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1 SYNTHESIS 

The concept of set based thinking is originally proposed by researches from MIT (Massachusetts Institute of 

Technology) and UM (University of Michigan) in the 90’s. Allen Ward pioneered the conception of this 

revolutionary idea during his Ph.D. research. Then, he and his colleagues were looking for industrial 

evidence that can exhibit the set based approach to product design and development process. They stumbled 

with Toyota’s product development (PD), which in many ways resembles what they latter called SBCE (Set-

Based Concurrent Engineering). Sobek, et al (1999) summarized the definition of SBCE as engineers and 

product designers “reasoning, developing, and communicating about sets of solutions in parallel and 

relatively independent”. Moreover, through observations of Toyota’s PD, they devised three principles of 

SBCE, principles of exploration, set based communication, and convergence. Regardless of its origin, SBCE 

is much more sensible approach to PD than most industries are practicing, especially at early phases of 

design. Design and development is a unique process, where products and knowledge are created, discussed 

and realized. However, in the current industrial context, many companies are suffering due to poor PD 

performances. Lack of innovation, project delays, cost overruns, poor qualities, knowledge wastes, and poor 

learning capabilities are among the challenges that industries are facing at the moment. SBCE, if integrated 

well, could significantly contribute to alleviate these challenges. It contributes to revolutionize companies to 

be true learning organizations. Through its principles, SBCE will guide designers and managers to orient 

themselves for the creation of high value products and strive to create usable knowledge in PD. 

There is growing interests across industries to apply SBCE to improve their development performances. 

However, SBCE has not been well diffused as a PD practice in industries. The problems can be observed by 

looking at two gaps. The first one is related to the awareness level of SBCE by practitioners. In this thesis, I 

found that SBCE is not well understood and practiced by many designers and managers. Therefore, there is 

need for a method to introduce and to increase the awareness level of SBCE in industries. The second reason 

for the low diffusion is related to the extensive nature of SBCE to apply it for a product. To conduct a SBCE 

process for a product, designers should go through extensive phases (exploration of alternative sets, 

communication of alternative sets, test of alternative sets and converge to optimal sets). Doing all these requires 

considerable time, investment and capabilities. In particular, for some industries (e.g. medium sized companies 

and SMEs) the challenges will be aggravated due to limited resources and capabilities available to conduct 

SBCE. The original principles of SBCE are derived from big automakers (especially Toyota) which are in 

different business context than several other industries. At the present, in literature there is a lack of systematic 

methods for introducing and guiding practitioners where in a product system to apply SBCE. The gaps should be 

addressed for helping companies (medium sized companies and SMEs) to benefit from SBCE principles. The 
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main intent of this thesis is therefore to propose systematic methods to alleviate the aforementioned gaps 

existed in practice.  

The first contribution of the thesis is related to the low awareness level by practitioners about SBCE.  In this 

work, a learning method - called SBCE serious game - is designed and proposed to increase the awareness 

level of SBCE in industries. Gaming is very effective to introduce this novel model (SBCE) to practitioners. 

The game has been played by many designers and managers. The game has been effective to increase their 

understanding level of SBCE principles. 

The second contribution is related to the extensive nature of SBCE to apply it for a product. In this thesis a 

methodology called SBCE Innovation Roadmap (SBCE IR) is proposed. The purpose of this methodology is 

to guide designers to identify and prioritize areas (subsystems, components or design factors) that have to be 

the target for SBCE implementation. The SBCE IR methodology argues that designers should make rational 

choices to start SBCE implementation projects. Moreover, SBCE demands a rational and careful 

investigation a priori to identify where SBCE should be applied and use it to benefit customers with better 

product and increase value to the company. Otherwise, random efforts made on SBCE might be wasted 

without achieving the desired value. The SBCE IR methodology advocates that SBCE should be made in 

incremental manner rather than at full product level. The SBCE IR methodology is tested and validated in a 

real company (Carel Industries) on a real product, an Adiabatic Humidification System (AHS) designed by 

Carel Industries.  

In sum, in this thesis a SBCE serious game is developed to increase the awareness level of SBCE in 

industries. It is validated in a selected case company. Then, the SBCE IR methodology is proposed to guide 

designers to identify and prioritize areas to begin SBCE implementation at product level. This methodology 

is validated in the same case company. SBCE serious game and SBCE IR are the main contributions this 

thesis offers to industries and make methodological contributions to SBCE’s body of knowledge. 

1.1 Thesis structure  

This thesis is structured as follows (Figure 1.1): 

 Chapter 2 is dedicated to the introduction of PD and the available models used to design products. 

Moreover, in this chapter problem solving approaches in PD are presented and discussed in details. 

The emergence of SBCE in PD literature as well as its promising advantages in alleviating the limits 

and risks of existing PD models such as Point Based Serial Engineering (PBSE) and Point Based 

Concurrent Engineering (PBCE) is discussed and summarized. 
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 In chapter 3, the concepts and principles of SBCE are introduced. Comparisons between SBCE and 

seemingly similar existing models are also discussed in this chapter.  

 In chapter 4, enablers of SBCE are identified and discussed and put into framework. Extensive 

literature review has been made to construct and rationalize the importance of the enablers for 

successful implementation of SBCE principles industries. Finally, in the chapter, the integrated 

framework of SBCE is presented. 

 In Chapter 5, the research gaps identified, the thesis objectives and research methodologies followed 

for PART I and PART II of this thesis are presented. The rationale behind the research gap one and 

two are discussed in details in the chapter.  

 

Figure 1.1: Structure of the thesis. 

 Chapter 6 is dedicated for PART I of this thesis, where the learning method SBCE serious game is 

introduced and validated in the case company. In this chapter, the state of the art of serious gaming 

and the existing games in literature targeting concurrent engineering are also analyzed. The detail 
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steps of the measurement of the learning outcomes and the results obtained are discussed in great 

detail. Furthermore, the summaries, conclusions and future researches related to the chapter are 

illustrated. 

 Chapter 7 deals with the PART II of this thesis. In this chapter, the criteria, assumptions and logics 

considered to build the SBCE IR methodology will be discussed. The steps of the SBCE IR 

methodology will be explained in detail. The description of the case product (AHS) is introduced in 

this chapter. The validation of the SBCE IR methodology in AHS case is also presented. The SBCE 

process and the results found related to the SBCE experimentation on Rack subsystem is presented in 

detail. Moreover, the experts’ assessment on the effectiveness, applicability and limitations of SBCE 

IR is presented in the chapter. Furthermore, the summaries, conclusions and future researches related 

to the chapter are illustrated. 

 Chapter 8 briefly summarizes and concludes the thesis as a whole. 

The remaining of this chapter summarizes the contents and research background of the thesis. In section 1.2, 

the two parts (PART I and PART II) of the thesis are briefly summarized. The summary includes the 

research gaps, objectives and research methodologies followed to address the gaps. Moreover, the SBCE 

serious game and SBCE IR methodology are briefly introduced. The summaries of the results found from the 

validations are also included in section 1.2. Moreover, future possible researches are also outlined. 

1.2 Research background  

This thesis begins by reviewing the state of the art of SBCE. Chapters 2 and 3 are dedicated to introduce 

SBCE definition, principles and the comparisons of other similar approaches in product development. In 

these chapters, the importance of SBCE to improve the shortcomings of traditional PD models is also 

discussed. In chapter 4, this paper provides an integrated framework of SBCE enablers. Enablers are those 

strategies, organizational practices, tools, methods, and technologies that are necessary to execute principles 

of SBCE. Extensive literature review has been conducted to build the framework. The review includes 

literature from product design, knowledge management, tools, methods, technologies, and concurrent 

engineering bodies of knowledge in product development. The integrated framework has two purposes. The 

first purpose is in contextualizing SBCE. Principles of SBCE cannot be effectively applied in PD without the 

exciting of these enablers. Thus, the framework shows a holistic view of SBCE with its principles along with 

the enablers. The second purpose is to use it to design the SBCE serious game. The game has been designed 

taking some of the enablers of SBCE such as tradeoff curves, limit curves checklists. These enablers are 

embedded in the game to educate industrial players on how to use them to explore alternative sets, 
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communicate alternative sets and evaluate sets to converge into an optimal one. Of course, for simplicity 

purpose all the enablers identified in chapter 4 are not embedded in SBCE serious game but only some. 

Moreover, some of the enablers are also used to develop the SBCE IR methodology. For example, Quality 

Function Deployment (QFD), Analytical Hierarchical processes (AHP), Theory of Inventive problem solving 

(TRIZ) are some of the enablers used in constructing the SBCE IR methodology. 

Then, the thesis is partitioned into two parts (PART I and PART II). The following section 1.2.1 summarizes 

PART I, which dealt with the first gap (low level of awareness about SBCE in industries) identified in this 

thesis. Moreover, this part discusses the objective, research methodology followed to fill the gap and achieve 

the objective. Furthermore, brief discussions about SBCE serious game and the results from the validation 

are also presented in section 1.2.1. Section 1.2.2 summarizes PART II of the thesis, which dealt with the 

second gap (there is a lack of a systematic methodology to identify and prioritize areas for SBCE 

implementation). Moreover, this part discusses the objective, research methodology followed to fill the gap 

and achieve the objective. Further in section 1.2.2, brief discussions about SBCE IR methodology and the 

results from the validation on AHS case are also presented. 

1.2.1 PART I – A learning method to increase awareness level of SBCE 

in industry 

 

Research gap one and objective

 

The first research gap is related to the low awareness level of SBCE in industries. The level of awareness in 

this thesis can be interpreted into four aspects: i) the principles and enablers of SBCE are new to companies, 

ii) the diffusion and practice of SBCE principles and enablers are low in industries and iii) the advantage/ 

hurdles of implementing SBCE principles and enablers are not well understood by industries. In this thesis, it 

is found out that most of the practices across industries are predominately point based concurrent engineering 

(PBCE). This gap has been reported from previous researches. For example, Bernstein (1998) conducted 

multiple case studies in aerospace industries in the U.S. The study reported that, in many of the aerospace 

industries, the application of SBCE is very limited and there is a low awareness level across the industries. 

Similarly, a recent study conducted in Swedish industries showed similar results, SBCE are not well 

understood and implemented (Raudberge, 2010). This study shows that companies trying to adopt SBCE 

observed negative results. For example, in some industries there were a 25% increment in lead time and a 

25% increment in development cost. Some firms obtained neither gains nor losses in adopting SBCE. Those 

companies who obtain negative results and those who had zero loss/gain were asked about the rationale of 
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the results. Most companies answered “SBCE is not the way they normally used to work” (Raudberge, 

2010). 

Moreover, in this thesis a preliminary field study has been conducted to see if SBCE’s principles and 

enablers are practiced in companies operating in Italy. The study is conducted based on semi-structured 

questionnaire and face-to-face interviews with product designers and managers working in 19 different 

industries. The result shows that SBCE is not practiced and understood by most companies. The design 

paradigm followed by most companies resembles a point based approach where a single alternative is 

selected from early phase of design. Moreover, design knowledge is not well captured and documented to be 

used in future projects to explore, and evaluate alternatives. According to the study, these usually lead 

companies to incur high rework costs and miss targets (in terms of customer expectation and cost target). See 

section 5.2.2 for more details on the results from the field study. 

Thus, in this thesis, this gap is taken as an important issue to be addressed. If there is a way to increase the 

level of awareness across industries, it brings contributions primarily to the industry to increase their 

awareness level and evaluate the applicability of SBCE in their design practices. Since there is a growing 

interest to adopt SBCE in industries, tackling this gap becomes paramount. 

The main objective of this thesis is therefore to develop a learning method to introduce SBCE principles 

and enablers to practitioners. In this thesis such a method called SBCE serious game is developed and 

validated. 

 

Research methodology followed

 

 Methodology followed to design a learning method 

In order to develop a learning method a serious gaming (SG) approach is used. The learning method which is 

designed in this thesis is called SBCE serious game (SBCE SG) which is aimed at introducing the principles 

and enablers of SBCE in a simple and engaging manner to increase the awareness level in industries. Serious 

games can be defined as ‘the application of games which are aimed at education and learning’ (Wouters, et 

al. 2007). There are six characteristics that make a serious game as an effective approach to introduce new 

and complex concepts as SBCE: (1) internalize knowledge without interfering in an actual practices 

(Prensky, 2001), (2) improve communication (Geurts and Joldersam, 2001), (3) create consensus, (4) 

commitment to action (Mayer, 2009), (5) stimulate creativity and (6) simulate complexity (Duke and Geurts, 

2004). Such opportunities are rare in traditional methods such as lectures based on handouts (which are 

normally ineffective in giving hand-on experiences) or case studies (which lack in giving feedbacks before 
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actual implementation). That is why in this thesis serious game is taken as method to develop the learning 

method for SBCE, and eventually improve the effectiveness of the learning outcomes. 

 Methodology used to validate the learning method (SBCE SG) 

After the SBCE SG is designed, validation of its effectiveness is measured. A structured questionnaire based on 

Garris et al. (2002) framework is developed. This framework is the most prevalent framework in measuring the 

learning outcomes or effectiveness of a serious game. The framework divide learning aspects of games into 

three: declarative learning, which is concerned with the effectiveness of a game in transferring the underlying 

theories embedded in the game; procedural learning, which deals with the measurement of the abilities of 

players in understanding complex patterns embedded in the game; and strategic learning, which measures the 

intellectual abilities and willingness of players to adopt what is though in the game to real-life problems. The 

questionnaire contains 26 questions grouped in the three learning aspects. The questions are formatted in Likert 

five scale scheme (Likert 1932). The game has been played by 60 highly experienced engineers and managers 

working in Carel Industries (www.carel.com). The company is operating in Italy developing products for 

HAVC/R market. Given that the company operates in different context than big OEMs where SBCE has been 

originated, the feedback from the game can reflect the applicability of SBCE in different industrial context (e.g. 

in medium sized companies or SMEs). After playing the game in the company, it has been possible to measure 

the learning outcomes using the questionnaire provided. Using appropriate descriptive and inferential statistics 

the effectiveness of the game has been measured. Moreover, interesting insights are gained concerning the 

perceived advantages of SBCE in this particular company and the practical hurdles that engineers/managers 

anticipate in adopting it in reality. 

 

                                                                                                                       SBCE serious game

 

In SBCE serious game, players have to design an airplane structure which has four subsystems (body, wing, 

cockpit and tail). The game is played in a team of four players and each player in a team represents a sub-

system department (body, wing, cockpit and tail). Airplane structure is chosen as a game element because of 

its complexity. Since each subsystem is designed by a player in a team, it creates sufficient complexities 

concerning exploration, communication and evaluation of sets. Thus, using the airplane structure, it has been 

possible to create an environment where SBCE can be simulated. The players will be provided LEGO 

components to design their subsystems. LEGO components have points on the top which have properties 

(cost, ordering time, weight, length and width). Moreover, players will be given customer requirements to 

satisfy. The game is divided into two stages: Stage one, where players design an airplane structure for a 

http://www.carel.com/
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given list of customer requirements following PBCE process; and Stage two, where players have to design 

the airplane structure following SBCE process.  

The first stage is not supported by any SBCE enablers, rather industrial players have to design following 

their logics and norms in their company. Once they finished their first prototype in this stage, players have to 

submit their prototype to “testing department”. The game facilitator/ s acts/ act as a testing department. If the 

submitted airplane fails to meeting customer requirements and/or the constraints of testing department, 

players have to redesign their airplane. In this case, they will be penalized on time (due to not meeting 

customer requirement) and rework time (due to failing constraints). The testing constraints are not given to 

players for the first trial. After trails, if the prototype passes the customer requirements and testing 

constraints, players will be given their performance in terms of total development time and cost. Then, they 

pass to the second stage. 

 

Figure 1.2: Framework of SBCE serious game. 

In Stage two, players are provided with the necessary enablers of SBCE to simulate an environment where 

designers presuming to design an airplane structure following SBCE process. The enablers will help players 

to explore alternative design concepts, communicate about alternative solutions within a team, and converge 
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into a preferred (a high value) airplane structure. Tradeoff curves, limit curves and checklists are provided as 

SBCE enablers to players at this stage. This stage is automated with Excel program. 

In between the two stages, the facilitator/s of the game introduce about the principles and enablers of SBCE. 

Discussion will be held to identify the key drawback of PBCE and how SBCE can benefit to avoid them.  

Once players finish the two stages, the teams’ performances in the two stages will be given and discussion 

will be made. Moreover, the structured questionnaire (based on ‘Likert five scale’ scheme) will be given to 

the players to give feedback on the effectiveness of the game as well as to reflect the applicability of SBCE 

in their real design practice. The questionnaire is developed to measure the three learning outcomes 

(declarative, procedural and strategic learning outcomes). The general framework of the game design is 

presented in Figure 1.2. 

 

Results obtained from validation of SBCE serious game in industry

 

The game has been played by designers and managers of Carel Industries who designs and manufactures 

products in HVACR (Heating, Ventilation, Air-conditioning and Refrigeration) market. In total, there were 

more than 60 players who played the game in the company, but only 49 responded to the questionnaire 

provided. Therefore, the measurement of the learning outcomes is based on 49 designers (Mechanical, 

Electrical, and Software designers) and managers (product managers and project leaders) who give responses 

to the questionnaire provided. 

To analyses the learning outcomes of playing the game with the industrial players, first basic descriptive 

statistics are used (µ, mean and σ, standard deviation). These analyses are made for each learning outcomes 

measures (declarative, procedural and strategic). Then, inferential statistics are made for each learning 

outcome measures to identify group differences (designers vs. managers, highly experienced vs. less 

experienced, female vs. male and older vs. younger players). To execute inferential statistics, the prevalent 

Mann-Whitney U test is used which is appropriate for ordinal data (Likert scale) (Siegel 1957; Newson 

2001). 

Finally, to generalize the lesson learned from the game play, the questions from different learning outcome 

measures are regrouped to create valid summated scales that have theoretical and practical implications 

(Spector 1992). To measure the reliabilities of the summated scales, Cronbach alpha threshold (α ≤ 0.7) is 

used (Cronbach 1951; Cronbach, et al. 2004). By iterative assigning the questions and checking the 

reliabilities, six valid and reliable scales are defined. These scales are: Tool (T), which is defined as the 

understanding and use of tools (tradeoff curves, limit curves and checklists) in SBCE; Involvement (INV), 
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which is defined as the understanding and integration of stakeholders (e.g. customers and testing department) 

in SBCE; Communication (C), which is defined as the recognition, understanding and benefit of adopting set 

based communication (i.e. communicating based on sets or alternatives or rough information); Knowledge 

building (K), which is defined as the identification, capturing and representation of design related knowledge 

in SBCE; Performance (P), which is defined as the performance improvement potentials of the SBCE 

enablers such as Tools (T), Involvement (INV) and Communication(C) and Knowledge building (K); and 

Implementation (IMP),which is defined as the capability of a company to be adept in problem solving and 

becomes a learning organization.  

Once these scales are defined Spearman's rho (ρ) correlation coefficient is used, which is appropriate for 

ordinal data (Likert scale) (Siegel 1957; Newson 2001). The rho (ρ) correlation coefficient between the 

scales can determine which of these scales are significantly correlated and can deduce the general lesson 

learned from the game play in this particular case company. 

The results of the game measurement of in the case company are summarized in Table 1.1. 

 

Future researches

 

 Future research related to SBCE serious game deign 

There are limitations related to the design of the SBCE game. The current version of the game contains only 

certain enablers of SBCE process. However, there are other enablers that are interesting to be included (e.g. 

organizational aspects, people competences, chief engineering system and so on). Therefore, future research 

might focus on improving the game to include other enablers of SBCE.  

 Future research related to game measurement and validation 

There are limitations on the validation and consequently on the results found. Although, the SBCE game has 

been a success in this particular company, it needs to be introduced to wider industrial players in different 

contexts. Moreover, the conclusions and implications listed in Table 1.1 are predominately based on the 

feedbacks from one company which specializes in HVACR market. If different industrial types are included 

a more solid and accurate results concerning the applicability of SBCE in industries can be developed. 

Therefore, future researches remain to validate the game with different other industrial players and compare 

the results across industries. 
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Table 1.1: Summaries and conclusions of the results of SBCE serious game measurement. 

Leaning 

outcomes 

Results obtained 

from game 

measurement and 

feedbacks from 

industrial players 

Rationales Implications for practice 

and theory 

D
E

C
L

A
R

A
T

IV
E

  
L

E
A

R
N

IN
G

 O
U

T
C

O
M

E
S

 

SBCE serious game 

has been effective to 

introduce SBCE’s 

principles and 

enablers embedded in 

the game. 

 The game is designed to 

educate SBCE and 

comparison between PBCE 

is made. Tradeoff curves, 

checklists and limit curves 

have been embedded in the 

game to facilitate the 

SBCE in designing a 

simplified airplane 

structure. 

 The game can be used to educate 

practitioners to increase their 

awareness level about SBCE. 

Principle of set based 

communication and 

tools to facilitate it 

might not be critical 

in this company. 

 Products in HAVC/R 

market do not involve 

complex and integrate 

subsystems like automotive 

designs (where set based 

communications is key). 

 Small design team 

members for a design 

project. 

 Difficulties of 

communicating design sets 

with suppliers. 

 Set based communication might 

not be a key principle of SBCE 

when: there is no- design 

complexity, number of designers 

in a project is very small and when 

suppliers are not willing or 

capable of communicating in sets. 

Designers and 

managers have 

different level of 

understanding of 

SBCE as presented in 

the game. Managers 

have higher 

awareness of SBCE 

than technical 

designers. 

 Managers have pre-

information about SBCE 

from reading lean product 

development books, 

attending seminars and 

conferences. 

 Managers have more 

ambitions for change. 

 If the differences arise because 

managers are pre-aware about 

SBCE, that will cause less 

problem during a real 

implementation phase. 

 However, if the differences arise 

from “cultural” issues, that is, if 

designers don’t appreciate new 

way of working than the norm, 

then, it will be difficult for 

managers to disseminate the 

concept of SBCE and obtain a 

wider acceptance in the company. 

There is a significant 

difference between 

 Less experienced designers 

in the company indicated 

 Experience matters to understand 

and effectively deploy SBCE. 

 Tools used in SBCE serious game 
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highly and less 

experienced players 

in perceiving SBCE.  

that there are difficulties to 

anticipate design problems 

at the frontend of a design 

project, and the SBCE tools 

provided in the game has 

been appreciated to 

alleviate this problem. 

 Highly experienced players 

also indicate the 

importance of adopting 

SBCE tools to capture and 

transfer their knowledge to 

less experienced designers. 

has been perceived as very 

important to capture knowledge 

and knowhow and further transfer 

to less experienced designers.  

P
R

O
C

E
D

U
R

A
L

  
L

E
A

R
N

IN
G

 O
U

T
C

O
M

E
S

 

Industrial players 

have perceived 

significant benefits of 

SBCE in improving 

performances such 

as: reduction of risks, 

reduction of product/ 

process costs, 

facilitates learning, 

improving quality. 

 The SBCE serious game 

provides a performance 

measurement scheme to 

compare PBCE and SBCE. 

During the play significant 

performance improvements 

have been demonstrated. 

 Players have also give 

feedbacks on the 

performance benefits of 

SBCE if it is applied in 

their real design practice. 

 SBCE is beneficial for industries 

in improving performance 

measure of product development. 

SBCE as portrayed in 

SBCE game or in 

literature has a 

limitation in 

enhancing 

innovation. 

 Innovation is perceived by 

the industrial players as an 

achievement of new design 

solutions which are 

unexpected.  

 However, the use of 

tradeoffs in SBCE as an 

exploration tool restricts 

the level of innovation. 

Because tradeoffs are based 

on accepting compromise 

rather than advancing 

performances to new 

levels.  

 Moreover, generating 

tradeoffs are difficult in 

practice. 

 If tradeoffs are used for exploring 

alternatives in SBCE, it might 

limit the level of innovation that 

can be achieved. Therefore, 

exploration of concepts or 

generation of ideas has to been 

supported by other established 

innovation theories such as TRIZ 

to enhance innovation in SBCE 

process. 

Managers have 

higher perception on 

SBCE’s potential 

 Managers have more 

tendencies to accept SBCE 

as performance enhancer. 

 Managers should convince 

technical personnel on the real 

value of SBCE either by taking 

pilot projects or introducing them 
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benefits for 

performance 

improvements than 

technical designers. 

 Managers have more 

ambitions for change. 

with success stories from other 

industrial cases. 

S
T

R
A

T
E

G
IC

 L
E

A
R

N
IN

G
 O

U
T

C
O

M
E

S
 

Thanks to the game, 

most practitioners are 

willing to adopt 

SBCE in their design 

practice. 

 Most players acknowledge 

that playing the game has 

been worthwhile for their 

design practice 

  Most players acknowledge 

that playing the game help 

to have ideas on how to 

practice SBCE enablers 

embedded in the game. 

 The game has been effectiveness 

in convincing players to adopt it in 

their daily practice. 

 The game also helps on giving 

ways in how practitioners can 

execute SBCE in practice. 

Generating tradeoff 

and limit curves are 

challenging in 

practice. 

 Companies like this have 

limitations in resources to 

invest on simulation and 

testing tools to generate 

tradeoffs and limit curves. 

Moreover, generating 

alternative designs and 

building prototypes in 

parallel will be costly for 

these companies to capture 

and analyze governing 

performances data about 

sets. 

 SBCE should be taken as a 

process and as a journey where 

knowledge is systematically 

captured as a long term strategy. 

Developing tools, involving 

stakeholders, and effective 

communication should be in place 

to build knowledge. Then, 

performance benefits can be 

shown as a result and companies 

can successful implement SBCE 

and develop products in a 

knowledge based environment. 

Managers have 

higher interests to 

adopt SBCE than 

technical designers. 

 Managers have more 

ambitions for change and 

implement new concepts. 

 Care should be taken by managers 

before going to real 

implementation of SBCE and 

should obtain organization-wide 

awareness about the benefits of 

SBCE. 

There is significant 

difference between 

highly and less 

experienced players 

in their ability to 

adopt SBCE in 

practice. 

 Less experienced designers 

need coaching and 

mentoring on how to 

explore, communicate and 

evaluate sets. In playing the 

game, less experienced 

layers indicated challenges 

for them to adopt SBCE in 

their design practice. 

 Competence development is very 

important before implementing 

SBCE in practice. Highly 

experienced designers should do 

coaching and mentoring on how to 

conduct SBCE to less experienced 

engineers. 
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SBCE enablers such 

as tools, involvement, 

and communication 

are significantly 

correlated.  

 Tools such as tradeoff curves, 

checklist and limit curves helps in 

SBCE to effectively involve 

stakeholders (customers and 

internal function e.g. testing 

department). Moreover, the tools 

help to facilitate communication 

between subsystems departments 

to evaluate sets for compatibilities 

and feasibilities issues. 

Except set based 

communication, 

SBCE enablers such 

as tools, involvement 

are significantly 

correlated with 

knowledge building. 

 Set based communication 

has been perceived less 

significant in the case 

company as knowledge 

building mechanism 

because of: few designers 

are involved in new 

projects and knowledge is 

centralized in few experts. 

Furthermore, price based 

relationships with suppliers 

dictates point based 

communication. 

 For set based communication to 

commence in practice, trust 

between suppliers or partners 

should be build, so that sets can be 

explored and communicated. 

 Price based relations between 

developers and partners restrict the 

level of sets to evaluate and limit 

the possibility to discover and 

develop knowledge about the 

performance of alternative 

solutions. 

 When few or one designer is 

responsible for a project (common 

in smaller companies) tools to 

enable set based communication 

with team members to evaluate 

sets might not be important. 

Implementation of 

SBCE should be 

taken as a journey. 

 

 In order to improve performance 

using SBCE enablers, the 

understanding and adoption of 

SBCE enablers are important. But, 

it needs efforts and investments to 

effectively build an organization 

that manage and share knowledge 

to develop products. 
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1.2.2 PART II – Methodology for identifying and prioritizing areas to 

apply SBCE 

 

Research gap two and objective

 

The second research gap is related to the lack of a methodological approach to identify and prioritize areas 

where SBCE can be implemented (at a product level). The argument that rationalizes the methodological 

gap is the extensive nature of SBCE. To conduct an SBCE process, designers should go through extensive 

phases (exploration of alternative sets, communication of alternative sets, test of alternative sets and converge to 

optimal sets). Doing all these requires considerable time, investment and capabilities. For example, Terwiesch et 

al. (2002) and Bogus (2005) underscored the extensive nature of SBCE strategy, and asserted that it should be 

used when the cost of pursuing it is cheaper than to the value it can create. Ford and Sobek (2005) also proposed 

a real option model to find optimal number of sets to consider; limiting the efforts needed to conduct SBCE. 

Thus, SBCE’s adoption should not be based on a random choice, and there is not a guarantee that any such 

initiative will be a success (Raudberge 2010, pp.690). In particular, the technological capabilities and 

methodological readiness and resources availability to fasten SBCE process are scarce in companies (e.g. 

medium sized and SMEs) (Raudberge 2010; Rossi, et al., 2011/b). In these situations companies need to focus 

their efforts on areas of improvement where SBCE will bring its utmost benefits. Therefore, there is a need for a 

systematic methodology to identify and prioritize subsystems or components a priori of pursuing such an 

extensive process. Otherwise, efforts made will be wasted without achieving the desired value.  

The main research objective in this part of the thesis is therefore is to develop a systematic methodological 

approach that can be used to identify and prioritize product subsystems for SBCE implementation. In this 

thesis, such a methodology called SBCE IR (SBCE Innovation Roadmap) has been developed and validated.

 

Research methodology followed

 

 Methodology followed to develop SBCE IR methodology 

The methodology followed to build SBCE IR follows two steps. First, criteria and related assumptions that 

are required to build the SBCE IR have been defined. Second, existing methods and tools that are needed to 

execute the steps of SBCE IR are identified (see the SBCE IR section to see the methods and tools identified 

to build SBCE IR). 
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The following criteria and related assumptions are considered:  

(a) The process of overcoming contradictions will follow SBCE process, SBCE IR methodology is 

constructed based on the assumption that identification and overcoming of contradictions lead to 

design improvements. The assumption is based on the prominent theory of innovation called ‘Theory 

of Inventive Problem Solving’ or in short TRIZ (Altshuller 1984). TRIZ claims that overcoming 

contradictions lead to genuine innovations and it provides ways to arrive to design solutions 

(Altshuller 1984). SBCE IR takes the synergies between TRIZ and SBCE process. Thus, TRIZ’s 

concept of contradiction enables SBCE IR to identify improvement areas, where as SBCE’s 

principles will follow to overcome the contradictions by exploring design solutions, communicating 

solutions to team members and finally converging to an optimal final design concept. This means, 

contradictions will be input to begin SBCE processes. 

(b) The area of improvements should be valuable for customers: there could be several contradictions in 

a product system. However, all contradictions will not have same importance. Once contradictions 

are identified evaluating them for customer importance is taken as a criterion (i.e. how important it is 

for customers to overcome a contradiction?). 

(c)  The area of improvements should give competitive advantages: in addition to taking customer 

importance as a criterion to prioritize contradictions, competitive advantage is also taken as another 

criterion (i.e. how much competitive advantage a company can get by overcoming a contradiction?). 

This criterion is needed since customer importance is not always the only source of that can be used 

to identify design improvements. Thus, analyzing competitors’ products should also be used as one 

criterion to build SBCE IR. 

(d) The area of improvements should be achievable with respect to the resources available: this is an 

optional criterion to build SBCE IR. However, it is very important to consider. Since overcoming 

different contradictions require different levels of resources or efforts, designers should balance the 

importance of overcoming a contradiction with respect to the resources/capabilities available in a 

company.  

 Methodologies used to validate the SBCE IR methodology 

Once the steps of the SBCE IR are defined and the necessary tools and methods are identified, three 

validations are conducted. Firstly, a case study on Adiabatic Humidification System (AHS)
1
 is conducted to 

                                                     

1
 This case study on AHS has been conducted in the same company the SBCE serious game has run (www.carel.com). 

 

http://www.carel.com/
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test the methodology. Secondly, using the SBCE IR constructed for AHS system, a subsystem called Rack
2
 is 

chosen to further experiment on how to start an SBCE and to improve the current Rack design.  

Thirdly, pros and cons of the SBCE IR (e.g. advantages compared to existing methods used in the company, 

applicability, effectiveness, limitations, scalability, skills required etc.) have been assessed by conducting 

interviews with designers and project managers involved in the case study for AHS. An open questionnaire is 

provided. Interviews are made with four experts in the company who are well experienced and have 

technical, managerial and market competences. These experts have been extensively involved in collecting 

data and building SBCE IR for case product (AHS).

 

                                                                                                            SBCE IR methodology

 

 

Figure 1.3: Schematic representation of SBCE IR steps. 

The SBCE IR involves six steps (Figure 1.3) and each step is supported by common tools and methods found 

in literature. To structure the steps of the SBCE IR, QFD (Quality Function Deployment) method is used 

(Hauser and Clausing, 1988; Akao and Mazur, 2003). The first step is to identify customer requirements and 

assign importance. AHP (Analytical Hierarchical Process) is used to assign weights to customer 

requirements (Saaty 1980). The second step is to assess competitors’ products and set targets for each 

requirement (Nieuwkuyk and Rogosch 1997). The third step is to identify technical and physical 

contradictions in a product system. The fourth step is to identify causal relations between contradictions to 

                                                     

2
 Rack is a subsystem of AHS used to distribute water to an ambient (refer section 7.3.2 for details). 
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sort out dependent and independent contradictions
3
. In a product system, some contradictions are highly 

related, and as a result overcoming a contradiction might eventually solve another contradiction. Moreover, 

there could be direct and also indirect (like transitivity) causality relations between contradictions. Therefore, 

DEMATEL (Decision Making Trial and Evaluation Laboratory) method is used to find such causal relations 

between contradictions (Fontela and Gabus 1974, 1978). In the fifth step, rules are derived to prioritize 

contradictions based on the information obtained from previous steps. For dependent contradictions, the roots 

will be given high priority for SBCE implementation. This is because overcoming root contradictions
4
 is 

more efficient. For independent contradictions rankings of their contradictory requirements are used to 

prioritize them for SBCE implementation (derived from steps 1 and 2). The final step is to map prioritized 

contradictions to design factors (subsystems, components, and features) to being SBCE process to improve a 

product by overcoming contradictions. This final step should be done by experts designing and developing 

the product. 

 

                                                        Results obtained from validation of SBCE IR in AHS

 

The SBCE IR is validated taking the AHS system as a case. AHS system is a product that is used primarily 

for industrial applications (such as hospitals, residential buildings, textile factories, paint shops in car 

industries, and so on). The main function of the system is to control the temperature and humidity levels of a 

room or a working environment. The product is the state of the art among other humidification systems in 

terms of energy savings. The working principle is based on spraying atomized water mists to air at high 

pressure (around 70 bars) whenever the temperature and humidification levels are not desirable; that is how it 

gets its name, adiabatic refers to a very high pressure used to spray atomized water. The basic sub-systems 

are three Cabinet (C), Drop Separator (DS), and Rack (R). The researcher spent 6 months in the company to 

collect data to build the SBCE IR for the AHS system. Designers of AHS system have been involved in each 

step for data collection and also make sure the accuracy of the data. In total, 23 contradictions (22 technical 

and 1 physical) are identified and prioritized for further SBCE implementation. 

Then, among all the contradictions, the AHS experts select a contradiction called ‘non-VDI rack’.  This 

contradiction is a physical one, where it contradictions with itself. The contradiction is explained as follows: 

                                                     

3
 Dependent contradictions are those contradictions which have causal relationships (for example, if overcoming a 

contradiction X, can overcome another contradiction Y, then X & Y are dependent and X is the cause and Y is the 

effect). However, if overcoming a contradiction X has no effect in overcoming Y (or vice versa), the two are 

independent. 
4
 Root contradictions are those contradictions which are the cause to several other contradictions. For instance, if 

overcoming contradiction X, will eventually overcome contradictions Y & Z, then X is the root contradiction for Y & Z. 
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the current AHS design is compliant with European hygienic requirement called VDI6022. However, the 

company is expanding its business to different business applications or markets such as Tabaco industries, 

painting shops of automotive industries and in different emerging countries (e.g. China and Brazil). In this 

market (let’s call this market as non-VDI market) there is no mandatory VDI6022 compliancy requirement 

and the current design is ‘overly-designed’ for this market. Moreover, these customers are requiring cheaper 

design and there are non-value adding features in the current design that have no value for non-VDI market. 

Therefore, the purpose of overcoming this contradiction is to satisfy both types of markets (VDI requiring 

market and non-VDI market). In order to overcome the contradiction, the company agreed to use the TRIZ 

“principle of separation” (Altshuller 1984, 1994, 1999). That is to separate the product version for two 

markets (VDI and non-VDI markets). This implies that, the current AHS design will be offered to VDI 

market and a new version has to be designed for non-VDI market. 

Then, designers conducted an SBCE process (explore Rack concepts, concepts testing for constraints and 

finally converge into high value Rack concept). From the experiment, it has been possible to reduce the cost 

of the new Rack significantly. The cost advantages were obtained by looking for alternatives materials, 

removing non-value adding components and reducing unnecessary manufacturing and assembly operations. 

The company sees a potential in in launching the new Rack to the market. This Rack concept is planned to 

undergo detail design phase and will be launched soon by the company. 

However, the SBCE experiment focuses on overcoming one contradiction among the many others. Thus, the 

experimentation of SBCE on this contradiction doesn’t necessarily validate the SBE methodology in terms of 

its advantages, applicability and limitations of the SBCE IR for the company. Therefore, an open 

questionnaire is prepared and interviews are made with four experts who are involved in the AHS case study.  

The questions in the questionnaire are categorized in three classes: (i) differences and synergies with existing 

methods used in the company, this is to understand what is the existing method the company follows to 

identify improvement areas for new projects and investigate the differences and synergies with SBCE IR 

methodology; (ii) effectiveness of SBCE IR, this is to measure if the SBCE IR achieves its objectives in 

terms of reducing the extensive nature of SBCE process, its effectiveness to identify improvement areas for 

SBCE, its effectiveness in evaluating customer value, its effectiveness in evaluating competitors’ products 

and its contribution to enhance innovation at early phase of design; and (iii) simplicity/ difficulties/ 

scalability/skills and capabilities needed to build SBCE IR, in this category the aim is to measure the 

efficiency of building the SBCE IR methodology in the case company. Interviews are made with four experts 

who are knowledgeable about technical, market, business and improvement related issues in the company. 

The interviews are made individually with each expert. The experts are extensively involved in building the 

steps of SBCE IR for AHS system and are knowledgeable about the existing practices in the company. 
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Table 1.2 summarizes the response of the experts in assessing the SBCE IR.  

 

Future researches

 

The following questions are proposed for future researches related to SBCE IR methodology: 

- How to align SBCE IR with company’s strategy for projects on new products and portfolio 

management process?  

- How to improve SBCE IR to consider different types or levels of customers? And what are the 

impacts of having different customer types in solving contradictions using SBCE process? 

- How to build SBCE IR for product modules or platforms? And what are the benefits in terms of 

stabilizing the SBCE IR and reducing the time it takes to build SBCE IR? 

- How to simplify SBCE IR for small projects (new product with small improvements from the 

current design)? And, How to automate the SBCE IR for complex products to make the analyses 

involved in SBCE IR less time consuming? 

- How to distribute contradictions to different development organizations? (For example, 

development organization in the case company is divided into two: product development, 

focusing on designing products upon customer request; and technology centers, which aim to 

develop new technologies and feed knowledge to the product development organization). 

Therefore, which contradictions to assign to which development organization is an open issue. 
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Table 1.2: Summaries of SBCE IR’s assessments by AHS experts.
5
 

Aspects Questions Summary of interviews responses 

Difference and 

synergies with  

existing method 

used in the 

company 

What is/are the current 

method/s to identify 

improvement areas for new 

products? 

New market requirements, corrections of previous mistakes, 

technology push, company strategy that define the evolution of 

products, portfolio management to prioritize projects. 

How different existing 

methods are compared to 

SBCE IR? 

 Existing methods used in the company are not structured, difficult 

to plan for emerging/changing marketing requirements and 

correcting previous mistakes, technology push could also be 

random. 

 Existing methods are top-down approach and often have 

limitation in planning projects based on real customer benefits, 

competitors' analysis and resources availabilities. 

 Existing methods in the company are not focusing in 

contradictions rather they concentrate what is easy to change. 

This might limit the potential of offering innovative products to 

customers. 

 SBCE IR is proactive rather than reactive and improvements on 

products can be planned and resource requirements can also be 

anticipated beforehand. 

 SBCE IR is bottom-up approach in which designers and project 

managers can use SBCE IR to propose improvement projects to 

top management during strategic and portfolio planning. 

 SBCE IR can be integrated with existing methods. It helps to 

structure the existing methods (to effectively identify 

improvement projects) and support portfolio profiling or 

prioritizing. 

