
POLITECNICO DI MILANO

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Monocular Autonomous Exploration in

Unknown Environment with Low-Cost

Quadrotor

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Relatore: Prof. Andrea Bonarini

Tesi di Laurea di:

Daniele Iasella, matricola 755506

Stefano Fossati, matricola 755149

Anno Accademico 2012-2013

Abstract

In this thesis, we develop a system that enables a low-cost quadrotor to

localize and to explore autonomously a previously unknown and GPS-denied

environments without requiring artificial markers or external sensors.

We develop a unique exploration strategy for a mobile robot moving in a

three-dimensional space through a monocular, keyframe-based simultaneous

localization and mapping (SLAM) system and an Extended Kalman Filter,

to fuse and synchronize all available sensors measurements. The quadrotor

using the exploration algorithm can move around autonomously in an un-

known room of a limited size by exploiting a two-dimensional map to avoid

obstacles, and to plan its next moves.

The novelty of the presented system is the use of only a single camera-

based quadrotor, without any laser rangefinder, along without a target-

driven exploration strategy, rather seeking new unseen areas, in order to

reconstruct an obstacle map of the drone surroundings. The exploration

strategy takes into account the limitations of the low-cost device.

We developed our approach on a Parrot AR.Drone, demonstrating what

can be achieved with modern, low-cost, and commercially available hard-

ware platforms as tool for robotics research. In our approach, information

processing and exploration strategy evaluation are performed on a ground

station, which is connected to the drone via wireless LAN.

The results for various environment situations are discussed demonstrat-

ing the accuracy of the system in an indoor environment exploration.

I

Sommario

In questa tesi è sviluppato un sistema che permette ad un elicottero

quadrirotore a basso costo di localizzarsi e di esplorare autonomamente un

ambiente totalmente sconosciuto a priori ove non è possibile utilizzare sensori

GPS e senza l’utilizzo di marker artificiali e sensori esterni.

È sviluppata una nuova e unica strategia di esplorazione che permette ad

un robot mobile di muoversi in uno spazio tridimensionale sfruttando un sis-

tema SLAM (Simultaneos Localization And Mapping) monoculare basato su

keyframe e un filtro di Kalman esteso che permette di fondere e sincronizzare

tutte le rilevazioni provenienti dai sensori disponibili. Inoltre, il quadricot-

tero, utilizzando l’algoritmo di esplorazione studiato, potrà muoversi in una

ambiente di dimensione limitata fruttando una ricostruzione bidimensionale

evitando ostacoli e pianificando di volta in volta il prossimo movimento.

La novità del sistema presentato riguarda la possibilità di usare un

quadricottero dotato di una unica videocamera, sprovvisto di sensori di

prossimità o telemetro laser, e senza una strategia di esplorazione basata su

target prestabiliti, per ricostruire una mappa degli ostacoli presenti attorno

al drone. Inoltre, la strategia proposta tiene in considerazione le limitazioni

del drone a basso costo e del sistema di SLAM scelto.

Il sistema proposto è stato sviluppato basandosi su un AR.Drone della

Parrot, dimostrando come possa essere possibile raggiungere l’obiettivo oggetto

di questa tesi attraverso una piattaforma hardware economica, moderna

e disponibile in commercio usata come strumento per la ricerca robotica.

L’elaborazione dei dati ricevuti dal quadrirotore e il calcolo della strategia

di esplorazione si svolge su un computer connesso via wireless LAN al drone.

Si riportano infine i risultati di test effettuati in vari ambienti dimostrando

l’accuratezza del sistema nell’esplorazione di un ambiente al chiuso.

III

Contents

Abstract I

Sommario II

Acknowledgments V

1 Introduction 1

1.1 Thesis Overview . 4

2 State of art 5

2.1 Example of applications . 6

2.2 Methodologies and algorithms 9

2.2.1 Three-dimensional reconstruction 10

2.2.2 Pose estimation . 15

2.2.3 Exploration . 16

3 Problem analysis and proposed solution 18

3.1 3D reconstruction and pose estimation 19

3.1.1 PTAM . 19

3.2 Pose estimation . 27

3.2.1 Extended Kalman Filter 30

3.3 Autonomous exploration . 32

3.3.1 Knowledge extraction 34

3.3.2 Knowledge increase methods 40

4 System architecture 46

4.1 Hardware component . 46

4.1.1 AR.drone . 46

4.2 Software . 51

4.2.1 Communication services between AR.Drone and devices 53

V

5 Implementation and evaluation 58

5.1 SLAM manager . 58

5.1.1 tum ardrone package modifications 59

5.2 ROS messaging . 61

5.2.1 Message standardization 61

5.2.2 Occupancy Grid . 63

5.2.3 Visited Grid . 67

5.2.4 Scale adaptation . 68

5.3 Exploration manager . 69

5.3.1 Chosen strategy . 72

5.3.2 Custom message . 82

5.4 Graphical User Interface . 83

5.5 Evaluation . 86

6 Conclusions and future research 92

6.1 Conclusions . 92

6.2 Future works . 93

Bibliography 95

Acknowledgments

To our supervisor, Prof. Andrea Bonarini, for all the patience, teachings

and time devoted to help us developing this thesis.

To AIRlab guys for all the advices, the helps (in particular during the

video editing) and for all funny moments gone.

VII

Chapter 1

Introduction

“We shall not cease from exploration,

and the end of all our exploring

will be to arrive where we started

and know the place for the first time.”

T. S. Eliot

Robotics is an engineering discipline that designs and develops robots

and methods useful to make them performing specific tasks. A major goal

of robotics is to develop mobile robots that can operate autonomously in

real world situations. As described by Murphy [1], an intelligent robot is

a mechanical creature that can function autonomously. These intelligent

robots can be used for a wide range of applications; for example: cleaning,

inspection, transportation tasks, medical and construction assistance or also

operating in dangerous environments without risking human lives.

An important prerequisite of an intelligent autonomous robot is the abil-

ity to know where it is located. To estimate the position of a robot, methods

that rely on typically adopted sensors (e.g., velocity, acceleration or GPS

sensors) have been developed. More sophisticated methods, which depend

only on visual or laser rangefinder sensors, allow to estimate the position

of the robot and to simultaneously extract a description of the surrounding

environment without the need of an a priori model.

In specific applications, such as victims research and rescue, exploration

of the environment has to be performed trying to cover the maximum pos-

sible area.

The aim of this thesis is to develop an autonomous exploration system

based on a robot with navigation capabilities (Parrot AR.Drone quadro-

2 Chapter 1. Introduction

tor), with the only help of the onboard sensors (i.e. Inertial Measurement

Unit an ultrasound altimeter and a single camera) and a computer. Already

developed autonomous systems for navigation and exploration (e.g., those

used in Robocup Rescue League, DARPA, and by TUM-MIT quadrotor)

are mainly based on expensive hardware. The mapping of the environment

is always performed by a laser rangefinder. In our system, we have opted for

a visual mapping and localization system (using only low cost hardware) to

demonstrate that results can be compared to those used on the aforemen-

tioned approaches.

The localization of a robot can be performed by adopting sensors like

GPS, which can be seen as a black box that gives a direct observation of

the position, or making an indirect estimate through the use of velocity

and accelerometer sensors. However, GPS localization is inaccurate (typical

error is estimated around 2m) and it is impossible in indoor environment,

and velocity and acceleration sensors suffer from drifts and the unavoidable

need of approximation to obtain information about position.

More accurate approaches are obtained merging sensors measurements

by computing an estimate of the localization and filtering sensors readings.

The most widely adopted method in robotics applications is the Extended

Kalman Filter [2]. This method usually uses sensors readings (such as ac-

celerometer and gyroscope data) to estimate the current state of the system

(i.e., robot pose) starting from the initial one. This method could be fused

with a direct estimate of the state to reduce drifts over time (due to sensor

measurement errors).

In case where the state is represented by the robot position, the direct

estimate could be observed with localization methods. Accurate methods,

that can be also used in GPS-denied environments, are based on image

analysis algorithms with multi-camera configuration. An example of this

kind of system is represented by the OptiTrack [3] that is usually used

to reconstruct movements of tracked objects in a virtual three-dimensional

space by movie and videogame industries. Moreover, it is considered as a

very reliable system and it used by researchers as ground truth estimate

of three-dimensional position to test localization algorithms. This multi-

camera systems require installation and a complex configuration in order to

work and, moreover, they are really expensive. Out of the box approaches

that use a single sensor camera have been studied by many starting from the

seminal work of A. J. Davison [4]. In addition, these approaches can also to

3

map the environment and for this reason they are called Visual Simultaneous

Localization And Mapping (SLAM) algorithms.

To achieve the aim of this thesis, we use an existent system developed

by researchers at Technische Universitat Munchen (TUM) [5], based on a

low-cost quadrotor and a ground-based computer to perform localization

and mapping of the drone surroundings. To perform its task TUM system

uses three main components: a monocular keyframe-based SLAM system

(PTAM) [6] for pose estimation, an Extended Kalman Filter, to fuse all sen-

sor measurements to give a better estimate of the quadrotor position, and

a PID controller to control the position and orientation of the drone. We

choose this system as localization and mapping core taking into account,

firstly, the good quality of its drone pose estimate, its environment descrip-

tion accuracy and the possibility to run in real-time. Moreover, the package

is developed to work as a native Robot Operating System (ROS) package

allowing fast development and transparent interaction with other packages.

However, the original package performs only basic autonomous navigation

(point to point without obstacle avoidance). So, we have modified it to

match our exploration goals.

To make the low-cost quadrotor able to explore, we have studied the most

used method, such as Frontier-based method [7] that focuses on approaching

to frontiers of the so far achieved map to increase its knowledge. However,

this method, is not designed to work with limited field of view mapping

sensor. The View-improvement method [8] describes a possible solution to

increase the knowledge of the environment in system with limited field of

view sensor. This method explains how the robot has to orient its visual

sensor in order to find new knowledge.

For our thesis, we present a novel exploration strategy that takes inspi-

ration from these two methods. We explain how the robot autonomously

decides a target position and orientation and how it can perform obstacle

avoidance.

In summary, our system consists of:

• a localization and mapping system able to store information about

the environment using a monocular visual sensor, an IMU and an

ultrasound altimeter

• a strategy to perform obstacle free navigation with a drone

4 Chapter 1. Introduction

• an exploration algorithm that maximises the improvement in knowl-

edge about the environment through an strategy designed for PTAM

algorithm.

1.1 Thesis Overview

Our thesis is composed as follows:

In Chapter 2, the state of art is introduced with example applications

used in exploration scenarios, technologies and methodologies used to achieve

this aim.

In Chapter 3, the exploration problem with a monocular low-cost quadro-

tor is analyzed in detail, and the chosen solutions for navigation and explo-

ration are presented.

In Chapter 4, are illustrated the hardware and software platform used.

In Chapter 5, possible strategies are evaluated and the implementation

details of the chosen one are described.

In Chapter 6, conclusions about our work are drawn, and possible future

works are outlined.

Chapter 2

State of art

“We’re charging our battery

And now we’re full of energy

We are the robots . . .

We’re functioning automatic

And we are dancing mechanic

We are the robots”

We are the robots, Kraftwerk

Exploration of an unknown environment is a challenging problem for

robotics.

Our aim is to develop a system capable of autonomous exploration of an

environment without any a priori model description of it.

The exploration problem in robotics consists in the use of a robot to

maximize the knowledge over a particular area, allowing to understand how

is the environment around the robot and to visit previously unseen areas.

Considering a dangerous scenario such as a city after an earthquake the

search and rescue of victims could be a really risky task if performed by

persons independently of their qualification. The use of robots could help

to save lives without sacrifice rescuers. The Robocup Rescue League, which

has the aim of simulate this kind of situation, is thereafter described.

In addition, we want to reach our goal of autonomous exploration through

the use of a low cost hardware platform. In this chapter, we present also how

expensive can be a real world navigation that consists only in path planning

with obstacle avoidance citing as an example the typical equipment used in

the DARPA Grand Challenge.

6 Chapter 2. State of art

These two first examples of applications use robots designed to work

on ground surfaces. Nonetheless, terrain conformation could be an obstacle

to the navigation of a robot. The use of Unmanned Aerial Vehicle (UAV)

can bypass this problem since movements of a flying object are not condi-

tioned by uneven ground. Thereafter we show a possible solution to the

autonomous exploration problem developed with a quadrotor by a collabo-

ration between Massachusetts Institute of Technology (MIT) and Technische

Universitat Munchen (TUM).

A last example of application, presented by the Vision group of TUM,

shows how autonomous navigation capabilities can be achieved by the use

of low cost quadrotor.

Finally, in this chapter, we present methodologies and algorithms, stud-

ied in the last decades, that can be useful in the solution of the exploration

problem together with all the activities that are correlated to it such as the

localization of the robot and mapping of the environment.

2.1 Example of applications

An example of where autonomous robots exploration can be used is in res-

cue applications, where they have to perform multiple tasks simultaneously:

they have to estimate their position, build a map of the surroundings and

decide where to go later. Implementation of this kind of systems is the main

aim of the Robcup Rescue Simulation [9].

The RoboCup Rescue Robot League was started in 2001 [10] and takes

the research on the competitive level, giving the birth to an international

competition for urban search and rescue robots, in which robots compete to

find victims in a simulated earthquake environment in test arenas.

2.1. Example of applications 7

(a) (b)

Figure 2.1: a) RoboCup Rescue 2008 German open test arena b) A robot inspecting a

hole in the arena

RoboCup Rescue League teams have to develop robots capable of mo-

bility, sensory perception, mobile manipulation and assistive autonomous

behaviors. As in many other applications, there is one basic chore that is of

highest importance, in Robocup Rescue this task is to ensure the coverage

of the entire environment by the robot in order to localize the maximum

number of victims. However, exploration is not possible without the skill to

determine the position of the robot and of the surroundings. This knowledge

allows to plan the movements to make further inspections.

A strategy to perform robot localization without any a priori knowledge

(e.g. a map) is to use expensive sensors. Adopting GPS and IMU sensors

combined with a laser range scanner system it is possible to rapidly deter-

mine a dense and precise three-dimensional map of the environment.

Very reliable systems to localize and map environments have been used

in DARPA Grand Challenge [11].

DARPA Challenge was a competition for American driverless vehicles

funded by Defense Advanced Research Project Agency (DARPA), an orga-

nization of United States Department of Defense. The Grand Challenge was

the first long distance competition for driverless vehicles in the world.

In 2012, the team announced that they have completed over 300,000

autonomous-driving accident-free miles. The adoption of $150,000 in equip-

ment including a $70,000 LIDAR1 is an example of how expansive can be

an application of an autonomous wheeled robot in real environments.

1Lidar is a portmanteau of light and radar In late 1970s it was addressed also as an

acronym of “LIght Detection And Ranging”.

8 Chapter 2. State of art

(a) (b)

Figure 2.2: a) Stanley, 2005 DARPA Grand Challenge winner. b) 3D representation of

laser data from a driverless car

A limitation of ground vehicles such those used in RoboCup Rescue

Robot League and DARPA Grand Challenge is represented by the inability

to face particular situations such as crossing water or passing a gully without

looking for a feasible ground path. Moreover, ground vehicles have great

difficulties traveling on uneven grounds, difficulties that slow down, or even

stop, operations. These problems can be bypassed by adopting a typology

of vehicle that is not linked directly to the ground. If surface vehicles are

well suited for water environments, but not for ground ones, the universal

vehicles, in terms of exploration capability, are the flying ones. This kind

of vehicles can explore the environment in a wide range of situations and,

in case of helicopters, they not need a large runway to takeoff and land.

Moreover, GPS localization, as used in DARPA’s vehicles, is possible only

in outdoor environments denying the exploration of indoor areas.

Concerning exploration ability of a quadrotor in unstructured and un-

known indoor environments a team of MIT and TUM presented a solution

that let the robot autonomously navigate, explore and locate objects of in-

terest [12].

To achieve this goal an Ascending Technologies Pelican [13](figure 2.3

a) was used. It was equipped with a custom stereo-camera rig providing

mounts for two grayscale uEye cameras[14], a Lippert CoreExpress 1.6Ghz

Intel Atom board with a wireless link to the ground control station and

the lightweight Hokuyo UTM laser rangefinder[15] (price around $5,000).

From the combination of data passed by laser and other onboard sensors

(figure 2.3 b) they have been able to localize the robot and to reconstruct

in three-dimensional space objects and obstacles from environment with a

good quality.

2.2. Methodologies and algorithms 9

(a) (b)

Figure 2.3: a) Ascending Technologies Pelican modified by MIT and Technische Uni-

versitat Munchen with stereo camera and laser sensor. b) Laser data reconstructed in

a virtual 3D space.

As mentioned, localization and mapping of the environment have been

made possible by the use of really expensive hardware.

An example of autonomous navigation without the use of this kind of

hardware is presented by TUM-Vision group [16]. The aim of TUM-Vision

group system is to make a low-cost quadrotor able to autonomously navigate

in previously unknown and GPS-denied indoor and outdoor environments

without requiring artificial markers or external sensors. This has been possi-

ble using a monocular visual SLAM system and an Extended Kalman Filter

for data fusion and state estimation that are thereafter described. In par-

ticular, this system allows the quadrotor to accurately fly different figures

taking as a reference a single plane located in front of the quadrotor camera.

The autonomous navigation system developed by TUM Vision group does

not care about collisions making possible to use it only in obstacle-free zone.

2.2 Methodologies and algorithms

In this section, we describe the main approaches used to resolve the local-

ization, mapping and exploration problems available in literature. We show

how the environment in which a robot is located can be reconstructed, how

can its position be estimated and the main strategies to improve knowledge

with exploration techniques.

