and

analyze its declinations that are useful for the proof of the theorems in Section 3.1.

Let u ∈ Rn and w ∈ Rp be two unit vectors and let P1 , P2 : Rn → R be con-

vex penalty functions. To fix the ideas we will often use lasso functions Pj(u) =∑n
i=1 |ui|, j = 1, 2. Let X the n × p be the data matrix, as in Section 3.2. We call a

PMD(P1, P2) problem the following:

maximize
u,w

u′Xw

subject to ‖u‖2
2 ≤ 1, P1(u) ≤ c1,

‖w‖2
2 ≤ 1, P2(w) ≤ c2.

(C.3)

If we fix one of the variables the problem (C.3) is convex, which means that it is

a biconvex problem. This suggests an iterative algorithm for optimizing it: at each

iteration we maximize the objective function first with respect to u and then with

respect to w . For example the sub-problem relative to w takes the form:

maximize
w

u′Xw

subject to ‖w‖2
2 ≤ 1, P2(w) ≤ c2.

(C.4)

We find a global maximum imposing the KKT conditions that reveal necessary and

sufficient, thanks to theorem (C.4). Then we write the algorithm for solving problem
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(C.3) in the following way

Algorithm 5: PMD(P1, P2)

Data: X;

Result: w, u;

Initialization: initialize w to have L2-norm 1;

while not convergence do

1. u← argmax
u

u′Xw; s.t. P1(u) ≤ c1 and ‖u‖2
2 ≤ 1;

2. w← argmax
w

u′Xw; s.t. P2(w) ≤ c2 and ‖w‖2
2 ≤ 1;

end

In general Algorithm 5 does not converge to a global optimum for (C.3); however

the authors refer that, according to empirical studies, it does converge to interpretable

factors for appropriate choices of the penalty terms. As seen in Section 3.3 and in

Section 4.1, this fact is confirmed by our analyses too, but only after making the

necessary corrections. In the next subsections we write the KKT conditions for the

two types of penalties necessary for our purposes, obtaining the PMD(·,L1) problem,

that is the PMD problem with no-penalty on u and lasso penalty on w. We then

show what does it mean writing a sequence of analogous problems with additional

orthogonality constraints on u.

C.2.1 PMD(·, L1)

Consider the problem PMD(·, L1) problem

maximize
u,w

u′Xw

subject to ‖u‖2
2 ≤ 1,

‖w‖2
2 ≤ 1, ‖w‖1 ≤ c.

(C.5)

Observation C.1. We first notice that for both the constraints on w to be active it

is necessary the condition 1 ≤ c ≤ √p.

The reason for the observation is clear looking at Figure C.1, that shows the two-

dimensional case (p = 2): the feasible region S is the one that is both inside the circle

(L2 constraint) and inside the square (L1 constraint). The figure shows that in 2D,

the points where both the L1− and the L2−constraints are active do not have either

w1 and w2 equal to 0, except for the limit case c = 1. However, when p > 2, the

dimension of w is at least 3; then the right panel of Figure C.1 can be thought of as
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Figure C.1: A graphical representation of the L1− and L2−constraints on u in the PMD(·,L1) crite-

rion. Here w is a two-dimensional vector and the gray lines indicate the coordinates axes u1 and u2.

Left: the L2-constraint is the black solid circle. The constraints ‖w‖1 = 1 and ‖w‖1 =
√
p are shown

using dashed lines. Right: the L1− and the L1−constraints are shown for c1 = 1.2. Small circles

indicate the points where both the L1− and the L2−constraints are active. Along the solid arcs ate

indicate the solutions that occur when ∆ = 0 in Algorithm 6, since the L1-constraint is not active

(‖w‖1 < c). But notice that there could be other feasible points in which holds ∆ = 0 and either

‖w‖1 = c (the solid lines) or ‖w‖1 < c (inner points).

the hyperplane {ui = 0, ∀i > 2}. In this case, the small circles indicate regions where

both constraints are active and the solution is sparse (since ui = 0 for i > 2). This is

the reason why, in Section 3.1, although we can’t take a too high derivative order for

numerical reasons, we have to consider always more than two derivatives as features.

As in the general framework in Appendix C.2, we can then split the problem C.5

into two sub-problems and solve them separately.

Theorem C.5. Let a = Xw. The solution to the convex sub-problem

maximize
u

u′ a

subject to ‖u‖2
2 ≤ 1,

(C.6)

is given by u =
a

‖a‖2

=
X w

‖X w‖2

.