 SBCE IR is based on identifying contradictions and overcoming 

them using SBCE process. Focusing on contradictions is new 

way of working for the company but enables us to advance 

product technologies and excite customers and achieve higher 

market share compared to competitors. 

Effectiveness of 

SBCE IR 

Does SBCE IR able to 

reduce the extensiveness 

nature of SBCE by 

prioritizing contradictions 

or tradeoffs as 

improvement areas? 

 Yes, SBCE IR helps us to define where innovation should takes 

place. Moreover, the prioritization scheme will help us to known 

what type of improvements or projects should be launched.  

 However, SBCE IR should be taken as a rough planning scheme, 

and then management should give more detail planning to 

prioritize contradictions based on company's strategy. 

                                                     

5
  positive feedback for SBCE IR;  limitation of existing methods used in the company or limitation of SBCE IR. 
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Is SBCE IR effective in 

identifying improvements 

areas for SBCE 

 Yes, the first step of SBCE IR is to identify and assign 

importance of customer requirements. The AHP method used 

helps us to systematically weight the requirements to satisfy our 

customers. 

 However, customer requirements that are feed to SBCE IR should 

reflect the future needs of customers; otherwise the plan becomes 

unstable if customers frequently change their requirements. In 

order to make SBCE IR a robust planning methodology, 

designers and managers should study very well the current and 

emerging requirements in close collaboration with customers. 

 It is also important not to make inaccurate judgment about 

customers. Carel Industries is operating in a market where there 

are different levels of customer types (e.g. installers, contractors, 

OEMs and final customers). These customers usually have 

different importance for a requirement of a product. Therefore, in 

building SBCE IR the weighing of customer requirements should 

take care of balancing the needs of the different customer types. 

Is SBCE IR effective in 

evaluating customer value? 

Is SBCE IR effective in 

evaluating competitive 

products? 

 SBCE IR is effective in evaluating competitors' product. So that, 

we can make sure that we stay competitive in the competitions by 

offering better products. 

 However, taking competitors' evaluation solely as a criterion to 

build SBCE IR has limitations to foster innovation. Often, 

innovative ideas might arise from internal or personal initiatives. 

Thus, improvement products better than competitors might lead 

designers to do only low level innovations just to beat 

competitors.  

Will SBCE IR help to the 

quantity of ideas or 

concepts to generate 

(quantity)? 

 Yes, SBCE IR creates more opportunities for designers to 

increase number of solutions because of specific problems given 

to them to overcome. 

Will SBCE IR help to 

increase the quality of 

conceptual ideas to 

generate (quality)? 

 Yes, if the customer requirements are well captured and evaluated 

in SBCE IR, it will help us to satisfy and also excite customers by 

overcoming contradictions. Moreover, the principles of SBCE 

increase the success of concepts to be feasible and to meet 

customers’ expectations. 

 However, to improve quality of ideas, we need personal 

experience and ambitions of designers to explore concepts which 

can overcome contradictions. 

Will SBCE IR help to 

identify novel ideas or 

concepts (novelty)? 

 Yes, if we use TRIZ principles and tools, SBCE IR increases the 

chance of having novel ideas which might be out of the box. 

 However, to improve novelty of ideas, we need personal 

experience and ambitions of designers to overcome contradictions 

in SBCE process. 
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Will SBCE IR help to 

increase variety of concept 

to generate (variety)? 

 Yes it creates variety in idea generated if it is supported by TRIZ 

principles and tools to overcoming contradictions. 

Simplicity/ 

Difficulties/ 

Scalability/Skills 

and capabilities 

needed for 

SBCE IR 

Is building SBCE IR easy 

for a product? 

 Not difficult.  

 But time consuming, in terms of data collection. 

 Therefore, SBCE IR can be simplified by taking simpler version 

for small projects and full version for large projects.  

 Another way to simplify it will be apply it on modules or 

platforms that are shared by different products. In this way, it will 

be possible to share an SBCE IR by many projects and stabilize it 

(since customer requirements are stable for modules).  

Is SBCE IR applicable to 

other products? 

 Yes, the SBCE IR is applicable irrespective of product types. 

 But it might be time consuming for big and complex products. 

Can SBCE IR be applied 

for product platforms or 

modules? 

 Yes, is might be effective to apply SBCE IR at module levels that 

can be shared across products. This might reduce the time to 

construct SBCE IR and make it robust to changes in customer 

requirements and technologies.  

What skills and 

capabilities are needed to 

use SBCE IR? 

 SBCE expertise, vision on the development process from 

customer requirement collection phase to the whole life-cycle of a 

product, TRIZ training, knowledge about customers and 

application areas where a product is used. 



4 

 

2 INTRODUCTION TO PRODUCT DEVELOPMENT  

 

The aim of this chapter is to introduce product development (PD) in general and to discuss the emergence of 

set based concurrent engineering (SBCE). SBCE is a paradigm where designers can utilize its core concepts 

to frontload designing processes with knowledge, and thereby design problems in early phase of design are 

addressed with higher fidelity and confidence. In this chapter, two problem solving approaches are identified: 

design-build-test and test-build-design. The former resembles the traditional approach to problem solving in 

PD (point based concurrent engineering, PBCE), where design decisions and commitments to a solution are 

made without having enough knowledge to do so. The latter resembles the concept of set based thinking, 

where decisions are postponed and broad set of options are pursued until enough data and knowledge are 

gathered to make informed decisions. This chapter illustrates the difference between these two problem 

solving approaches. Moreover, the rationale behind the potential advantages of SBCE compared with its 

opposite counterpart, point based concurrent engineering (PBCE), is discussed. In doing so, a review of the 

literature in this field has been carried out analyzing the publications dealing with PD and concurrent 

engineering. The initial approach to this study has been done to consider some key points related to the 

process of PD itself. Then, a review of concurrent engineering, information exchange and problem solving 

approaches in PD has been organized. Finally, a particular focus will be given to position SBCE in the 

context and evolution of concurrent engineering literature. 
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2.1 Introduction  

In section 2.1, the definitions of PD are given. In section 2.2, problem solving approaches (design-build-test 

and test-build-design approaches) in early phase of design are discussed and compared. In sections 2.3 and 

2.4, the traditional models of PD and the evolutions of concurrent engineering which are called point based 

serial engineering (PBSE) and point based concurrent engineering (PBCE) are defined and discussed. In 

section 2.5, the limits and risks of PBCE will be outlined. In section 2.6, SBCE is briefly reviewed to 

underscore its contributions to avoid the limits and risks of PBCE. Finally, in section 2.7, the conclusions of 

the chapter are presented by comparing PBCE and SBCE. 

There are plethora of definitions that explain what product development means. Some of the definitions are 

listed below. It must be underlined, however, that PD is a process and the definitions selected are reflecting 

this aspect of its nature. 

“A bu ine   proce   can be de cribed a  “a number of interrelated activitie  needed to accompli h a  pecific ta k” 

(Garside 1998) 

“Product development is defined as set of activities beginning with the perception of a market opportunity and 

ending in the production,  ale, and delivery of a product” (Ulrich and Eppinger 2000) 

“A new product development is an integral part of a healthy, growing economy and it contributes by generating 

revenue and profits to a corporation that otherwise  ould not have been generated” (Annacchino 2006) 

In general, PD process is defined as a set of activities involved in taking a design problem during PD from 

setting initial specifications to producing a finished artifact that meets specifications (Baldwin and Johnson 

1996). It consists of numbers of decision-making activities that combine creative thinking, experience, 

intuition, and quantitative analysis, the characteristics of which are iterative, cooperative, evolutionary, and 

uncertain. These characteristics make the PD process complex. It involves thousands of decisions, sometimes 

over a period of years, with numerous interdependencies, and under a highly uncertain environment. A large 

number of participants are involved, such as architects, project managers, discipline engineers, service 

engineers, and market consultants. Each category of professionals has a different background, culture, and 

learning style (Formoso, et al. 1998). Trade-offs between multiple, competing design criteria must be made 

throughout the design process, often with inadequate information and under intense budget and schedule 

pressure. In particular, early design stages are extremely hard to evaluate and control against progress 

milestones due to the lack of physical deliverables such as drawings. It is difficult to measure the amount of 

work completed and remaining on any given task. Moreover, feedback from the production and building 

operation stage take long time to be obtained, and tends to be ineffective. To make matters worse, projects 

are increasingly subject to uncertainty because of the pace of technological change, the rapid shifting of 
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market opportunities, and the inability to keep pace with relentless pressure to reduce time and cost (Ballard 

and Koskela 1998).  

In the literature, product development process is mostly depicted as linear due to the sequential structure of 

decision-making. I.e., the decision(s) taken at time t influence the set of decisions available at time t + 1. 

Regarding the specific course of actions contained in the development process, various authors list somewhat 

different generic product development processes, but they all share the same basic structure. The differences 

among them are given by the level of detail covered. One such generic development process is presented in 

Ulrich and Eppinger (2000) who list five major phases (see Figure 2.1). 

 

Figure 2.1: Generic phases of product development (Ulrich and Eppinger 2000). 

The first phase (concept development) has the needs of the target market (i.e., the customer(s)) as a starting 

point. Then, one or more concepts are developed and tested. Ulrich and Eppinger (2000) define the concept 

as "a description of the form, function, and features of a product". The second phase (system-level design) is 

the first of two product design phases. It deals with the overall product architecture and engages in the 

definition of subsystems, their specifications, and the interfaces between them. The output of the second 

phase is a geometric layout of a product. The third phase (detail design) complements the previous phase in 

respect to the completeness of the overall design specifications. In this second product design phase the 

specifications of a product are developed to such a degree that production of all the unique parts can take 

place. The fourth phase (testing and refinement) is involved with constructing prototypes in order to test the 

developed product according to customer requirements and technical constraints. The fifth and final phase 

(production ramp-up) precedes the official product launch. This final phase marks simultaneously a major 

commitment by the production function and the official end of the development process. 

2.2 Problem solving approaches in product development  

Another view to understand PD is to consider it as a problem solving process. Thus it is useful to view the 

process as taking place in a "design space". Coyne et al. (1990) employ this concept with the purpose of 

creating a theoretical framework to discuss the process of improving an automobile design. Ward et al. 

(1995) state "for any given design problem, there is a true, yet unknown, 'design space' that includes all 

possible values for all the parameters."  

1. Concept 
Development 

2. System-level 
design

3. Detail 
Design

4. Testing and 
refinement 

5. Production 
ramp-up
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An example of the design space is illustrated in Figure 2.2. It shows three sets of designs at different times t, 

t+1, and t+2 (all inside the true, yet unknown, design space). Each set represents the feasible designs, which 

the developing company is considering, at three successive points in time. At time t the company is 

contemplating the design A. The design characterizes a unique combination of design parameters, which is 

different in at least one parameter from other feasible designs. At time t+l the developing company has 

extended its search for an optimal design to include the design B. At the next point in time (t+2) the design C 

is examined.  

 

Figure 2.2: The design space representation (Sorensen 2006). 

The goal for the developing company is to map out the various feasible designs in order to compare these to 

each other as there are combinations of design parameters, which are more optimal than others. Within the 

concept of the design space a development process becomes a problem-solving process of searching through 

a state space. "Problem" in this context is understood as a difference between the current state of the design 

and a more optimal design. A very important characteristic of this search process is the existence of 

uncertainty. I.e., it is not known with certainty (100%) what will be the outcome of the search process. There 

are two fundamental approaches to look for solution in the design space. The first one is called design-build-

test and the second is test-build-design approaches. 

2.2.1 Design – build – test approach 

The design-build-test cycle is based on an iterative view of design. It starts with fixing a given combination 

of design parameters and defining the values. The definitions of the values of the parameters are based on the 

experience or the information designers own (Kennedy and Harmon, 2008). Then, a prototype of the design 

is constructed, and finally is tested. Prototypes could be either physical or computer based (Wheelwright and 

Clark 1992). The outcome of the test is then compared to the objectives for the design. The test is to check if 

the design or the design parameters satisfy downstream or upstream constraints imposed to achieve internal 

and external integrity. However, if there is a discrepancy between the current design and the objectives, 

Design space
A

B

C

t

t+1

t+2
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management can opt to modify the design and start the cycle again to look for new solution or select a new 

solution from the design space (as seen in Figure 2.3). The result of this reiteration is that the design 

increases in detail after each cycle. 

 

Figure 2.3: Schematic representation of a design – build – test approach. 

Moreover, the number of alternative designs consider at the start here are very limited, usually one (Ward, et 

al. 1995). Designers consider in this approach a single solution they think could satisfy all the feasibility 

constraints. The number of solutions considered can be considered as discrete or range (Ward, et al. 1995, 

Sobek, et al. 1999). Discrete can be identified as countable solutions, for example, the possible material 

types. Ranges, on the other hand, can be identified as range of parametric values (Terwarch, et al. 2002). 

2.2.2 Test – build – design approach 

This approach is the opposite of the former one. In this case, designers rather than fixing values for design 

parameters, they consider wider options in a design space as shown on Figure 2.4. That is, rather than 

committing on a single design parameter value or a single design option, designers postpone the decision 

until enough knowledge is gathered through testing range of options at the beginning. This approach, 

according to Sobek 1999 et al., is leaner compared to design and build approach. Since PD is characterized 

by uncertainty conditions, considering range of options will increase the success rate of design decisions 

(Ward et al. 2007). Moreover, it avoids expensive design changes once problems are revealed late in the 

process (Ward et al., 1995; Sobek, 1996; Kennedy and Harmon, 2008; Raudberget, 2010; Khan et al., 2011). 

 

Figure 2.4: Schematic representation of a test – build – design approach. 

This approach seems cumbersome at the beginning since designers have to test several solutions (or, make 

decisions as late as possible). However, after studying Toyota’s PD process, Ward et al. (1995) observed a 

paradox called ‘Second Toyota paradox’, where it considers alternative sub-system solutions and 

Design Build 

Test 

Solution X

Build Test Solution 1

Design Build Test Solution 2

Build Test Solution 3
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aggressively evaluates them in parallel. Although, Toyota’s PD seems to be inefficient at the beginning, it 

showed to be the most efficient automaker in the world (Clark, et al. 1987; Clark and Fujimoto 1989; 

Womack, et al. 1990). In summary, the differences between the two problem solving approaches are 

presented in Table 2.1. 

Table 2.1: Comparison between problem solving approaches in PD. 

Differences design – build – test approach test – build – design approach 

Search for 

solution 
trial and error on a single point experimentation of wider design space 

Objective satisfy requirements satisfy requirements and create knowledge 

Alternatives 

considered 
one multiple  

Design decision 
fast, based on incomplete 

information 

delay decision, until proven information are gathered, 

and feasibilities are well understood 

Advantages  
fast and simple at the beginning 

of design 

Innovation, knowledge building, avoid late design 

changes, the right quality at the right time 

Risks 

Weakens innovation, frequent 

design changes created by 

unpredictable events (increase 

costs and time of development) 

Slow and difficult at the beginning of design 

Keeping the differences of the problem solving approaches in mind, the following subsections discuss the 

evolution of concurrent engineering (CE) models. In general, there are three different CE models: 

 Point based serial engineering (PBSE) 

 Point based concurrent engineering (PBCE), and  

 Set based concurrent engineering (SBCE) 

2.3 Point Based Serial Engineering (PBSE) 

PBSE is the oldest and is characterized by the ‘functional’, ‘sequential’ and ‘over the wall’ model. The focus 

is on the functions (departments) that are responsible to carry out each stage of a design process. In this case, 

PD is a reactive process (Papalambros and Wilde 1991), the design teams naturally react to what is learnt in 

the previous step, or react to the decision that is made beforehand. In other words, it is not unusual that the 

results from one step drive the actions of the next step. From information exchange perspective, PBSE 
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represents a batch mode (Von Hippel 1995; Wheelwright and Clark 1992). The information or decisions that 

are made in upstream are communicated once finished. Design specifications are freeze as early as possible 

for other functions to start (Ward, et al. 1995). 

Figure 2.5 shows a typical PBSE model in automotive development. In the process, styling starts by 

conceptualizing a design based on its criteria for optimality. It then sends the design "over the wall" to 

marketing, which then critiques the design based on its own criteria for optimality. The design is then sent 

back to styling, which iterates once again and adapts the design based on the marketing function's 

requirements. The design then passes on to body, which also comments on the design in the same fashion as 

marketing. Styling once again iterates and adapts the design to body's comments. In the same manner the 

design passes back and forth through chassis and manufacturing. 

 

Figure 2.5: Problem solving approach in PBSE – an example from an automotive development (Ward et al. 

1995). 

From problem solving perspective, PBSE resembles the design-build-test approach as presented in Figure 

2.3. In this approach, designers presume a single solution for their design problem at a time, and jump from a 

solution to another till time runs out (Kennedy and Harmon 2008). The strategy is characterized by a lack of 

information (on a pan-department level) between the participants in the development process. When 

presented with a design, each function goes through a design-build- test cycle based primarily on its own 

information set and criteria for optimality. The outcome forms the basis of a feedback loop, and the design is 

then updated (if needed). Because each feedback loop takes time, the result could be a lengthy problem-

solving process. Moreover, there is no guarantee that designers converge into an optimal solution (Ward, et 

al. 1995; Sobek, et al. 1999). It is important to notice that the PBSE model assumes only one "main" design 

being developed. The feedback loops giving rise to a design change result in a changed design.  
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System Design
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Several studies refute such models. PBSE causes different functions involved in the development to pass 

decisions once committed (Ward, et al. 1995). Such practice causes infeasibilities to be found late in the 

process which cause loopbacks/reworks (Alder 1995). Moreover, it leads to development delays, often 

associated with “omitting important considerations early in the design” (Anderson 1997). Unless a PD is 

functioning in a perfectly stable and precise environment, it is not practiced anymore in industrial context 

(Terwarch, et al. 2002).  

Substantial amount of research and literature have been initiated to overcome the PBSE’s shortcomings. 

Researches and industrial practices created what currently known as ‘Concurrent Engineering (CE)’ 

(Eisenhardt and Tabrizi 1995; Krishnan, et al. 1997; Terwiesch, et al. 1997; Cusumano and Nobeoka 1998). 

The basic improvement is to bring more communication and increase the frequency of upstream and 

downstream information exchange. Moreover, the CE researches include design and process management 

capabilities for effective communication (Brown and Eisenhardt 1995). These capabilities are enablers that 

support PD managers to plan, schedule and control the flow of information in development process. In the 

following section, progresses in CE literature will be briefly assessed. 

2.4 Point Based Concurrent Engineering (PBCE) 

The second type of PD process model is called point based concurrent engineering, PBCE (Sobek et al. 

1999). This model is different from the PBSE in that communication between upstream and downstream 

partners will be intensified. Thus, from information exchange perspective it resembles the early involvement 

or integrated problem solving mode (Terwarch, et al. 2002). Concurrent Engineering (CE) has been 

increasingly popular in product development literature and practices (Simon 1969; Allen 1977; Wheelwright 

and Clark 1992; Eisenhardt and Tabrizi 1995; Iansiti 1995; Hauptman and Hirji 1996; Terwiesch, et al. 1997; 

Cusumano and Nobeoka 1998; Loch, et al. 2001). In general, CE can be evolved in terms of four 

perspectives (Smith 1997; Sapuana, et al. 2007): Integrative product team, Integrative mechanisms, task 

sequencing and gate reviews, requirement settings and release of information. 

Integrated product teams (IPTs) in PBCE: to facilitate CE, design organizations have moved away from the 

traditional functional configuration to adopt cross-functional design teams or integrated product teams 

(IPTs), illustrated in Figure 2.6. The primary aim of assembling such a cross-functional team is to enable a 

variety of perspectives to develop a product design concurrently, so that the final product is better integrated, 

and is developed more quickly and at a lower cost (Papalambros and Wilde 1991; Anderson 1997).  

Womack and Jones further characterize cross-functionality in CE as one of the lean PD practices (Womack 

and Jones 2005). They note that an ideal design process would operate much like a single-piece flow in a 
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manufacturing system. Moreover, the IPTs enable to bring together individual knowledge required to 

develop design solution and facilitate effective and efficient information flow. 

 

Figure 2.6: PBCE in automotive development (Sobek, et al. 1999). 

Integrative mechanisms (IMs) in PBCE: Browning (1997) defines integrative mechanisms (IMs) as 

“strategies and tools for effectively coordinating actions between multiple” design organizations, such as 

integrated product teams (IPTs). Examples of IMs include information and communication technologies 

(such as linked CAD tools and common databases), co-location, face-to-face meetings, manager mediation, 

and interface contracts and scorecards (Browning 1997). Other CE tools such as Quality Function 

Deployment, QFD (Akao and Mazur 2003) and Failure Mode and Effect Analysis, FMEA (Dale and Shaw 

1990) have been extensively used as mechanisms to facilitate communication between customer, designers 

and manufacturing process departments. These IMs are used to supplement the basic structure of the design 

team so as to further enhance the members’ abilities to share and combine their knowledge. 

Task sequencing and gate reviews in PBCE: despite the effort placed on integrated problem solving, 

concurrent engineering, and the associated design tools and methods, many problems in engineering design 

are coupled; that is, one design group is dependent upon information from another group (Krishnan, et al. 

199 ). Such interdependent, chicken and egg problems are difficult to sort out, because it is “rarely possible 

to identify an unambiguous sequence for making decisions” (Chang, et al. 1994).  

To cope with these coupled design problems, CE literatures resort to a sequential decision making strategy 

(Krishnan, et al. 1997). Such strategies require that a design problem must first be partitioned (decomposed) 

into a “number of sub-tasks that may then be distributed among a number of individuals (von Hippel 1990). 

Once a problem is partitioned, a tool such as a design structure matrix can be used to sequence the tasks to 

minimize the impact of iteration in the design (Browning 1996). By properly sequencing tasks, the costs of 

downstream changes to a design can be minimized (von Hippel, 1990). The drawback of such tools, 

however, is that while they might minimize the extent of the changes which need to be made during iteration, 

they may not help engineers determine the best sequence in which to make decisions (Krishnan, et al. 1991).  

Design a solution 

(E.g. styling) 

Analyze and 

Critique (test)

Modify

Marketing

Body department 

Chassis 

department

Manufacturing and 

die making

Styling 

department 



13 

 

Associated with the sequencing of tasks or decomposing activities, CE brings strict control and gate reviews 

into a PD process. The formal reviews are to check the execution of activities before downstream activities 

begun. Product development models such as ‘stage and gate’ or ‘spiral models’ are typically designed to 

bring reviews and controls in CE environment (Cooper and Kleinschmidt 1993; Cooper, et al. 2002; Cooper 

and Edgett 2008). 

Requirement setting and release of information in PBCE: to cope with all of the difficulties associated with 

both integrating information across design groups and limiting the effects of iteration, conventional practice 

suggests that it is best to establish firm requirements early in the development process (Ward, et al. 1995). 

Requirements are finalized quickly to impose “as much constraint as possible in order to simplify the 

interactions among subsystems” and other members of a design team (Sobek, et al. 1997). The logic behind 

this approach is that since one design group does not necessarily know or understand the constraints faced by 

another group, each group must specify their subsystems in great detail to ensure their functionality and that 

they interface properly with other systems (Sobek, et al. 1999). This reliance, however, leads to two 

paradoxes.  

The first paradox relates directly to the development of requirements. System design methods emphasize 

establishing requirements early, but iterative methods imply that the requirements will change over the 

course of successive iterations (Ward, 1990). The second paradox relates to the very reason for initiating a 

development effort. Reinertsen states that “the purpose of a design process is to generate information” 

Reinertsen (1997). An efficient design process, therefore, is one which generates information cost-

effectively. When developing a design, the feasibility and appropriateness of the concept is determined 

through testing, so to be cost-effective, each test should generate as much information as possible. When 

conducting tests, more information is contained in the results of a failure than in the results of a success 

(Ward, et al. 2007). A design process, therefore, does not maximize the amount of information which it 

generates by maximizing test success rates, but by ensuring “an adequate failure rate to generate sufficient 

information” (Reinertsen, 1997). A philosophy of “do it right the first time” implies that a design would 

always successfully complete its development tests. Such outcomes, however, would not necessarily produce 

information in a cost-effective manner. The second paradox of iterative methods, therefore, is that a “do it 

right the first time” mentality actually decreases the cost-effectiveness of a design process by degrading the 

amount of information which the process produces. 

These two paradoxes limit the efficiency and effectiveness of iterative design methods. While engineers and 

managers have developed many tools to aide in coping with these problems, current engineering methods do 

little to actually eliminate the sources of these paradoxes. 
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2.5 Limits and risks of PBCE 

While IPTs (integrated product teams), IMs (integrative mechanisms), task sequencing, strict gate reviews, 

and early requirements definitions help to make CE approaches effective, PBCE still introduces the 

following additional risks:  

a) PBCE requires that downstream phases of design be able to operate using early upstream information 

(Krishnan, et al. 1996). Making use of such information entails risk because the information may not be 

finalized (Chang, et al. 1994; Krishnan, et al. 1996; Morgan and Liker 2006). When multiple views are 

involved in developing a new product, each group will recommend changes to a proposed solution to 

better reflect that group’s constraints and requirements. This scheme of proposition and change, 

however, leads to several possible problems. Since each group in the design process does not necessarily 

understand the limits and needs of every other group, recommended changes can produce conflicts, 

leading to waste in the development process (Sobek, et al. 1999; Liker, et al. 1996). Moreover, work that 

could be conducted in parallel then reverts to a sequential pattern, and invalidates the true potentials of 

being concurrent (Liker, et al. 1996).  

b) There exist no guarantees that the iterative, point-to-point approach will ever converge on a final and 

optimal design solution (Sobek, et al. 1995). Instead, the iterative loops are never quite closed, and, in 

the worst case, “problems are resolved when production begins, by selecting whatever last minute 

compromise is easiest” and when the cost of making changes become high (Ward 1990). 

c) Strict controls at gate reviews in PBCE not effective in mitigating the underlying problems in design 

(Morgan and Liker 2006; Ward, et al. 2007). As discussed above, when a design is complex and sub-

systems are coupled, anticipating the possible failures of the design becomes very difficult. In addition, 

models such as ‘stage-gate’ are based the controls on unrealistic millstones that would completely 

change through a given time of a design stage. Therefore, the gate review evaluate designers and design 

projects based on wrong interpretation of the nature of PD, without understanding the unpredictability of 

design science and philosophy (Ward, et al. 2007).  

d) Finally, the problem solving approach is PBCE resembles the design-build-test approach. As described 

above, designers in this paradigm consider only single solution for their problem. These have two 

negative effects in CE approach. The firs one is that, since enough exploration of a design space are not 

explored at early phase of design; iteration and rework become evident (Kennedy and Harmon 2008). 

The second one is that, design is not only a process of developing product but it is also a process of 

manufacturing knowledge about design problems (Ward, et al. 1995). Therefore, following PBCE limits 

the design organization’s potential to build knowledge and learning. 
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From the above discussion it is clear that both PBSE and PBCE pose limits to the efficiency and 

effectiveness of PD. In the next section, the next evolution of CE called set based concurrent engineering 

(SBCE) will be presented briefly. Late in chapter 3, SBCE’s definition and principles will be discussed. 

Moreover in this thesis, an extensive literature review is made in chapter 4 to define the enablers needed to 

execute SBCE’s principles. 

2.6 Set Based Concurrent Engineering (SBCE) in brief  

Allen Ward and his colleagues are the original proponents of SBCE who studied Toyota’s development 

process for several years, conducting detail interviews and making observations. They have observed that 

Toyota’s PD is significantly different than most of US automakers (Ward, et al. 1995). The difference is that 

most of US automakers tend to make decision very early in design (e.g. specification freezing of body style). 

This practice is similar to what has already been discussed as PBCE. But Toyota, rather than early 

commitment, it practices delaying of decision until enough knowledge and data are obtained. While delaying 

decision, designers explore and test several alternative sets in parallel to obtain enough knowledge about the 

performances of the sets. Test results are presented in the form of trade-off curves, limit-curves, checklists 

and standards (Ward, et al. 1995; Sobek, et al. 1999). These forms are paramount in Toyota’s PD to easily 

capture, share and reused knowledge across design teams effectively. Moreover, they facilitate to make the 

right decision based on data (Ward, et al. 2007; Oostewal 2010).  

After looking these results, the proponents of SBCE call this paradigm “The Second Toyota Paradox” (Ward, 

et al. 1995). While the first paradox is how lean production seems highly inefficient compared to mass 

production paradigm, the second paradox is how set based thinking (delaying key decision and exploring 

multiple solutions in parallel) seems inefficient compared to point based paradigm, though it is not( Ward, et 

al. 1995). Researcher reported the superior Toyota’s performances compared to both European and US 

automakers in the late 80’s and the beginning of 90’s (see Table 2.2). 

In order to understand the leverages of SBCE compared to PBCE, it is useful to observe how design process 

behaves from three different perspectives: (a) evolution of product cost, (b) management’s influence to affect 

product cost, and (c) the evolution of designers’ knowledge about a design problem.  

a) The evolution of product cost: designers will make decisions affecting the life-cycle of the product. As 

shown in Figure 2.7, the incurred cost at early phase of design which is spent in design activities is very 

small. However, more than 60% of a product’s life-cycle costs (e.g. manufacturing costs, maintenance 

costs, etc.) are defined or committed in early conceptual stages (Terwiesch, et al. 2002; Anderson 1997). 

In addition, these stages are subject to uncertainties and the knowledge available to designers to make the 
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right decision is limited (Terwiesch, et al. 2002; Anderson 1997). Thus, the idea of delaying decisions, 

exploring multiple solutions and investing more to gain knowledge about feasibilities and compatibilities 

make SBCE much more sensible than PBCE (Ward, et al. 1995). 

Table 2.2: Comparison of PD performances of Toyota and other automakers (Clark, et al. 1987; Clark and 

Fujimoto 1989; Womack, et al. 1990). 

Measures in average Toyota North American European  

Engineering efforts for a new vehicle (million hrs.) 1.7 3.1 2.9 

Development time (months) 46.2 60.4 57.3 

Engineering change cost (% total cost) 10-20% 30-50% 10-30% 

Employees per team  485 903 904 

Ratio of delayed project 1 in 6 1 in 2 1 in 3 

Achieve normal quality after launch (months) 1.4 11 12 

b) Management’s influence to affect product cost: the problem of making right decisions at early phase 

of design becomes even more evident when one considers management’s ability to influence a design if 

failed to pass constraints late in the process. Management can exert its greatest influence on a product 

early in the development cycle. As the cycle progresses, however, this power is greatly diminished 

(Wheelwright and Clark 1992). In addition, the costs associated with making any changes to a product 

design rise exponentially late in the process (Krishnan, et al. 1991; Reinertsen 1997; Anderson 1997). In 

PBCE, designers tend to take only a single alternative solution early in the beginning (Sobek, et al. 

1999). This limits the flexibility of making changes once problems are revealed late in the process. 

Moreover, since alternative solutions are not explored and their performances are not taken into account, 

designers are not capable to fix design problems without delaying projects and missing market 

opportunities (Oostewal 2010).  

c) Evolution of designers’ knowledge: another most important factor which is closely related to the other 

is the evolution of knowledge of designers (Bernstein 1999; Reinertsen 1997). This means that, there are 

several changes that might occur during the development process once a project is started. For example, 

customers might change what they ask, or previously unknown constraints from testing might emerge 

(Oostewal  010). Therefore, designers’ knowledge about the requirements from different stakeholders is 

not fully known at the beginning. As designers work on a design problem and become familiar with the 

product concept they increase their understanding. However, there is inherent design paradox as clearly 
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seen here. Whenever the designer or managers have more chance to make changes, there is a lack of 

knowledge about the specific problem. But, the more knowledge gained about the problem it will be 

already late to make changes unless scarifying time to market or incurring additional costs. Moreover, in 

many industries knowledge gained in a previous project is not effectively reused to avoid mistakes in 

future projects (Kennedy and Harmon  008; von Hippel and Tyre 1994). Therefore, the SBCE’s 

concepts of considering sets of alternatives, conducting tests and simulations before commitment, and 

effectively managing the transfer of knowledge from projects to projects enable developers to access 

knowledge during early phases of design to make the right decisions. As a result, SBCE is a much more 

sensible approach to PD than PBCE. 

 

Figure 2.7: Committed cost and incurred cost as a design process progresses (Anderson 1997). 

2.7 Conclusions  

In summary, CE has evolved to improve communication and increase the quality of decision making 

between upstream and downstream design activities. However, the point based approach to design process 

limits its effectiveness. Since the nature of information in design and product development process is 

unpredictable, following PBCE causes rework, incurring additional cost and missing market opportunities.  

Moreover, PBCE is based on a design-build-test paradigm of problem solving; designers are not exploring 

possible design alternatives in such paradigm. Thus, it limits the flexibility toward unexpected change late 

the process. As a consequence, designers cannot identify, capture, use and reuse design knowledge in a 

project or across projects through exploring and testing multiple design solutions. Therefore, there is a need 

for a paradigm shift whereby flexibility towards late design changes is effectively avoided. SBCE offers such 

a paradigm shift. The comparisons between of PBCE and SBCE are summarized in Table 2.3. 
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Table 2.3: Comparison of PBCE and SBCE
6
.  

Areas 
PBCE SBCE 

How conceptual solutions 

are found? 

Iterating on existing concepts Defining feasible regions 

Which design concept is 

communicated? 

The “best idea or best guess” Sets of possibilities 

How should a system be 

integrated? 

Pass a concept idea among teams for 

critiques  

Look for feasible intersections 

How should a design be 

optimised? 

Define, analyse, test and then design till 

objectives are met 

Build prototypes in parallel, tests and 

define feasibilities and workable 

solutions 

How specifications are 

managed? 

Maximising constraints to assure 

functionality goals and interface fit 

Using minimum constraints to allow 

mutual adjustments among functional 

teams 

How design risks are 

managed? 

 Establish feedback channels 

 Communicate often 

 Respond quickly to changes 

 Establish feasibilities before 

commitment 

 Pursue high risks and conservative 

conceptual solutions in parallel 

 Seek for robust solution to 

physical, market and design 

variations 

What are the theoretical 

advantages?  

 Simple 

 Fast at the beginning of a process 

 Applicable to predictable process 

 Increase flexibility in early phase 

of design 

 Improve knowledge and learning 

 Reduce risk of late changes and 

reworks 

What are the theoretical 

limitations? 

 Low flexibility to make changes 

 High risk of reworks 

 Low level of knowledge creation 

and reuse 

 Low level innovation  

 Extensive and expensive 

 Difficult to implement 

 Requires higher leadership quality 

and capabilities (enablers)  

In chapter 3, the definition and principles SBCE are explained in more details. SBCE is a process which is 

composed of its own principles. The principles are guidelines that offer unique ways to develop new 

products. Moreover, similar existing approach that resembles SBCE are analysed in this chapter. 

                                                     

6
 Compiled from: Ward, et al. 95; Sobek, et al. 99; Ward, et al. 07; Kennedy and Harmon 08; Oostewal 10; Raudberge 

10. 
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In chapter 4, a comprehensive literature review is made to comprehend the key enablers (strategies and 

capabilities) that are necessary that are needed to execute the principles. Without the enablers mentioned in 

chapter 4, SBCE cannot achieve the desired paradigm shifts posed in Table 2.3 and industries won’t able to 

benefit from its potentials. 
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3 SET BASED CONCURRENT ENGINEERING IN 

CONTEXT  

 

The aim of this chapter is to put SBCE in context in terms of its definition and principles. The strength and 

uniqueness of SBCE lies in its definition and principles. The general principles of SBCE can be summarized 

as: principle of exploration, principle of set based communication and principle of convergence. From the 

principles, it can be observed that SBCE follows a funnel process where alternative concept are explored, 

communicated and evaluated for convergence. These principles are derived from Toyota’s PD. Nonetheless, 

some of the principles are already been addressed by exiting literatures in PD. What makes SBCE’s 

principles different is the way the funnel process is execute. The principles dictate the use of proven 

knowledge to explore, communicate and converge sets. Moreover, these principles are supported by simple 

tools and mechanisms to facilitate knowledge identification, capturing and representation. This chapter 

therefore reviews the definitions and principles of SBCE. Furthermore, in this chapter, the differences and 

similarities of SBCE with seemingly similar approaches are also investigated to underscore its unique 

features.  
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3.1 Introduction  

This section is dedicated for introducing the details of SBCE in terms of its definition and associated 

principles. From sections 3.1.1 to 3.1.4 the principles are elaborated and discussed in more details. These 

principles are taken from already existing literature on SBCE. In section 3.2, similar existing models or 

approaches that are seemingly similar to SBCE are assessed and contrasted in this section. 

3.1.1 SBCE definition and principles  

Sobek (1997) summarizes the definition of SBCE as engineers and product designers “reasoning, 

developing, and communicating about sets of solutions in parallel and relatively independent”. 

This definition can be well understood by analyzing it one piece at a time. The first component of SBCE is to 

develop sets of designs, i.e., multiple design alternatives, for a given design problem. Rather than trying to 

identify one solution, engineers should instead develop a variety of design options, and then gradually 

eliminate alternatives, until only one option remains. However, sets here could be discrete solutions (for 

example, the material of an airplane structure could be an aluminum or carbon composite materials). Sets 

could also be a range of values for a parameter (for example, the area of an airplane wing structure could take 

a range value (X to Y). 

The second component reflected by the definition is the involvement of teams from different sub-system 

functions. Each subsystem functions should explore its own sets of solutions independently to others taking 

their own perspective. Then, the sub-system teams progressively interact to compare the sets, looking for 

regions of overlap. The teams then aggressively converge into a solution which satisfies the constraints from 

all other perspectives. Independent exploration of design sets enables several engineering specialties to 

consider a design problem from their own perspective (i.e., to allow each specialty to work on a sub-

problem) and then to effectively re-combine those independent alternatives into an integrated final solution 

(Bernstein 1998). 

The third component is more subtle and unique part of SBCE than the other two components. The word 

‘reasoning’ indicates that designers should explore solutions, communicate their feasibilities, and converge 

to a preferred solution using data and knowledge. This concept has not been understood well in many of the 

works after Sobek et al. (1999). Latter, once the concept of SBCE is put into real industries its significance 

becomes clearer (Ward, et al. 2007; Oostewal 2010). As Allen Ward wrote in his dairy that “one thing I 

learned about Toyota’s development is their extensive use of trade-off and limit curves” (Ward, et al. 2007). 

It seems as if the languages of engineers in Toyota are based on trade-off and limit curves. As one engineer 

in Toyota reported “we have built as many as 10 to  0 exhaust systems for every project because the chief 
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engineer wants to know what the trade-offs are” (Ward et al. 2007). However, Toyota uses these curves not 

only to explore and converge to solutions but also to capture and document knowledge effectively (Kennedy 

and Harmon 2008). 

 

Figure 3.1: Conceptual schema of SBCE (Bernstein 1998). 

Figure 3.1 summaries the definition of SBCE in its simplest form. As it can be seen, SBCE starts with 

designers exploring the design space to develop alternative conceptual solutions for a problem. Then, sub-

system designers will expensively communicate to look for intersection or overlaps. Each sub-system 

function is responsible will analyses the governing tradeoffs to evaluate solutions (Sobek, et al. 1999). Limit-

curves are also used to understand the technical feasibilities of solutions. Using limit curves designers are 

able to eliminate solutions which are proven to be inferior. Unless a concept solution is proven inferior, it 

will be kept inside the candidates set (ward, et al. 1995; Sobek, et al. 1999).  

SBCE has principles and key features which are derived from Toyota’s PD, these principles are general 

guidelines. Sobek et al. outlined what designers should follow while developing products in SBCE 

approaches (Sobek, et al. 1999). In the following sub-sections of the chapter, the principles are discussed 

adding more rationale to support the principles from other literatures. The discussions of the SBCE principles 

are organized as follows: 

 Principles of exploration (or, Map the design space) 

 Defining feasible regions 

 Explore tradeoffs by developing sets 

Sub-system 
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(e.g. interface 
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 Communicate set of possibilities  

 Principles of set based communication (or, Integrate by intersection) 

 Looking for intersection of feasible sets 

 Impose minimum constraints 

 Seek conceptual robustness  

 Principles of convergence (or, Establish feasibility before commitment) 

 Narrow sets gradually while increasing details 

 Stay within sets once committed 

 Control by managing uncertainty at process gates 

3.1.2 Principle of exploration 

The first principle of SBCE is to “Map the design space”. Toyota applies this principle on two levels (Sobek, 

et al. 1999).  

First, on individual projects, Toyota engineers and designers explore and communicate many alternatives. 

The exploration, analysis, and communication help the development team “map out” the possibilities, along 

with associated feasibilities and relative benefits or costs, for systems and subsystems pertaining to the 

vehicle and its production. The goal is a thorough understanding of the set of design possibilities that apply 

to the problem, or what design theorists call the “design space” (Coyne, et al. 1990). This can be based on 

their experience, analysis, experimentation and outside information and so on (Sobek, et al. 1999).  