10 Chapter 2. State of art

2.2.1 Three-dimensional reconstruction

Three-dimensional structure of environment can be easily reconstructed with

LIDAR systems. This kind of systems were firstly developed in 1960s shortly

after the invention of laser. They are based on reflection of laser upon

surfaces. By measuring the time it takes for a laser impulse to come back

to a sensor situated along with the emitter is possible to compute the exact

distance of a reflecting object 2. First applications for this system were in

Meteorology (e.g. to measure the distance of clouds), but rapidly evolved in

more complex systems which allowed, by using rotating lasers and sensors

[17], to reconstruct three-dimensional environments, represented by point

clouds.

Another approach to obtain information about the environment takes

inspiration from animals visual perception. Stereopsis3 is possible in hu-

mans and other animals by perceiving multi ocular (typically binocular in

mammals) translated vision of the same environment [18].

Structure from Motion (SfM) is an approach that takes the same as-

sumptions of stereo images and applies them to a single moving camera. In

this case, we have to consider images sensed over time instead of images

taken at the same time from different positions.

Since for our thesis we used a monocular camera system, from now on we

focus the description of three-dimensional structure estimation using SfM.

To find relations (i.e. translation) between images, at first, particular

features are searched in each image. A feature of an image is a piece of

information which is relevant for solving some problem. The simplest fea-

tures present in an image are represented by corners, edges and blobs. One

of the earliest algorithm to detect important features was presented by H.

Moravec [19]. This algorithm marks as important features the pixels for

which their neighbourhood pixels have very different values (in terms of

color or intensity). Moravec approach was then improved by C. Harris and

M. Stephens [20] which, with their algorithm, give more importance to the

direction of the patch4. Further studies to this detector have been carried

on by J. Shi and C. Tomasi, who made a slight variation on the computation

of the “goodness” of a feature resulting on much better results compared

2Distance can be computed with equation d =
v

2t
where d is the distance and t is speed

of light in air.
3From stereo meaning “solid” or “three-dimensional”, and opsis meaning appearance

or sight.
4A patch of a candidate feature in an image is its pixels neighbourhood

2.2. Methodologies and algorithms 11

with those of original Harris detector [21].

A slightly different approach to detect features in images has been shown

by E. Rosten and T. Drummond with their FAST5 algorithm [22]. This

algorithm classifies important features by evaluating a circle of pixels around

the inspected pixel6. The pixel considered is classified as an important

feature if a set of contiguous pixel in the circle contains exclusively values

darker (or brighter) than the circle center.

Features extracted from an image represent a sort of description of the

scene. By comparing features found in different frames, a correspondence

between them can be established. These correspondences can be found either

via optical flow or via features matching that we describe in the following.

The optical flow concept was firstly introduced in 1940 by J.J. Gibson

who tried to explain how living creatures perceive stimulus from the visual

world [24]. D.H. Warren and E.R. Strelow [25] then thought that this ap-

proach could be reused in electronic vision to help blind humans in detecting

relative motion of objects by evaluating the velocity field which warps one

image into another. The main methods used for computing the optical flow

are Lucas-Kanade [26] and Horn-Schunck [27] methods. The first algorithm

is the most widely adopted method for computing optical flow given its low

computational complexity. It is a local optical flow estimator which takes

the assumption that the flow is constant in the neighbourhood of a point

and solves the problem of estimating the vector of flow by looking for a sim-

ilar patch in the neighbourhood of the given pixel by means of least squares

criterion. On the other hand, the algorithm presented by B.K.P. Horn and

B.G. Schunck assumes that the flow over the image cannot contain disconti-

nuities, so it tries to minimize an energy function computed over the whole

image. This method allows global estimates of the optical flow and has

the advantage to give more precise information of the flow in homogeneous

objects (the flow of a homogeneous area results as a mean of the region

boundary flow), but it is highly susceptible to image noise.

5Features from Accelerated Segment Test.
6The circle is computed with mid-point circle algorithm [23].

12 Chapter 2. State of art

(a) (b)

Figure 2.4: Example of harris corner detection (a) and Horn Schunck optical flow (b).

Feature matching is a different approach to solve the tracking problem.

As the name suggests, this approach is based upon the seek of similar fea-

tures between images rather than trying to understand where pixels have

moved on subsequent frames. This method firstly looks for features in both

images with one of the aforementioned methods, it then assigns a descrip-

tor to each of them, and then makes a comparison between descriptors to

detect the corresponding ones. Descriptors of features can be computed

with several methods, the most used is SIFT7 algorithm [28]. D.G. Lowe

originally designed SIFT to detect objects in different images after an ini-

tial training phase, the key-point descriptor step of the algorithm can be

however used to match only corner features between images. Other com-

mon features descriptor algorithms are SURF8 [29], BRIEF9 [30] and ORB10

[31][32]. These descriptors use a patch around a pixel to make a descrip-

tion of the feature. SIFT for example uses a set of orientation histograms

which then is normalised (to enhance invariance to illumination changes),

SURF instead computes description as sum of the Haar wavelet response

around the point of interest11, BRIEF classifies features on the basis of a

“small” number of pairwise intensity comparisons in the feature neighbour-

7Scale-invariant feature transform.
8Speeded Up Robust Features.
9Binary Robust Independent Elementary Features.

10Oriented FAST and Rotated Brief.
11Haar wavelet are similar to Fourier transform, but it uses “square shaped” functions

instead of trigonometric ones

2.2. Methodologies and algorithms 13

hood , ORB takes inspiration from the BRIEF descriptor, but it also relies

on orientation. After the computation of the descriptors of the features the

comparison phase allows to match the points by computing L2-norm (for

the descriptors which store description in an array as SIFT or SURF) or

Hamming distance (for string descriptors such as BRIEF or ORB).

Figure 2.5: Feature matching using SURF algorithm

Correct correspondences of features between image frames are used to

understand movement that a camera has done in terms of rotation and

translation between them. The method described by H.C. Longuet-Higgins

[33] allows to extract the fundamental matrix, a 3×3 matrix which relates

corresponding points in stereo images, from the pairs of corresponding points

in two images with the normalised eight-point algorithm [34].

Knowing the intrinsic parameters of the cameras used to take the images

of the scene it is possible to extract the essential matrix [35], which can then

be decomposed to extract rotation and translation of a camera with respect

to the other. Moreover, with the essential matrix, it is possible to estimate

the three-dimensional position of the feature points making a triangulation

of them12.

Rotation, translation and structure reconstruction between two image

frames is the basis of visual SLAM13 works. Studies to reconstruct both the

three-dimensional structure of environment and the trajectory of a camera,

have been firstly held A. J. Davison [4]. The early MRTP14 works enabled

to track points and remember the position of out-of-sight objects enabling

a robot to continuously frame an object and then to change orientation of

the camera to frame a previously seen point without the need of markers.

12A process that can be solved with the already computed essential matrix.
13Simultaneous Localization And Mapping.
14Monocular SLAM and Real-Time Perception.

14 Chapter 2. State of art

An improvement to Davison’s technique has been made by G. Klein and

D. Murray in their PTAM15 algorithm [6]. The main purpose of PTAM is

the estimation of an handheld camera pose in an unknown scene by com-

bining different steps such as: visual odometry, bundle adjustment and loop

closure detection. By splitting tracking and mapping processes in parallel

threads they obtain real-time performances and detailed three-dimensional

maps of the environment16. PTAM is essentially based upon constant frame

inspection and feature extraction; it allows to store camera frames and world

points (called keyframes and keypoints) only if they are really needed (re-

dundant frames can be ignored if another frame has been taken in a near

position and outliers points are removed with a statistical process).

Figure 2.6: PTAM graphical interface

When tracking and maintaining three-dimensional structure calculation,

errors and imprecisions increase at each iteration. These errors result in

unfound correspondences of features after the camera moves along a loop.

This problem, known as loop closure problem, can be resolved by considering

a probabilistic feature-based map in which are stored, together with the

best estimates of three-dimensional points, their uncertainty described by

deviations from these values [36].

Further results by Newcombe and Davison enable the creation of a live

dense reconstruction system of the environment called Dense Tracking And

Mapping (DTAM) [37]. The system uses dense track of all pixels in the

keyframes to rebuild a fine representation of the world.

For our exploration system we have chosen the PTAM algorithm, de-

scribed in Chapter 3, due to its real-time performances and its few require-

15Parallel Tracking and Mapping.
16Result point cloud contains thousands of points.

2.2. Methodologies and algorithms 15

ments (it needs only a single camera to perform localization and mapping).

2.2.2 Pose estimation

The first approach for three-dimensional space pose estimation appeared in

late fifties [38] during the Cold War. Space race brought the competitors

(USA and URSS) to make great investments on aerospace research. In 1958

R.E. Kalman and R.S. Bucy [2] started performing basic research on esti-

mation and control of aerospace vehicles. They reformulated the problem

of optimal estimation methods, developed by N. Wiener [39] and A. N. Kol-

mogorov [40], in the time domain using a generalised state-space form of

a linear differential equation introduced in 1908 by P. Langevin to model

Brownian motion17 [41]. The equation of the Kalman filter resulted then

equivalent to a particular case of the Wiener filter which was already re-

casted from a non-linear differential equation to a system of linear equations

following Riccati’s reduction [42].

A non-linear version of the Kalman filter is known as the Extended

Kalman Filter [43]. This version has been developed to solve most engi-

neering problems given their implicit non-linear nature (e.g. speed and pose

estimation of aerovehicles). The Extended Kalman Filter gives reasonable

performance, and it is presently a well established standard in pose estima-

tion systems [44].

The Kalman Filter algorithm takes as input series of sensor measure-

ments observed over time, containing noise and other inaccuracies (random

variations and measurement errors), and produces as output the estimation

of unknown variables (e.g. pose estimation) that tend to be more precise

than those estimated based on a single measurement. The operation is split

in two phases: state prediction and state update. Prediction consists of

estimating the next state by observing the last one and projecting it using

the last information received from the sensors. Update is applied when new

information is available form the sensors and adjusts, using a weighted aver-

age18, the last prediction with the new measurements. Since the algorithm

is not complex and it needs no information other than new measurements

and last state variables, it can be run in real time.

17The motion of small particles contained in fluids.
18More weight being given to estimates with higher certainty.

16 Chapter 2. State of art

2.2.3 Exploration

Exploration of unknown environment by robots is a problem that can be

described as the maximization of the knowledge over the environment itself.

Before real exploration algorithms were presented, a similar result of

exploration (three-dimensional map building, localization and safe travel)

could be achieved by systems guided by markers [45]. This kind of systems,

however, implement only navigation, since the target of the exploration

was given to human agents (e.g. markers, data input). Since the main

target of the activity was to reach markers and not to explicitly increase the

knowledge over the environment we cannot talk of exploration. The right

strategy to take when exploring is not directly goal driven, the robots rather

have to seek new unseen areas to view and explore.

One of the first approaches that focuses over knowledge gain is the so

called frontier-based algorithm presented by B. Yamauchi. Behaving in this

way, a robot sets its path towards regions that are adjacent to unmodeled

regions. By applying this behaviour the robot could reach positions that

let it increase its knowledge. Frontier-based algorithms are adaptable to

large and narrow spaces without any shape restriction allowing the robot to

increase its knowledge over all the areas reachable from starting position [7].

Another approach to exploration is called view-improvement strategy [8].

This kind of strategy is designed for limited field-of-view sensors (e.g. RGB

cameras) and focuses on increasing the knowledge by turning around already

known obstacles to understand how is the environment behind them.

Since a room can be visited multiple times causing a loss of time, seg-

mentation of the environment can be applied to classify environment. In

this way it is possible to divide the environment in subsets (e.g. rooms)

with an enhanced Voronoi diagram. This approach better suites real-world

cases since it can avoid reiteration of exploration of the same room [46].

Once computed the target position to improve the robot’s knowledge a

path that avoids obstacles and minimizes the cost (represented by the travel

distance) must be planned. This can be done by the Dijkstra [47], A* [48]

or Fast Marching [49] algorithms. The path computed in this way may lead

the robot to travel very near the obstacles. A very basic approach to travel

in adequately free areas (e.g. far from walls) is to dilate and to consider

as occupied all the areas around obstacles. Other approaches deal with the

concept of Extended Voronoi distance transform [50]. Distance transform is

a transformation of obstacle map which returns a map of the same size in

2.2. Methodologies and algorithms 17

which each cell is populated with the distance between it and the nearest

occupied cell in the map. By inspecting the distance transform for each

movement it is possible to travel only in the safe areas (e.g. those more

distant form the walls).

In this thesis we present a novel quadrotor autonomous exploration sys-

tem using approaches similar to those described before (such as using visual

SLAM) paying attention to use hardware that is as cheap as possible and

dealing with the limitations related to this restriction.

18 Chapter 2. State of art

Chapter 3

Problem analysis and

proposed solution

“Hot dog, let’s play games.

You catch me and I catch you;

no love can cut our knife in two”

Speedy - Runaround, Isaac Asimov

As we have described previously, our aim is to create a system to explore an

unknown environment using a low-cost quadrotor. This choice has entailed

a study on algorithms and strategies able to work with few sensors such as

camera, IMU and altimeter.

We have divided the achievement of our goal in two principal tasks: the

first one concerns the study of three-dimensional surroundings map construc-

tion and pose estimation, the second one regards the study of an artificial

intelligence able to drive safely the drone in a room without collisions with

objects or walls.

These tasks are strictly connected: we can not explore anything without

knowledge about quadrotor position and surroundings as well as we cannot

increase our environment knowledge with the help of only pose estimation.

The first task is assigned to a SLAM manager whereas the second is

assigned to an Exploration manager (figure 3.1).

20 Chapter 3. Problem analysis and proposed solution

6/$0�0DQDJHU

3RLQW�&ORXG

37$0

(.) 3RVH

37$0�3RVH

([SORUDWLRQ�0DQDJHU

%HVW�$FWLRQ�
+HXULVWLF

)LOWHUV

2FFXSDQF\�
*ULG

%OLQG�$UHDV�
9HFWRU

Figure 3.1: Scheme of system life-cycle

3.1 3D reconstruction and pose estimation

SLAM manager makes it possible to localize the quadrotor in the three-

dimensional space and, in parallel, to reconstruct a map of the surroundings

of the robot.

The selection of the SLAM algorithm has been influenced by our choice

to use affordable hardware. As mentioned in chapter 2, LIDAR systems are

really expensive, so we have opted for a quadrotor equipped with a single,

low-cost camera.

To localize the quadrotor and to reconstruct a map of an unknown envi-

ronment, we have chosen, between SLAM algorithms mentioned in chapter

2, to use PTAM [6], which is a monocular visual algorithm.

This algorithm has also been chosen for its real time performance and

its reliability.

3.1.1 PTAM

PTAM algorithm has been originally designed to provide augmented reality

with a hand-held single camera. Moreover the authors of PTAM decided

to provide tracking without prior model of world (e.g. markers or environ-

ment structure) and dedicated particular attention to speed, accuracy and

robustness of the algorithm.

To estimate the pose of the camera the algorithm relies on features track-

ing and registering.

The algorithm have threads to compute independently the map (repre-

sented by three-dimensional registration of tracked features) and the pose of

the camera. The parallel execution of these threads possible to have a real

3.1. 3D reconstruction and pose estimation 21

time estimation of the camera pose without being affected by the “heavy”

work of building and maintaining a map.

The map of PTAM consists of a set S of N keyframes (snapshot taken by

the camera), along with the corresponding estimated position of the camera

in the world µ with respect to a given reference. Moreover each keyframe

has its own set of points p, called keypoints, which are three-dimensional

representation of features in the world. All M keypoints are stored along

with their position coordinates and a patch extracted from nearby pixels in

the image frame which they belong to.

The mapping thread performs the task of finding three-dimensional points

of the world, filtering and registering them by importance.

The first step for almost each image analysis application is to remove

lens distortion and calibrate the camera to understand its camera model.

Removal of lens distortion is made by 5 intrinsic parameters k1, k2, k3,

p1, p2. k1, k2 and k3 are parameters used to correct radial distortion caused

by the lense morphology (the more noticeable effect of radial distortion is

the so called “fish-eye” effect).

xk = x(1 + k1r
2 + k2r

4 + k3r
6)

yk = y(1 + k1r
2 + k2r

4 + k3r
6)

(3.1)

In 3.1 xk and yk are the correct coordinates after removing radial dis-

tortion.

p1 and p2 are used instead to correct tangential distortion that is due to

the non-perfect parallel alignment of the lens with the sensor.

xp = x+ [2p1xy + p2(r2 + 2x2)]

yp = y + [p1(r2 + 2y2) + 2p2xy]
(3.2)

In 3.2 xp and yp are the correct coordinates after removing tangential

distortion.

The intrinsic matrix (3.3) contains parameters which encompass focal

lengths which are the distances, in term of pixels, from the center of the lens

to the focal point (fx, fy) and image principal point that is the intersection

between the optical axis of the lens and the sensor plane (cx, cy).xy
w

 =

fx 0 cx

0 fy cy

0 0 1


XY
Z

 (3.3)

22 Chapter 3. Problem analysis and proposed solution

Figure 3.2: An example of lens radial distortion correction.

These parameters (distortion and intrinsic ones) are identified with a

camera calibration, done once for all, when the camera is fixed on its refer-

ence frame with the algorithm described by Z. Zhang in [51].

With undistorted images it is possible to initialise PTAM system by

taking two translated frames from the camera (this step is called stereo-

initialisation).