Proof. The KKT conditions (C.2) written for the problem (C.6) are{
a− 2λu = 0

λ(‖u‖2
2 − 1) = 0.

(C.7)

If λ 6= 0 then {
u =

a

2λ
‖u‖2 = 1

{
u = a/‖a‖2

λ = ‖a‖2/2.
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The case λ = 0 is a feasible solution only if the problem (C.6) is trivial (a = 0).

Theorem C.6. Let x+ denotes the positive part of x (x+ = x if x > 0, x+ = 0 if x ≤ 0)

and define the soft-thresholding operator S(x, c) = sign(x)(|x| − c)+. Let b = X′ u.

Then the solution to the convex sub-problem

maximize
w

b′w

subject to ‖w‖2
2 ≤ 1, ‖w‖1 ≤ c,

(C.8)

is given by w =
S(b,∆)

‖S(b,∆)‖2

, where ∆ = 0 if that results in ‖w‖1 ≤ c; otherwise, ∆ > 0

is chosen to yield ‖w‖1 = c.

Proof. Let’s call λ and ∆ the two KKT multipliers. The KKT conditions (C.2) written

for the problem (C.8) are 
b− 2λw −∆Γ = 0

λ(‖w‖2
2 − 1) = 0

∆(‖w‖1 − c) = 0,

(C.9)

where Γi = sign(wi) if wi 6= 0; otherwise Γi ∈ [−1, 1].

If λ 6= 0 then we can write the first equation for each component of w as

bi − 2λwi −∆ sign(wi) = 0.

Considering that wi = sign(wi)|wi|, it follows that sign(bi) = sign(wi), since the equa-

tion can be rewritten as

sign(wi)(2λ|wi|+ ∆) = sign(bi)|bi|,

where λ and ∆ are nonnegative according to the KKT construction. Moreover this

implies that λ 6= 0 (λ > 0) ⇔ |bi| − ∆ > 0 and λ = 0 ⇔ |bi| − ∆ = 0 Then the first

equation written for each component of w becomes wi =
bi −∆ sign(bi)

2λ
, if |bi| −∆ > 0

wi = 0, if |bi| −∆ = 0

i.e.  wi =
sign bi(|bi| −∆)

2λ
, if |bi| −∆ > 0

wi = 0, if |bi| −∆ ≤ 0

i.e. wi =
S(bi,∆)

2λ
. But if λ 6= 0, for the second equation in C.9 to hold, it must be

‖w‖2 = 1, i.e. λ must be chosen so that w =
S(b,∆)

‖S(b,∆)‖2

.
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The case λ = 0 can lead to a feasible or non feasible solution of the system (C.9)

depending on the values of b, ∆ and Γ, but we are unable to express an optimal value

for w; thus this case has not to be taken into consideration.

As regards ∆, either ∆ = 0 if this results in a feasible solution (if both ∆ = 0 and

λ = 0, then the system is feasible only if the problem is trivial, with b = 0), or ∆ must

be chosen such that ‖w‖1 = c. So ∆ = 0 if this results in ‖w‖1 ≤ c; otherwise, we

choose ∆ such that ‖w‖1 = c, implementing for example a Binary Search.

Let a = Xw and b = X′ u. Consequently to theorems C.5 and C.6, we can write

the following iterative algorithm for the solution of problem (C.5).

Algorithm 6: PMD(·, L1)

Data: X;

Result: w, u

Initialization: initialize w to have L2-norm 1;

while not convergence do

1. u← a

‖a‖2

;

2. w← S(b,∆)

‖S(b,∆)‖2

, where ∆ = 0 if that results in ‖w‖1 ≤ c,

otherwise ∆ > 0 is chosen to be a positive constant such that ‖w‖1 = c;

end

C.2.2 Complementary PMD(·, L1)

Since the PMD problem is generally related to the approximation of the matrix X

with a rank-k matrix (and the PMD(·, L1) is only a particular rank-1 approximation)

Hastie, Tibshirani, Witten (2009) study also the possibility of writing a number of

problems similar to problem (C.5), with an additional constraint of orthogonality on

u. Notice that they do not require orthogonality on w but that the constraint on u

give something similar to orthogonality also on w.

So the complementary problems can be written in the form

maximize
uk,wk

uk
′Xwk

subject to ‖uk‖2
2 ≤ 1, uk ⊥ u1, . . . ,uk−1

‖wk‖2
2 ≤ 1, ‖wk‖1 ≤ c.