Second, the principle applies on an ongoing basis when engineers capture what they have learned from each 

project by documenting alternatives, trade-offs, and technical design standards (Sobek, et al. 1999). This is 

what latter called dynamic knowledge capturing (Enberg, et al. 2006). In their study, Enberg et al. (2006) 

found that, knowledge is dispersed within development teams. And, it is difficult to identify knowledge 

which is intrinsically embedded to once mind (tacit knowledge).  

This principle is consistent with research results about Japanese development structure. A key learning tool 

in Japanese organizations is decentralized groups studying, standardizing, and documenting processes and 

designs, then making the documentation publicly available to team members. Engineering checklists are also 

consistent with observations of numerous researchers on organizational learning in Japanese companies 

(Funk 1993; Nobeoka and Cusumano 1995; Nonaka and Takeuchi 1995; Verworn, et al. 2008). Therefore, in 

PD, Toyota’s SBCE practice reveals that, it is not just an exercise of exploring the risks and potentials of 

design alternatives. But also, visualize and documenting the knowledge obtained by testing and 

communicating alternative solutions. Understanding and documenting technical knowledge in the forms of 

trade-off curves, checklist and limit cures transfer tacit to explicit knowledge (Davenport, et al. 1998). Thus, 
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visualizing of technical knowledge determines the success of development projects (Ward, et al. 2006; 

Whyte, et al. 2008; Oostewal 2010). 

3.1.3 Principle of set based communication 

The second principle is concerned with how to communicate the sets among teams to achieve system 

integration and find solutions which are workable to all functions (Sobek, et al. 1999). This principle is very 

crucial to optimize the system (full system). If engineers develop alternative sub-system solutions rather than 

one, there is a higher probability that the complete system works and achieves higher total system 

performance (Ward, et al. 2007; Sobek, et al. 1999; Black and Mendenhall 1993; Pugh 1990). 

This principle contains three sub-principles: looking for intersection of feasible sets, impose minimum 

constraints and seek conceptual robustness (Sobek, et al. 1999). 

The principle of looking for intersection basically amplifies the set based thinking in PD. Once designers 

have range of alternatives, they need to look for intersection areas. Communication based on sets or ranges of 

values facilitate coordination between upstream and downstream functions. Krishnan et al. (1992) noted that 

the decisions made by the various functional decision makers are generally coupled and often in conflict, and 

consequently wreaked cross-functional teams to perform worse than fully integrated teams. Therefore, 

communication between functional groups must not only build and transfer design knowledge, it must also 

help to coordinate the groups. Such early communication of performances is crucial to avoid rework late in 

the process. Hauptman and Hirji (1996) found in their study that, communicating performance information 

early entails risks of errors and frustration. The danger arises from the nature of information in design which 

is normally subject to changes and imprecision (Schrader, et al. 1993; Pitch, et al. 2002). In SBCE, team 

members communicate information they actually possess rather than sharply defined as practiced in PBCE 

(Liker, et al. 1996).  

The principle of imposing minimum constraints is related to the fact that communication in SBCE is based on 

rough and range of values rather than single choice. Chang et al. (1994) noted that, engineers need to provide 

feedback to the designers of neighboring components about their preferred values for connecting variables 

and the cost of deviation from those values. Rather than only communicating a single design concept, 

engineers using set-based practices communicating about several. This set then provides information about 

the limits and boundaries faced by each group, allowing designers to better understand what decisions they 

can make to accommodate the needs of other engineers. Further, Liker et al. (1996) stated that when 

communicating between functional groups early in the design process, partial information is most useful if it 

involves boundaries on parameters. Such bounding information is exactly the type of knowledge contained 
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within a set. See Figure 3.2 that shows how Toyota communicates with its supplier based on rough and early 

specification (set based communication).  

 

Figure 3.2: Intersections of possibilities help define specifications between Toyota and its suppliers (Sobek, 

et al. 1996). 

Another principle which belongs to set based communication is that of conceptual robustness. This concept 

is based on Taguchi’s notion of functional robustness. Taguchi states that a product is functionally robust “if 

it inherently tends to diminish the effect of input variation on performance” (Bryne and Taguchi 1986; 

Taguchi 1988; Taguchi, et al. 2000). Similarly, design decisions are conceptually robust if the decisions 

remain valid regardless of the choices made by other engineers working on the product (Sobek, et al. 1999; 

Chang, et al. 1994). As engineers narrow their sets and communicate about their remaining alternatives, they 

should also seek to make future choices that will accommodate as many of the other engineers’ options as 

possible. When engineers are able to follow this principle, they significantly reduce the likelihood of having 

to redo their work because of decisions made by other designers. 

3.1.4 Principle of convergence 

Rather than picking one solution early in a design process (as in point based approach), SBCE is a process of 

elimination of inferior designs and the development of feasible ones. However, Allen Ward called the 

Toyota’s elimination process as aggressive (Ward, et al. 2006). This is because, although there is frequent 

communication between sub-system teams, in a complex system there could be very large sets at the 

beginning. Therefore, systematic and aggressive elimination of inferior designs are necessary. The 
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convergence process demands design participants (either internal and suppliers) to make their set narrowed 

in parallel.  

An important principle to which to adhere during this process is that of establishing feasibility before 

commitment (Sobek et al., 1996). Before committing to keep a certain design concept, engineers must ensure 

that, at the current level of detail, the design is in fact feasible, i.e., that it does meet the product’s 

requirements. The goal of this principle is to avoid uncovering problems late in the design process. Note, 

however, that the intent is not to necessarily test every concept to the highest level of detail possible. On the 

contrary, designs should only be tested to the level of detail appropriate to the size of the set. If the set is 

large, implying that the product is still early in its development, tests should be simple and quick, just 

detailed enough to expose problems that are near the surface (Parunak, et al. 1997).  

 

Figure 3.3: Trade-off curve for Exhaust System in Toyota (Ward, et al. 2007). 

The principle of narrowing set of alternatives gradually is another central essence of SBCE process. Gradual 

elimination indicates that engineers need to check feasibilities of sets of solutions through testing and 

communication (Sobek, et al. 1999). It is different from point based thinking in that, in set based thinking 

sets are eliminated rather than selected. Unless there are data showing a solution is infeasible it will stay with 

sets. There are mechanisms that facilitate this process such as tradeoff and limit-curves (see Figure 3.3 as an 

example of trade-off curve used to evaluate alternative exhaust systems).  

Once engineers have narrowed a set, it is important that one engineer not “jump out” of the set to introduce a 

new design concept, unless absolutely necessary. This is the principle of stay once committed. This 

commitment is essential so that other engineers can rely on each other’s communication (Sobek et al., 1999). 
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In many ways, therefore, these concepts illustrate a key notion that in SBCE designs converge rather than 

evolve (Liker et al., 1996). 

The final principle included in convergence is managing uncertainties at process gates. This principle 

dictates that, in SBCE mangers must be sure that convergence really occurs. However, supervising these 

convergence processes for both designs and requirements mandates a slightly different management 

approach than is normally used in engineering design (Sobek, et al. 1999). In PBCE, completion of design 

activities are controlled by gate controls (Cooper and Kleinschmidt 1993; Cooper, et al. 2002; Cooper and 

Edgett 2008). Traditional phase gate methodology promotes progression of product development linearly 

through distinct phases (stages) of development (Oostewal 2010). However, in SBCE, gates are substituted 

with integration events (Ward, et al. 1995). Integration events, as opposed to design reviews or checkpoints, 

are points where multiple functions show their design performances and receive feedback from other system 

or chief engineers (Oostewal 2010). 

3.2 Comparison of SBCE with similar approaches 

Many authors on design and engineering field emphasize the importance of considering multiple design 

alternatives, especially early in the design process. For example, Pahl and Beitz (1988) stated that the 

solution field should be as wide as possible at the start. Ulrich and Eppinger (2000) cited several common 

failures in concept development which stem from not evaluating enough design options, including: only 

considering one or two alternatives, failing to consider concepts used by other firms in related or unrelated 

products, failing to successfully integrate several promising “partial solutions” and failing to consider “entire 

categories of solutions”. In addition, they noted that, through exploration of alternatives in the development 

process there are more chances to develop best performing options. There are four prominent approaches in 

which the consideration of alternative is deemed important: Pugh’  controlled convergence (Pugh 1990), fast 

Design-Build-Test cycle (Wheelwright and Clark 1992), spiral development (Boehm 1986) and platform 

design (Meyer and Utterbeck 1993). 

 Pugh’s controlled convergence 

Pugh recommends a method of “controlled convergence” (Pugh 1990). In this approach to design, engineers 

and designers initially develop a very large number of design concepts. These concepts are then compared to 

the customer’s needs and to one another. Concepts which rate highly are retained, while others are discarded. 

Once the initial number of designs has been reduced, the design team again considers additional alternatives 

either modifications of some of the initial concepts or entirely new concepts. This set of designs is narrowed 

further, and then, again, new options are added. The process continues in this fashion, with the generation of 
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ideas followed by convergence. Each successive iteration of the process results in a narrower and narrower 

field of alternatives, until only one option remains. 

 Design-Build-Test cycle and Spiral development 

Wheelwright and Clark proposed a similar approach to design based upon the design-build-test cycle. The 

first step in the process is to frame the problem: establish product and manufacturing process requirements, 

clarify user needs, etc. Once the requirements are clearly understood, several alternative designs are 

developed, the purpose of which “may be to explore the relationship between design parameters and specific 

customer attributes” (Wheelwright and Clark 199 ). 

Models, either physical or computer-based, are then constructed and “subjected to tests that simulate product 

use” (Wheelwright and Clark 199 ). If the models fall short of performance requirements, “engineers search 

for design changes that will close the gap” between the models’ performance and the required performance 

(Wheelwright and Clark 1992). The design-build-test cycle is then repeated, until all of the requirements are 

fulfilled. This approach to design, therefore, is built around the concept of repetition. A single design-build-

test cycle is used to provide information to the next iteration of the cycle. The effectiveness of this method, 

then, depends upon the effectiveness of a single cycle, the number of cycles that are completed, and how well 

the results of individual cycles are combined into coherent solutions. Perhaps this method raised into 

acceptance due to the emergence of computer aided simulation and prototyping techniques in the 

manufacturing domain (Thomke 1998; Thomke, et al. 1998). Note that, the design-build-test approaches 

resembles set based thinking if the consideration of alternatives considers are for learning and closing 

knowledge gaps about design problems (Bernstein 1998).  

Similar to the Design-Build-Test cycle is the spiral approach which is prevalent in software development 

(Boehm 1986). The spiral model combines the idea of iterative development (prototyping) with the 

systematic, controlled aspects of the waterfall model (Larman and Basili 2003; Al-Ashaab, et al. 2009). It 

allows for incremental releases of the product, or incremental refinement through each time around the spiral. 

The spiral model also explicitly includes risk management within software development. Identifying major 

risks, both technical and managerial, and determining how to lessen the risk helps keep the software 

development process under control (NASA 2004). This approach uses many of the same phases as the 

waterfall model, in essentially the same order, separated by planning, risk assessment, and the building of 

prototypes and simulations (Boehm 1986). 

Comparing the above two similar approaches (controlled convergence and design-build and test cycle) and 

SBCE, all recommend pursuing multiple alternatives. However, there are some difference with respect to 

how the options are used (Bernstein 1998). In both Pugh’s controlled convergence method and 
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Wheelwright’s and Clark’s design-build-test cycle, alternatives are generated to understand how different 

design parameters impact a concept’s ability to satisfy a user’s requirements. SBCE uses design options in 

this manner, but also use options to allow each specialty group working on a product to explore the design 

space independently. By allowing specialty groups to independently analyze their design options, SBCE 

eliminates the iterative paths which can be so problematic. Controlled convergence and design-build-test do 

not necessarily emphasize this use of design options. Moreover, the design-build cycle uses tests to 

determine whether or not to consider new design options, while SBCE uses tests to eliminate previously 

determined options to increase the level of detail in remaining design alternatives and generate knowledge 

(Bernstein 1998). The drawback of SBCE is that, it starts with all alternative designs available in a design 

space, which in practice, seems very difficult to attain. In this case, the design-build-test cycle (which starts 

from few alternatives and provide a mean to expand options), can be used along SBCE process (Bernstein 

1998). However, as it will be in chapter 4, there are technological advancements that can map out possible 

solutions designers can take into account in SBCE (Ross and Diller 2004; Ross and Hasting 2005). 

 Platform design 

Platform design refers to a product development strategy in which a company develops a family of products 

which can share components and assets to target specific market segments (Meyer and Utterbeck 1993; Jiao 

and Tseng 2000; Krishnan and Ulrich 2001). A product platform, therefore, consists of the design and 

components which are shared by a set of products. By combining components in different combinations, a 

platform can give rise to variant of different products addressing different market needs. Platform design, 

therefore, is refers to product strategy of developing a product families. However, SBCE is a design strategy 

used to implement a product strategy (Bernstein 1998). So, SBCE can be used to design a product platform. 

However, as some research recommended, platforms and modular designs facilitate the SBCE process 

(Morgan and Liker 2006; Hoppmann 2009). It supports designers to focus their SBCE efforts only on a 

system area where exploration and testing are needed. If part of a system can be standardized and 

modularized in the form of platforms, SBCE efforts become more effective to drive innovation in product to 

serve a market. 

3.3 Conclusions  

In conclusion, SBCE involves three basic principles such as exploration, set based communication and 

convergence. The principles are derived from evidence from automotive development practice in particular 

from Toyota’s PD. The principles however are very sensible to be adapted to other product types and also 

industries. The general objective of the principles is to make PD a lean process and to create a knowledge 

based environment in design practice through mechanism suggested (tradeoff curves, checklist, and 
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standards). In particular the benefits of SBCE’s principles are: to arrive to an optimal design concept that 

maximizes value for customers and companies; reduces expensive reworks late in the process that eventually 

result in delay and budget overruns; improve innovation potentials by exploring enough alternatives at the 

start when there is more flexibility to do so.  

Table 3.1: Comparison of SBCE with similar approaches
7
 

Approaches Similarity Differences 

Pugh’s controlled 

convergence 

 

 Consideration of large number of 

solutions 

 Elimination of inferior solutions rather 

than selection 

 Solution space converge and diverge at 

any time in the process, rather than 

convergence in SBCE 

 Not necessarily involves SBCE 

principles 

 Not necessarily dictates parallel 

development of concepts 

 Not necessarily involves mechanisms to 

facilitate SBCE’s principles 

 Not necessarily focuses on knowledge 

based paradigm
8
  

Design-Build-Test 

cycle and Spiral 

development 

 

 Considerations of multiple solutions 

 Fast feedback for teams  

 Small number of solutions 

 Fact cycle based on several design 

modifications, rather than parallel 

development and convergence as in 

SBCE 

 Not necessarily involves SBCE 

principles 

 Not necessarily involves mechanisms to 

facilitate SBCE’s principles 

 Not necessarily focuses on knowledge 

based paradigm 

Platform design 

 

 Standard modules can be designed  

based on SBCE principles 

 Variety of design options/customized 

solutions can be designed from a 

platform 

 SBCE is a process to build an optimal 

platform. Thus, platform is the result 

and SBCE is the process to design a 

platform 

 

                                                     

7
 The comparison is based on the author’s analysis and opinion. 

8
 Knowledge based paradigm is when the principles (exploration, set based communication and convergence) are 

supported by knowledge and data using experience, knowledge from past projects’, testing of alternative solutions at 

different working conditions and frontloading knowledge from downstream functions (e.g. manufacturing, assembly, 

use, service phases). 
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Approaches that are seemingly similar with SBCE are compared in this chapter. In general, the similarities of 

the approaches with SBCE lie on the consideration of multiple alternatives early in the beginning (see Table 

3.1). However, looking in-depth to the details there are significant difference with the other approaches. 

SBCE advances other existing approaches in several ways. Table 3.1 summarizes the differences. Taking 

Pugh’s controlled convergence approach as an example; there are several differences with SBCE on how 

concept convergence is taken place. In Pugh’s approach new solutions are allowed to be reconsidered even 

late in the process which according to SBCE’s principles of ‘stay once committed’ creates disruption across 

team members because new concepts might cause reworks. The Pugh’s approach doesn’t necessarily involve 

neat principles and mechanisms as SBCE. Principle based developed is paramount to guide designers to be 

effective. Importantly, there is a difference between Pugh’s approach and SBCE related to creating a 

knowledge based environment in design process. Pugh’s approach has little guides or suggestions on how to 

use knowledge to facilitate the convergence process. In SBCE however, the processes of exploration, set 

based communication and convergence are facilitated by knowledge gained through previous projects, or 

testing or frontloading from downstream functions. Thus, SBCE is knowledge based paradigm than other 

approaches proposed in literature.  

In the next chapter 4, the enablers of SBCE will be discussed in detail. Enablers of SBCE are those practices, 

capabilities, competences or techniques that are necessary to conduct the principles. Extensive literature 

reviews are conducted to build an integrated framework of enablers. The first use of the framework is to 

contextualize the discussion on research gaps presented in chapter 5 and the research contributions this thesis 

proposes in chapters 6 and 7. The second use is for industries who want to apply SBCE process in their 

development process. The integrated framework will suggest what improvements or changes industries have 

to make to effectively integrate the principles of SBCE in practice. The third use of the integrated framework 

is to expand the arguments presented in the literature. In general, the current argument on the convenience of 

adopting SBCE has limited view. The limitation is that, most of the literature argued SBCE as pursuing 

multiple designs and converging into one preferred solution (e.g. Terwarch, et al. 2002; Bogus 2006). 

However, SBCE concepts indicate more than this narrowed view. Therefore, when SBCE is argued along 

with its associated enablers, it brings more perspectives to industries and expands the discussion on the role 

of SBCE. 
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4 ENABLERS OF SET BASED CONCURRENT 

ENGINEERING 

 

This chapter is dedicated to construct the SBCE enablers. ‘Enablers’ in this context implies those elements 

that are necessary to execute SBCE’s principles in practice. These enablers are built considering literature 

from different bodies of knowledge in product development such as concurrent engineering, knowledge 

management, customer value researches, tools, methods, technologies, and lean product development. Five 

enablers are identified and discussed in this chapter. These are: customer value research, which is concerned 

with the capturing and integration of customer information into SBCE; people competence, which deals with 

the role of mentoring, coaching and strong-leadership in facilitating SBCE; process practices, which deals 

with the role of organization structure, involvements and integrations of stakeholders in SBCE; intra/ inter 

knowledge transfer, which elaborate the roles and the mechanisms of knowledge identification, capturing, 

documentation, transferring and reusing in SBCE; and tools/ methods/ technologies adoption, which is 

concerned with the analyses of tools, methods and technologies that can be integrated to support the 

execution of the SBCE’s principles. The intent of building the enablers is to identify their significance in 

facilitating the SBCE in practice. In this chapter, each of the enablers are discussed in detail and summarized 

in an integrated framework (framework of SBCE’s enablers). Moreover, some of these enablers are used to 

design the SBCE serious game (discussed chapter 6), and to develop the SBCE IR methodology (discussed in 

chapter 7).  
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4.1 Introduction 

Five enablers are discussed in this chapter. In section 4.1 these enablers are introduced, and from section 4.2 

to 4.6 the enablers are discussed in detail. The chapter will conclude in section 4.7 by reviewing the main 

issues of the chapter and proposing an integrated framework of SBCE. Moreover, a summary of highlights is 

provided on the gaps that exist in SBCE literature and practice concerning the principles and enablers that are 

the focus of this thesis. 

From literature review conducted in this thesis, it has been found that in order to successfully execute SBCE 

principles, there are enablers that should exist or should be practiced. Therefore, in this thesis an integrated 

framework of SBCE process has been proposed as shown in Figure 4.1. The enablers are grouped as: 

 Customer value research 

 People competences 

 Process practice  

 Intra/ Inter knowledge transfer 

 Tool/ Method/ Technology adoption. 

The proposed integrated framework has three main purposes. The first use of the framework is to 

contextualize the discussion on research gaps presented in chapter 5 and the research contributions this thesis 

proposes in chapters 6 and 7. The second use is for industries who want to apply SBCE process in their 

development process. SBCE is not just pursuing alternative designs, but is an integrated seamless framework 

that should be facilitated by the enablers proposed in this chapter. Moreover, industries should improve their 

capabilities in different enabler areas before or along with the implementation of SBCE process. The third 

use of the integrated framework is to expand the arguments presented in literature. In general, the current 

argument on the convenience of adopting SBCE has limited view. The limitation is that, most of the 

literature argued SBCE as pursuing alternative designs and converging into one preferred solution (e.g. 

Terwarch, et al. 2002; Bogus 2006). However, SBCE concepts indicate more than this narrowed view. When 

SBCE is argued along with its associated enablers, it brings more perspectives to industries and expands the 

discussion on the role of SBCE. For example, the objective of pursuing and testing multiple designs in 

parallel is to identify and capture diverse business and technical knowledge (Ward, et al. 2007). Thereby, the 

cost of pursuing multiple solutions has to be argued along with the value of creating knowledge about 

customers, design constraints and others. In the following sub-sections (4.2 to 4.6) each of the enablers is 

discussed. 
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Figure 4.1: Integrated framework of SBCE principles, process and enablers
9
. 

4.2 Customer value research  

Customer value research has been a topic for several years in the past, there has been a wide spectrum of 

definitions on “what value is” (as listed below) and there are several models explaining the relationship 

between value and business performances. The purpose of this section is not to extensively review the 

literature on the topic of customer value research. Instead, the purpose is to show why understanding the 

right customer value is critical for successful implementation of SBCE. 

There are several definitions on what value mean as listed below. The definitions however share similar 

features. First, value is perceptual and this is probably the most universally accepted aspect of the concept. 

Indeed, some authors even use the terms “perceived value” or “value judgment” to refer to customer value. 

That means the consumer’s evaluation of the value of a product or a service is not an objective process but is 

                                                     

9
 The term SBCE process is related to the development of a design following the SBCE principles. In this thesis, SBCE 

process and SBCE principles might be used interchangeably when the principles are mentioned as a whole. Moreover, 

SBCE process and SBCE principles are also referred as simply SBCE. 
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influenced by a perceptual distortion of reality, and that might be the main reason why, after all, it is so hard 

to find a universal definition to this concept. 

Some definition of customer value Source 

“The con umer’  overall a  e  ment of the utility of a product based on perceptions of what is 

received and  hat i  given” 
Zeithaml 88 

“A cu tomer’  perceived preference for and evaluation of tho e product attribute , attribute 

performances, and consequences arising from use that facilitate (or block) achieving the 

cu tomer’  goal  and purpo e  in u e  ituation ” 

Woodruff 97 

“Cu tomer perceived value in bu ine   market  i  the trade-off between the multiple benefits 

and  acrifice  of a  upplier’  offering, a  perceived by key-decision makers in the customer’  

organization, and taking into con ideration the available the alternative  upplier’  alternative 

offering  in a  pecific u e  ituation” 

Eggert and 

Ulaga 02 

The second common feature that is widely shared between different opinions is that value is situational and 

temporally determined. Thus, the perceived value of a product can be expected to vary across different types 

of purchase situations. Moreover, even for the same type of purchase situation, the value of a product can 

change over time based upon the customer’s past experiences or satisfaction.  

Both features indicate the nature of the information about customer value is both imprecise and unstable. 

Schrader et al. (1993) defined imprecision when the information received is not accurately described. On the 

other hand, Terwiesch et al. (2002) defined instability of information when it changes overtime. These are 

the two main reasons (imprecision and instability) why in SBCE the process of studying customer value 

should be different. The discussion of customer value research for SBCE is divided into two portions: 

customer value capturing and customer value integration. Each will be briefly discussed as follows: 

4.2.1  Customer value capturing  

Traditionally, companies conduct surveys, interviews and industrial value assessments to pinpoint values 

which can be expressed or stated explicitly (Anderson, et al. 1993). However, the capacity of these methods 

to capture the intrinsic and unexpressed customer value is weak. Information gathered through marketing 

survey is poor in capturing the information accurately (Morgan and Liker 2006). Moreover, it is normal that 

customers might not know what they need today and in the future. In his famous study Wicker (1969) found 

that there is only a weak correlation between speech and behavior. Wells and Loftus (1984) showed that 

people’s descriptions of past events are highly fallible. As a result, by using traditional value collection 

methods alone (e.g. customer survey), it is difficult to get accurate information on what customers really 
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want today and in the future. As a result, a different approach is necessary before a SBCE process is 

practiced. 

Morgan and Liker (2006) underlined the above facts and explained that SBCE process in Toyota for example 

starts with effectively capturing customer value information. The chief engineers (CEs) in Toyota spent 

extensive time at customers’ sites to understand the final users’ experiences. In this way, the engineers will 

have a more precise idea of the customers’ expectation, and can meter what functions and forms a car should 

have. The customer requirements are then documented in the form of a concept paper, presented to 

management, evaluated, refined and eventually translated into a product definition (Ward, et al. 1995; 

Morgan and Liker 2006). 

Logically, the consequence of missing the right customer information is worse in the case of SBCE than in 

PBCE. Because, in the former case, engineers will explore solutions, teams do extensive communication 

about sets, and progressively converge into a solution. These processes demand a considerable amount of 

engineering time. Thus, if the input of customer information is wrong and/or changes, the impacts in PD 

performances become drastically worse. Therefore, industries have to have effective approaches and methods 

to capture customer value information before adopting SBCE process. 

A summary and comparison of different customer value research methods are presented in Table 4.1. Those 

methods which enable engineers to get accurate value information are recommended to use in SBCE. For 

instance: Field value in use/Gamba (Imai, et al. 1985; Imai 1997), where engineers assess customers while 

using a new product and make intensive collaboration with the customer itself or practicing “Gemba” (a 

Japanese word which means ‘‘the true source of information’’); Ethnographical studies (Wells and Loftus 

1984; Morgan and Liker 2006), where engineers in this case act as if they are the end users of the product 

and put themselves in the shoe of the customer. 

Table 4.1: Some examples of customer value capturing methods. 

Methods of  

capturing value 

Form of 

documentation 

Effectiveness and 

usage 
Advantages Disadvantages Source/s 

Direct Survey/ 

Interview 

qualitative 

rakings or rough 

value 

propositions 

widely used for 

simple, familiar 

products, non-

technical products 

simplicity, 

fast, most 

familiar 

less effective to 

capture unspoken 

needs, low response 

rate 

Anderson, et 

al. 93 

Conjoint analysis 

range of numbers 

for different 

value attributes 

familiar but less 

used, prevalent for 

pricing  

rigorous and 

higher 

accuracy 

very expensive 

comparing to other 

methods, not 

Green, et al. 01 
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(e.g. 0-9 range) effective to capture 

unspoken need 

Focus group value 

assessment/Gamba 

qualitative 

assessments 

used at design 

concept stage, 

familiar in business 

to business  context 

effective to 

capture 

unspoken 

needs 

need knowledge 

and experience 

about technical and 

market issues  

Imai, et al. 85; 

Imai 97 

Contextual Inquires 
qualitative 

assessments 

effective to capture 

technical 

difficulties in use 

effective in 

discovering 

customers  

customer distraction 

and behavioral 

biased  

Shillito 01 

Customer 

Defection 

qualitative 

assessments and 

pareto chart 

used in service 

design 

improve 

services 

late feedback, 

failure to learn from 

the past 

Reichheld 96 

Ethnographical 

Studies 

performance 

targets for new 

ideas and 

concept papers 

used in Toyota 

effective in 

matching 

customer 

and design 

process 

need knowledge 

and experience 

about technical and 

market issues 

Wicker 69; 

Wells and 

Loftus 84 

Open 

innovation/Co-

creation 

sharing 

experience, 

trends and 

technologies 

used in B2B, 

supplementary 

industries 

involves 

multiple 

stakeholders 

stakeholder might 

not be creative, 

cultural/change 

barriers 

Chesbrough 

03; David, et 

al. 07 

Social Medias and 

Networks 

quantitative and 

qualitative data 

social platform to 

capture customer 

information 

less costly, 

effective in 

capturing 

value 

difficult to manage 

and update, hard to 

filtering genuine 

feedbacks 

Nikolaus and 

Frank 04; 

Cooke and 

Buckley 08; 

Andersson and 

Rosenqvist 07 

4.2.2 Integrating customer value  

Capturing customer value is not sufficient; those values should be effectively integrated into products’ 

features, and delivered to the customer at the right time/ cost and quality. Ward et al. (2007) describe the 

concept of flow in PD to indicate the role of customer value. Customer value should drive a development 

process. Engineers should be concerned to achieve the right customer value and avoid wasting their time on 

non-value adding activities (Browning 2003). One of the non-value adding activities in PD is “over 

design/over processing”. This includes adding functions and features in design concepts which don’t have 

any value to the customer (Bauch 2004; McManus 2005; Kato 2005). In fact, researches show that non-value 

adding activities (including over design) have considerable negative impacts on PD performances, such as 

reworks, incurring additional costs, missing opportunities and so on (Oehmen and Rebentisch 2010; Pessoa, 
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et al. 2008; Rossi, et al. 2011/a). In SBCE process, the issue of integrating customer value and striving to its 

achievement has to be taken as important. Otherwise, its potential to improve PD performances in industries 

will be limited. Therefore, mechanisms that facilitate value integration into product and process are 

considered as part of the integrated in SBCE process, as shown in Figure 4.2. 

 

Figure 4.2: Customer value research as enabler for SBCE process. 

There are different mechanisms that help companies to effectively integrate customer value into product and 

process to facilitate SBCE. For example, the chief engineers (CEs) system involves engineers which are well 

experienced in technical knowledge and customer researches. CEs conduct ethnographical studies at 

customer sites and understand what customers need. Then, the engineers act as integrator between customer 

and the developing company (Morgan and Liker 2006). Whenever there are conflicts between sub-system 

engineers during SBCE, the CEs decide what to do, and always lead development teams to achieve the 

defined customer value. 

There are also tools which can facilitate the integration of customer value into product and process in SBCE. 

For example, the prevalent QFD (Quality Function Deployment) tool can be used to translate the customer 

values into product and process quality characteristics (Akao 1990/a/b). QFD perhaps is the most well-

known and well-studied tool (Chan and Wu 2002). However, one should notice that, it can be used in both 

PBCE and SBCE. Liker, et al. (1996) and Cristiano, et al. (2000) did survey studies on the usage of QFD in 

U.S and Japanese industries and found out that QFD is used in different ways in the two countries. In U.S 

industries, QFD is a tool to primarily execute point based practice: to fix design specification early, to select 

a design concept before feasibilities are well studied and to plan development and production activities. On 

the other hand, Japanese industries use QFD to primarily execute SBCE. The use of QFD for set based 

practice allows flexibility in Japanese industries (Liker, et al. 1996). Because, at early phase of design, the 
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customer value (in the form of requirements) are not fully known and are subject to changes. Thus, the 

matrices and the checklists used in QFD are based on broad definition of customer requirements (range of 

values). The design and production plans also consider these ranges of possible customer requirements. For 

example, manufacturing department starts ordering dies with broader specifications (not fixed) and consider 

alternative manufacturing processes. Thus, if there are any changes in the middle of the PD process, the plan 

is flexible enough to adjust. 

Value engineering (VE) is another systematic technique used to make sure that the customer value identified 

from customer research is achieved (Cooper, and Slagmulder 1997). In VE, customer value is assumed to be 

the ratio of function to cost and can therefore be increased by either improving the function or reducing the 

cost (Cooper, and Slagmulder 1997). So, VE can be used in SBCE process to facilitate set based 

communication, convergence and selection processes. Cariaga, et al. (2007) developed an integrated model 

based on VE and QFD approaches for eliciting and evaluating design alternatives. The model has been used 

to evaluate design concepts based on their value indices for the final customer. QFD used in the model as a 

mechanism to translate the customer information into some value attributes, while VE used to provide 

measures to evaluate the performance a design alternative based on the value attributes designed. Such kind 

of model can be utilized in SBCE process to evaluate alternative concepts based on the right customer value 

measures. Moreover, it is also possible that some concepts can be merged to maximize their value contents 

(Cariaga, et al. 2007). 

In summary, customer value research is an important enabler of SBCE process. Careful examination of 

customer value and proper integration into PD is paramount, otherwise a SBCE implementation initiative 

turn out to be a futile effort. In order to support SBCE, therefore, effective methods, tools and techniques 

should be used to precisely capture and integrate customer value information in SBCE. 

4.3 People competence  

The role of the chief engineers (CEs) is critical to ensure customers’ orientation throughout the entire 

duration of a project. In particular, CEs facilitate SBCE process by predicting customer value information 

with greater accuracy, and make follow ups to make it stable throughout a project. CEs skills and 

competences will also be used to integrate the customer requirements in SBCE process to explore concepts, 

facilitate communication and integration. This coordination function is of major importance for the success 

of SBCE and the success of a design project.  

In SBCE, engineers have to do a lot of technical works such as exploring of alternative solutions, evaluate 

their inherent tradeoffs, and test the alternative solutions to check feasibilities. These activities make 
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technical specialties indispensable with dedicated expertise in a particular field and knowledge domain 

(Ward, et al. 2007). I.e. engineers will specialize on particular sub-systems. For example, in automotive 

design, a designer could specialize in engine or styling design. Such specialization of knowledge and skills 

support SBCE process in order to effectively explore innovative sub-system solutions, evaluate sets and 

testing solutions (Ward, et al. 2007). As Womack and Jones (1994) pointed out, specialized functions serve 

as schools which continuously gather knowledge and best practices and teach it to their members. This 

ensures that engineers have standard skillsets which enable them to fulfill their particular tasks in the best 

way possible in SBCE process (Ward, et al. 2007).  

However, in traditional organizations engineers often do not spend long enough time in the same functional 

or specialized division. Career paths are built by substituting technical tasks with general management and 

administrative tasks (Hoppmann 2009). This practice is a risk for successful implementation of SBCE 

process. Ward et al. (2007) asserted that knowledge will be wasted when engineers change from being 

designers to managers in short period of time, without making technical foundations beforehand.  

First, when less experienced engineers become managers, their technical abilities to manage a SBCE process 

will be under question, which creates knowledge gaps (Ward, et al. 2007). In Toyota, for example, it 

normally takes a minimum of 10 to 12 years before an engineer becomes eligible for promotion to a first-

level management position (Morgan and Liker 2006). This indicates that for a SBCE process to be effective, 

engineers should have a deep understanding of their specialized area before promoted to management levels 

(Schuh, et al. 2007).  

Second, new engineers should get proper mentoring and training activities to foster SBCE process. Training 

and mentoring are key to transfer knowledge from experienced to novice engineers (Morgan and Liker 2006; 

Ward, et al. 2007). One factor that contributed to the success of SBCE process in Toyota is the culture of 

comprehensive use of mentoring as one of its core leadership principles (Morgan and Liker 2007). For 

example, new engineers in Toyota, after being selected in a rigorous admission process, first have to spend 

about half a year assembling and selling cars. This procedure is supposed to increase their understanding of 

value as perceived by the end customer and production.  

In sum, SBCE process is effective when engineers and managers are skilled in understanding customer needs 

and integrating those needs in the design process. Mentoring and training activities for engineers are 

paramount for effective implementation of SBCE. Moreover, following specialized carrier paths in particular 

sub-systems knowledge domains is part of enabler for SBCE. Figure 4.3 shows an integrated competence 

scheme necessary to pursue SBCE process based on skill, experience and knowledge. 
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Figure 4.3: People competence as enabler of SBCE process. 

4.4 Process practices  

Process practices in this thesis are concerned with those design and development activities that facilitate the 

SBCE process. Within process practice category, there are several key enablers that can support the 

exploration, communication and convergence principles in SBCE. Process practice enablers are groups into 

three main perspectives: organization, involvements and integration. Organization is concerned with the way 

a PD process is structured. Involvements is dealt with the systematic integration of stakeholders, this further 

divide into three aspects such as, early involvement of customer, suppliers involvement for SBCE and 

involvement of internal functions (e.g. testing, manufacturing and so on). Integration is concerned with how 

teams involved in PD process integrate each other and how problem are handled at control points in PD 

process. In this section, each of these process enablers is discussed in the realm of their implications for 

SBCE. 

4.4.1 Organization  

As discussed above in section 4.3, specialized carrier path has been mentioned as one enabler for SBCE 

process. The rationale behind was that, effective innovation in SBCE can be achieved if engineers are well 

experienced and knowledgeable in their respective specialized sub-system areas (Morgan and Liker 2006; 

Ward, et al. 2006; Hoppmann 2009). However, organizational structure based on functional or specialized 

areas might limit communication and integration, which are key aspects in SBCE process (Morgan and Liker 

2006; Ward, et al. 2006; Hoppmann 2009). In order to benefit the merits of specialization and achieve 

integration, a matrix organization is favorable for SBCE (Morgan and Liker 2007; Hoppmann 2009). In 

matrix organization, engineers are grouped according to their specialized area and the chief engineers 

integrate the activities of a project across functional groups (Morgan and Liker 2007), see Figure 4.4 below. 

People 

competence 

SBCE process

Chief engineering (CE) system

Mentoring and training

Specialized carrier path



42 

 

  

Figure 4.4: Product development matrix organization as enabler for SBCE process. 

In Toyota, for example, chief engineers (CEs) check the adherence of a project to schedule, cost and 

performance targets set at the beginning (Schuh, et al. 2008). They communicate directly and frequently with 

designers and engineers who work in sub-system levels. In contrast to the role of a classical project manager, 

however, CEs role is not limited to administrative tasks, personnel decisions and project controlling. Instead, 

they are strongly involved in the development of the technical details. 

While the specialized engineers focus on the development of solutions for subsystems and components, the 

CEs as the lead engineer is mainly concerned with the integration of these subsystems to an overall high 

performance, high-quality system (Morgan and Liker 2006). Moreover, it is also the role of the CEs to 

resonate the “voice of the customer” to ensure that program objectives and the goals among the cross-

functional team are well aligned (Haque and James 2004). They “own” the program and, due to their far-

reaching leeway, can be held fully responsible for project outcomes (Oppenheim 2004; Karlsson and 

Ahlstrom 1996; Sobek, et al. 1999; Kennedy 2003; Ward, et al. 2007). 

One paradox that exists in Toyota’s PD organization is that, the CEs irrespective of their large 

responsibilities, their authority to manage engineers are limited. Apart from a small team of staff, sub-system 

specialized engineers do not report to the CEs. It is up to the functional managers who supervise the 

engineers, assign them to projects, evaluate their performance and decide on promotions. In this way, CEs 

are freed from administrative tasks and focus on integrating customer needs across the functions. What give 

CEs a resound respect across engineers are their renowned experience and knowledge among all the 

engineering and functional managers (Morgan and Liker 2006; Oppenheim 2004; Kennedy 2003; Ward, et 

al. 2007).  
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In summary, SBCE demands a PD structure where specialized skills are used to explore and test solutions in 

SBCE process. At the same time, CEs will strive to achieve integration and communication across the 

specialized functions and lead value delivery in SBCE process. 

4.4.2 Involvement 

The second category of enablers from a process practice perspective is the involvement of stakeholders in 

SBCE process. Stakeholders in this sense can be customers, internal functions (e.g. testing), and key 

suppliers. The detail discussions of involving customers in SBCE process have been discussed section 4.2. In 

section 4.5, more will be presented about the involvement of internal functions to facilitate knowledge 

identification and capturing process in SBCE. This section primarily extends the discussion of suppliers’ 

involvement in SBCE process. 

Liker, et al. (1996) studied Western and Japanese automotive OEMs (Original Equipment Manufacturers) 

and their relationship with suppliers for SBCE process. The study exhibit the Western OEMs work with a 

large number of suppliers for every part. Before approaching the suppliers, they define detailed part 

specifications, invite for tenders and (mainly based on price as a criterion) award the business to a supplier. 

This practice resulted in a situation with adversarial relationships between automakers and outside suppliers. 

OEMs have often used their market power to extort low prices from suppliers. Suppliers, in turn, have been 

reluctant to share inside information with OEMs, fearing that their customers could use this knowledge 

against them in the bidding process. After being chosen as the supplier for a particular part, they have to 

inevitable use changes in the development phase to raise their initially negotiated price (Liker, et al. 96; 

Morgan and Liker 2006; Ward, et al. 2007). The process of price negotiation with a large number of 

suppliers usually requires a high amount of resources on the part of the OEM, resulting in large purchasing 

organizations which are responsible for the correspondence with the suppliers (Liker, et al. 96; Morgan and 

Liker 2006; Fiore 2004). 

Companies practicing SBCE have different approach regarding their relationship with their key suppliers. 

For example, companies such as Toyota and other Japanese automakers have a much smaller supplier base to 

work on in long term bases (Liker, et al. 1996). These suppliers are involved from the early beginning of a 

project, to forward alternative component designs and give ideas about technological opportunities and risks 

(MacDuffie, et al. 1996; Morgan and Liker 2006). 

