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“Blow a soap bubble and observe it.
You may study it all your life and draw one

lesson after another in physics from it.”
Lord Kelvin
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Abstract

DEVELOPING a high resolution numerical method for the simulation of two-phase
heat and mass transfer is a viable way of getting deeper insights into such
phenomena, and as consequence to better understand them. A reliable and

flexible numerical method is developed in the present thesis in order to achieve this
goal. The method is applied to the simulation of boiling phenomena, which is a relevant
mode of heat transfer in the energy sector, however it may be easily extended to other
types of heat and mass transfer phenomena such as condensation.

Boiling is a very efficient mode of heat transfer and plays a major role in several
engineering systems for the production and conversion of energy. Despite its wide use,
the design of heat exchangers still relies on empirical correlations that have been devel-
oped during the second half of the twentieth century, because the numerical methods for
the simulation of boiling phenomena are still not well established. In addition, several
aspects of boiling heat transfer are still not well understood.

The several spatial scales involved in boiling phenomena constitute one of the main
difficulties in the development of a reliable numerical method. Various numerical issues
also arise due to the presence of moving two-phase interfaces. The correct prediction of
capillary forces, mass transfer rate and heat transfer, with an optimized computational
cost, is the principal challenge of nowadays numerical models.

Within this framework, a numerical model is developed using the open-source Open-
FOAM Computational Fluid Dynamics toolkit, which permits a high flexibility and
sustainability of the model. The Finite Volume discretization method is used to solve
the governing equations of the problem. The method is compatible with general un-
structured meshes in two- and three-dimension. A mass-conservative Volume-Of-Fluid
interface tracking method is adopted to capture the position of the two-phase interface
and its influence on the fluids flow. Four interfacial curvature calculation methods for
the prediction of surface tension are implemented and compared. The mass transfer rate
is computed directly from the heat flux at the interface using a reconstructed Level-Set
function. The sources due to mass transfer are then concentrated near the interface.
Adaptive mesh refinement is possible in three-dimension and the mesh is usually re-
fined near the interface, where a higher mesh resolution is beneficial for the correct
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prediction of the mass transfer rate.
The detailed description of the governing equations and of the implemented numer-

ical model is followed by a verification and validation process. Dedicated test cases
are employed for the isothermal and phase change part of the model. Isothermal static
bubbles and capillary waves are studied to evaluate the accuracy of the implemented
interfacial curvature calculation methods. The proper implementation and validation
of the phase change model is then performed by investigating the Stefan, sucking in-
terface, and spherical bubble growth problems. The several numerical issues related
to two-phase heat and mass transfer are identified and the accuracy of the model is
assessed.

The present thesis also contains a detailed study of isothermal spherical rising air
bubbles in water with dimensions typical of heat and mass transfer applications. A
thorough review of the experimental and theoretical works is performed in order to
identify the most appropriate reference data for the comparison with the numerical
model. A high dependence of the bubbles’ terminal rising velocity on the interfacial
curvature calculation method is observed, suggesting the use of the height function
method implemented in the open-source Gerris Flow Solver code.

Finally, a benchmark for the simulation of nucleate boiling is developed using ex-
perimental data from the pool boiling facility of the Department of Nuclear Science and
Engineering of the Massachusetts Institute of Technology.

II
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CHAPTER1

Introduction

Two-phase heat and mass transfer phenomena play an important role in several natural
processes and engineering systems. Knowledge about the mechanisms governing such
phenomena is therefore of interest for the understanding of our environment and for
the design of safe and efficient technical components. As a consequence, researchers
and engineers have continuously performed experiments and developed mathematical
models for the description of such phenomena. In spite of all their efforts, many of
the physical phenomena that occur during two-phase heat and mass transfer and their
interaction are still not well understood. Accordingly, current efforts are directed to-
wards higher resolution experiments and numerical models in order to provide better
understanding of two-phase heat and mass transfer processes. In the recent years, the
spatial and temporal resolutions of the experiments have continuously increased while
few high resolution mechanistic predictive tools, to be used in parallel to the experi-
ments, have been developed. The development of reliable and flexible high resolution
numerical models is thus an active field of research nowadays.

The present thesis is a contribution to this common goal by suggesting a numerical
framework for the simulation of phase change phenomena. Due to the wide field of ap-
plications making use of two-phase heat and mass transfer, the proposed phase change
model is focused on boiling phenomena. However, the developed model may be easily
extended to other types of heat and mass transfer phenomena thanks to the flexibility
of the code used.

1
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Chapter 1. Introduction

1.1 Relevance of two-phase heat and mass transfer in energy applica-
tions

It is worthless to mention that heat transfer phenomena play a major role in energy
applications. On the other hand, two-phase heat and mass transfer such as boiling and
condensation are relevant for systems requiring highly efficient heat transfer. As an
example, the generation of electrical power from large scale power plants highly relies
on boiling to transform into mechanical energy the large amount of heat released from
nuclear reactions or from the combustion of fossil fuels. On smaller scales, boiling and
condensation are used in refrigeration and heat pump devices as well as in the cooling
of high-performance electronics. In effect, the high heat transfer coefficients obtain-
able using such phase change phenomena allow the design of heat exchangers with
reduced dimensions with respect to single-phase heat exchangers. The lower temper-
atures achievable also allow to maintain the integrity of materials in high-temperature
environments.

Boiling and condensation phenomena have been studied extensively during the sec-
ond half of the twentieth century. These studies have mainly lead to empirical correla-
tions that have driven the design strategy in the sector for a long time. However, in the
particular case of boiling, it is almost known that these correlations fail to predict per-
formances in situations that go beyond the range over which the correlations have been
developed. This is mainly due to the lack of understanding of the phenomena occurring
at the liquid-vapor interfaces at and near the heated surfaces. In a very interesting paper
(Nelson, 2001), the author pointed out that progress in mechanistic predictive tools will
not be possible without a better understanding of the physical phenomena occurring
in the whole process and without resolving its temporal and spatial variations. During
the last decade, with the ever increasing computational resources and quality of mea-
surement techniques, researchers have thus started investigating the use of numerical
simulations to describe such phenomena, while providing consistent information about
the mechanisms involved using higher resolution experiments.

A brief description of boiling phenomena, useful for identifying the various issues
related with their understanding, will be given in the followings. For a comprehensive
overview of boiling and condensation phenomena, the reader is directed towards some
reference textbooks on the topic (Rohsenow et al., 1998; Collier and Thome, 1994;
Stephan, 1992).

1.2 Boiling phenomena

The typical equation that relates the heat transferred, Q, from a solid surface to a bulk
liquid is given as

Q = hS (Twall − Tbulk) , (1.1)

where h is the heat transfer coefficient, S is the surface area involved in the heat transfer
and (Twall − Tbulk) is the wall superheat. From this relation, we can easily observe that
heat transfer can be increased in three different ways: by increasing the heat transfer
coefficient, the surface area, or the wall superheat. Increasing the wall superheat is
usually limited by the integrity of the materials while increasing the surface area is

2
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1.2. Boiling phenomena

Figure 1.1: Pool boiling curve for water at atmospheric pressure (Collier and Thome, 1994).

limited by the dimensions, weight and cost of the heat exchanger. The most efficient
way of improving heat transfer is therefore to increase the heat transfer coefficient. This
is exactly what occurs during boiling heat transfer and a simple way of describing it is
to analyze the pool boiling heat transfer.

Pool boiling is defined as boiling from a heated surface submerged in a large volume
of stagnant liquid. The term saturated pool boiling is employed when the temperature
of the liquid is at its boiling point, while the term subcooled pool boinling is used when
the temperature of the liquid is below its boiling point. The results of investigations
into heat transfer rates in pool boiling are usually plotted on a graph of surface heat
flux (q′′ = Q/S) against heater wall surface temperature (Twall) or wall superheat – the
“boiling curve”. Such a diagram has been firstly proposed by Nukiyama (1934) and is
often referred to as the “Nukiyama’s curve”. The boiling curve for water at atmospheric
pressure is shown qualitatively in Figure 1.1.

The various regions of the curve are well known and helps to identifies the different
regimes observed during pool boiling. Some of these regimes are also observed in other
configurations. Figure 1.2 gives an overview of each region.

1. Natural convection (AB): In this region, heat is removed by natural convection
in the pool and then by evaporation at the free surface.

2. Onset of nucleate boiling (ONB): The wall superheat becomes sufficient to cause
the nucleation of vapor bubbles at the microscopic cavities of the heating surface.
The drop in surface temperature from B to B’ depends on several parameters such
as the type of fluids, the properties and characteristics of the heating surface or the
operating pressure.
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Figure 1.2: Pool boiling curve for water at atmospheric pressure (Collier and Thome, 1994).

3. Nucleate boiling (B’C): In this region, nucleation of vapor bubbles continuously
occur at the heating surface. At low heat flux, few individual nucleation sites
are activated. As the heat flux increases, the wall superheat increases and more
nucleation sites are activated. As a results bubbles coalesce and at high heat fluxes
vapor patches and columns are formed close to the heating surface. Due to the
different vapor structure, this region is often subdivided into nucleate boiling at
low to moderate heat fluxes and nucleate boiling at high heat fluxes.

4. Critical heat flux (CHF or point D): As the heat flux increases, more and more
liquid is substituted by vapor on the heating surface, until a stable vapor layer
forms and completely separate the heating surface from the liquid. Vapor nucle-
ation is therefore prevented and in the case of heat flux controlled heating, the
temperature of the heating surface increases drastically until point D’ is reached.
Knowledge of the critical heat flux for a given combination of heating surface
characteristic and fluids is therefore important to maintain the integrity of the ma-
terials and thus of the heat exchanger.
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5. Transition boiling (DE): In this region, the vapor layer over the heating surface
is unstable and releases large patches of vapor at more of less regular intervals.
The existence of this region is possible only in conditions approximating constant
surface temperature.

6. Leidenfrost point (E): The onset of stable film boiling is determined by the Lei-
denfrost point, which is also the point at the lowest heat flux when vapor com-
pletely cover the heating surface. At this wall superheat, droplets bounce off or
hover above the heating surface without wetting it.

7. Film boiling (EF): In this regime the vapor layer over the heating surface is sta-
ble. As liquid approaches the heating surface, the vapor generation increases and
the liquid is pushed away from the wall until a vapor bubble is released. The liq-
uid never wet the heating surface and regularly spaced bubbles form periodically.
Heat transfer is accomplished principally by conduction and convection through
the vapor film with radiation becoming significant as the surface temperature is
increased.

The most interesting regime for industrial applications is nucleate boiling due to
the high heat transfer coefficients achievable with low superheat. Maintaining small
temperature differences in heat exchangers is an approach to optimize the efficiency
of a thermodynamic cycle for power generation or heating and cooling. Though the
nucleate boiling regime is widely used, it is also the most complex regime and several
of its related phenomena are still not well understood.

After the pioneering work of Han and Griffith (1965a,b), several attempts have been
made to describe the governing mechanisms during nucleate boiling heat transfer. In the
last years, with the significantly increased knowledge about boiling processes, Stephan
and Kern (2004) and Kim (2009) proposed the following mechanisms for the transport
of heat from the wall into the fluid:

• Enhanced convection: The periodic growth and release of bubbles from nucle-
ation sites induces a motion of the liquid layer in proximity to the heating surface.
Heat transfer due to convection is therefore increased with respect to natural con-
vection.

• Transient conduction: During the bubble growth, the largest amount of heat is
supplied by the superheated liquid layer near the heating surface. This heat is
progressively absorbed through evaporation at the liquid-vapor interface and the
temperature of the liquid drops. During and after the bubble detachment, the
depleted liquid layer is restored and its temperature increases through conduction
from the heating surface into the liquid.

• Microlayer evaporation: One of the pioneering work suggesting the presence of
a microlayer underneath the bubble is due to Cooper and Lloyd (1969). With the
increasing spatial and temporal resolutions of the experiments, evidences of the
presence of this microlayer have been provided. Close to the three-phase contact
line, i.e., where the liquid-vapor interface meets the solid surface, a thin liquid
layer of some micrometers subsists during the growth of the bubble. This thin
layer progressively evaporates and contributes to the total heat absorbed through
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evaporation by the bubble. Stephan and Kern (2004) and Kim (2009) state that
this contribution from the microlayer can account for up to 20 to 30% of the total
heat transferred.

1.3 State of the art

1.3.1 Related experimental work

Boiling is one of the most studied physical phenomena in science and engineering.
From the early works of Jakob and Fritz (1931), Fritz (1935) and Nukiyama (1934)
up to the present day, there is a bewildering number of papers in the literature. In the
followings, a brief review of the most relevant experimental studies will be given and
does not claim to be exhaustive.

During the second half of the twentieth century, some of the most important and
widely used correlations for the prediction of pool boiling heat transfer coefficients have
been developed. Empirical models based on dimensionless groups have been proposed
by Rohsenow (1952) and Forster and Zuber (1955). Rohsenow’s correlation introduces
an empirical coefficients to account for the differing nucleation properties of specific
liquid-surface combinations. A detailed study of these coefficient for various liquid-
surface combinations and various surface preparation techniques has been reported by
Vachon et al. (1967b,a). On the other hand, Forster and Zuber’s correlations does not
account for the heater surface-fluid combination. Some years later, Stephan and Ab-
delsalam (1980) developed a series of correlations obtained from regression analysis
of about 5000 known experimental data. Four groups of substances were identified:
hydrocarbons, cryogenic fluids, refrigerants and water. For each group, a different set
of dimensionless quantities were chosen, motivated by the fact that a unique correlation
is less accurate. In parallel, empirical models based on the law of corresponding states
have also been proposed (Mostinski, 1963; Cooper, 1984; Gorenflo et al., 1990). The
advantage of such correlations is their simplicity and robustness while varying fluid
properties and surface characteristics. Several other correlations have also been pro-
posed for the prediction of the number of active nucleation sites (Mikic and Rohsenow,
1969; Benjamin and Balakrishnan, 1997), the bubble departure diameters (Zuber, 1963;
Cole, 1967; Mikic and Rohsenow, 1969) and the bubble departure frequencies (Cole,
1967; Mikic and Rohsenow, 1969; Malenkov, 1972).

Most of the above mentioned correlations rely on empirical coefficients which are
valid only for a specific fluid-heating surface combination and a certain range of oper-
ating conditions, which limits their applications to other fluids and parameter ranges.
However, in absence of more sophisticated predictive models, these correlations are
still used for design purposes. A way of improving the reliability of these correlations
is to improve the understanding of the governing mechanisms. Experiments focusing
on some aspects of nucleate boiling, with progressively higher resolution techniques,
have therefore been performed.

With the introduction of high-speed infrared thermometry by Theofanous et al.
(2002a,b), investigation of local quantities such as local wall temperature and heat
transfer underneath a nucleating bubble has been made possible. Another high-resolution
approach using arrays of micro-heater has also been proposed recently by Demiray and
Kim (2004) to allow information on the local heat transfer at the bubble foot. The use
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of thermochromic liquid crystals have also permitted high resolutions measurements of
local quantities (Kenning and Yan, 1996; Kenning et al., 2001). More recently, Buon-
giorno’s group provided high-resolution data of bubble dynamics and heat transfer in
pool boiling of water using synchronized high-speed video and infrared thermometry
(Gerardi et al., 2010; Duan et al., 2013).

Deeper insights to the dynamics of the microlayer underneath the nucleating bubble
and its contribution to the total heat transfer have also been possible with the introduc-
tion of high-resolution experiments. In Schweizer and Stephan (2009), the maximum
local heat flux is observed at the three-phase contact line and can reaches one or even
more orders of magnitude higher values than the average heat flux. Several experiments
also indicate that the heat transfer at the three-phase contact line strongly depends on
its motion direction and speed (Myers et al., 2005; Moghaddam and Kiger, 2009a,b;
Delgoshaei and Kim, 2010). Very recently, Kunkelmann et al. (2012) proposed a com-
bined experimental and numerical study of the influence of the three-phase contact line
dynamics on the total heat transfer. All these studies have revealed an increasing local
heat transfer while the three-phase contact line advance during bubble detachment. Us-
ing high-speed infrared thermometry, Kim and Buongiorno (2011) have also been able
to measure the temporal and spatial variation of the microlayer thickness.

All the high resolution experiments performed recently have permitted to increase
our knowledge about the mechanisms involved in nucleate boiling and to quantify their
influence on the total heat transfer in some configurations. Nevertheless, some limita-
tions in the spatial and temporal resolutions of the different measurement techniques
still not allow the complete description of the local heat transfer near the heating sur-
face and the detailed measurement of the liquid temperature surrounding the vapor
bubble. On the other hand, boiling research is also focusing on the investigation of
micro-structured surfaces as well as nano-fluids for enhanced nucleate boiling heat
transfer. However the results obtained with a particular surface geometry and fluid
usually cannot be used directly to predict the heat transfer with different fluids and
operating conditions. As a consequence there is still a need to further understand the
physical mechanisms involved in boiling in order to reduce the degree of empiricism
and the number of experimental tests to find optimal parameters.

1.3.2 Modeling approaches at the interface scale

The simulation of a two-phase flow at the interface scale, also referred to as the direct
numerical simulation of a two-phase flow, generally relies on a specific interface track-
ing technique in order to follow the evolution of the interface and to account for the
interfacial jumps and forces such as surface tension. In the framework of fixed Eule-
rian grids, the so-called one-fluid method is generally adopted (Hirt and Nichols, 1981;
Unverdi and Tryggvason, 1992; Sussman et al., 1994). In such framework, a single set
of governing equations is solved for both fluids through the use of a Heaviside function
which identifies the spatial distribution of the phases. In most cases, a smooth version
of the Heaviside function is reconstructed, i.e., the boundary conditions at the interface
are distributed over the control volumes surrounding the interface. It is however possi-
ble to represent a sharp Heaviside function if specific numerical treatments are adopted.
For instance, in the Ghost Fluid Method (Fedkiw et al., 1999; Kang et al., 2000; Liu
et al., 2000) the boundary conditions at the interface are reconstructed at the cell center,
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providing a sharp treatment of the interfacial boundary conditions.
To include the effects of surface tension, various models have been developed. In

particular, a proper calculation of the interfacial curvature is relevant for surface tension
driven flows. Several calculation methods exist and are often related to the interface
tracking method adopted in the two-phase model.

Finally, to evaluate the heat and mass transfer, various phase change modeling ap-
proaches have been developed. Due to the various types of phase change phenomena
and their relative complexity, the present thesis is focused mainly on boiling phenom-
ena. Some of the method developped for simulating boiling phenomena may however
be extended to other kinds of phase change phenomena.

A two-phase flow model able to deal with heat and mass transfer at the interface
scale should therefore include three main features:

1. an interface tracking technique;

2. a surface tension model;

3. a phase change model.

Some of the most used methods will be described in the following.

Interface tracking techniques
The main techniques reported in the literature can be classified by the representation

of the interface adopted. Methods such as Level-Set (LS) (Sussman et al., 1994) and
Volume-Of-Fluid (VOF) (Hirt and Nichols, 1981; Scardovelli and Zaleski, 1999) track
the interface implicitly from data computed on a fixed Eulerian mesh. On the other
hand, methods such as Front Tracking (FT) (Unverdi and Tryggvason, 1992) explicitly
track the interface using a moving Lagrangian surface mesh. Implicit methods such as
LS or VOF are generally characterized by automatic merging or breakup of the two-
phase interface. This feature can be undesired in some circumstances, however it can
be compensated using, for instance, Adaptive Mesh Refinement (AMR) techniques.
On the other hand, explicit methods require the implementation of a sub-grid model in
order to handle the merging and breakup of the two-phase interface. In the absence of
a sub-grid model, these methods are well suited for the study of swarm effects (Tryg-
gvason et al., 2001; Roghair et al., 2011). Each interface tracking technique presents
advantages and drawbacks that will be briefly described here.

The LS method represents the interface as the zero level set of a distance function
from the interface. Its evolution is obtained from the advection of the distance function.
The relative simplicity of the method is offset by mass conservation issues, especially in
flows with high vorticity (van Sint Annaland et al., 2006). The VOF method is based on
the transport of a color function, often referred to as the volume fraction, that represents
the relative amount of one of the phases at a given location. The transport equation of
the volume fraction is derived from the continuity equation, resulting in strong mass
conservation. However, due to the sharp nature of the volume fraction, numerical dif-
fusion readily occurs. One family of VOF methods employs specific high-resolution
schemes and an anti-diffusive term that tends to reduce the numerical diffusion over
two to three mesh elements (see e.g., Ubbink and Issa (1999)). The mass conserva-
tive method recently proposed by Sato and Ničeno (2012) is also similar to these VOF
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methods. Another family of VOF methods, also known as geometrical VOF, performs
a geometrical reconstruction and advection of the interface, leading to a sharp repre-
sentation. Early work on these methods is attributed to Noh and Woodward (1976)
and Hirt and Nichols (1981), where the interface is represented using the Simple Line
Interface Calculation (SLIC) algorithm. Later, Youngs (1982) introduced the concept
of Piecewise Linear Interface Calculation (PLIC) algorithms where the interface is rep-
resented through line elements in 2D or planes in 3D. Modern PLIC VOF methods
(see e.g., Popinet (2009)) have proven to be accurate enough and efficient enough to
simulate a wide range of surface tension driven applications. In order to combine the
strong points of the VOF and LS methods, Sussman and Puckett (2000) also proposed
a Coupled Level-Set Volume-Of-Fluid (CLSVOF) algorithm. Finally, the FT technique
represents the interface explicitly using a series of connected points constituting surface
meshes. The inherent accuracy and robustness of the method is offset by its compli-
cated implementation due to the requirement for dynamic remeshing and mapping of
the interface mesh onto the fixed mesh that is used to solve the Navier–Stokes equations
(van Sint Annaland et al., 2006).

Surface tension models

The proper estimation of the interface curvature and the proper implementation of
the surface tension forces are relevant for surface tension dominant flows. The Contin-
uum Surface Force (CSF) method proposed by Brackbill et al. (1992) is one of the most
widely adopted implementations of surface tension forces in the VOF (Renardy and
Renardy, 2002) and LS (Sussman et al., 1994; Sussman and Puckett, 2000) techniques.
In this method, the surface tension forces are added to the momentum equation as a
body force localized near the interface, via a smoothed delta function. Improvements
in the implementation of the CSF method have been achieved by Francois et al. (2006)
through the introduction of discrete exact balances between the pressure gradients and
the surface tension forces. An estimate of the local interfacial mean curvature is re-
quired within the CSF method and is often obtained from the gradient of the interface
normal vector using finite difference approximations (Brackbill et al., 1992; Sussman
et al., 1994; Sussman and Puckett, 2000; Renardy and Renardy, 2002). On unstructured
meshes, finite volume approximations using the Gauss theorem, which reduce to finite
difference approximations on orthogonal meshes, are generally applied to estimate the
derivatives. However, such estimates of the interfacial mean curvature are relatively in-
accurate, in particular when a sharp function, such as the volume fraction, is used. This
principally leads to the generation of unphysical velocities near the interface, i.e., the
so-called spurious currents (Scardovelli and Zaleski, 1999; Popinet and Zaleski, 1999).

More accurate estimates are obtained using higher order methods. For instance, in
the PROST method proposed by Renardy and Renardy (2002), local parabolic recon-
structions of the interface are performed by least-squares fitting of a quadratic surface to
the volume fraction, providing second order accurate estimates of the interfacial mean
curvature. Within the VOF interface tracking framework, the height function method,
initially proposed by Torrey et al. (1985), shows in addition second order accuracy.
In this method, approximations of the local interface position are obtained from lo-
cal volume integrals of the volume fractions. The interfacial mean curvature is then
computed from the local interface positions, i.e., local height functions, using centered
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finite differences. Due to the nature of the height function calculations, i.e., discrete
sums along the direction of the largest component of the interface normal vector, the
method is restricted to orthogonal meshes. Because no fitting is required, the height
function method is faster than parabolic reconstruction algorithms, especially in three
dimensions. However, when the interface is under-resolved, i.e., when the radius of
curvature of the interface is comparable to the mesh size, consistent height functions
cannot be found. To overcome this problem, Popinet (2009) recently proposed a gen-
eralized height function technique where under-resolved interfaces are treated appro-
priately through parabolic reconstruction. The method is embedded in the Gerris Flow
Solver open source code (Popinet, 2003).