(C.10)
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With uk fixed, one can solve (C.10) for wk easily, using theorem C.6. With wk fixed,

the problem is as follows

maximize
uk

uk
′Xwk

subject to ‖uk‖2
2 ≤ 1, uk ⊥ u1, . . . ,uk−1.

(C.11)

Let U⊥k denote an orthogonal basis that is orthogonal to Uk−1, the matrix with columns

u1, . . . ,uk−1. It follows that uk is in the column space of U⊥k , and so can be written as

a linear combination of the basis elements uk = U⊥k−1θ, with θ ∈ Rk−1. Note also that

‖uk‖2 = ‖θ‖2. Thus problem C.11 can be written equivalently as

maximize
θ

θ′U⊥k−1
′Xwk

subject to ‖θ‖2
2 ≤ 1.

(C.12)

and, according to theorem C.5, we find that the optimal θ is

θ =
U⊥k−1

′Xwk

‖U⊥k−1
′Xwk‖2

.

Therefore the value of uk that solves (C.11) is

uk =
U⊥k−1U⊥k−1

′Xwk

‖U⊥k−1
′Xwk‖2

=
(I−Uk−1Uk−1

′)Xwk

‖U⊥k−1
′Xwk‖2

.

So we can use this update to develop an iterative algorithm to find multiple factors for

the problem (C.5), the single PMD criterion, that yields orthogonal uks. The algorithm

can be run for 1 ≤ k ≤ r, where it can be shown that r ≤ min(n, p) is the rank of

the matrix X. Attempts to running the algorithm a major number of time cause the

results to repeat cyclically. It has to be underlined that, thought is not guaranteed

that the wks will be exactly orthogonal, they are unlikely to be very correlated, since

the different vks each are associated with orthogonal uks.

Algorithm 7: Complementary PMD(·, L1)

Data: X, Uk−1;

Result: wk, uk;

Initialization: initialize wk to have L2-norm 1;

while not convergence do

1. uk ←
(I−Uk−1Uk−1

′)Xwk

‖U⊥k−1
′Xwk‖2

;

2. wk ←
S(bk,∆)

‖S(bk,∆)‖2

, where bk = X′uk and ∆ = 0 if ‖w‖1 ≤ c,

otherwise ∆ > 0 is chosen to be a positive constant such that ‖w‖1 = c;

end
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Appendix D

Image Plots

Here we report the main image plots of the n × n matrices composing D ∈ Rn2×p,

the matrix in which column j consists of the elements di,i′,j strung out into a vector,

relative to instances of the Polynomial dataset taken into consideration in Subsection

4.2.1, and of the Fourier dataset analyzed in Subsection 4.2.2. We recall that the

bottom-left corner of an image-plot corresponds to the top-left one of the matrix. Note

that the matrices are symmetric, and that dark colors indicate low dissimilarities, while

light colors indicate high ones, but the colors are relative to the values of the single

matrix and have not an absolute meaning.

An optimal sparse adaptive Sobolev metric should be able to give nonzero weights to

derivative levels in which we can see separations in blocks. The Sobolev metric equally

weights all the matrices, while the L2 metric give null weights to all the matrices except

the first.
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Figure D.1: POL1, σ2 = 10−3(a), σ2 = 10−2(b).
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Figure D.2: POL2, σ2 = 0.2(a), σ2 = 1(b).
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Figure D.3: POL3, σ2 = 10−12(a), σ2 = 10−10(b).
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Figure D.4: POL4, σ2 = 10−10(a), σ2 = 10−8(b).

83



0.0 0.5 1.00.
0

0.
4

0.
8

D_0

0.0 0.5 1.00.
0

0.
4

0.
8

D_1

0.0 0.5 1.00.
0

0.
4

0.
8

D_2

0.0 0.5 1.00.
0

0.
4

0.
8

D_3

0.0 0.5 1.00.
0

0.
4

0.
8

D_4

(a)

0.0 0.5 1.00.
0

0.
4

0.
8

D_0

0.0 0.5 1.00.
0

0.
4

0.
8

D_1

0.0 0.5 1.00.
0

0.
4

0.
8

D_2

0.0 0.5 1.00.
0

0.
4

0.
8

D_3

0.0 0.5 1.00.
0

0.
4

0.
8

D_4

(b)

Figure D.5: FOU1, σ2 = 0.2(a), σ2 = 0.005(b).
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Figure D.6: FOU2, σ2 = 0.5(a), σ2 = 0.2(b).
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