Toyota for example divides its supplier base into four (Morgan and Liker 2006): contractual suppliers, who 

supply simple commodities such as nuts, bolts, brackets and spark plug which Toyota orders via catalogue; 

consultative suppliers, who produce slightly more technically complex parts like tires and they frequently 

report their innovations to Toyota; mature suppliers, compared to the previous two, suppliers in this category 
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have stronger engineering skills and design their product according to only general specifications given by 

Toyota; and partner suppliers, which are large and highly capable suppliers which develop, produce, and 

supply complete sub-systems and these are technically autonomous to make decisions on behave of Toyota. 

Relationship between Toyota and the last two categories of suppliers exhibit a SBCE approach than a 

traditional PBCE. Usually, they are not given detailed specifications on the part they have to deliver. Instead, 

they are assigned the responsibility for a particular subsystem and help draw up the specifications for their 

module by actively participating in the design process (Liker, et al. 1996; Karlsson and Ahlstrom 1996). 

Toyota gives only general functional and interface requirements including cost and weigh targets, but 

without detail specification across each target. The suppliers are free to choose solutions as long as they meet 

the general requirements, which frequently checked by the CEs at Toyota (Sobek, et al. 1999; Ward, et al. 

2007). This exhibit a set-based philosophy in the relationships, because suppliers will take a rough 

requirement and able to explore alternative solutions, and delay decision as late as possible until the 

necessary knowledge is uncovered to make decisions. 

In SBCE, suppliers make drafts, simulate and conduct tests of solutions. Toyota expects its suppliers to 

explore the trade-offs among different requirements, back decisions with test data and demonstrate designs 

by delivering fully functional prototypes early in the process (Liker, et al. 96). In some cases, suppliers are 

asked to show 10 up to 50 alternative prototypes and their tradeoffs (Ward, et al. 1995; Sobek, et al. 1999). 

While in traditional companies, a supplier for a particular component is picked at an early stage, at Toyota 

suppliers are asked to present alternatives solutions, present the feasibilities of the solutions, and will develop 

sub-systems in parallel with the Toyota’s designers. 

In summary, involvement of important suppliers play important role in SBCE. Their inputs increase the 

efficiency and effectiveness of the activities involved in exploring, communicating and converging sets. 

Moreover, since they are experts in their area, the tradeoff assessment they bring give a sound base to make 

decisions based on data for OEMs. 

4.4.3 Integration  

Integration in SBCE is needed to make negotiation within functional teams involved in development. 

Integration is also need to eliminate subsystem solutions which are incompatible and infeasible, taking 

different functional perspectives into considerations. Further, integration is essential to facilitate team 

building and knowledge development about performances of others’ subsystems solutions (Ward, et al. 2007; 

Liker and Morgan 2007; Oostewal 2010). 
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SBCE demands effective negotiation and convergence of solutions should occur. However, these 

convergence processes for both designs and requirements mandate a slightly different management approach 

than is normally used in engineering design (Sobek, et al. 1999). In PBCE, completion of design activities 

are controlled by phase-gate controls (Cooper and Kleinschmidt 1993; Cooper, et al. 2002; Cooper and 

Edgett 2008). Traditional phase gate methodology promotes progression of product development linearly 

through distinct phases (stages) of development (Oostewal 2010). However, the targets set in these gates are 

the assumption of what the final design looks like (e.g. specifications, cost targets, and so on). The targets 

however found to be infeasible at the gates because of the inherent nature of the process itself. Often, 

customers change their requirements, suppliers found to be incompetent to deliver the specifications or 

design fails to meet expectations. Moreover, these changes result in reworks and cause the project to be 

delayed exceeding the budget. As a result, SBCE process should avoid creating gates that are built on this 

wrong assumption about the nature of design and development process. Allen Ward called this assumption 

and the status quo of phase-gate approaches as “evil” (Oostewal  010, pp. 148). 

In SBCE, gates are substituted with integration events (Ward, et al. 1995). Integration events as opposed to 

design review or gates are points where multiple functions show the performances of explored alternatives 

and receive feedback from other sub-system team members or CEs (Oostewal 2010). Usually, sub-system 

functions bring with them prototypes to facilitate the integration events (Wheelwright and Clark 1992). The 

sets explored are useful tools for managing the design process itself. The size of a set is an indication of the 

feasibility of the remaining design alternatives (Sobek 1997). If a set is still very large, it indicates that 

engineers are still uncertain about the design. When a set becomes small, on the other hand, it demonstrates 

that engineers are confident that they are nearly at the final solution. Thus, process gates serve as formal 

points in the development process at which managers and engineers can review how large various sets are. 

Sets that are larger than others provide managers and engineers with a clear signal as to which aspect of the 

design are progressing more slowly than others, and developers can identify aspects that require more 

attentions. Hence, in addition to aiding engineers communicate with one another, sets help engineers and 

managers control the design process (Bernstein 1998; Oostewal 2010). 

To facilitate such integration events in SBCE process, Toyota for example set up special rooms what they 

call it in Japanese as “Obeya” room which serves as venue for regular meetings between CEs and the leaders 

of the functional groups (Morgan and Liker 2006). On the walls of the Obeya room, the functional engineers 

post the latest information on the status of projects. In traditional design review meetings, most of the time 

are wasted arguing without clear data and knowledge about design performances, and its effectiveness is 

very poor (Oostewal 2010). However, in Obeya room, teams from different functional areas open dialogue 

and negotiation process using data and knowledge, thanks to the generated tradeoffs and limit-curves from 
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different functional perspectives (Ward, et al. 2007). Therefore, integration event that brings functional teams 

together along with their data will facilitate flow in design process and build a true concurrent engineering. 

 

Figure 4.5: Involvements and integration in SBCE process. 

In summary, effective process practices such as matrix organization, stakeholders’ involvement and 

integration events will facilitate the exploration, set based communication and convergence principles of 

SBCE. Otherwise, SBCE will be chaotic and inefficient without such practices in place. Moreover, 

throughout these practices, knowledge from internal design activities, suppliers, manufacturing and field tests 

will be integrated to create a robust SBCE process. Figure 4.5 shows a schematic representation as the 

summary of the discussions on involvement and integration in SBCE. 
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4.5 Intra/ inter knowledge transfer 

Perhaps, one of the key enablers in SBCE process is knowledge capturing and transferring. Allen Ward, the 

pioneer of SBCE, expressed product design and development as a knowledge creation factory (Ward, et al. 

2007). What makes design and development process different compared to production is that, in the former 

case designers are confronted with new problems and have to create new knowledge to solve those problems 

in their design activities. One of the critical sources of waste in PD is bad management of knowledge (Bauch 

2004; McManus 2004; Kato 2005; Pessoa, et al. 2008). Bad management of knowledge in PD has two sides 

in it. First is lack of sufficient knowledge creation and documentation within a project (intra knowledge 

capturing and documentation). The second is the lack of knowledge transfer and use across multiple projects 

(inter knowledge transfer and use).  

4.5.1 Intra knowledge identification, capturing and documentation  

As mentioned in section 2.2.2, the traditional PD is inherently flawed due to the design-test-build doctrine. 

Team members involved in a PD are normally considering design problems as predictable and look for 

solutions which are known to them. Kowalick (1998) has expressed this phenomenon as “physiological 

inertia” when problem solvers are normally look for solutions in their mental solution space, i.e. looking 

solutions from what they know. However, PD is very unpredictable and unknown sources of failures might 

occur in different phases of a product’s life cycle. SBCE shift the traditional dogma of the physiological 

inertia and the design-build-test doctrine to a more knowledge based PD and test-build-design approach 

(Kennedy and Harmon 2008). In SBCE, engineers will frontload the design process with knowledge from 

upstream and downstream activities. This can be achieved through testing a solution by intentionally vary 

parameters early in the development process to explore and understand the limits of what is feasible or 

testing multiple design alternatives at different sets of working conditions. Then the product is designed with 

the knowledge of those parameters (Ward, et al. 2007; Oostewal 2010). Such practices are much more 

effective in understanding and capturing the unknowns in design problems. Furthermore, the knowledge 

capturing mechanisms of SBCE (tradeoff curves, limit curves and checklists) are effective to document and 

visually represents data and knowledge for understanding and sharing purposes. 

4.5.2 Inter knowledge transfer and use  

Several studies have shown that even highly innovative products strongly depend and build upon knowledge 

of older products. This knowledge, if not appropriately captured, has to be continuously regenerated 

(Thomke 2000; Morgan and Liker 2006). For example, Watkin and Clark (1994) found that problems are 
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often repeatedly solved in consecutive projects. Similarly, in a study of field problems with two novel 

process machines, von Hippel and Tyre (1994) discovered that of 22 problems identified after installation, 15 

involved information that had existed prior to installation. In 10 of the cases the information had simply not 

been transferred by the designers. 

However, test results, simulation results, lesson learned documents are very daunting to revise for engineers 

in traditional companies (Liker and Morgan 2006; Rossi, et al. 2011/b). Because, the transfer of such 

knowledge across functions and projects are by transferring engineers and/or using writing long technical 

documents/ extended reports. For engineers (“knowledge or creative workers”) these are not effective to 

understand what lesson has been learned in the past or in another project in different place by different teams 

(Brown 2007; Mascitelli 2007).  

The creation of knowledge and effective transferring to subsequent project is paramount in SBCE. At 

Toyota, for example, for every major part of a vehicle there is a part-specific checklist containing what the 

company has learned over the years; often visual information regarding good and bad design practices, 

performance requirements, critical design interfaces, critical to quality characteristics, manufacturing 

requirements as well as design standards. Each sub-system specialist keep the tradeoff curves and 

performance checklist to communicate among other engineers, and these instruments also be pulled in 

subsequent projects to begin from what has been achieved in previous projects (Sobek, et al. 1999; Morgan 

and Liker 2006; Ward, et al. 2007). 

 

Figure 4.6: Intra/ inter knowledge capturing documentation, transfer and use in SBCE process. 

In summary, design is a knowledge creation factory. Effective design knowledge identification, capturing, 

documenting, visualizing, using and reusing are all paramount for the success of PD performances and for a 
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knowledge based environment, both within a project and across projects. Figure 4.6 shows the summary of 

the discussions about intra/ inter knowledge transfer as enablers for SBCE process.  

4.6 Tools/ methods/ technologies adoption 

The last enabler for SBCE is the adoption of systematic tools, methods and advanced ICT (Information and 

communication) technologies. There are several of such enablers that have direct and indirect relationship 

with the principles of SBCE. Some of these enablers are already mentioned in the previous sections e.g. QFD 

(Quality Function Deployment), Value Engineering (VE), tradeoff curves, limit curves, checklists. In fact, 

some tools are used by Toyota or Japanese manufacturers to support the SBCE process, e.g. QFD (Liker, et 

al. 1996). But, in general, there are very limited researches that investigate the relationships or the 

application of already existing tools, methods and technologies with SBCE process. Nevertheless, some of 

the elements of SBCE process have been addressed by several researchers with or without referring SBCE. 

Reviewing all the available tools, methods and technologies that can support SBCE process is out of the 

scope of this thesis. However, brief overviews of some of these enablers are explored to give a glimpse of 

how SBCE can be effectively and efficiently implement along with the enablers. 

In order to make a concise assessment, the relationship of the enablers with SBCE concept is grouped 

according to the different phases of the SBCE process. They are: capturing and integrating customer value, 

exploration of alternative sets, communication of sets of solution within design teams, convergence of sets of 

solutions and selection of a final design. Note that, some of the tools or methods or technologies can be used 

to facilitate several phases of SBCE process. For example, VE method can be used to eliminate design 

solutions which found to be inferior in an early phase of SBCE process, and it can also be used to select a 

final solution at the end of the process (Cooper and Slagmulder 1997). In another example, tradeoff curves 

can be used to explore solutions, communicate sets of solutions with teams and it can also be used to select a 

final product (ward, et al. 2007). 

4.6.1 Capturing and integrating customer value 

As mentioned in section 4.2, SBCE process should begin with a good understanding of what the customers 

are looking for. Even if the process starts with imprecise customer requirements, enablers of SBCE should be 

in place to guarantee that the design efforts are made in the right directions. Otherwise, all the process will be 

in efficient and ineffective much worse than PBCE. Therefore, tools/methods/technologies for customer 

value research in SBCE process should facilitate accurate predictions of customer value effectively which are 

stated explicitly or unexpressed ones. 
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Although it has been still a major methodological problem to capture such values, several methods exist 

(Anderson 1993; Kenneth 1996). List of methods that can be used in SBCE are presented in Table 4.1 above. 

Some of the methods are briefly explained below. 

Shillito ( 001) proposed a method called “Contextual Inquires”. In this method, customer value can be 

captured through questioning the customer while using a product (“A day in the life of the customer”). 

Reichheld (1996/b) did also propose a method called “Customer Defection”. In this method, customers are 

not asked what they need but asked why they refuse to buy a product. In this way, it is more sensible 

approach to capture what the customer might not express before, and such information can be used to 

improve product features. Morgan and Liker (2006) describe also a method that Toyota uses to capture 

customer value called “Ethnographical Studies”. In this method, a team of chief engineers spent 

considerable time at the customer base and feel how users experiences a product while using it. Since the 

engineers know the technical details of the product, they can match what the customers might need with 

technical capabilities. These methods bring the engineers one step closer in understanding customers and 

would be favored than the traditional survey/interview approaches to capture value in SBCE. 

The meaning of customer value has also changed to encompass multiple stakeholders related with the 

product to be designed rather than focusing solely on end users (David, et al. 2007). This is another 

challenging aspect in capturing customer value in SBCE. Thankfully, there are emerging methods to 

encompass multiple views inside a value research theme. For example, “Open innovation” and “Co-creation” 

approaches are typically new ways of capturing the voice of multiple stakeholders to be integrated 

(Chesbrough 2003; Prahalad and Ramaswamy 2004; Ramaswamy and Gouillart 2010). Furthermore, the 

growing concerns on environmental and societal consciousness have created other arena of values that 

should be accounted in product development (Figge and Hahn 2006). Environmental aspects can be captured 

using the so called Eco-design or DFE/S (Design for the Environment and Sustainability) methodologies 

valuing products concepts across their life-cycles such as manufacturing, logistics, use, end-of-life phases 

(Devanathan, et al. 2010; May, et al. 2012).  

Ways of capturing customer value have shown distinctive trends as well; from company driven approaches 

where customers are asked their opinions and desires within predefined value choices to customer driven 

approaches where innovation and value creation incepts from customer themselves. Such a trend has been 

possible with the help of Internet and ICT (Information and Communication Technologies). The ever 

growing usage of Social Medias and Networks provide ample opportunities to capture stated and unstated 

customer needs in terms of ratings and feedback (Cooke and Buckley 2008). Nikolaus and Frank (2004) 

showed an interesting case where customers create their own product concepts and propose their own values. 
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These methods not only make value capturing process more innovative and effective but also less costly and 

time consuming.  

Another class of methods is also needed to integrate the value captured design features and functions. For 

this, QFD and VE are two prevalent tools that can be used to translate the customer values into product and 

process quality characteristics (Chan and Wu 2002; Cooper and Slagmulder 1997). Using these methods it is 

possible to map out the defined value to technical terms and design variables designers have to change to 

begin SBCE. 

4.6.2 Exploration of alternative sets  

There are several methods and tools found in the literature that can facilitate exploration of alternative sets of 

conceptual designs and creative thinking (Clegg and Birch 2007). According to Kowaltowski et al. (2010), 

there are around 250 such methods, tools and techniques exist in academic literature. However, there are very 

few researches which associate the SBCE process and these tools and methods (Bhushan 2007). The main 

aim of these existing methods and tools are also to explore conceptual solutions. Therefore, many of the 

existing tools and methods can be used to support the principle of “Mapping the design space” or exploration 

of solutions in SBCE. Some of these methods are explained below. 

Brainstorming is probably the best-known method to stimulate exploration of solutions, where experts from 

various fields put their ideas forward without prior judgment. There are basic rules to brainstorming: focus 

on quantity, no criticism, and unusual ideas are welcome since they combine and improve ideas 

(Kowaltowski, et al. 2010). In Osborn’s (1957) definition, brainstorming is a conference technique by which 

a group of people attempts to find solutions for a specific problem by amassing ideas. But, this method is not 

well structured and difficult to track back the idea generation process. Moreover, there is no guarantee that 

some solutions are left unexplored. 

A further progress in brainstorming method is also suggested in literature called Mental Map or Tree 

Diagram (Kowaltowski, et al. 2010). This method is based on the potential of idea generation when 

structured according to initial concepts. This method is usually associated with the visual representation of 

ideas, to help the ‘‘free association’’ process of brainstorming. Ideas are classified, structured and visually 

presented. By mapping information, rapid expansion and exploration of an idea occurs. Analogy of images 

may be part of this method (Rowe 1992; Lawson 1997).  

In the effort of making the exploration and creativity process structured in design, there are growing inputs 

from academia. Morphological Analysis, MA (Ritchey 1998, 2006), for instance, is a method developed by 

Fritz Zwicky (1967, 1969) for exploring all the possible solutions to a multi-dimensional, non-quantified 
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complex problem in aerospace industry (Ritchey 1998). MA is based on divide-conquer technique. A 

hierarchical structure of the designed system (a product or a specific problem) is a basis for usage of the 

method. The following basic partitioning techniques can be used to obtain the required system hierarchical 

model: (a) partitioning by system component/parts, (b) partitioning by system functions, (c) partitioning by 

system properties/attributes, and (d) integrated techniques. Then, for each lower level system, designers 

explore alternative design ideas and concepts. The difficulty of using such method, however, is that there will 

be a huge number of alternative combinations to manage. These drawbacks of the method limit its adoption 

in industries (Ritchey 2006). Moreover, unless the product concept is familiar with the designers, it is 

difficult to detail the physical and functional breakdown of the product. Because SBCE process is more 

applicable at conceptual design phase before feasibilities are even established and when data are scarce, it 

might be a challenge to use such a method in SBCE process. 

Another possible method that can be used for SBCE process is Axiomatic Design (AD). Its underlying 

hypothesis is that there are fundamental principles that govern good design practice (Suh 1990, 2001). AD 

key components are domains, axioms, hierarchies, and zigzagging. Under the AD point of view, the design 

outputs pertain to four distinct domains: the customer, the functional, the physical and the process domains. 

The design process in AD begins in the customer domain with the identification of the customer needs 

(CNs), i.e., the features that customers are looking for in the ‘design object’, be it a product, a process, or any 

other tangible or intangible system. Mapping between the customer and the conceptual domains is used to 

find out the functional requirements (FRs) of the design object. Once this is done, another mapping makes 

the translation of the FRs into design parameters (DPs), which are the set of properties that describe the 

object in the physical domain. At last, mapping from the physical domains to the process domains leads to 

the process variables (PVs), which outline how to make the design object (Suh 1990, 2001). Mapping 

between any two contiguous domains is represented by a design equation. Therefore, more than one design 

may result from the generation of the DPs that satisfy the FRs. Thus, the outcome still depends on the 

designer’s creativity. However, the design axioms (design rules in AD) provide the principles that the 

mapping techniques must satisfy to produce a good design, and they offer a basis for comparing and 

selecting designs (Coelho, et al. 2005). 

Looking AD with SBCE perspective, there seems to have synergies among them. AD can provide a robust 

and structured methodology to translate customer requirements into alternative design solutions through 

exploring alternative way of deploying functions, parameters and physical attributes. SBCE can also provide 

principles that support AD. What seems to be not clearly evident in AD is that, there are no good design 

principles that facilitate knowledge capturing, documenting and sharing. Thus, there are good overlaps 

between SBCE and AD. But, AD is a time consuming process and those equations used to map out from one 
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domain to another might not be easily available (Coelho, et al. 2005). These would limit the integration of 

AD with SBCE for exploration of conceptual solutions. 

Another method that can have a very good synergy with SBCE process is TRIZ. TRIZ (a Russian 

abbreviation for the Theory of Inventive Problems Solving) was originated by the Russian scientist and 

engineer Genrich Altshuller (Altshuller 1984, 1994, 1999). In 1948, Altshuller started massive studies of 

patent collections. His objective was to find out if inventive solutions were the result of chaotic and 

unorganized thinking or there were certain regularities and patterns which governed the process of creating 

new ideas and inventions. 

After investigating approximately 400, 000 to 2 million of patent descriptions, Altshuller found that only 

0.3% of all patented solutions were really new, which meant that they used some newly discovered physical 

principle (such as the first radio receiver or the first film photo camera). The remaining 99.7% of inventions 

used some already known physical or technological principle but were different in implementations (for 

instance, both a car and a conveyer belt may use the same principle as air cushion). 

In addition, it appeared that a great number of inventions complied with a relatively small number of basic 

solution patterns. Altshuller concluded that the vast majority of new inventive problems could be solved by 

using previous experience. If such experience is presented in explicit way, for instance in terms of principles 

and patterns, problem solvers can produce inventive solutions for very difficult design problems. Further, it 

is possible to tremendously lead on further studies which let to discoveries based on basic principles of 

invention (Altshuller 1984, 1994, 1999). 

Altshuller and his colleagues argued that, majority of good inventions or new design concepts are generated 

while solving contradictions. Contradiction is a phenomenon where two requirements cannot be achieved 

without one to be compromised. There are two fundamental contradictions in any design problem that need 

solutions. The first one is called physical contradiction and the second one is technical contradictions. 

Physical contradictions occur when an object has contradictory requirements, e.g. a material should be strong 

and light at the same time, or an object should be long or short at the same time. Technical contradictions, on 

the other hand, occur when two requirements are in tradeoffs. For example, when a material’s weight is 

lighter, its strength gets worse or increasing area, increases cost (Altshuller 1984, 1994, 1999; Savransky 

2000). 

The main purpose of TRIZ method, therefore, is to find solutions to eliminate the contradictions that are 

inherent into a system (product or service). TRIZ literature indeed proposed several inventive principles and 

approaches to eliminate contradictions. The general approach to eliminate contradiction can be view as 

follows: first designers should identify either physical or technical contradictions thereby defining their 
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specific problem. Then, the specific problem should be formulated to a general problem to use TRIZ general 

recommendations to solve the problem. Once the designer gets a general idea or solution to the general 

problem, he/she has to find specific solution to the specific problem under investigation as shown in Figure 

4.7 (Altshuller 1984, 1994, 1999; Savransky 2000). 

 

Figure 4.7: Problem solving approaches in TRIZ (Savransky 2000; Hua, et al. 2006). 

TRIZ provides techniques to support the idea or concept generation process. The most traditional techniques 

are the 40 inventive principles and principles of separation. The former is aimed to tackle technical 

contradictions and the latter for physical contradictions. The TRIZ’s 40 inventive principles are based on a 

standard tabular matrix, where one can take contradictory requirements and obtain different principles that 

might solve his contradiction. For example, suppose the contradiction is between weight (of a moving object) 

and strength, and using the table, one can get principles ≠ 8 (replace a mechanical system with a non-

mechanical system), ≠ 7 (an inexpensive short-life object instead of an expensive durable one), ≠ 18 (use 

mechanical vibration), and ≠40 (use composite materials). Clearly, these recommendations from the table are 

very general and one should adopt them to his/her own problem.  

Principle of separations, as mentioned before, is primarily aimed to propose solutions for physical 

contradiction. There are five principles in this technique: separation in time, separation in space, separation 

in parameter, separation between parts and the whole, and separation up on conditions (Altshuller 1999). For 

example, aircraft wings should be longer for takeoff, and shorter for landing. This contradiction is a physical 

one. One can use separation in time and separation in parameter principles to solve the contradiction. As 

normally seen during flights, the wings of an airplane are longer for takeoff and then pivot back during 

landing. All the other separation principles are powerful and are applied in many industrial cases, even in 

service design (Chai, et al. 2005). 

Your Problem (1) General Problem (2)

General Solution (3)Your Solution (4)

TRIZ techniques: 

• The 40 inventive principles,

• Principles of separations,

• Algorithm for Solving Inventive Problems (ARIZ),

• so on
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The above techniques in TRIZ are traditional once, but TRIZ has evolved enormously in the past decades. 

There are robust and advance techniques emerging in academia and used in industries. One of the most 

advanced and evolved technique in TRIZ is ARIZ (Algorithm for Solving Inventive Principle). ARIZ 

consists of about 85 step-by-step procedures to solve complicated invention problems, and it involves 

advanced modeling techniques making the process of solution search more structured and robust (Savransky 

2000; Hua, et al. 2006). 

TRIZ principles and techniques have lots to offer, in particular, to execute the principle of exploration in 

SBCE. This inkling is also addressed by Bhushan (2007) who suggest a general framework to that integrate 

SBCE with TRIZ. However, there are much more synergies between SBCE and TRIZ that need future 

researches. This thesis utilize the synergies between TRIZ and SBCE to develop a methodological approach 

to identify subsystem areas where SBCE can bring its utmost benefit for customers and companies (see more 

details in chapter 7). 

In sum, Brainstorming, Morphological Analysis (MA), Axiomatic Design (AD), TRIZ are just some of which 

methods which are most familiar. There are several other methods which are interesting to investigate. Some 

of them are listed in Table 4.2. However, the choices between them depend on the contexts of the problem at 

hand. For example, if a design problem needs simple and less costly approach then methods based on 

brainstorming can be used. MA and AD approaches can be used if the designs have data to model and 

represent relations to map function and design parameters spaces. TRIZ is normally used to generate 

concepts when “out of the box” solutions are needed. 

Table 4.2: Example of methods that can support the process of exploring alternative sets of solutions in 

SBCE
10

. 

Methods Descriptions 

Six thinking 

hats 

The hats represent six thinking strategies identified by Edward de Bono, consciously applied in 

techniques to enhance creativity. Red hat—Emotional thinking. Yellow Hat—Positive thinking. 

Black Hat—Critical thinking. White Hat—Facts. Green Hat—Creative thinking. Blue Hat—Big 

Picture 

Assumption 

busting 

List of assumptions about the problem is made. Correctness in relation to the problem at hand is 

tested. New assumptions appear and the most applicable of these are used to find solutions 

Synetics 

Synetics is a technique to generate and evaluate ideas. In the first session the problem is analyzed. 

In the second session the problems is described and the scope of action determined. Ideas are 

generated (using other techniques). Idea springboards are identified to focus on the solution realm. 

Possible solutions are brought forward. These are analyzed and a new cycle of synetics may have 

                                                     

10
 The descriptions of the methods are summarised from: Clegg and Birch 07; Kowaltowski, et al. 10; Hatchuel and 

Weil 03. 
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to begin if the solutions are rejected until a consensus is reached 

SCAMPER 
Comes from Substitute, Combine, Adapt, Modify, Produce or find new applications, Eliminate 

and Rearrange. Questions are made to transform an object or process through the above verbs 

Delphi 

method 

The Delphi method is an interactive forecasting method. Relies on input of independent experts, 

in several rounds, with revised forecast based on output of previous round. Results converge 

towards ‘‘best’’ solutions using mean or median scores. The number of rounds, achievement of 

consensus and stability of results are established beforehand 

Input–

output 

Developed by General Electric. The technique identifies new ways of reaching a design goal by 

focusing on the input (attributes) and final output desired. Requirements and restrictions 

(specifications) are structured for this purpose 

C-K or 

concept-

knowledge  

It is both a design theory and a theory of reasoning in design. It defines design reasoning as logic 

of expansion processes, i.e. a logic that organizes the generation of unknown objects. The theory 

builds on several traditions of design theory, including systematic design, axiomatic design, 

creativity theories, general design theories, and artificial intelligence-based design models. Refer, 

Hatchuel and Weil (2003) for more details 

Cause-

effect 

diagram 

Related to the concept of searching for causes for problems that might occur due to customer 

dissatisfaction or technical failures. The method is based on asking chain of WHYs to explore 

different alternative improvement areas in the product design 

4.6.3 Communication of alternative sets  

Communication is a key aspect in product development, as stressed in several researches (Cusumano and 

Nobeoka 1998). What is unique about communication in SBCE process is the consideration of sets (Sobek, 

et al. 1999). Exploring alternative solutions might take considerable time in design, in particular if the design 

problem is novel (Ford and Sobek 2005). Thus, while a team explores subsystem solutions, effectively 

communicating them to other teams is paramount. The effectiveness of communication in SBCE process 

depends on the quality of data presented, the simplicity of the communication, time spent in communicating 

about the sets. Quality of data as described before is explained in terms of the information contents design 

teams present. Ward et al. (2007) claim that meetings and design reviews in many companies are not based 

on data. In SBCE, tradeoffs curves, performance checklists and limit curves provide proven data to make 

communication and negotiation process effective. Related to data quality issue, the way data are presented 

should be simple. Design documents which are pages and pages of reports are not effective in SBCE 

(Kennedy 2003). Rather, simple visual representation of design data in the form of tradeoff curves, checklist 

and limit curves effectively facilitate communications about sets of design alternatives. Moreover, 

communication in SBCE should consider the time spent in communication, communicating large sets of 

alternatives might take time, therefore methods, tools and technologies should be adopted to fasten the 

communication and negotiation processes. 

There are several means in which communication in SBCE process can be efficient and effective. QFD is the 

prevalent tool that is used to integrate design decisions from customer value capturing to production planning 
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and control (Akao 1990/a/b; Chan and Wu 2002; Akao and Mazur 2003). Liker et al. (1996) in their survey 

discovered that most of Japanese automotive industries including Toyota use QFD in SBCE for 

communication. In addition, there is a strong correlation between the use of QFD in design and existence of 

set based communication (Liker, et al. 1996). In a sense, it implies that the principles and practices in SBCE 

process are the evolution of QFD usage. The use of QFD neither implies that SBCE is practiced nor does it 

indicate QFD substitute SBCE. The real contribution of using QFD in SBCE process is to improve the 

quality and the simplicity of communication about sets. In fact, most of QFD applications reported in 

literature are based on point based communication, in particular in the Western manufacturing industries 

(Liker, et.la. 1996). That is, QFD is used to translate customer requirements into one design and process 

alternative. It also indicates that, QFD has been used to freeze requirements early in a design process, which 

negates the SBCE philosophy of delaying decision (Ward, et al. 1995). In other cases, QFD is also used 

without a conscious purpose for identifying and capturing customer, design and process knowledge (Chan 

and Wu 2002). Therefore, SBCE principles and practices should be embedded while using QFD. 

Some progress has been made to integrate QFD in SBCE. Kerga et al. (2012) proposed an integrated model 

to facilitate communication between manufacturing planning and SBCE process. The model proposed is 

based on QFD and P-FMEA (Process Failure Mode and Effect Analysis). In this model, product designers 

once explored design solutions, key quality characteristics can be identified (which are important for the 

customer) and put in the QFD matrix. Then, manufacturing process planners use P-FMEA to identify key 

process failures that might occur in manufacturing for each alternative design solutions. Each process failures 

for a given quality characteristics are assigned RNP value (Risk Priority Number). Finally, performance of 

each design solutions in terms of an aggregate quality index (based on RNP value) and cost of manufacturing 

can be presented for dialogue between designers and manufacturing personnel. In this way, designers and 

manufacturing planners effectively communicate about the performances of alternative designs and 

manufacturing processes. 

There is also a stream of researches based on Fuzzy Logic System, FLS to methodologically support 

communication in SBCE (Wang and Terpenny 2003). Principles such as delaying decision and 

communication of rough requirements make FLS a prime method to be used. Software based FLS systems 

are utilized to facilitate the set-based communications, negotiations, and gradual set-reduction process. The 

software systems are primarily applied in US NAVY and ship design (Singer, et al. 2009; Gray 2011; 

McKenney, et al. 2011).  

In regards to improve quality of communication in SBCE process, there are other established methods that 

can be used, though are not yet discussed in academic literature. For instance, a method such as “Design for 

X” (DFX) is worth mentioning. Where, X refers to manufacturing, assembly, environment, serviceability, 
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maintainability, quality and so on. Originally started with a serious of study on design for assembly (DFA) 

coined by Boothroyd et al. (1994), it considers the assembly constraints (i.e. assembly methods and costs) in 

the design stages. By using DFA, the estimated assembly time can be used as guideline to find out the design 

changes that can lead to the reduction of the final cost (Waterbury 1985). Expanding from DFA, Stoll (1988 

a/b) developed design for manufacturing (DFM) to simultaneously consider all the design goals and 

constraints for the product that will be manufactured. Several academic papers about DFA, DFM, or DFMA 

(DFM and assembly) can be found in literature (Kobe 1990; Kuo, et al. 2001).  

These DFX methodologies can be used in SBCE process to improve the quality of communication. Using the 

DFX methods designers can anticipate concerns from different parts of the product lifecycle and explore 

tradeoffs between sets of design concepts. Some emerging researches can be mentioned in this regard. For 

example, Kao (2006) combined design for logistics method with SBCE process. Alternative design concepts 

are evaluated early in development phases taking logistic performances (transportation time and cost). 

Similarly, with the emerging trends and concerns about the environmental impacts of a product in its 

lifecycle some researches are integrating SBCE and DFE (Design for the Environment). For example, Malak 

et al. (2009) and Kerga et al. (2010) proposed integrated methodologies to consider the environmental 

performances of alternative design sets from the early phase of design and development process. Therefore, 

in SBCE process communication quality can be improved by utilizing the already existing methods of DFX, 

and conscious decision can be taken by different teams involved in a design process. 

Finally, it is also worth mentioning the advancements in technologies that can also improve communication 

in SBCE process. The traditional way of communication in SBCE process lies in building physical models 

and prototypes. In early phases of SBE process, using low-cost techniques such as mock-ups can first be 

modeled out of foam, cardboard or wood to gain fast insights on geometric properties (Ward, et al. 2007). 

Physical prototypes facilitate effective communication by making it simple to discuss and visually depicting 

the details (Morgan and liker 2006). But, physical prototyping has limitations in terms of depicting 

complicated features and the time to build them. However, in the last years there are technological 

advancements to overcome these limitations. Traditional ways of prototyping, therefore, have been more and 

more complemented by advanced digital technologies such as computer-aided modeling, simulation, digital 

assembly and 3D prototype printers. The use of these techniques can, if employed appropriately, strongly 

contribute to identifying and solving problems at a faster rate in SBCE. Iterations can be run earlier and often 

at a lower cost than it is possible with elaborate, expensive physical prototypes which require time to build 

(Morgan and Liker2006; Thomke 1998/2000; Thomke, et al. 1998). At the same time, virtual tools such as 

digital assembly can help to identify many problems before the program enters prototype phase, which can 

result in a lower number of prototypes needed. The advancements improve in many ways the quality of data 
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presented, simplify the communication, negotiation process, and reduce the time spent while teams are 

communication about sets of design solutions in SBCE process.  

In summary, there are a lot of opportunities to increase the effectives and the efficiency of SBCE process by 

integrating already existing methods/tools and technologies. Depending on the problem at hand, each of the 

above mentioned tools/ methods/ technologies can have important significances for communication in SBCE 

process.  

4.6.4 Convergence of alternative sets  

Till now, the discussions on tools/ methods/ technologies as enablers of SBCE process were focusing on 

exploration and communication aspects of SBCE. The next step is to converge into a design solution that 

maximizes a customer value (Sobek, et al. 1999). Convergence activities in SBCE process are done before 

selection. What is unique in SBCE is not how a design solution is selected, rather how and why a solution is 

eliminated. Elimination of a solution is of course a process of convergence. But, in SBCE process 

elimination of inferior solutions are done throughout the process as more knowledge is gained though 

communication, testing and negotiation. Therefore, one thing that must be clear is that, convergence and 

selection are two different concepts in SBCE. Convergence process is more of knowledge creation process. 

But, selection is an instant when designers have to choose among available and feasible alternatives. 

The tools/methods/technologies described before can be used to enable convergence in SBCE. Checklist, 

tradeoff curves, limit curves are the prime mechanisms to use for convergence (Ward, et al. 1995; Sobek, et 

al. 1999, Morgan and Liker 2006; Ward, et al. 2007). Other tools and methods can also be used to facilitate 

the convergence process such as QFD, FMEA and DFX as discussed before. 

On the other hand, selection of a design concept is matured science in PD literature. In fact, selection 

problem in design is considered to be a decision making and optimization body of knowledge, which have 

been under academic discussion for the last 300 years (Hazelrigg 2003; Frye, et al. 2010). Nevertheless, it is 

worth to mention some of the prevalent tools and methods that can be used for concept selection in SBCE 

process. 

- Pugh selection: this method compares design alternatives in a matrix format against a number of criteria 

relating to the performance of the alternatives. One of the alternatives to be compared is selected as a 

reference design (Pugh 1996). An alternative with the most ‘+’ counts for different performances will be 

selected as the best. 

- Scoring/ Weighting methods: this method is based on Borda count (Borda 1781), further discussed in 

other researches (Saari 1994, 1995, 1999). Teams involved in designing and managing product 
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development vote the performance of alternative conceptual designs. An alternative with the highest 

votes will be considered dominating and taken as the best candidate. 

- Analytical Hierarchy Process (AHP): this method perhaps is one of the most widely used and discussed 

in literature. First proposed by Saaty in the 70’s, the main breakthrough in AHP method compared to 

others is the hierarch (Saaty 1980, 2001, 2008). In AHP, a problem is broken down into its smaller 

constitute parts. At the top of a hierarchy there is the goal or objectives a selection process has to achieve 

(e.g. improving quality, reducing cost and so on). At the lower levels of the hierarchy more details of the 

top level objectives are expressed in terms of criterion. Priorities among criteria belonging to a specific 

level of the hierarchy are obtained using pairwise comparisons. Finally, alternative designs can be 

evaluated considering its performance on each highest level criterion and the global importance of the 

criterion itself. 

- Value Engineering (VE): in this method, design solutions are evaluated based on the value and cost 

tradeoffs. Value of a single design solution is defined as the product of three variables: N (the importance 

of a need a product should satisfy), A (the ability of a product to satisfy a specific need) and f (t) (the 

availability of a product to target customers). Cost (C) in VE is defined as the total ownership costs a 

customer should incur across a product’s lifecycle (Cooper and Slagmulder 1997; Slack 1999). A design 

alternative that maximizes the value over the cost will be chosen. 

- Weighted sum of product attributes: this method seeks to create a utility function for a design such that 

the best design is the one that maximizes the utility function. The important attributes of a product are 

identified and assumed utility independent. The product utility function is then constructed as the 

weighted sum of the attribute measures. An alternative that maximizes the utility function will be chosen 

as the best one (Howard 1997). 

- Physical programming: this method is similar to the weighted sum of product attributes. The principal 

difference is that utilities of the attributes are used in place of the attributes themselves, and the resulting 

product utility becomes a weighted sum of the attribute utilities (Messac 1996). 

- Taguchi Loss Function (TLF): the loss function comprises a preference function, which is intended to 

represent “a financial measure of user dissatisfaction with a product’s performance as it deviates from a 

target value.’’ Taguchi suggests the use of a quadratic loss function to represent this dissatisfaction. The 

loss function captures both the expected performance and variation about the expected performance. The 

best design is the one that minimizes the loss function (Taguchi 1986; Bryne and Taguchi 1986; Taguchi, 

et al. 2000). 
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There are several other types of methods used in selection of the “best” alternative once designs are explored 

and feasibilities are proven in SBCE process. For example, methods based on fuzzy logics (Augustine, et al. 

2010; Avigad and Moshaiov 2009) and methods based on multi attribute utility theories (Malak, et al. 2009). 

In general, the selection of alternative designs is not the key challenge in SBCE literature nor was its 

uniqueness over PBCE. Some researchers associate SBCE with a mere selection of an optimal design option 

using sophisticated mathematical or optimization models (Augustine, et al. 2010; Avigad and Moshaiov 

2009; Malak, et al. 2009). However, SBCE is far more comprehensive, in which selection of the best out of 

alternative designs is one. 

4.7 Conclusions 

The main purpose of this chapter was to build an integrated SBCE framework of enablers needed to execute 

the principles. The integrated framework for SBCE is summarized as shown in Figure 4.8. The discussions in 

this chapter are based on extensive literature review and SBCE’s enablers are constructed in an integrated 

framework.  

 

Figure 4.8: Integrated framework of SBCE and its enablers. 

From the framework industries should understand that SBCE is an integrated PD model that can be used to 

effective develop products and usable knowledge. Moreover, the most important industrial value or 

advantages are gained from implementing or practicing the SBCE’s enablers as needed to facilitate the 

principles. That is why, SBCE is referred as a “process” in this thesis, which encompasses the principles but 

also the enablers. This view of SBCE is also supported by other researches (Khan, et al. 2010; Hoppmann 

2009). Therefore, researches in SBCE have to expand the current narrowed interpretation. Industries also 

need to build and adopt the enablers if implementation of SBCE is sought. However, there has been a lack of 
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such framework from literature. The integrated framework developed in this thesis is aimed at creating this 

comprehensive view of SBCE. 