To avoid the generation of spurious currents at the interface, Raeini et al. (2012)
proposed a Filtered Surface Force (FSF) method. It is derived from the CSF method,
however a filtering procedure is applied to remove the capillary forces that are parallel
to the interface. Though some amount of capillary forces are removed artificially, the
method is particularly effective for the simulation of two-phase flows with very low
capillary numbers such as in porous media. Another advantage of the method is its
compatibility with any interfacial curvature calculation methods.

Phase change models

The first CFD model simulating boiling is attributed to Welch (1995), where the
liquid-vapor interface is represented in two dimensions by the boundary between two
moving computational domains discretized using triangular meshes. Since the interface
is explicitly tracked as a boundary, the interfacial jumps and the mass transfer rate are
directly computed at the interface and included as boundary conditions within each
phase. In Welch (1998), the method is further applied to the simulation of nucleate
boiling and the homogeneous vapor bubble growth benchmark is introduced. However
the method is limited to small interface deformation without topology change. In order
to simulate large interface deformation, interface tracking methods, such as the ones
introduced previously, are adopted. In Son and Dhir (1998), a LS method is used,
while a VOF and a FT method is employed in Welch and Wilson (2000) and Juric
and Tryggvason (1998), respectively. These models are applied to the simulation of
two-dimensional film boiling. Various one-dimensional benchmarks with analytical
solutions are introduced also in Welch and Wilson (2000), such as the Stefan problem
and the sucking interface problem.

Various phase change models coupled with the LS method have been continuously
developed and improved after the initial work of Dhir’s group Son and Dhir (1998).
In Son et al. (1999), a sub-grid model for micro layer evaporation is included into the
original model and is applied to nucleate boiling on a horizontal surface. Merging
processes during nucleate boiling are also analyzed in Son et al. (2002), Mukherjee and
Dhir (2004) and Dhir (2006) using this model. In Mukherjee and Kandlikar (2007) the
dynamic contact angles effects during pool boiling are analyzed. An improved model
based on the Ghost Fluid Method and an Immersed Boundary Method (Son, 2005) is
introduced in Son and Dhir (2007) and Son and Dhir (2008b) for the simulation of film
boiling over a horizontal cylinder. Simulation of nucleate boiling with high heat fluxes
and sub-cooled pool boiling are also undertaken with the improved model in Son and
Dhir (2008a) and Wu and Dhir (2011), respectively. In addition to the model of Dhir’s
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group, Gibou et al. (2007) developed a phase change model based on the LS method
and the Ghost Fluid Method, with application to the simulation of two-dimensional
film boiling. Tanguy et al. (2007) also developed a similar model with application to
the evaporation of a water droplet in air. The main drawback of phase change models
coupled with the LS method is that conservation of mass is not strictly guaranteed due
to the interface tracking approach.

The phase change model coupled with the FT technique introduced in Juric and
Tryggvason (1998) is modified and applied to the study of film boiling in Esmaeeli
and Tryggvason (2004a) and Esmaeeli and Tryggvason (2004b). An Immersed Bound-
ary Method is also implemented to deal with complex solid geometries and simula-
tion of film boiling over horizontal cylinders is performed in Esmaeeli and Tryggvason
(2004c). Despite the model is demonstrated to be reliable, the implementation of the FT
method with treatment of topology changes at the liquid-vapor interface is complicated.

The VOF-based phase change model of Welch and Wilson (2000) is used in Welch
and Rachidi (2002) to simulate film boiling with conjugate heat transfer and in Agarwal
et al. (2004) to study the periodic bubble release during film boiling in two dimensions.
In Yuan et al. (2008), a VOF-based phase change model is extended to non-orthogonal
body-fitted coordinates in order to simulate film boiling on a sphere. These phase
change models compute the mass transfer rate directly from the heat flux at the inter-
face. In contrast, a phase change model based on the evaporation heat transfer coeffi-
cient proposed by (Schrage, 1953) is developed in Hardt and Wondra (2008). In this
phase change model, a smearing-out of the mass transfer rate is also performed over
few cells around the interface in order to stabilize the solution. The mass transfer rate
is also shifted to the liquid side and to the vapor side to account for disappearance and
creation of mass. This shifting generates error in the velocity, pressure and temperature
fields because the mass transfer does not occur at the interface itself but in the liquid
side and in the vapor side respectively. The model therefore requires a finer mesh with
respect to the other existing phase change models. However it is more flexible with
respect to the type of mesh and to the interface tracking technique adopted, which is
an advantage for an implementation within a general purpose CFD software. In ef-
fect, the method has been implemented successfully in the OpenFOAM R© open-source
CFD toolbox by Kunkelmann and Stephan (2009). Three-dimensional film boiling and
nucleate boiling simulation are performed. The model is also modified in Kunkel-
mann and Stephan (2010b) and Kunkelmann and Stephan (2010a) to compute the mass
transfer rate directly from the heat flux at the interface by introducing a level set recon-
struction method. As described in Kunkelmann (2011), computing the mass transfer
directly from the heat flux at the interface is more accurate when the interface is well-
resolved, such as in nucleate boiling simulations. On the other hand, the calculation
of the mass transfer rate through the evaporation heat transfer coefficient is proven ef-
fective when the interface is under-resolved or when high heat fluxes are present such
as in film boiling simulations. The Hardt and Wondra approach is also implemented in
the commercial ANSYS R© FLUENT R© code in Magnini and Pulvirenti (2011), Magnini
et al. (2013a) and Magnini et al. (2013b). In these studies, evaporation of elongated
bubbles in microchannels are investigated. The particularity of the method is a self-
implementation of the height function method for interfacial curvature calculation in
order to increase the stability and accuracy of surface tension modeling.
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Table 1.1: Features of the major phase change models found in literature.
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Dhir’s group LS no yes yes no noa yes DHTb

Tryggvason’s group FT no no yes no noa yes DHTb and ECc

Welch’s group VOF-PLIC yes yes no no noa yes DHTb

Stephan’s group VOF yes yes yes yes yes no DHTb and ECc

Magnini et al. VOF-PLIC yes yes yes yes yes no ECc

Sato and Ničeno VOF-CIPd yes yes yes no no yes DHTb

a Staggered grid formulation renders adaptive mesh refinement a complicated task.
b Direct calculation from interfacial heat flux.
c Calculation using the evaporation heat transfer coefficient approach.
d Advection of the VOF using the CIP-CSL2 scheme (Nakamura et al., 2001).

Phase change models coupled with other types of interface tracking techniques have
also been proposed. In Tomar and Biswas (2005), a Coupled Level-Set Volume-Of-
Fluid interface tracking method is employed and simulations of film boiling in two
dimensions are analyzed. The method is mass conservative however no validation test
cases are presented. Very recently, Sato and Ničeno (2013) proposed a phase change
model coupled with the mass conservative interface tracking technique developed in
Sato and Ničeno (2012). The phase change model is based on direct estimation of
the heat flux at the interface and a sharp temperature field is solved using a discretiza-
tion similar to the Ghost Fluid Method. Several test cases are presented and three-
dimensional simulations of nucleate boiling are performed. The method is however
limited to uniform Cartesian grids.

A summary of the major phase change models found in literature and their features
is given in Table 1.1.

1.4 Objectives

The general objective of the present thesis is to develop and validate a numerical model
for the simulation of two-phase heat and mass transfer for applications within the en-
ergy sector. As such, the thesis will focus on simulation of boiling phenomena due to
its wide use and importance in the production and conversion of energy. The developed
model is intended to be used in parallel with high resolution experiments in order to
provide deeper insights into the mechanisms governing boiling heat transfer and thus
to reduce the number of trials while optimizing the design of heat exchangers.
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Different approaches are available for the implementation of such a numerical model
into a CFD code. While it is possible to develop a specific stand-alone application, it
is preferred to implement the model within the open-source CFD toolkit OpenFOAM R©

for a higher sustainability and usage of the model. The structure of the code is highly
flexible, parallelizable and compatible with general polyhedral meshes. It has also a
large community of users and developers which participates actively to the continuous
improvement of the CFD libraries available.

The VOF interface tracking method is adopted due to its wide usage, conservative
property and robustness. A VOF method employing a high-resolution scheme and an
anti-diffusive term is already implemented within OpenFOAM libraries. Extension of
the method to deal with boiling phase change is therefore required. The verification
and validation of the model will be performed following typical benchmarks using
analytical solutions. Both the isothermal and phase change parts of the model will be
analyzed. The method of verification and validation follows the Q3 approach proposed
by Colombo et al. (2012).

In order to assess the accuracy of the two-phase model in practical cases, spheri-
cal rising bubbles will be investigated. The results will be compared with theoretical
correlations and experimental data available in literature. Finally, a benchmark for the
simulation of nucleate pool boiling will be developed using experimental data obtained
at the MIT pool boiling facility, where part of the present thesis has been achieved with
the support of the “Progetto Roberto Rocca” joint MIT–Politecnico di Milano research
program.

1.5 Novel contributions in this thesis

The present thesis proposes a novel numerical framework for the simulation of two-
phase heat and mass transfer which consists of the following features:

• the VOF interface tracking technique is used with a compressive high resolution
scheme;

• the method is mass conservative;

• interface topology changes are treated automatically;

• the method is both two- and three-dimensional;

• unstructured mesh are employed;

• adaptive mesh refinement is possible in three-dimension;

• the sources due to mass transfer are treated in a sharp way;

• the calculation of the mass transfer rate is performed directly from the heat fluxes
at the interface (DHT).

The method implemented is similar to the method developed by the Stephan’s group,
however a sharp treatment of the sources due to mass transfer is adopted here. This
permits to reduce the error in the velocity and temperature fields near the interface and
to reduce the global number of mesh elements because the regions of interest, requiring
high spatial resolution, are more concentrated around the interface.
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In addition to these features, two interfacial curvature calculation methods are pro-
posed in order to reduce the spurious velocities near the two-phase interface and to
increase the accuracy of the capillary forces estimates. These methods are compared
to reference data and to the height function method implemented in the Gerris Flow
Solver code (Popinet, 2009).

A detailed analysis of isothermal spherical rising air bubbles in water is also per-
formed with proper identification of the reference data to be used.

Finally, a benchmark for the simulation of nucleate boiling is developed using the
experimental data obtained at the pool boiling facility of the Department of Nuclear
Science and Engineering of the Massachusetts Institute of Technology.

14
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CHAPTER2
Governing equations

In this chapter, the governing equations of a two-phase flow with heat and mass transfer
are derived. First the local instant conservation equations are obtained. Then the one-
fluid formulation is introduced through the use of a Heaviside function and the transport
equations that will be solved in the numerical model are retrieved.

2.1 Local instant conservation equations

In the present study, the standard method of continuum mechanics is followed. As
a result, the flow of two immiscible phases is described by two single-phase regions
delimited by moving interfaces and solid boundaries. The standard differential balance
equations hold for each subregion up to an interface, but not across it. The singular
characteristics (discontinuities) in the various variables at an interface are taken into
account using appropriate form of the balance equations: the so-called jump conditions.
Finally, the problem is define uniquely using additional interfacial boundary conditions
and constitutive equations.

2.1.1 General balance equation

The general balance equation of a quantity describing fluid flow can be stated in the
differential form, applicable at a point, or in the integral form, applicable to a region.
Consider a material volume V (t) cut by an interface Aint(t) which divides the material
volume V (t) into sub-volumes V1(t) and V2(t), respectively bounded by surfaces A1(t)
and Aint(t), and, A2(t) and Aint(t) (see Figure 2.1). As the volume V (t) is material,
A1(t) and A2(t) are also material and we have at each point belonging to these surfaces

uA · nk = uk · nk, (2.1)

15
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Figure 2.1: Material volume V (t) cut by an interface Aint(t).

where nk is the outward-pointing unit normal vector of the surface, uA · nk the speed
of displacement of the surface and uk the velocity of a particle, with k = 1, 2 designing
the k-th phase. The interface Aint(t), delimited by the curve Cint(t), is not a material
surface and mass transfer may occur between the sub-volumes V1(t) and V2(t). Defin-
ing uint(x, t) the velocity of the interface, the mass transfer per unit surface from the
k-th phase to the other phase is defined as

ṁ′′k = ρk (uk − uint) · nk. (2.2)

with ρk(x, t) the density of the k-th phase. Note that by definition ṁ′′1 = −ṁ′′2.
The general integral balance of any specific quantity fk = fk(x, t) of the k-th phase

can be written introducing the surface flux Jk and the volume source φk. This gives

d

dt

∫
Vk(t)

ρkfkdV = −
∮
∂Vk(t)

Jk · nkdA+

∫
Vk(t)

ρkφkdV −
∫
Aint(t)

ṁ′′kfkdA. (2.3)

The left-hand side represents the time rate of change of ρkfk within Vk(t). The first
term of the right-hand side is the influx through ∂Vk(t) (which does not include mass
transfer), the second term is the volume source and the last term is the influx due to
mass transfer at the interface. Using the Reynolds’ transport theorem, which is a three-
dimensional generalization of the Leibniz’s integral rule, and the Gauss’s theorem, the
differential form of the balance equation can be obtained. The Leibniz’s integral rule
shows how to differentiate under the integral sign, provided that both the integrand F
and its partial derivative are sufficiently smooth. It is given as

d

dx

∫ β(x)

α(x)

F (x, y)dy =

∫ β(x)

α(x)

∂F

∂x
dy + F (x, β(x))

dβ

dx
− F (x, α(x))

dα

dx
, (2.4)

Generalizing the above equation to three dimensions, the Reynolds’ transport theo-
rem is obtained and reads

d

dt

∫
V (t)

FdV =

∫
V (t)

∂F

∂t
dV +

∮
∂V (t)

FuA · ndA. (2.5)

where uA · n is the surface displacement velocity of ∂V (t).

16



i
i

“Guedon_Thesis” — 2013/8/27 — 15:29 — page 17 — #35 i
i

i
i

i
i

2.1. Local instant conservation equations

The Gauss’s theorem gives the relation between the flux of a quantity through a
closed surface and its behavior within the surface. For a vector or tensor field of any
order F, the Gauss’s theorem states that∫

V (t)

∇ · FdV =

∮
∂V (t)

F · ndA, (2.6)

while for a scalar field F , the theorem is∫
V (t)

∇FdV =

∮
∂V (t)

FndA. (2.7)

In view of Eqs. (2.3) and (2.5) the general balance equation becomes∫
Vk(t)

∂ρkfk
∂t

dV +

∮
∂Vk(t)

ρkfkuA · nkdA

= −
∮
∂Vk(t)

Jk · nkdA+

∫
Vk(t)

ρkφkdV −
∫
Aint(t)

ṁ′′kfkdA.

(2.8)

As discussed previously, the boundary Ak(t) of the sub-volume Vk(t) moves with the
fluid, while the interface Aint(t) can move relative to the fluids due to mass transfer.
Hence, the above equation reads∫

Vk(t)

∂ρkfk
∂t

dV +

∫
Ak(t)

ρkfkuk · nkdA+

∫
Aint(t)

ρkfkuint · nkdA

= −
∮
∂Vk(t)

Jk · nkdA+

∫
Vk(t)

ρkφkdV −
∫
Aint(t)

ρkfk (uk − uint) · nkdA,
(2.9)

which simplifies to∫
Vk(t)

∂ρkfk
∂t

dV +

∮
∂Vk(t)

ρkfkuk · nkdA

= −
∮
∂Vk(t)

Jk · nkdA+

∫
Vk(t)

ρkφkdV.

(2.10)

The above general balance equation in integral form is identical to the case without
mass transfer. Using the Gauss’s theorem Eq. (2.6), the differential form of the general
balance equation is obtained

∂ρkfk
∂t

+∇ · (ρkfkuk) = −∇ · Jk + ρkφk. (2.11)

2.1.2 Laws of conservation

The mathematical formulation of the laws of conservation of mass, linear momentum,
angular momentum and total energy can be expressed in differential form using the
general balance equation (Eq. (2.11)).
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Chapter 2. Governing equations

Conservation of mass
In the present study, we do not consider volume sources of mass. Hence, by setting

fk = 1, Jk = 0, φk = 0, (2.12)

the conservation of mass is expressed in differential form as

∂ρk
∂t

+∇ · (ρkuk) = 0. (2.13)

Conservation of linear momentum
Considering the forces acting on a fluid mass, the conservation of linear momentum

can be obtained from Eq. (2.11) by setting

fk = uk, Jk = −Tk = pkI− Sk, φk = bk, (2.14)

where the surface stress tensor Tk, the pressure term pkI, the viscous stress Sk and the
body forces bk have been introduced, with I the unit tensor. After substitution in Eq.
(2.11) we have

∂ρkuk
∂t

+∇ · (ρkukuk) = −∇pk +∇ · Sk + ρkbk. (2.15)

Note that the effects of the other phase and surface tension at the interface are taken
into account by using proper boundary conditions for pk and Sk at the interface.

Conservation of angular momentum
In the absence of body torque or couple stress, which is the case in the present work,

all torques arise from the surface stress and the body force (Aris, 1962; Ishii and Hibiki,
2006). Hence, the conservation of angular momentum reduces to

Tk = T>k , (2.16)

which states that the surface stress tensor is symmetric.

Conservation of total energy
The conservation of total energy can be obtained by setting

fk =
u2
k

2
+ ek, Jk = qk −Tk · uk, φk = bk · uk +

q̇′′′k
ρk
, (2.17)

where the velocity magnitude uk, the internal energy ek, the heat flux qk and the vol-
umetric heat generation rate q̇′′′k related to the k-th phase have been introduced. After
substitution in Eq. (2.11) we have

∂

∂t

[
ρk

(
u2
k

2
+ ek

)]
+∇ ·

[
ρk

(
u2
k

2
+ ek

)
uk

]
= −∇ · qk +∇ · (Tk · uk) + ρk (bk · uk) + q̇′′′k .

(2.18)

18
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2.1. Local instant conservation equations

Since the number of dependent variables exceeds that of the field equations, these
four local laws of conservation with proper boundary conditions are insufficient to close
the problem. Consequently, it is necessary to supplement them with various constitutive
equations, that define a certain type of ideal materials, and interfacial jump conditions,
that account for the discontinuities at an interface. However, before discussing them,
there are some important relations which can be derived from the above equations.

Mechanical energy equation
By dotting the conservation of linear momentum (Eq. (2.15)) by the velocity and

using the conservation of mass (Eq. (2.13)), we can obtained the mechanical energy
equation

∂

∂t

(
ρk
u2
k

2

)
+∇ ·

(
ρk
u2
k

2
uk

)
= −∇pk · uk + (∇ · Sk) · uk + ρk (bk · uk) .

(2.19)

Internal energy equation
By substituting the mechanical energy equation (Eq. (2.19)) from the conservation

of total energy (Eq. (2.18), the internal energy equation is obtained. Furthermore, Tk

is symmetric thus Sk is symmetric and ∇ · (Sk · uk) = (∇ · Sk) · uk + (Sk · ∇) · uk.
After simplification, the internal energy equation reduces to

∂ρkek
∂t

+∇ · (ρkekuk) = −∇ · qk − pk∇ · uk + (Sk · ∇) · uk + q̇′′′k . (2.20)

Enthalpy equation
Introducing the enthalpy of the k-th phase hk = ek + pk/ρk, the enthalpy equation

is obtained from the internal energy equation

∂ρkhk
∂t

+∇ · (ρkhkuk)

= −∇ · qk +
∂pk
∂t

+ uk · ∇pk + (Sk · ∇) · uk + q̇′′′k .

(2.21)

2.1.3 Constitutive equations

Constitutive equations provide mathematical relations able to describe approximately
the behaviors of specific group of materials or substances. They are formulated from
experimental observations together with postulated principles such as the entropy in-
equality, determinism, frame indifference and local action (Ishii and Hibiki, 2006). The
principle of determinism expresses the predictability of a present state from a past his-
tory. The principle of material frame indifference means that the response of a material
is independent of the conditions of observation. The entropy inequality states that the
rate of entropy production should be positive, which can be considered as a restriction
on the constitutive laws. Finally, the principle of local action states that an object is
influenced directly only by its immediate surroundings. As noticed by Ishii and Hibiki
(2006), various constitutive equations can be classified into three groups based on their
physical significances:
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Chapter 2. Governing equations

1. mechanical constitutive equations;

2. energetic constitutive equations;

3. constitutive equation of state.

The viscous stress tensor and the body forces are specified in the first group, whereas
the heat flux and heat generation rate are supplied by the second group. The last equa-
tion provides a relation between two or more state functions such as the temperature,
pressure, volume, or internal energy of the fluid.

In the present study, the following constitutive equations are adopted:

Mechanical constitutive equation
The fluids are considered as Newtonian, i.e., the viscous stresses depend linearly on

the dynamic viscosity µk of the fluid, which is assumed constant, the rate of strain and
the rate of expansion of the flow

Sk = µk
(
∇uk +∇u>k

)
− 2

3
µk (∇ · uk) I. (2.22)

For an incompressible fluid, the velocity field is solenoidal and the relation reduces to

Sk = µk
(
∇uk +∇u>k

)
. (2.23)

The gravitational force is considered as the only body force acting the fluids, thus
we have

bk = g. (2.24)

Energetic constitutive equation
The Fourier’s law is adopted to describe the mechanism of contact heat transfer.

Furthermore, isotropic materials are considered. Thus, the heat flux depend linearly on
the temperature gradient and the thermal conductivity λk of the fluid, which is assumed
constant. The heat flux becomes

qk = −λk∇Tk. (2.25)

Heat generation due to nuclear, electric or magnetic effects are absent. In addition,
the temperature of the fluids in the problems treated within the present work are rela-
tively low thus radiative heat transfer is negligible. Hence, the constitutive law for the
volumetric heat generation rate is

q̇′′′k = 0. (2.26)

Equation of state
The assumption of incompressible fluids is made throughout the present work. It

is justified by the small enough Mach number Ma = u/usound within the liquid and
gaseous phases. The density ρk of each phase is therefore assumed constant and the
continuity equation (Eq. (2.13)) reduces to

∇ · uk = 0. (2.27)
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2.1. Local instant conservation equations

2.1.4 Interfacial jump and boundary conditions

The standard differential balance equations derived previously hold for each fluid sub-
region up to an interface, but not across it. The so-called jump conditions are necessary
to account for the discontinuities in the various variables at the interface, and thus to
impose the proper boundary conditions. Different approaches can be found in literature
for their derivation. In Ishii and Hibiki (2006), the balance equations are integrated on a
control volume containing a finite thickness interface. While in Delhaye (1974), the in-
terfacial jump conditions are derived from the global balances on a material volume cut
by an interface with given properties and mass. Here, an approach similar to Delhaye
(1974) is used. However, for the sake of simplicity, an ideal interface is assumed.

Ideal interface condition
By setting the entropy production of the interface to zero, there are no resistances to

interfacial transfer of quantities (Ishii and Hibiki, 2006). This means that the exchanges
between the two phases are governed by the conditions of the bulk fluid at each side,
but not by the interface itself. Hence the interface can be considered as ideal and the
transfer at the interface can be said reversible.