Stereo initialization generates the first map population. This is done

by looking for important features on a taken keyframe and then tracking

these features, with Lucas-Kanade algorithm, on the smooth movement of

the camera until a second keyframe is taken. Feature detection is made

by using FAST algorithm which is based on machine learning and is very

fast compared to other approaches such as Harris detector. FAST algorithm

uses a circle of 16 pixels to classify whether a candidate point is actually a

corner (figure 3.3). This is done by counting how many contiguous pixels

on that circle are brighter or darker than the center pixel. When a point is

classified as more than 12, the point is marked as a feature. The features

are searched on four pyramid levels which are extracted from the original

frame by repeatedly smoothing and subsampling it resulting in downscaled

images of the original frame. Features found on lower pyramid levels are the

most robust ones because they are trackable on frames very far from each

other. The explanation of this robustness is due to the fact that features on

lower pyramid levels are relative to bigger patch of the frame with respect

to the patches taken on the original one.

After having tracked these important features PTAM, computes Shi-

Tomasi score for each extracted point. If the score is sufficiently high then

the point is added as a keypoint to the map.

3.1. 3D reconstruction and pose estimation 23

Figure 3.3: Fast Features Detection.

The described approach is used to decrement time needed to extract

features (with the low computational complexity of the FAST algorithm)

guaranteeing a good tracking quality (with the accuracy of Shi-Tomasi al-

gorithm).

Shi-Tomasi score is computed starting from the matrix representation of

the image intensity1 I of area (u, v) with x and y variations over the patch.

S(x, y) =
∑
u

∑
v

w(u, v)(I(u+ x, v + y)− I(u, v))2 (3.4)

w(u, v) is the weight function over the considered window of the fea-

ture (w could be of different shapes and types: most used are circular and

Gaussian windows).

Considering the image gradients over the two axes represented by Ix and

Iy we can approximate the intensity of a near pixel as

I(u+ x, v + y) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y (3.5)

So the sum of squared distance can be approximated as

S(x, y) ≈
(
x y

)
A

(
x

y

)
(3.6)

where the matrix A (in Eq. 3.7) is called the structure tensor (angle

brackets denote weighted averaging over (u, v) with w function).

A =
∑
u

∑
v

w(u, v)

[
I2
x IxIy

IxIy I2
y

]
=

[
〈I2
x〉 〈IxIy〉

〈IxIy〉 〈I2
y 〉

]
(3.7)

1image intensity is computed as an average of the channels of the image

24 Chapter 3. Problem analysis and proposed solution

The Shi-Tomasi score is represented by the minimum of the eigenvalues

of the structure tensor (Harris algorithm choose the bigger between the two).

min(λ1, λ2) with λ1, λ2 = eig(A) (3.8)

If the Shi-Tomasi score is sufficiently high the point is added to keypoint

set.

Now, the initialisation generates the first population of keypoints in the

map of PTAM by applying structure from motion principles to the tracked

points.

To understand the process we introduce the fundamental matrix (3.9)

which is a matrix that relates corresponding points in stereo images.

x′TFx = 0 (3.9)

Nevertheless, the fundamental matrix maps the points between uncali-

brated camera frames; if we have calibrated image frames it is better to use

the essential matrix which is related to the fundamental by Eq. 3.10 and

satisfies Eq. 3.11, where y and y′ are image calibrated coordinates.

E = K′TFK (3.10)

y′TEy = 0 (3.11)

The essential matrix E is found by applying the five-point algorithm

presented by H. Stewénius, C. Engels and D. Nistér [52] and performing

RANSAC to remove outliers points.

The proof of Eq. 3.14 is in Eq. 3.12 given x and x′ the three-dimensional

coordinates of the same point relatively to each frame, y and y′ are the

relatives projections on the image plane (homogeneous coordinates)y1

y2

1

 =
1

x3

x1

x2

x3

 and

(
y′1
y′2

)
=

1

x′3

x′1x′2
x′3

 (3.12)

x′ = R(x− t) (3.13)

E can be defined as the multiplication of rotation matrix R and the

matrix representation of the cross product with t ([t]×) as in Eq. 3.14.

E = R[t]× (3.14)

3.1. 3D reconstruction and pose estimation 25

In 3.16 we show that this definition of E describes a constraint on cor-

responding image coordinates.

x′TEx = (x− t)TRTR[t]×x = (x− t)T[t]×x = 0 (3.15)

Now we can show that the previous relation implies a relation between

image points:

0 = x′TEx =

(
1

x′3

)
x′TE

(
1

x3

)
x = y′TEy (3.16)

Rotation and translation can therefore be computed from E determining

the rotation and translation (up to a scaling) between the two camera’s

coordinate systems.

After having computed the singular value decomposition of the essential

matrix E = UΣVT translation and rotation are found then as in Eq. 3.17,

Eq. 3.18 and Eq. 3.19.

W :=

0 −1 0

1 0 0

0 0 1

 with W−1 = WT =

 0 1 0

−1 0 0

0 0 1

 (3.17)

R = UW−1VT (3.18)

[t]× = VWΣVT (3.19)

These results are valid because of Eq. 3.20, but the rotation and trans-

lation found are not the only found with this process.

R[t]× = UW−1VTVWΣVT = UΣVT = E (3.20)

Other solution could be found by changing the sign of the scale of t or

changing W with W−1 for a total of four possible solutions. Nevertheless,

only one of these is feasible since the other three solutions have a translation

vector which lies behind at least one of the two camera poses.

However, the problem of the scale remains and it can be solved by know-

ing the initial translation of the cameras and then by multiplying the trans-

lation computed before by the correct scale factor.

After having initialised PTAM mapping process the map has to be con-

tinuously updated, adding, if necessary, new keyframes and keypoints, up-

dating keypoints (removing outliers) and adjusting measurements.

26 Chapter 3. Problem analysis and proposed solution

Figure 3.4: PTAM initialization movement.

A new keyframe is added at anytime the condition of good tracking

(expressed by ratio between the number of expected keypoints in current

frame and currently viewed ones) is respected and the position of the camera

is sufficiently different from an already existent keyframe (a translation is

needed both to not influence the system too much with the same frame and

to ensure stereo baseline for feature triangulation). Moreover, the distance

from currently seen points is taken into account; if they are very close to the

current estimated pose the translation from a previously registered keyframe

needed to take another keyframe is smaller than the distance needed in a

very depth scene (if the camera is very far from seen points it is needed a

big translation to have a change in the framed scene).

(
ui

vi

)
= CamProj(piC) (3.21)

The pose estimation of the keyframe is assumed to be the output of the

tracking thread. Taking into account the camera pose, all keypoints are

reprojected on the keyframe (in Eq. 3.21 CamProj() is a R3 → R2 function

that considers Eq. 3.1 and Eq. 3.2, and ui and vi are the coordinates of the

point pi reprojected on the image plane), then a score measure is computed

for each feature to check if there are outliers to be removed. After that,

features are extracted with FAST from the taken keyframe, these features

are filtered then by Shi-Tomasi score and added to the map only if they are

not too close to already existent keypoints. To add depth information to

the newly added keypoints triangulation with the nearest keyframe is done

(this step is similar to the initialisation one).

Every keyframe i of the map besides its keypoints has a set of positions of

3.1. 3D reconstruction and pose estimation 27

6WHUHR�LQLWLDOLVDWLRQ

.H\�IUDPH"

/RFDOO\�
FRQYHUJHG"

*OREDOO\��
��FRQYHUJHG"

6OHHS��PV

8SGDWH�NH\IUDPH�
GDWD�DVVRFLDWLRQ

,QWHJUDWH�NH\IUDPH

$GG�QHZ�IHDWXUHV

/RFDO�EXQGOH�DGMXVW

*OREDO�EXQGOH�DGMXVW

<HV

1R

1R

1R

<HV

<HV

8SGDWH�GDWD�
DVVRFLDWLRQ

Figure 3.5: Mapping thread

28 Chapter 3. Problem analysis and proposed solution

keypoints taken in other keyframes. The resulting measurement is composed

by the average of the three-dimensional position of the keypoint and its

standard deviation. Bundle adjustment (3.22) iteratively adjusts the map

in order to minimise the error using Tukey’s biweight objective function

Obj() [53].

{{µ2 . . .µN}, {p′1 . . .p′M}} = argmin
{{µ},{p′}}

N∑
i=1

∑
j∈Si

Obj

(
|eij |
σji

, σT

)
(3.22)

The optimisation is done locally, minimising the estimator only for the

last N keyframes2 and globally using all map keyframes.

To track the movement of the camera PTAM does not use optical flow

or features matching between frames, instead it makes an early and rough

camera position with a decaying velocity model. A coarse pose update of the

estimate is therefore done by reprojecting over the frame 50 keypoints. A

search in the neighbourhood of the projection is done after applying an affine

transformation to projected patches of pixels to better match the current

frame ones (position in the frame are amended). In this way PTAM refines

the previously estimated pose (with the motion model) to a better one. The

last step is now to make a fine pose estimation reprojecting all the known

keypoints in the current frame and making another patch search to update

the actual pose to the correct one. The pose update is done by minimizing

reprojection error as in Eq. 3.23.

µ′ = argmin
µ

∑
j∈S

Obj

(
|ej |
σj
, σT

)
(3.23)

If PTAM loses tracking of the pose an initial guess of it is made by image

matching with all the stored keyframes in the map. The camera position

of the keyframe which best fits the current one is used to begin the coarse

phase.

3.2 Pose estimation

As mentioned in the previous section, it is possible to estimate the pose of

the camera through a visual SLAM system as PTAM.

To achieve our aim (autonomous exploration using a low-cost quadrotor)

the pose estimation can not be computed only by the PTAM system since

2three frames are used in PTAM implementation

3.2. Pose estimation 29

)UDPH�DTXLVLWLRQ

&RDUVH�3RVH�8SGDWH�
����SRLQWV�

3RLQWV�UHSURMHFWLRQ

3DWFK�6HDUFK�
�ODUJH�UDGLXV�

3RVH�8SGDWH

)LQH�3RVH�8SGDWH�
�XS�WR������SRLQWV�

3RLQWV�UHSURMHFWLRQ

3DWFK�6HDUFK�
�VPDOO�UDGLXV�

3RVH�8SGDWH

3RVH�HVWLPDWLRQ �
IURP�PRWLRQ�PRGHO"

(VWLPDWH�3RVH�
�NH\IUDPH�LPDJH�

PDWFKLQJ�

3RVH

1R

<HV

Figure 3.6: Tracking thread

30 Chapter 3. Problem analysis and proposed solution

Figure 3.7: A synthetic representation of how a Kalman filter works.

it is not developed for an UAV. The original aim of PTAM developers is

the creation of a system useful in augmented reality applications using a

hand-held camera technique.

A limitation of PTAM system consists in possible loss of the tracking

of the found features due to various situations. Changes of light intensity,

camera occlusion or fast movements of the camera could lead to a sudden

change of the acquired frame (with respect to the previous one) avoiding the

correct estimation of the pose of the camera.

In augmented reality (AR) applications, the loss of features tracking is

not critical because, in this case, the result of this failure does not condition

the application flow (the rendering of the AR layer is locked and hidden until

the tracking is restored and a new pose is estimated). The restoring of the

features in original implementation can be considered automatic because it

is a consequence of the instinct of the human who is controlling the camera.

In our case, the system has to be updated on the estimate of the pose,

also in cases of blindness (when the features tracking fails) because there is

not any automatism typical of human behavior. The system has to be aware

of the quadrotor pose in order to be able to restore the visual tracking.

To estimate the pose of the camera without any visual reference, we

have chosen to use a method, seen in literature, that relies on sensors (IMU

and altimeter) readings. This method uses an Extended Kalman Filter to

produce a good estimation of the pose starting from sensors measurements.

3.2. Pose estimation 31

3.2.1 Extended Kalman Filter

The Extended Kalman filter is the nonlinear version of the Kalman filter. It

is better suited in all the occasions for which it is not possible to represent

a problem (possibly through an approximation) in a linear form. In our

case, it is used to initialize the PTAM system (scale factor) and for dead

reckoning when the PTAM pose estimation is not available.

The algorithm works similarly to the Kalman filter working in a discrete

time-domain, but rather than having a linear transformation to represent

the state transition model it has non linear, but differentiable functions.

xk = f(xk−1,uk−1) + wk−1 (3.24)

The state of the system at step k is represented by vector x. The state is

updated with the state transition function f that takes, as arguments, the

previous state and control commands sent to the drone (represented by u) to

which is added process noise w. Process noise is modeled by w ∼ N (0,Qk)

where Qk is the covariance of the process noise.

In our case the complete state function f is represented by

x

y

z

ẋ

ẏ

ż

φ

θ

ψ

ψ̇


k

=



x

y

z

ẋ

ẏ

ż

φ

θ

ψ

ψ̇


k−1

+ δk



ẋ

ẏ

ż

ẍ

ÿ

z̈

φ̇

θ̇

ψ̇

ψ̈


k−1

(3.25)

where x, y and z is the position of the quadrotor relative to the position

of take off; ẋ, ẏ and ż are the linear velocities; ẍ, ÿ and z̈ are the linear

accelerations; φ, θ and ψ are roll, pitch and yaw angles (rotations over x,

y and z axes); φ̇, θ̇ and ψ̇ are the angular velocities and ψ̈ is the angular

acceleration over the z axis. δk is the time between step k and step k − 1.

At time k a new observation of the state is done as z

zk = h(xk) + vk (3.26)

32 Chapter 3. Problem analysis and proposed solution

where h is the observation model which maps the true state space into

the observed space and v is the observation noise which is assumed to be

distributed as v ∼ N (0,Rk) where Rk is the covariance of the observation

noise.

In our case the observations are both made by PTAM (hPTAM) and by

IMU (hIMU) (Eq. 3.27).

hPTAM(x) =



x

y

z

φ

θ

ψ


, hIMU(x) =



cos(ψ)ẋ− sin(ψ)ẏ

sin(ψ)ẋ− cos(ψ)ẏ

z

φ

θ

ψ


(3.27)

While PTAM returns direct observations of the pose of the quadrotor

with the IMU it is possible to compute x and y relative movements by

multiplying rotation matrix of the yaw θ by the linear velocities.

The Kalman filter process can be split in two phases: the predict and

the update phase. The predict phase produces an estimation of the state

x̂k|k−1 at the step k.

Since f and h are differentiable, as required for an Extended Kalman

Filter, the Jacobians F and H of those non linear functions are used to

update the linearized model.

Fk−1 =
δf

δx

∣∣∣∣
x̂k−1|k−1,uk−1

Hk =
δh

δx

∣∣∣∣
x̂k|k−1

(3.28)

Prediction is evaluated with the following linear system.

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1

(3.29)

Update allows then to combine the current observation to adjust the previ-

ously computed state estimation

3.3. Autonomous exploration 33

ỹk = zk − h(x̂k|k−1)

Sk = HkPk|k−1H
T
k + Rk

Kk = Pk|k−1H
T
k S−1

k

x̂k|k = x̂k|k−1 + Kkỹk

Pk|k = (I −KkHk)Pk|k−1

(3.30)

where ỹk is the innovation of the measurement, Sk is the covariance

of the innovation, Kk is the Kalman gain that expresses how much the

innovation influences the updated state, x̂k|k is the updated state and Pk|k
is the updated estimated covariance.

3.3 Autonomous exploration

Once we have knowledge on the pose of the drone, we can consider the second

phase of our project that is the study of a solution for exploration problem.

Taking into account the goal of our project we have absolute absence of

information about shape and size of the scene and we have no possibility of

human intervention after quadrotor takes off. Moreover, we have not used

way-markers or custom markers to guide the drone and we have not assumed

that all internal areas or object are visible or accessible.

The main idea is to make the drone able to explore a room in an intel-

ligent way, behaving like a human being, considering the nature of PTAM

system that is developed to work using a handheld camera as data source.

The drone has to face problematic situations, as aforementioned, such as

lost PTAM tracking due to sudden changes in the framed scene.

Concerning exploration, the drone has to direct to areas that increase

knowledge of the system, but which are not too close to objects or obstacles

because we have to consider the nature of the hardware (e.g., it drifts).

In addition, we have to make sure that PTAM maps as many parts of a

room as possible finding the greatest number of points possible.

As previously mentioned, the PTAM algorithm needs always movements

composed of only translation or translation and rotation, in order to increase

the number of keyframes catched (and consequently visual knowledge).

Considering this requirement, we have devised two principal approaches

to the exploration problem.

The first approach consists in the execution of default pose sequences to

reconstruct an approximate environment. Each sequence has been composed

34 Chapter 3. Problem analysis and proposed solution

(a) (b)

Figure 3.8: Example of a generic: a) static path approach. b) dynamic path approach.

of commands which generate a combination of translations and rotations or

translation-only in a range of few decimeters.

Once the drone has completed the sequence, it elaborates a possible pose

target in order to increase the chances of finding new features and to expand

knowledge.

This first static approach has been chosen for its simplicity taking into

account the aforementioned requirements, but it is not reliable enough to

be used in our system.

Considering a general scenario the result of this approach is unsatisfac-

tory because it depends on many factors such as the starting position or

shape and size of the room (figure 3.8). These factors condition the recon-

struction of real world point in virtual space because PTAM maps features

and it gets keyframes from different distance surfaces. Moreover, we can not

predict if the quadrotor completes all steps of the static sequence.

Therefore we have considered a second approach that we have called

dynamic. This method does not use any default sequence of commands but

it determines, after the initialization process, the next command and target

to reach dynamically.

Static exploration strategies are explained and compared to dynamic one

in Chapter 5.

3.3. Autonomous exploration 35

3.3.1 Knowledge extraction

Once a visual SLAM system (PTAM) and a strategy (between static and

dynamic) of exploration are chosen we have to describe how they have to

collaborate to extract knowledge from surroundings. In fact, exploration is

impossible if the quadrotor position and environment description are not

known to Exploration manager, moreover, knowledge increment can not be

expected without exploration.