In chapter 5, the two research gaps identified, the thesis’s objectives that are addressed in this thesis are 

explained in detail. Further, the two methodological contributions of this thesis to address the gaps are 

discussed in chapters 6 and 7.  
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5 RESEARCH GAPS, OBJECTIVES OF THE THESIS 

AND RESEARCH METHODOLOGIES FOLLOWED 

 

In this chapter the two research gaps are presented. The researcher gaps are named as ‘research gap-one’ and 

‘research gap-two’ because of the corresponding parts of this thesis in which they are addressed. Research 

gap-one is addressed in PART I of this thesis (chapter 6). On the other hand, research gap-two is addressed in 

PART II of this thesis (chapter 7). The rationale of the gaps and the importance of addressing them are parts 

of the discussions considered in this chapter. Moreover, the objectives of this thesis and the methodologies 

followed to address the gaps and meet the objectives are also presented in this chapter.  



64 

 

5.1  Introduction  

This thesis has two parts addressing two research gaps. The gaps that are discovered and will be the subjects 

of this thesis are: 

1) SBCE awareness level in industries is low. 

2) There is a lack of a methodological approach to identify and prioritize areas where SBCE can be 

implemented at a product level. 

The two gaps have different targets. The first gap is related to product designers and project managers, and 

their awareness level concerning the SBCE’s principles and enablers. This gap emerged from what has been 

observed from a filed study conducted across industries in Italy. Moreover, there are different reports from 

other researches indicating a lower level of awareness related to SBCE in industries. Thus, in this thesis, this 

gap is taken as an important issue to be addressed. If there is a way to increase the level of awareness across 

industries, it brings contributions primarily to the industry, and also to SBCE’s body of knowledge. Section 

5.2 is dedicated to elaborate this gap and rationalize the need for a learning method that can improve the 

awareness level of SBCE in industrial practice. In chapter 6 (PART I), the contribution of this thesis to 

overcome this gap will be discussed through presenting the SBCE serious game (SBCE SG) designed to 

bring a hand on experience to practitioners. Moreover, in chapter 6 the validation of the game in Carel 

Industry is presented. 

The second gap is primarily focuses on the SBCE’s implementation at a product level. Though the principles 

of SBCE are sound and its claimed benefits are promising, there are fundamental impediments to practically 

implement it and obtain success. Because of its extensive nature to apply it to a complete product system, 

there is a need for a systematically methodology to identify and prioritize improvement areas
11

 (e.g. 

subsystems, components, design factors) where SBCE bring its utmost benefits. Section 5.3 is dedicated for 

the discussion on the main challenges and research gaps addressed in this part. In chapter 7 (PART II), the 

methodological contribution of this paper is presented. The thesis proposes a methodology called SBCE 

Innovation Roadmap (SBCE IR) which can be used to identify and prioritize areas for SBCE 

implementation. Furthermore, in chapter 7, the validation of the SBCE IR methodology conducted on 

Adiabatic Humidification System (AHS) is discussed. 

                                                     

11
 ‘Areas’ in this thesis is used as a term to generally refer to sub-systems or components or design factors (i.e. design 

decisions or variables that designers have opportunities and influences to change or improve using SBCE process). 
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5.2 Research gap one – Low awareness level of SBCE in 

industries  

The first part of the research is concerned primarily with a practical gap. Practical in this thesis implies the 

awareness gap that exists across industries about the principles and enablers of SBCE. The level of 

awareness in this context can be interpreted into four aspects: i) the principles and enablers of SBCE are new 

to companies, ii) the diffusion and practice of SBCE principles and enablers are low in industries and iii) the 

advantage/ hurdles of implementing SBCE principles and enablers are not well understood by industries. 

The rationale of taking the SBCE’s awareness as an important research gap that should be addressed is 

explained below, taking both previous researches and preliminary results of a field study conducted. 

5.2.1 Awareness gap and the growing interests in industries 

From its introduction in 90’s (Ward et al., 1995), SBCE is becoming popular in lean PD literature, and there are 

growing interests in industries to experiment and adopt it. Two examples show the emerging interests across 

industries. The first example is the US NAVY initiative. The NAVY is launching SBCE initiatives in its project 

portfolios. Series of researches are emerging from the initiatives (Singer, et al. 2009; Frye 2010; McKenney, et 

al. 2011; Mebane, et al. 2011). The second example is the European Union (EU) funded initiative called 

LeanPPD (Lean Product and Process Development, www.leanppd.org). This EU funded project considers 

SBCE process at the core of lean thinking in PD (Khan, et al. 2010; Al-Ashaab, et al. 2010). The project 

involves partners from academia and industries: Automotive, Volkswagen Group (VW, Germany); 

Aerospace, Rolls-Royce (R-R, UK); Electronics, Visteon (UK), Indesit Company (Italy); and Mechanical 

(Sitech Sp., Poland). These two initiatives show how interesting SBCE becomes in academia and industries. 

In both the initiatives, SBCE is strongly believed to change and improve the way the US and EU 

manufacturing companies design products and manage development processes. 

Nevertheless, studies show that the awareness level in industries is still at the fledging state. For example, 

Bernstein (1998) conducted multiple case studies in aerospace industries in the US. He observed that some 

principles and enablers of SBCE are applied in some of the industries, and some performance benefits are 

exhibited. In this study, a company able to reduce 50% rework costs by anticipating design problems from the 

early phase of design and reusing the knowledge to subsequent projects. However, Bernstein (1998) also 

reported that, in many of the aerospace industries, the application of SBCE is very limited and there is a low 

awareness level across the industries.  

Similarly, a recent study conducted in Swedish industries showed similar results, SBCE are not well 

understood and implemented (Raudberge 2010). Some of the industries studied obtained performance 

http://www.leanppd.org/
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improvements during SBCE implementation in terms of 75% product cost reduction, 50% reduction in lead 

time, 50-75% improvement in product technical performances, and 50-100 % reduction in project risks, 

warranty costs and number of engineering changes (Raudberget 2010). In the contrary, others are observed to 

have negative results applying SBCE. For example, in some industries there were a 25% increment in lead 

time and a 25% increment in development cost. Some firms obtained neither gains nor losses in adopting 

SBCE. Those companies who obtain negative results and those who had zero loss/gain were asked about the 

rationale of the results. Most companies answered “SBCE is not the way they normally used to work” 

(Raudberge 2010).  

Related to the awareness gap, there is a wide resistance across industries to adopt SBCE due to its origin. 

Principles of SBCE and its success stories are based on evidences from large automotive and aerospace 

industries. The prominent and successful implementation of SBCE in automotive is reported from Toyota’s PD 

(Sobek, et al. 1999). However, Toyota’s PD has peculiar characteristics that enabled the effective 

implementation of SBCE process. For instance, Toyota’s success partly can be attributed to its bargaining power 

to leverage suppliers’ capabilities to facilitate SBCE process. Before bidding, suppliers of Toyota are required to 

explore several alternative prototypes, test them in different working conditions and bring performance results in 

the form of trade-off curves (Ward, et al. 1995; Sobek, et al. 1999; Ward, et al. 2007). Toyota thus offsets the 

extensive portions of SBCE process to partners, and pulls knowledge to support its internal processes. 

Nonetheless, such kind of opportunities might not be available for many industries (such as in small and medium 

sized companies). In this regard, a successful implementation and desirable performance outcomes from SBCE 

cannot be guaranteed for all kind of industries for granted. 

From the above research studies, one can understand that SBCE shows benefits when engineers/ managers 

are equipped with the understanding of its principles and enablers. Otherwise, the effort made to implement 

the principles and enablers of SBCE become disappointing. Thus, there is a need for a leaning method in 

which practitioners can use it to experiment SBCE before start implementing it in actual development. This 

learning method should help industries to increase their awareness level and investigate the applicability of 

SBCE in particular industrial contexts before adopting it in real design process. 

5.2.2 Field study on awareness gap  

In order to find a more detail observations on the awareness gaps across industries a preliminary field study 

is conducted across industries operating in Italy. Reporting the details of the field study is not the main aim 

of this thesis. The full report of the study can be found in Rossi et al. (2011/b). Here, the main results that 

indicate the low awareness level of SBCE principles and enablers (in the surveyed companies) are 

highlighted to support the rationale of fulfilling the gap. 
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In total, the industries surveyed were 19. Most of the industries surveyed were operating in Italy, but have 

markets in global scales. The summary of the companies interviewed are presented in Table 5.1. The 

empirical research was done with direct face-to-face interviews conducted at site of each manufacturing 

company with product managers or project leaders. The companies are from different sectors as electronics, 

microelectronics, mechanical and thermo-mechanical. The duration of an interview was about two hours per 

meeting, which took place inside each firm. The face-to-face interview was conducted to make sure that the 

interviewees were clear about the questions posed during the interview, so there were higher levels of 

interactions to make the questions clearer and avoid misunderstanding. 

A semi-structured questioner developed by Cranfield University (Technical Co-ordinator of the LeanPPD 

project) is used for the in interview. The exhibit of the questionnaire is shown in Appendix (A1). The 

questions in the questionnaire are composed of 39 multiple-choice questions, grouped into five parts: i) 

product development process, to understand how the PD process is performed within a company; ii) product 

design; iii) knowledge management, to understand how design knowledge are identified, captured, 

documented and reused in subsequent projects; iv) cost and performance estimation; and v) some additional 

questions. The results from the field study are briefly summarized in the following subsections. 

Table 5.1: Summary of industries surveyed
12

.  

Industries  Business Business size Type  
Customer 

adoption 

Manufacturing 

volume  

1 

Heating, Air-condition, 

Ventilation and 

Refrigeration 

(HAVC/R) 

Small and 

Medium 

First tier 

supplier  

Tailor made and 

modular design  
Medium  

2 
Power and Automation 

Technologies 
Large 

Orig. Equip. 

manuf. (OEM) 

Standard and 

modular  
High  

3 

Throttle Bodies and 

Electronic Control 

Units 

Small 
First tier 

supplier 

Standard and 

modular 
Medium  

4 
Electro-mechanical 

Systems 

Small and 

Medium 

First tier 

supplier 

Tailor made and 

modular design 
Medium 

5 Domestic Appliances Medium OEM Standard High 

6 Electronics Control for Medium First tier Standard High 

                                                     

12
 The table shows 14 industries, the rest 4 are business-units inside some of the industries interviewed. 
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Domestic Appliance supplier 

7 Industrial Machineries Large OEM Tailor made Low  

8 
Audio and Antennas 

Systems 
Medium  

First tier 

supplier 

Tailor made and 

modular design 
High 

9 
Safety Radio Remote 

Control 
Medium 

First tier 

supplier 

Tailor made and 

modular design 
Medium 

10 

Heat Transfer, 

Separation and fluid 

Handling 

Medium 
First tier 

supplier 

Tailor made and 

modular design 
Medium 

11 

Elevator, Escalator and 

Automatic Building 

Facilities 

Large OEM 
Tailor made and 

modular design 
High 

12 

High-technology 

Systems and 

Telecommunications 

Large 
First tier 

supplier 

Standard and 

Modular 
High 

13 
Power Tools and 

Accessories 
Large OEM 

Standard, 

Modular, Tailor 

made 

High 

14 
Health and Well-being 

(Pharmaceuticals) 
Medium - - Medium  

5.2.2.1 SBCE adoption and effectiveness 

Looking at Figure 5.1, 21% (4 out of 19) of the interviewees reported to follow the traditional method of 

point based serial engineering (sequential engineering), and express it as the least effective. Concurrent 

engineering (CE) is the most popular method for product development (reported by 89% of the interviewees: 

67% always and 22% sometimes) and shows a high level of effectiveness. SBCE has not yet been fully 

implemented and accepted as a routine method. However, there have been minor inducements at component 

levels and the cases of implementation showed good level of effectiveness. 

The result clearly indicates a lower adoption level of SBCE in industries. Moreover, its effectiveness is 

ranked lower than what is expected. As discussed in chapter 2, CE doesn’t break the inherent problems in 

PD, in particular, if the CE is based pursuing a single alternative design. Figure 5.2 exactly shows this 

phenomena where 86% of the interview companies develop one solution. Even those who consider 

alternative designs at the beginning (48%) define their choices quickly. The design alternatives which are 
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eliminated might be potential solutions, but once eliminated without further trade space study, the teams will 

not have the chance to learn about the designs’ performances. More than 81% of the respondents also said 

that, design specifications change and a concept selected is subject to frequent updates in the process. 

Therefore, the practices in the industries are predominantly PBCE. 

 

Figure 5.1: Design paradigms followed. 

 

Figure 5.2: Consideration of alternatives and selection. 

5.2.2.2 Design knowledge capturing and reusing 

Almost all the companies interviewed recognize the importance of capturing, documenting and reusing 

proven knowledge to support decision making in design and development process. The issue is not only the 

recognition, but also on the practice. Do companies practice effective knowledge management in design? Do 
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they have effective mechanisms that enable them to capture, represent and share design knowledge in their 

practice? These are the questions that can clearly show the existence of SBCE enablers in industries. 

 

Figure 5.3: Mechanisms to capture knowledge in design.  

Looking at Figure 5.3, it is clear that majority of the industries use verbal communication to identify, capture, 

share design knowledge. Obviously, informal or formal verbal communication is important in PD, however, 

it has considerable limitations to be used in SBCE process. The limit of depending solely on verbal (formal 

or informal) communication is on its effectiveness. Recalling the discussions in previous chapters, SBCE 

uses limit curves, trade-off curves and checklists for communication, convergence and knowledge capturing. 

These mechanisms are much more effective than verbal communications in many ways (von Hippel and Tyre 

1994; Watkin and Clark 199; Thomke 2000). In fact, in our survey, respondents stressed this fact and said, 

80% of the mistakes could have been prevented at the right time if information is pulled from previous 

projects. Design knowledge should be accessible to be reused. However, verbal communication is not an 

effective way through which design knowledge and information to be documented and provisioned. 

In Figure 5.4, the current challenge in knowledge capturing among the surveyed companies are reported, 

which validates the discussion about the ineffectiveness of the current practice of LLD (lesson leaned 

document) for knowledge capturing and provision. As shown in the figure, designers find it difficult to 

extract information and knowledge from previous projects, often consumes considerable time to look for 

usable information, and there is incompatibilities between knowledge formats. Thus, industries will be 

challenged to implement SBCE without the necessary formalized and effective mechanisms to 

identify/capture/document design problems, solutions and knowledge. Moreover, industries will have 

challenges to make a continuum of knowledge flow among teams and between projects to enable SBCE. 

What mechanisms you use to capture design knowledge & how do you asses them?
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Figure 5.4: Challenges in knowledge capturing and representations. 

5.2.3 Research objective and methodologies followed 

In summary, SBCE is gaining interest from the industries, and international initiatives are emerging to 

integrate the principles and practices of SBCE in PD process. However, both previous researches and the 

field study suggest the current adoption level in industries towards SBCE is very low. That is, there is a lack 

of understanding on how to explore design alternative sets, on how to communicate about them, how to reuse 

previous knowledge to eliminate inferior alternatives using the mechanism such as trade-off curves, limit 

curves and checklists. 

The main research gap about industrial awareness, the research objective and the research methodologies 

followed are summarized in Table 5.2. In this part of the thesis the objective is to develop a learning method 

and validated its effectiveness in an industry. The methodologies followed to design the learning method and 

the validation methodologies followed are explained below. 

 Methodology followed to design a learning method  

In order to develop a learning method a serious gaming (SG) approach is used. The learning method is called 

SBCE serious game (SBCE SG) which is aimed at introducing the principles and enablers of SBCE in a 

simple and engaging manner to increase the awareness level in industries.  

Serious games can be defined as ‘the application of games which are aimed at education and learning’ (Wouters, 

et al. 2007). There are six characteristics that make a serious game as an effective approach to introduce new and 

complex concepts as SBCE: (1) internalize knowledge without interfering in an actual practices, SGs put 

boundaries between actions in a game and consequences in reality, but players acquire new skills and knowledge 

transferable to actual practices (Prensky, 2001); (2) improve communication, gaming creates a means to support 

effective communication and structures debates between teams (Geurts and Joldersam, 2001); (3) create 

consensus, beyond communication gaming creates means to reach consensus, conflict mediation and 
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collaboration between actors’ perception about a subject matter (Duke and Geurts, 2004); (4) commitment to 

action, gaming is used to introduce and test new concepts, to convince industrial players on the need for 

intervention, to introduce approaches to the intervention, and to introduce the roles of the participants in the 

intervention process (Mayer, 2009); (5) stimulate creativity, gaming lets player to leave behind their routines, 

provide settings to experiment new ideas and research the challenges in it (Duke and Geurts, 2004); (6) simulate 

complexity, reality is much more complex than any attribution in gaming, however, games help to simplify 

acceptable level of complexity to educate players on how to respond on complex problems (Duke and Geurts, 

2004). Such characteristics and opportunities are rare in traditional methods such as lectures based on handouts 

(which are normally ineffective in giving hand-on experiences) or case studies (which lack in giving feedbacks 

before actual implementation). That is why serious game is used as a method to develop the learning method for 

SBCE. 

Table 5.2: Research gap-one, objective and research methodologies followed/used. 

Research gap-one Objective 

Research methodologies followed/used 

Methodology to design 

a learning method 

Methodology to validate the 

learning method (SBCE SG) 

There is a growing 

interest in industries in 

adopting SBCE but 

there is low level of 

awareness in practice. 

Develop a learning 

method to introduce 

SBCE principles and 

enablers to practitioners. 

Serious gaming approach 

is used to develop a 

learning method called 

SBCE serious game 

(SBCE SG). The 

principles and enablers of 

SBCE are embedded into 

the game. 

 

Structured questionnaire based 

on Garris, et al. (2002) 

framework is designed to 

measure the learning outcomes 

of playing SBCE SG in an 

industry. Moreover, descriptive 

and inferential statistics are 

used to infer the implications 

for practice and theory. 

 Methodology used to validate the learning method (SBCE SG) 

After the SBCE SG is designed, validation of its effectiveness is measured. A structured questionnaire based on 

Garris et al. (2002) framework is developed. This framework is the most prevalent framework in measuring the 

learning outcomes or effectiveness of a serious game. The framework divide learning aspects of games into 

three: declarative learning, which is concerned with the effectiveness of a game in transferring the underlying 

theories embedded in the game; procedural learning, which deals with the measurement of the abilities of 

players in understanding complex patterns embedded in the game; and strategic learning, which measures the 

intellectual abilities and willingness of players to adopt what is though in the game to real-life problems.  
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The questionnaire contains 26 questions grouped in the three learning aspects. The questions are formatted in 

Likert five scale scheme (Likert 1932). 

The game has been played by 60 highly experienced engineers and managers working in Carel Industries
13

 

(www.carel.com). The company is developing products for HAVC/R market. Validating the game in this 

company enables the thesis to reflect the applicability of SBCE in smaller companies, which is in different 

context than SBCE’s origin (big OEMs). After playing the game in the company, it has been possible to measure 

the learning outcomes using the questionnaire provided. Using appropriate descriptive and inferential statistics, 

the effectiveness of the game has been measured. Moreover, interesting insights are gained concerning the 

perceived advantages of SBCE in this particular industrial context and the practical hurdles that 

engineers/managers anticipate in adopting it in reality (refer to chapter 6 for details of the SBCE serious game 

design and validations).  

5.3 Research gap two – Lack for a systematic methodology 

for identifying and prioritizing areas to apply SBCE 

The second part of the thesis is concerned with SBCE implementation for a product. That is particularly 

related to the question on how to identify and prioritize areas where SBCE brings its utmost benefit. This 

argument states that a product is composed of several sub-systems and components, but, all will not have the 

same importance for SBCE implementation. For clarity, Figure 5.5 shows the research questions 

schematically.  

 

Figure 5.5: Research question on how to identify and prioritise areas for SBCE implementation. 

The argument that rationalizes the methodological gap is the extensive nature of SBCE. To conduct an SBCE 

process, designers should go through extensive phases (exploration of alternative sets, communication of 

alternative sets, test of alternative sets and converge to optimal sets). Doing all these requires considerable time, 

                                                     

13
 This company is listed ≠ 1 in Table 5.1. The company has shown a high maturity level in applying lean initiatives 

compared to the other industries that are surveyed. Moreover, the company has shown commitment to play the game 

and further apply SBCE in their product portfolios. 

Sub-system A

Sub-system B

Sub-system C

Sub-system D

How to identify and prioritize 

a product’s sub-systems or 

components where SBCE 

should be applied and brings 

its utmost benefit?

http://www.carel.com/
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investment and capabilities. For example, Terwiesch et al. (2002) and Bogus (2005) underscored the extensive 

nature of SBCE strategy, and asserted that it should be used when the cost of pursuing it is cheaper than to the 

value it can create. Ford and Sobek (2005) also proposed a real option model to find optimal number of sets to 

consider; limiting the efforts needed to conduct SBCE. Thus, SBCE’s adoption should not be based on a random 

choice, and there is not a guarantee that any such initiative will be a success (Raudberge 2010, pp. 690). In 

particular, the technological capabilities and methodological readiness and resources availability to fasten SBCE 

process are scarce in many industries such as small and medium sized ones (Raudberge 2010; Rossi, et al. 

2011/b). In these situations, companies need to focus their efforts on areas of improvement where SBCE will 

bring its utmost benefits. Therefore, there is a need for a systematic methodology to identify and prioritize 

subsystems or components a priori of pursuing such an extensive process. Otherwise, efforts made will be 

wasted without achieving the desired value. This thesis proposes such a methodology called SBCE IR that 

enables to breakdown design problems and derive rules of prioritization for SBCE implementation. In this 

regard, the SBCE IR promotes incremental SBCE implementation at subsystem or component levels rather than 

full system level innovation.  

5.3.1 Research objective and methodologies followed  

The summary of the research gap, the objective and the research methodologies followed are presented in 

Table 5.3.  

In this part of the thesis, the main objective is to develop a methodology called SBCE innovation roadmap 

(SBCE IR) that is used as a guideline to be used by designers to identify and prioritize areas where SBCE 

should be applied. The methodologies followed to build the SBCE IR methodology and the methodologies 

used to validate SBCE IR are explained below. 

 Methodology followed to develop SBCE IR methodology 

The methodology followed to build SBCE IR follows two steps. First, criteria and related assumptions that 

are required to build the SBCE IR have been defined. Second, existing methods and tools that are needed to 

execute the steps of SBCE IR are identified. The following criteria and assumptions are considered: 

(a) The process of overcoming contradictions will follow SBCE process, SBCE IR methodology is 

constructed based on the assumption that identification and overcoming of contradictions lead to 

design improvements. The assumption is based on the prominent theory of innovation called TRIZ 

which is introduced in 4.6.2. TRIZ claims that overcoming contradictions lead to genuine 

innovations and it provides ways to arrive to design solutions (Altshuller 1984). SBCE IR takes the 

synergies between TRIZ and SBCE process. Thus, TRIZ’s concept of contradiction enables SBCE 
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IR to identify improvement areas, where as SBCE’s principles will follow to overcome the 

contradictions by exploring design solutions, communicating solutions to team members and finally 

converging to an optimal final design concept. That means, contradictions will be input to begin 

SBCE processes. 

(b) The area of improvements should be valuable for customers: there could be several contradictions in 

a product system. However, all contradictions will not have same importance. Once contradictions 

are identified evaluating them for customer importance is taken as a criterion (i.e. how important it is 

for customers to overcome a contradiction?). 

Table 5.3: Research gap-two, research objective and research methodologies followed/used.  

Research gap-two Objective 

Research methodologies followed 

Methodology to develop 

the SBCE IR 

methodology  

Methodologies to 

validate the SBCE 

IR methodology 

There is no systematic 

methodology to identify and 

prioritize areas (sub-systems or 

components) for SBCE 

implementation. That is, 

answering on how to identify 

and prioritize intervention areas 

where SBCE can be 

implemented, and as a 

consequence it is possible to 

enhance innovation that 

maximize customer 

satisfactions and achieve 

competitive advantages. 

To develop a systematic 

methodology to identify 

and prioritize areas for 

SBCE implementation. 

The methodology 

developed is called SBCE 

Innovation Roadmap 

(SBCE IR). 

1) Criteria and related 

assumptions are 

defined to build 

SBCE IR. 

2) Existing methods and 

tools that are needed 

to execute the steps of 

SBCE IR are 

identified. 

1) Case study on 

AHS system 

2) SBCE process in 

Rack subsystem 

3) Open 

questionnaire to 

assess SBCE IR 

by experts. 

(c) The area of improvements should give competitive advantages: in addition to taking customer 

importance as one criterion to prioritize contradictions, a competitive advantage is also taken as 

another criterion (i.e. how much competitive advantage a company would get by overcoming a 

contradiction?). This criterion is needed since customer importance is not always the only source that 

can be used to identify design improvements. Thus, analyzing competitors’ products should also be 

used as one criterion to prioritize contradictions while building SBCE IR for a product. 

(d) The area of improvements should be achievable with respect to the resources available: this is an 

optional criterion to build SBCE IR. However, it is very important to consider. Since overcoming 
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different contradictions require different levels of resources or efforts, designers should balance the 

importance of overcoming contradiction with respect to the resources/capabilities available in a 

company.  

Once the criteria and assumptions are defined SBCE IR is built on six steps. To facilitate the steps common 

tools and methods are used to facilitate each step (see chapter 7and section 7.2).  

 Methodologies used to validate the SBCE IR methodology  

 Once the steps of the SBCE IR are defined and the necessary tools and methods are identified, three 

validations are conducted. Firstly, a case study on Adiabatic Humidification System (AHS)
14

 is conducted to 

test the methodology. Secondly, using the SBCE IR constructed for AHS system a subsystem called Rack
15

 

is chosen to further experiment on how to start an SBCE and to improve the current Rack design. The SBCE 

process conducted in the subsystem shows promising cost reductions for new Rack design.  

Thirdly, pros and cons of the SBCE IR have been assessed by conducting interviews with designers and 

project managers involved in the case study for AHS. An open questionnaire is provided to evaluate the 

advantages, limitations and applicability of SBCE IR in the company.  Interviews are made with four experts 

in the company who are well experienced and have technical, managerial and market competences (refer to 

chapter 7 for details of SBCE IR methodology and the validations). 

5.4 Conclusions  

The purpose of this chapter was to set the gaps that this thesis is addressing, the research objectives and the 

methodologies followed to answer the gaps. 

To summarize, two gaps are identified: (1) there is a low level of awareness in industries about SBCE’s 

principles and enablers, and (2) there is a lack of methodological approach that is used to systematically 

identify and prioritize areas for SBCE implementation at a product level. 

The first gap is taken as an import issues to address. Since there is a growing interest in SBCE across 

industries developing a learning method to bring a hand on-experience is considered paramount. A serious 

gaming approach is used to design SBCE serious game to introduce practitioners about SBCE. The game will 

help to industries to experiment SBCE in a simulated environment before adopting SBCE in real practice, 

and can identify the benefits and hurdles of adopting SBCE. Moreover, a questionnaire is developed to 

                                                     

14
 This case study on AHS has been conducted in the same company the SBCE serious game has run (www.carel.com). 

 
15

 Rack is a subsystem of AHS used to distribute water to an ambient (refer section 7.3.2 for details). 

http://www.carel.com/
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validate the effectiveness of the game. The game has been played in Carel Industries and feedbacks are 

collected. 

The second gap is related to the identification of improvement areas where SBCE should be applied to obtain 

innovation. SBCE is an extensive process and a systematic methodology is required to help designers to 

identify, prioritize and plan SBCE implementations. This thesis proposes such a methodology called SBCE 

IR. Before building it, criteria and assumptions are identified and steps are defined. Moreover, existing and 

common tools/methods are identified to facilitate the steps. The SBCE IR methodology is tested in a case 

product called AHS. A Rack subsystem is selected to conduct an SBCE process as a validation way on how 

to use the roadmap to improve a Rack design. Finally, to validate the advantages, applicability and 

limitations of SBCE IR, an open questionnaire is developed and interviews are made with AHS experts. 

Chapter 6 is dedicated to PART I of this thesis where the detail discussions on the SBCE serious game are 

provided. In this chapter the validation of this learning method in industry is also presented in-depth. Chapter 

7 on the other hand is dedicated to PART II of this thesis. There, the SBCE IR methodology developed in 

this thesis is discussed in detail. Moreover, in chapter 7 the details are presented on the validation process of 

the methodology in the AHS case. For a reminder, the structure of the thesis is reshown in Figure 5.6.  

 

Figure 5.6: Structure of the thesis. 
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PART I 

 

 

6 A LEARNING METHOD TO INCREASE AWARENESS 

LEVEL OF SBCE IN INDUSTRY 

To address the limited awareness across industries, a learning method for SBCE has been developed which is 

called SBCE serious game (SBCE SG). The game is designed to bring a hand-on experience about SBCE, in 

an engaging and educative manner. Gaming is gaining wider attention to introduce new concepts to 

industries or practitioners. It separates players from the real word scenario and immerses them into a 

simulated environment. Before going into real implementation, games can offer opportunities for industries 

to experiment complex models and concepts in simulated environments. This characteristic makes games or 

serious games effective way to increase the understanding level of a theory, and then practitioners can 

anticipate the benefits and difficulties of applying that particular concept in reality. Moreover, games 

facilitate discussions among players or team of experts to arrive into consensus among them. In this way, 

during real implementation phase, players will have better ideas on their roles and will participate in a 

change process effectively. Such opportunities are rare in traditional methods such as lectures based on 

handouts (which are normally ineffective in giving hand-on experiences) or case studies (which lack in 

giving feedbacks before actual implementation). That is why in this thesis serious game is taken as method to 

develop the learning method for SBCE, and eventually improve the effectiveness of the learning outcomes. 

The game has been validated through playing the game in Carel Industries with 60 engineers and managers 

who are designing new products for HVACR (Heating, Ventilation, Air-Conditioning and Refrigeration) 

market. The general contributions obtained for the industry are: the game increases the understanding of 

SBCE, educate designers/managers on how SBCE can be applied, and identifying the pros and cons of 

adopting SBCE in practice. For the theory, it has been possible to drive some theoretical implications 

through measuring the learning outcomes of the serious game and reflect on its applicability in this particular 

industrial context.  
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6.1 Introduction 

In this section of this chapter (section 6.1.1), an introduction about SG is given by reviewing the state of the 

art of serious gaming and existing games in concurrent engineering. In section 6.1.2, introduction about the 

SBCE serious game will be presented. The introduction addresses the framework, inputs and stages of the 

SBCE game. In section 6.3, the validation and measurement of the learning outcomes gained in the game 

play are discussed. Finally, section 6.4 deals with summarizing the chapter, laying out the limitations of the 

research and propose future possible researches. 

6.1.1 State of the art of serious gaming  

“Game” can cover variety of activities and its definition strongly depends on the authors’ perspective of a 

game. Serious game (SG) is still not a well-defined term and there are some related and similar terms in the 

literature such as “Simulation game”, “Game Based Learning”, “Educational game” and “Edutainment”. In 

general, the application of games which are aimed at education and learning can be defined as “Serious 

Games” (Wouters, et al. 2007). It is defined by some researchers as an activity whose main purpose is 

learning serious contexts through playing (Zyda 2005; Charsky 2010). Learning and education via games are 

the main objectives rather than pure entertainment in SGs (Egenfeldt 2006).  

Although a generally accepted definition of games does not exist. Below, there are two definitions of games 

that characterize games in general, provided by Klabbers (2006/b) and Juul (2005). These definitions have 

several characteristics in common. They both describe rules, outcomes and players as game elements. Juul 

further emphasizes the emotional attachment of the players with the outcome. Klabbers emphasizes the 

competition element, caused by constraints and resources. 

“Game  are rule ba ed  y tem   ith variable and quantifiable outcomes, in which different outcomes are 

assigned to different values, the player exerts an effort in order to influence the outcome, the player feels 

attached to the outcome, and the con equence  of the activity are optional and negotiable” 

(Juul 2005) 

A game is a form of play. It is an activity involving one or more players who assume roles while trying to 

achieve a goal. Rules determine what the players are permitted to do, or define constraints on allowable 

actions, which impact the available resources and therefore influence the state of the game space. Games 

deal with well a defined subject matter (content and context) 

(Klabbers 2006/b) 

An important element of games is that they are separated from the real world. There is a permeable 

boundary, the so called ‘magic circle’, which separates the game world from reality (Copier  007; Klabbers 

2006/b; Prensky 2001; Armstrong and Hobson 1975; Crawford 1984). Within this boundary, the rules and 
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roles in the game are valid and the outcomes of the activities within this boundary do not have consequences 

for the real world. On the other hand, this boundary is open to transfers between game and reality. Recently, 

Copier (2007) concluded in her dissertation that the influence and networks surrounding games go beyond 

the magic circle. Game play is influenced by the cultural and social backgrounds of the players, and players 

acquire new knowledge and skills which can be used in reality. Apart from the separation of reality, there are 

five key characteristics of a game that makes it valid method to introduce new concepts (Duke and Geurts 

2004), as of SBCE process to an industry. They are: 

 Improving communication: communication between actors in PD processes is important. Gaming creates 

a setting in which multiple stakeholders involved in designing and managing products can communicate. 

Gaming is a valuable method for supporting the communication and learning processes and structuring 

the debate between stakeholders (Geurts and Joldersma 2001). 

 Need for consensus: Duke and Geurts (2004) describe three perspectives beyond improving 

communication: reaching consensus, conflict mediation and collaboration. A game can explore whether 

or to what extent a conflict between actors’ perceptions exists. By learning from the perceptions of other 

stakeholders, the proposed solutions can be considered from multiple perspectives. 

 Commitment to action: gaming can be used to introduce or test new process or implementation, to 

convince the designers and managers on the need for the intervention, to introduce the intervention 

approach, and to show the roles of the participants in the implementation process (Mayer 2009). 

 Stimulating creativity: games can be considered as a laboratory for developing and practicing new 

concepts. By stepping into a game setting, players leave behind their routines. This new environment 

encourages creativity. In addition to experimenting with routine processes and researching future 

development, games are used in researching difficult or new situations (Duke and Geurts 2004). 

 Understanding complexity: reality is much more complex than any attribution in a game. The reality in 

design process involves problems in dynamic environments, with many variables and actors; these actors 

have different objectives and values, and the outcomes are uncertain and unpredictable. The objective is 

to use serious games to gain a holistic view of a system (Duke and Geurts 2004). 

In sum, games offer ways to internalize knowledge in safer environments, and are useful to train problem 

solving skills and track own performances (Kolb and Fry 1975; Kolb 1984). In SGs, participants will have 

the possibility to experience the consequences of their decision and behavior. Further, they gain new skills 

without fearing that they may cause any damage to their company. According to knight (2002), 

organizational learning, and thereby improving the innovation potential follows a cyclic pattern as shown 

Figure 6.1. To facilitate innovation, adopting the right learning method is paramount. Serious games have 
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been used to educate practitioners to introduce new concepts that support improvements in one working 

environment (Raybourn, et al. 2005; Takeuchi and Nonaka 1986). Well-designed SGs provide the 

opportunity for experiential learning and provide an environment for active and critical thinking. Experiential 

learning opportunities enable game players to learn from contextual information embedded in the dynamics 

of a game, and through the risks, benefits, costs, outcomes and rewards of alternative strategies that are 

undertaken in a game play (Raybourn, et al. 2005; Daley, et al. 2007). Experiences in a game will positively 

influence perceptions of a subject-matter and increase interests in portrayed areas.  

These characteristics of gaming make it a good candidate to introduce SBCE in which its principles and 

enablers are not well understood and practice in industries. Game helps to separate the interference with real 

practice, and designers and managers can experiment and understand the concepts of SBCE before a real 

implementation. Then, reflections can be made on what sort of benefits and difficulties can a company faces 

during SBCE implementation. Thus, gaming can be used as the first step in a change process, to introduce 

and build consciousness about the principles and practices of SBCE among designers and managers. 

 

Figure 6.1: Learning and innovation cycle (adopted from Knight 2002). 

6.1.2 Existing serious games in concurrent engineering   

The nature of PD makes it an ideal process for serious games applications (Pourabdollahian, et al. 2012). 

Product development process, as mentioned earlier, involves interrelated and complex decision making 

activities. Product developers should make decisions under imprecise and uncertain information which might 

not be known before wasting time and spending extra costs. Moreover, it involves several stakeholders such 
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as customers, designers, manufacturers, and suppliers which make PD difficult to model for process 

improvement. Gaming supports the innovation cycle shown in Figure 6.1 by providing a learning instrument 

to introduce new concepts, and increase the awareness levels of participants in a changing environment. 

In this section, some of the existing SGs that are found from previous works are briefly reviewed, and they 

are compared with the SBCE SG in terms of their contents compared to what is embedded inside SBCE 

game. 

According to PRIME project report (PRIME 2006), there are three identified games that have been 

developed to support players to understand specific challenges of developing new products, support them in 

understanding concepts of concurrent engineering (CE) such as team work, parallel tasking/scheduling, 

communication, collaboration and etc. These games are: COSIGA, GLOTRAIN and CITY CAR.  

“COSIGA” is an internet based computer simulation game developed by Nottingham University in 

collaboration with other partners under an EU funded project (Pawar 1995; COSIGA 1997; Riedel, et al. 

2001; Riedel 2007). In COSIGA, game players learn about CE and communication skills in a distributed 

development team context. This role simulation game is trainer led and simulates the PD processes in a 

virtually simulated enterprise in different scenarios. Five players representing project manager, marketing 

manager, designer, production manager, and purchasing manager are located at disperse locations and follow 

specific roles in a simulated company to interact using their individualized client interface to communicate 

and collaborate. The design process in the game includes drawing up a market specification, a product 

specification, designing a truck, and allocating production processes. The product's manufacturability is 

tested in a simulated factory to produce final products. In order to win, the players have to work together 

effectively with others to deliver a truck faster, within specification and budget. During the game, players 

experience direct feedback as a result of their actions which accelerates their learning (Riedel, et al. 2001; 

Riedel, et al. 2007). 

“GLOTRAIN” is another computer and reality simulation game addresses different organizational forms of 

PD and production (Hoheisel, et al. 2000). Within one scenario, it simulates the development and the 

production of a product in a distributed work setting. The players improve their communication skills, their 

collaborative skills as well as the related ICT skills. 

“CITY CAR” simulation game addresses PD and project management (Goffin and Mitchell 2006). The 

players undergo the board based development of a product. During the game, they improve their 

communication skills and their capacity for teamwork. The CITY CAR simulation game has three modules. 

The first module simulates the production of a truck in a Taylor organization that is divided into the 

departments such as procurement, sales, manufacturing and central services. Each player takes over a certain 
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functional role. The players follow role description to realistically simulate the rigid operations of a purely 

functional organization. The second module simulates group work and process orientation as the 

precondition for lean organization. This time, the players are assigned to one of these groups: customer 

service, manufacturing, manufacturing services and internal services to process tasks in teamwork. The 

members of a particular group have to organize their intragroup work responsibilities internally to be 

successful. The third module simulates three autonomous distributed companies with particular key 

competencies that have to cooperate in order to develop and produce a product. To bridge distance, they use 

different information and communication technologies. The learners will experience the key characteristics 

of distributed PD (cooperation, interconnectedness and symbiosis). All three modules are based on each 

other and tell a coherent story of the development of a model company. Groups of players learn to develop a 

product from the beginning to the end – from product design and production management up to real 

production and marketing. The game modules allow to experience and to practice distributed teamwork by 

the use of modern tools and methods for communication. 

There are important differences between SBCE game and the above games. First, the main difference in-

between is concerning the objectives. In the previous games, players are aimed to learn about the challenge 

of communication and sharing of information among team members. However, in SBCE game the objective 

is expanded. In SBCE game, players are aimed to learn not only the challenge of interpersonal 

communication and sharing of knowledge but also support players with SBCE enablers. For example, in 

SBCE game tools such as tradeoff curves, limit curves and checklists are embedded to facilitate players’ 

understanding on the use and importance of the enablers for effective management of knowledge in SBCE 

process. 

Second, SBCE game is designed to educate about set based thinking: exploration of alternative designs, 

communication between sub-system designs and evaluate the explored solutions to converge into high vale 

alternative. However, the existing games focus on PBCE where the concept of considering large sets at early 

phase of a design process and its importance is not mediated. Rather in previous games players receive 

feedback late once decision is made. In this regard, SBCE game advances the learning objective from design-

build-test to test-build-design paradigm (refer section 2.2 for the differences). The main differences between 

previous games and SBCE SG are summarized in Table 6.1. Nevertheless, the previous games and SBCE 

game can be used as complementary to educate CE concepts. In particular, the previous games have strength 

in educating soft skills as well as interpersonal communication, team building, lean organization and 

negotiation aspects which all are needed to achieve lean process in PD. SBCE game can be used to train lean 

design aspect (i.e. how to develop a high value design concept) following SBCE principles and enabling 

tools. 
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Table 6.1: Comparison of existing and SBCE serious games. 