Mass jump condition
The conservation of mass integrated over the material volume V (t) (see Figure 2.1)

gives

d

dt

∫
V1(t)

ρ1dV +
d

dt

∫
V2(t)

ρ2dV = 0. (2.28)

Thus, following Eqs. (2.3) and (2.12), we have∫
Aint(t)

ρ1 (u1 − uint) · n1dA+

∫
Aint(t)

ρ2 (u2 − uint) · n2dA = 0, (2.29)

which simply states that

ṁ′′1 = −ṁ′′2 = ṁ′′. (2.30)

Linear momentum jump condition
In order to integrate the linear momentum over the material volume V (t), the forces

acting on the interface need to be taken into account in addition to the forces acting on
the fluid particles. Introducing the surface tension coefficient σ(xint, t), the conserva-
tion of linear momentum reads

d

dt

∫
V1(t)

ρ1u1dV +
d

dt

∫
V2(t)

ρ2u2dV =

∮
Cint(t)

σNdl

+

∫
A1(t)

T1 · n1dA+

∫
A2(t)

T2 · n2dA+

∫
V1(t)

ρ1b1dV +

∫
V2(t)

ρ2b2dV.

(2.31)

The Gauss’s theorem for a surface (Aris, 1962; Delhaye, 1974) is given as∮
∂A(t)

FNdl =

∫
A(t)

[∇sF − (∇s · n)Fn] dA, (2.32)
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Chapter 2. Governing equations

where F is a scalar field defined on the surface A(t),∇s the surface del operator and N
the outward-pointing unit normal vector at a given point belonging to the curve ∂A(t)
and located in the tangent plane of A(t). By definition we also have the identity

∇ = ∇s + n(n · ∇) = ∇s +∇n. (2.33)

In view of Eqs. (2.3), (2.14), (2.31) and (2.32), the linear momentum jump condition
reduces to

T1 · n1 + T2 · n2 = ṁ′′1u1 + ṁ′′2u2 +∇sσ + σκn, (2.34)

where κ = −∇s ·n is twice the mean curvature and n can be chosen arbitrarily equal to
n1 or n2. Considering n = n1 = −n2 and Tk = −pkI + µk

(
∇uk +∇u>k

)
, the above

equations becomes

(p2 − p1) n +
[
µ1

(
∇u1 +∇u>1

)
− µ2

(
∇u2 +∇u>2

)]
· n =

ṁ′′ (u1 − u2) +∇sσ + σκn.
(2.35)

Projecting the above jump condition along the normal to the interface and using the
identities∇u · n = ∇un and (∇u)> · n = ∇nu, the pressure jump is obtained

p2 − p1 = 2 (µ2∇nu2,n − µ1∇nu1,n) + ṁ′′ (u1,n − u2,n) + σκ, (2.36)

where uk,n(xint, t) is the normal component of the velocity of the k-th phase at the
interface. For the tangential directions we have

µ1 (∇su1,n +∇nu1,s)− µ2 (∇su2,n +∇nu2,s) =

ṁ′′ (u1,s − u2,s) +∇sσ,
(2.37)

which, considering the no-slip interfacial boundary condition u1,s = u2,s, given later
in the text, reduces to

µ1 (∇su1,n +∇nu1,s)− µ2 (∇su2,n +∇nu2,s) = ∇sσ. (2.38)

Angular momentum jump condition
The derivation of the angular momentum jump condition leads to the same condition

as Eq. (2.35) (Delhaye, 1974).
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Total energy jump condition
The global balance of the total energy reads

d

dt

∫
V1(t)

ρ1

(
u2

1

2
+ e1

)
dV +

d

dt

∫
V2(t)

ρ2

(
u2

2

2
+ e2

)
dV =

−
∫
A1(t)

q1 · n1dA−
∫
A2(t)

q2 · n2dA

+

∫
A1(t)

(T1 · u1) · n1dA+

∫
A2(t)

(T2 · u2) · n2dA

+

∫
V1(t)

ρ1 (b1 · u1) dV +

∫
V2(t)

ρ2 (b2 · u2) dV

+

∫
V1(t)

q̇′′′1 dV +

∫
V2(t)

q̇′′′2 dV +

∫
A1(t)

(∇sσ + σκn) · uintdA.

(2.39)

In view of Eqs. (2.3) and (2.17) the above equation reduces to

−q1 · n1 − q2 · n2 + (T1 · u1) · n1 + (T2 · u2) · n2

= ṁ′′1

(
u2

1

2
+ e1

)
+ ṁ′′2

(
u2

2

2
+ e2

)
+ (∇sσ + σκn) · uint.

(2.40)

Considering the energy constitutive equation qk = −λk∇Tk, we have the following
jump condition for the heat flux at the interface

λ1∇nT1 − λ2∇nT2 = (T2 · u2) · n− (T1 · u1) · n

+ṁ′′
(
u2

1

2
+ e1 −

u2
2

2
− e2

)
+ (∇sσ + σκn) · uint.

(2.41)

Mechanical energy jump condition
Dotting the linear momentum jump condition, Eq. (2.35), by the interface velocity,

the mechanical energy jump condition is obtained (Delhaye, 1974)

(T1 · n1) · uint + (T2 · n2) · uint

= ṁ′′1u1 · uint + ṁ′′2u2 · uint + (∇sσ + σκn) · uint.
(2.42)

Internal energy jump condition
Subtracting the mechanical energy jump condition from the total energy jump con-

dition, the internal energy jump condition is obtained

λ1∇nT1 − λ2∇nT2 = (T2 · n) · (u2 − uint)− (T1 · n) · (u1 − uint)

+ṁ′′
(
u2

1

2
+ e1 − u1 · uint −

u2
2

2
− e2 + u2 · uint

)
.

(2.43)
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Chapter 2. Governing equations

Enthalpy jump condition
Substituting the internal energy with the enthalpy defined as hk = ek + pk/ρk, the

enthalpy jump condition is obtained from the internal energy jump condition

λ1∇nT1 − λ2∇nT2 = (T2 · n) · (u2 − uint)− (T1 · n) · (u1 − uint)

+ṁ′′
(
u2

1

2
+ h1 −

p1

ρ1

− u1 · uint −
u2

2

2
− h2 +

p2

ρ2

+ u2 · uint

)
.

(2.44)

Replacing the expression of the surface stress tensor by Tk = −pkI + Sk, the above
equation becomes

λ1∇nT1 − λ2∇nT2 = p1 (u1 − uint) · n− p2 (u2 − uint) · n

+ (S2 · n) · (u2 − uint)− (S1 · n) · (u1 − uint)

+ṁ′′
(
u2

1

2
+ h1 −

p1

ρ1

− u1 · uint −
u2

2

2
− h2 +

p2

ρ2

+ u2 · uint

)
,

(2.45)

which, using the expression of the mass transfer flux, simplifies to

λ1∇nT1 − λ2∇nT2 = (S2 · n) · (u2 − uint)− (S1 · n) · (u1 − uint)

+ṁ′′
(
u2

1

2
+ h1 − u1 · uint −

u2
2

2
− h2 + u2 · uint

)
.

(2.46)

In most cases, the viscous dissipation and kinetic energy are negligible with respect to
the heat flux and enthalpy. Hence, the enthalpy jump can be expressed as

ṁ′′ (h2 − h1) = λ2∇nT2 − λ1∇nT1. (2.47)

Thermal boundary condition
Since the interface is ideal, the thermal boundary condition can be derived from the

interfacial entropy inequality (Ishii and Hibiki, 2006). This gives

T1 = T2 = Tint, (2.48)

which states that the interface is in thermal equilibrium. The reader is referred to Ishii
and Hibiki (2006) for an introduction to the cases in which the above condition is not
valid.

No-slip condition
From the above equations, the tangential velocity us,int is an unknown parameter.

In the present thesis, the interface is considered ideal, thus from the interfacial entropy
inequality (Ishii and Hibiki, 2006), a no-slip condition is obtained

u1,s = u2,s = uint,s, (2.49)

which is valid for viscous fluids.
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2.2. One-fluid formulation

gas

liquid

solid solid

liquid

gas

gsσlsσ

σ
θ

gsσlsσ

σ

θ

3-phase
contact
line

Figure 2.2: Contact angle θ in function of the surface tension between gas-liquid σ, gas-solid σgs, and
liquid-solid σls.

Contact angle
The singularity created by the intersection of two different interfaces, also referred

as the 3-phase contact line, adds an additional boundary condition to the problem. In
the case of a two-phase flow, the third phase is the solid bounding the flow domain. As
a bubble or a droplet approaches the solid boundary, the gas-liquid interface attaches
the wall forming a singular curve at the intersection. Depending on the forces acting
on the singular curve, a given contact angle θ, measured though the liquid, is observed
(see Figure 2.2). Considering only the surface fluxes, the force balance in the normal
plane to the singular curve gives (Ishii and Hibiki, 2006)

cosθ =
σgs − σls

σ
, (2.50)

where σ is the gas-liquid surface tension, σgs the gas-solid surface tension, and σls
the liquid-solid surface tension. In practice, only the surface tension between gas and
liquid is known and the contact angle is measured experimentally for a given set of gas-
liquid-solid phases. In addition, the surface roughness and chemical heterogeneity of
the surface can influence the apparent contact angle at the 3-phase contact line. In mod-
eling and measuring the contact angle, static conditions are often considered. However,
the contact angle is dynamic while the interface is moving and the dynamic values of
contact angle can differ significantly from the static ones. In the present thesis, static
apparent contact angles are considered.

2.2 One-fluid formulation

In order to reduce the computational time associated with the solution of the conser-
vation laws, the one-fluid formulation can be used. In this case a Heaviside function
χ(x, t) is introduced and allows to solve only one set of conservation laws for both the
phases. Early works employing such formulation can be attributed to Hirt and Nichols
(1981), Unverdi and Tryggvason (1992) and Sussman et al. (1994). It is particularly
suited for modeling two-phase flow at the spatial scale of the interface shape.

The Heaviside function is defined arbitrarily as

χ(x, t) ≡
{

1 if the point x pertains to phase 1,
0 if the point x pertains to phase 2.

(2.51)
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Chapter 2. Governing equations

The density, dynamic viscosity and thermal conductivity are then defined as

ρ = χρ1 + (1− χ) ρ2, (2.52)

µ = χµ1 + (1− χ)µ2, (2.53)

λ = χλ1 + (1− χ)λ2. (2.54)

All other quantities are now defined using only one variable for each phase, e.g. u = u1

within V1(t) and u = u2 within V2(t). In the derivation of the conservation laws, the
constitutive equations as well as the jump and boundary conditions introduced previ-
ously will be taken into account.

2.2.1 Conservation of mass

The time derivative of the newly defined density field reads

d

dt

∫
V (t)

ρdV =
d

dt

∫
V (t)

χρ1dV +
d

dt

∫
V (t)

(1− χ) ρ2dV, (2.55)

which is equivalent to

d

dt

∫
V (t)

ρdV =
d

dt

∫
V1(t)

ρ1dV +
d

dt

∫
V2(t)

ρ2dV. (2.56)

This results simply in the conservation of mass for the material volume

d

dt

∫
V (t)

ρdV = 0, (2.57)

which, using the Reynolds’ transport theorem Eq. (2.5), gives the following the differ-
ential form

∂ρ

∂t
+∇ · (ρu) = 0. (2.58)

Considering the incompressibility condition, it is possible to obtain the condition for
the divergence of the one-fluid velocity field. Using the Gauss’s theorem Eq. (2.6), we
have ∫

V (t)

∇ · udV =

∫
A1(t)

u · ndA+

∫
A2(t)

u · ndA. (2.59)

Summing the incompressibility condition applied to each phase (Eq. (2.27)) gives∫
V1(t)

∇ · u1dV +

∫
V2(t)

∇ · u2dV = 0, (2.60)

which, using the Gauss’s theorem Eq. (2.6) gives∫
A1(t)

u1 ·ndA+

∫
Aint(t)

u1 ·ndA+

∫
A2(t)

u2 ·ndA−
∫
Aint(t)

u2 ·ndA = 0. (2.61)
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2.2. One-fluid formulation

On the boundary of the material volume, surfaces A1(t) and A2(t), the one-fluid veloc-
ity u is equal to u1 and u2 respectively. At the interface, the jump condition need to be
taken into account. Using the definition of the mass transfer flux Eq. (2.2) we have

u2 · n− u1 · n =

(
1

ρ2

− 1

ρ1

)
ṁ′′. (2.62)

Hence, the incompressibility condition now reads∫
V (t)

∇ · udV =

∫
Aint(t)

(
1

ρ2

− 1

ρ1

)
ṁ′′dA, (2.63)

which gives the following differential form

∇ · u =

(
1

ρ2

− 1

ρ1

)
ṁ′′δint, (2.64)

where the Dirac delta function δint ∼ Aint/V states the fact that the divergence is non-
null only at the interface

2.2.2 Conservation of linear momentum

The time derivative of the newly defined momentum reads

d

dt

∫
V (t)

ρudV =
d

dt

∫
V (t)

χρ1udV +
d

dt

∫
V (t)

(1− χ) ρ2udV, (2.65)

which is equivalent to

d

dt

∫
V (t)

ρudV =
d

dt

∫
V1(t)

ρ1udV +
d

dt

∫
V2(t)

ρ2udV. (2.66)

Since the one-fluid velocity u is equal to u1 and u2 within V1(t) and V2(t) respectively,
Eq. (2.31) can be used to express the right-hand-side of the above equation. This gives

d

dt

∫
V (t)

ρudV =

∮
Cint(t)

σNdl

+

∫
A1(t)

T1 · n1dA+

∫
A2(t)

T2 · n2dA+

∫
V1(t)

ρ1b1dV +

∫
V2(t)

ρ2b2dV.

(2.67)

Using the Gauss’s theorem for a surface Eq. (2.32) and the constitutive equations Eqs.
(2.23) and (2.24), the above equation becomes

d

dt

∫
V (t)

ρudV = −
∫
A1(t)

p1ndA−
∫
A2(t)

p2ndA

+

∫
A1(t)

µ1

(
∇u1 +∇u>1

)
· ndA+

∫
A2(t)

µ2

(
∇u2 +∇u>2

)
· ndA

+

∫
V1(t)

ρ1gdV +

∫
V2(t)

ρ2gdV +

∫
Aint(t)

(∇sσ + σκn) dA,

(2.68)
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Chapter 2. Governing equations

which, using the one-fluid quantities and the Heaviside function, gives
d

dt

∫
V (t)

ρudV = −
∮
∂V(t)

pndA+

∫
∂V (t)

χµ1

(
∇u +∇u>

)
· ndA

+

∫
∂V (t)

(1− χ)µ2

(
∇u +∇u>

)
· ndA

+

∫
V (t)

χρ1gdV +

∫
V (t)

(1− χ) ρ2gdV +

∫
Aint(t)

(∇sσ + σκn) dA.

(2.69)

The conservation of linear momentum thus reads
d

dt

∫
V (t)

ρudV = −
∮
∂V(t)

pndA+

∮
∂V (t)

µ
(
∇u +∇u>

)
· ndA

+

∫
V (t)

ρgdV +

∫
Aint(t)

(∇sσ + σκn) dA,

(2.70)

which in differential form becomes

∂ρu

∂t
+∇ · (ρuu)

= −∇p+∇ ·
[
µ
(
∇u +∇u>

)]
+ ρg + (∇sσ + σκn) δint.

(2.71)

2.2.3 Enthalpy equation

In the cases studied in the present thesis, it is preferable to solve the enthalpy equation
rather than the total energy equation. In particular, we are interested mainly in the tem-
perature field, thus the transport equation for temperature is derived from the enthalpy
equation, using the fact that the fluids are incompressible and that temperature changes
are relatively small, so that the specific heat capacities can be considered constant.

Neglecting the pressure work, the viscous dissipation and the heat generation, the
enthalpy equation for each phase Eq. (2.21) integrated over the sub-volume Vk(t) per-
taining to each phase becomes∫

Vk(t)

∂ρkhk
∂t

dV +

∮
∂Vk(t)

ρkhkuk · ndA =

∮
∂Vk(t)

λk∇Tk · ndA. (2.72)

Summing the above equation for each phase gives∫
V1(t)

∂ρ1h1

∂t
dV +

∫
A1(t)

ρ1h1u1 · ndA+

∫
Aint(t)

ρ1h1uint · ndA

+

∫
V2(t)

∂ρ2h2

∂t
dV +

∫
A2(t)

ρ2h2u2 · ndA−
∫
Aint(t)

ρ2h2uint · ndA

=

∫
A1(t)

λ1∇T1 · ndA+

∫
Aint(t)

λ1∇T1 · ndA

+

∫
A2(t)

λ2∇T2 · ndA−
∫
Aint(t)

λ2∇T2 · ndA

−
∫
Aint(t)

ρ1h1 (u1 − uint) · ndA+

∫
Aint(t)

ρ2h2 (u2 − uint) · ndA,

(2.73)
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2.2. One-fluid formulation

which, using the Reynolds transport theorem Eq. (2.5) and the enthalpy jump condition
Eq. (2.47), reduces to

d

dt

∫
V1(t)

ρ1h1dV +
d

dt

∫
V2(t)

ρ2h2dV

=

∫
A1(t)

λ1∇T1 · ndA+

∫
A2(t)

λ2∇T2 · ndA

−
∫
Aint(t)

ṁ′′ (h2 − h1) dA+

∫
Aint(t)

ṁ′′ (h2 − h1) dA.

(2.74)

The fluids are incompressible, thus their specific heat capacities are function of tem-
perature only, i.e. ck = ck(T ). In the present thesis, the temperature changes are
relatively small thus variation of specific heat capacities with temperature can be ne-
glected. As a consequence, the specific enthalpy of each phase is a linear function
of temperature. Considering the reference enthalpy of each phase hk,0 taken at some
temperature T0 at the same phase state, we have the following relation for the specific
enthalpy

hk = hk,0 + ck (Tk − T0) , (2.75)

where ck is taken as the specific heat capacity at constant pressure. Substituting the
above equation into Eq. (2.74) gives

d

dt

∫
V1(t)

ρ1c1T1dV +
d

dt

∫
V2(t)

ρ2c2T2dV

+ (h1,0 − c1T0)
d

dt

∫
V1(t)

ρ1dV + (h2,0 − c2T0)
d

dt

∫
V2(t)

ρ2dV

=

∫
A1(t)

λ1∇T1 · ndA+

∫
A2(t)

λ2∇T2 · ndA,

(2.76)

which, using the conservation of mass for each phase (Eq. (2.3) together with (2.12)),
reduces to

d

dt

∫
V1(t)

ρ1c1T1dV +
d

dt

∫
V2(t)

ρ2c2T2dV

=

∫
A1(t)

λ1∇T1 · ndA+

∫
A2(t)

λ2∇T2 · ndA

−
∫
Aint(t)

ṁ′′ (h2,0 − h1,0 − (c2 − c1)T0) dA.

(2.77)
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Chapter 2. Governing equations

Introducing the Heaviside function, the transport equation for the one-fluid temperature
is obtained∫

V (t)

∂ρ̂cT

∂t
dV +

∮
∂V (t)

ρ̂cTu · ndA =

∮
∂V (t)

λ∇T · ndA

−
∫
Aint(t)

ṁ′′ [h21 − (c2 − c1)T0] dA,

(2.78)

where ρ̂c = χρ1c1 + (1− χ)ρ2c2 and h21 = h2,0 − h1,0. In differential form, we have

∂ρ̂cT

∂t
+∇ · (ρ̂cTu) = ∇ · (λ∇T )− ṁ′′ [h21 − (c2 − c1)T0] δint. (2.79)

Note that the above equation is similar to the equation given in Esmaeeli and Tryggva-
son (2004a).
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CHAPTER3
Implemented numerical method

In this chapter, the numerical method used to solve the governing equations of a two-
phase flow with heat and mass transfer are described. The method is implemented using
the OpenFOAM (OpenFOAM Foundation, 2013) CFD toolbox version 2.2.x (reposi-
tory version), thus most of the algorithms and schemes will refer to the documentation
of OpenFOAM. The framework used to discretize the governing equations will be first
introduced, followed by the description of the interface tracking technique and the inter-
facial curvature calculation methods adopted in the present thesis. Then the treatment
of the various interfacial jumps due to heat and mass transfer will be described. Finally,
the algorithm used to couple the pressure and velocity fields and the special treatment
of the body forces will be detailed followed by the final solution procedure adopted.

3.1 Finite volume discretization

A standard Finite Volume method (FVM) is used to reduce the governing equations of
the problem into a system of linear algebraic equations. The solution of this system
is obtained using proper algorithms and linear solvers. It provides estimates of the
solution of the governing equations at given locations and instants, determined by the
discretization of the spatial and temporal domains. The method can be describe through
the following steps:

• Discretization of the computational domain;

• Formulation of the discretized governing equations;

• Solution of the system of linear algebraic equation.
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Chapter 3. Implemented numerical method

P
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Figure 3.1: Typical control volume. The cube symbol denotes the cell center, the cross × the face
center and the spheres • the points defining the cell and its faces.

3.1.1 Discretization of the computational domain

In the case of transient problems, the discretization of the temporal domain is obtained
by prescribing a given number of time-steps to accomplish the desired physical time.
The size of the time-step is usually given as a constant, though a variable time-step size
may be prescribed in order to meet the stability criteria imposed by some numerical
schemes.

The discretization of the spatial domain into control volumes forms the so-called
computational mesh. In the general case, convex polyhedra control volumes are con-
sidered and fill the spatial domain without overlapping. However, it is more common
to use tetrahedra or hexahedra control volumes, or a mix of them with pyramids and
prisms control volumes. In the latter case, the computational mesh is often referred
to as hybrid. Since a computational cell can have a variable number of neighbors, the
data structure adopted is unstructured. In addition, a collocated variable arrangement is
considered, in which all dependent variables share the same control volumes (Rhie and
Chow, 1983).

A typical hexahedral control volume with one of its neighbor are represented in Fig-
ure 3.1. The point P is the centroid of the control volume VP and the point N is the
centroid of the neighboring control volume VN sharing one of the faces of VP . Two
groups of faces are identifiable within the computational mesh: internal faces connect-
ing two control volumes (denoted as owner, with symbol P , and neighbor, with symbol
N ) and boundary faces connected only to one control volume (denoted as owner, with
symbol P ). The vector Sf = Sfnf is the surface area vector of the face connecting
VP and VN and oriented toward the neighbor. In the case of a boundary face, the face
unit normal vector nf is oriented outward the spatial domain. Finally, the geometrical
properties of the control volumes and faces are fully determined by the position of the
mesh points.

In the present thesis, non-moving computational mesh are used. In order to improve
the accuracy of the results without increasing significantly the computational cost, static
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3.1. Finite volume discretization

Table 3.1: Value of ρψ , ψ, γψ and φψ for the various governing equations.

Governing equation ρψ ψ Γψ Φψ

Conservation of mass ρ 1 0 0

Conservation of linear momentum ρ u µ −∇p+ µ∇ · ∇u> + ρg + (∇sσ + σκn) δint

Equation of internal energy ρ̂c T λ −ṁ′′ [h21 − (c2 − c1)Tint] δint

or dynamic local mesh refinement is used for some of the cases studied. Local mesh
refinement consists in the decomposition of a control volume into smaller elements. In
the case of hexahedral control volumes, eight hexahedra are obtained using the edges’
midpoint. This capability, allowed by the the arbitrary shape of the control volume and
the collocated variable arrangement, is particularly suited to three-dimensional simula-
tions, where the computational cost drastically increases when global mesh refinement
is applied.