Furthermore, considering SLAM manager and Exploration manager in

figure 3.1 as those which have respectively the task of localization/mapping

and exploration strategy computation, the main connection between them

is represented by the communication, from SLAM manager to Exploration

manager, of the drone pose and the positions of features (organized in a

point cloud). We just need this information to extract knowledge of the

quadrotor surroundings.

Firstly, some considerations about the data coming from PTAM have to

be done. In fact, PTAM algorithm, during feature extraction, does not con-

sider their real nature (that can represent a specific object or, for example, a

tile on the ground), but it searches and tracks features which are only patches

of the framed scene that satisfy certain requirements described in Chapter

3.2. Therefore, in pose estimation and three-dimensional reconstruction of

the environment, PTAM algorithm has to consider all found features with

the same weight in order to make more accurate estimates. So, in one hand,

we can not remove the found features from inside of the PTAM system and,

in the other hand, we need to consider only useful features coming from the

exploring process. To make this possible, the Exploration manager filters

the feature positions sent by the SLAM manager. This filtering process

makes the Exploration manager able to consider only reliable points, which

removing isolated and unfitting points. In particular, we have chosen to

remove, firstly, isolated points since obstacles, represented by objects, are

very unlikely to be represented by only a feature. Subsequently, we have

considered the points located in areas where the quadrotor can not fly (e.g.

under fixed altitude) as unfitting and they have been removed. Unfitting

points (e.g. points found on the ground) do not have to be considered as

obstacles because the drone fly-zone is over them.

Once a dependable point cloud, composed of reliable points sent by

PTAM, is ready we have studied a possible representation of data obtained

from the cloud in order to have a solid basis to begin exploration.

36 Chapter 3. Problem analysis and proposed solution

In details, from point cloud information we did have to got robust and

useful spatial descriptions of the quadrotor surroundings to be able to use

these descriptions in appropriate short-term and long-term planning and

decision-making activities.

This is possible with the discretization of all the information about sur-

roundings.

One approach to discretize point clouds is called voxelization. It consists

of a simplification process of a three-dimensional point cloud into another

one which consists of different units called voxels3 representing a feature

in a three-dimensional space. Voxelization is often used to discretize very

dense point clouds. This process allows to reduce point clouds in better

organised structures, in fact the space is divided into voxels and only one

three-dimensional point per voxel is represented in the resulting output.

Nevertheless, voxelization is not very useful for map exploration since

it does not give information about the density of the points in the space

and, as thereafter described, we rely on the density distribution of points to

describe obstacles.

In contrast, another approach to discretize point clouds is using occu-

pancy grids. The main idea of the occupancy grid method is to use a prob-

abilistic tessellated representation of spatial information. It is possible to

consider an occupancy grid as a two-dimensional representation describing

a slice of three-dimensional world.

In our case, we have used an occupancy grid to describe the world that

the drone can explore without obstacles collisions because, unlike the vox-

elization method, the density of the points in three-dimensional space is

considered.

The representation of occupancy grid is a two-dimensional tessellation

of environment into cells (like a grid pattern) where each cell contains a

stochastic estimate of its occupancy state.

We can consider the following equation that expresses posterior proba-

bility of every cell in the map computed from occupancy grid algorithm:

p(m|z1:t, x1:t), p ∈ [0, 1] (3.31)

In this representation, m is the map, z1:t is the set of sensor data during

time and x1:t is the set of robot, or drone, poses from time 1 to time t. We

can denote mij as the grid cell and p(mij) as the probability that cell (i, j)

is occupied.

3VOlumetric piXEL.

3.3. Autonomous exploration 37

Sensor reading

World state

Inverse sensor model Bayesian estimator

Range surface Occupancy grid Geometric model

Decision rule

Figure 3.9: Occupancy grid algorithm steps.

Traditional approach to grid estimation consists in interpretation of the

range data obtained from a sensing device through stochastic sensor model

defined by probability density function p(m|z1:t, x1:t) before mentioned (fig-

ure 3.10). The probability of each cell is determined by Eq. 3.32.

p(mij |z1:t, x1:t) =
elt,ij

1 + elt,ij
(3.32)

lt,ij = lt−1,ij + logit(p(mij |zt, xt))− l0 (3.33)

l0 = logit(p(mij) (3.34)

logit(p) = log
p

1− p
(3.35)

The use of the logit function avoids numerical instabilities for probabilities

near zero or one values. p(mij |zt, xt) in Eq. 3.33 is called inverse sensor

model and it is distributed, in case of Gaussian sensor, as N(µ;σ2) where

µ and σ are values returned by the sensor and they represent, respectively,

the discrete observation of the reflecting surface (obstacle) and the standard

deviation that is proportional to the distance between the obstacle and the

sensor. The inverse sensor model is used through Bayesian filter procedure

to incremental update the occupancy grid cell state probabilities (Eq. 3.33).

Finally, a deterministic world model is obtained using optimal estima-

tors such as the maximum a posteriori (MAP) decision rule to assign discrete

states to the cells, labeling them empty, occupied and unknown.

In contrast with the traditional approach we have opted for an heuristic

approach.

The main reason for our choice is represented by the information given

to create of the grid. Instead of the set of sensor data, which is continuous,

we have used a filtered set composed of points, organised in a point cloud,

obtained from features found by PTAM. For this reason, we have not to

make any probabilistic sensor model or sensor integration since all infor-

mation is already filtered and merged (figure 3.11). Moreover, to estimate

the occupancy probability of every cell in the grid, we have considered the

38 Chapter 3. Problem analysis and proposed solution

Sensor
integration

Map
updating

Global Map

Robot view

Sensor 1

Probabilistic sensor
model

View
composition

Sensor view

Local sensor map

Sensor 2

Probabilistic sensor
model

View
composition

Sensor view

Local sensor map

Figure 3.10: Original occupancy grid algorithm.

3.3. Autonomous exploration 39

SLAM
data

Map
updating

Global Map

Robot view

PTAM system

Figure 3.11: Our occupancy grid algorithm.

density projected points in each cell taking into account that points position

estimate is already the optimal one (see section 3.1.1).

We chose to classify the cells on the grid depending on the estimated

number of points present in each cell as it is described in Chapter 5.

Safe flight exploration

One of the main differences between a wheeled robot and an UAV concerns

motion. While a wheeled robot reliably responds to control commands an

UAV has difficulties in completing a movement without significant drifts.

This happens because the static friction between ground and robot wheels

is significantly higher than fluid friction of a flying object in the air medium

resulting in a more responsive control of a ground vehicle. Moreover, an UAV

has no reliable sensors in order to close the control loop since. Unlike sensors

on wheels that could be used to recover reliable movements data from wheel

speed, the UAV rotor sensors could not be used because they return angular

velocities that change roll, pitch and yaw angles of the drone conditioning

UAV change of position (the movement is not directly observed).

Concerning this problem we have been forced to study a system that

made the quadrotor able to fly safely preventing the impact with objects or

walls.

Therefore, we have made the drone fly at a distance of at least 1.2 meters

from any known point (feature).

40 Chapter 3. Problem analysis and proposed solution

To make our system able to keep the drone at a safe distance from

obstacles (e.g. walls and other objects), a distance map has to be computed.

This distance map consists in a map with the same size of the obstacle

(occupancy) map in which is stored in every cell the distance between the

cell and the nearest obstacle.

Distance calculation can be done extensively by computing, for each

point, all distances (metric can be chosen arbitrarily) from each occupied

point in the map and keeping the minimum of these. Nevertheless, this

process is very expensive in terms of computation complexity, given a n×n
binary grid the time complexity results in O(n4) (for all the point in the

grid all distances to occupied cell are computed keeping the minimum one).

This complexity can be reduced to O(n2 ∗ m) where m is the number of

occupied cells in the grid, by initially inspecting the grid and extracting the

occupied cells in a vector (this passage allows to compute distances without

iterate continuously on the grid, but on the vector of occupied cells).

A possible solution of decreasing this time complexity is to use Voronoi

diagram. A Voronoi diagram is a particular diagram that, given a set of

m points called seeds, decomposes the space in regions (called cells), which

consist of the set of points that are nearer to the cell seed rather than all

other seeds.

The problem to build the Voronoi diagram is solved with Fortune’s al-

gorithm [54] with the time complexity of O(m logm). Fortune’s algorithm

computes (with the same time complexity) also the Euclidean distance grid

(called distance transform) of the given map.

In robotics the distance transform (distance metric can be chosen ar-

bitrarily between for example Euclidean, Manhattan or Chebychev) is also

called the Extended Voronoi Transform. Fortune’s algorithm cannot be ap-

plied in a grid of obstacles because it requires a set of punctual elements.

In fact, in an obstacle grid, it is possible to have contiguous occupied cells.

To compute the exact distance transform of an occupancy grid, extensive

search for all distances has to be done. Nevertheless, different algorithms

that can compute an approximation of the distance transform have been

considered. These algorithms compute the Extended Voronoi Transform.

Considering a binary matrix where elements occupied are represented by

ones and free space is represented by zeros, it is possible to consider some

3.3. Autonomous exploration 41

algorithms [55] such as CDA4 [56], Chessboard5, City Block6 or DRA7. In

our application, where we have to be really careful to stay away obstacles,

we need a good approximation of Euclidean distance which is only given by

CDA or DRA. To evaluate the distance transform these algorithms consider

a window of cells. Thus, the distance value of each cell in the map depends on

distance value of the neighbour cells located inside the window that usually

is 3x3 or 7x7.

For our purposes, we have chosen DRA, that is a straightforward modifi-

cation to the CDA, since it, employing only a 3x3 window, typically produces

more accurate results than CDA with a 7x7 window with similar execution

time [55].

3.3.2 Knowledge increase methods

Once we have solved problem about environment information filtering and

discretization of the scene, we have faced the knowledge increase problem.

Starting from PTAM system it is necessary to make some considerations

on the heuristic used to take new key-frames. The heuristics require a trans-

lation of the drone and not only a rotation on itself. Without translation

movement, the PTAM algorithm returns incorrectly estimated points that

distribute on a conic shape (like in figure 3.13). Moreover, as mentioned in

section 3.1.1, the PTAM algorithm always needs a good feature tracking to

catch a new keyframe and, consequently, to increase the knowledge.

The heuristic to take a new keyframe considers also the depth of the

scene. This evaluation can be done by estimating the average depth of

reprojected key points in the current frame. If points are on average far

from the camera position, a short change of this one does not affect too much

the framed scene so a new keyframe is not needed. By contrast, when the

camera is closer to reprojected key points also small movements drastically

change the currently seen world, therefore a new keyframe is saved.

4Chamfer Distance Algorithm.
5CDA variation that uses Chebychev distance metric.
6CDA variation that uses City block distance or Manhattan distance.
7Dead Reckoning Algorithm.

42 Chapter 3. Problem analysis and proposed solution

(a) (b)

(c) (d)

Figure 3.12: a) Example of a map to explore. b) Distance map compute with distance

transform. c) Path calculated with fast marching algorithm. d) Path calculated with

fast marching over distance map.

3.3. Autonomous exploration 43

Figure 3.13: PTAM error due to only rotation.

Taking into account these considerations we have chosen to develop a

mixed exploration method. This union consists in the frontier based and

the view improvement methods completed with a random strategy method

used when our strategy remains locked on a particular state.

Frontier based

The frontier based is an approach that uses concept of regions, called fron-

tiers, on the unknown space fringe. The central idea behind this approach

is to drive the robot always to boundary between visitable region and un-

explored space in order to get more and more information about the envi-

ronment.

Being more precise, it is possible to divide this process into steps: frontier

detection and navigation to frontier. As aforementioned, once the occupancy

grid is created, each grid cell is categorised by its probability to be occupied

and labeled as free, occupied or unknown.

Frontier detection is possible through a process similar to blob extraction

and edge detection in computer vision. From a set of occupancy grid cells

regions that differ in properties are detected. Then, each cell adjacent to

an unknown cell, is labeled as frontier region cell. The union of adjacent

frontier region cells is called frontier region. At the end, the set of regions

44 Chapter 3. Problem analysis and proposed solution

are filtered by a fixed minimum size that, in our project, is around 10-15 cm

larger than quadrotor width.

Once the set of frontiers has been built, the quadrotor is sent to the

nearest accessible frontier. A target position is computed choosing, in the

set of frontiers (0,1,2 in figure 3.14 (c)), the one with the shortest obstacle

free path between it and the current position of the robot. An example

of the method used for path computation is the Fast Marching algorithm

(figure 3.12 (c)).

(a) (b) (c)

Figure 3.14: Frontier-based strategy steps. (a) occupancy grid, (b) frontier edge seg-

ments, (c) frontier regions.

A frontier based approach is used, in our project, to decide the next

target position that the robot has to reach. This position is computed tak-

ing into account two distances: the one between obstacles and the target

position, and the other one between the frontiers and the target position.

The implementation details of this approach are described in Chapter 5.

The frontier-based method returns only a two-dimensional position in

the grid, but we have to decide, due to limited field of view of the quadrotor

camera, also the orientation angle of the drone.

3.3. Autonomous exploration 45

View improvement

Another strategy to make a mobile robot able to perform an exploration in

a 2D plane is called view improvement. This strategy fits well in concave

room or furnished rooms and it is designed for limited field-of-view vision

systems.

C

AB

(a)

AB

C

D

E

(b)

AB

C

(c)

B
A

C

(d)

Figure 3.15: Example of a view improvement strategy approach.

Assuming that in real world the presence of obstacles or pillars can oc-

clude unseen features, it is possible to define a robot behavior to increase

its knowledge by trying to look over these objects. Seen objects are not

necessarily a boundary for exploration, they may only hide some areas in

current field of view. Nonetheless, it is possible to expand knowledge by

turning around the obstacle.

Taking two found objects that are distant in the real world but near

in the view of the robot, the algorithm returns a strategy that consists in

46 Chapter 3. Problem analysis and proposed solution

moving to an area equidistant from those obstacles taking into account the

robot field of view in order to frame both obstacles.

In figure 3.15 (a) is shown a sensor field of view and (visual boundaries)

features (B and C) that are near the sensor projection but far in two di-

mensional plane. Considering that between B and C features there could

be unseen explorable areas, the next target position and orientation of the

robot is chosen between the positions on the axis of B-C segment so that B

and C features lie in the field of view of the robot.

This movement could reveal new features and areas to be explored (like

in figure 3.15 (b)) or enclosed space that completes the region exploration

(figure 3.15 (c)).

In our case, we have taken the cue from this exploration method since

the camera of the quadrotor has a limited field of view. Considering the po-

sition computed with a frontier based approach, our system elaborates the

orientation by pointing at known features detected from the target position

as visual boundary.

In our project, while the quadrotor moves toward its target destination,

the behavior system can reactively detect obstacles in order to prevent col-

lisions with any object not found during the occupancy grid construction.

These behaviors are strictly necessary in a dynamic scenario to avoid colli-

sions with objects lacking features like monochromatic tables or chairs.

Chapter 4

System architecture

“Buy it, use it, break it, fix it,

Trash it, change it, melt - upgrade it,

Charge it, pawn it, zoom it, press it,

Snap it, work it, quick - erase it,

Write it, cut it, paste it, save it,

Load it, check it, quick - rewrite it”

Technologic, Daft Punk

In this chapter we describe hardware and software components used to de-

velop our project.

4.1 Hardware component

The hardware platform consists of two components. The first component,

a personal computer1, communicates with a second one, a quadrotor UAV2

through wireless connection.

4.1.1 AR.drone

Quad-rotor also called quad-copter or quadrocopter, is an helicopter-like air-

craft that is lifted and propelled by four rotors [57]. We have used AR.Drone

1We have used a laptop computer equipped with 2.4GHz Intel Core 2 Duo running

Ubuntu 12.04 and ROS Groovy.
2An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without

a human pilot on board. Its flight is controlled either autonomously by computers in the

vehicle, or under the remote control of a pilot on the ground or in another vehicle

48 Chapter 4. System architecture

2.0 made by Parrot as MAV3 quadrotor. Compared with other MAV, As-

cTec Hummingbird or AscTec Pelican, its main advantage is the very low

price, its robustness to crashes and the fact that it can safely be used indoor

and close to people. AR.Drone 2.0 was unveiled at CES Las Vegas 2012 and

it’s commercially available from 2012.

Designed as a toy with indoor and outdoor flight capability, AR.Drone

has become very interesting for electronics hobbyists and researchers. The

main reason of this consideration has been ascribed to its hardware equip-

ment (see next section) combined with its automated actions like take-off,

land and stay fairly stable in the same position (hover) while flying that al-

lows users to focus on navigation or image analysis implementations. These

features joined with a relatively low price (around e299) and with ability

to fly safety in indoor environment make it a valuable research object.

Drone Operation

The mechanical structure (made up carbon-fiber and plastic air-frame) con-

sists of four rotors attached to the four ends of a crossing to which the

battery and the RF hardware are attached. One pair of opposite rotors

turns clockwise and other pair turns anti-clockwise as show in figure 4.1.

Figure 4.1: Rotors of drone turning

Consider ω1, ω2, ω3 and ω4 as the angular speeds of each motor (figure

4.2 a). To stay flying in the same position (hovering), the drone has to keep

all the angular speeds equal. To go in the direction of axis x, y and z, the

3A micro air vehicle (MAV), or micro aerial vehicle, is a class of unmanned aerial

vehicles (UAV) that has a size restriction and may be autonomous.

4.1. Hardware component 49

drone changes the angular speed of rotors. To make movements as front,

rear, left and right translations and rotations the drone has to change pitch,

roll and yaw angle. To understand what these angles mean, see the roll,

pitch and yaw angles in a plane (figure 4.2 b).