Serious games Objectives and skills covered 
Problem solving 

approaches 
Scopes 

COSIGA, 

GLOTRAIN, CITY-

CAR 

Soft skills for communication, 

information sharing in concurrent 

engineering environment 

design-build-test 

Detail design/ 

development, 

production, marketing 

SBCE 

Introduce how sets of alternatives 

are explored, communicated, and 

evaluated in a knowledge base 

environment using tools such as 

tradeoff curves, limit curves, 

checklists 

Both design-build-test 

and test-build-design in 

different stages of the 

game 

Early phase of design 

6.2 Introduction to SBCE serious game 

This section is dedicated to discuss in detail about the steps and assumptions made in designing the SBCE 

game. In the SBCE game, players have to design a simplified airplane structure using different type of LEGO 

bricks which have points on their tops (as shown in Figure 6.2). The airplane has four sub-systems to be 

designed by players (cockpit, body, wing and tail). A single point on each brick is assumed to have the 

characteristics listed in Table 6.2. Moreover, the weight of a passenger should be considering in the design of an 

airplane structure, and each passenger is assumed to weigh 60 units. The airplane structure is chosen as the game 

element since it involves several subsystems, where a player in a team represents one of the subsystems. In this 

way, it creates more “complexities” into the game such as on how to explore subsystems solutions, on how to 

communicate about subsystem solutions, on how to evaluate sets and converge to optimal solution. Therefore, 

using the game, educators can effectively educate SBCE with its “complexities”. 

Table 6.2: Characteristics of a single point on a LEGO component. 

 Cost Ordering time Capacity Weight Length Width 

Measuring unit monetary time # of passengers weight distance distance 

Value 10 0.5 3 100 1 1 

6.2.1 Framework of SBCE serious game 

The game is designed and divided into two stages: Stage one, where players design an airplane for a given 

list of customer requirements following PBCE process. In Stage two, players are provided with the necessary 

enablers of SBCE to simulate an environment where designers presuming to design an airplane structure 
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following SBCE process. The enablers will help players to explore alternative design concepts, communicate 

about alternative solutions within a team, and converge into a preferred (a high value) airplane structure. 

After each stage, players’ performances’ breakdown in terms of cost and time of development will be 

provided to facilitate discussions. The game is played in a team of four players and each player in a team 

represents a sub-system department (body, wing, cockpit and tail). The general framework of the game 

design is presented in Figure 6.3. The discussions on inputs, the stages and the associated steps of the game 

are elaborated in the following subsections. 

6.2.2 Inputs to SBCE serious game 

The main inputs to the stage one of the game are customer requirements (Table 6.3) and supplier components 

catalogue (right side of Figure 6.2).  

 

Figure 6.2: A simplified airplane structure to be designed and the LEGO bricks used. 

In the game, there are five customer requirements: number of passengers (  ); airplane weight ( ), which is 

the sum of weight of the airplane structure (  ) and the total passengers’ weight (  ); length of airplane ( ); 

wing-span (  ) and tail-span (  ). Each team will receive different lists of the requirements, and act as a 

‘company’ that develops an airplane structure for a particular customer. The customer requirements to build 

an airplane structure were made intentionally to be imprecise. For example, the    might be from 91 to120 

and the wing-span could be 7 to 20 (see customer requirement for group 1 in Table 6.3). This is made to 
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reflect the reality, in which customers often suggest imprecise information, and force designers to explore 

their concept solutions wide open. 

 

Figure 6.3: Framework of SBCE serious game. 

In the game, these requirements can be handled in different ways in the stage one (PBCE process) and in 

stage two (SBCE process). Thus, players will understand the advantages of following SBCE than PBCE 

process to better achieve the customer requirements. For example, while playing stage one a player 

representing body department in group 1 might consider number of passengers as 100 (somewhere between 

91 and 110) to determine the body size. This is exactly what point based engineering is; freezing 

requirements early in the beginning without understanding if freezing the requirement is worth pursuing 

(Ward, et al. 1995), and players quickly decide on how many passengers should be in the airplane they going 

to design.  

The problems of following point based approach are many. For example, once players start designing an 

airplane with number of passengers as 100, they have to test the design if it passes constraints from “testing 

department”. Fixing the number of passengers means fixing other design decisions such as the weight of the 

airplane. The weight of an airplane will fix the decision about the capability of the design to fly or being 

stable during flight. Thus, there is no reason why designers pick a single point from all the possible points in 
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the design space without being sure of passing the constraints arising from downstream functions. However, 

this is what often happens in practice (Rossi, et al. 2011/b). Often design rework-loops start late in the 

process once infeasibilities are revealed and when there are little chances to make inexpensive fixes. 

Table 6.3: List of customer requirements in SBCE serious game for 8 groups. 

  

Whenever customers are not precise enough to start a design activity, designers have to take into account the 

situation into two ways in SBCE. First, as Toyota practices, engineers should do ethnographical or similar 

studies to understand customer requirements closely (Morgan and Liker 2006). Then, designers can start 

designing a product with more accurate customer information. Second, as Terwarch et al. (2002) stated, 

pursuing alternative solutions is another way to proceed with imprecise customer information. The second 

strategy is embedded in stage two of SBCE game. That is, players consider range of customer requirements 

and define alterative designs to satisfy the possible requirements. Then, they can progressively eliminate 

design solutions which are incompatible and infeasible using information obtained from other departments 

and downstream functions (e.g. testing department). 

6.2.3 Stage-one of SBCE serious game 

After players are given the customer requirements and the supplier catalogue, they start the first stage of the 

game. This stage is designed to simulate the traditional approach of PBCE. Each team will be allowed the 

 

 

 

Ranges Min Max

Number of Passengers 91 110

Length of Airplane 10 22

Weight of Airplane 9500 14500

Wing Span 7 20

Tail Span 7 15

Group 1

Customer Requirements

Ranges Min Max

Number of Passengers 70 120

Length of Airplane 11 20

Weight of Airplane 8000 14000

Wing Span 9 17

Tail Span 7 14

Customer Requirements

Group 4

Ranges Min Max

Number of Passengers 140 170

Length of Airplane 18 27

Weight of Airplane 15000 21000

Wing Span 17 28

Tail Span 17 22

Customer Requirements

Group 7

Ranges Min Max

Number of Passengers 30 80

Length of Airplane 8 15

Weight of Airplane 5000 10000

Wing Span 7 12

Tail Span 6 10

Group 2

Customer Requirements

Ranges Min Max

Number of Passengers 100 130

Length of Airplane 12 24

Weight of Airplane 10000 17000

Wing Span 10 22

Tail Span 10 17

Group 5

Customer Requirements

Ranges Min Max

Number of Passengers 170 200

Length of Airplane 22 34

Weight of Airplane 18000 25000

Wing Span 19 30

Tail Span 19 25

Customer Requirements

Group 8

Ranges Min Max

Number of Passengers 50 100

Length of Airplane 9 17

Weight of Airplane 6000 11000

Wing Span 8 15

Tail Span 6 12

Customer Requirements

Group 3

Ranges Min Max

Number of Passengers 120 150

Length of Airplane 15 25

Weight of Airplane 13000 18000

Wing Span 13 25

Tail Span 13 20

Group 6

Customer Requirements
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same time duration (about 2 and 1/2 hours) to provide a prototype airplane structure to testing department. 

Team members represent different departments divided into the subsystems of the airplane structure as 

shown in Figure 6.4. 

In this stage, there are no supporting SBCE enablers introduced. Rather, designers are grouped into teams 

and given a list of customer requirements randomly picked from any of the requirements lists from Table 6.3. 

During this stage, players have to pursue the design process by themselves. This is done purposefully. The 

SBCE game is targeted to practitioners, therefore, whenever they are given the list of the customer 

requirements they immediately reflect the way they normally design products in their real job. Thus, during 

the second stage the “Aha effect” will be produced (Wills, et al.  006). Creating the “Aha effect” in players’ 

mind is necessary to educate different ways of designing a product, compared to what they used to do. In 

fact, most of the designers and managers who played the game never heard about SBCE. Therefore, in first 

stage of SBCE game, designers and managers are left to design their airplane without interfering how they 

are going to design the airplane structure.  

 

Figure 6.4: Team building in stage-one of SBCE serious game. 

Before teams of players start playing the game, they will be assigned numbers that represent the customer 

groups they going to serve. The game can be played by eight teams representing different companies that are 

competing to finish airplane structures within the given play duration. At this stage of the game, there is no 

introduction about SBCE. Players design the airplane based on their own previous experience. Once the 

game started, team members are allowed to discuss about customer requirements, to make decisions on 

design specifications and to order LEGO component from the “supplier” (the facilitators presume as the 

supplier in the game). 

6.2.4 Testing in stage-one of SBCE serious game 

Once a team finishes designing and building activities, they bring their prototype design to “testing 

department”. The facilitator of the game acts as a testing department. Fictitious constraints designed for the 

purpose of the game are listed in Table 6.4.  
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Table 6.4: Fictitious testing constrains for SBCE game. 

 Constraints type Constraints equation 

1 Geometric configuration  
 ⁄        

2 Ratio of weight (  ) 
   

  

  
      

Where,   is the weight of an airplane structure and    is the total 

weight of the passengers in an airplane. Each passenger is assumed 

to be 60 units of weight. 

3 Airplane stability       

4 Alignment between body and 

cockpit 

      

Players will not be given the testing constraints at the start of the game. The reason is that, design constraints 

are not usually evident during design phase. In a real design practice, there could be two basic reasons why 

designers might not know constraints from downstream functions, in this case, testing department. The first 

reason is the lack of communication between design and testing department. Designers might not 

communicate with testing department about constrains that cause product failures. This phenomenon is 

reflected in the game too. As a facilitator, players rarely ask about the constraints at the start of stage one. 

Moreover in practice, geographical dispersions of design teams escalate the communication problems. 

Several sub-systems and components are designed in different locations, and assembled in another. Brining 

testing constraints upfront, therefore, will be a challenge for designers. The second and the most critical 

reason is neither designers nor testing department know the causes of failures before having a testable 

prototype. Moreover, as Oostewal (2010, pp. 179-183) underlined, the point based practice contribute to this 

problem. Whenever testing is conducted, most industries use a point based testing approach. That is, they test 

the design only for specific conditions. Rather, in set based practice, testing should be done for range of 

conditions to understand the risky regions that a design will possibly fail. The test results might not be used 

in the current project, but can be used to frontload in subsequent projects and evaluate sets of designs in 

several working conditions. Therefore, to reflect the above facts in practice, and educate designers about the 

disadvantage of point based approach, players are not given testing conditions upfront. But, after the first 

trial, players will be given the fictitious constraints to redesign their airplane (if a design fails to satisfy these 

constraints in a first trail). A team passes stage one only if these constraints are satisfied otherwise the team 

continues modifying the design. 

6.2.5 Performance measurement of players in SBCE serious game 

Once a team of players finishes designing and building a prototype airplane structure, they bring the 

prototypes to the facilitator who acts as testing department. The facilitator takes the design parameters and 
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tests if customer requirements and the testing constraints are satisfied. If the design fails, the prototypes 

should be redesigned. Redesigning has penalty costs and additional time to be penalized. After the first trial 

the testing constraints will be given to players. If the prototype passes the testing constraints, players will be 

given the breakdown of their performances in terms of cost and time. The calculations rules of development 

cost and time are given in Table 6.5 and Table 6.6 respectively. 

Table 6.5: Rules to measure total development cost in SBCE serious game. 

Total development cost (C) 

                     (  )                   (  )                  (  ) 

Where,                                             ,           (this is an additional cost if a prototype 

airplane fails to pass testing constraints), and    is an additional cost if a team fails to meet customer requirements). It is 

determined based on unsatisfied customer requirements and applying the following rules: 

Unsatisfied customer requirements              

                                     

Note that: the calculations are pure assumptions used as rules in the game; they might not reflect the real situation in 

aircraft development. 

Table 6.6: Rules to measure total development time in SBCE serious game. 

Total development time (T) 

                       (   )                        (   )                (  ) 

where,                                                   ,            (this is an additional time a 

team will be penalised if a prototype airplane fails to pass testing constraints, and will be augmented for every iteration 

made ). Assembly delivery time represents the required time that is needed to assembly the components used to build the 

airplane, it is determined as          , where β is an assembly index and is a function of   . It is assumed that the 

higher the   , the lower β becomes (i.e., bigger sizes are available in standards and smaller sizes should be assembled to 

orders). To determine β, the following rules are used: 

   3 4 6 7   8 

  0.8 0.7 0.6 0.5 0.4 

Note that: playing time (design time) is not considered in the calculation due the fact that players spent considerable 

amount of time to understand the game itself. Thus, considering this time will bias the outcomes. Therefore, design time 

is considered to be the same for all teams (21/2 hrs.), and players are evaluated based on the time and cost measures 

given above. 
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The above performance measurements in the game have two purposes. First, it is to make players engaged 

and interested in achieving the customer requirements and in passing the design constraints. Challenge is 

taken to be as a key criterion to engage and immerse players in the game dynamics. Garris et al. (2002) 

asserted that whenever a serious game is designed, game characteristics such as measuring performances and 

penalization motivate players. A game needs to be designed so that players are stimulated to repeat the game 

process, and during this iteration cycle players are engaged in the game to acquire the target pieces of 

knowledge and skills (Pivec and Dziabenko 2004). The second advantage of having performance 

measurement in the game is to compare the first and the second stages of the game.  

However, in this thesis, the performance improvements of SBCE compared with PBCE are not directly 

measured from the performances of the game plays in the two stages. Since the game simulates a very 

simplified design problem, measuring the performance differences between the two stages are not taken to be 

effective to deduce practical implications. Moreover, during the game play, there are several problems occur 

that affect the time and cost performances of the players. For example, some players in a game session might 

not understand how to play the game, and need to spent additional time in understanding what he/she has to 

do in the game. So, comparing the performance differences between the two stages cannot reflect what the 

players (industrial players) have perceived about the difference between PBCE and SBCE. Therefore, 

another approach is used to measure the perceived performance advantages of SBCE and PBCE. That is, by 

asking the industrial players about their perceptions on the performance improvement potentials of SBCE if 

it would have been applied in their day to day design activities. The discussion on measuring such 

perceptions will be discussed in section 6.3.2. 

6.2.6 Stage-two of SBCE serious game 

The second stage will start once players completed designing their prototype in the first stage, and are given 

their performances. Teams will be introduced in an hour session about SBCE theory before starting the stage 

two. The introduction to the theory contains the principles and enablers of SBCE. Moreover, reflections on 

the results from the first game play will be explored. For example, the players will be asked the causes of 

design iterations and the associated costs/ consequences. During such reflection period, players and the game 

facilitator can identify the main drawbacks of PBCE and discuss on how SBCE can avoid the inherent 

shortcomings. 

The second stage game takes a maximum of 1 and half hours. During the second stage game, players will not 

use the LEGO bricks. Rather, players use Microsoft Excel program already developed to facilitate this stage. 

The stage is divided into four steps to execute the different principles of SBCE as shown in see Figure 6.5. 

Below each step of the stage two of the game is described with some examples. 
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6.2.6.1 Step A: exploration of alternative subsystems solutions 

The first step in the game is aimed at introducing players the principle of exploration in SBCE. Exploring 

‘design space’ is the first step players will do in this step. Here, players won’t pick a point from a range of a 

customer requirement. However, they take the range of customer requirements as an input to the process. 

Thus, players will not freeze the requirement in this stage. 

 

Figure 6.5: Schematic diagram of the steps in stage-two of SBCE serious game. 

An SBCE enabler that is applicable in this step of the game is QFD (Quality Function Deployment). QFD is 

a prevalent tool used to translate imprecise customer requirements to design parameters) (Akao 1990/a and 

1990/b). In SBCE game, QFD is used to generate tradeoff curves shown in Figure 6.6. For example, suppose 

a player who represents the body department has to explore alternative body dimensions. To explore 

alternative body dimensions, the customer requirement that is strictly related is number of passengers (  ). 

Then, the player will use the tradeoff curve provided to him/her (see the upper –left of Figure 6.6). Further, 

suppose the player belongs to group one (where   = (91, 100), see Table 6.3). For this range of requirement, 

the player will explore alternative lengths and widths of body to define possible body modules or sizes. For 

this group the possible body dimensions can be drawn from the tradeoff curve of body department. Similarly 

for (   = 3) the possible body dimensions are (  = 16 and 18). However there is no feasible length of body 

that can satisfy the required range of    if (   = 4) (see the lower – left of Figure 6.6). 
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Figure 6.6: Examples of trade-offs and checklists used in the game for mapping the design space for body 

dimensions (example from group 1). 

Similarly, a player representing cockpit department needs to define possible body dimensions from its own 

perspective. Although cockpit departments is concerned with defining length of the cockpit
16

 (  ), it is related 

to with the length of the airplane ( ) and length of the body (  ); i.e. (       ). Using the tradeoff curve 

provided to the cockpit department (see the upper – right of Figure 6.6), possible dimensions of body lengths 

can be generated. Cockpit department therefore can define possible body modules that are acceptable from 

its perspective. Referring the example of group 1 where  = (10, 22) (see Table 6.3), for all widths of bodies 

(  = 2, 3 and 4) the possible body lengths are (  = 10, 12, 16 and 18), (  = 10, 12, 16 and 18) and (  = 10, 

12 and 16) (see the lower – right of Figure 6.6 below). 

There are other customer requirements and sub-systems to define. Therefore, in the game, every department 

is provided with the necessary tradeoff curves that are necessary to map the possible alternatives of each sub-

systems (body, wing, tail and cockpit) (refer to appendices B1 and B2 to see all the tradeoff curves and 

checklists for cockpit, body, wing and tail). 

                                                     

16
 The length of the cockpit (   ) is assumed to be the same as width of the body (  ) as presented in Table 6.4. 
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6.2.6.2 Step B: elimination of incompatible subsystems solutions 

In this step, departments will eliminate incompatible subsystem solutions which are not workable. For the 

example shown in the Figure 6.6, subsystem departments explore body solutions from their own 

perspectives. However, there are body modules which are not compatible. For example, for body department 

a body module with (  ,  ) = (2, 10) defined by cockpit department is not sufficient to satisfy any possible 

number of passengers (91, 100) requested. A body size with (  ,  ) = (2, 10) can hold only 60 passengers
17

. 

The compatible body modules are for group 1 is shown in Figure 6.7. 

 

Figure 6.7: Example of defining compatible body modules form group 1. 

In principles, this step is related to communicating in sets or set based communication. When the design 

space is large and sub-system departments have to look for intersections, then there is the need for an 

effective mechanism that facilitates this process in SBCE. Otherwise, the SBCE implementation faces 

inefficiency. In the game, the possible combinations of subsystems are few (maximum 80), so player can 

handle to map the compatible designs. However, in practice the combinations could be very large. For 

example, in US NAVY SSC program, the numbers of combinations were in a scale of 10
45 

(Frye 2010). If the 

sets combination are very large, computer based tools can be used to define the interfaces between sub-

systems and eliminate incompatible solutions (Frey 2010). 

                                                     

17
 The carrying capacity can be determined as: Area * carrying capacity of an single point which is considered as 3 

(refer to Table 6.2).  
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6.2.6.3 Step C: elimination of infeasible system solutions  

The third step is to utilize the limit curves to eliminate technically infeasible alternative airplane structures. 

From the previous step, players eliminate incompatible sub-systems, but here they will be given technical 

limit curves to eliminate full airplane structures. The limit curves are taken from the testing constraints listed 

in Table 6.4. An example of limit curve used to evaluate airplane solutions is presented in Figure 6.8. Players 

will eliminate those which are outside the feasible region. There are other limit-curves provide to players 

taking all the design constraints listed in Table 6.4. Thus, players will pick those solutions which are feasible 

for all the constraints. 

 

Figure 6.8: Example of a limit curve to evaluate alternative airplane structures (limit curve constructed from 

the testing constraint 
 

 
       ).

18
 

As discussed in section 3.1.4 of this thesis, limit curve is one of the most key enabler for convergence 

process. Ward et al. (2007) underscore that Toyota uses limit and tradeoff curves extensively in SBCE 

process. Limit curves in practice can be generated through testing a solution or set of solutions at different 

working conditions. Generating limit curves have several advantages apart from evaluating sets. It is a 

knowledge provision mechanism, where knowledge captured in visual and generalized forms can be 

effectively reused in future projects. Once alternative designs are tested at different conditions in a project, 

                                                     

18
 Eliminate alternatives: 1, 2, 3, 10, 11, 12, 13, 14, and 15;  Pursue alternatives 4, 5, and 6;  Alternatives 7, 8, and 

9 are on the upper limit of the constraint, players can pursue these alternatives but in reality these alternatives might be 

risky airplane structures.   
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another project might need such test results to understand technical feasibilities. As a consequence, time for 

testing will be reduced, and the risk of failures can also be minimized. It also facilitates learning, designers 

can learn about the technical performances of alternative solutions by testing several of them at range of 

working conditions. Therefore, in SBCE game, the limit curves are embedded to let designers and managers 

understand the potentials of limit curves in capturing and providing technical knowledge, and facilitate 

elimination process in SBCE (refer to appendix B3 to see all the limit-curves used in game). 

6.2.6.4 Step D: selection of an optimal system 

The final step is to evaluate feasible alternative airplane structures and choose the best one taking objectives 

criteria such as cost and time of development introduced in Table 6.5 and Table 6.6. Referring to the tables, 

in this step           are zero, since all the causes of failures are anticipated in step C and no design iteration 

is encountered. Similarly, since all the ranges of the customer requirements are deployed in exploration phase 

(step A), the cost of penalty (  ) is zero. Although this assumption takes an ideal scenario, in practice SBCE 

helps to drastically reduce unnecessary late design reworks and missing customer targets (Raudberget 2010).  

 

Figure 6.9: Set reduction process in stage two of SBCE game – an example from group 1. 

In summary, the players in stage two explore alternative sub-systems using tradeoffs (step A), then evaluate 

the sets compatibility using checklists provided (step B), then progressively eliminate infeasible full airplane 

structural solutions (step C) using the limit curves provided from testing constraints, and finally evaluate 

feasible solutions based on cost and time of development to select a preferred solution (step D). See Figure 

6.9 for an example of set reduction in stage two of the game from players in group 1. As it can be seen, in 

SBCE process there is no selection before compatibilities and feasibilities are proven. This is what the game 

finally tries to introduce to practitioners. 
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6.2.6.5 Measuring the learning outcomes in SBCE serious game 

Once players finished playing the SBCE game, it has been the aim of the research to measure how much the 

awareness level about SBCE has improved and how practitioners perceive SBCE in terms of its pros and 

cons. In order to measure the learning outcomes, the prevalent framework of Garris has been used. Garris et 

al. (2002) identified three level of learning aspects in order to measure the effectiveness of a SG: 

Declarative, Procedural, and Strategic learning. They are explained briefly as follows: 

 Declarative learning: the first of the three aspects of learning in SG is the learning of facts or 

increasing one’s knowledge about a subject. Frequently, SGs concern a specific problem or real world 

situation and are developed from a certain theoretical background. In games, one of the learning objectives 

is to increase the domain understanding of players. In SBCE game, the understanding of the SBCE theory 

and its supporting enablers by players are considered as parts of the declarative learning outcomes.  

 Procedural learning: this aspect refers to the learning of procedures, and also to the understanding of 

patterns of processes and behavior. In the SBCE game, procedural knowledge is related to players’ ability 

to associate the specific elements of SBCE process and the benefits of using them to support a better 

decision making. This learning dimension is assumed to reflect learners’ perception about the performance 

advantages of SBCE if applied in a real life scenario. Of course, there were performance measurements 

related to the game stages one and two. But, comparing PBCE and SBCE taking only the measures in the 

game are not taken to be informative. Because, the game represent a simplified form of reality. More 

interesting indicators for procedural leaning in the SBCE game is therefore the “perceived performance 

advantages of SBCE” such as reduction in product/ process cost, improve innovation, improve quality, 

facilitate effective communication, risk reduction, and improve learning. 

 Strategic learning: the third learning aspect is that of increasing intellectual ability. Within gaming 

this aspect has been explained as implementing knowledge from the game in new (real-world) situations. 

Gaming can also contribute to developing reflective competences. Within complex systems as in PD, it is 

not only refers to implementing what is taught in the theory but also observing behavior and adapting to 

new situations. In SBCE game, several complexities have been simplified but adequate complexities are 

also added to keep players engaged. Since extant literature does not provide sufficient information on the 

practicality of applying SBCE in different context that big OEMs, investigating the strategic learning 

outcomes of playing the game is insightful.  
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6.3 Validation of SBCE serious game in industry 

The game has been played by designers and managers of an Italian company (Carel Industries) who designs 

and manufactures products in HVACR (Heating, Ventilation, Air-conditioning and Refrigeration) market. In 

total, there were more than 60 players who played the game in the company, but only 49 responded to the 

questionnaire provided. Therefore, the measurement of the learning outcomes is based on 49 designers 

(Mechanical, Electrical, and Software designers) and managers (product and project leaders). The 

demographics of players are presented in Table 6.7. The game was played in 3 sessions. In each session there 

were around 4 or 5 teams. Three facilitators were helping players in order to let them understand the game’s 

steps and rules.  

The players are all from the same company and work together in the same physical vicinity. Although the 

sample size is limited to have external validity results, interesting insights can be obtained within this one 

company’s context (Norman 2010; Carifio and Perla 2007). In particular, Norman (2010), Carifio and Perla 

(2007) dismissed the argument by other researches indicating that statistical results based on small samples 

size have methodological limitation in terms of external validity. Therefore, statistical results within the 

context of one company case can highlights useful and valid results, both to the practice and theory. In fact, 

49 designers and managers can represent a good sample size to measure the learning outcomes of the SBCE 

game; given that there are about 100 designers/managers involved in the company’s PD. Moreover, 

appropriate statistical tests are used to make inferences while measuring the learning outcomes.  

Table 6.7: Demographics of SBCE game players in the company (N = 49). 

Classifications Categories Percentage (%)  

Age (years) 

    41 

 

    59 

Domain 

Designers 37 

Project 

managers 63 

Years of experience 

    43 

    57 

Gender Male 84  

 Female 16  

To measure the learning outcomes of the players a questionnaire based on ‘Likert five scale’ model is 

prepared (Likert 1932). The scale for a question is taken from 1 to 5 (where 1 = strongly disagree, 2 = 

disagree, 3 = neutral, 4 = agree, and 5 = strongly agree). The questions were divided into three main learning 

aspects; declarative (D), procedural (P) and strategic (S) based on Garris et al. (2002) framework as 

discussed above (refer to Appendix C1 to see the questionnaire). Since almost all players were Italian, the 
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questions were translated to Italian language to make sure that respondents understood the questions and feel 

comfortable to respond. The questions are then asked to players after finishing the game. However, before 

the players were distributed the questionnaire, detail discussions were made about the PBCE and SBCE and 

the SBCE enablers embedded in the game. The discussions on the results of measuring the learning outcomes 

are explained in the following subsections. 

6.3.1 Declarative learning outcomes 

As discussed before, in the second stage of the game, players were introduced about SBCE and played how it 

can be executed taking a simplified airplane structure as a gaming object. There are nine questions related to 

this learning aspect. Table 6.8 shows the questions asked and the summaries of the results obtained. 

Table 6.8: Questions for measuring the declarative (D) learning outcomes and summary of response results. 

 

Moreover, Figure 6.10 shows the descriptive statistics of the declarative learning results. From the results, it 

is clear that, the game has been effective in transferring the theory of SBCE principle and enablers. It helped 

designers and mangers to understand how SBCE works (D1), how to explore alternative solutions (D2) and 

communicate in sets rather than single solution (D3) with mean responses of 3.73, 3.97 and 4.06 

respectively. Furthermore, the game has been effective in transferring the concept of knowledge capturing in 

the form of tradeoff and limit curves (D9) with mean response of 4.1. From the discussions we had with 

players, SBCE process has been a unique approach compared with the one they follow in PD. 

One of the mixed responses the game obtained is for D5, where player asked if the games help them to 

understand the challenge of designing a product that fully satisfy the testing requirements (D5). For this 

question, about 35% of the respondents were either neutral or disagree on the question. Perhaps, the question 
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is overly stated by implying “fully”. For practitioners, the challenge is tremendous in real life than the game. 

The game is the simplification of reality, where few constraints are considered.  

 

Figure 6.10: Descriptive statistics of declarative learning outcomes (N = 49, μ   mean and σ   std. dev.).  

6.3.1.1 Set based communication and its practicality  

Another question that might need attention is D6, where about 33% of the respondents were either neutral or 

disagree on the question. The best explanation for this response is related to designers’ experiences about 

communication during design process. Communication in the game was taken as set based communication 

not communication in the form of meetings or its other traditional common interpretations. Set based 

communication is necessary when sub-system designers explore alternative solutions and need to evaluate 

sets to check for subsystems compatibilities. 

During the discussion with players, three observations have been made about the result on question D6. First, 

the product the company designs is for HVACR market. Product types in this market are not like automotive 

where set based communication is pronounced as key principle for SBCE. In Toyota, for example, there are 

large numbers of subsystems that designers should explore and need to check compatibilities of sets during 

new vehicle launch (Liker, et al. 1996). For HVACR products, subsystems are not as tightly coupled as 

automotive that might demand set based communication either with internal subsystem teams or suppliers. 

Moreover, the major types innovation on new products made in the case company is incremental. This fact 

reduces the broadness of the sets to consider, as a consequence simplifies communication among functional 

teams. 

The second reason is related to the case company being small. During new development projects, often the 

suppliers of the case company requires very detail specifications to start building a prototype for a new 
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project. There are little negotiation power to force suppliers to explore alternative components and present 

performance curves. This limit the level of set based type communication between the company and its 

suppliers. Therefore, it becomes difficult to leverage on suppliers capabilities as big OEMs could have. The 

success of SBCE in Toyota partly can be attributed to its bargaining power to leverage suppliers’ capabilities to 

facilitate SBCE process. Before bidding, suppliers of Toyota are required to explore several alternative 

prototypes, test them in different working conditions and bring performance results in the form of trade-off 

curves (Ward, et al. 1995; Sobek and Ward 1996; Sobek, et al. 1999; Ward, et al. 2007). Toyota thus offsets the 

extensive portions of SBCE process to partners, and pulls knowledge to support its internal processes. 

Nonetheless, such kind of opportunities might not be available for many industries (e.g. small or medium sized 

companies). 

The third reason for the result of question D6 is related team size in a new project. Most projects are done 

with few people and sometime only one person owns a full project. Thus, communication in sets might not 

be a critical because there are close collaboration between few and collocated designers and managers. 

Moreover, if one designer is responsible to design different subsystems, communication in sets becomes 

simple. However, the company is going global; it is opening design and development offices in different 

countries such as China, Brazil and USA. If subsystems are designed across different non-collocated or 

multiple designers, then set based communication becomes an important enabler for SBCE. 

6.3.1.2 Designers vs. Managers in SBCE 

Another observation that can be made from Figure 6.10 is question D1, where players were asked about their 

level of understanding about SBCE process after the game. Although most players (71%) either agree or 

strongly agree that the game increases their understanding, there is a higher level of variation between 

players (σ   0.95). This might have arisen from the difference in understanding between designers and 

managers.  

In order to test if there are significant differences between groups of SBCE game players, a non-parametric 

test is used. Since the data are ordinal (Likert) scales, the most appropriate test is based on group median 

differences, and Mann-Whitney U test is the most prevalent and recommended one (Siegel 1957; Newson 

2001). Moreover, STATA 2010 statistical package is used for data analysis. 

As shown in Table 6.9, interesting difference can be observed. Designers and managers are different in 

understanding the limit curves (D7) and communication in sets (D3) with significant levels of p ≤ 0.01 and p 

≤ 0.10 respectively. Looking at the rank sums in Table 6.9, managers give much higher ranking for both 

questions than technical designers (900.5 for D7 and 851.5 for D3). This have been observed during the 

game too, managers have pre-information about SBCE from reading lean product development books, 



102 

 

attending seminars and conferences. However, most technical designers are new to SBCE. If the differences 

arise because managers are pre-aware about SBCE, that will cause less problem during a real implementation 

phase. However, if the differences arise from “cultural” issues, that is, if designers don’t appreciate new way 

of working than the norm, then, it will be difficult for managers (product and project leaders) to disseminate 

the concept of SBCE and obtain a wider acceptance throughout the company. 

6.3.1.3 People experience and SBCE  

The other difference which is worth mentioning in Table 6.9 is between highly and less experienced players. 

There is a significant difference between highly and less experience players on question D5 with significance 

level of p ≤ 0.05. The result shows that, less experienced players recognize the difficulties of satisfying 

testing requirements (or, other downstream constrains) than highly experienced players (D5). Looking at the 

rank sum in Table 6.9 for D5, less experienced designers rank the question higher (614) than highly 

experienced designers (611). From the feedback obtained, less experienced designers in the company 

indicated that there are several failure causes which are difficult for them to anticipate in early phase of new 

design projects than the experienced ones. Thus, test results generating in limit curves are identified as 

paramount generalize knowledge and facilitate effective risk mitigations in future projects. 

On the other hand, there is a significant difference between highly and less experience players on question 

D6 with significance level of p ≤ 0.10.The result shows that highly experienced designers recognize the 

challenge of communication in SBCE process (D6). Looking at the rank sum in Table 6.9 for D6, highly 

experienced designers rank the question higher (777.5) than less experienced designers (447.5). In practice, 

experienced designers are at the center of communication. In particular, in smaller or medium sized 

companies, where there are few highly experienced designers, the less experienced designers have to 

communicate frequently with more experienced colleagues to get information and data. Thus, experienced 

designers become overwhelmed by frequent coaching and mentoring. For this reason, player with higher 

experience appreciate to have tools to effective capture and document knowledge, so that technical 

information is well captured and transferred to novices. 

Table 6.9: The Mann-Whitney U tests for declarative learning outcomes (rejected hypotheses are reported). 

Null Hypothesis 

Median (1) = Median 

(2) 

Measure of declarative learning measures Rank sum (1/2) U-Test: 

p-values 

Male = Female D9: The game gives me insights about the 

importance of capturing design knowledge in the 

form of tradeoff and limit curves 

965/260(¥) 0.0534 
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n (1) = 41 

n (2) = 8 

D4: The game help you to understand the 

challenge of designing a product that fully satisfy 

customer requirements 

962/263(¥) 0.0561 

D1: The game let you understand how SBCE 

works along with its enabling tools 

966.5/258.5(¥) 0.081 

Designers = Managers 

n (1) = 18 

n (2) = 31 

D7: The game help me to effectively understand 

the usage of limit-curves 

324.5/900.5(**) 0.0024 

D3: The game help me to communicate about set 

with my team than one solution 

373.5/851.5(¥) 0.0850 

Years of experience ≥ 

12 

= Years of experience 

<12 

n (1) = 28 

n (2) = 21 

D5: The game help you to understand the 

challenge of designing a product that fully satisfy 

testing requirements 

611/614(*) 0.0492 

D6: The game help you to clearly understand the 

problem of communication within a product 

development team 

777.5/447.5(¥) 0.0966 

Key: (¥) p ≤ 0.10,  (*) p ≤ 0.05,  (**) p ≤ 0.01, n = sample size, Gender: Male (1) and Female (2), Domain: Designers (1) and 

Managers (2), Years of experience: Above average (1) and Below Average (2). 

6.3.2 Procedural learning outcomes 

Procedural aspects of the learning are used in the game to measure the “perceived” performance advantages 

of SBCE compared to PBCE. The term “perceived” is chosen because the game cannot reflect the real 

performance gains of SBCE. Moreover, as Hoppmann (2009) and Ward et al. (2007) indicate, the successful 

implementation of SBCE process in a company might take considerable time to be fully exploited. Since 

SBCE demands changes in several practice areas, significant performance improvements might not 

guaranteed in short terms. Therefore, a more sensible approach to measure the performance leverage in 

implementing SBCE is by asking practitioners how they “perceive” its advantages in real case scenarios. 

Using SBCE game actually helped quite significantly to accurately ask practitioners. Since the players played 

both scenarios (PBCE and SBCE in the first and second stages of the game) they have a good understanding 

on the questions asked. Moreover, the theoretical implications of SBCE on performances were presented to 

them before starting and after finishing the second stage of the game. Therefore, the reflections on the 

perceived performance benefits of SBCE by practitioners can be a valuable input to the existing body of 

knowledge. 

The seven performances related questions asked to players and the related explanations are given as follows: 
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- Reduction of product and process costs (P1): product cost can be minimized in SBCE effort. It can be 

achieved either through finding less costly alternatives in a design space or by adding the right product 

features that customers want (i.e. avoiding over-design). Process cost can be reduced in SBCE effort by 

reducing late design changes, which might causes rework costs and missing market opportunities.  

- Reduction of development time (P2): development time can be reduce either by reusing knowledge from the 

previous projects, and/ or by avoiding extra time caused by late changes once infeasibilities from testing 

department are revealed.  

- Improve innovation potential (P3): better innovation can be gained in SBCE implementation directly and 

indirectly. A thorough exploration and mapping of design spaces might give some design alternatives that 

never been exposed before. There is also indirect way to obtain product innovation, if designers waste less 

time in doing what others already did before them; it leaves more time to work on new ideas. Thus, testing 

several solutions and provisioning them into limit and tradeoff curves can help in avoiding knowledge 

waste and foster (indirectly) innovation. 

- Better communication with teams (P4): this improvement can be achieved with set based communication 

discussed earlier and with SBCE’s enablers for knowledge provision. Set based communication help 

designers and managers to effectively communicate about the performances of sets (of solutions). 

Moreover, if the communication is based on data and proven knowledge, it is much more beneficial for the 

other performances such as time, cost, and risk and so on. 

- Avoid design risks (P5): design risk is defined in the game as the probability that an airplane structure fails 

during testing phase. Players understood this fact, and obviously frontloading information about testing 

constraints in the beginning of stage two reduces the risks of failures. Moreover, the consideration of 

alternative solutions brings more chances to pass failures during testing or other constraints that might arise 

during development process. 

- Improve product quality (P7): quality has several definitions, but Crosby’s (1979) definition as 

“conformity to requirements” might best fit into SBCE game context. In the game, there are both external 

customer and internal customer (testing department) that players consider to satisfy. Customer requirements 

were fixed early in stage one of the game, but in the second stage, possible requirements of customers was 

considered as range of values. Thus, it helps players to consider all the possible design alternatives that the 

customer might look for within a given range of customer requirement. Therefore, considering the 

customers requirement as a range brings more chance to satisfy the customer requirements. Similarly, 

testing department (as internal customer) will get the design right as early as possible. As a result, higher 

quality levels can be achieved at the right time for customers. 
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- Facilitate learning (P7): learning is the basic essence of SBCE. Its basic objective, among other 

performance improvements mentioned above, is to make a development organization to be a learning one. 

Learning from failures, learning from others and learning from extensive testing. Moreover, it is not only 

learning that make SBCE a sensible approach to PD, but also learning what has been learnt from the past or 

present.  

6.3.2.1 Perceived performance benefits of SBCE 

Players were asked if SBCE can have positive impacts on the above performance measures. Similar format 

has been used (as declarative learning outcomes) to construct the questions and assesses the procedural 

learning outcomes (Likert five scale model). Figure 6.11 shows the summary of the descriptive statistics of 

the responses. From the chart, it can be seen that avoiding design risks is the most agreed advantage of SBCE 

as perceived by industrial players (88% agree or strongly agree, with mean response of 4.1). This is clearly 

obvious since in the first stage of the game (PBCE), players failed to pass the testing conditions at least one 

or two times. However, in the second stage since the game provides enablers of SBCE to explore all 

available solutions and frontload the design process with knowledge (testing constraints), there were less 

risks of failures. It is true in practice as well. If designers are able to frontload knowledge from downstream 

functions, many of risks could have been avoided. Similarly, the other advantages of SBCE as perceived by 

industrial players are reduction of product/ process costs (73 % agree or strongly agree, with mean response 

of 3.8) and facilitating learning (71 % agree or strongly agree, with mean response of 3.8). 

6.3.2.2 Innovation and SBCE 

Except improving innovation potential and communication, SBCE is perceived as a process that can improve 

performances if implemented in their company. The discussion related to the ineffectiveness of set based 

communication in this particular company is already elaborated in section 6.3.1.1 above. Here let’s observe 

the improvement of innovation potential of SBCE.  

Fifty percent (half of the players) are neutral or disagree about the SBCE’s potential to foster innovation. 

This is a key lesson for SBCE body of knowledge. Industrial practitioners think that innovation is finding 

new or unexpected solutions. So, does adopting SBCE enable designers to find out new solutions? The 

answer primarily depends on how the exploration principle of SBCE is executed. As discussed in chapter 4 

(section 4.6) there are several tools and methods that can be used to exploration alterative concepts. If, for 

example, brainstorming (Osborn 1957) is used to generate conceptual design solutions, the level of 

innovation is strongly depends on the abilities of designers who are involved in the idea generation process. 