3.1.2 Formulation of the discretized governing equations

In the previous chapter the governing equations for a two-phase flow with heat and
mass transfer have been derived. It is possible to express them in term of a general
transport equation for a quantity ψ, consisting of a transient, a convection, a diffusion
and a source term. The differential form of the general transport equation reads

∂ρψψ

∂t
+∇ · (ρψψu)−∇ · (Γψ∇ψ) = Φψ, (3.1)

where Γψ is the diffusion coefficient and Φψ the source term for the quantity ψ. The
value of ρψ also depends on the the quantity considered and is given in Table 3.1 to-
gether with the other parameters. The term µ∇·∇u> is given as a source term because
it will receive a different treatment with respect to the diffusion term.

The integration of the general transport equation over the control volume VP and the
time-step ∆t gives∫ t+∆t

t

[∫
VP

∂ρψψ

∂t
dV +

∫
VP

∇ · (ρψψu) dV −
∫
VP

∇ · (Γψ∇ψ) dV

]
dt

=

∫ t+∆t

t

(∫
VP

ΦψdV

)
dt.

(3.2)

A brief description of the discretization of each terms is given in the following. For a
detailed description, the reader is referred to Jasak (1996).

Identities
Considering a linear variation of ψ within the control volume, the following identi-

33



i
i

“Guedon_Thesis” — 2013/8/27 — 15:29 — page 34 — #52 i
i

i
i

i
i

Chapter 3. Implemented numerical method

ties are obtained for the volume integral and the cell faces integral∫
VP

ψ (x) dV = ψPVP , (3.3)∫
f

F · nfdA = Ff · Sf , (3.4)∫
f

FnfdA = FfSf , (3.5)∫
f

ψnfdA = ψfSf , (3.6)

where F is a given vector. The subscripts P and f denote the value at the centroid of
the control volume and at the face center, respectively.

Using the above relations and the Gauss’s theorem gives the following relations
between the volume and surface integrals∫

VP

∇ · FdV =
∑
f

Ff · Sf , (3.7)

∫
VP

∇FdV =
∑
f

FfSf , (3.8)

∫
VP

∇ψdV =
∑
f

ψfSf . (3.9)

Since the unit normal vector nf is oriented outward the owner control volume of the
face, it is necessary to split the summation over the cell faces into two sums to account
for the change in sign:∑

f

af · Sf =
∑
owner

af · Sf −
∑

neighbor

af · Sf , (3.10)

where the vector af is either equal to Ff , FfI or ψfI.

Face interpolation
A collocated variable arrangement is used in the present thesis. In the above identi-

ties, values at the cell faces appear and need to be calculated from the estimates at the
cell center. If not otherwise specified, the value at the cell faces are linearly interpolated
from the cell center values according to

af = αxaP + (1− αx) aN , (3.11)

where the interpolation factor αx is defined as the ratio of the distances fN and PN

αx =
fN

PN
, (3.12)
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3.1. Finite volume discretization

where f is the face center. Such interpolation is second order accurate and is also
referred to as Central Differencing (CD).

Convection term
Following the introduced identities, the discretization of the convection term reads∫

VP

∇ · (ρψψu) dV =
∑
f

(ρψ)f φfψf , (3.13)

where φf = uf · Sf is the face velocity flux. The calculation of the face velocity flux
will be discussed in Section 3.5. The value of ψf can be obtained using the CD scheme
introduced previously. However, this can cause unphysical oscillations in convection-
dominated flows, violating the boundedness of the solution.

The boundedness of the solution can be guaranteed using the so-called Upwind Dif-
ferencing (UD) discretization scheme, in which the value of ψf is determined according
to the direction of the flow:

ψf =

{
ψP for φf ≥ 0,

ψN for φf < 0.
(3.14)

Though the UD scheme insures boundedness of the solution, a numerical diffusion term
is implicitly introduced and the solution obtained can thus be severely influenced. In
addition, it has only first order accuracy.

In order to provide bounded and accurate solutions, several differencing schemes
were developed. Some of the most common ones are based on the blending between
a high order scheme and the UD scheme, with a blending factor which depends on
the gradient of the interpolated variable. The blending factor is also referred to as the
flux limiter. The value of the flux limiter is obtained considering the Total Variation
Diminishing (TVD) condition (van Leer, 1974; Sweby, 1984). Using the CD scheme
as the high order scheme, the face interpolation of ψ gives

ψf = ψUD + Θ (r) (ψCD − ψUD) , (3.15)

where Θ (r) is the flux limiter, which depends on the ratio of the consecutive gradients
of ψ

r =
ψC − ψU
ψD − ψC

. (3.16)

The points U , C and D are chosen according to the direction of the flow on the face f .
Some other schemes, such as the gamma differencing scheme introduced in Jasak

(1996), are based on the Normalized Variable Diagram (NVD). The advantage of these
schemes is to allow a bounded solution also when the time-step is high. They are
therefore particularly suitable for steady-state problems.

If not otherwise specified, the convection differencing scheme used in the present
thesis is a TVD scheme using the van Leer limiter (van Leer, 1974).
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Chapter 3. Implemented numerical method

Diffusion term
Using the identities given previously, the discretized form of the diffusion term is

obtained and follows∫
VP

∇ · (Γψ∇ψ) dV =
∑
f

(Γψ)f (∇ψ)f · nfSf . (3.17)

As noticed in Jasak (1996), if the mesh is orthogonal, i.e. vectors d and Sf in Figure
3.1 are parallel, it is possible to express the face normal gradient of ψ as

(∇ψ)f · nf =
ψN − ψP
|d|

, (3.18)

where the two values of ψ around the face are used. An alternative is to linearly inter-
polate the cell-centered gradient of the two cells sharing the face

(∇ψ)f = αx (∇ψ)P + (1− αx) (∇ψ)N , (3.19)

with the cell-centered gradient computed as

(∇ψ)P =
1

VP

∑
f

ψfSf . (3.20)

Both types of estimate of (∇ψ)f · nf are second order accurate. However, Eq. (3.18)
has a smaller truncation error because a more compact stencil is used. Though it may
suffer from non-orthogonality, Eq. (3.18) is therefore preferred in the computation of
the diffusion term.

In order to deal with the problem of mesh non-orthogonality, the face normal gradi-
ent is split into an orthogonal contribution and a non-orthogonal correction as follows

(∇ψ)f · nf = |∆| ψN − ψP
|d|︸ ︷︷ ︸

orthogonal contribution

+ (nf −∆) · (∇ψ)f︸ ︷︷ ︸
non-orthogonal correction

, (3.21)

where ∆ = d/(d · nf ) and (∇ψ)f is computed from Eqs. (3.19) and (3.20).
The term ∇ ·

(
µ∇u>

)
in the linear momentum conservation equation is not com-

puted using the above equation. Instead, a cell-centered estimate is calculated for∇u>

and is then interpolated to the face in a similar manner as in Eqs. (3.19) and (3.20).

Source terms
The source terms other than ∇ ·

(
µ∇u>

)
are not function of ψ. However, a source

term may depend on ψ in a general case. In such conditions, the source term is lin-
earized as follows

Φψ (ψ) = Φu + Φpψ, (3.22)

where the first term represent the explicit part of the source term and the last term the
implicit contribution. Note that Φu and Φp may also depends on ψ.
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3.1. Finite volume discretization

The discretization of the source term reads∫
VP

Φψ (ψ) dV = ΦuVP + ΦpψPVP . (3.23)

Temporal discretization
Using the introduced spatial discretization of the various terms, the semi-discretized

form of the transport equation is obtained∫ t+∆t

t

[(
∂ρψψ

∂t

)
P

VP +
∑
f

(ρψ)f φfψf −
∑
f

(Γψ)f (∇ψ)f · nfSf

]
dt

=

∫ t+∆t

t

(ΦuVP + ΦpψPVP ) dt.

(3.24)

Considering a linear temporal variation of ψ, the time derivative can be calculated
as (

∂ρψψ

∂t

)
P

=
(ρψ)nP ψ

n
P − (ρψ)oP ψ

o
P

∆t
, (3.25)

where

ψn = ψ (t+ ∆t) , (3.26)

ψo = ψ (t) . (3.27)

The temporal integrals of the convection, diffusion and source terms depend on
the temporal discretization scheme adopted. The Euler Explicit discretization scheme
consider the temporal integral of ψ as∫ t+∆t

t

ψ (t) dt = ψo∆t. (3.28)

Assuming ρψ, Γψ, Φu and Φp constant during the time-step, the following expres-
sions are obtained

ψf = αxψ
o
P + (1− αx)ψoN , (3.29)

(∇ψ)f · nf = |∆| ψ
o
N − ψoP
|d|

+ (nf −∆) · (∇ψ)of , (3.30)

which can be used to formulate the temporal integral of the convection, diffusion and
implicit source terms. The drawback of the explicit scheme is its conditional stabil-
ity and its first order accuracy. For the stability of the convection term, the Courant-
Friedrichs-Lewy (CFL) number should be inferior to unity (Courant et al., 1928). The
CFL number is defined as

CFL =
uf · nf∆t
|d|

. (3.31)
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Chapter 3. Implemented numerical method

While for the diffusion term, the stability condition requires that the time-step size
should be lower than the diffusion time scale:

∆t ≤ ρψ |d|2

Γψ
. (3.32)

The stability of the source terms depends on the source term itself and specific stability
analysis should be performed.

In the Euler Implicit scheme, the temporal integral of ψ is given as∫ t+∆t

t

ψ (t) dt = ψn∆t, (3.33)

while in the Crank-Nicolson scheme, it follows∫ t+∆t

t

ψ (t) dt =
1

2
(ψn + ψo) ∆t. (3.34)

Both the above schemes are unconditionally stable. However, while the Crank-
Nicolson scheme is second order accurate, the Euler Implicit scheme is first order ac-
curate. Note that, though the schemes are stable, they may produce inaccurate results
if the time-step is relatively high. In order to maintain accuracy and boundedness in
transient problems, the value of the time-step size should remain close to the stability
criteria of the various terms.

If not otherwise specified, the Crank-Nicolson scheme is used in the present thesis.

3.1.3 Solution of the system of linear algebraic equation

For each control volume, the discretized form of the transport equation can be reduced
to the following algebraic equation

aPψ
n
P +

∑
N

aNψ
n
N = RP , (3.35)

where the coefficients aP and aN depends on the discretization scheme used. All the
explicit terms, i.e. depending on the old time, are collected in RP . We are interested in
determining ψnP . Since its value also depends on the new neighbor values, a system of
algebraic equations is obtained:

A ·Ψ = R, (3.36)

where A is a sparse matrix with aP on the diagonal and aN off the diagonal. Ψ is the
vector containing the values of ψ at each cell center and R is the vector containing all
the explicit terms expressed for each control volume.

This system can be solved using direct or iterative methods. Direct methods are
particularly suited for small systems due to the high memory usage and number of
operations required for large systems. As a results, iterative methods are generally
used to solve fluid flow problems based on the FVM discretization. Iterative methods
consist of an initial guess which is continuously updated until a given tolerance is reach.
They are more economical in terms of memory and the number of iterations required to
reach the given tolerance depends on the size of the problem and on the algorithm used
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3.2. Interface tracking

to update the estimates. Some requirements on the matrix A also influence the number
of iterations and the convergence of the method. In order to fulfill these requirements,
the so-called under-relaxation of the original system of equation is commonly used, in
particular when a steady-state solution is looked for.

3.2 Interface tracking

In section 2.2, the derivation of the governing equation using the one-fluid formulation
is given. Such formulation is possible thanks to the introduction of a Heaviside func-
tion χ which determines the spatial and temporal distribution of each phase within the
solution domain. The transport equation for χ is given as

∂χ

∂t
+ uint · ∇χ = 0, (3.37)

which simply states that the distribution of χ follows the boundary of phase 1.
In the present thesis, the so-called Volume-Of-Fluid (VOF) interface tracking method

is used to obtain a smooth equivalent of the Heaviside function. It consists in tracking
the volume fraction F of one of the phases within each control volume. The volume
fraction can be defined as the volume averaged of the Heaviside function within a con-
trol volume:

F =
1

VP

∫
VP

χdV. (3.38)

This gives a straightforward derivation of the material properties. For example, the
density in each control volume reads

ρP =
1

VP

∫
VP

ρdV

=
1

VP

∫
VP

χρ1 + (1− χ) ρ2dV

= ρ1
1

VP

∫
VP

χdV + ρ2
1

VP

∫
VP

(1− χ) dV

= Fρ1 + (1− F ) ρ2.

(3.39)

A similar relation is obtained for µP . λP and (ρ̂c)P are estimated differently due to the
different treatments adopted for the energy equation.

The transport equation for the volume fraction can be derived from the transport
equation of the Heaviside function. This gives

∂F

∂t
+ uint · ∇F = 0. (3.40)

If there is no mass transfer, the boundary conditions at the interface state that the ve-
locity field is continuous, i.e., u1 = u2 = uint. Thus, using the incompressibility
condition (∇ · u = 0), the transport equation of the volume fraction can be expressed
in a conservative form as

∂F

∂t
+∇ · (Fu) = 0. (3.41)
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Chapter 3. Implemented numerical method

The volume fraction is a relatively sharp function, thus if standard convection dif-
ferencing schemes are used, the interface will be diffused over several cells. In order to
avoid this issue, specific schemes were developed and can be classified into two groups:
geometrical schemes and high-resolution schemes.

If not otherwise specified, the high-resolution scheme of Ubbink and Issa (1999)
implemented in the OpenFOAM library (OpenFOAM Foundation, 2013) is used in the
present thesis. In order to avoid numerical diffusion, the interface is compressed using
a suitable velocity ur. The transport equation of the volume fraction is modified as
follows

∂F

dt
+∇ · (Fu) +∇ · [F (1− F ) ur] = 0. (3.42)

The semi-discretized equation of the volume fraction for each control volume reads

∂FP
dt

+
1

VP

∑
f

[
〈F 〉VL

c→f φ− 〈F 〉
IC′

c→f φ
′
r

]
= 0, (3.43)

where 〈·〉VL
c→f denotes face interpolation using the Van Leer flux limiter and the flux

φ, and 〈·〉IC′

c→f denotes face interpolation using the “interfaceCompression” convective
scheme of OpenFOAM (OpenFOAM Foundation, 2013) and the flux φ′r calculated as

φ′r = −〈1− F 〉ICc→f φr, (3.44)

with 〈·〉ICc→f calculated using the flux −φr given as follows

φr = min

(
CF

∣∣∣∣ φSf
∣∣∣∣ , ∣∣∣∣ φSf

∣∣∣∣)Sf · nint. (3.45)

CF is a coefficient which determines the magnitude of the compression. Its value is
fixed at CF = 2 in the simulations performed in this thesis. In addition, nint points
toward phase 1 (i.e., toward F = 1) and is calculated as

nint =
∇F
|∇F |

. (3.46)

Equation (3.43) is finally solved using the Multidimensional Universal Limiter with
Explicit Solution (MULES) solver (OpenFOAM Foundation, 2013) in order to maintain
the boundedness of the solution and to conserve the fluids’ mass.

3.3 Interfacial curvature calculation

In order to compute the surface tension term normal to the interface (see Eq. (2.71)),
local estimates of the interfacial mean curvature are required. In addition, a proper
implementation is required to avoid unphysical capillary forces which lead to the so-
called spurious currents (Scardovelli and Zaleski, 1999; Popinet and Zaleski, 1999).
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3.3. Interfacial curvature calculation

3.3.1 Original method: Gauss integration

A simple expression for the estimation of the interfacial curvature is given by the diver-
gence of the interface unit normal vector

κ = −∇ · nint, (3.47)

where nint points toward phase 1 (i.e., toward F = 1). The original method imple-
mented in OpenFOAM calculates the interface unit normal vector from the volume
fraction gradient, as in Eq. (3.46). Then the Gauss theorem is used to estimate the
divergence operator. In the following, this method will be denoted as κGauss and the
discretized form the interfacial curvature calculation reads

κGauss = − 1

VP

∑
f

Sf ·

 〈∇F 〉c→f∣∣∣〈∇F 〉c→f ∣∣∣+ εn

 , (3.48)

where 〈·〉c→f denotes linear interpolation from cell center to face center, and εn a very
small value depending on the average grid size.

3.3.2 First proposed method: node-based gradient

The method is similar to the original one, however more accurate estimates of the inter-
face unit normal vectors are obtained using a node-based gradient scheme. In addition,
the estimation of the Dirac delta function in the surface tension term, Eq. (3.71), is per-
formed using a curtailed volume fraction to avoid instabilities due to residual volume
fraction far from the interface.

In the node-based gradient scheme, the value of volume fraction at the face center is
linearly interpolated from node values, which are linearly interpolated from cell center
values. The discretized form of the interface unit normal vector is

nint =
n∗int

|n∗int|+ 10−10
, n∗int =

1

VP

∑
f

Sf 〈〈F 〉c→n〉n→f . (3.49)

This node-based gradient scheme uses larger computational stencils than in a cell-based
gradient scheme, i.e., more neighboring values are employed. This results in a higher
accuracy of the interface unit normal vector. The interfacial curvature, κnbg, is then
computed using a Gauss integration of the interface unit normal vectors

κnbg = − 1

VP

∑
f

Sf ·

 〈nint〉c→f∣∣∣〈nint〉c→f
∣∣∣+ 10−10

 , (3.50)

The curtailing of the volume fraction is performed as follows

Fc =
1

1− CFc

[
min

(
max

(
F,
CFc

2

)
, 1− CFc

2

)
− CFc

2

]
, (3.51)

with CFc = 0.01 for the simulations performed in this thesis.
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Chapter 3. Implemented numerical method

3.3.3 Second proposed method: recursive weighted interpolations

As will be shown in Section 4.1.1, the local estimates of interfacial curvature obtained
using the original method are poorly accurate. In particular, a non-uniform distribution
of the estimates in the direction normal to the interface is obtained. An attempt to tackle
these issues is made with the implementation of a method based on recursive weighted
interpolations. It is similar to the method proposed by Raeini et al. (2012), however
the interpolations are node-based and different weighting functions are employed. In
addition, the filtering procedure introduced in Raeini et al. (2012) is not used here
as well as the smoothing of the volume fraction. With the former technique, non-
physical behaviors have been observed during the simulation of rising bubbles, while a
decoupling between surface tension and the volume fraction has been observed when
the volume fraction is smoothed.

The method will be denoted as κrwi and consists in the following steps:

• calculation of the interface unit normal vector from the volume fraction;

• propagation and smoothing of the interface unit normal vector;

• calculation of the interfacial curvature from the interface unit normal vector;

• propagation and smoothing of the interfacial curvature.

As with the previous method, the volume fraction is curtailed to evaluate the Dirac delta
function in Eq. (3.71).

Calculation of the interface unit normal vector
Various methods can be used to compute the interface unit normal vectors. Here,

the node-based gradient scheme introduced previously is used.

Propagation and smoothing of the interface unit normal vector
Since the local interface unit normal vectors are estimated at the cell center (and not

on the interface), values within cells having the volume fractions approaching F = 0.5
are more representative of the true interface unit normal vector than values within cells
having the volume fraction close to F = 0 or F = 1. Thus in order to propagate the
most reliable values along the direction normal to the interface, a recursive weighted
interpolation is performed. This also results in a slight smoothing of the estimates in
the direction tangent to the interface. The discretized form of the new interface unit
normal vector is given as

(nint)s,i+1,j+1 = w (nint)s,0,j + (1− w) (nint)
∗
s , (3.52)

with

(nint)s,0,0 = nint, (nint)s,0,j = (nint)s,i,j−1 , (3.53)

and

(nint)
∗
s =

〈〈
w (nint)s,i,j

〉
c→n

〉
n→c

〈〈w〉c→n〉n→c
, w = 4

√
4F (1− F ) + 10−12. (3.54)
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3.3. Interfacial curvature calculation

Two different loops are performed: an inner loop with index i and an outer loop with
index j. Note that the new interface unit normal vector is re-normalized at the end of
each inner iteration. The various simulations performed suggest a value of i = 2 and
j = 1 for optimal accuracy and stability, i.e., (nint)s = (nint)s,2,1. Outer iterations may
be beneficial for highly non-orthogonal meshes.

Calculation of the interfacial curvature
Two schemes can be used to compute the interfacial curvature from the divergence of

the interface unit normal vector: a cell-based or a node-based scheme. The discretized
form of the cell-based scheme reads

κ∗rwi = − 1

VP

∑
f

Sf ·

 〈(nint)s〉c→f∣∣∣〈(nint)s〉c→f
∣∣∣+ 10−10

 , (3.55)

while the node-based scheme is given as

κ∗rwi = − 1

VP

∑
f

Sf ·

 〈
〈(nint)s〉c→n

〉
n→f∣∣∣〈〈(nint)s〉c→n

〉
n→f

∣∣∣+ 10−10

 . (3.56)

If not stated otherwise, the cell-based scheme is used in the simulations presented in
this thesis.

Propagation and smoothing the interfacial curvature
The same considerations as for the interface unit normal vector can be applied for

the interfacial curvature, i.e., the most accurate estimates are within cells in which the
volume fraction is closed to F = 0.5. For this reason, recursive weighted interpolations
are performed as well to propagate the interfacial curvature in the direction normal to
the interface. The interfacial curvature thus reads

(κrwi)s,i+1,j+1 = w (κrwi)s,0,j + (1− w) (κrwi)
∗
s , (3.57)

with

(κrwi)s,0,0 = κ∗rwi, (κrwi)s,0,j = (κrwi)s,i,j−1 , (3.58)

and

(κrwi)
∗
s =

〈〈
w (κrwi)s,i,j

〉
c→n

〉
n→c

〈〈w〉c→n〉n→c
, w = 4

√
4F (1− F ) + 10−12. (3.59)

Two loops are performed: a inner loop with index i and an outer loop with index j. The
various simulations performed suggest a value of i = 2 and j = 2 for optimal accuracy
and stability. In the following we therefore denote the interfacial curvature from this
method by κrwi = (κrwi)s,2,2.
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Chapter 3. Implemented numerical method

3.3.4 Height function method

The above methods for interfacial curvature calculation are implemented in the Open-
FOAM library (OpenFOAM Foundation, 2013). In order to have a reference in terms
of accuracy of the interfacial curvature calculation, the Gerris code is used in some of
simulations presented in this thesis. A generalized height function is used in the Gerris
code (Popinet, 2009) to estimate the curvature of the interface. When the interface is
under-resolved, i.e., when the radius of curvature of the interface is comparable to the
mesh size, consistent height functions cannot be found and the algorithm switches au-
tomatically to a parabola fitting of the interface. If the fitting is not successful, then the
curvature is set to zero.

In the following, κhf will denote the curvature estimated using the generalized height
function. When the mesh is well-resolved, the height function method is used and the
curvature is computed as follows in two dimensions

κhf =
−h′′

(1 + h′2)3/2

∣∣∣∣∣
xlocal=0

. (3.60)

In axisymmetrical domains we have

κhf =


−h′′

(1+h′2)3/2

∣∣∣
xlocal=0

− h′

r(1+h′2)1/2

∣∣∣
xlocal=0

if ylocal = −sign(nz)z,

−h′′
(1+h′2)3/2

∣∣∣
xlocal=0

− sign(nr)

(r−sign(nr)h)(1+h′2)1/2

∣∣∣
xlocal=0

otherwise,

(3.61)

where h is the so called height function computed from the volume fraction field. At
each interfacial cell, i.e., a cell containing an interface segment, a local Cartesian ref-
erence frame (xlocal, ylocal) with origin at the cell center is set. Its orientation depends
on the interface unit normal vector: if |nx| > |ny|, then ylocal = −sign(nx)x otherwise
ylocal = −sign(ny)y, with nint = (nx, ny) pointing from F = 0 to F = 1. In axisym-
metrical domains we have nint = (nr, nz). The heights of fluid are then computed by
summation of the volume fraction along the ylocal-direction, which gives an estimate of
the relative interface position with respect to the ylocal-coordinate. h′ and h′′ are the first
and second order derivatives of h with respect to the local coordinate xlocal, estimated
using centered differences. (r−sign(nr)h) represents the distance from the interface to
the z-axis. The local approximations of κ are then diffused to the adjacent cells to allow
a uniform distribution of κ in the direction normal to the interface. Such a technique
provides a second order accurate estimate of the curvature, however square/cubic cells
are required. The validation and estimation of the numerical accuracy of the technique
for surface tension driven flows is given in Popinet (2009).