Ȧ�

Front

Rear

RightLeft

Ȧ� Ȧ�

Ȧ�

1 2

3 4

(a) (b)

Figure 4.2: a) Drone movements scheme. b) Explanation of pitch, roll and yaw angles

in a plane.

To change the pitch angle, the drone has to modify angular speeds of

front pair motors (4.1). To increase or decrease roll angle drone has to alter

angular speed of left pair and right pair motors (4.2). To modify yaw angle

in order to rotate clockwise or anticlockwise on itself drone has to change

angular speed of pair of each pair of opposite motors by the same amount

(4.3). Finally, to go upward and downward, the drone has to increase or

decrease all angular speeds of the drone by the same amount (4.4).

Pitch angle variations: 
ω1 = ω + ∆A

ω2 = ω + ∆A

ω3 = ω −∆B

ω4 = ω −∆B

(4.1)

Front (rear) translation with ∆A,∆B ∈ R+ (∆A,∆B ∈ R−)

50 Chapter 4. System architecture

Roll angle variations: 
ω1 = ω −∆B

ω2 = ω + ∆A

ω3 = ω −∆B

ω4 = ω + ∆A

(4.2)

Left (right) shift with ∆A,∆B ∈ R+ (∆A,∆B ∈ R−)

Yaw angle variations: 
ω1 = ω + ∆A

ω2 = ω −∆B

ω3 = ω −∆B

ω4 = ω + ∆A

(4.3)

Clockwise (anticlockwise) rotation with ∆A,∆B ∈ R+ (∆A,∆B ∈ R−)

Gaz4 variations: 
ω1 = ω + ∆G

ω2 = ω + ∆G

ω3 = ω + ∆G

ω4 = ω + ∆G

(4.4)

Upward (downward) translation with ∆G ∈ R+ (∆G ∈ R−)

The drone uses a 3 cell 1000 mAH LiPo rechargeable battery designed

by Parrot. A fully charged battery gives power for about 10-14 minutes of

continuous fly.

(a)

v
F
O
V

hFOV

d
F
O
V

(b)

Figure 4.3: a) Dimensions of Parrot AR.Drone with outdoor and indoor hull. b) Outline

of drone camera field of view.

4The vertical speed (called by Parrot ”gaz”) argument is a percentage of the maximum

vertical speed as defined here. A positive value makes the drone rise in the air. A negative

value makes it go down [58].

4.1. Hardware component 51

Cameras and sensors

AR.Drone includes some components useful for the project such as:

• Front camera: Parrot equips its drone with a sensor with 93◦ diagonal

field of view (dFOV), 81◦ horizontal field of view (hFOV) and 45◦

vertical field of view (vFOV) (Figure 4.3). Exposure compensation is

automatic as well white balance and camera can recorder at 720p but

stream video only at 640x360 resolution (nHD5) up to 30fps.

• Vertical bottom camera is a QVGA sensor equipped with 64 degree

diagonal field of view, 60fps

• Ultrasound altimeter enhanced with additional air pressure sensor

• IMU (Inertial Measurement Unit): reports velocity and orientation,

using a combination of accelerometers and gyroscopes allowing for

more stable flight and hovering

• On board computer, running Linux 2.6.32, equipped with 1GHz 32 bit

ARM Cortex A8 processor

• Interfaces: USB, SD memory card, and Wi-Fi 802.11n

• Indoor hull: 517mm x 517mm hull made of EPP (Expanded Polypropy-

lene) (figure 4.3 a)

Altitude measures, used for automatic altitude stabilisation and assisted

vertical speed control, are provided by ultrasound telemeter (0 ∼ 6 meters)

and air pressure sensor (over 6 meters). Bottom (vertical) camera is needed

by AR.Drone 2.0 for ground speed measurement and automatic hovering

and trimming through optical flow estimation6.

The two most important components for realization of our project are

front camera and IMU. We have used Inertial Measurement Unit data to

reconstruct real world movements of drone to our virtual environments as

previously described. Moreover, technical characteristics of the front camera

are relevant to analyze reasons behind exploration strategy choice.

5Ninth of FullHD resolution
6Detailed description of what optical flow algorithm is and how it works can be found

in chapter 3.

52 Chapter 4. System architecture

Figure 4.4: AR.Drone components

4.2 Software

The software developed in this thesis consists of independently running pro-

cesses. These processes communicate with each other in an event driven

architecture based on message passing.

This kind of modular architecture is worth during and after system de-

velopment. In fact, with this approach it is possible to break a complex

problem (such as exploration problem) into simpler tasks making easier to

update, debug and modify every single part of the system. Moreover, it

allows interoperability with other packages and easier future enhancements.

We have chosen Robot Operating System (ROS)[59] as software platform

in line with our idea to develop a system as modular as possible. ROS

is a framework and a toolbox for the development of robot applications.

The framework has a lot of features including hardware abstraction, device

drivers, libraries, visualisers and the aforementioned message-passing. The

toolbox is very extensive and we have used many utilities from it. Some

4.2. Software 53

important ROS tools and packages for our work are RViz , rosbag , pcl ros,

ardrone driver and tum ardrone.

RViz is a 3D visualisation tool. The strong point of this tool is that it

can display many kind of messages, like pose or point positions, as soon as

they are published. In figure 4.5 it is possible to see an empty view of the

visualiser.

Figure 4.5: RViz window

rosbag is a package of tools for recording messages from and playing

back them to ROS topics. It is an useful debugging instrument during the

development life cycle of a project. It allows to record a pack of all the

needed messages for the correct operation of the developed system and to

make tests in safety conditions in a different afterwards.

PCL[60] is a standalone open-source framework developed by Willow

Garage7. The library is composed by different modules which implement

state-of-the art algorithms to manipulate three-dimensional point clouds8.

Some relevant modules for the purposes of the project are filters and kdTree

which are helpful to remove noise or outliers point. Storing point cloud

in kdTree structure allows to decrease complexity of algorithms. In order

7Willow Garage is a company of researchers and engineers around the world devoted

to developing hardware and open source software for personal robotics applications
8A point cloud is a set of data points in some coordinate system.

54 Chapter 4. System architecture

to take advantage of PCL in ROS based applications, developers have to

utilise pcl ros. This package allows to translate PCL data from and to ROS

messages.

4.2.1 Communication services between AR.Drone and de-

vices

Management of AR.Drone is done via three main communication services.

All information data such as battery level, its status, engine rotation

speed or IMU data, are sent by the drone to its client on UDP port 5554
9. This information, called navdata, also include tags detection result that

can be used by developer to create applications as augmented reality games.

They are sent by default approximately 30 times per second.

Video stream is sent by the AR.Drone to client device on port UDP

5555. It is encoded with P264 algorithm10.

Controlling and configuring the Parrot quadrotor takes place through

sending AT commands (usually 30 times per second) on UDP 5556. AT

commands compose the Hayes command set, a specific command language

originally developed for the Hayes Smartmodem 300 baud modem in 1981

[61].

ardrone autonomy package

To simplify communication between computer and drone we have employed

a ROS package developed in Autonomy Lab of Simon Fraser University by

Mani Monajjemi called ardrone autonomy [62].

ardrone autonomy , fork of AR-Drone Brown driver is a ROS driver for

Parrot AR.Drone. The real advantage is all client-drone communications

are translate in ROS topic and ROS service. To read data from drone devel-

oper can implement a subscriber to ardrone/navdata topic. In this topic,

ardrone autonomy publishes an on purpose message11 containing navdata of

drone. Sending commands to AR-Drone may be categorised in two classes.

In order to allow the drone to take off, land or emergency stop/reset we

have to publish an empty12 message to ardrone/takeoff, ardrone/land

9Devices can connect to the drone through a 802.11g connection.
10The encoding concepts involved comes from the H264 specification. Like H264, P264

makes a spatial prediction for each macro-block based on the neighbouring pixels. Please

refer to the Recommendation ITU-T H.264 for further details
11Message type: ardrone autonomy::Navdata.
12Message type: std msgs::Empty.

4.2. Software 55

and ardrone/reset topic respectively. Once the quadrotor is flying we can

publish a message13 to the cmd vel topic to move it. Messages published to

cmd vel are translated in terms of pitch, roll and yaw angles by driver of

AutonomyLab.

tum ardrone package

tum ardrone[5] is a package developed for Parrot AR.Drone and AR.Drone

2.0. This system enables a low-cost quadrocopter coupled with a laptop

to navigate autonomously, after fixed coordinates, in previously unknown

environments without GPS sensor.

The package consists of three components: a monocular SLAM system

based on PTAM[6] algorithm, an extended Kalman filter for position esti-

mation and data fusion and a steering commands generator based on PID

controller (control node).

Concerning the operation of the package under consideration it is possi-

ble to control the drone through a graphical user interface (shown in figure

4.6). The interface allows users to create custom scripts containing posi-

tions in terms of three dimensional coordinates and angle of rotation14 that

describe the path the drone has to follow. As mentioned in chapter 3, to

localize the camera of the drone and to map the environment we choose to

use PTAM system coupled with an Extended Kalman Filter. Therefore, we

have chosen to use this package as base of our SLAM system since it im-

plements the original implementation of PTAM system suited to work with

the AR.Drone camera and an Extended Kalman Filter that computes the

reliable position of the drone in case of PTAM failures.

13Message type: geometry msgs::Twist.
14Ready to use scripts are available to show simple performance. They command the

drone which draws shapes such as vertical/horizontal rectangle or simple house.

56 Chapter 4. System architecture

Figure 4.6: Tum ardrone interface.

Our package

Our ROS package consists in two principal nodes: communication node and

exploration node.

The main task of communication node is to manage states in which the

AR.Drone is and to communicate with control node in order to send com-

mands and to receive information about poses of the drone.

The flight of the drone has to necessarily be scanned into phases in order

to know always what the quadrotor is doing and not only its position and

its orientation. We have defined four phases: hovering, moving, ptam -

tracking lost and ptam tracking recovering.

4.2. Software 57

FRPPXQLFDWLRQBQRGH

+29(5,1*

37$0�/267

029,1*

37$0�
5(&29(5

'521(�75$&.6�
)($785(6"

<(6

12

,1,7

WXPB6/$0BQRGH

FRQWUROBQRGH

H[SORUDWLRQBQRGH

Figure 4.7: Diagram of states of the drone.

Once the initialization routine, which includes drone take off and PTAM

initialization, is completed, the drone enters in hovering state. It waits in

this state until a new task is received. Then it starts to move entering in

moving state until the task is completed and the target position is reached.

Traditionally in presence of constant knowledge about the quadrotor

position is possible to consider only these two states, but in case of position

data loss due to, for example, a GPS signal loss or a vision tracking loss, we

have to consider also a system that is able to delete received tasks when a

position is not provided, preventing to fly without reliable data. When the

drone loses PTAM tracking of features trying to reach a target position it

enters in ptam tracking lost state. When it happens a warning message

containing current position is published to enable other nodes to use this

information loss, marking, for example, that position as unvisitable.

ptam tracking recovering is strictly consequent to ptam track-

58 Chapter 4. System architecture

ing lost. In this state the drone forgets any task that it ought to perform

and it moves itself to the nearest position where it is sure to find features.

Once the position with known features is reached the drone enters again in

hovering state.

exploration node has the task of analyzing data and computing the best

strategy, in terms of consecutive target positions and orientations, for au-

tonomous exploration of unknown environment in order to increase every

time the knowledge about the room.

exploration node collaborates with communication node and it starts to

work only when the drone is ready for a new target.

As shown in next chapter, exploration node evaluates at each step the

best action that is thought to mainly increase the knowledge about the scene.

The computation of the best action takes into account the limits of visual

SLAM algorithm (such as, for example, high latency map construction).

Chapter 5

Implementation and

evaluation

“Brava, brava Caterina,

ti si sono accese le luci!

Stai elaborando, vero?!

Non ti stancare sai cara?!”

Enrico Melotti - Io e Caterina, Alberto Sordi

In this chapter, we describe the communication through ROS messages and

the implementation of SLAM and Exploration manager. Furthermore, we

illustrate the user interface and how it can be used.

In conclusion, we show some results of the implemented system in real-

world trials compared to ground truth planimetry.

5.1 SLAM manager

As mentioned in chapter 3, all data, such as the positions of the drone

and of the objects around it, are managed by SLAM manager (figure 5.1).

It consists in a localization and mapping system and a command control

system. As mentioned in Chapter 4, we have chosen to use the SLAM

manager implemented into tum ardrone package. Nevertheless, it does not

provide the ability to extract PTAM information such as pose and three-

dimensional positions of features, which could allow us to re-use them for

our exploration purposes.

Information about characteristic positions and poses of the drone must

be extracted from PTAM registrations and EKF. Then, they are transmitted

60 Chapter 5. Implementation and evaluation

SLAM Manager

tum_SLAM_node

control_node

Exploration Manager

communication_node

exploration_node

Figure 5.1: Scheme of SLAM and Exploration managers

on ROS topics in order to be read by other nodes. To make this possible

some changes to tum ardrone package were needed.

5.1.1 tum ardrone package modifications

The quadrotor, with the use of tum ardrone package, is not able to perform

an autonomous exploration in a three-dimensional environment, therefore

we improved this package to allow the machine to autonomously move in

three-dimensional space.

This package underwent three main important changes, which concerned

the extraction of all SLAM data via message standardization (which is de-

scribed in the section 5.2), the communication of the pose of the drone

related to a target position, and the heuristics behind the choice of a new

keyframe in PTAM system.

Firstly, analyzing the original pose communication system, we found a

significant gap consisting of a missing reached target message. A reached

target message is a message used to make other ROS packages able to un-

derstand when the drone reaches the given target position. Without this

kind of message only the tum ardrone knows when a target is achieved.

Therefore, we added the message (containing “u t Target reached” 1),

which is only published when both the pose of the AR.Drone is sufficiently

close to the target position, and PTAM pose estimation is good which means

that is tracking a sufficiently high number of features as described in Chapter

2.

The second main adjustment regards, in details, the PTAM system im-

plementation that, as mentioned in section 4.2, is only slightly modified in

tum ardrone package, in order to work with the camera of the AR.Drone.

The original PTAM system was created for augmented reality applica-

tions in order to not require any markers, pre-made maps or inertial sensors.

1The message structure is modeled following the structure used in tum ardrone package.

5.1. SLAM manager 61

minDistance

KF1 KF2

(a)

minDistance

KF1 Not KF

(b)

Figure 5.2: Example of failure of original PTAM implementation in our system.

This kind of applications needs single horizontal (or vertical) plane where

the PTAM system can detect features in order to draw the three-dimensional

models.

The standard implementation of the PTAM system, to acquire a new

keyframe, only requires the distance between every keyframe to be higher

than a fixed number (20 cm by default). Basically, when a keyframe is

recorded at a certain position, every other frame, that could be registered

in a radius of 20 cm from that point in the space, is not eligible as keyframe

(as shown in figure 5.2 (a)). Hence, using this implementation, the heuristic

does not consider any frame in a short radius from a keyframe independently

of the orientation at which the new frame is acquired (figure 5.2 (b)). Since

we want the AR.Drone to move in a three-dimensional environment, we need

to consider as keyframes also those which are close to other keyframes but

are recorded at a significantly different orientation.

We, therefore, have developed a novel heuristic that is able to record

several keyframes at different directions and at the same distance from a

starting point, creating a sphere of information around it. Applying this

modified heuristic, every time a new frame is taken, it is only evaluated

in comparison with other keyframes that point towards the same direction.

The improved PTAM system, thus, only compares a new frame with saved

keyframes owning similar orientations (those which differ by ± 30◦) and, if

it can not find any nearest keyframe, the system saves it as new keyframe.

62 Chapter 5. Implementation and evaluation

5.2 ROS messaging

All communications between nodes in our package are made possible using

ROS message-passing. This convention let us focus on our main problem,

the exploration problem, leaving to ros core all the assignments such as

creation and maintenance of communication channels.

5.2.1 Message standardization

Particular care has been taken regarding standardization of all messaging,

thus allowing an easier further development.

Given that tum ardrone package does not manage the PTAM feature

position extraction, but it only displays them on a dedicated visualizer, and

it publishes all data, such as the drone pose, as an unsuitable String message.

All messages sent by tum ardrone PTAM wrapper have been converted to

standard ROS messages and new messages have been written following the

ROS guidelines [59].

Every ROS message is composed by three main fields: a header field,

which stores information about the message sequence (all the sent messages

are marked with a number that expresses the message count), a timestamp,

which represents the time of dispatch, and a frame identifier, which brings

the information regarding the particular frame the message is relative to.

geometry msgs/PoseStamped can be used to communicate the position

of the AR.Drone. This message is composed, in addition to the header, of a

geometry msgs/Pose, which represents the position and orientation of the

drone. In geometry msgs/Pose the position is represented by a geometry -

msgs/Point which has 3 floating point attributes representing respectively

x, y and z coordinates in the cartesian coordinates system. Eventually, the

orientation of the robot is identified by a geometry msgs/Quaternion in the

geometry msgs/Pose message. Many operations on orientation vectors can

be defined using quaternions, therefore they are widely adopted in theoret-

ical and applied mathematics and, in particular, for calculations involving

three-dimensional rotations such as in three-dimensional computer graph-

ics and computer vision. In the basic tum ardrone package rotations are

expressed in terms of euler angles, therefore they have to be converted to

quaternions in order to publish a ROS compliant message.