But, brainstorming and similar methods are not structured ways of generating ideas and capturing the idea 
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generation process (e.g. why some ideas are rejected and some are accepted are not well captured). In order 

to structure such a process and decouple the dependency on the designers’ capabilities, Toyota uses tradeoff 

curves (Ward, et al. 1995). In tradeoffs analyses between alternative solutions, one might capture the 

knowledge about the performances of the alternatives and facilitate effective discussions among designers. 

That’s why tradeoffs curves are used in the second stage of the SBCE game. However, using tradeoffs 

restricts the level of innovation (Altshuller 1984, 1994, 1999). Altshuller is one opponent of using tradeoffs 

in product design. He argued that, accepting tradeoffs will not lead to innovative or inventive solutions. 

Rather, using tradeoff analyses limit innovation because designers explore solution accepting compromise 

between performances. For example, if a designer is challenged to choose among material types aiming at 

reducing weight and maximize strength, using tradeoff analyses he/ she might come up with a material that 

have an average weight and an average strength (compromising the two requirements). However, 

Altshuller’s theory which is called TRIZ (Theory of Inventive Problem Solving) has different approach to 

find solutions (Altshuller 1984, 1994, 1999). In TRIZ, tradeoffs are not accepted, rather they are eliminated. 

In the above material choice example, the TRIZ approach is to lead the designer to think out of the box and 

come up with a material which has the less weight and at the same time high strength. TRIZ provides several 

methodologies to facilitate and structure to find such inventive solutions (e.g. the 40 inventive principles, 

principles of separation and algorithms for inventive problem solving).  

 

Figure 6.11: Descriptive statistics of procedural learning outcomes (N   49, μ   mean and σ   std. dev.). 

Therefore, yes it is true that SBCE might not lead to innovative solutions. But, if tradeoff analyses are used 

to explore design solutions and map the design space, designers normally windup with known solutions (and 

accept design compromises). But, if methodologies such as TRIZ are systematically integrated, SBCE can be 

a process to support innovation. Moreover, it is difficult to generate and understand tradeoffs in a product 
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system, and even impossible in some cases to model. Therefore, appropriate strategies should be applied at 

the beginning of SBCE process to explore innovative solutions.  

6.3.2.3 Perceptions of SBCE benefits: Designers vs. Managers 

Table 6.10 shows the inferential analyses. The table also shows the reject hypotheses on perceived 

performance advantages in different groups. Once again, there are statistically significant differences (p ≤ 

0.01) on the medians between managers and designers in perceiving the advantages of SBCE on questions P5 

and P7. For both performances managers give higher ranks (883 for P5 and 896.5 for P7) than designers (342 

for P5 and 328.5 for P7). The most appealing interpretation could be that, managers might have pre-

inclinations with the notion that SBCE can improve performances and are eager to adopt SBCE as one lean 

initiative. However, managers should give considerable attention to convince technical designers on the real 

benefits of SBCE to gain wider acceptance before implementation. 

Table 6.10: The Mann-Whitney U tests for procedural learning outcomes (only rejected hypotheses are 

reported). 

Null Hypothesis 

Median (1) = Median 

(2) 

Procedural learning measures 
Rank sum (1/2) 

U-Test: 

p-values 

Age ≥ 40   Age   40 

n (1) = 20 

n (2) = 29 

P1: Reduction of product and process cost, by 

reducing rework and penalty cost 

574/ 651(¥) 0.089 

Designers = Managers 

n (1) = 18 

n (2) = 31 

P5: Avoiding design risks 
342/ 883(**) 0.0098 

P7: Improve product quality 
328.5/ 896.5(**) 0.0035 

Key: (¥)p ≤ 0.10,  (*)p ≤ 0.05,  (**)p ≤ 0.01, n =  ample  ize, Age: Above average (1) and Belo  Average (2), Domain: Designers 

(1) and Managers (2) 

6.3.3 Strategic learning outcomes 

The final learning aspect that is assessed in the SBCE game is the strategic learning outcomes. It is primarily 

concerned with the adoption of what has been learnt from the game into real-life design scenarios. Industrial 

players were asked about ten questions that might reflect if they can adopt some of the principles and 

enablers of SBCE to their real design activities. Table 6.11 shows the list of questions and summaries of the 

descriptive statistics results. The descriptive statistics for the responses are also shown in Figure 6.12.  
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In general, the game has been perceived as useful to practitioners. More than 70% of the players were 

responding for questions S1, S2, S4 and S7 as either agree or strongly agree. These responses reflect that, the 

tradeoff curves, limit curves and the checklists have been taken as useful hints on how to make the design 

and development process better. 

6.3.3.1 Problem solving and SBCE 

The response to S5 is mixed, around 40 % of the respondents were not sure if SBCE can improve their 

problem solving abilities. This question might not be well understood by players or the game was not 

effective in reflecting what problem solving means in the game context. The question were addressing to ask 

if problems that might results in delays and additional costs (such as product failure during testing) could 

have been solved by applying some of the enablers embedded in the game (such as limit curves, checklists or 

tradeoff curves).  

Table 6.11: Questions for measuring the strategic (S) learning outcomes and summary of response results. 

Code Questions – is playing the game:- µ σ 

S1 help you on how to use trade-off and limit curves in design practice? 3.65 0.69 

S2 

help you on how to develop communication tools for evaluating sets in 

practice? 3.78 0.51 

S3 help you on how to better communicate in practice? 3.61 0.64 

S4 worthwhile for your design practice? 3.98 0.72 

S5 help you on how to improve your problem solving skills in practice? 3.53 0.68 

S6 help you to believe that SBCE is better approach than normally practiced? 3.71 0.84 

S7 will help you to develop set of solutions than one? 4.08 0.70 

Code Questions  µ σ 

S8 

It is possible to develop trade-off/limit curves in our new projects and it is not 

easy? 3.55 0.89 

S9 

It is possible to develop trade-off/limit curves in our new projects and it is 

easy? 2.4 0.79 

S10
19

 It is not possible at all to develop trade-off/limit curves in practice? 2.27 0.86 

As understood from the feedback given by players, designers and managers associate “problem solving” in a 

different way than portrayed or asked in the game. Most problems that the designers face during 

development processes are project delays. There are some initiatives for example visual planning schemes to 

address problems that might avoid delays. That means, problem solving could mean different for different 

                                                     

19
 Reverse ordering for the negative question S10 (Norman 2010). 
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people. For most designers, problems might be associated with “over-burden”, for example. Moreover, 

projects are delayed because designers are over-burdened with many other projects. 

SBCE might not directly be related to overburden at the first site. However, it’s what Ward et al. (2007) 

expressed it as the opposite of one piece flow. Flow in product development can be achieved by allocating 

the right amount of work-load to designers at different stages of the process. If designers are given project 

plans which cannot be achieved within their available time, then flow cannot be achieved. That is why 

integration events are taken as one of SBCE’s enablers. Integration events should substitute stage-gate 

controls during SBCE implementation (Ward, et al. 2007; Oostewal 2010). Gate controls as practiced in most 

companies are “evils” (Oostewal  010, pp. 148). Gates are planned based on wrong assumptions about the 

nature of product design and development process. PD is unpredictable and cannot be controlled by gates 

that dictate deadlines which are not achievable. Once plans are scheduled, designers become overloaded and 

problems will be found out late the process causing delays and cost overruns. Although in SBCE game 

integration events are not strictly considered, it is one of the enablers of SBCE (refer chapter 4, section 4.4). 

Moreover, enabling tools that are introduced in stage-two of the SBCE game are used at integration events to 

evaluate sets, facilitate negotiation between teams, and make effective planning. 

 

Figure 6.12: Descriptive statistics of strategic learning outcomes (N   49, μ   mean and σ   std. dev.). 

6.3.3.2 Challenge in generating tradeoff and limit curves  

Another important note that can be taken from Figure 6.12 is the responses to question S9 (μ = 2.4), which 

asks if developing tools such as tradeoff/limit curves are easy for their products. However, most of the 

industrial players recognize that building such knowledge instruments is not an easy job. This shows how 

SBCE demands time to be effective before seeing any performance improvements after implementation.  In 

particular, small and medium sized companies have limitations in resources to invest on simulation and 
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testing tools to generate tradeoffs and limit curves. Moreover, generating alternative designs and building 

prototypes in parallel will be costly for these companies to capture and analyze governing performances data 

about sets. Thus, as many lean initiatives, SBCE should be taken as a process and as a journey where 

knowledge is systematically captured as a long term strategy. 

6.3.3.3 Interests to adopt SBCE: Designers vs. Managers 

Inferential statistics also done to see if there are differences among players groups on their tendencies to 

apply what have been learnt in the SBCE game. As shown in Table 6.12, there are statistically significant 

differences on the medians of the responses between managers and designers on questions S4 and S7. 

Considering S4, management is willing to proceed with the adoption of SBCE process in the company (rank 

sum = 848). Compared to that of the designers’ ranking for the question (rank sum    77), there is a 

significant difference between the two (with significance level of p ≤ 0.10). In fact, the management is 

deploying a pilot case on the company to test SBCE in a product. This is a remarkable initiative; however, 

care should be taken underlying the fact that SBCE is a journey that demands the involvement of designers 

and technicians alike for its successful implementation. 

6.3.3.4 Competence development in SBCE 

Looking at Table 6.12, there are statistically significant differences between those players who have more 

than average years of experience and the others on questions S5 and S9. These differences have very 

important implications to underline.  

Recalling the discussion on chapter 4, section 4.3, one of the key enablers for SBCE is people competence. 

The roles of experienced engineers and designers are paramount for successful implementation of SBCE. For 

example, one of the roles of the Chief engineers (CEs) in Toyota are mentoring and transferring knowledge 

to novice (less experienced) about customers, market, technical competences (Morgan and Liker 2006). 

Similar implications have been observed from the game measurement too. For example, the rank sum from 

experienced designers (787) is higher than the less experienced designers (435) on question S9, and the two 

groups are statistically different for significant level of p ≤ 0.10. The result implies that, players with highly 

practical experience know how to identify and capture technical data (e.g. test data) from downstream 

processes compared to their colleagues with less years of experience. Therefore, it is important to underscore 

the issue of coaching and mentoring. It is recommended for highly experienced designers to formally and 

informally run mentoring activities during SBCE process. 
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Table 6.12: The Mann-Whitney U tests for strategic learning outcomes (rejected hypotheses are reported). 

Null Hypothesis 

Median (1) = Median (2) 

Strategic learning measures Rank sum (1/2) 

U-Test: 

p-values 

Designers = Managers 

n (1) = 18 

n (2) = 31 

S4: Playing the SBCE game is worthwhile to your 

product development process 
377/848(¥) 0.0931 

S7: The game help me to design sets of solutions 

rather than one solution   
355.5/869.5(*) 0.0277 

Years of experience ≥1  

= Years of experience <12 

n (1) = 28 

n (2) = 21 

S5: Playing SBCE game will improve your 

problem solving ability in new product design  
624.5/600.5(*) 0.0754 

S9: It is possible to develop some limit-curves (as 

shown in the game) for a product I a am designing 

and it is easy  

787/435(¥) 0.0547 

Key: (¥)p ≤ 0.10  (*)p ≤ 0.05  (** p ≤ 0.01, n = sample size, Gender: Age: Above average (1) and Below Average (2), Domain: 

Designers (1) and Managers (2), Years of experience: Above average (1) and Below Average (2). 

6.3.4 Summary of implications for practice 

Finally, it has been possible to draw some insights from the game to generalize the lesson learned from the 

game. The insights are aimed to underscore the relationships between the SBCE enablers embedded in the 

game and their impact on knowledge building, performance improvements, and generally for SBCE 

successful implementation.  

In order to obtain such insights, summated scales (Spector 1992) are developed based on the same questions 

asked to players in the three learning outcomes (declarative, procedural and strategic). The questions are 

regrouped, and data sets are aggregated to build theoretically valid constructs. Constructing scales (that have 

similar theoretical constructs) is an iterative process (Spector 1992). Moreover, the reliabilities of the 

summated scales are checked using ‘Cronbach alpha (α)’ coefficients (Cronbach 1951; Cronbach, et al. 

2004). Any scale with value of α more than 0.70 is considered to be reliable (Cronbach 1951; Cronbach, et 

al. 2004). Below, brief discussion about the scales developed and their inter-correlations are discussed. 

Furthermore, the implications of the correlations to practice will be discussed accordingly. 

6.3.4.1 Definitions of summated scales 

Summated scales are widely used in social science to develop a construct that has more meaning than 

interpreting individual questions posed in Likert based items (Spector 1992). A summated scale must contain 
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multiple items. The use of summated in the name implies that multiple items will be combined or summed. 

In the evaluations of the learning outcomes of SBCE game, the questions were addressed individually, as 

discussed previously in sub-sections. However, to make a general summary of what has been learned from 

the game, the responses of the questions which have similar theoretical and practical implications are 

grouped within a scale. To check if a single question belongs to a general scale, the prevalent coefficient of 

reliability, Cronbach alpha (0 ≤ α ≤ 1) is used (Cronbach 1951; Cronbach, et al. 2004).  

The general accepted α is more than 0.7. This is used to check if a group of questions are measuring the same 

or similar underlying theoretical construct, or has similar meaningful interpretation for industrial practices. 

Thus, if adding a question on a scale reduces α coefficient, it will be removed or assigned to another related 

scale. Otherwise, either it can be taken as a standalone scale (if it has significant implication as a standalone 

construct) or it will be discarded from consideration. For example, the data set from the question S1 (the use 

of tradeoff and limit curves in future projects) was rejected because the α coefficient keep decreasing 

whenever it is assigned to its logical constructs such as tool or knowledge building. Moreover, it cannot be a 

standalone scale since it is too narrow to be considered as a scale construct. It is concluded that, the question 

itself has a problem because of the inclusion of “and” in the statement, which might have confused 

respondents whether they are answering about the use of tradeoff curves or the use of limit curves. Since the 

question has been confusing to respondents, and the inclusion into other scales creates more variation, it is 

rejected from consideration. Following such a meticulous iterative process the final scales are developed, 

which have valid implications for practice and theory and have acceptable reliabilities. 

Figure 6.13 shows the developed scales that are theoretically valid and have reliabilities (α) ≥ 0.7. There are 

six scales that are developed and named as: Tool, Involvement, Communication, Knowledge building, 

Performance and Implementation. The first four scales are directly related to some of the SBCE enablers 

identified and discussed in chapter 4. These enablers are requirements for an SBCE implementation to be 

effective in product development. In SBCE game some of the enablers are embedded in the game itself and 

throughout the play (interaction between players and the game facilitators). Of course, there is a clear 

limitation on gaming to include all the SBCE enablers. Since game design demands simplicity to transfer 

theoretical concepts in a simplified manner, all the available enablers are not included. Nevertheless, the four 

enablers that are already embedded give interesting inklings about their relationships within each other, and 

their correlations with performance and implementation success scales. Below the overviews about the scales 

are given as follows: 

- Tool (T): is a scale that represents one of the SBCE enabler which is embedded in the game play and it 

is composed of questions D1, D2, S7, D7, and S10. The data set from D1 can be used to understand the 

respondents understanding and use of the tools embedded in the game as a whole (e.g. tradeoff curves, 
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checklists and limit curves). The data sets from D2 and S7 can be used to understand the respondents 

understanding and use of the tools for exploration of alternative designs (e.g. tradeoff curves). The data 

sets from D7 and S10 can be used to understand the respondents understanding and use of the tools for 

the convergence process or elimination of alternative designs (e.g. limit curves). In sum, the Tool (T) 

scale can be defined as the understanding and use of tools in SBCE process. 

 

Figure 6.13: Summated scales of SBCE enablers, performances improvements and implementation success. 

- Involvement (INV): is a scale that represents another SBCE enabler. Involving stakeholders are taken as 

a key enabler for SBCE successful implementation. In the game, there are two stakeholders who are 

simulated in the play (customer as external and testing department as downstream function). The two 

questions which are summed in the Involvement scale are D4 and D5. D4 takes into account the 

understanding and importance of capturing and integrating customer value (requirements) in to design 

and development process. The second one (D5) takes into account the understanding and integrating 

testing constrains by involving downstream functions (e.g. testing department). In sum, Involvement 

(INV) scale can be defined as the understanding and integration of stakeholders in SBCE process. 

- Communication (C): is a scale representing another SBCE enabler. Communication in SBCE should be 

based on sets rather than a point based communication. The six Likert based questions summed in this 

scale are: D3, D6, D8, P4, S2 and S3. The data sets from D3, D6 and D8 indicate the facilitation of 

principle of set based communication. The data set from P4 represents the performance benefit of 

SBCE enablers
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α = 0.74

Understanding and use 
of SBCE tools (D1)

Understanding and use 
SBCE tools for 
exploration (D2, S7)-
Tradeoff curves

Understanding and use 
of tools for elimination 
(D7, S10)-Limit-curves
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α = 0.78 

Understand and 
integrate customer 
value (requirements) 
(D4)

Understand and integrate 
testing constraints (D5)

Communication (C)

α = 0.70

Facilitate set based 
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D6, D8)
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Recognition and 
understanding of set 
based communication 
(S2, S3)
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and representation of 
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α = 0.79
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Successful implementation 
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(S5,  S6)
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SBCE to improve communication among subsystem teams (body, cockpit, tail and wing). The data sets 

from S2 and S3 are used to indicate the recognition and understanding of set based communication by 

industrial players. In sum, Communication (C) scale can be defined as recognition, understanding, and 

benefit of adopting set based communication. 

- Knowledge building (K): is a scale that represents one of the most important enabler of SBCE process. 

The scale is composed of a standalone question D9. This Likert item question represents the 

identification, capturing, effective representation of knowledge in SBCE. Thus, the data set from 

question D9 is used to represent the knowledge building scale. Knowledge building (K) scale, 

therefore, can be defined as the identification, capturing and representation of design related knowledge 

in SBCE process. 

- Performance (P): this scale does not represent any SBCE enabler. But, it is the impact of the SBCE 

enablers (embedded) in the game on perceived performance improvements. It is composed of all the 

performance measures discussed in procedural learning outcomes earlier, except P4. P4 (improve 

communication) is grouped under Communication (C) scale; because α has decreased drastically when 

it is grouped in performance (P) scale. Therefore, the logical scale to put P4 has been on 

Communication (C) scale. Thus, Performance (P) scale is composed of the data sets from questions P1, 

P2, P3, P5, P6 and P7. And, it can be defined as the performance improvement potentials of the SBCE 

enablers such as Tools (T), Involvement (INV) and Communication(C) and Knowledge building (K). 

- Implementation (IMP): this scale is to measure the success of SBCE implementation. Once a company 

adopts the enablers of SBCE and obtain some performance improvements, then the company can say 

that SBCE has been successful implemented. The three questions grouped in this scale are: S4, S5 and 

S6. Data set from S4 represents the ability of designers and mangers in solving problems using the 

SBCE enablers (embedded in the game). Data sets from questions S5 and S6 represent the successful 

implementation of SBCE and the capacity to become a learning organization using the SBCE enablers. 

Thus, Implementation (IMP) scale can be defined as the capability of a company to be adept in problem 

solving and becomes a learning organization. 

6.3.4.2 SBCE enablers, performance improvements and implementation 

success 

To test if there are significant correlations between the SBCE enabler scales (T, INV, C, and K), perceived 

performance improvements scale (P), implementation success scale (IMP), a non-parametric test is used. 

Since the data are based on ordinal (Likert) items, the most appropriate and prevalent correlation coefficient 
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to use is Spearman's rho (ρ) (Siegel 1957; Newson  001). Moreover, STATA  010 statistical package is used 

for data analysis, and to find the ρ coefficients and tests for the significant levels of the correlations. 

Table 6.13 and Figure 6.14 show the results of the correlations between the scales and their significant levels 

(p-values). As shown from the results, according to the industrial game players, the SBCE enablers have 

strong correlations with each other and contribute significantly to performance improvements, as well as to 

bring the design organization to a successful learning organization.  

Table 6.13: Correlations between SBCE enablers, perceived performance improvement and implementation 

success (N=49,
(¥) 
p ≤ 0.10,  

(
*

) 
p ≤ 0.05,  

(
**

) 
p ≤ 0.01). 

Spearman rho (ρ) for model correlation 

 T INV C K P IMP 

T: the understanding and use of tools in SBCE 

process  
1.0  

INV: the understanding, and integration of 

stakeholders in SBCE process 

0.4581
(
**

)
 

(0.0009) 

1.0  

C: the recognition, understanding, adoption of 

mechanisms and techniques that facilitate set 

based communication in SBCE process 

0.3866
(
**

)
 

(0.0061) 

0.2452
(¥)

 

(0.0894) 

1.0  

K: the identification, capturing, and 

representation of knowledge in SBCE process 

0.5548
(
**

)
 

(0.0000) 

0.4521
(
**

)
 

(0.0011) 

0.2042 

(0.1593) 

1.0  

P: the performance improvement potentials of 

the SBCE enablers 

0.4584
(
**

)
 

(0.0009) 

0.3806
(
**

)
 

(0.0070) 

0.3540
(
*

)
 

(0.0126) 

0.3635
(
*

)
 

(0.0103) 

1.0  

IMP: the capability of a company to be adept 

in problem solving and become a learning 

organization using the SBCE enablers 

0.4833
(
**

)
 

(0.0004) 

0.5268
(
**

)
 

(0.0001) 

0.3378
(
*

)
 

(0.0176) 

0.4304
(
**

)
 

(0.0020) 

0.5183
(
**

)
 

(0.0001) 

1.0 

Tool (T) for example, has significant (p ≤ 0.01) correlations with all other enablers INV, C and K, and with ρ 

coefficient values of correlation 0.4581, 0.3866, and 0.5548 respectively
20

. The results show that tools and 

methods (e.g. limit curve, tradeoff curves, and checklists) as enablers contribute to facilitate set based 

                                                     

20
 For the sample size N 49, the minimum threshold for correlation ρ is approximated to be 0.  5, 0. 79 and 0. 65 for 

two-tailed significance p-levels of 0.10, 0.05 and 0.01respectively (Newson 2001).  
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communication (C), to have effective involvement with stakeholders (INV) and build knowledge (K) in 

SBCE process. Moreover, except Communication (C), Tool (T) and Involvement (INV) significantly 

contribute for knowledge building (K) with significant level (p ≤ 0.01), and with ρ coefficient of correlations 

0.5548, 0.4521 respectively.  

 

Figure 6.14: Correlations between SBCE enablers, performance and implementation success (N=49,
(¥) 
p ≤ 

0.10,  
(
*

) 
p ≤ 0.05,  

(
**

) 
p ≤ 0.01). 

From the results observed in Figure 6.14, Communication (C) doesn’t have a significant correlation with 

Knowledge building (K). However, the results from previous studies have shown mixed relationships about 

the two. For example, Sobek et al. (1999) conducted a detail observation on the communication style 

between Toyota and its suppliers. They have found that, suppliers of Toyota communicate in ranges and also 

develop several prototypes for the same design concept. Toyota requests the suppliers to communicate in this 

style. The rationale behind is that, Toyota wants to understand the underlying tradeoffs between alternative 

designs (Ward, et al. 1995; Sobek, et al. 1999). The set based communication style between Toyota and its 
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suppliers is used to build tradeoffs between performances of alternative designs. This relationship is helping 

to build knowledge about design performances in the form of tradeoffs. Thus, this study shows that set based 

communication has at least a positive relationship with knowledge building (Sobek, et al. 1999; Ward, et al. 

1995).  

On the other hand, Liker et al. (1996) survey study shows a different result. Liker et al. (1996) conducted a 

detail survey study about SBCE on US and Japanese automakers. The result shows that, set based 

communication has been considered as a negative practice by some industries. Except Toyota and some 

Japanese OEMs, US manufacturers use ‘single best guess’ (point based communication) rather than ‘ranges 

or alternatives’ (set based communication) to communicate with customers and suppliers. In particular, the 

US manufacturers use one design solution to communicate with their suppliers. The survey showed that, US 

manufacturers consider the communication of ranges and alternatives with suppliers as ‘undecided’. That is, 

they don’t want to present unfinished requirements to suppliers, as if they are not sure what they requesting. 

This kind of relationship with suppliers help US manufacturer to control quality and cost targets. Otherwise, 

suppliers might abuse the relationship taking the set based communication as a leap for bad performances. 

Moreover, US manufacturers who use ranges don’t elongate the communication for a longer period. Rather, 

they freeze the requirements early in the beginning. Therefore, the above discussion shows that set based 

communication is not always taken as a means of building knowledge (e.g. for tradeoff analyses), rather 

point based communication is referred to make faster decisions and control cost targets. 

Coming to the case company and the SBCE game, the result shows that there is no significant relationship 

between set based communication and knowledge building. The sample size (N=49) in the game is small to 

generalize the result. However, the game play was conducted in an industrial context where the nature of 

product development is different from Toyota or any other big automakers. The insignificant relationship 

between set based communication and knowledge building might mean different for this particular case or 

might be related to the tendency to use point based communication as a cost control mechanism (similar to 

most US manufacturers). 

Other possible reasons can also be mentioned to cipher the possible rationale behind the results. First, one 

might guesses that, the relationship between set based communication and knowledge is not well understood 

by players. Second, communication in sets might be less important for the case company as a way of 

knowledge building mechanism. This second reason has also been implied and discussed previously during 

the measurement of declarative learning (see section 6.3.1.1). This might be related to the nature of the 

products the case company designs, which don’t involve large numbers of sub-systems that demand set based 

communication and tradeoff analyses to capture/build knowledge. Moreover, since few internal designers 

and external suppliers involved in a project, set based communication based on ranges and alternatives might 
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not be significant source for knowledge building. Or, as in some cases, a single designer is responsible to 

design a new project where the knowledge is centralized by few individuals making knowledge building in 

the form of tradeoff curves or any other extensive knowledge capturing mechanisms less efficient. 

In summary, from Figure 6.14, one can easily understand that SBCE process is a journey. It takes time to get 

successful results and become a learning organization. The understanding and use of the tools necessary for 

communication, involvement and knowledge building are the primarily steps to start the SBCE journey. 

Once the tools are effectively embedded in product development, SBCE fosters communication and 

facilitates effective involvement of stakeholders in SBCE implementation process. Then, the company can 

identify, capture and reuse market and technical knowledge. Once knowledge is effectively shared across 

projects and across design teams, performance improvements can be seen as a result of the SBCE 

implementation efforts. Finally, one can say that, SBCE implementation is successful and a company 

becomes a learning organization, who can dynamically design products in a knowledge base environment. 

6.4 Conclusions, limitations and future researches 

The purpose of this chapter was to fill the gap that exists across many industries; there has been a lower 

awareness level of SBCE. As discussed in section 5.2.2, most companies that have been surveyed have 

exhibited lower level of understanding on what and how SBCE process works and previous researches also 

indicate similar gap. However, at the same time there are growing interests from industries to know and 

adopt it in practice. Therefore, filling this gap has been taken as one objective in this thesis.  

In order to fill the gap, the SBCE serious game has been developed. Gaming has been chosen as an approach 

because of its ability to transfer complicated concepts into simplest forms. Moreover, game has been 

effective to bring a hand-on experience for industrial practitioners about SBCE process that has been new to 

most industrial players, in a safe environment and entertaining manner.  

The game has been played by more than 60 designers and managers (49 responses) working in one company. 

The learning outcomes from the game have been assessed using Garris model (Garris, et al. 2002). The 

players’ understanding about the SBCE principles and enablers, the perceived performance improvements of 

the principles and enablers are measured (declarative and procedural learning). Moreover, players’ 

tendencies to adopt what they have trained in the game to practice also have been one of the focuses of the 

measurement of the learning outcomes (strategic learning).  

From the game measurements, interesting results that have important reflections for the theory and practices 

of SBCE process have been found. In particular, the results have significant implications for small and 

medium sized companies. Moreover, a simplified roadmap has been proposed to stress the fact that SBCE is 
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a journey, which starts with implementing SBCE enablers. SBCE enablers such as tools, communication and 

involvement are the first steps that should be implemented before one seeks knowledge building and 

performance improvements. Moreover, once the preliminary enablers are effectively embedded in a 

development organization, SBCE is a paradigm that foster knowledge building, performance improvements, 

and further succeed in its implementation. Table 6.14 summarizes the summaries of results from the game 

measurement, the rationales and the implications for practice and theory.  

There are limitations on the research and consequently on the results found. Although, the SBCE game has 

been a success in this particular company, it needs to be introduced to wider industrial players in different 

contexts. Moreover, the conclusions and implications discussed in this chapter are predominately based on 

the feedbacks from one company which specializes in HVACR market. If different industrial types are 

included a more solid and accurate results concerning the applicability of SBCE in industries can be 

developed. Therefore, future researches remain to validate the game with different other industrial players 

and compare the results across industries. 

There are also limitations related to the design of the SBCE game. The current version of the game contains 

only certain enablers of SBCE process. However, as discussed in chapter 4, there are other enablers that are 

interesting to be included (e.g. organizational aspects, people competences, chief engineering system and so 

on). Therefore, more researchers remain both in the game design and measurement/validation aspects. 

The second part of this thesis is presented in the next chapter 7. This chapter address the second research gap 

identified (the lack of a methodological approach to identify and prioritize areas for SBCE implementation at 

a product level). The extensive nature of SBCE rationalizes the need for a systematic methodology to lead 

designers to focus the efforts. The extensiveness of SBCE has also been observed from the feedbacks 

obtained for SBCE serious game. This thesis proposes a methodology called SBCE IR to address this gap. 

Moreover, in chapter 7 the discussions on the validation of the SBCE IR methodology are presented.
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Table 6.14: Summaries and conclusions of the results of SBCE serious game measurement. 

Leaning 

outcomes 

Results obtained 

from game 

measurement 

and feedbacks 

from industrial 

players 

Rationales Implications for practice 

and theory 
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SBCE serious 

game has been 

effective to 

introduce SBCE’s 

principles and 

enablers 

embedded in the 

game. 

 The game is designed to 

educate SBCE and 

comparison between PBCE 

is made. Tradeoff curves, 

checklists and limit curves 

have been embedded in the 

game to facilitate the 

SBCE in designing a 

simplified airplane 

structure. 

 The game can be used to educate 

practitioners to increase their 

awareness level about SBCE. 

Principle of set 

based 

communication 

and tools to 

facilitate it might 

not be critical in 

this company. 

 Products in HAVC/R 

market do not involve 

complex and integrate 

subsystems like automotive 

designs (where set based 

communications is key). 

 Small design team 

members for a design 

project. 

 Difficulties of 

communicating design sets 

with suppliers. 

 Set based communication might 

not be a key principle of SBCE 

when: there is no- design 

complexity, number of designers 

in a project is very small and when 

suppliers are not willing or 

capable of communicating in sets. 

Designers and 

managers have 

different level of 

understanding of 

SBCE as 

presented in the 

game. Managers 

have higher 

awareness of 

SBCE than 

technical 

designers. 

 Managers have pre-

information about SBCE 

from reading lean product 

development books, 

attending seminars and 

conferences. 

 Managers have more 

ambitions for change. 

 If the differences arise because 

managers are pre-aware about 

SBCE, that will cause less 

problem during a real 

implementation phase. 

 However, if the differences arise 

from “cultural” issues, that is, if 

designers don’t appreciate new 

way of working than the norm, 

then, it will be difficult for 

managers to disseminate the 

concept of SBCE and obtain a 

wider acceptance in the company. 

There is a 

significant 

 Less experienced designers 

in the company indicated 

 Experience matters to understand 

and effectively deploy SBCE. 

 Tools used in SBCE serious game 
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difference 

between highly 

and less 

experienced 

players in 

perceiving SBCE.  

that there are difficulties to 

anticipate design problems 

at the frontend of a design 

project, and the SBCE tools 

provided in the game has 

been appreciated to 

alleviate this problem. 

 Highly experienced players 

also indicate the 

importance of adopting 

SBCE tools to capture and 

transfer their knowledge to 

less experienced designers. 

has been perceived as very 

important to capture knowledge 

and knowhow and further transfer 

to less experienced designers.  
P

R
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Industrial players 

have perceived 

significant 

benefits of SBCE 

in improving 

performances 

such as: reduction 

of risks, reduction 

of product/ 

process costs, 

facilitates 

learning, 

improving quality. 

 The SBCE serious game 

provides a performance 

measurement scheme to 

compare PBCE and SBCE. 

During the play significant 

performance improvements 

have been demonstrated. 

 Players have also give 

feedbacks on the 

performance benefits of 

SBCE if it is applied in 

their real design practice. 

 SBCE is beneficial for industries 

in improving performance 

measure of product development. 

SBCE as 

portrayed in 

SBCE game or in 

literature has a 

limitation in 

enhancing 

innovation. 

 Innovation is perceived by 

the industrial players as an 

achievement of new design 

solutions which are 

unexpected.  

 However, the use of 

tradeoffs in SBCE as an 

exploration tool restricts 

the level of innovation. 

Because tradeoffs are based 

on accepting compromise 

rather than advancing 

performances to new 

levels.  

 Moreover, generating 

tradeoffs are difficult in 

practice. 

 If tradeoffs are used for exploring 

alternatives in SBCE, it might 

limit the level of innovation that 

can be achieved. Therefore, 

exploration of concepts or 

generation of ideas has to been 

supported by other established 

innovation theories such as TRIZ 

to enhance innovation in SBCE 

process. 

Managers have 

higher perception 

 Managers have more 

tendencies to accept SBCE 

 Managers should convince 

technical personnel on the real 

value of SBCE either by taking 
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on SBCE’s 

potential benefits 

for performance 

improvements 

than technical 

designers. 

as performance enhancer. 

 Managers have more 

ambitions for change. 

pilot projects or introducing them 

with success stories from other 

industrial cases. 
S
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Thanks to the 

game, most 

practitioners are 

willing to adopt 

SBCE in their 

design practice. 

 Most players acknowledge 

that playing the game has 

been worthwhile for their 

design practice 

  Most players acknowledge 

that playing the game help 

to have ideas on how to 

practice SBCE enablers 

embedded in the game. 

 The game has been effectiveness 

in convincing players to adopt it in 

their daily practice. 

 The game also helps on giving 

ways in how practitioners can 

execute SBCE in practice. 

Generating 

tradeoff and limit 

curves are 

challenging in 

practice. 

 Companies like this have 

limitations in resources to 

invest on simulation and 

testing tools to generate 

tradeoffs and limit curves. 

Moreover, generating 

alternative designs and 

building prototypes in 

parallel will be costly for 

these companies to capture 

and analyze governing 

performances data about 

sets. 

 SBCE should be taken as a 

process and as a journey where 

knowledge is systematically 

captured as a long term strategy. 

Developing tools, involving 

stakeholders, and effective 

communication should be in place 

to build knowledge. Then, 

performance benefits can be 

shown as a result and companies 

can successful implement SBCE 

and develop products in a 

knowledge based environment. 

Managers have 

higher interests to 

adopt SBCE than 

technical 

designers. 

 Managers have more 

ambitions for change and 

implement new concepts. 

 Care should be taken by managers 

before going to real 

implementation of SBCE and 

should obtain organization-wide 

awareness about the benefits of 

SBCE. 

There is 

significant 

difference 

between highly 

and less 

experienced 

players in their 

ability to adopt 

SBCE in practice. 

 Less experienced designers 

need coaching and 

mentoring on how to 

explore, communicate and 

evaluate sets. In playing the 

game, less experienced 

layers indicated challenges 

for them to adopt SBCE in 

their design practice. 

 Competence development is very 

important before implementing 

SBCE in practice. Highly 

experienced designers should do 

coaching and mentoring on how to 

conduct SBCE to less experienced 

engineers. 
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SBCE enablers 

such as tools, 

involvement, and 

communication 

are significantly 

correlated. 

 

 Tools such as tradeoff curves, 

checklist and limit curves helps in 

SBCE to effectively involve 

stakeholders (customers and 

internal function e.g. testing 

department). Moreover, the tools 

help to facilitate communication 

between subsystems departments 

to evaluate sets for compatibilities 

and feasibilities issues. 

Except set based 

communication, 

SBCE enablers 

such as tools, 

involvement are 

significantly 

correlated with 

knowledge 

building. 

 Set based communication 

has been perceived less 

significant in the case 

company as knowledge 

building mechanism 

because of: few designers 

are involved in new 

projects and knowledge is 

centralized in few experts. 

Furthermore, price based 

relationships with suppliers 

dictates point based 

communication. 

 For set based communication to 

commence in practice, trust 

between suppliers or partners 

should be build, so that sets can be 

explored and communicated. 

 Price based relations between 

developers and partners restrict the 

level of sets to evaluate and limit 

the possibility to discover and 

develop knowledge about the 

performance of alternative 

solutions. 

 When few or one designer is 

responsible for a project (common 

in smaller companies) tools to 

enable set based communication 

with team members to evaluate 

sets might not be important. 

Implementation of 

SBCE should be 

taken as a 

journey.  

 In order to improve performance 

using SBCE enablers, the 

understanding and adoption of 

SBCE enablers are important. But, 

it needs efforts and investments to 

effectively build an organization 

that manage and share knowledge 

to develop products. 
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PART II 

 

7 METHODOLOGY FOR IDENTIFYING AND 

PRIORITIZING AREAS TO APPLY SBCE  

This chapter is dedicated to address the second part of this thesis. As discussed in more details in chapter 5, 

section 5.2, whenever a SBCE implementation is planned at a product level, one question to address is 

related to where in a product system SBCE efforts should focus. SBCE is an extensive process. It demands a 

rational and careful investigation a priori to identify where SBCE should be applied and use it to benefit 

customers with better product and increase value to the company. Otherwise, random efforts made on SBCE 

might be wasted without achieving the desired value. This thesis proposes a systematic methodology called 

SBCE Innovation Roadmap (SBCE IR) to help product developers to identify and prioritize improvement 

areas to begin SBCE processes at a product level. In this regard, the SBCE IR promotes incremental SBCE 

implementation at subsystem or component levels rather than full system level innovation. The methodology 

is based on identifying, prioritizing and mapping contradictions. The SBCE IR consists of six steps. Each 

step is supported by prevalent tools and methods. Moreover, the methodology is validated using a case study 

on AHS (Adiabatic Humidification System). The humidification system is a product that is used primarily 

for industrial. Furthermore, using the roadmap built for AHS, a Rack subsystem is selected to show how to 

use SBCE IR as an input for SBCE process and further arrive into innovative Rack design. New Rack has 

been design where significant cost reduction is anticipated. Finally, open questionnaire is prepared and 

interviews are made with the designers and product managers of AHS to validate the advantages and 

limitations of the SBCE IR. In general, the SBCE IR is considered by the experts to be useful to better 

structure innovation process, to effectively plan SBCE improvement projects and facilitate innovation. The 

following limitations also are identified: it takes time to build SBCE IR; it might not be stable if customer 

requirements are changing frequently; and skills/ expertise are required to build it.  



125 

 

7.1 Introduction 

In this section the discussion continues in briefing the central concept of SBCE IR by elaborating on why the 

SBCE IR methodology takes contradictions as a central concept to build the innovation roadmap. Moreover, 

this section extends the discussions on the criteria and assumptions considered in constructing SBCE IR. 

In section 7.2, introduction of the SBCE IR is presented and its steps are discussed. Further in section 7.3, the 

validation of the SBCE IR on the AHS case study is presented. The SBCE process conducted on Rack 

subsystem as well as the assessment of the methodology by experts are parts of section 7.3. Finally, 

conclusions, limitations and future researches of part two of this thesis are presented in section 7.4. 

7.1.1 Contradictions, trade-offs and SBCE 

SBCE IR is based on identifying and prioritizing contradictions. Therefore, this section is dedicated to the 

discussion on why contradictions are taken as key concept to build the innovation roadmap. Further in 

section 7.1.2, the criteria used and the assumptions taken are discussed and rationalized. 

‘Contradiction’ is a word taken from TRIZ body of knowledge (see section 4.6 for more details on TRIZ). 

The term implies conflicts between requirements (called technical contradictions) or conflict within a 

requirement (physical contradictions). 

As discussed in section 4.6 of this thesis, the prominent Russian scientist used the term contradiction after 

investigating large number of genuine inventions along his carrier at a patent office. His observation 

underscores the fact that most genuine innovations that were successful follow similar patterns. Moreover, 

majority of good inventions or new design concepts are generated while solving or overcoming 

contradictions (Altshuller 1984). 

Considering SBCE, which originates from the practices of Japanese automakers (Toyota in particular) has 

strictly been related to use of performance trade-offs in extant literature. Toyota, for example, reported to 

base on trade-off analyses for exploring, evaluating and communicating about sets of solutions (Sobek, et al. 

1999).  