3.4 Interfacial jumps due to heat and mass transfer

In this section, the treatment of the interfacial jumps due to heat and mass transfer will
be described. As noticed in the previous chapter, a two-phase flow with heat and mass
transfer present jumps in material properties, in the velocity field and in the temper-
ature gradient. The modified transport equation for the volume fraction will be first
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3.4. Interfacial jumps due to heat and mass transfer

introduced followed by the suitable transport equations for mass, momentum and en-
ergy. In order to solve the energy equation, a Ghost Fluid Method is implemented.
Finally, the technique used to compute the mass transfer flux will be explained.

3.4.1 Transport of the volume fraction

In order to derive the transport equation for the volume fraction when mass transfer
occur, it is more convenient to start from the non-conservative form of the transport
equation (Eq. (3.40)). The interface velocity can be expressed in function of the flu-
ids’ velocity and the mass transfer rate using the mass jump condition Eq. (2.30), the
definition of the mass transfer flux Eq. (2.2) and the no-slip condition Eq. (2.49). This
gives

uint =
1

2
(u1 + u2) +

1

2

(
1

ρ1

+
1

ρ2

)
ṁ′′nint, (3.62)

where nint is defined as pointing toward phase 1, i.e., nint = n2, due to the way it is
computed in the code. The first term represents the transport due to convection while the
last term account for the mass transfer. The first term is taken into account implicitly
by the one-fluid velocity, u, however the transport equation needs to be modified to
account for the divergence of the velocity field. For the second term, we define a
velocity related to the mass transfer denoted as um. The transport equation now reads

∂F

∂t
+ u · ∇F + um · ∇F = 0. (3.63)

In order to solve the above equation using the FVM, it is transformed as follows

∂F

∂t
+∇ · [F (u + um)]− F∇ · (u + um) = 0. (3.64)

While compression of the interface could be done from the combined fluxes (due to
convection and mass transfer), the simulations performed have shown that a separate
compression term for each flux is preferable. Thus the transport equation finally reads

∂F

∂t
+∇ · [F (u + um)]− F∇ · (u + um)

+∇ · [F (1− F ) ur] +∇ · [F (1− F ) umr] = 0.

(3.65)

The semi-discretized form follows the one derived for two-phase flow without mass
transfer, with a modified flux to account for mass transfer and a source term to account
for the divergence of the velocity fields.

The various simulations performed have also demonstrated an excessive smearing
of the volume fraction in two- and three-dimensional simulations. To tackle this issue,
additional compression steps are performed by solving the following equation

∂F

∂τc
+∇ · (F (1− F ) nint) = ∇ · (DF∇F ) , (3.66)

where τc is a pseudo-time and DF is an artificial diffusion coefficient controlling the
thickness of the interface. The equation is solved using a Euler explicit time discretiza-
tion scheme. The term F (1 − F )nint is interpolated linearly to the cell faces and
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Chapter 3. Implemented numerical method

DF = ∆
2

with ∆ the mesh element size of interfacial cells. The pseudo-time-step
size is defined as:

∆τc = min

(
∆

2
,
∆t

2

)
. (3.67)

At each time-step, two pseudo-time-steps are performed after each solution of the
volume fraction. The MULES solver is used to solve (3.66) in order to maintain a
bounded solution for the volume fraction.

3.4.2 Mass, momentum and energy equations

Due to the jump in velocity at the interface, the interpolation used in the convection
differencing scheme is ambiguous if the mass flux is used instead of the velocity flux.
This is because the value of volume fraction at the face may be erroneous. For this
reason, a non-conservative form of the momentum and energy equations is adopted.
The conservation of mass is not considered explicitly in the equations solved, instead
the condition on the divergence of the velocity field (Eq. (2.64)) is used. The Dirac
delta function is approximated as the magnitude of the gradient of volume fraction,
which is representative of the interfacial area density (Aint/VP )

δint ≈ |∇F | . (3.68)

The divergence of the velocity field thus reads

∇ · u =

(
1

ρ2

− 1

ρ1

)
ṁ′′ |∇F | . (3.69)

The non-conservative form of the momentum equation is given as

ρ

(
∂u

∂t
+∇ · (uu)− u∇ · u

)
= −∇p+∇ ·

[
µ
(
∇u +∇u>

)]
+ ρg + σκ∇F,

(3.70)

where a constant surface tension coefficient is considered, i.e., Marangoni effects are
neglected, and the Continuum-Surface-Force (CSF) approach of Brackbill et al. (1992)
is used to express the surface tension term as a localized body force. This is done by
approximating the Dirac delta function with the gradient of the volume fraction:

σκδintn ≈ σκ∇F. (3.71)

The solution of the energy equation is the most delicate part of the model. In effect,
its derivation using the one-fluid temperature and a smoothed Heaviside function, such
as the volume fraction, is not trivial at all. Several terms appear from the averaging
procedure (see, e.g., Whitaker (1999) and Ishii and Hibiki (2006)) that need to be closed
in some way. The equation obtained is not the one derived previously, Eq. (2.79), since
the Heaviside function is not sharp. Eq. (2.79) only serves as a starting point for the
derivation.

For this reason, it is preferred to solve the energy equation for each phase separately,
Eq. (2.21). However, since it is more efficient to solve for a single temperature field,
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3.4. Interfacial jumps due to heat and mass transfer

a Ghost-Fluid-Method (GFM) is implemented to impose the Dirichlet boundary condi-
tion at the interface, i.e., T1 = T2 = Tint = Tsat. The method proposed by Gibou et al.
(2002) is used to modify the stencil used in the implicit calculation of the diffusion
term. In the simulations performed in this thesis, the convection term is not corrected
to account for the temperature at the interface. Modifying the convection term may thus
constitute an improvement of the present model.

The non-conservative form of the energy equation, expressed in terms of the one-
fluid temperature, thus reads

ρ̂c

(
∂T

∂t
+∇ · (Tu)− T∇ · u

)
= ∇ · (λ∇T ) , (3.72)

with ρ̂c and λ expressed using a sharp Heaviside function estimated at cell center, i.e.,

ρ̂cP = χPρ1c1 + (1− χP )ρ2c2,

λP = χPλ1 + (1− χP )λ2,
(3.73)

where

χP =

{
1 if F ≥ 0.5,

0 otherwise.
(3.74)

3.4.3 Calculation of the mass transfer flux

The mass transfer flux ṁ′′ is given by the enthalpy jump condition Eq. (2.47). After
rearranging the terms and considering an interface unit normal vector pointing towards
phase 1, this gives

ṁ′′ =
λ1∇nT1 − λ2∇nT2

h21

. (3.75)

Since the temperature field is shared by both phases, it is not possible to estimate the
normal gradients of temperature at the interface using standard discretization schemes.

In the present thesis, the method implemented by Kunkelmann (2011) is employed.
It consists in performing a contour-based reconstruction of the interface, i.e., the surface
of iso-value F = 0.5 is search within each cell. From this reconstruction, it is possible
to compute a signed distance function to the interface dint, also called level-set. By
convention, the level-set is positive within phase 1, negative within phase 2 and null
at the interface. Using the reconstructed level-set, it is then possible to estimate the
normal gradients of temperature using the following relation

∇nTk =
Tk − Tint

dint

, (3.76)

which is valid for both phase since the level-set changes sign.
In order to improve the accuracy of the estimates, the gradients are not computed

directly in cells containing a reconstructed interface, i.e., “interfacial cells”. Instead,
they are computed using the neighboring cells which are not interfacial cells. The value
of the gradient of each phase is then propagated by recursively averaging neighboring
values as suggested in Kunkelmann (2011).
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Chapter 3. Implemented numerical method

3.5 Pressure-velocity coupling

Because of the flow incompressibility, the pressure term needed in Eq. (3.70) cannot
be determined by an explicit transport equation. In order to derive an equation for the
pressure, the condition on the divergence of the velocity field will be used together with
the momentum equation. A segregated algorithm is then used to solve the system of
equations.

The non-linear term in the momentum equation (∇ · (uu)) is linearized in order
to reduce the complexity of the system of equations. That is the face velocity flux is
treated as explicit and satisfy the conservation of mass equation as well as the condition
on the divergence of the velocity.

The discretized form of the momentum equation (Eq. (3.70)) expressed for each
control volume can be written as follows

aPunP +
∑
N

aNunN = rP − (∇p)nP . (3.77)

where the coefficients aP , aN and the source terms rP depend on the unknown velocity
field due to the explicit treatment of the some terms such as the face velocity flux and
the non-orthogonal corrections.

The discretized form of the condition on the divergence of the velocity field (Eq.
(3.69)) reads∑

f

Sf · unf =
∑
f

φf =

(
1

ρ2

− 1

ρ1

)
ṁ′′P (|∇F |)P , (3.78)

where φf is face velocity flux. The new velocity can be obtained as follow

unP =
HP (un)

aP
− 1

aP
(∇p)nP , (3.79)

where

HP (un) = −
∑
f

aNunN + rnP . (3.80)

The face velocity in Eq. (3.78) can be expressed similarly as

unf =

(
H

a

)
f

−
(

1

a

)
f

(∇p)nf , (3.81)

where (H/a)f and (1/a)f are obtained from interpolation of their counterparts in the
two cells sharing the face. In OpenFOAM this is done using a Rhie-Chow interpolation
(Rhie and Chow, 1983), which is modified to prevent a checkerboard pressure field at
very small time step (Yu et al., 2002). In the original Rhie-Chow interpolation, we have

(
H

a

)RC

f

=

〈
HP (un)

aP

〉
c→f

,

(
1

a

)RC

f

=

〈
1

aP

〉
c→f

, (3.82)
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In OpenFOAM, the first of the above equations is modified as follows(
H

a

)mRC

f

=

(
H

a

)RC

f

+
CmRC

∆t
nf

[〈
ρoP
aP

〉
c→f

φof
Sf
−

(
nf ·

〈
ρoP
aP

uoP

〉
c→f

)]
,

(3.83)

where

CmRC = 1−min


∣∣∣φof − Sf · 〈uoP 〉c→f

∣∣∣∣∣φof ∣∣+ εφ
, 1

 , (3.84)

with εφ a very small number.
Substituting Eq. (3.81) into Eq. (3.78), the equation for pressure is obtained

∑
f

(
1

a

)RC

f

Sf · (∇p)nf =
∑
f

Sf ·
(

H

a

)mRC

f

−
(

1

ρ2

− 1

ρ1

)
ṁ′′P (|∇F |)P ,

(3.85)

where Sf · (∇p)nf is calculated using Eq. (3.21). After the solution of the pressure from
the above equation, the conservative velocity fluxes at the faces are obtained as follows:

φnf = Sf ·
(

H

a

)mRC

f

−
(

1

a

)RC

f

Sf · (∇p)nf . (3.86)

The cell centered velocity field is then updated using Eq. (3.79).
The form of the equations shows linear dependence of velocity on pressure and vice-

versa. This inter-equation coupling requires a special treatment. The Pressure Implicit
with Splitting of Operators (PISO) algorithm, originally proposed by Issa (1986), is
adopted in the present thesis. Coupling between pressure and velocity is achieved in
this method as follows:

• Momentum predictor: the momentum equation (Eq. (3.77)) is solved using the
pressure gradient at the previous time-step ((∇p)oP ). The gives an approximation
of the new velocity from which the old pressure gradient is removed.

• Pressure solution: the predicted velocities are used to assemble the HP (u) op-
erator. Using the modified Rhie-Chow interpolation, the pressure equation (Eq.
(3.85)) is solved. This provides an estimate of the new pressure field.

• Explicit velocity correction: using the pressure solution, the face velocity fluxes
are made conservative using Eq. (3.86). The velocity field is also corrected using
Eq. (3.79). Since the HP (u) operator is calculated using the predicted velocities,
the correction is explicit.
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Chapter 3. Implemented numerical method

In order to account for the error from the transported influence of neighboring ve-
locities (the HP (u)/aP term in Eq. (3.79)), the pressure solution and explicit velocity
correction steps are repeated. In each loop, the HP (u) term is updated using the new
velocity field. However, the new face velocity flux is not updated in the HP (u) op-
erator because a solution of the momentum equation is required, i.e., the momentum
predictor step should be repeated. It is therefore assumed that the non-linear coupling
is less important than the pressure-velocity coupling.

If not stated otherwise, two pressure solution - explicit velocity correction loops are
performed in the simulations presented in this thesis.

3.6 Treatment of body forces

When body forces are added to the problem, an important issue is raised if they are
predominant with respect to the convection and diffusion terms. For instance, in the
case of a null velocity field, the pressure gradient term should balance the body forces
locally. If this condition is not satisfied, unphysical velocities appear due to the local
imbalances. In practice, the operator used to express the pressure gradient should be
similar to the operator used to express the body forces.

3.6.1 Gravity acceleration

The gravity acceleration term does not show a gradient operator in its original form. In
order to apply compatible gradient operator between pressure and gravity, a modified
pressure, p∗, is introduced as follows:

p∗ = p− ρg · x, (3.87)

where x is the position vector. The modified pressure is simply the pressure removed
from its hydrostatic component. Hence, assuming quiescent fluids, the modified pres-
sure is zero. Taking the gradient of p∗, we have

∇p∗ = ∇p−∇ (ρg · x)

= ∇p− ρg − g · x∇ρ,
(3.88)

where we used the fact that (∇x) gives the identity matrix and that the cross products
(∇ × x) and (∇ × g) lead to a null vector. The pressure gradient and gravity terms
in the momentum equation, Eq. (3.70), can therefore be substituted by the gradient of
the modified pressure and the gradient of the density by the inner product of the gravity
vector and position vector. That is

−∇p+ ρg = −∇p∗ + g · x∇ρ, (3.89)

Since the gravity effects are now expressed using a gradient operator, it is possible to
satisfy the condition previously introduced. This is done by modifying the pressure
equation, Eq. (3.85), as follows∑

f

(
1

a

)RC

f

Sf · (∇p∗)nf =
∑
f

Sf ·
(

H

a

)mRC

f

−
∑
f

(
1

a

)RC

f

(g · xf ) Sf · (∇ρ)f −
(

1

ρ2

− 1

ρ1

)
ṁ′′P (|∇F |)P ,

(3.90)
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where both (Sf · (∇p∗)nf ) and (Sf · (∇ρ)f ) terms are calculated using Eq. (3.21), and
xf is the position vector of the face center. The face velocity fluxes and cell centered
velocities are then corrected as follows

φnf = Sf ·
(

H

a

)mRC

f

−
(

1

a

)RC

f

Sf · (∇p∗)nf

−
(

1

a

)RC

f

(g · xf ) Sf · (∇ρ)f ,

(3.91)

unP =
HP (un)

aP
− 1

aP

〈
Sf · (∇p∗)nf

〉
f→c

− 1

aP

〈
(g · xf ) Sf · (∇ρ)f

〉
f→c

,

(3.92)

where 〈·〉f→c means reconstruction of the cell center vector from the face fluxes. Such
estimation of the pressure gradient and gravity acceleration at the cell center is neces-
sary to get the balance between the two terms. In addition, the face normal gradient
operator used in the calculations also includes the non-orthogonal correction. Thus the
method is also well suited to general meshes.

3.6.2 Surface tension

In the spirit of the “balanced” formulation proposed by Francois et al. (2006), the im-
plementation of surface tension is performed in a similar manner as for the gravity
acceleration. The form of the surface tension source in the CSF approach of Brackbill
et al. (1992), Eq. (3.71), includes the gradient of the volume fraction. The implemen-
tation within the momentum and pressure equations is therefore straightforward. The
final form of the discretized pressure equation and the discretized face velocity fluxes
and cell centered velocities corrections are given as

∑
f

(
1

a

)RC

f

Sf · (∇p∗)nf =
∑
f

Sf ·
(

H

a

)mRC

f

−
∑
f

(
1

a

)RC

f

(g · xf ) Sf · (∇ρ)f

+
∑
f

(
1

a

)RC

f

σ (κ)f Sf · (∇F )f −
(

1

ρ2

− 1

ρ1

)
ṁ′′P (|∇F |)P ,

(3.93)

φnf = Sf ·
(

H

a

)mRC

f

−
(

1

a

)RC

f

Sf · (∇p∗)nf

−
(

1

a

)RC

f

(g · xf ) Sf · (∇ρ)f +

(
1

a

)RC

f

σ (κ)f Sf · (∇F )f ,

(3.94)
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unP =
HP (un)

aP
− 1

aP

〈
Sf · (∇p∗)nf

〉
f→c

− 1

aP

〈
(g · xf ) Sf · (∇ρ)f

〉
f→c

+
1

aP

〈
σ (κ)f Sf · (∇F )f

〉
f→c

,

(3.95)

where (Sf · (∇F )f ) is calculated using Eq. (3.21). Though a weighted interpolation
may be used for the evaluation of the face curvature (κ)f , as suggested in Renardy
and Renardy (2002) and Raeini et al. (2012), a standard linear interpolation has proven
more stable results in the simulations performed, in particular when the interface is
moving. Note that for the node-based gradient and recursive weighted interpolations
methods, (∇F )f is evaluated using a curtailed volume fraction, Fc, obtained from Eq.
(3.51).

3.7 Solution procedure

The final solution procedure is given as:

1. Solve volume fraction transport equation;

2. Compute the level-set using the contour-based reconstruction of the interface;

3. Calculate the interface properties (normal, curvature) and propagate them;

4. Update material properties (ρ, µ, c, λ)

5. Solve the energy equation;

6. Calculate the heat and mass transfer source terms;

7. Momentum predictor;

8. PISO loop (2 iterations)

(a) Pressure solution;
(b) Explicit velocity correction;

9. Return to 1. if total time not reached.
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CHAPTER4
Verification and validation of the method

In this chapter, the validation of the numerical method is presented. First the validation
of the two-phase model for the isothermal case is given, with proper benchmarks. Then
the validation of the two-phase model with heat and mass transfer is introduced.

4.1 Isothermal two-phase model

The validation of the isothermal two-phase model is firstly performed through the es-
timation of the interfacial curvature of a perfectly spherical interface. Then the typical
test case of a stationary axisymmetric circular interface is performed after introducing
the concept of spurious currents. Finally, the capillary wave test case for the air-water
system is analyzed to give insights into the temporal accuracy of the methods.

4.1.1 Interfacial curvature estimates of a perfectly spherical interface

In order to verify and compare the accuracy of the various interfacial curvature cal-
culation methods, a convergence study is performed, using routines written ad hoc in
MATLAB R© language (The MathWorks, 2011). A unit square domain, discretized using
a uniform orthogonal mesh, is considered. Cylindrical coordinates, (r, z), with axisym-
metry and zero normal gradient boundary conditions are adopted. The accuracy of Eqs.
(3.48), (3.50), (3.57) and (3.60) is evaluated via a perfectly spherical interface of radius
re = 0.75, centered at the origin. The exact solution for the curvature is κexact = 2/re.
Various mesh resolutions ranging from 16×16 (re/∆ = 12) to 256×256 (re/∆ = 192)
are adopted, where ∆ is the mesh element size.

The volume fraction field used in the present analysis is calculated in a particular
way so that it corresponds exactly to the spherical interface. For each mesh resolution,
the analytical surface representation of the spherical interface is intersected with the
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Figure 4.1: Cell contour of the estimated interfacial curvature of a perfectly spherical interface using
a) the Gauss method and b) the node-based gradient method (re/∆ = 24).

underlying mesh. Using the intersection with the edges of the mesh, triangle or quadri-
lateral are obtained in cells cut by the interface (“interfacial cells”). The area of the
intersection is then computed by summation of the area of the triangle or quadrilateral
and the remaining circular segment. The volume fraction is then given by the ratio
between the intersection area and the cell area.

The results in terms of contour of the estimated interfacial curvature at the cell cen-
ter are displayed in Figure 4.1 and Figure 4.2 for the Gauss and node-based gradient
methods, and the recursive weighted interpolations and height function methods re-
spectively, using a mesh resolution of 32×32 (re/∆ = 24). Only interfacial cells and a
layer of one cell width above and below the interfacial cells are displayed. As it can be
observed in the previous chapter, cell center values in the neighborhood of an interface
are required to compute the surface tension term. Non-null capillary forces therefore
appear in the interfacial cells as well as in the one-cell neighborhood of the interfacial
cells (as displayed in Figure 4.1 and Figure 4.2). Consequently, accurate estimates of
interfacial curvature should also be available in the one-cell neighborhood of the in-
terfacial cells. With the Gauss and node-based gradient methods (see Figure 4.1), the
most accurate estimates are in the interfacial cells while the worst estimates lie in the
one cell neighborhood, with negative interfacial curvatures in the cells above the inter-
face. On the other hand, the results obtained with the recursive weighted interpolations
and the height function methods (see Figure 4.2) show a more uniform distribution with
more accurate estimates, in particular for the height function method (the exact interfa-
cial curvature is κexact = 2.6667). In these cases, the uniform distribution is due to the
method used to diffuse the local interfacial curvature estimates.

The results in terms of the relative maximum error norm of the interfacial curvature
with respect to the mesh resolution are presented in Figure 4.3. The relative maximum
error norm of the interfacial curvature L∞(κ) is calculated as follow

L∞(κ) =
max(|κ− κexact|)

κexact

(4.1)
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Figure 4.2: Cell contour of the estimated interfacial curvature of a perfectly spherical interface using
a) the recursive weighted interpolations method and b) the height function method (re/∆ = 24).

with κ taken from the interfacial cells and its one-cell neighborhood. The present anal-
ysis shows that the maximum error norm of the Gauss, node-based gradient and re-
cursive weighted interpolations methods diverges with mesh refinement. However the
recursive weighted interpolations shows more accurate estimate with differences of one
to two orders of magnitude in the relative error norm. On the other hand, a second order
convergence is obtained for the height function method (as expected from the analyses
performed by Popinet (2009)). Therefore computing the interfacial curvature using the
height function method (Eq. (3.60)) is expected to perform well compared to the other
shemes. Similar results have been obtained in Magnini et al. (2013a), in which a com-
parison of the Gauss method with a self-implementation of the height function method
in ANSYS FLUENT (ANSYS, 2010), using external routines, is presented. We note
however that due to the uniform distribution of the estimates, the recursive weighted
interpolations method should be more stable than the Gauss method.

Another aspect that can be observed from the present analysis is that due to the dis-
cretization, the initial shape of the interface is not “numerically” spherical (see Figure
4.2). Therefore, an initial oscillating transient is expected in each simulation because
the interface tends to evolve toward the “numerically” spherical shape, or a shape that
balance the various forces. It is important to note that the velocity field observed in this
preliminary phase may be a physical velocity field.

4.1.2 Description of the spurious currents

Spurious currents are unphysical velocities appearing near the two-phase interface and
can lead to unphysical deformations of the interface depending on their magnitude
(Scardovelli and Zaleski, 1999; Popinet and Zaleski, 1999). Their origin is often at-
tributed to the calculation of surface tension. Indeed, combining Eqs. (3.71) and (3.70)
(with gravity switched off) and considering a perfectly spherical bubble, the pressure
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Figure 4.3: Convergence rate of the relative error norm L∞(κ) computed from interfacial cells and its
one-cell neighborhood.

field should satisfy

∇p = σκ∇F. (4.2)

As pointed by Renardy and Renardy (2002), Francois et al. (2006) and Popinet (2009),
the above equation can be verified if the gradient operators used in Eq. (4.2) are con-
sistent and if the estimated curvature is constant. The first condition can be verified
by using a balanced Continuum Surface Force method (Francois et al., 2006), which
is implemented in the numerical method adopted in the present study, as described in
the previous chapter. A balanced formulation is also implemented in the Gerris Flow
Solver code (Popinet, 2009) used for the simulations using the height function method.
The second condition can be satisfied by diffusing the local interfacial curvature es-
timates in the direction normal to the interface, provided that the local estimates are
enough accurate. When one of the above conditions is not achieved, local imbalances
between the pressure gradient and capillary force appear, which may lead to unphysical
velocities.