5.2. ROS messaging 63

q0 = cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)

q1 = sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2)

q2 = cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)

q3 = cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2)

(5.1)

φ = atan2(2(q0q1 + q2q3), 1− 2(q2
1 + q2

2))

θ = arcsin(2(q0q2 − q1q3))

ψ = atan2(2(q0q3 + q1q2), 1− 2(q2
2 + q2

3))

(5.2)

A trail of the robot is also sent through a nav msgs/Path; this message

is a vector which includes all the history of the poses of the robot.

On account of the nature of this project, further information such as

PTAM features positions, in particular to map the environment, were re-

quired from the AR.Drone system. The coordinates of every features have

been sent through ROS messages from tum ardrone package. Two possible

message types can be applied at sending a set of points through ROS, which

are: sensor msgs/PointCloud and sensor msgs/PointCloud2. sensor -

msgs/PointCloud is the oldest and easiest way to send point cloud informa-

tion, but it is not well suited for PCL, thus use sensor msgs/PointCloud2 is

better choice since a wrapper to convert the ROS message to PCL PointCloud

type by ROS API. PointCloud2 message is not a simple array of three-

dimensional positions, it also allows to transmit other information in the

message (e.g. rgba encoded color of a point). Nevertheless, all coordinates

and attributes of the points have to be serialized in a data object before

sending the message (each point must be serialized in a variable). Point-

Cloud2 message is also very helpful since it allows interaction with PCL.

This is possible on account of ROS API bridge which is able to convert ROS

message datatype to PCL one.

ROS messages have also been used for making available to all running

ROS nodes the occupancy map of the environment (creation of the map is de-

scribed in 5.2.2). This has been accomplished using nav msgs/OccupancyGrid

message, which represents a n ×m matrix (where n and m are height and

width of the map). The value stored in each element is the probabilistic

value of the occupancy in that particular cell (0-100); if there is no informa-

tion concerning cell availability the value stored is -1.

Furthermore, nav msgs/GridCells message has been used for debug-

ging purposes such as to display cells already visited and evaluated, and

64 Chapter 5. Implementation and evaluation

to visualize the current target, which can be described as the best position

chosen among the evaluated ones.

Standardization of messages has allowed us to use existent plugins to

develop a better graphic user interface. ROS visualization standalone tool

RViz , as an example, allows to render several display message types such

as those used in our project. Additionally, a QT based plugin for graphical

user interfaces is available to embed a RViz visualization frame into a custom

interface.

5.2.2 Occupancy Grid

As described in Chapter 3, to make the drone able to autonomously fly and

explore in the real world, we have to obtain a reasonable amount of reli-

able information by the PTAM system in order to reconstruct a discretized

(occupancy) map of the surrounding environment.

Therefore, the three-dimensional projection of each point catched by

PTAM system has to be classified as reliable or unreliable. To classify each

point of the Point Cloud coming from PTAM system, a filtering process has

to been applied.

As mentioned in Chapter 3, we have considered two kinds of unreliable

points: those with inaccurate position estimate and those which are outside

the fly-zone of the drone. Hence, we filter the point cloud by firstly deleting

inaccurate points and then removing irrelevant points.

In the first step, we have taken advantage of the sparse outlier removal

filter implementation in PCL (Algorithm 1), that is based on the computa-

tion of the distribution of points to neighbour distances.

Initially, the average distance from each point to all its neighbours is

computed. The resulting distribution of averaged points is, then, assumed

as a Gaussian characterized by a standard deviation and a mean. Therefore,

all the points whose mean distance is outside an interval defined by the

distribution global distance standard deviation and mean can be considered

as outliers and deleted from the point cloud.

Algorithm 1 is the pseudo code of the first filtering step where P is a point

array that represents the input point cloud and FP is the corresponding

filtered point cloud.

Moreover, the getPointsInRadius function implements FLANN algo-

rithm, which is already known [63] for fast approximate the nearest neigh-

bour searches. The result of this function is a set of all the points within a

5.2. ROS messaging 65

Algorithm 1 Point Cloud Filtering algorithm

1: procedure RadiusOutlierRemoval(P, radius,minneighbour)

2: i← 0

3: j ← 0

4: while i < P.size do

5: B ← getPointsInRadius(Pi, radius) .

6: if B.size < minneighbour + 1 then

7: FP.append(Pi)

8: end if

9: end while

10: return FP

11: end procedure

fixed radius from the point Pi. An example or result of this filtering process

is shown in figure 5.3. The points removed with this filter are represented

in red.

As already mentioned, a second filtering step is needed to prevent errors

in estimation of visitable cells. Thus, to remove irrelevant points from point

cloud a PassThrough filter is used. This filter deletes every point of the cloud

with z-value under 0.2 meters and over 3 meters (green points in figure 5.3)

making the system able to detect obstacles only in areas where the drone

can fly.

Just after filtering the point cloud, we have introduced an actual step of

occupancy map creation. At the beginning, the occupancy grid is totally ini-

tialized with -1 values (all cells occupancies are unknown) and, subsequently,

it is populated by setting each cell with a representativeness heuristic (equa-

tion 5.3).

ρ(x, y) =


1/10 if |P |x,y = 1

2/5 if |P |x,y = 2

7/10 if |P |x,y = 3

1 if |P |x,y > 3

(5.3)

where Px,y is the set of points of the point cloud that lies in cell (x, y) and

ρ is the occupancy probability given to cell (x, y).

To build an occupancy map, the drone position and orientation (provided

by the geometry msgs/PoseStamped message) are used to understand which

cell represented in the occupancy grid is free and which is not. A process

66 Chapter 5. Implementation and evaluation

(a)

(b)

Figure 5.3: Examples of a filtered point cloud. White points represent the final filtered

point cloud.

5.2. ROS messaging 67

of ray tracing is done from drone position on a field of view of 80◦ 2 (from

40◦ left to 40◦ right from the orientation of the robot) to inspect the map

for possible obstacles.

Bresenham line algorithm (Algorithm 2) has been used to ray trace from

the position of the drone on all its lines of sight due to its low computational

impact. Bresenham lines are drawn from the drone position as steps of 1

degree each in its field of view [64].

Algorithm 2 Bresenham line algorithm

1: procedure line(x0, x1, y0, y1)

2: dx← x1 − x0
3: dy ← y1 − y0
4: D ← 2 ∗ dy − dx
5: line← {(x0, y0)}
6: y ← y0
7: for x0 + 1 < x1 do

8: if D > 0 then

9: y ← y + 1

10: line← line ∪ {(x, y)}
11: D ← D + (2 ∗ dy − 2 ∗ dx)

12: else

13: line← line ∪ {(x, y)}
14: D ← D + (2 ∗ dy)

15: end if

16: end for

17: end procedure

If an obstacle is found on the grid its cell is registered as occupied, while

all the cells between the drone and that one are marked as free tiles (in

the line of sight). We set, in our system, that an obstacle is detected if the

probability for a cell to be occupied is over 1/3 (the probability of each cell is

computed by equation 5.3). When no obstacles are found (tracing the ray)

until the end of the grid, no information related to occupancy of the line

of sight can be guessed since PTAM does not have continuous information

about objects, but sparse ones. As shown in figure 5.4, a clean wall has no

features on it, therefore it is not recognised as an obstacle by the system,

but it is one, indeed.

By this approach we can populate the map adding new information re-

garding free cells to the previous map populated only with occupied ones.

280◦ is the horizontal field of view of AR.drone front camera

68 Chapter 5. Implementation and evaluation

Figure 5.4: Lack of features on walls.

5.2.3 Visited Grid

In order to increase the efficiency of the exploration strategy, a map called

visited map together with the occupancy map is used. The knowledge related

to visited positions could improve exploration efficiency in terms of time

spent by the drone to explore all the areas of an environment.

The first step of visited map creation is the initialization of all cells with

-1 values.

As in the occupancy map construction, in order to build a visited map,

the position of the drone (received by manager in the form of geometry -

msgs/PoseStamped message) is used to detect which cells have been visited

and which have been not. As shown in figure 5.5, every time that a pose

message is received, a set of cells is marked as visited (green color in figure).

This set is built considering a square of side equal to the drone size (70cm),

which is centered in the current pose of the drone.

Once the set of visited cells is constructed, a nav msgs/GridCells mes-

sage (defined by the size of the visited map and the position coordinates of

the visited cells in the map) is sent to the graphic interface in order to be

represented on the exploration map.

5.2. ROS messaging 69

Figure 5.5: Visited grid construction sample.

5.2.4 Scale adaptation

tum ardrone continuously adjusts the scale factor of the map features in

order to have consistent measurements between PTAM points and sensors

data (by means of an ultrasound altimeter).

8SGDWH�2FFXSDQF\

6FDOH�
&KDQJHG"

1HZ�3RLQW�&ORXG

5HVFDOH�JULGV�
�QHZBVFDOH���
ROGBVFDOH�

<HV

1R

Figure 5.6: Diagram of Point Cloud scale procedure.

Since the map is built in a node different with respect to the one that

publishes the point cloud and the scale factor, every time that the scale

factor changes, the occupancy grid has to be rescaled according to both

the previous and the current scale factor before any map update. This

is accomplished by, firstly, locking any unwanted update by other functions

and, then, releasing the lock only when the occupancy grid has been rescaled.

This operation has been inserted to prevent from any accidental rewrite or

update during the rescale mechanism.

70 Chapter 5. Implementation and evaluation

5.3 Exploration manager

As mentioned in Chapter 3, two approaches towards the initialization of the

exploration were considered: a static and a dynamic approach. We have

evaluated three main static heuristics named circle, star and double half

star path (figure 5.7).

The first static path evaluated is called circle path. As shown in figure

5.7 (a), this path consists in a sequence of tasks which drives the drone to

move on a circular path.

(a) (b) (c)

Figure 5.7: (a) Circle path heuristic. (b) Star path heuristic (c) Double half star

heuristic

Each step consists of an α rotation of 45◦ from the previous direction

pose plus a translation of a given step, which is possible to configure before

the application launch, in an α direction. The experimental result of this

static path expresses a limit due to shape and size of the scene. The pres-

ence of obstacles (e.g. tables or pillars) can, indeed, prevent the quadrotor

from completing a full circle on account of a loss of PTAM tracking during

movements. Moreover, applying this path, every step the quadrotor leads to

a movement to an unknown position, without any guarantee that the new

space slot will really be available.

Star path (figure 5.7 (b)) has been implemented to decrease the working

area. This path is composed of a couple of steps that draw a star-like trail.

Each couple consists of a forward translation and rotation (-45◦) step paired

with a backward translation step. This allows the robot to return every

two steps at the starting point, staring always at known features previously

taken. The main problem is caused by an error in the point cloud estimation

process, which increases the turning angle at each step thus ending to a

complete rotation over 360◦ .

5.3. Exploration manager 71

-40° 40°

-90° 90°

Figure 5.8: Order of the utility function computation.

In order to reduce the described errors, we tried to divide the previous

sequence in two sections creating a double half star path static strategy

that is shown in figure 5.7 (c). The first half of the sequence is, therefore,

performed through a left rotation path and, after bringing the robot back to

the starting position, the second part is performed through a right rotation

path.

All of the static paths studied are not always feasible for different rooms.

Changing the starting base of the drone from a room to another, a static

path needs many modifications in order to fit well a new scene. This makes

the previous strategies useless for previous environments.

Therefore, we needed to implement a strategy able to adapt itself to dif-

ferent scenarios without any human modifications or predetermined rules.

72 Chapter 5. Implementation and evaluation

Taking into account that the main piece of information derived from the

surrounding environment is acquired by the visual sensor, our goal was to

develop a strategy fully based on utility functions computed following an or-

der of importance (from light gray to dark gray in figure 5.8). In our system,

indeed, higher importance is given to the current by observed partition of

space, in order to make the AR.Drone able to perform movements the less

suddenly as possible, and to avoid fast changes from the current orientation.

Towards developing a good strategy for the exploration, we had to im-

plement some utility functions. These functions take as input the position

and orientation of a possible next target of the exploration and return a

score relative to the possible increase of environment knowledge with the

given target.

Before any utility function evaluation, the difference between the alti-

tude estimate by SLAM system and the altitude estimate of the ultrasound

altimeter is considered. If the difference between the two is too big (we

have inserted a maximum difference equal to 0.3 meters in order to keep the

drone in flight safety), a routine will be called to recalibrate the estimated

altitude.

As for as the dynamic exploration strategies are concerned, initially, we

decided for an approach based on consecutive positions at a fixed distance.

In this strategy, to evaluate the next position in which the robot will

be sent, the exploration manager initially builds a set of cells based on a

perimeter of radius equal to a predefined distance centered on the current

drone position. We set, by default, the radius at 50cm (the width of the

AR.Drone). Afterwards, the set is filtered by removing all the cells that are

too close to obstacles (we decided for a distance under 1.2 meters taking into

account drifts and scale errors) and the utility of each cell is evaluated by

computing the distance between the cell and the nearest neighbour obstacle.

Finally, the exploration manager chooses, between all evaluated cells, the one

which is the nearest to an object and it evaluates how the drone has to be

oriented. The orientation is computed by equation 5.4 through the atan2

function.

orientation = atan2
xd − xc
yd − yc

(5.4)

where xd and yd are the target coordinates and xc and yc the current position

coordinates.

One limit of this strategy is that the drone has not to start orthogonal to

a wall in order to avoid a forward-backward movement loop. In addition, this

5.3. Exploration manager 73

approach results inappropriate for a rapid exploration since visited positions

are not considered and the drone can go to these position more than once.

5.3.1 Chosen strategy

To make the exploration process faster, we have developed a strategy based

on several utility functions, thus achieving a ready available room map and,

moreover, saving as much battery as possible since a fully charged one allows

the drone to fly continuously for a maximum of 10 minutes. Therefore, the

time scale of the exploration process has to be minimised without losing

efficiency.

The first utility function, in order of importance, is called forward UF.

This function is computed for a set of grid cells in the light gray map par-

tition shown in figure 5.8. To decrease computational complexity the set is

populated by a function (FFC 3) based on Bresenham algorithm as described

above. This function evaluates each cell in a line starting from the drone

pose and it, then, returns the nearest cell that satisfies the following con-

straint: it is inside the grid, not already visited and at least 120 centimeters

from an object. The last feature was introduced to let the drone fly safely,

taking into account possible scale errors and drifts. The distance between

a cell and the nearest neighbour object is computed through a function

called getDistanceFromObject. We, at first, developed this function using

a midpoint circle algorithm (Algorithm 3).

This algorithm consists of iteratively looking for obstacles on circumfer-

ences centered on the considered cell. It starts inspecting circumference of

radius 1 and, in case it does not find any obstacles, it increments the radius.

The algorithm stops when the current inspected circumference contains at

least an occupied cell.

Subsequently, to increase the performance of getDistanceFromObject

we have implemented it with a distance transform algorithm. To the extent

of decreasing the time taken to evaluate cells distances we have used the

“dead reckoning” signed distance transform (DRA) [55].

In contrast with midpoint circle algorithm based method, which eval-

uates distance value every time for each cell, DRA computes the distance

map (that is the map of distances from each cell to the nearest neighbour

occupied cell) only when the point cloud changes. Thus, DRA makes the

3First Fitting Cell

74 Chapter 5. Implementation and evaluation

Algorithm 3 Midpoint circle algorithm

1: procedure circle(x0, y0, r)

2: f ← 1− r
3: dx← 1

4: dy ← (−2) ∗ r
5: x← 0

6: y ← r

7: circle← ∅
8: circle← circle ∪ {(x0, y0 + r), (x0, y0 − r)}
9: circle← circle ∪ {(x0 + r, y0), (x0 − r, y0)}

10: while x < y do

11: if f >= 0 then

12: y ← y − 1

13: dy ← dy + 2

14: f ← f + dy

15: end if

16: x← x+ 1

17: dx← dx+ 2

18: f ← f + dx

19: circle← circle ∪ {(x0 + x, y0 + y), (x0 − x, y0 + y)}
20: circle← circle ∪ {(x0 + x, y0 − y), (x0 − x, y0 − y)}
21: circle← circle ∪ {(x0 + y, y0 + x), (x0 − y, y0 + x)}
22: circle← circle ∪ {(x0 + y, y0 − x), (x0 − y, y0 − x)}
23: end while

24: end procedure

5.3. Exploration manager 75

Figure 5.9: Results after first pass (a), second pass (b) in DRA.

distance value of all cells in the grid always updated and ready to use and it

can be returned by getDistanceFromObject without other computations.

As mentioned in Chapter 2, DRA evaluates the distance transform (also

known as distance map or distance field). In the pseudo code (Algorithm

4), the two passes used to evaluate the distance map are shown.

Considering I as a 2D map of size X by Y, d as the distance map of size

X by Y and p as the corresponding border (occupied) cell for each cell in the

grid, DRA evaluates the distance value of each cell from the distance value

of the surrounding cells in a 3x3 window 4. This is possible by scanning

firstly the occupancy map I from left to right, top to bottom, and then,

in the second pass, from bottom to top and right to left. In figure 5.9 the

results of the two phases are shown. As it is possible to see in figure, the

quality of the approximation of the distance value of every cell with only

two passes is undeniable.

As mentioned, with DRA implementation we have obtained a significant

increase of performance, due to the smaller complexity of the algorithm. In

fact, the extensive computation of the distance map with the midpoint circle

algorithm based implementation has a time complexity of O(n4), whereas

the time complexity of DRA, on the same task, is O(n2), considering n as

the number of cells from which the distance value has to be evaluated and

a n x n occupancy map.

Next target position estimation

Once a set of possible cells is obtained, the utility of every cell in the set is

computed by forward UF function (5.5).