Referring to Section 4.1.1, the Gauss and node-based gradient methods present a
non-uniform distribution of the estimated interfacial curvature along the direction nor-
mal to the interface. As a consequence, the second condition may be hardly satisfied
and spurious currents are expected to be observed for these methods within the simu-
lations performed in this thesis. Spurious currents are also expected with the recursive
weighted interpolations method due to the slightly noisy distribution of interfacial cur-
vature, however the magnitude of the spurious currents should be smaller than with the
first two methods.
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Table 4.1: Summary of the mesh element sizes.

Resolution max(de/∆) min(de/∆)

Coarse 20 5

Intermediate 40 5

Fine 80 5

4.1.3 Stationary axisymmetric circular interface

The simulation of a stationary interface is a typical benchmark for the evaluation of the
magnitude of the spurious currents obtained with a given interfacial curvature calcula-
tion method. In effect, the exact solution is a null velocity field and a pressure jump
across the interface given by the Laplace law,

pg − pl = σκ, (4.3)

which permits to isolate the effects of surface tension from the other driving forces
usually present in real applications.

In the present study, air bubbles in water are analyzed, with three different bubble
diameters, de, corresponding to the diameters used in the rising bubble simulations in
Chapter 5. An axisymmetric formulation is adopted and the dimensions of the compu-
tational domain are [0, 3de] in the r-direction and [0, 3de] in the z-direction. The bubble
is initially positioned at the origin (0, 0). Three different mesh element sizes are ana-
lyzed and the computational mesh is obtained using static local refinements as follows
(x = (r, z) is the cell center position vector):

• a background mesh of 16× 16 elements (de/∆ ≈ 5) is generated;

• the elements with |x| below 1.5de are refined one time (de/∆ ≈ 10);

• the elements with |x| below de are refined until the desired resolution is reached.

The characteristics of the different meshes are summarized in Table 4.1 and the
computational domain for the coarse mesh resolution is displayed in Figure 4.4. The
boundary conditions adopted are axisymmetry for the left boundary and imposed pres-
sure for the other boundaries with a null normal gradient to the boundary for the ve-
locity components (see Figure 4.4 for details). The computational mesh for the other
resolutions are displayed in Figure 4.5.

The initial conditions are null velocity and pressure fields. For the first three meth-
ods, the volume fraction field is initialized by the following equation:

F = max

[
min

(
1− |x| − de/2 + ∆

2∆
, 1

)
, 0

]
, (4.4)

which provides a volume fraction field of a circular interface of diameter de, diffused
over two mesh elements. This is suitable for the interface tracking method adopted in
OpenFOAM, which diffuses the volume fraction over 2 to 3 mesh elements. Within the
Gerris code, the volume fraction is initialized using the intersections of the analytical
circular shape with the edges of the mesh.
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Figure 4.4: Boundary conditions and computational mesh corresponding to the coarse resolution.

a) b)

Figure 4.5: Computational mesh corresponding to the a) intermediate and b) fine resolutions.
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Liquid water (ρl = 1000 kg m−3; µl = 10−3 Pa s) and air (ρg = 1.225 kg m−3;
µg = 1.73 × 10−5 Pa s) are used as working fluids, with a surface tension coefficient
typical of ambient conditions (σ = 0.0728 N m−1). The three bubble size scenarios are
indicated as “Large,” “Medium” and “Small” corresponding to the diameters 0.9mm,
0.5mm and 0.3mm, respectively.

The total physical duration of the simulation is calculated according to the following
viscous time scale:

Tµ =
ρld

2
e

µl
, (4.5)

where the l subscript relates to the liquid phase. The time is made dimensionless using
Tµ, and the time-step size is determined such that:

CFL < 0.1, (4.6)

∆t <
ρg∆

2

µg
, (4.7)

∆t <

√
(ρl+ρg)

2
∆3

πσ
, (4.8)

where the subscript g relates to the gaseous phase. Following such criteria, the inertial,
viscous and capillary time scales are well resolved and the boundedness of the solution
is guaranteed.

Table 4.2 summarizes the results in terms of the maximum dimensionless velocity
and the pressure jump across the interface, at time t = Tµ. The velocity is made
dimensionless using the following velocity scale

Uσ =

√
σ

ρlde
. (4.9)

The relative error in the pressure jump is calculated using the Laplace law (Eq. (4.3)).
Large differences are observed between the height function method and the other meth-
ods concerning the maximum magnitude of the spurious currents. Moreover, a contin-
uous reduction of the maximum velocity with time is noticed with the height function
method while it remains constant for the other methods, indicating a converging behav-
ior for the height function method only. Despite these differences, a smaller magnitude
of the spurious currents is observed with the recursive weighted interpolations method
with respect to the first two methods. This may be explained by the higher accuracy in
the interfacial curvature estimates, as noted in Section 4.1.1. Concerning the pressure
jump, very good accuracy is obtained with the height function and recursive weighted
interpolations methods while a relatively high error is noticed for the Gauss and node-
based gradient methods.

It is important to note that all these results for the first three methods do not improve
with mesh refinement. This is explained by the fact that the accuracy of the interfacial
curvature estimates do not converge with mesh refinement, as shown in Section 4.1.1.
Despite only the results for the Coarse mesh resolution are displayed in Table 4.2 for the
height function method, a convergence of the results with mesh refinement is obtained
with this method.
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Table 4.2: Maximum dimensionless velocity and pressure jump obtained in the static bubble simulations
at time t = Tµ.

Case ∆pref [Pa] Method Mesh |u|max/Uσ ∆p [Pa] Error ∆p [%]

Large 323.6 Gauss Coarse 2.16 303.4 6.2

Intermediate 2.06 301.8 6.7

Fine 1.88 305.1 5.7

nbg Coarse 4.79× 10−1 313.3 3.2

Intermediate 7.23× 10−1 312.7 3.4

Fine 1.20 309.5 4.4

rwi Coarse 3.01× 10−1 324.2 0.2

Intermediate 5.74× 10−2 321.7 0.6

Fine 4.90× 10−2 321.5 0.6

hf Coarse 3.97× 10−6 324.9 0.4

Medium 582.4 Gauss Coarse 1.85 546.0 6.3

Intermediate 1.78 546.0 6.3

Fine 1.87 549.5 5.6

nbg Coarse 3.81× 10−1 564.0 3.2

Intermediate 3.83× 10−1 564.2 3.1

Fine 8.61× 10−1 558.5 4.1

rwi Coarse 2.60× 10−1 583.3 0.2

Intermediate 4.20× 10−2 580.1 0.4

Fine 3.35× 10−2 579.0 0.6

hf Coarse 5.35× 10−6 584.7 0.4

Small 970.7 Gauss Coarse 1.60 910.0 6.2

Intermediate 1.49 907.5 6.5

Fine 1.17 916.3 5.6

nbg Coarse 3.07× 10−1 939.9 3.2

Intermediate 2.73× 10−1 940.0 3.2

Fine 6.47× 10−1 931.5 4.0

rwi Coarse 1.95× 10−1 972.5 0.2

Intermediate 3.26× 10−2 967.2 0.4

Fine 2.33× 10−2 965.1 0.6

hf Coarse 7.04× 10−6 974.6 0.4

Error ∆p [%] = 100|∆p−∆pref |/∆pref ;
∆pref = σκexact;
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Table 4.3: Summary of the fluid properties for the capillary wave test case.

Fluid density ρ [kg/m3] dynamic viscosity µ [kg/(m s)]

Air 1.2 1.8× 10−5

Water 1000 1.003× 10−3

4.1.4 Planar capillary wave

The capillary wave test case, initially introduced in Popinet and Zaleski (1999), is ap-
propriate to the evaluation of the spatial and temporal accuracy of an interfacial curva-
ture calculation method for the simulation of viscous, surface tension driven two-phase
flows. For example, this benchmark has been used recently in Gerlach et al. (2006) and
Popinet (2009). A similar test case is also used in Tubović and Jasak (2012).

Two fluids are initially at rest and the flat interface between the two phases is sub-
ject to a sinusoidal perturbation. The gravity acceleration is not considered, thus surface
tension act as the only driving force. The interface will oscillate around its equilibrium
position with an amplitude that will decay due to viscous dissipation. The solution to
this initial value problem has been found by Prosperetti (1981) in the limit of vanish-
ingly small amplitudes.

As in Popinet (2009), a two-dimensional computational domain of [−λ/2, λ/2] ×
[−3λ/2, 3λ/2] is adopted so that the influence of the boundary conditions on the so-
lution is negligible (the Prosperetti solution is valid for infinite domains). Here λ =
2π/K is the wavelength and K is the wavenumber. The initial perturbation amplitude
is λ/100 as in Popinet and Zaleski (1999), Gerlach et al. (2006) and Popinet (2009). Air
and water are considered with properties summarized in Table 4.3. The Laplace num-
ber relative to the water phase (La = ρσλ/µ2) is chosen equal to 3000 as in Popinet
(2009). The normal-mode oscillation frequency ω0 is given by the dispersion relation

ω2
0 =

σK3

ρ1 + ρ2

. (4.10)

The duration of the simulation is set to 25/ω0 and we define the dimensionless time
as τ = tω0. The L2 error norm, giving an evaluation of the error between the numerical
and theoretical solutions, is calculated as

L2 (h) =
100

λ

√
ω0

25

∫ τ=25

τ=0

(h− hexact)
2. (4.11)

The results in terms of the L2 error norm are summarized in Table 4.4 for different
mesh resolutions. The accuracy of the Gauss and node-based gradient methods is
relatively equivalent with a convergence of the results toward the analytical solution.
The recursive weighted interpolations method is the less accurate in this case. This is
most probably due to the smoothing of the interface unit normal vectors and interfacial
curvature. On the other hand, the height function method presents similar results at the
lowest resolution, however its convergence rate is higher, resulting in more accurate
results at higher mesh resolutions.
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Figure 4.6: Time history of the relative amplitude of an air-water capillary wave (La = 3000). The
mesh resolution is 128× 384.

Table 4.4: Convergence of the L2 error norm for the air-water capillary wave test case.

Method/resolution 8 16 32 64 128

Gauss 0.2073 0.0924 0.0210 0.0156 0.0134

nbg 0.1956 0.1020 0.0431 0.0143 0.0104

rwi 0.2072 0.1712 0.1287 0.1081 0.0845

hf (Popinet, 2009) 0.1971 0.0754 0.0159 0.00576 0.00313

Figure 4.6 shows the time evolution of the relative amplitude of the capillary wave
for the finest mesh resolution. The results of the height function method are not dis-
played for clarity. It can be observed that the damping of the relative amplitude of the
capillary wave is correctly reproduced by all the methods. However, discrepancies are
observed regarding the frequency of the oscillations. The Gauss method slightly under-
estimate it while the node-based gradient slightly over-estimate it. On the other hand,
the frequency obtained with the recursive weighted interpolations method is highly
under-estimated with respect to the other methods. This means that this method has a
less accurate temporal accuracy and may not be suitable for cases where the evolution
of a deformed two-phase interface is of interest. The method may be more appropri-
ate to cases where the stability of the solution is preferred, which is the case of the
simulations performed in this thesis.

62



i
i

“Guedon_Thesis” — 2013/8/27 — 15:29 — page 63 — #81 i
i

i
i

i
i

4.2. Phase change model

4.2 Phase change model

In order to validate the phase change model, the typical one-dimensional benchmarks
(Stefan problem and sucking interface problem) are firstly performed. Then the more
challenging test case of the spherical vapor bubble growth in superheated liquid is per-
formed in three-dimensions.

4.2.1 One-dimensional Stefan problem

The one-dimensional Stefan problem considered in Welch and Wilson (2000) is inves-
tigated with the heat and mass transfer model proposed in this thesis. Water properties
at saturation pressure of 1 atm are considered (see Table 4.5). Liquid and vapor are as-
sumed incompressible and initially at rest. In this Stefan problem, the liquid initially fill
the computational domain at saturation temperature and a thin layer of vapor is consid-
ered attached to the left solid boundary, which is at a higher temperature than saturation.
The vapor experiences an increase in temperature and a temperature gradient forms at
the interface which drives the mass transfer from the liquid phase to the vapor phase
(see Figure 4.7). In this condition, the vapor is motionless and the liquid is pushed away
from the solid boundary. The interface is also pushed toward the right boundary, with a
different velocity with respect to the liquid phase. This test case permits to estimate the
accuracy of the diffusion term in the energy equation, which governs the rate of mass
transfer since heat is provided from the left wall by diffusion into the motionless vapor
phase.

vapor

intn

liquid

x

T
wallT

satT

0=vu ( )=l l tu u

( )int int= tu u

interface

Figure 4.7: Domain definition for the Stefan problem.

Table 4.5: Water properties at saturation pressure of 1 atm (Tsat = 373.15 K).

Phase ρ [kg/m3] µ [kg/(m s)] cp [J/(kg K)] λ [W/(m K)]

Vapor 0.6 1.23× 10−5 2080 0.025

Liquid 958 2.82× 10−4 4216 0.68
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Table 4.6: Mesh resolutions and results for the Stefan problem.

Resolution Elements ∆x [µm] xint(t = 0.1s) [µm] Error xint [%]

Coarse 64 15.625 201.2 4.79

Intermediate 128 7.8125 196.9 2.55

Fine 256 3.90625 194.4 1.25

Error xint [%] = 100 [xint − (xint)analytical] /(xint)analytical;

The solution of this one-dimensional Stefan problem given in Welch and Wilson
(2000) is considered. The evolution of the interface position follows

xint = 2γ
√
αvt, (4.12)

where αv = λv/(ρvcp,v) is the thermal diffusivity of the vapor phase and γ is the
solution of the transcendental equation

γ exp
(
γ2
)

erf (γ) =
cp,v (Twall − Tsat)

hlv
√
π

, (4.13)

with erf(x) the error function and hlv = 2256 kJ/kg the latent heat of vaporization.
The evolution of the temperature profile is given as

T (x, t) = Twall +

(
Tsat − Twall

erf (γ)

)
erf

(
x

2
√
αvt

)
, (4.14)

Three grid spacing ∆x are analyzed (see Table 4.6) with a wall temperature of 10 K
higher than the saturation temperature. The length of the domain is set to 1 mm. The
liquid-vapor interface is initially positioned at xint = 31.25 µm, corresponding to an
initial time of 2.7 ms. The temperature in the vapor phase is initialized using the analyt-
ical solution at t = 2.7 ms. The simulation is run until the time t = 0.1 s is reached. The
corresponding analytical solution is (xint)analytical = 192 µm and a linear temperature
profile from the left wall to the interface.

The results of the simulations in terms of final interface position are summarized in
Table 4.6, while the time histories of the interface position are displayed in Figure 4.8.
A good accuracy is obtained with a relative error contained within 5% of the analytical
solution for all the mesh resolutions. The treatment of the diffusion term using the
implemented method is therefore enough accurate. Note that if the discretization of the
diffusion term does not account for the interface temperature, i.e., if the Ghost Fluid
Method is not employed, the error in the results increases, leading to the necessity of
much finer mesh elements to obtain the same degree of accuracy. The solution may
also not converge toward the theoretical one.

4.2.2 One-dimensional sucking interface problem

The one-dimensional sucking interface problem considered in Welch and Wilson (2000)
is also investigated with the heat and mass transfer model proposed in this thesis. Wa-
ter properties at saturation pressure of 1 atm are considered (see Table 4.5). Liquid and
vapor are assumed incompressible and initially at rest. This is another kind of Stefan
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Figure 4.8: Time evolution of the interface position for the Stefan problem.

problem, in which the liquid initially fill the computational domain and is superheated.
The temperature of the left wall is fixed at the saturation temperature thus the heat ab-
sorbed through evaporation comes from the liquid only. An infinitely thin vapor layer
is located at the left wall, triggering the mass transfer between the phases. In this sit-
uation, the vapor is motionless and the liquid and the interface are pushed away from
the left wall. Since the liquid is moving, a thermal boundary layer forms near the in-
terface and develops as the interface moves (see Figure 4.9). This test case is useful to
determine the accuracy of the convection term.

In Welch and Wilson (2000), a similarity solution is given where an ODE equation
needs to be solved. However, an analytical solution can be obtained from the problems
presented in Carslaw and Jaeger (1959) and will be given here. Like previously, the
evolution of the interface position follows

xint = 2γ
√
αvt, (4.15)

In the general case where Twall 6= Tsat, γ is the solution of the following transcendental
equation

exp
(
γ2
)

erf (γ)

γ − (T∞ − Tsat) cp,vλl
√
αv exp

(
−γ2 ρ

2
vαv

ρ2l αl

)
hlv
√
πλv
√
αlerfc

(
γ
ρv
√
αv

ρl
√
αl

)


=
cp,v (Twall − Tsat)

hlv
√
π

,

(4.16)
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Figure 4.9: Domain definition for the sucking interface problem.

Table 4.7: Mesh resolutions and results for the sucking interface problem.

Resolution Elements ∆x [µm] xint(t = 1.1s) [mm] Error xint [%]

Coarse 64 156.25 6.945 −4.71

Intermediate 128 78.125 8.204 12.57

Fine 256 39.0625 7.883 8.16

Error xint [%] = 100 [xint − (xint)analytical] /(xint)analytical;

with erfc(x) the complementary error function and hlv = 2256 kJ/kg the latent heat of
vaporization. The evolution of the temperature profile for the vapor phase is given as

Tv (x, t) = Twall +

(
Tsat − Twall

erf (γ)

)
erf

(
x

2
√
αvt

)
, (4.17)

while the evolution of the temperature profile for the liquid phase is given as

Tl (x, t) = T∞ −

 T∞ − Twall

erfc
(
γ
ρv
√
αv

ρl
√
αl

)
 erfc

(
x

2
√
αlt

+
γ (ρv − ρl)

ρl

√
αv
αl

)
. (4.18)

Note that if T∞ = Tsat, the solution corresponds to the previous Stefan problem.
Three grid spacing ∆x are analyzed (see Table 4.7) with an initial liquid temperature

of 5 K higher than the saturation temperature. The length of the domain is set to 10 mm.
The liquid-vapor interface is initially positioned at xint = 312.5 µm. Like in Welch
and Wilson (2000), the temperature profile is initialized from the analytical solution at
t = 0.1 s and the simulation is run until the time t = 1.1 s is reached. The corresponding
analytical solution for the position of the interface is (xint)analytical = 7.288 mm.

The results in terms of final interface position, corrected to account for the different
origin, are summarized in Table 4.7. The time evolutions of the interface position are
displayed in Figure 4.10, while the instantaneous profiles of temperature are shown in
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Figure 4.10: Time evolution of the interface position for the sucking interface problem.

−1 0 1 2 3 4
373

374

375

376

377

378

379

x − x
int

 [mm]

T
 [K

]

 

 

Analytical
Coarse
Intermediate
Fine

Figure 4.11: Temperature profiles at t = 1.1s for the sucking interface problem.
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Figure 4.11. A higher dependency on the mesh resolution is observed compared to the
previous problem. A non-linear evolution of the convergence with mesh refinement
is also noticed, which may be caused by the convection term because it has not been
modified to account for the interface temperature. Considering the mesh element sizes
employed, the error is acceptable and below 10% for the fine mesh resolution. The
thickness of the thermal boundary layer is also well reproduced. Since, the diffusion
term seems to be well implemented according to the results of the previous test case,
the convection term should be the most critical part of the model in this benchmark. A
higher accuracy is therefore achievable by improving the discretization of the convec-
tion term and taking into account the temperature at the interface.

4.2.3 Spherical vapor bubble growth

The growth of a spherical vapor bubble in a superheated liquid is considered here. This
is a typical benchmark to assess the accuracy of phase change models in more than
one dimension. It has been used by Son (2001), Kunkelmann and Stephan (2009),
Kunkelmann and Stephan (2010b), Magnini et al. (2013a) and Sato and Ničeno (2013).
The evaporation of a spherical bubble presents two different stages. In the first stage,
the growth of the bubble is controlled by surface tension and inertia. In the second
stage, the growth is controlled only by the rate at which heat can be transfered by
diffusion and convection from the superheated liquid to the two-phase interface. A
detailed description of each phase is provided in Plesset and Zwick (1954). Using the
similarity approach, Scriven (1959) obtained an analytical solution for the second stage
of the bubble growth. In a similar way to the sucking interface problem, the analytical
solution will be used to initialize the simulations.

Due to the curvature of the interface, surface tension effects are present near the
interface and are particularly significant when the radius of the bubble is small, as it
has been observed in the static bubble test case. If the interfacial curvature calculation
method is not enough accurate, strong spurious currents may appear near the interface
and interact badly with the temperature field, leading to erroneous estimates of the mass
transfer rate at the interface. In addition to surface tension effects, the interface unit nor-
mal vectors are no more aligned with the mesh thus introducing additional difficulties
in estimating correctly the local mass transfer rate at the liquid-vapor interface. This
test case is therefore useful to estimate the accuracy of the mass transfer calculation
method and the interaction of the phase-change model with the surface tension model.

The analytical solution for the bubble radius, rint(t), is

rint (t) = 2βg
√
αvt, (4.19)

where βg is the “growth constant” obtained from

2β2
g

∫ 1

0

exp

(
−β2

g

(
(1− η)−2 − 2

(
1− ρv

ρl

)
η − 1

))
dη

=
ρlcp,l (T∞ − Tsat)

ρv (hlv + (cp,l − cp,v) (T∞ − Tsat))
.

(4.20)

The vapor is at saturation temperature while the analytical solution for the liquid
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Figure 4.12: Domain definition for the spherical vapor bubble growth problem.

temperature is

Tl (r, t) = T∞ − 2β2
g

(
ρv (hlv + (cp,l − cp,v) (T∞ − Tsat))

ρlcp,l

)
×
∫ 1

1− rint(t)

r

exp

(
−β2

g

(
(1− η)−2 − 2

(
1− ρv

ρl

)
η − 1

))
dη.

(4.21)

A three-dimensional cubic computational domain of side 250 µm is chosen for the
simulations, in order to allow dynamic mesh refinement (in OpenFOAM this is only
available in three-dimension). One-eighth of the bubble is simulated using symme-
try boundary conditions for the left, bottom and back boundaries (see Figure 4.12).
The mesh resolution is highest near the interface and is then progressively reduced to
a maximum element size of 15.625 µm. Three minimum mesh element sizes ∆min

are analyzed (see Table 4.8) with an initial liquid temperature of 5 K higher than the
saturation temperature.

The simulation is initialized using the analytical solution at t = 0.07 ms, corre-
sponding to a bubble radius of 103.135 µm. The simulation is run until the time t = 0.3
ms is reached, corresponding to a bubble radius of 213.5 µm.

The results in terms of final bubble radius are summarized in Table 4.8 while the
time evolutions of the bubble radius are shown in Figure 4.13. Like in the previous
test case, a high dependency on the mesh resolution is observed and the results may
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Table 4.8: Mesh resolutions and results for the spherical vapor bubble growth problem.