4The 3x3 square of the neighbourhood of the considered cell

76 Chapter 5. Implementation and evaluation

Algorithm 4 Dead Reckoning Distance Transform Algorithm

1: procedure DRA(I)

2: d1 = 1

3: d2← sqrt(2)

4: for y = 1→ Y do . d initialization

5: for x = 1→ X do

6: p(x, y) = −1

7: d(x, y) =∞
8: end for

9: end for

10: for y = 1→ Y do . first pass

11: for x = 1→ X do

12: if d(x− 1, y − 1) + d2 < d(x, y) then

13: p(x, y) = p(x− 1, y − 1)

14: d(x, y) = sqrt((x− p(x, y).x)2 + (y − p(x, y).y)2)

15: end if

16: if d(x, y − 1) + d1 < d(x, y) then

17: p(x, y) = p(x, y − 1)

18: d(x, y) = sqrt((x− p(x, y).x)2 + (y − p(x, y).y)2)

19: end if

20: if d(x+ 1, y − 1) + d2 < d(x, y) then

21: p(x, y) = p(x+ 1, y − 1)

22: d(x, y) = sqrt((x− p(x, y).x)2 + (y − p(x, y).y)2)

23: end if

24: if d(x− 1, y) + d1 < d(x, y) then

25: p(x, y) = p(x− 1, y)

26: d(x, y) = sqrt((x− p(x, y).x)2 + (y − p(x, y).y)2)

27: end if

28: end for

29: end for

30: for y = Y → 1 do . second pass

31: for x = X → 1 do

32: if d(x+ 1, y) + d1 < d(x, y) then

33: p(x, y) = p(x+ 1, y)

34: d(x, y) = sqrt((x− p(x, y).x)2 + (y − p(x, y).y)2)

35: end if

36: if d(x− 1, y + 1) + d2 < d(x, y) then

37: p(x, y) = p(x− 1, y + 1)

38: d(x, y) = sqrt((x− p(x, y).x)2 + (y − p(x, y).y)2)

39: end if

40: if d(x, y + 1) + d1 < d(x, y) then

41: p(x, y) = p(x, y + 1)

42: d(x, y) = sqrt((x− p(x, y).x)2 + (y − p(x, y).y)2)

43: end if

44: if d(x+ 1, y + 1) + d2 < d(x, y) then

45: p(x, y) = p(x+ 1, y + 1)

46: d(x, y) = sqrt((x− p(x, y).x)2 + (y − p(x, y).y)2)

47: end if

48: end for

49: end for

50: for y = Y → 1 do

51: for x = X → 1 do

52: if I(x, y) == 0 then

53: d(x, y) = 0

54: end if

55: end for

56: end for

57: end procedure

5.3. Exploration manager 77

forward UF initially evaluates δobj distance from nearest neighbour ob-

ject, δunk distance from nearest neighbour unknown cell through the afore-

mentioned functions, and consequently, the difference between δx and θx.

θobj and θunk are preset parameters which represent respectively mini-

mum distance from object and unknown space in order to prevent collisions

due to drift and external agents.

∆obj(i, j) = |δobj(i, j)− θobj |
∆unk(i, j) = |δunk(i, j)− θunk|

(5.5)

Then it computes the utility u of each cell as a function of ∆obj(i, j) and

∆unk(i, j) that are shown as ∆obj and ∆unk for simplicity:

u(i, j) =


µ

|∆obj∆
2
unk|

if ∆obj , ∆unk 6= 0

µ if ∆obj , ∆unk = 0

(5.6)

∀ cell(i, j) /∈ Grid : µ = −1 (5.7)

1/∆obj(i, j) is used to try to increase number of found features since

it increases the utility when getting close to an object (and consequently

to possible features). In contrast 1/∆unk(i, j) represents the frontier based

strategy since it increases utility getting close to a frontier.

If forward UF returns all negative values for grid cells previously con-

sidered, the utilities of cells in gray partition of map (figure 5.8) grid are

evaluated with forward UF. We have computed utilities of cells in front of

the drone with the same function in two steps, in order to give more impor-

tance to cells in the field of view partition of the space, and to decrease the

computational time complexity in case of valid target cell in that partition.

When all computed forward utilities are negatives, the utilities of a dif-

ferent set of cells are evaluated with backward UF (5.8). This set consists of

cells in dark gray partition of map grid (as shown in figure 5.8) through the

same algorithm (FFC) used for the population of the forward set of cells.

u(i, j) =

µ|δobj | if δobj 6= 0

µ if δobj = 0
(5.8)

Unlike forward UF, backward UF is in function of only one variable

δobj(i, j) that, like in forward UF, represents distance from nearest neigh-

bour object. The utility of each cell is much greater when target position is

far from objects.

78 Chapter 5. Implementation and evaluation

Next target orientation estimation

Once a safe target position is evaluated, we have to decide where the drone

will look at. Since an overlapping area is always needed due to the PTAM al-

gorithm nature (new knowledge starts only from already known references),

we have to choose the target angle of view in order to always have in one of

the halves of the field of view enough features and in the other half few or

none features.

The direction of the drone is computed with getOrientation function

taking inspiration from view-improvement method. getOrientation ini-

tially inspects all directions from the target position to detect on which

angles we have a reference (that means that there is an obstacle on that line

of sight) and it labels them as valid.

Consequently, valid angles are filtered by getGoodOrientations in order

to consider only angles with particular characteristics.

As shown in algorithm 5, getGoodOrientations checks for every angle

if left (or right) hemisphere has a number of occlusions at least five times

greater that the right (or left) hemisphere.

Finally, the getOrientation evaluates the utility uα of each good angle

with respect to current angle ψ. Angle orientation with greatest utility is

chosen and a command with the target position and angle evaluated is sent

to the drone.

uα = |α− ψ| (5.9)

Once target position and orientation are computed, exploration module

has to choose which rotation, if clockwise or anticlockwise, the drone has to

perform. When the drone has to move from an orientation to another, it

establishes to turn on z axis in order to perform the shorter rotation. For

example, if the drone is looking at 20◦ and it has to move looking at 50◦, it

will choose to perform a clockwise rotation. Problems arise when the drone

can not track any feature between 20◦ and 50◦.

In order to make the drone able to operate always in presence of tracked

features, we have to detect a lack of features before the drone starts the

rotation. To make this possible we have implemented the getDirection

function (algorithm 6).

getDirection, starting from current position and orientation of the

drone, checks the presence of trackable features, computing the number of

directions for which some known features are available.

Initially, getDirection evaluates r and foundFeaturesright increasing

5.3. Exploration manager 79

Algorithm 5 Algorithm used to classify orientations

1: procedure getGoodOrientations(cell(i, j))

2: α← 0

3: count l← 0

4: count r ← 0

5: while α < 2π do

6: γ = −π/6
7: while γ <= π/6 do

8: β ← α+ γ

9: if γ <= 0 and β is valid then

10: count l + +

11: end if

12: if γ >= 0 and β is valid then

13: count r + +

14: end if

15: if count l/count r > 5 or count r/count l > 5 then

16: α is good angle for cell(i,j)

17: end if

18: γ ← γ + 1

19: end while

20: x← x+ 1

21: end while

22: end procedure

80 Chapter 5. Implementation and evaluation

Algorithm 6 Algorithm

1: procedure getDirection(cur cell(i, j), dest cell(i, j))

2: l← 0

3: r ← 0

4: foundFeaturesleft ← 0

5: foundFeaturesright ← 0

6: tmp← orientationcur cell

7: while tmp 6= orientationdest cell do

8: if featuresOn(tmp) then

9: foundFeaturesleft ← foundFeaturesleft + 1

10: end if

11: tmp← tmp− 1

12: l← l + 1

13: end while

14: tmp← orientationcur cell

15: while tmp 6= orientationdest cell do

16: if featuresOn(tmp) then

17: foundFeaturesright ← foundFeaturesright + 1

18: end if

19: tmp← tmp+ 1

20: r ← r + 1

21: end while

22: if foundFeaturesleft / l > foundFeaturesright / r then

23: if orientationdest cell − orientationcur cell > 0 then

24: return “ANTICLOCKWISE”

25: end if

26: else

27: if orientationdest cell − orientationcur cell < 0 then

28: return “CLOCKWISE”

29: end if

30: end if

31: end procedure

5.3. Exploration manager 81

Figure 5.10: Rotation anticlockwise evaluated with getDirection.

the current orientation angle until it is equal to the target orientation angle.

r represents the number of possible orientations between current and target

angle rotating clockwise. foundFeaturesright is incremented every time that

known features are in the line of sight. The same process is done rotating

anticlockwise computing l and foundFeaturesleft.

Finally, the presence density of features is computed in order to evaluate

which rotation, clockwise or anticlockwise, is better.

If the ratio between foundFeaturesright and r is greater than the ratio

between foundFeaturesleft and l the drone has to rotate clockwise. Other-

wise, the drone has to rotate anticlockwise.

In case that all utilities computed by forward UF and backward UF are

negative the exploration manager uses a fixed strategy that consists in eval-

uating only the utility of cells on a circle of fixed radius. The farthest cell

from obstacles is chosen as cell with greater utility values. Associated to the

position of this cell, this fixed strategy returns also an orientation equal to

the sum of the current orientation and π/4 (or when this orientation frames

any known features, the sum of the current orientation and −π/4).

This strategy is necessary in cases like the one in figure 5.11. In this kind

of situations (such as dead-end) the drone explores the room or corridor

82 Chapter 5. Implementation and evaluation

Figure 5.11: Example of scenario that needs different strategy.

evaluating utilities of cells which have not yet been visited. Once it reaches

a limit position (such as position at 1.2 meters from an obstacle), there is

not any eligible target because all cells in front of the drone are too close

to obstacles and all cells behind the drone are already visited. Therefore,

the drone has to move on an already visited cell rotating itself in order to

return to unvisited areas.

Emergency thread

As mentioned, we have presented our exploration strategy taking into ac-

count the possible failure of feature tracking, which derives from limitation of

the PTAM system. To prevent any collision, we have implemented a thread,

which works in parallel with the exploration and controller threads, acting

in the case of blind navigation due to PTAM tracking loss. In fact, this

thread starts when the drone is in a ptam tracking lost state (figure 4.7

Chapter 4) and it blocks the execution of any other command regarding the

exploration (e.g., the achievement of a target position) sending to the drone

a sudden hover command. After that, it drives the drone to the nearest

visited position where some found features are certainly present considering

5.3. Exploration manager 83

the pose computed only with the help of EKF. Once this pose is reached

the thread ends and the exploration can continue.

5.3.2 Custom message

In order to simplify communication between the Exploration manager nodes

(communication node and exploration node in figure 5.1) communications

we have to create a new custom ROS message called Strategy.

The most important variable in message structure is droneState. By

changing droneState, Exploration manager can perform different tasks with

respect to the current state of the drone. When the drone reaches a preset

target, it publishes, on the arsec/strategy topic, a message containing,

as droneState, drone hovering, x, y, z, yaw, altitude equal to evaluated

pose values and real altimeter readings; after this, it starts listening for a

message on the same topic.

Like in case of droneState equal to drone hovering, communication -

node publishes on arsec/strategy a message with droneState equal to

drone moving or drone avoiding respectively when the drone is moving

to a target or if it loses PTAM tracking. In addition the message is com-

pleted with pose variables and in case of PTAM tracking loss, exploration

manager saves that pose as no-explorable position in order to prevent to

return to this position during following tasks.

Once a message of drone hovering is published on arsec/strategy, the

exploration manager starts to compute the best next position to reach in

order to increase its knowledge. After that, manager publishes a message

which contains droneState equal to sending action associated to x, y, z of

the target, a direction such as forward, backward or shift (depending

on type of translation to do), a degree which represents orientation of the

drone and a rot which represents in which direction the drone has to rotate

(either clockwise or anticlockwise).

A schematic representation of Strategy is shown below.

ROS STRATEGY MESSAGE TYPE

— constants —

uint32 DRONE HOVERING = 0

uint32 DRONE MOVING = 1

uint32 DRONE AVOIDING = 2

uint32 SENDING ACTION = 3

— header —

84 Chapter 5. Implementation and evaluation

Header header

— pose variables —

float32 x

float32 y

float32 z

float32 yaw

float32 altitude

— best action strategy —

string direction

int32 degree

string rot

uint32 droneState

5.4 Graphical User Interface

Graphical user interface is a tool used for debugging and controlling the

application. A good developed GUI makes faster the understanding of what

the application is doing. In our project, the graphical user interface (figure

5.12) allowed us to debug during the implementation of the strategies in

order to simplify and make it easier the identification of target that the

drone has to reach. The target identification is not the only reason for

which we have developed a GUI.

Moreover, we have studied and implemented the structure of the graphi-

cal user interface in order to have always under control some significant data

about the drone such as IMU data, altimeter readings, state of the drone

(taking off, landing, flying, etc.) and battery level. In addition to this data,

some significant information about PTAM and Exploration Manager such

as the current position and orientation of the drone, the target pose, the

state of the PTAM system (in terms of number of founded features) and a

map representation of the knowledge of the environment are displayed.

The GUI implementation has been possible thanks to the attention paid

on the standardization of ROS messages and on the resources made available

by the ROS framework.

In particular, we have used QT4 libraries to represent all information.

QT is a cross-platform application framework used to develop application

software with a graphical user interface and it is classified as a widget toolkit.

As shown in figure 5.13, the structure of GUI is divided in three blocks.

In the red block, the drone and SLAM manager information are displayed on

5.4. Graphical User Interface 85

Figure 5.12: Graphical User Interface.

86 Chapter 5. Implementation and evaluation

Figure 5.13: Information representation structure.

a grid. The user can interact with the drone by sending initial commands

(“TakeOff” and “Start”) through dedicated buttons in order to start the

exploration process. Users can also act in case of danger by pressing the

“Land” button (in order to make the drone to land immediately) or by

pressing the “Emergency/Reset” button which shuts down all motors of the

drone. All these buttons are in the green block. The last block, the blue

one, is used to display a map of known objects, the visited path, and, in

general, all information about the environment.

To display this information we have used RViz library. So we have em-

bedded a visualizer (rviz::VisualizationFrame) in our GUI as a Qt widget.

Thanks to this library we did not have to manage every single piece of infor-

mation, but through the creation of a custom configuration file the widget

programmatically loads data published on ROS topic directly on the GUI.

Moreover, the use of a ROS visualization frame integrated in our interface

has enabled the removal of the original PTAM GL visualizer resulting in

unexpected performance improvements (original PTAM implementation of

the point cloud renderer has a busy wait in the render process that pushes

the CPU at almost 100% usage, while we avoided this step, by decreasing

the memory use to render the cloud).

5.5. Evaluation 87

5.5 Evaluation

To evaluate performance and usability of the system we have tested our

package in some different scenarios.

The first evaluated scenario is an indoor room at the Artificial Intelli-

gence and Robotics Laboratory at the Department of Electronics, Informa-

tion and Bioengineering of Politecnico di Milano (AIRlab). As shown in

figure 5.14, the shape of the room is irregular and it has some peculiarities

that influenced the exploration operation.

Figure 5.14: AIRlab room real map.

To better understand how these characteristics can influence the explo-

ration, firstly we have tested our system using the static exploration paths.

As earlier discussed, these exploration strategies are too limited and they

are influenced by the shape of the room. In this specific case, the room is

not rectangular and, in addition, it shows a convex part. These peculiarities,

in conjunction with the presence of a pillar (shown as black rectangle in the

middle of the room map in figure 5.14), make it impossible for the drone

to complete the exploration. In particular, applying the circle strategy, the

drone performed a route that was too close to an obstacle (represented by a

desk) and the feature tracking system performed by PTAM failed, because

the field of view of the drone camera was covered by the mentioned object

(figure 5.15 (a)).

We, thus, tried to adopt the star strategy, but it failed as well. In this

case the failure of the exploration strategy is due to a column present in the

88 Chapter 5. Implementation and evaluation

(a) (b)

Figure 5.15: Static exploration results. (a) AIRlab room reconstruction with circle

static strategy. (b) AIRlab room reconstruction with start static strategy.

room. Indeed, PTAM can not detect the features of the pillar, depending

on the position of the drone camera, thus obtaining a frame where only

the right half is populated by PTAM keypoints. Later, during the next

movement (which is composed of an orientation rotation of −π/4 and a

translation as previously described), PTAM system lost tracked features,

since the only features visible in the previous frame are now out of the field

of view. This PTAM tracking failure and the nature of the static strategy

made the drone unable to complete the static path, performing, every time,

the movement that induces the PTAM system to lose the tracked features.

Considering the result of star strategy and the nature of the half star

strategy (that consists in the same movements in different order), we have

demonstrated that also the half star strategy can not be used to explore this

environment since it gives the same results.

Subsequently, we tested our dynamic exploration strategy in the AIRlab

room. Figure 5.16 shows the overlapping of the planimetry of the room on

the map constructed by our system. In this figure, we have represented walls

and door with orange color and furniture objects, like desks and cabinets,

with yellow rectangles. As shown, the results of this exploration strategy

are impressive in comparison with the static strategies and also from a gen-

eral point of view, considering the absence, in our system, of any kind of

laser scanner. The map, reconstructed in real time during the autonomous

exploration, fits almost perfectly on the planimetry of the AIRlab.

To better understand, we have to underline the final result related to the

concept of what represents a group of features. In fact, as aforementioned,

5.5. Evaluation 89

Figure 5.16: Result of dynamic exploration strategy over AIRlab room.

the correlation between an object and its features is very strong and it is

also clear in the built map. The majority of the boundaries, indeed, are

not a representation of walls (excluding the cases where something, such

as a poster, is present) but they represent obstructions, drawn with yellow

rectangles, such as cabinets, desks or even people (that are symbolized by a

blue circle in this case).

The second evaluated scenario is an outdoor limited environment. This

environment is a courtyard shaped like a rectangle. Despite the simple con-

cave shape, the dynamic exploration of this space has not been successful.