Resolution ∆min [µm] rint(t = 0.3ms) [µm] Error rint [%]

Coarse 7.8125 161.6 −24.31

Intermediate 3.90625 194.7 −8.81

Fine 1.953125 217.9 2.06

Error rint [%] = 100 [rint − (rint)analytical] /(rint)analytical;
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Figure 4.13: Time evolution of the interface position for the spherical vapor bubble growth problem.

not converge toward the analytical solution. The profiles of temperature at t = 0.3 ms
are also displayed in Figure 4.14. Despite the discrepancy of the bubble growth rate
for the Coarse and Intermediate mesh resolutions, the thermal boundary layer are well
reproduced for all the cases.

We note that the results may be drastically improved by modifying the discretiza-
tion of the convection term as well as by improving the estimates of the mass transfer
rate. For instance, the methods implemented in Sato and Ničeno (2013) may be more
suitable. An improvement of the interfacial curvature calculation may also be benefit
through the reduction of the spurious currents.

Despite these drawbacks, the implemented method is enough stable to be used as a
starting point for the development of a more accurate model. In effect, some useful fea-
tures are available such as dynamic mesh refinement capabilities and a sharp treatment
of the mass transfer model. Preliminary investigations of boiling phenomena may also
be performed.
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Figure 4.14: Temperature profiles at t = 0.3ms for the spherical vapor bubble growth problem.
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CHAPTER5
Results on isothermal spherical rising bubbles

In this chapter, the rise of isothermal spherical air bubbles in stagnant pure water is
investigated using the various implemented interfacial curvature calculation methods.
The performances of each method are therefore assessed on realistic cases. The dy-
namics of small spherical bubbles, which are subject to high surface tension forces, is
also of fundamental importance for a number of industrial and natural processes. For
instance, gas-liquid flows involving heat and mass transfer display such characteristics
during bubble collapse and nucleation. Small bubbles are also employed to improve
the efficiency of chemical reactors by increasing the surface area available for mass
transfer.

To characterize the interaction forces between the liquid and the gas phases, several
experimental studies have been performed in the past on single rising bubbles in stag-
nant liquids (Peebles and Garber, 1953; Clift et al., 1978; Bhaga and Weber, 1981;
Duineveld, 1995; Zun and Groselj, 1996; Dai et al., 1998; Tomiyama et al., 2002;
Parkinson et al., 2008; Sanada et al., 2008). Theoretical predictions have been pro-
posed as well. For very small bubbles in the viscous dominant regime, i.e., when the
bubble Reynolds number is less than unity (de ≤ 100 microns for an air-water sys-
tem), Hadamard (1911) and Rybczynski (1911) proposed a drag law in which slip at
the interface is considered. In practice this happens only in pure liquids, as verified
by Parkinson et al. (2008) using ultra-pure and contaminated water for comparison. In
effect, the presence of surfactants modifies the state of the gas-liquid interface in such
a way that the bubble is comparable to a rigid sphere (Tomiyama et al., 2002; Parkin-
son et al., 2008; Dijkhuizen et al., 2010a). In this condition, the well known Stokes’
drag law for solid particles can be used. When inertial forces cannot be neglected,
i.e., when larger spherical bubbles are considered, the theoretical predictions of Moore
(1963, 1965) agree very well with the experiments of Duineveld (1995) and Sanada
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et al. (2008). For a more thorough overview of bubble formation and rise as well as
drag correlations, the interested reader is referred to Kulkarni and Joshi (2005).

Despite the apparent simplicity of spherical bubbles, their detailed numerical simu-
lation using an interface tracking technique is rather difficult. The main reason for this
difficulty is often attributed to the presence of spurious currents around the interface
originating from the treatment of the surface tension (Scardovelli and Zaleski, 1999).
The so called static bubble test case is frequently chosen to analyze these spurious cur-
rents and several studies have been performed (see e.g., Scardovelli and Zaleski (1999);
Popinet and Zaleski (1999); Renardy and Renardy (2002); Francois et al. (2006); Ger-
lach et al. (2006); Popinet (2009); Nichita et al. (2010); Magnini and Pulvirenti (2011);
Magnini et al. (2013a)). When the fluids have high density and viscosity ratios, for
instance an air-water system, numerical instabilities also readily appear. As a conse-
quence, the first numerical study on rising air bubbles in stagnant water with diameters
down to 1 mm was only recently carried out, by Dijkhuizen et al. (2005). They used
a Front Tracking (FT) technique with proper modifications in order to simulate small
bubbles. Later, Hua et al. (2008) also proposed a modified FT technique able to simu-
late air bubbles in water with diameters down to 500 microns. The model developed in
Dijkhuizen et al. (2005) has been further improved and FT simulations of rising bubbles
with diameters down to 300 microns have been successfully performed by Dijkhuizen
et al. (2010a,b,c).

5.1 Reference data

A gas bubble released in a stagnant liquid will rise under the effect of buoyancy. Af-
ter an initial transient, the velocity of the rising bubble will reach an asymptotic value
defined as the terminal rise velocity, which is characteristic of the phenomenon. Many
different sizes and shapes of bubbles are observed at different regimes, which can be
defined by using two dimensionless groups, the Morton (Mo = µ4

l gρ
−1
l σ−3) and Eötvös

(Eo = ρlgd
2
eσ
−1) (or Bond) numbers, from which the bubble Reynolds number (Re)

can be determined, as shown in Figure 5.1. The Reynolds, Morton, and Eötvös num-
bers capture the effects of the inertial, viscous, gravitational, and surface tension forces,
which determine the bubbles’ shapes, sizes, and characteristic terminal rise velocities.
Additional dimensionless parameters affecting the physics of the problem are the den-
sity and viscosity ratios.

The choice of the operating fluids and gravitational acceleration determine the Mor-
ton number (for the air-water system at ambient conditions, Mo = 2.54 × 10−11, i.e.,
log Mo = −10.6). The size of the bubble then defines the Eötvös number, from which
an estimate of the shape and terminal rise velocity can be obtained. According to Fig-
ure 5.1, at low Eo numbers, spherical bubbles are observed, followed by ellipsoidal,
spherical-cap, and skirted spherical-cap bubbles at increasing Eo numbers. An oscilla-
tory (wobbling) behavior is observed at high Re numbers and, depending on the nature
of the flow, also in the bubble wake (Fan and Tsuehiya, 1990).

Several authors (Fan and Tsuehiya, 1990; Haberman and Morton, 1954; Wu and
Gharib, 1998) have studied the influence of vortex shedding on the shape and behavior
of the bubble. Indeed, the recirculation and the wake at the bottom of the bubble can
generate non-rectilinear trajectories with a full three-dimensional dynamics at large Re
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5.1. Reference data

Figure 5.1: Shape regimes for bubbles rising in stagnant liquids (Clift et al., 1978).

numbers. Studying the behavior of rising air bubbles in clean water, Wu and Gharib
(1998) found for a spherical bubble a transition from a rectilinear to a zig-zag motion at
Re = 157± 10, while for an ellipsoidal bubble, the transition is observed at Re = 564.
Bhaga and Weber (1981) studied air bubbles rising in water-sugar solutions of different
concentrations (Mo > 4 × 10−3, i.e., log Mo > −2.4) and have observed closed and
symmetric streamlines in the wake following the bubbles at Re < 110.

Figure 5.2 shows Clift’s map (left) and a map from Tomiyama (2004) (right), linking
the equivalent diameter, the Eo number, and the terminal rise velocity for both clean
and contaminated water. In both diagrams, a bifurcation of the measured terminal
rise velocities for bubble diameters greater than about 0.6 mm can be observed. This
phenomenon was initially attributed to the presence of surfactants (Clift et al., 1978).
Recently, some authors (Wu and Gharib, 1998; Tomiyama et al., 2002) have concluded
that the initial bubble shape has the greatest influence. As pointed out by Tomiyama
(2004) (Figure 5.2, right), a higher velocity and a low aspect ratio E (Tomiyama et al.,
2002) are observed for bubbles with a high initial shape deformation. In addition,
such bubbles follow a rectilinear path until a critical bubble Reynolds number of about
400 is reached. Yang et al. (2003) carried out a sensitivity analysis of the terminal
rise velocity of bubbles undergoing shape or volume oscillations, reporting results in
disagreement with this theory. Alves et al. (2005) studied bubbles kept stationary in
a downward liquid flow and observed a reduction in the terminal rise velocity when
the bubble surface is contaminated. Actually, the discussion about the causes of this
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Chapter 5. Results on isothermal spherical rising bubbles

Figure 5.2: Terminal rise velocity of air bubbles in water at 20◦C by Clift et al. (1978), left, and
Tomiyama (2004), right.

significant variation of velocity is still open (Tomiyama, 2004; Celata et al., 2006).
In the present study, the numerical results are compared with the experimental data

and the theoretical models based on the assumption of clean water (i.e., no contami-
nants affecting the bubble surface properties) and assuming limited deviations from a
spherical shape (i.e., an aspect ratio E ≈ 1). For bubbles with 0.4 < de < 1.1 mm, the
experimental data obtained by Dai et al. (1998), Duineveld (1995), and Sanada et al.
(2008) are available. They show good agreement with the values of the drag coeffi-
cient and terminal rise velocity obtained analytically by Moore (1965). The Moore’s
terminal rise velocity, U∞Moore, can be obtained starting from the expressions of the drag
coefficient CD given by the balance between the buoyancy and the drag forces acting
on a spherical bubble,

CD =
4gde

3 (U∞)2 , (5.1)

and that theoretically derived by Moore (1965) in a generalized form for ellipsoidal
bubble,

CD =
48G(E)

Re

[
1 +

H(E)

Re1/2
+ ...

]
, (5.2)

with G(E) and H(E) functions of the bubble aspect ratio E,

G(E) =
E4/3 (E2 − 1)

4/3
[
(E2 − 1)

1/2 − (2− E2) sec−1E
]

3
(
E2sec−1E − (E2 − 1)1/2

)2 , (5.3)

H(E) = 0.0108E4 − 0.157E3 + 1.5725E2 − 2.0195E − 1.67. (5.4)

Merging the expressions reported for CD (Eq. (5.1) and Eq. (5.2)) the following
equation for U∞ is obtained,

U∞
[
1 +

H(E)

Re1/2

]
=

d2
egρl

36µlG(E)
. (5.5)
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Figure 5.3: Analytical terminal rise velocity values for air bubble in water at 20◦C.

This can be closed by using the approximated expression of the bubble Weber num-
ber (We = ρl(U

∞)2deσ
−1) in function of E given by Moore (1965),

We(E) =
4 (E3 + E − 2)

[
E2secE − (E2 − 1)

1/2
]2

E4/3 (E2 − 1)3 . (5.6)

The Moore’s terminal rise velocity, U∞Moore, is defined by iterative calculation until
both Eq. (5.5) and Eq. (5.6) are satisfied, as shown in Duineveld (1995).

For diameters de < 0.1 mm, the experimental data by Parkinson et al. (2008) show
good agreement for a single air bubble rising in clean water with Hadamard’s and Ry-
bczynski’s solution (U∞H−R) (Hadamard, 1911; Rybczynski, 1911),

U∞H−R =
(de/2)2∆ρg

3µl
, (5.7)

with µg � µl and ∆ρ = ρl − ρg.
Figure 5.3 shows Moore’s theory (Moore, 1965) for larger diameters and Hadamard’s

and Rybczynski’s solution (Hadamard, 1911; Rybczynski, 1911) for smaller diameters.
For the comparative study of interface curvature calculation methods, three bubble size
scenarios are chosen and are indicated as “Large,” “Medium” and “Small” (see Fig-
ure 5.1 and Figure 5.3). Liquid water (ρl = 1000 kg m−3; µl = 10−3 Pa s) and air
(ρg = 1.225 kg m−3; µg = 1.73× 10−5 Pa s) are used as working fluids, with a surface
tension coefficient typical of ambient conditions (σ = 0.0728 N m−1). In Table 5.1,
the characteristic dimensions and terminal rise velocities calculated from Figure 5.3 for
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Chapter 5. Results on isothermal spherical rising bubbles

Table 5.1: Characteristics of the three scenarios chosen for the comparative study.

Case de (mm) Eo U∞ref (m s−1) Re(U∞ref)

Large 0.9 0.109 0.23 207

Medium 0.5 0.034 0.10 50

Small 0.3 0.012 0.05 15

the three scenarios are reported, as well as the associated Eo and Re. For the Small
bubble size, a linear interpolation is used to calculate the terminal rise velocity due to
the absence of reference data.

5.2 Boundary conditions and initialization

The domain used for the simulations is determined using some criteria available in the
literature. According to the sensitivity analyses realized by Harmathy (1960) and Hua
and Lou (2007), a domain with a length of at least 10de in the rising direction of the
bubble is required to avoid the influence of the boundary conditions. Lebaigue et al.
(2003) also suggested using a 10de extension in all directions or, alternatively, using
the semi-empirical relation

U∞,confined

U∞
≈ 1−

(
de
D

)2

, (5.8)

with D the characteristic dimension of the domain in a plane perpendicular to the grav-
ity direction. According to the work of Harmathy (1960), this approach captures the
influence on the terminal rise velocity whereas the shape of the bubble is not affected
by the domain extension.

The limited Reynolds numbers (see Table 5.1) in the scenarios analyzed here en-
sure a rectilinear trajectory of the rising bubble without any oscillation, as suggested
by the experiments performed by Tomiyama (2004). An axisymmetric formulation is
therefore adopted in order to simplify the problem. The domain extension, expressed
in terms of the bubble initial diameter de, is thus 18de along the z-direction, i.e., the
revolution axis, and 6de along the r-direction, i.e., the direction perpendicular to grav-
ity. The extension in the r-direction guarantees that the boundary condition affects the
final terminal rise velocity by less than 1%, according to Eq. (5.8).

Various mesh sizes ∆ are analyzed to assess the grid independence of the results.
The sensitivity analysis performed by Hua and Lou (2007) shows that a mesh resolution
of de/∆ > 20 ensures grid independence. A uniform mesh sizing method is adopted
where the mesh is adapted statically to the desired resolution in a band of width 1.5de.
In the outer regions, the mesh becomes gradually coarser, since no characteristic phe-
nomena and low velocities are expected there.

Table 5.2 summarizes the decreasing mesh sizes (“Coarse”, “Intermediate” and
“Fine") used within the simulations and Figure 5.4 gives an overview of the domain
and boundary conditions.

A constant value for the pressure is applied at the upper boundary of the rectangular
domain, axisymmetric conditions at the left boundary, and free slip conditions at the
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Figure 5.4: Overview of the domain extension, boundary conditions and meshing strategies.

Table 5.2: Summary of the mesh element sizes.

Resolution max(de/∆) min(de/∆)

Coarse 20 5

Intermediate 40 5

Fine 80 5

right and bottom boundaries. Zero normal gradient boundary condition is applied for
the volume fraction F at all boundaries. Null velocity and pressure fields are set as
initial conditions and the bubble is initially centered at (0, 2de). For the first three inter-
facial curvature calculation methods, implemented in OpenFOAM, the volume fraction
is initialized as follows

F = max

[
min

(
1− |x− (0, 2de)| − de/2 + ∆

2∆
, 1

)
, 0

]
, (5.9)

while for the height function method, implemented in the Gerris code, the bubble is
initialized using the intersection of the analytical bubble shape with the edges of the
mesh.
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Chapter 5. Results on isothermal spherical rising bubbles

The time step size is restricted by the stability criteria for the convection, viscous
and surface tension terms, like in the static bubble test case.

5.3 Results

In this section, the numerical results obtained with the four interfacial curvature cal-
culation methods presented in the previous section are compared. The terminal rise
velocity of the bubbles and the velocity field are mainly discussed.

5.3.1 Calculation of the terminal rise velocity

The terminal velocity of a bubble can be determined either

• by evaluating the speed of the center of mass of the bubble zm; or

• by identifying a specific point on the interface, such as the apex (zmax), and then
calculating its rising speed.

The center of mass of the bubble is computed by

zm =

∑
zFVcell∑
FVcell

, (5.10)

with z the cell-center position in the rise direction, F the volume fraction of the gaseous
phase and Vcell the cell volume.

In cases with large bubble shape deformations, the “center-of-mass” approach is
commonly used for capturing the acceleration–deceleration behavior observed before
reaching the asymptotic terminal velocity (Lebaigue et al., 2003). However the “center-
of-mass” approach is limited in the cases where break-up of the bubble, i.e., loss of
mass, is observed. On the other hand, the “apex” approach is not affected by bubble
break-up, however it is not able to capture the acceleration–deceleration behavior of
bubbles with large shape deformations. In the cases studied here, the bubbles possess
a spherical or quasi-spherical shape and an axisymmetric flow field, i.e., there are no
large bubble deformations or break-ups. As a result, the “center-of-mass” approach is
adopted for the computation of the terminal rise velocity.

5.3.2 Grid convergence analysis

The results in terms of the terminal rise velocity obtained with the selected bubble di-
ameters (Large, Medium and Small) for the Coarse, Intermediate, and Fine meshes are
reported in Tables 5.3 and 5.4 for the four interfacial curvature calculation methods.
Regarding the Gauss method, inaccurate results are obtained for all the bubble diame-
ters and mesh resolutions. In particular, for the Medium and Small bubble diameters,
the bubble is almost not rising. For the node-based gradient and recursive weighted in-
terpolations methods, a relatively high dependency on the mesh resolution is observed,
with the results not converging toward the reference solution. For the Large bubble
diameter, the results accuracy are acceptable, while for the other two cases the results
are mostly above 30% of relative error. On the other hand, the height function method
demonstrates to be very accurate for all the three cases, with relative errors contained
within 10%.
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Table 5.3: Simulated terminal rise velocities compared with reference data (see Section 5.1). Large and
Medium cases.

Case U∞ref (m s−1) Method Mesh U∞ (m s−1) Error (%)

Large 0.23 Gauss Coarse 0.102 55.7

Intermediate 0.111 51.5

Fine 0.115 49.8

nbg Coarse 0.247 7.2

Intermediate 0.243 5.6

Fine 0.260 13.1

rwi Coarse 0.207 10.0

Intermediate 0.173 24.9

Fine 0.150 34.6

hf Coarse 0.217 5.7

Intermediate 0.224 2.8

Fine 0.227 1.3

Medium 0.10 Gauss Coarse 0.000 100

Intermediate 0.028 71.8

Fine 0.0544 45.6

nbg Coarse 0.162 61.9

Intermediate 0.145 45.1

Fine 0.156 55.9

rwi Coarse 0.093 7.0

Intermediate 0.090 9.8

Fine 0.044 55.9

hf Coarse 0.089 10.8

Intermediate 0.098 2.3

Fine 0.094 5.7

Error (%) = 100|U∞ − U∞ref |/U∞ref ;

5.3.3 Characterization of the bubble rise

The time evolution of the bubble rise velocity for the three methods implemented in
OpenFOAM are displayed in Figures 5.5, 5.6 and 5.7 for the case Large, Medium and
Small, respectively, and for the Coarse mesh resolution. The results for the height
function method are shown in Figures 5.8, 5.9 and 5.10. As shown in these figures, the
initial phase of the rise is characterized by an acceleration until the steady-state terminal
rise velocity is reached.
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Chapter 5. Results on isothermal spherical rising bubbles

Table 5.4: Simulated terminal rise velocities compared with reference data (see Section 5.1). Small case.

Case U∞ref (m s−1) Method Mesh U∞ (m s−1) Error (%)

Small 0.05 Gauss Coarse 0.000 100

Intermediate 0.002 96.9

Fine 0.000 100

nbg Coarse 0.108 115.8

Intermediate 0.076 52.7

Fine 0.080 59.5

rwi Coarse 0.077 53.8

Intermediate 0.070 39.6

Fine 0.040 20.7

hf Coarse 0.046 8.0

Intermediate 0.049 2.6

Fine 0.045 10.0

Error (%) = 100|U∞ − U∞ref |/U∞ref ;

Regarding the methods implemented in OpenFOAM, the quality of the results de-
creases as the bubble diameter is reduced, explained by the higher capillary forces due
to the increasing interfacial curvature. The bubble is also not able to rise when the
Gauss method is employed for the Medium and Small bubble diameters, as shown in
Figures 5.6 and 5.7. In these cases, the bubble oscillates around its initial position.
Concerning the recursive weighted interpolations method, a non-physical trend of the
rising velocity is observed for the Medium and Small bubble diameters while the trend
is of good quality for the Large case. On the other hand, the results obtained with the
node-based gradient method are physical for all the three bubble diameters, however
the rising velocity is overestimated. The results for the Intermediate and Fine mesh res-
olutions are not displayed for the sake of clarity, however similar trends are obtained,
with a different terminal rise velocity.

The evolutions of the rising velocity in the simulations using the height function
method present the most physical trends, with a converging behavior while the mesh
resolution is increased. In the case Large (see Figure 5.8), the Coarse mesh presents a
lower initial acceleration which leads to an underestimate of the terminal rise velocity,
that is reached approximately at the same instant from all the tested meshes. This
trend does not persist for the Medium and Small cases where a different behavior,
characterized by a higher initial acceleration, is observed for the Coarse mesh. A higher
dependence of the acceleration phase on the spatial discretization is therefore noticed
when the capillary forces increase, i.e., when the bubble size decreases, suggesting the
use of finer meshes for smaller bubble dimensions.
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Figure 5.5: Bubble rise velocity history for the case Large (de = 0.9 mm). Results from the Gauss, nbg
and rwi methods (OpenFOAM code).
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Figure 5.6: Bubble rise velocity history for the case Medium (de = 0.5 mm). Results from the Gauss,
nbg and rwi methods (OpenFOAM code).
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Figure 5.7: Bubble rise velocity history for the case Small (de = 0.3 mm). Results from the Gauss, nbg
and rwi methods (OpenFOAM code).
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Figure 5.8: Bubble rise velocity history for the case Large (de = 0.9 mm). Results from the hf method
(Gerris Flow Solver code).
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Figure 5.9: Bubble rise velocity history for the case Medium (de = 0.5 mm). Results from the hf method
(Gerris Flow Solver code).
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Figure 5.10: Bubble rise velocity history for the case Small (de = 0.3 mm). Results from the hf method
(Gerris Flow Solver code).
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Chapter 5. Results on isothermal spherical rising bubbles

5.3.4 Flow field description

The behavior shown in Figures 5.5, 5.6 and 5.7 can be better understood and explained
by looking at the velocity field around the bubble during its rise. As shown in Figure
5.11 and 5.12, for the height function method, a physically correct distribution of the
velocity vectors is observed with its maximum velocity in the proximity of the axis
of symmetry. Furthermore, a regular vortex at the lateral extremities of the bubble is
observed, while the bubble maintains a spherical shape. For the Gauss method, the
presence of spurious is clearly noticed however the bubble shape remains spherical.
On the contrary, for the node-based gradient and recursive weighted interpolations
methods, the bubble shape is nearly spherical however the effects of spurious currents
on the flow field are significantly reduced. In particular, the velocity field obtained with
the recursive weighted interpolations method is very close to the one obtained with the
height function method.

As the bubble diameter becomes smaller, the spurious currents observed with the
Gauss become more significant compared to the velocity of the bubble. This is due to
the increasing capillary forces. These stronger spurious velocities are able to markedly
modify the transport of the bubble, influencing the rise velocity until the bubble defini-
tively stops, as observed for the case Small. As the bubble size is reduced, an increased
influence of the spurious currents on the velocity field is also observed for the node-
based gradient and recursive weighted interpolations methods.

Despite these drawbacks, the results obtained with the recursive weighted inter-
polations method are acceptable considered the challenges induced with such bubble
dimensions. The method can therefore be used to investigate heat and mass transfer
phenomena. Ideally, the height function method should be used however it is limited to
orthogonal meshes. In alternative to the recursive weighted interpolations method, the
node-based gradient method may be employed, with comparable accuracy and stability.
In alternative, a coupled level-set volume-of-fluid method could be implemented in or-
der to improve the accuracy of the interfacial curvature calculation method. However,
a correct and efficient implementation is not trivial, especially when non-orthogonal
meshes are adopted.
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Figure 5.11: Velocity vector field around the bubble for the case Large (de = 0.9 mm). Results from the
Coarse mesh resolution at t = 0.05 s.

Figure 5.12: Velocity vector field around the bubble for the case Small (de = 0.3 mm). Results from the
Coarse mesh resolution at t = 0.02 s.
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CHAPTER6
Single bubble nucleate pool boiling benchmark

In this chapter, a benchmark for the simulation of single bubble nucleate pool boil-
ing is proposed. Previously, the phase change model has been tested on simple one-
dimensional and two-dimensional test cases with analytical solution. For a more thor-
ough validation of the developed model, comparisons with experimental data on real
situations are required. In order to achieve this goal, part of the activities of the present
thesis were performed at MIT in the Buongiorno’s group. They consisted in supporting
the experimental team for the definition of the experimental boundary conditions and
the post-processing of the results. Recently, Buongiorno’s group published a series of
experimental data obtained at the MIT pool boiling facility (Duan et al., 2013). Some
of the data presented in this paper are used to define the following benchmark. Addi-
tional post-processing, consisting in digitizing bubble shape and averaging the results
between ebullition cycles, is performed in order to allow a direct comparison of the nu-
merical results with the experimental data. The validation of phase change model can
be achieved by comparing the predictions of the bubble shape, growth and detachment
from the heated wall as well as the temperature field above the heated wall. Unfortu-
nately, due to the computational time required, numerical results are not yet available
thus only the definition of the boundary conditions and computational domain are pre-
sented together with the experimental results.

6.1 The MIT pool boiling facility

The facility uses a combination of high-speed infrared (IR) thermometry, digital video
(HSV) and Particle Image Velocimetry (PIV) to measure the temperature, phase and
velocity distributions in the proximity of a boiling surface. The data chosen for the
benchmark are not from the experiments using PIV because a higher quality of the
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Figure 6.1: Schematic of the MIT pool boiling facility. Lateral windows are provided for the HSV (the
spherical shape around the ITO heater represents the front and back access windows). The bottom
access port is for the IR thermometry.

bubble shape is obtained without the presence of particle within the fluid. A schematic
of the facility in this configuration is given in Figure 6.1. It is made of two concentric
cylinder structures, forming an inner and an outer cell. Boiling occurs in the inner cell
over a flat horizontal electric heater (the ITO heater), that will be described below. The
outer cell serves as an isothermal bath to control the temperature of the whole facility,
prior and during the experiments. On the top of the inner cell, a reflux condenser is
inserted to prevent loss of water through evaporation and to maintain the test cell at
atmospheric pressure. Four glass windows are located along the inner cell surface.
They are equally spaced of 90◦ to allow PIV imaging. The bulk temperatures of the
fluids is monitoring using thermocouples into the inner cell and the isothermal bath.
Stainless-steel, grade 316, is used for all metal parts to minimize corrosion.

The specially designed heater over which boiling of saturated de-ionized water oc-
curs is a thin film heating element made of Indium-Tin-Oxide (ITO). The ITO layer of
0.7 µm thickness is vacuum deposited onto a sapphire substrate of 250 µm thickness to
provide mechanical stability. Silver electrode pads of 20 µm thickness are used to pass
a DC current to the heater. The size of the sapphire substrate is 50× 50 mm2, while the
exposed heating area of the ITO is 20× 10 mm2.

The ITO heating element is heated by Joule effect and boiling occurs on the upward
facing side of the ITO film. The heating element is sealed using silicon gel and the
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Figure 6.2: Schematic of the ITO heater.

bottom surface of the sapphire substrate is exposed to air, effectively turning the sealed
heater into a window on the bottom surface of the inner cell. The ITO is transparent in
the visible range (380–750 nm) but opaque in the mid-IR range (3–5 µm), while the sap-
phire substrate is transparent in both the visible and mid-IR ranges. This combination
allows temperature measurement on the bottom of the ITO layer with the high-speed IR
camera. Because the ITO heater is so thin, the temperature drop across the ITO is neg-
ligible, so the IR camera effectively measures the temperature of the boiling surface.
A detailed analysis of such assumption is given in Gerardi (2009). The static contact
angle of water on the ITO is of the order of 80–90◦ as measured (at room temperature)
on the actual heaters in the facility.

A Phantom 12.1 high speed video camera (Vision Research, Wayne, New Jersey,
USA) is used for imaging the bubbles. The camera’s complementary metal-oxide-
semiconductor (CMOS) sensor is 25.6 × 16.0 mm2 with a 20 µm pixel size. An AF
Micro-Nikkor 200 mm f/4D lens (Nikon, Tokyo, Japan) is used for “close-up” imaging
of the bubbles. The long working distance (260 mm) of this lens allows the camera
to reach its 1:1 reproduction rate with a safe distance from the hot boiling cell. When
this magnification is kept during the imaging process, the images will always have a 20
µm/pixel scale. This leads to a 20 µm spatial resolution in analyzing the HSV images
and a maximum field of view (FOV) of 25.6 × 16.0 mm2 in the flow field. When
extension rings are used for the camera lens, spatial resolution of better than 15 µm can
be achieved.

To acquire the temperature distribution on the heater surface, an infrared (IR) high-
speed camera is used to measure IR intensity. The IR camera is an SC6000 from FLIR
systems, Boston, Massachusetts, USA. The camera has an Indium Antimonide (InSb)
detector that operates in the 3–5 µm wavelength range (mid-IR) and has a maximum
resolution of 640 × 512 pixels. A 100 mm germanium lens (f/2.3) with a 3/4-inch
extension ring is used to achieve the desired spatial resolution at the optimal camera
distance from the reference plane. In the experiment, only a small window (e.g., 224×
116 pixels) is needed for imaging the whole ITO heater surface, allowing for a high
frame rate of 1,000 fps. For measurement of a single bubble, an even higher frame rate
can be achieved; frame rates up to 3,000 fps were used in the experiment.
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Table 6.1: Thermo-physical properties of water, ITO and sapphire at 100 ◦C.

Property Water (liquid) Water (vapor) ITO Sapphire

Density (kg m−3) 958 0.6 7160 3980

Thermal conductivity (W m−1K−1) 0.68 0.025 8.7 30

Specific heat capacity (J kg−1K−1) 4216 2080 340 760

Dynamic viscosity (Pa s) 2.82× 10−4 1.23× 10−5 n/a n/a

Heat of vaporization (J kg−1) 2.256× 106 n/a n/a

Surface tension (N m−1) 0.058 n/a n/a

6.2 Simplifying assumptions

The benchmark is aimed at the simulation of bubble growth and detachment in a pool
of saturated de-ionized water at atmospheric pressure (Tsat = 100 ◦C, p = 1 atm). The
following simplifying assumptions are recommended for the simulations:

• at the selected experimental conditions (i.e., low heat flux), the bubbles can be
considered isolated from each other, i.e., interaction with bubbles at neighboring
nucleation sites can be ignored;

• given the small temperature changes (from 100 to 110 ◦C), constant thermo-
physical properties may be used for water, ITO and sapphire. Table 6.1 sum-
marizes the recommended values of the relevant properties.

• in principle, several bubble growth and detachment cycles should be performed in
the simulation until the temperature and velocity fields for bubble are similar to
those of the previous one, i.e., until periodic conditions are achieved. This may be
computationally prohibitive, thus the initial conditions should be as close as pos-
sible to the periodic conditions (which are unknown a priori). The PIV measure-
ments have shown that at low heat fluxes, i.e., the conditions of interest, the fluid
is almost at rest after a bubble departure. Thus an initial null velocity field can be
adopted in the simulations. Infrared images have also shown that the temperature
distribution on the ITO surface in the proximity of a nucleation site rapidly be-
comes uniform after a bubble departs, thus suggesting that an initial temperature
distribution consistent with transient conduction throughout the domain could be
specified.

• the sapphire substrate has a quite high thermal diffusivity thus the effects of con-
jugate heat transfer on the solution may not be negligible. However, for some
codes, the conjugate heat transfer feature may not be available. In such case, a
simplification could be to assign a constant heat flux at the bottom boundary of
the fluid domain. In effect, the thinness of the ITO heater permits to consider the
heat generation rate as planar and distributed uniformly along the heater surface.
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Figure 6.3: Schematic of the two possible computational domains (drawing not in scale).

6.3 Computational domain, boundary conditions and initialization

In this section, the settings for the computational domain, the boundary conditions and
the initialization of the simulations are discussed.

6.3.1 Computational domain

Two different computational domains can be adopted depending on the assumptions
made: without conjugate heat transfer or with conjugate heat transfer. The correspond-
ing schematic of these domains are displayed in Figure 6.3. A single isolated bubble
is analyzed and an axisymmetric domain is used. The hypothesis of axisymmetry is
confirmed by the high-speed video visualization. The vertical axis of the bubble is the
axis of symmetry. The dimension of the domain in the r-direction is 4 mm or higher,
while the height of the fluid domain can be 8 mm or higher depending on the size of the
bubble at detachment. The ITO has a thickness of 0.7 µm while the sapphire substrate
has a thickness of 0.25 mm. At the conditions of interest, the vapor bubbles typically
have a departure radius of 1 to 2 mm.

6.3.2 Boundary conditions

The boundary conditions for the pressure, velocity and temperature are identified in
Figure 6.3. The left boundary, i.e., along the z-axis with r = 0, should be set to ax-
isymmetry for both the fluid and solid regions. The bottom boundary of the fluid region
should be set to a no-slip wall, with the pressure gradient that balance the buoyancy
force. The right boundary can be set either to free-slip conditions or to open boundary,
i.e., with the pressure corresponding to the hydrostatic pressure of water. If free-slip
conditions are used, a larger computational domain may be required to avoid side ef-
fects. The top boundary should be set as open, with a null pressure. Note that since
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the densities are constant, the flow is incompressible and a pressure relative to the at-
mospheric pressure is used to reduce round-off errors. If conjugate heat transfer is
considered, all boundaries can be set to adiabatic. Otherwise, imposed heat flux bound-
ary condition should be set for the bottom boundary of the fluid region. A contact
angle between 80◦ to 90◦ should be set on the bottom boundary, as measured (at room
temperature) on the actual heaters in the facility. Note however that temperature and
dynamic effects may change the value of the contact angle at the heater wall.

The chosen experiments for the present test case present the following conditions:

• heat generation rate: q′′′ = 41 GW m−3;

• corresponding heat flux: q′′ = 28.7 kW m−2;

• nucleation temperature: Tn = 109.0 ◦C.

6.3.3 Initial conditions

Simulation of the actual micro-cavity from which the bubble would nucleate is beyond
the scope of this test case. Therefore, to start the bubble growth simulation, a small
bubble will have to be “seeded” at a prescribed location on the wall, with a prescribed
nucleation temperature of Tn. As described by Plesset and Zwick (1954), the growth
of a bubble in a superheated liquid is characterized by a first inertia-controlled phase,
where density variations due to pressure play a major role. In order to capture this
preliminary phase, special treatments should be implemented in the CFD model. In
most cases, only the thermally-controlled phase is of interest. As a consequence the
bubble can be initialized with a radius of about 100 µm. The shape of the bubble can
be considered as a spherical cap attached to the wall.

In most numerical method, the pressure solution is implicit at each time step, thus an
initial condition for pressure is generally not necessary and a null pressure field can be
set. A null velocity field should also be set as described previously in the simplifying
assumptions.

Since the thermal diffusivity of sapphire is high, a uniform temperature equal to the
temperature of nucleation (Tn) may be assumed throughout the sapphire substrate at
the beginning of the simulation. The temperature distribution within the liquid near the
wall is the result of transient conduction heat transfer following the departure of the
previous bubble. The temperature of the liquid far from the wall is equal to the satu-
ration temperature. The following equation is a reasonable assumption for the initial
liquid temperature profile within the domain:

T (z) =


Tn z ≤ 0,

Tn +
Tsat − Tn

0.213
z 0 < z < 0.213,

Tsat z ≥ 0.213,

(6.1)

with z expressed in mm. This temperature profile assure that the temperature gradient
at the heater wall corresponds to the imposed heat flux. After the liquid temperature is
initialized, the temperature within the vapor bubble can be set. A good approximation
may be to assign the saturation temperature within the vapor bubble.

94



i
i

“Guedon_Thesis” — 2013/8/27 — 15:29 — page 95 — #113 i
i

i
i

i
i

6.4. Data post-processing

6.4 Data post-processing

In order to compare the results of the simulations with the experimental data, the inves-
tigator should monitor the following quantities as a function of time:

• bubble volume;

• bubble surface area;

• bubble center of mass (after detachment is can be used to estimate the bubble rise
velocity);

• bubble maximum vertical position (defines the bubble height during bubble growth);

• bubble maximum radial position (defines the bubble lateral diameter, dlateral, dur-
ing bubble growth);

• bubble minimum radial position for z < 100 µm (defines the bubble base diame-
ter, dbase, during bubble growth);

• interface shape at times (0.7, 2.8, 6.9, 13.2, 17.3) ms and eventually at
(22.9, 27.1, 31.2) ms;

• temperature field over the heater surface at times
(0.42, 2.50, 6.66, 8.75, 19.16, 35.81, 117.44) ms;

• average temperature over the heater surface, 〈Twall〉.

The definition of dlateral, dbase and bubble height is shown in Figure 6.4. The bubble
volume and surface area can be used to determine the history of the mass transfer rate.
Comparing it with the integral of the local mass transfer rate from the phase change
model can also be done to check the global mass conservation.

The interface shape and temperature field are to be compared with experimental data
obtained at specific times (see next section).

Finally the average temperature is used to compute the history of the heat transfer
coefficient defined as

h =
q′′

〈Twall〉 − Tsat
, (6.2)

where q′′ is the imposed surface heat flux. The average heat transfer coefficient can also
be determined from the time average wall temperature

h =
q′′

〈Twall〉 − Tsat
, (6.3)

with

〈Twall〉 =
1

tcycle

∫ tcycle

0

1

A

∫
A

T (r, t)dAdt. (6.4)
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Figure 6.4: Schematic of the characteristic dimensions of the bubble during bubble growth.

6.5 Experimental results

The experimental data used to determine this benchmark are from experiments without
PIV measurements. In effect, the particles present in the fluid in order to perform PIV
imaging do not allow an accurate visualization of the bubble shape. Moreover, under
the conditions of interest, i.e., low heat fluxes and laminar flow, the correct prediction
of the bubble shape is more challenging that the correct prediction of the velocity field.
PIV measurements may be appropriate at high heat fluxes for the estimation of the
enhanced convection heat transfer due to the motions induced by the bubbles.

Data from synchronized high-speed video (HSV) and infrared (IR) thermometry are
therefore available and the experimental conditions are as follows:

• pressure: 1 atm;

• water bulk temperature: 99.5± 1.1 ◦C;

• HSV frame rate: 7, 204 fps;

• IR frame rate: 2, 401.3 fps (synchronized within 3 µs);

• nucleation temperature: 109.0 ± 2 ◦C; this would correspond to a nucleation site
(microcavity) of critical diameter ≈ 6 µm according to the Young–Laplace and
Clausius–Clapeyron equations Rohsenow et al. (1998).

A good repeatability of the results is observed and three consecutive bubbles at a
single nucleation site are chosen from the dataset.
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0.0 ms 0.7 ms 2.8 ms 6.9 ms 13.2 ms 17.3 ms

Figure 6.5: Sequence of HSV images for the first bubble.

6.5.1 High-speed video imaging

In order to obtain information about the bubble shape, dimensions and departure fre-
quency, HSV images were taken from a side window of the boiling cell (see Figure
6.1). A typical sequence of images taken for the first bubble are shown in Figure 6.5.
The repeatability of this sequence between the three consecutive bubbles is excellent
(Duan et al., 2013). The average shape of the bubbles is thus computed from the dataset
and is given in Figure 6.6. The results from the simulations can be compared directly
with these digitized experimental shapes.

In addition to the bubble shape, three of its characteristic dimensions have been
monitored in the experiments. These dimensions are respectively the lateral diameter,
dlateral, the base diameter, dbase, and the bubble height (see Figure 6.4 for more details).
The results for the three bubbles are displayed in Figure 6.7 together with an average
time evolution of the bubble characteristic dimensions.

6.5.2 High-speed IR measurements

The temperature of the heating surface is obtained from high-speed IR measurements
from the bottom access port of the boiling cell (see Figure 6.1). Both IR and HSV are
synchronized within 3 µs and the frequency of IR acquisition is one-third the frequency
of the HSV acquisition. A detailed analysis of the temperature field underneath the
bubble together with the bubble shape and dimensions is therefore possible.

Again, the results obtained for the three consecutive bubbles have a good repeata-
bility. The radial distributions of the azimuthally average temperature, T (r, t), show a
precision < 0.5 ◦C. In Figure 6.8, the average distribution of T (r, t) between the three
bubbles is displayed. It can be observed the cold ring due to the microlayer evaporation
(note that the three phase contact line position is about r = 1 mm for t > 2 ms). The
dry spot at the nucleation site is also clearly visible, and expands as the bubble grows.

The time history of the temperature at the nucleation for the three ebullition cycle
is given in Figure 6.9. From this result it is possible to estimate the bubble frequency,
bubble growth time and wait time between each cycle.

Finally a series of average heat transfer coefficients calculated for various radial size
of the integration domain is displayed in Figure 6.10.

From both the HSV images and IR measurements, it can be observed the following
parameters in this experiment:
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Figure 6.6: Schematic of the characteristic dimensions of the bubble during bubble growth.
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Figure 6.7: Time evolution of the characteristic dimensions of the three bubbles. The measurements
have an accuracy of ±0.04 mm.
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• bubble frequency: ≈ 4.7 Hz;

• bubble growth time: 14.7± 0.2 ms;

• wait time: ≈ 200 ms;

• bubble departure diameter: 3.8± 0.07 mm;

• average heat transfer coefficient: ≈ 3.18 kW m−2 K−1.
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Figure 6.8: Radial distribution of the azimuthally average temperature (averaged between the three bub-
bles). Curves with empty symbols are after bubble departure. Accuracy of the measured temperature
is ±2 ◦C, and precision is < 0.5 ◦C.
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Figure 6.9: Time history of the temperature at the nucleation site. Accuracy of the measured temperature
is ±2 ◦C.
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Figure 6.10: Average heat transfer coefficient as a function of the radial size of the integration domain.
Average between the three ebullition cycles. Accuracy of the calculated heat transfer coefficient is
±0.8 kW m−2 K−1, and precision < 0.2 kW m−2 K−1.
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CHAPTER7
Conclusions and outlook

7.1 Summary

In this thesis, a flexible and reliable numerical method for the simulation of two-phase
heat and mass transfer has been implemented. The method has been applied to the
simulation of boiling heat transfer, which is a relevant mode of heat transfer within
the energy production and conversion sector. A detailed description of the governing
equations and of the implemented numerical method has been provided, followed by
a proper verification and validation process. Then the model has been applied to the
simulation of isothermal rising air bubbles in water with dimensions typical to heat and
mass transfer applications. Finally, a benchmark for the simulation of single bubble
nucleate pool boiling has been developed.

The derivation of the governing equations for a two-phase heat and mass transfer
problem has demonstrated that the form of the energy equation using a one-fluid for-
mulation is not trivial. When a smooth Heaviside function is adopted instead of a sharp
Heaviside function, several additional terms related to the mixture quantities also arise
and need to be closed. For these reasons, it is preferred to solve the energy equation
for each phase separately by implementing a Ghost Fluid Method, where the boundary
conditions at the interface are taken into account at the cell centers by modifying the
discretization of the various terms in the energy equation. This constitutes an improve-
ment with respect to the phase change methods that have already been implemented in
OpenFOAM.

Two interfacial curvature calculation method, denoted as node-based gradient and
recursive weighted interpolations, have been proposed in addition to the original method
implemented in OpenFOAM and to the height function method implemented in the Ger-
ris Flow Solver code, used as a reference in terms of accuracy. The proposed methods
are compatible with non-orthogonal and unstructured meshes. On the contrary, the
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height function method is limited to orthogonal meshes. The static bubble and capillary
wave test cases have been performed using these four interfacial curvature calculation
methods. The node-based gradient method showed higher spurious velocities near
the interface with respect to the recursive weighted interpolations method. However a
higher accuracy of the node-based gradient method has been observed on the capillary
wave test case, suggesting a higher temporal resolution of the method. The simulations
of spherical rising air bubbles in water also demonstrated a more physical behavior
of the bubble rise velocity for the node-based gradient with respect to the recursive
weighted interpolations method. However, the latter predicted a more regular velocity
field within the bubble, which is close to the velocity field observed with the height
function method. In general, the two methods proposed in this thesis performed better
than the original Gauss method implemented in OpenFOAM.

The verification and validation of the phase change model has been performed
through the simulation of the Stefan, sucking interface and spherical bubble growth
problems. The one-dimensional Stefan problem proved that the diffusion term is im-
plemented correctly and that the model well predicts the mass transfer rate and interface
position in this case. The one-dimensional sucking interface problem permitted to ev-
idence a possible improvement in the discretization of the convection term. In this
case, the accuracy of the solution had a high dependence on the mesh element size.
However for fine enough meshes, the accuracy was good. Finally, the spherical bubble
growth problem, simulated using a three-dimensional computational domain, showed
that some improvements can be obtained by improving the discretization of the con-
vection term and by improving the method used to calculate the mass transfer rate. A
high dependence of the results on the mesh element size was again observed for this
test case. Relatively good accuracy has been obtained for the finest mesh however.

The newly developed phase change model presented in this thesis therefore relies
on an improved solution of the energy equation, a sharp treatment of the mass transfer
sources and on a more accurate interfacial curvature calculation method. These consti-
tute some enhancements of the already existing phase change models implemented in
OpenFOAM. In particular, less computationally expensive meshes may be employed
due to a more concentrated distribution of the mass transfer around the interface and a
more consistent solution of the energy equation.

A benchmark for the simulation of single bubble nucleate pool boiling has been fi-
nally developed in order to test the developed model. The high resolution experimental
data obtained at the MIT pool boiling facility permitted to define detailed boundary
conditions at the heater surface. Three consecutive ebullition cycles presenting a good
repeatability have been analyzed. The time history of the bubble shape has been digi-
tized and averaged over the three bubbles, allowing a direct comparison with simulation
results. Averaged temperature profiles and bubble dimensions have also been extracted
from the dataset. Finally, some global parameters of the experiment such as nucleation
time, wait time, bubble frequency and averaged heat transfer coefficient have been de-
termined. This collection of data will permit to thoroughly validate the developed nu-
merical model and to determine which part of the model may be improved.
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7.2 Future work

The developed and implemented numerical method is considered as preliminary and
several improvements can be made regarding its accuracy. Concerning the interface
tracking technique, these include:

• treatment of contact angles other than 90◦;

• more robust treatment of the relative interface motion in case of mass transfer;

• implementation of a reconstructed Level-Set compatible with non-orthogonal meshes
and able to accurately predict the interfacial curvature;

• use of a geometric VOF, preventing the diffusion of the volume fraction field.

On the other hand, the phase change model may be improved by considering the
following modifications:

• discretization of the convection term in the energy equation to account for the
interface temperature;

• more accurate estimation of the mass transfer rate;

• implementation of a sub-grid model to account for the microlayer evaporation.

With these improvements, the model should be able to simulate boiling phenomena
more accurately. We also noticed a limitation on the parallel use of the adaptive mesh
refinement feature implemented in the OpenFOAM library. In effect, it is not yet pos-
sible to perform dynamic load balancing of the adapted mesh. An improvement of the
efficiency of the model could therefore be obtained by enabling parallel load balancing.
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