This failure can not be addressed to obstacles presence or a difficult envi-

ronment shape, but it is likely related to a variable light intensity during

the test that heavily conditioned the camera exposure. We noticed indeed

that, in case of transition between a frame of a low-intensity lighted scene

90 Chapter 5. Implementation and evaluation

Figure 5.17: Effect of a sudden variation of light intensity in PTAM system.

and a different one with a high-intensity light, the scene framed resulted

very different with respect to the recorded features. Hence, a feature found

in the first frame can not be detected by the system in the second one, since

its characteristics in terms of intensity of light are different.

Moreover, the camera of the AR.Drone 2.0 has an automatic exposure

(AE) mode that calculates and adjusts exposure settings autonomously to

match (as closely as possible) the mid-tone of the considered subject with

the mid-tone of the scene. This AE mode prevents us to avoid problems

derived from variations of light intensity, on account of the impossibility

to distinguish between a closer object (that obstructs the camera) and a

sudden change of exposure.

In contrast, this test allowed us to underline the importance of the point

cloud filtering. As shown in figure 5.18, during this test PTAM system found

many features located on the floor. Considering our concept of relation

5.5. Evaluation 91

between features and obstacles, described in previous chapters, without a

filter on the position of the features the drone would not able to fly over them.

In fact, as mentioned, the points used to map the environment have not a

correspondence to specific objects, but they represent only image features

of the scene framed. Therefore, since the drone flies between 20 cm (ground

altitude) and 210 cm (doors height), these feature will not disturb the flight

of the drone and, for this reason, they were correctly deleted by filtering

processes.

In conclusion, we have established that our system works well in indoor

environments where a lot of features are present because without them and

without the use of any proximity sensor the system can not detect obstacles.

Moreover, outdoor scenarios are advised against because some parameter

such as the presence of wind, are not be considered in EKF system (as

shown in Chapter 3.2) and they make the pose estimation unreliable.

92 Chapter 5. Implementation and evaluation

(a)

(b)

Figure 5.18: Outdoor vision. (a) Example of features found on the ground. (b) Outdoor

recreated map.

Chapter 6

Conclusions and future

research

“Aimless extension of knowledge, however, which is what I think you really

mean by the term curiosity, is merely inefficiency. I am designed to avoid

inefficiency.”

R. Daneel Olivaw - The Caves of Steel, Isaac Asimov

6.1 Conclusions

In this thesis we presented a novel system that enables a low-cost quadrotor

to localize itself, navigate and explore autonomously an unknown environ-

ment without any positioning sensor such as GPS-sensor. To hold down the

cost of the hardware, our approach uses only sensors available on the Par-

rot AR.Drone 2.0 and, particularly it uses the monocular camera without

requiring any artificial marker.

In order to achieve our aim, we have used PTAM, a real-time, monocular

localization and mapping algorithm based on keyframes, to reconstruct a

discretized map of the surroundings of the quadrotor and to evaluate the

position and orientation within this map. We have used a novel method

from TUM Vision group to estimate the scale of the map from inertial

and altitude measurements by formulating the problem statistically, and

by deriving a closed-form solution for the maximum likelihood estimator of

the unknown scaling factor. Furthermore, the TUM method uses PTAM

algorithm together with an Extended Kalman Filter to join visual extracted

94 Chapter 6. Conclusions and future research

information and data received from other sensors in order to estimate the

pose of the drone and a three dimensional description of the surrounding

world.

We have used information from PTAM and the Extended Kalman Filter

as the base of the exploration. To make this possible we have developed the

system that extracts knowledge from environment description, obtained by

PTAM, by filtering it opportunely and creating an occupancy grid which

describes the location of obstacles and free space in a two-dimensional map.

Autonomous exploration is performed with a novel strategy influenced

by Frontier-based and View-improvement methods. This strategy has been

developed taking into consideration the nature of the localization and map-

ping system chosen and its constraints. Given the limited field of view of the

sensor used to localize the quadrotor, our strategy favors movements that

consist in small variations of the orientation angle.

The developed autonomous exploration system provides safe navigation

with obstacle avoidance without the need of specific sensors such as prox-

imity ones.

In summary, we showed in our experiments that a low cost quadrotor,

based only on a monocular view, can navigate and explore an unknown envi-

ronment building a three-dimensional representation of the environment and

a two-dimensional map of the obstacles without the use of an expensive laser

rangefinder. On one hand, the system resulted very reliable and accurate

in typical indoor environment, on the other hand we showed that particular

scenarios, such as unfurnished room or outdoor environments with sudden

light intensity changes, do not fit well with the PTAM algorithm visual

nature.

6.2 Future works

Considering the work of this thesis there are several aspects that can be

analysed and improved.

First of all, the Extended Kalman Filter can be improved by adding new

sensor observations used to estimate the pose of the quadrotor. The Parrot

AR.Drone is equipped with a magnetometer, a barometer and a wind speed

and angle direction sensor. Taking into account these sensors it might be

possible to build a better EKF model in order to stabilize the navigation

control and make exploration possible where it is now difficult (e.g., in windy

outdoors environments or surfaces where ultrasounds altimeter give incorrect

6.2. Future works 95

estimate).

Another possible field of improvement could be the visual SLAM sys-

tem. To increase the tracking performance during sudden movements, it is

possible to use the edgelet-enhanced version of PTAM [65] that tracks also

edge features that are more resilient to motion blur.

To increase the definition of the reconstructed three-dimensional map a

possible approach is Dense Tracking and Mapping (DTAM) [66]. DTAM is a

system for real-time camera tracking and reconstruction which does not rely

on feature extraction like PTAM, but on dense methods, relying on every

pixel of the image of the scene framed. This approach allows to build very

precise three-dimensional meshes of the environment extracting information

also about featureless objects. Moreover, DTAM gives better performance

on camera position tracking.

Considering the exploration area a possible improvement is represented

by multi-room exploration. To achieve this aim it is not possible to use

PTAM algorithm, in fact, keyframes taken in different rooms, framing two

sides of the same wall, could lead to conflict between features. As mentioned

in Chapter 3, the tracking process of PTAM reprojects the features that lie

in the current field of view on the image plane. If these features have been

originally taken in another room, there is no possibility to found them in the

current room resulting in a failure of the tracking that blocks exploration.

A possible solution to multi-room problem could be the adoption of Parallel

Tracking and Multiple Mapping system (PTAMM) [67] which is based on

PTAM. PTAMM adds multi-map feature on PTAM system. This allows to

bypass the problem described above because it treats features as belonging

only to their map. However, PTAMM needs user interaction because it does

not have the capability of understanding when a new map is needed (e.g.

when entering a new room). To automate this process a segmentation of

the environment could be performed to allow the system to understand what

keyframes belongs to a room or another one.

Bibliography

[1] R. R. Murphy, Introduction to AI Robotics. Cambridge, MA, USA:

MIT Press, 1st ed., 2000.

[2] R. E. Kalman, “A new approach to linear filtering and prediction

problems,” Transactions of the ASME–Journal of Basic Engineering,

vol. 82, no. Series D, pp. 35–45, 1960.

[3] OptiTrack, “http://www.naturalpoint.com/optitrack/.”

[4] A. J. Davison, W. W. Mayol, and D. W. Murray, “Real-time localisa-

tion and mapping with wearable active vision,” in Proceedings of the

2nd IEEE/ACM International Symposium on Mixed and Augmented

Reality, ISMAR ’03, (Washington, DC, USA), pp. 18–, IEEE Computer

Society, 2003.

[5] TUM, “https://github.com/tum-vision/tum ardrone.”

[6] G. Klein and D. Murray, “Parallel tracking and mapping for small

ar workspaces,” in Proceedings of the 2007 6th IEEE and ACM In-

ternational Symposium on Mixed and Augmented Reality, ISMAR ’07,

(Washington, DC, USA), pp. 1–10, IEEE Computer Society, 2007.

[7] B. Yamauchi, “A frontier-based approach for autonomous exploration,”

in Proceedings of the 1997 IEEE International Symposium on Compu-

tational Intelligence in Robotics and Automation, CIRA ’97, (Washing-

ton, DC, USA), pp. 146–, IEEE Computer Society, 1997.

[8] R. Gartshore, P. Palmer, and J. Illingworth, “A novel exploration al-

gorithm based on a view-improvement strategy,” 2005.

[9] Robocup, “http://www.robocuprescue.org/.”

[10] Robocup, “http://wiki.robocup.org/wiki/robot league.”

97

98 BIBLIOGRAPHY

[11] DARPA, “http://archive.darpa.mil/grandchallenge/.”

[12] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Autonomous

Navigation and Exploration of a Quadrotor Helicopter in GPS-denied

Indoor Environments,” in Robotics: Science and Systems.

[13] A. Technologies, “http://www.asctec.de/uav-applications/.”

[14] I. I. D. S. GmbH, “http://en.ids-imaging.com/.”

[15] Hokuyo, “http://www.hokuyo-aut.jp/02sensor/07scanner/utm -

30lx.html.”

[16] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a

low-cost quadrocopter,” in Proc. of the International Conference on

Intelligent Robot Systems (IROS), Oct. 2012.

[17] B. Schwarz, “Lidar: Mapping the world in 3D,” Nature Photonics,

vol. 4, pp. 429–430, 2010.

[18] G. Stockman and L. G. Shapiro, Computer Vision. Upper Saddle River,

NJ, USA: Prentice Hall PTR, 1st ed., 2001.

[19] H. P. Moravec, Obstacle avoidance and navigation in the real world by

a seeing robot rover. PhD thesis, Stanford University, Stanford, CA,

USA, 1980. AAI8024717.

[20] C. Harris and M. Stephens, “A combined corner and edge detector,” in

Proceedings of the 4th Alvey Vision Conference, pp. 147–151, 1988.

[21] J. Shi and C. Tomasi, “Good Features to Track,” Proceedings of the

Conference on Computer Vision and Pattern Recognition, pp. 593–600,

June 1994.

[22] E. Rosten and T. Drummond, “Machine learning for high-speed corner

detection,” in Proceedings of the 9th European conference on Computer

Vision - Volume Part I, ECCV’06, (Berlin, Heidelberg), pp. 430–443,

Springer-Verlag, 2006.

[23] M. L. V. Pitteway, “Algorithm for drawing ellipses or hyperbolae with

a digital plotter,” The Computer Journal, vol. 10, pp. 282–289, 1967.

[24] J. Gibson, The perception of the visual world. Houghton Mifflin, 1950.

BIBLIOGRAPHY 99

[25] D. Warren and E. Strelow, Electronic Spatial Sensing for the Blind:

Contributions from Perception, Rehabilitation, and Computer Vision.

NATO ASI Series. Series E: Applied Sciences, Springer, 1985.

[26] B. D. Lucas and T. Kanade, “An iterative image registration technique

with an application to stereo vision.,” in IJCAI (P. J. Hayes, ed.),

pp. 674–679, William Kaufmann, 1981.

[27] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelli-

gence, vol. 17, no. 1-3, pp. 185–203, 1981.

[28] D. G. Lowe, “Object recognition from local scale-invariant features,”

in Proceedings of the International Conference on Computer Vision-

Volume 2 - Volume 2, ICCV ’99, (Washington, DC, USA), pp. 1150–,

IEEE Computer Society, 1999.

[29] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust

features (surf),” Comput. Vis. Image Underst., vol. 110, pp. 346–359,

June 2008.

[30] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: binary robust

independent elementary features,” in Proceedings of the 11th European

conference on Computer vision: Part IV, ECCV’10, (Berlin, Heidel-

berg), pp. 778–792, Springer-Verlag, 2010.

[31] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient

alternative to sift or surf,” in Proceedings of the 2011 International

Conference on Computer Vision, ICCV ’11, (Washington, DC, USA),

pp. 2564–2571, IEEE Computer Society, 2011.

[32] O. Miksik and K. Mikolajczyk, “Evaluation of local detectors and de-

scriptors for fast feature matching,” 2012.

[33] H. C. Longuet-Higgins, “Readings in computer vision: issues, problems,

principles, and paradigms,” ch. A computer algorithm for reconstruct-

ing a scene from two projections, pp. 61–62, San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1987.

[34] R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 19, pp. 580–593, June 1997.

100 BIBLIOGRAPHY

[35] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge University Press, ISBN: 0521540518, second ed.,

2004.

[36] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:

Real-time single camera slam,” IEEE Trans. Pattern Anal. Mach. In-

tell., vol. 29, pp. 1052–1067, June 2007.

[37] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense

tracking and mapping in real-time,” in Computer Vision (ICCV), 2011

IEEE International Conference on, pp. 2320–2327, IEEE, Nov. 2011.

[38] M. Grewal and A. Andrews, “Applications of kalman filtering in

aerospace 1960 to the present [historical perspectives],” IEEE Control

Systems Magazine, vol. 30, pp. 69–78, June 2010.

[39] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary

Time Series. The MIT Press, 1964.

[40] A. Kolmogorov, “Stationary sequences in Hilbert’s space.,” Bull. Mosk.

Gos. Univ. Mat., vol. 2, no. 6, pp. 1–40, 1941.

[41] D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 paper On the

theory of Brownian motion [Sur la théorie du mouvement brown-

ien, Comptes-rendus de l’Académie des Sciences (Paris) 146, 530-533

(1908)],” American Journal of Physics, vol. 65, pp. 1079–1081, Nov.

1997.

[42] J. Riccati, “Animadversiones in aequationes differentiales secundi

gradus,” Actorum Eruditorum, quae Lipsiae publicantur, Supplementa,

vol. 8, pp. 66–73, 1724.

[43] G. Smith, S. Schmidt, L. McGee, U. S. N. Aeronautics, and S. Adminis-

tration, Application of statistical filter theory to the optimal estimation

of position and velocity on board a circumlunar vehicle. NASA technical

report, National Aeronautics and Space Administration, 1962.

[44] A. Vaughan, M. I. of Technology. Dept. of Aeronautics, and Astronau-

tics, A Monte-Carlo Performance Analysis of Kalman Filter and Tar-

geting Algorithms for Autonomous Orbital Rendezvous. Massachusetts

Institute of Technology, Department of Aeronautics and Astronautics,

2004.

BIBLIOGRAPHY 101

[45] M. J. Mataric, “Integration of representation into goal-driven behavior-

based robots,” IEEE Transactions on Robotics and Automation, vol. 8,

pp. 304–312, June 1992.

[46] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the ef-

ficiency of frontier-based exploration strategies.,” in ISR/ROBOTIK,

pp. 1–8, VDE Verlag, 2010.

[47] M. L. Fredman and R. Tarjan, “Fibonacci heaps and their uses in im-

proved network optimization algorithms,” in Foundations of Computer

Science, 1984. 25th Annual Symposium on, pp. 338–346, 1984.

[48] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” Systems Science and Cybernet-

ics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, 1968.

[49] J. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”

Automatic Control, IEEE Transactions on, vol. 40, no. 9, pp. 1528–

1538, 1995.

[50] S. Garrido, L. Moreno, D. Blanco, and F. Martin, “Exploratory nav-

igation based on voronoi transform and fast marching,” in Intelligent

Signal Processing, 2007. WISP 2007. IEEE International Symposium

on, pp. 1–6, 2007.

[51] Z. Zhang, “A flexible new technique for camera calibration,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,

no. 11, pp. 1330–1334, 2000.

[52] H. Stewénius, C. Engels, and D. Nistér, “Recent developments on direct

relative orientation,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 60, pp. 284–294, June 2006.

[53] A. E. Beaton and J. W. Tukey, “The fitting of power series, meaning

polynomials, illustrated on band-spectroscopic data,” Technometrics,

vol. 16, no. 2, pp. 147–185, 1974.

[54] S. Fortune, “A sweepline algorithm for voronoi diagrams,” in Proceed-

ings of the second annual symposium on Computational geometry, SCG

’86, (New York, NY, USA), pp. 313–322, ACM, 1986.

[55] G. J. Grevera, “The ”dead reckoning” signed distance transform,” Com-

put. Vis. Image Underst., vol. 95, pp. 317–333, Sept. 2004.

102 BIBLIOGRAPHY

[56] G. Borgefors, “Distance transformations in arbitrary dimensions,”

Computer Vision, Graphics, and Image Processing, vol. 27, pp. 321–

345, Sept. 1984.

[57] Wikipedia, “Quadrotor — wikipedia, the free encyclopedia,” 2013.

[58] P. A. D. guide, “https://projects.ardrone.org/.”

[59] ROS, “Robot operating system, http://www.ros.org.”

[60] PCL, “Point cloud library, http://pointclouds.org.”

[61] Wikipedia, “Hayes command set — wikipedia, the free encyclopedia,”

2013.

[62] AutonomyLab, “https://github.com/autonomylab/ardrone auton-

omy.”

[63] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with au-

tomatic algorithm configuration,” in In VISAPP International Confer-

ence on Computer Vision Theory and Applications, pp. 331–340, 2009.

[64] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”

IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[65] G. Klein and D. Murray, “Improving the agility of keyframe-based

SLAM,” in Proc. 10th European Conference on Computer Vision

(ECCV’08), (Marseille), pp. 802–815, October 2008.

[66] R. Newcombe, S. Lovegrove, and A. Davison, “Dtam: Dense tracking

and mapping in real-time,” in Proc. of the Intl. Conf. on Computer

Vision (ICCV), Barcelona, Spain, vol. 1, 2011.

[67] R. O. Castle, G. Klein, and D. W. Murray, “Video-rate localization in

multiple maps for wearable augmented reality,” in Proc 12th IEEE Int

Symp on Wearable Computers, Pittsburgh PA, Sept 28 - Oct 1, 2008,

pp. 15–22, 2008.