A note to take into account here is the difference between contradictions and tradeoffs. Conceptually, 

contradiction and tradeoff explain the same underlying issue. Whenever one identifies a contradiction in a 

product system, inherently can identify the governing tradeoff related to that contradiction. Taking a very 

simple example, a material might be required to have a higher strength for safety and at the same time the 

material might be required to have less mass for fuel efficiency. In this case, safety and fuel efficiency are in 
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tradeoffs or are in technical contradiction
21

 (one cannot increase safety without sacrificing on fuel efficiency 

or vice versa). However, the differences between contradiction and tradeoff arise when one proceeds to 

generate design solutions. In particular, the following considerations are important for this thesis: 

a) The use of trade-offs in SBCE restricts innovation: established theories of innovation in design argue that 

using and accepting trade-offs restricts the level of innovation (Altshuller 1984; Hua, et al. 2006; Sheng and 

Kok-Soo, 2010). Altshuller, underscores the limitation of accepting trade-offs in design (Altshuller 1984, 

1994, 1999; Hua, et al. 2006). Taking the previous material choice example, a designer might investigate 

alternative materials that have different performances on safety and fuel efficiency, and make an optimal 

tradeoff to select a material that has average values for the two performances. In TRIZ, however, trade-offs or 

compromises are not accepted, rather they are eliminated if innovative design solutions are sought to be 

discovered. In our material choice example, the designer might use the TRIZ principle of ‘separation in 

parameter (Altshuller 1984)’ to design a material that has high safety performance and high fuel efficiency 

when needed, and push the existing technology performance curve. Figure 7.1 shows the difference between 

the two approaches with the simplified example. Moreover, in practice, understanding design trade-offs is 

often too complex and demands extensive efforts to generate (Rossi, et al., 2011/b). This challenge is also 

exhibited from the feedback obtained from practitioners in Carel Industries after playing the SBCE serious 

game (see section 6.3.3.2). Thus, SBCE has to be discussed along with established theories of innovation both 

to simplify it and enhance innovation. If TRIZ is integrated with SBCE process, there will be significant 

methodological benefits in identifying potential areas for design improvements (Bhushan 2007). The proposed 

SBCE IR methodology integrates the concept of contradictions in TRIZ to identify areas where SBCE can be 

implemented. That is, different SBCE processes can be launched to overcome different contradictions. 

b) ‘P ychological inertia (PI)’: is another practical challenge to do the first principle of SBCE (mapping design 

space or principle of exploration). PI is a phenomenon in design practice where designers often tend to explore 

solutions within known design spaces (Kowalick, 1998). In particular, considering that 80% of new design 

projects are based on minor or small improvements from existing technologies and within a given tradeoff 

curve, it often becomes unlikely for designers to observe ‘out of the box’ or innovative solutions (Morgan and 

Liker 2006; Altshuller 1984, 1994). The feedback from the SBCE serious game also indicates this drawback 

of SBCE (see section 6.3.2.2). Although, the SBCE IR doesn’t have a direct contribution to avoid the 

                                                     

21
 In this example, the contradiction can also be expressed as physical contradiction. The weight of a material should be 

high for safety and the weight should be low for fuel efficiency. In most cases technical contradictions can be converted 

to physical contradictions and vice versa (Kalevi and Domb 2008). 
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phenomena, it allows design problems to surface as contradictions, and the prevalent TRIZ’s principles
22

 [e.g. 

the separation principles, the 40 inventive principles, etc. (Altshuller 1984, 1994; Savransky 2000))] can 

further be used to explore innovative solutions to start SBCE process.  

 

Figure 7.1: Difference on accepting and overcoming trade-offs (modified from Hipple 2003). 

7.1.2 Criteria and assumptions considered  

The following criteria and related assumptions are considered while building SBCE IR: 

a) The process of overcoming contradictions will follow SBCE process: in constructing the SBCE IR it is 

assumed that identifying contradictions leads to improvement areas where SBCE can be applied. 

Moreover, once contradictions are identified in a system, SBCE processes will follow to overcome the 

contradictions. Meaning, contradiction will be inputs to SBCE processes. The principles and process of 

SBCE (exploration, set based communication and convergence) is followed to arrive into a high value 

solution that overcomes the contradiction identified. Of course, TRIZ’s principles can support the first 

principle of SBCE (exploration) to bring innovative conceptual solutions and reduce the human effect of 

psychological inertia. SBCE principles of communicating sets and testing before commitment enrich the 

process and reduce the risk of late design changes due to incompatibility and infeasibility issues. Thus, 

SBCE IR benefits from the synergies between TRIZ and SBCE principles. However, this assumption 

fails if designers use PBCE to overcome a contradiction and consider only one conceptual solution and 

proceed developing it.  

                                                     

22
 TRIZ principles are very effective to tackle Psychological Inertia (Altshuller 1984, 1994; Kowalick, 199; Savransky 

 000). Moreover, following these TRIZ‘s principles will formalize the search efforts to find design solutions in SBCE.  
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b) The area of improvements should be valuable for the customers: this indicates that the SBCE 

implementation efforts should take into consideration the right customer value or requirements. It is not 

uncommon that designers spent considerable amount of their time developing features that the customers 

are not really interested in (Bauch 2004; McManus 2004; Kato 2005; Pessoa, et al. 2008; Rossi, et al. 

2011/b). Thus, information on customer value is paramount to be integrated before starting on a 

particular SBCE process. Once contradictory requirements are identified, customers’ judgment on 

importance can be used as one criterion to prioritize contradictions (i.e. how significant for customers 

will be if a contradiction is solved?). 

c)  The area of improvements should give competitive advantages for the company through offering a better 

product than competitors: customers are not always right, or sometime they don’t even know what they 

want today and in the future. Thus, basing the SBCE efforts solely on customers can not entirely show 

the opportunities available for improving a product system. Often, new requirements, ideas and 

innovation potentials arise from competitors, technology trends and internal brainstorming. Thus, while 

building the SBCE IR, competitor analysis is used as an additional criterion to prioritize contradictions 

(i.e. how important will solving a contradiction be for competitiveness?). 

d) The area of improvements should be achievable with respect to the resources available: once 

improvement areas of contradictions are discovered, some need more resources to overcome and advance 

the existing technology. Some other need small improvements. So, SBCE application needs different 

approaches for different levels of improvements. For contradictions that need less resources, it is logical 

to plan narrow SBCE processes, where designers explore better design solutions within known design-

spaces (e.g. searching for alternative components/materials or production routes and so on). Such SBCE 

initiatives shouldn’t take much resources in terms of time and investment. However, for contradictions 

that need considerable resources to overcome, wider SBCE processes should be planned where designers 

might need to explore solutions by substantially changing the product’s structure and functions. Wider 

SBCE implementations, therefore, need considerable amount of resources. Differentiating the type of 

deign improvements at hand is crucial to understand what kind of SBCE process to pursue. A narrow 

SBCE process is convenient to be conducted in a Takt development process, where there is a strict 

schedule control on time and cost measures. However, it is more convenient to conduct a wider SBCE 

process in a non-Takt process (e.g. at R&D level), where there is no strict schedule control to respect 
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delivery time and development cost
23

. The SBCE IR doesn’t explicitly consider resources needed as 

criterion to prioritize contradictions for SBCE. However, experts should take this into account while 

planning SBCE projects to overcome prioritized contradictions. 

7.2 Introduction to SBCE Innovation Roadmap (SBCE IR) 

Six steps are needed to build SBCE IR for a product as shown in Figure 7.2. These are: (1) Identify customer 

requirements and assign importance, (2) Assess competitors’ products and set targets, ( ) Identify system 

contradictions, (4) Identify causal contradictions, (5) derive rules to prioritize contradictions and (6) map 

contradictions to design factors
24

. After completing the steps, designers will have ranked contradictions to 

plan and pursue SBCE processes to overcome the contractions. 

 

Figure 7.2: Schematic representation of SBCE IR steps. 

The steps are facilitated by prevalent logics, methods and tools. In order to have a panoramic view of the 

steps and simplify the execution of the steps for designers Quality Function Deployment (QFD) tool is used. 

QFD uses a matrix called the House of Quality (HOQ), which is utilized for the aim of converting market, 

technical and business information into product design strategies (Hauser and Clausing 1988; Akao and 

                                                     

23
 This consideration is based on the observation during the case study, where some contradictions although have high 

priorities than others, overcoming them need redefining the product structure and functions. Moreover, there is no 

guarantee that solutions can easily be found, or might need strong collaboration with stakeholders (e.g. suppliers) to 

bring new technological advancements. Thus, in this type of situation, research based development at R& D level is 

recommended. 

24
 Design factors could be subsystems, components and associated properties that designers have to change to overcome 

contradictions. For example, material type of a component, number of components to use, configuration types, etc. 
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Mazur 2003). Figure 7.3 shows an example of the HOQ excerpted from the case product to facilitate the 

discussions on the steps of the SBCE IR. 

7.2.1 Identify customer requirements and assign importance  

The first step of the methodology is to capture customer value in terms of requirements. Moreover, 

evaluating and assigning importance or weight to each identified requirements. The requirements are 

classified into two: macro and micro requirements (see Figure 7.3). Macro requirements (  , where   

        ) are general characteristics of a product that should be fulfilled to satisfy the users. For each 

macro requirement detail characteristics are defined as micro requirements (  , where           ).  

 

Figure 7.3: An example of House of Quality (HOQ) and the steps to build the SBCE IR (excerpt from the 

AHS case study, and note: n = no, y = yes, NA = data not available). 

The relationships between the macro and micro requirements are given by a matrix    , which indicates the 

categorization of micro requirements into the general classification (macro) requirements (see Figure 7.3). 

The relationship can take a value of either 0 or 1 (0 shows no relationship and 1 shows a relationship). This 

classification helps to represent customer data in a logical manner and simplifies data analyses.  
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In order to assign importance or weights, macro and micro requirements are treated separately. First, the 

weights of macro requirements  (  ) are determined. Then, the weights of the micro requirements are 

 (  ) determined. To obtain an aggregate global importance   (  ) of a micro requirement Equation 1 is 

used (Yamashina, et al. 2002): 

   (  )   (  )  (∑ (  )     

 

   

) Equation 1 

To determine  (  ) and  (  ), Analytical Hierarchical process method (AHP, Saaty 1980) is used, which is 

based on pairwise comparison of requirements. AHP simplifies the understanding of customer requirements, 

avoids errors in judgment and structures the evaluation of requirements from customer perspective (Van de 

Poel 2007). The pairwise comparison process in AHP consists of three main sub-steps (Saaty 1980): (a) 

building judgment matrix, (b) evaluating weighs and (c) checking consistencies. 

(a) Building judgment matrix 

In this step, experts such as designers, marketing personnel and others make judgments about the importance 

of a requirement compared with other requirements. The experts, of course, need to have good understanding 

of what the customers really want. Otherwise, customer survey or some other customer value research 

methods have to be used to make judgments about of customer requirements. The experts will be asked to 

assign importance judgment between two requirements based on the scales listed in Table 7.1 below. Note 

that, the judgment should be conducted at two levels: macro and micro levels. At macro level, experts will be 

asked to assign importance scale between two general requirements. For example, between usability of a 

product vs. product cost (see Figure 7.3 above). However, to assign importance judgment for micro 

requirements, experts will be asked to assign scales between two specific micro requirements which are 

categorized within a macro requirement. For example, referring to Figure 7.3, temperature control precision 

and multi-zoning are two micro requirements which are grouped under the macro requirement technical 

performances. Thus, experts will put a judgment scale between temperature control precision and multi-

zoning to reflect the customer importance. 

Using the scale, judgment matrices can be built for both macro and micro requirements. Given n numbers of 

macro or macro requirements {          }, decision makers (in this case product designers) compare pairs 

of the requirements for all the possible pairs, and comparison matrices of judgments      are obtained as 

shown in in Equation 2. 
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Table 7.1: The pairwise comparison scales (Saaty 1980, 2001, 2008). 

Intensity of 

importance 

Definition Explanation 

1 Equal importance Two requirements contribute equally to the customer 

3 Moderate importance Customers slightly favor one requirement over another 

5 Strong importance Customers strongly favor one requirement over another 

7 Very strongly A requirement is favored very strongly over another 

9 Extreme importance The customers favoring one requirement over another is 

of the highest possible order of affirmation 

2,4,6,8  Intermediate values 

Any element     of the matrices (where                          ) is within the scales defined (1/9, 

1/8… 8, 9). Taking macro requirements, for example, improving technical performance might be judged as 3 

time favored than reducing cost of a product and      . 
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 Equation 2 

(b) Evaluating weighs 

Once the judgment matrices are constructed with the help of experts and using Equation 2, the next step is to 

determine the weight vectors of the requirements (macro and micro). Let us denote the current weights of the 

macro requirements by {w1, w2… wn}, and the matrix of the ratios of all the weights by vector W. The     

elements of the judgment matrix estimate the ratio
   

  ⁄ , where W is the vector of the current weight of the 

macro requirements (which is our goal to determine). If the judgment matrix A is absolutely consistent of 

experts’ judgment about the requirements, it can be noticed that A = W. In the case of such ideal case of total 

consistency, the principal eigenvalue (    ) is equal to the n (where n the number of macro requirements 

identified). The relations between the weights and the experts judgment will be given by 
  

  ⁄      (for i, 

q=1, 2 .., n) and shown in Equation 3. 
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 Equation 3 

However, in reality, experts are not always consistent in their judgments due to lack of information or human 

error, and so on. If the matrix A is not absolutely consistent, it implies       . In this case,      can be 

determined using matrix algebra (Saaty 1980, 2001, 2008). The equation to determine the weight vectors for 

the macro and micro requirements is given in Equation 4. 

          Equation 4 

(c) Checking consistencies 

Consistency is one of the main issues in pairwise comparison of AHP method. The matrix of judgment A can 

be said completely consistent if the following conditions are satisfied: 

     
  

  
⁄               

                                  

        

In order to check the consistency of the judgment matrix A, Saaty (1980) proposed the consistency ratio 

(CR) as shown in Equation 5. RI is random index, which is the average value of CI for random matrices 

generated using the Saaty’s scale. RI number is constant as a function of n. Forman (1990) obtained this 

constant for different dimensions of matrices up to n =7, see Table 7.2 below.  

 
   

(
      

   
)

  
 

Equation 5 

Other researchers also proposed RI values different from Forman’s result and for larger matrix sizes (Alonso 

 006). The general accepted threshold for CR is ≤ 0.1 (Saaty 1994). 

Table 7.2: RI values for different matrix sizes (Forman 1990). 

n 1 2 3 4 5 6 7 

RI 0 0 0.52 0.89 1.11 1.25 1.35 
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If the CR is more than 10%, the judgment matrix should be readjusted in two ways. The first way is to ask 

experts again in order to reduce the inconsistency. The second way is following an iterative procedure (Saaty 

1994). The iteration begins once the weight vector W has been obtained and CR is found to be ˃ 10%. In this 

procedure, the element     of matrix A that causes the highest inconsistency will be substituted by 
  

  ⁄  

obtained from a previous iteration. Then, the weight vector W be recalculated until the CR is within the 

threshold. 

To summarize, the main information needed from this step is the global importance level or weighs of micro 

requirements (Equation 1). The weights of macro-requirements  (  ) and micro-requirements  (  ) can be 

obtained by following the AHP procedure described above.  

7.2.2 Assess competitors’ products and set targets  

As discussed previously, information solely based on customers are not sufficient to prioritize areas for 

SBCE processes. Some requirements might have less importance to customers but increase significantly 

competitiveness. Therefore, benchmarking competitors’ products is taken as paramount in building SBCE IR 

to set improvement targets and prioritize contradictions. 

To assess competitors performances three indicators are taken (Nieuwkuyk and Rogosch 1997): Present 

value (   ), which shows the current performance of the product under investigation for a particular micro 

requirement  ; Target value (   ), which shows the desired performance of the product for a particular micro 

requirement  , it will be set by considering the competitors performances and internal capability of the 

company to achieve the target performance; and Degree of difficulties (  ), which indicates the difficult of 

achieving the target values. It is assumed that, the higher is the degree of difficulties to achieve a target, the 

higher competitive advantages the company can get by improving the performance on the requirement 

(Yamashina, et al. 2002). If the difference between     and     is negligible, then    set to be zero. This 

indicates that the product is already optimized in satisfying the requirement. If the difference is considerable, 

then experts will assign scores for    using Equation 6. 

    

{
 
 

 
 

                       
                        
                     

           
                      

 Equation 6 

For example, looking the micro-requirement easy installation in Figure 7.3,     is assigned as ‘no’ (i.e. the 

current design is difficult to install at customer sites) and the performances of the competitors’ products (X 
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and Y) are simple to install (‘yes’ for both). Thus, the designers think that improving the current design is 

important for competitiveness, and then they set     as ‘yes’. Moreover, designers of AHS acknowledge that 

improving the performance of the current design for the requirement is not a trivial design problem and set 

    . Following similar logic, experts will assign    value for each micro-requirement. 

7.2.3 Identify system contradictions  

As discussed before, contradictions lead to improvement areas. Experts can identify physical and technical 

contradictions by studying the micro requirements defined.  

If two requirements are in contradiction (technical contradiction) a negative sign (-) will be assigned on the 

roof of the HOQ (see Figure 7.3). For example, taking the AHS case study, there is technical contradiction 

between requirements ‘multi-zoning’ and ‘easy installation’. Customers are requesting to have a humidifier 

that can cover up to 12 zones (i.e. to distribute and spray water mists to 12 different areas in a building or in 

an industrial establishment). At the same time, customers want to install the humidifier in short period of 

time (easy installation). However, the current design serves only 6 zones and 12 zoning demands additional 

systems to be added into the product. Thus, more time is needed to install if a new product is designed for 12 

zones.  

If a requirement is in contradiction with itself (physical contradiction) a negative sign (-) will also be 

assigned on the roof of the HOQ (see Figure 7.3). Taking the AHS case study as an example, a requirement 

‘non-VDI Rack’ is in contradiction with itself. The product should satisfy a European hygienic requirement 

called VDI6022. However, once the company is expanding its business to different countries and sectors, 

VDI6022 is not needed for some markets such as in some industrial applications (e.g. Tabaco industries, 

painting shops and so on) and the current design is expensive for these markets. 

7.2.4 Identify causal contradictions 

In product system, contradictions identified in the previous step (7.2.3) are not all independent (Mizuyama 

and Ishida 2007). There are casual relationships between contradictions. That is, solutions proposed to 

overcome certain contradictions fully or partially alleviate other contradictions. If solutions feasible to solve 

a contradiction can overcome many other contradictions, then it would be efficient to take the root 

contradiction during prioritizing contradictions to pursue SBCE processes. 

For example, consider the two contradictions in AHS case study, contradiction 1 (  : ‘Multi-zone up to 1 ’ 

Vs. ‘Modulation range’ and contradiction   (  ): ‘Modulation range’ Vs. ‘Precision’. 
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   implies that it is not possible to increase the zones (from the current 6 to the desired 12 zones) and at the 

same time increase the modulation range or the capacity of water flow (from the current range of [30-50 

liters/hour or l/h] to the desired range of [1-50 l/h]), because a pump used in the current design has limitation 

to do so. On the other hand, T2 implies that it is not possible to increase the modulation range and at the same 

time achieve a desired level of precision in short time. Precision for this particular case is defined as the % of 

set point
25

 reached. The desired precision level is reached through steps of increments. Thus, the 

contradiction T2 indicates that when the range of modulation is extended to lower values, it takes more time 

to arrive into the desired precision level. However, the engineers claimed that, if they design a new pump to 

overcome contradiction   , then contradiction    is automatically being solved too. Therefore,    has causal 

relationship with   . 

However, as the number of contradictions in a product system grow, identifying such causal relationships are 

likely to be complicated. Moreover, there will not only be direct casual links but also indirect causal 

relationships (transitivity). Therefore, both direct and indirect relationships should be grasped and aggregated 

to identify causal relationships between contradictions. In this thesis, DEMATEL (Decision Making Trial 

and Evaluation Laboratory) is the method that is used to identify direct/indirect causal relationships between 

contradictions. It was developed by the Battelle memorial association of the Geneva research center (Fontela 

and Gabus 1974, 1978). The aim of DEMATEL is to directly compare the relationship between variables and 

use a matrix and causal diagram to express the casual relationships and influence level between variables in a 

complicated system. In recent years, it has been widely accepted and used in different fields in particular 

among Japanese, Korean and Taiwanese researchers and practitioners (Mizuyama and Ishida 2007; Hajime, 

et al. 2005; Lin and Wu 2008; Lee, et al. 2010). There are four steps in DEMATEL. The steps used in this 

thesis are explained as follows: 

a) Define measurement scale and establish a direct-relation matrix 

In order to define relationships between contradictions, experts will be asked to scale. The scale is used to 

identify how much of the problem in a contradiction (            , where   is the number of 

contradictions identified) can be solved by overcoming another contradiction (            ). The scale 

used in this thesis is between 0 and 1 (0 indicates that the two contradictions are not related at all, and 1 

indicates there are completely related). Any value within 0 and 1 (0. , 0. …0.8, 0.9) can be used depending 

on the designers’ assessment. Then, a direct relationship matrix      can be defined as shown in Equation 

7. 

                                                     

25
 Set point in AHS is defined as the desired level of humidity level in a room. 
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] 
Equation 7 

b) Calculate normalized direct-relation matrix 

To normalize the matrix     , the biggest sum of the row vector can be used as coefficient. The 

normalizing coefficient μ and the normalized matrix      can be determined using Equation 8 and 

Equation 9. 

   
 

        (∑    
 
   )

 
Equation 8 

      
Equation 9 

c) Direct/ indirect-relation matrix 

The direct/ indirect-relation matrix shows the total relations between contradictions. For a contradiction, the 

matrix      that is determined using Equation 10 shows the total direct and indirect relations it has with 

other contradictions. As discussed before, contradictions might be solved by resolving other contradictions 

directly or indirectly.  

    (   )                                          Equation 10 

Now, set the elements     of the total matrix Ŧ. The columns’ and rows’ sums of the total matrix Ŧ can be 

determined using Equation 11 and Equation 12 respectively.    represents the total row sum of 

contradiction   , and indicates its total impact to other contradictions   . That is, the total contributions of 

design solutions proposed to overcome contradiction    for other contradictions.    represents the total 

column sum of contradiction   , and indicates the total impacts of other contradictions on   . That is, the total 

contributions of design solutions generated to resolve other contradictions on   . 

    ∑    

 

   

(              ) Equation 11 

 
   ∑   

 

   

(              ) Equation 12 

d) Draw out causal diagram 
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To visually depict complicated relationships of contradictions, causal diagram will be useful. Therefore, 

using Equation 11 and Equation 12, define (     ) for    as the prominence which shows the overall level 

of    impact to and impacted by other contradictions. Then, define (     ) as the relationship, which shows 

the causal level of the contradiction. If this value is positive, then the contradiction is the cause, and solutions 

proposed to overcome it will also be solutions to solve other contradictions. If this value is negative, the 

contradiction is an effect, and solutions proposed to overcome other contradictions will solve the inherent 

contradiction in   . Furthermore, use (     ) as the transverse axis and (     ) as the longitudinal axis to 

construct causal diagram. It helps experts to easily identify those contradictions which are the root causes of 

other contradictions.  

7.2.5 Derive rules to prioritize contradictions 

At this step rules to prioritize contradictions for SBCE implementation is derived. From the previous step 4 

(section 7.2.4), contradictions which have strong causal relationships can be identified. But, there are also 

contradictions which do not exhibit significant causal relationships. Thus, the two should be treated 

separately in deriving the rule. In this thesis, contradictions which do not have strong causal relationships are 

called independent contradictions and those which exhibit strong causal relationship are called dependent 

contradictions. The prioritization schemes for the two are explained as follows:  

a) Prioritizing independent contradictions 

Independent contradictions can be prioritized using the information in step 1 and 2 (sections 7.2.1 and 7.2.2). 

Each contradiction has two information sources from its contradictory requirements: global weight   (  ) 

and degree of difficulties   . Thus, first these requirements can be prioritized and ranked. The priorities (  ) 

and ranks (     ) of micro-requirements can be determined using Equation 13 and Equation 14 respectively. 

Note however that       is determined taking micro-requirements with the same macro-requirement 

category. Moreover, the convention on the ranking in Equation 13 is in decreasing order except when it is 

zero (i.e. 1>2>3...>0). Taking the example from Figure 7.3, the    value for micro-requirements ‘non-VDI 

Rack’ is 0.098, and among all the cost category this requirement is ranked as 2 (       ).  

      (  )     Equation 13 

 
       {

         
              

                   
  

 

Equation 14 

Now, using the       values, independent contradictions can also be ranked. Two cases are possible: 

domination (case 1) and tie (case 2). In the former case, a dominating contradiction has higher rankings in 
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both of it contradictory requirements than a dominated one. But, in the case of tie a contradiction neither 

dominates nor dominated by another contradiction in the ranking of its contradictory requirements. For 

example, let’s take five hypothetical contradictions   ,   ,   ,    and   , with the rankings of the 

corresponding contradictory requirements shown in Figure 7.4. In this example, there are four scenarios: 

(a/c)    dominates    and   , (b)    is in tie with   , (d)    dominates   . Therefore, for SBCE 

implementation dominating contradictions will have higher priorities if designers are presented to choose 

among contradictions. But, in case of tie, experts’ judgments should be used taking other criteria such as 

resources and/or capabilities available to pursue SBCE to overcome contradictions. 

 

Figure 7.4: Examples of priority rules of independent contradictions for SBCE implementation
26

. 

b) Prioritizing dependent contradictions 

In case of dependent contradictions (let’s call this a third case), prioritizing based on the ranking method 

introduced above is not efficient. Let’s take the scenarios presented in Figure 7.4. Suppose in step 4 (section 

7.2.4) it is found that    is the root contradiction for    and   , i.e. design solutions proposed for   will also 

overcome    and   . Thus, it is efficient to start SBCE process to solve contradiction   .even if it is 

dominated by    and is in tie with   . Therefore, more innovation can be achieved by focusing on the root 

contradictions with less effort.  

In summary, in order to prioritize between contradictions three rules are derived for the three cases 

introduced: case 1, dominating contradiction; case 2, tie contradictions and case 3, dependent contradictions. 

The rules to follow to select a contradiction over another for SBCE are shown in Equation 15. 

                                                     

26
        

and          
are the rankings of the contradictory requirements (where:          ). 
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 Equation 15 

7.2.6 Map contradictions to design factors 

Once contradictions are prioritized, designers at this step map selected contradictions to design factors. This 

step is aimed to identify what design factors (e.g. material type, dimensions, number of components used) 

that can possibly be changed in the current design to overcome the contradictions. Once mapping is finished, 

SBCE processes stars to explore, communicate, test and converge to solutions proposed to overcome the 

contradictions. Thus, the selected contradictions with the design factors will be input to SBCE.  

7.3 Validation of SBCE IR methodology 

In order to validate the applicability of the SBCE IR methodology three validations are conducted. First, a 

case study on Adiabatic Humidification System (AHS) has been conducted. The case study is aimed at 

applying the steps of the methodology in real case. The necessary data are collected to demonstrate the steps. 

Section 7.3.1 is dedicated for the discussion of this case study. 

The second phase of the validation is concerned with experimentation of an SBCE process on one of the 

subsystem of AHS. Using the SBCE IR developed for AHS, designers and managers have selected a 

subsystem called Rack to experiment SBCE process to overcome a contradiction and improve the current 

design. Throughout the process concepts are generated by the AHS experts that can improve the Rack design 

to overcome the contradiction. Moreover, the concepts are tested and merged to maximize the value of the 

new Rack proposed. The new Rack design is expected to have significant cost advantages and the company 

plans to launch it soon. Section 7.3.2 is dedicated to introduce the SBCE process on Rack subsystem. 

Finally, open questionnaire is prepared to assess the pros and cons of the SBCE IR. Four experts in Carel 

Industries who are involved in AHS design and development were asked to give feedback to assess SBCE 

IR. Section 7.3.3 is dedicated to introduce the questionnaire and report the assessment. 

7.3.1 Case study on Adiabatic Humidification System (AHS) 

The SBCE IR for AHS is built with close interactions with designers and managers at the case company. The 

AHS system is a product that is used primarily for industrial applications (such as hospitals, residential 

buildings, textile factories, paint shops in car industries, and so on). The main function of the system is to 

control the temperature and humidity levels of a room or a working environment. The product is the state of 
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the art among other humidification systems in terms of energy savings. The working principle is based on 

spraying atomized water mists to air with at high pressure (around 70 bars) whenever the temperature and 

humidification levels are not desirable. That is where it gets its name; adiabatic refers to a very high pressure 

used to spray atomized water. The basic subsystems are three Cabinet (C), Drop Separator (DS), and Rack 

(R) as shown in Figure 7.5. 

 

Figure 7.5: AHS sub-systems and components. 

Inside the Cabinet subsystem there are components used to control the product (PLC, programmable logic 

control), water filtering (filters), pumping water (pump), and rotate the pump (motor). Inside the Drop 

Separator, components are included that are used to achieve a high purity level of the water content (module 

separator), support the separator (frames) and protect the separator from the environment (housing). The 

Rack is the sub-system used to spray water mists to an environment, and its includes components such as 

modulating and drain valves, nozzles for spraying, frames for support, and manifolds to carry nozzles and 

transport water. The sub-systems are integrating with piping system and fittings. 

The product has been in the market for the last 10 years, and is among the leading products in the market. 

The company sells the product to all over the world such as EU, USA, South America, Asia, Middle East and 
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Africa. The sales volume of the product is medium and the average unit price of the product is about 8,700 €. 

Moreover, the company controls the lifecycle of the product and profit margins are also gained from 

maintenance and consulting services. 

The AHS case study has been conducted for six months to collect all the data to build the SBCE IR. The 

steps of the methodology also evolved throughout the study period. Two highly experienced designers of the 

system with an experience of 12 and 24 years of experience were involved throughout the study.  

The data presented in this thesis are only those which are necessary to validate the SBCE IR. Thus, the 

details discussions of some of the technical information are not exposed for privacy reasons. The case for 

each of the steps of the methodology is presented in following subsections. 

7.3.1.1 Identify customer requirements and assign importance 

The first step is to capture customer value information and assign importance for each. The experts 

conducted extensive study using phone calls and visiting customers to identify real customer requirements. 

Moreover, internal discussions with upper management and marketing were held to identify new and 

emerging requirements that customers are not able to identify.  

The classifications of the requirements are grouped under macro and micro requirements. Five macro 

requirements are identified: (1) Technical performance (P), which is related to the technical quality 

characteristics that the product should satisfy; ( ) Usability (U), which is related to the product’s simplicity 

during installation and use; (3) Application (A), which is related to the flexibility of the system to be used in 

different applications (paint shop, data centers, hospitals, etc.); (4) Costs (C), aimed to minimize the cost of 

the system; (5) Maintenance (M), is to achieve easy repair of components and reduce time between check-

ups. 

For each of the five macro-requirements, specific micro-requirements are defined. For P, U, A, C, and M 

there are 11, 4, 5, 5, and 1 micro- requirements identified respectively. For example, for usability (U), the 

micro requirements are: U1 (wide option range), to have a user interface in different languages and make the 

product to operate wider operations during user-product interactions, U2 (Integration to AHU); to enabler the 

product to fit into customers sites; U3 (easy installation); to reduce the time it takes to install the product at 

the customers sites; U4 (Friendly user interface); to simplify the user interface very easy to be used by users 

(the product is programmable, thus the user need to frequently interact with it to control the temperature and 

humidity level of a room).  

In order to assign importance to the customer needs, the macro and micro-requirements are assigned 

judgment matrices separately based the scaling scheme listed on Table 7.1 and using Equation 2. Treating 
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them separately simplifies the judgment and importance assignment process. Designers made pairwise 

comparison between each macro-requirement, as shown in Table 7.3. Moreover, judgment matrices and 

weight assignments are given for each group of micro-requirements under their respective macro 

classifications. Table 7.4 shows the judgment matrix for the identified micro-requirements of usability (U). 

Similarly, judgment matrices are built for all the other micro-requirements. 

Table 7.3: Judgment matrix A for macro-requirements. 

 
P U A C M 

Performance (P) 1 5 1 3 9 

Usability (U) 1/5 1 1/7 1/5 3 

Application (A) 1 7 1 1 6 

Costs (C) 1/3 5 1 1 8 

Maintenance (M) 1/9 1/3 1/6 1/8 1 

Table 7.4: Judgment matrix A for usability (U) micro-requirements. 

 
 U1  U2  U3  U4 

Wide option range (U1) 1 2 1 3 

Integration on AHU (U2) 1/2 1 1/2 2 

Easy installation (U3) 1 2 1 3 

Friendly user interface (U4) 1/3 1/2 1/3 1 

The next step is to determine weight vectors of macro and micro-requirements,  (  ) and  (  ). The 

vectors are iteratively obtained using Equation 4. Consistence of the experts in defining a judgment matrix 

can also be checked using Equation 5. If the CR > 10%, the steps in Equation 4 and Equation 5 will be done 

until an acceptable level of consistency is achieved. Table 7.5 shows the procedure used in ‘MATLAB 7.0’ 

to automate the determination of importance and checking consistency for a given judgment matrix. 

The values of  (  ) and  (  ) for AHS system is shown in Figure 7.6. The result shows that technical 

performance, application and costs macro-requirements have the highest importance for customers with 

weights 37%, 29%, and 24% respectively. Moreover, the global weight of the micro- requirements   (  ) is 

calculated using Equation 1. Figure 7.6 shows   (  ) value for each micro-requirement. For example, ‘non-

VDI Rack’ requirement has a global importance of 10% from customers’ perspective. 
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Figure 7.6: Results from steps 1, 2, 3 of SBCE IR (Note: Y=yes, N=no, NA= data not available, (-) contradiction, ok = keep the current performance of 

the AHS design). 
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Table 7.5: MATLAB procedure to determine weights for macro and micro-requirements and to check CR. 

a. >> insert a square judgment matrix   [    ]                         // see Equation 2 

b. >> calculate the eigenvalues (V) and vectors (D) of a square judgment matrix [    ]  [V,D] = eig(A) 

c. >> set normalization coefficient x   x = sum(V(:,1))                // see Equation 4 

d. >> calculate the weight vector w   w = V(:,1)/x                // see Equation 4 

e. >> calculate mi   mi = (D(1,1)-n)/(n-1)                // n is the dimension of matrix [    ]                          

f.                >> calculate consistency ration (CR)   CR = mi/RI      // RI is random index, see Equation 5 

g. >> [If CR ˃ 0.1] >> determine matrix B   B(i, j) = A(i, j)* w(j)/w(i) 

h. >> identify the maximum element{   } of matrix B and substitute the     with w(i)/w(j)   A (i,j) = w(i)/w(j) 

i.               >> repeat steps ‘a-h’ until CR ≤ 0.1 

7.3.1.2 Assess competitors’ products and set targets 

Four competitors’ products are selected. To set targets for improvement and to determine    values 

(Equation 6), the performances of competitors’ designs are evaluated by the AHS experts for each micro- 

requirement (see Figure 7.6). The indicators to measure the performances of micro-requirements are 

different. Some are quantitative and others are qualitative depending on the types of requirements. For 

example, the indicator used for ‘multi-zone (P2)’ is the number of zones to serve. The number of zones that 

the competitors’ products serve ranges from 1 to 4. The current AHS design serves 6 (      ). However, 

customers of AHS are requiring the zones to be 12 (       ). Using Equation 6, the designers set the     

as 2 since it is moderately difficult to change the current design technology. On the other hand, the measure 

used for ‘non-VDI6022 Rack (C5)’ requirement is qualitative. That is, yes (Y) if a design is also built for 

non-VDI6022 clients or no (N) if otherwise. The competitors’ products do not satisfy this emerging 

requirement. Neither does the case product (      ). But since there is emerging markets looking for a 

cheaper non-VDI Rack version, AHS designers set the target as ‘yes’ (      ). Moreover, since 

modifying the current AHS system for non-VDI clients is easily achievable, the designers set the degree of 

difficulties     as 1. All the    values are shown in Figure 7.6. 

7.3.1.3 Identify system contradictions  

In total, 22 technical and 1 physical contradictions are identified and marked (-) signs in Figure 7.6. In Table 

7.6, the contradictions are designated. As seen from the result, six of the contradictions (T1 to T6) are 

between technical requirements, and the rest are either between technical requirements and business related 

requirements (Usability, Application, Costs) or between businesses related requirements. This shows the 
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current AHS design is highly optimized for technical performances but need significant innovation to 

maximize business related performances. And, each contradiction is a potential input to SBCE process to 

uncover solutions and converge to high value design to overcome contradictions. Refer to section 7.2.3 for 

the detail explanation on an example from technical contradiction T7 (‘multi-zoning’ vs. ‘easy installation’) 

and example of physical contradiction T21 (‘non-VDI Rack’ vs. ‘non-VDI Rack’). 

Table 7.6: Contradictions and the respective contradictory requirements. 

Contradictions T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

    P2 P4 P4 P5 P2 P4 P2 U3 U3 A4 

      P4 P5 P6 P6 P8 P10 U3 C1 C2 C2 

 

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 

P3 P10 P11 A1 A3 P4 P6 P8 A4 C1 C5 A1 A4 

C3 C3 C3 C3 C3 C4 C4 C4 C4 C4 C5 M1 M1 

7.3.1.4 Identify casual contradictions  

Using Equation 7 of DEMATEL, designers scale the direct relationships between contradictions from a scale 

of 0 to 1. A direct-prelateship matrix X is constructed as shown in Table 7.7. The matrix shows if design 

solutions proposed for a contradiction overcome other contradictions. For example, the relationship between 

T2 and T1 is scaled as 1 (x21 = 1), implying that overcoming T2 completely resolve T1 (see section 7.2.4 for 

detail discussion on this example). 

However, the relations between contradictions are not only direct but also there are indirect relations. For 

example, solving contradiction T2 can solve the inherent contradiction in T1 (x21 = 1). Moreover, solving T1 

also solves the inherent contradiction in T6 (x16 = 1). From transitivity, it means that solving T2 solves 

indirectly contradiction T6. Thus, the total direct and indirect or total relationship matrix Ŧ will explain such 

relations. 

Using Equation 9, Ŧ is determined as shown in Table 7.8 (the normalizing coefficient   is calculated as 1/5.8 

using Equation 8). Taking T  as an example from the matrix Ŧ, it can be seen that its total impact on other 

contradictions can be read from the matrix. Solving contradiction T2 means that there are relative chances of 

0.28, 0.08, 0.08, 0.16, 0.23, and 0.22 of solving T1, T2, T3, T4, T5 and T6 respectively. 
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Now, the column (D) and row (R) sums of matrix Ŧ can be calculated using Equation 11 and Equation 12 

respectively. D indicates the total impact of a contradiction over others. R indicates the influences of others 

on a contradiction. For example, D (T )   0.06 + 0.08 + …+ 0   1.19, and R (T )   0. 8 + 0.08 + 0.08 + 

0.16 + 0.   + 0.   + 0.00 +…+ 0.00 = 1.05. The D and R values of each contradiction are shown in Table 

7.9. 

Table 7.7: Direct-relationship matrix X of contradictions
27

. 

 

Table 7.8: Normalized direct/indirect or total relation matrix Ŧ of contradictions. 

 

                                                     

27
 Note that T10, 11, 14, 15, 22, and 23 are not shown since they do not have relationship with any other contradictions.  

 

 

 

 

 

 

 

 

 

 

X=  

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T12 T13 T16 T17 T18 T19 T20 T21 

T1 0 0 0.2 0.4 0.3 1 0 0 0 0 0 0 0 0 0 0 0 

T2 1 0 0.2 0.4 1 0.8 0 0 0 0 0 0 0 0 0 0 0 

T3 1 0.5 0 0.5 0.5 1 0 0 0 0 0 0 0 0 0 0 0 

T4 0.8 0.5 0.5 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 

T5 0.5 0.5 0.4 0.8 0 0.2 0 0 0 0 0 0 0 0 0 0 0 

T6 1 1 0.2 0.6 0.5 0 0 0 0 0 0 0 0 0 0 0 0 

T7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

T8 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 

T9 0 0 0 0 0 0 0.8 0.6 0 0 0 0 0 0 0 0 0 

T12 0.3 0.4 0.2 0.4 0.2 0.6 0 0 0 0 0 0 0 0 0 0 0 

T13 0.4 0.2 0.4 0.2 0.4 0.2 0 0 0 0 0 0 0 0 0 0 0 

T16 0.8 0.4 0.2 0 0 0 0 0 0 0.2 0 0 0 0.4 0 0 0 

T17 0 0 0.4 0.2 0 0 0 0.5 0 0 0.2 0.4 0 0.2 0 0.2 0 

T18 0 0.2 0.2 0 0 0.4 0 0 0 0 0 0.4 0,2 0 0 0 0 

T19 0 0 0 0 0 0 0 0 0 0 0 0.2 0,2 0 0 0.6 0.8 

T20 0 0 0 0 0 0 0 0 0 0 0 0.6 0,2 0 0.8 0 0 

T21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 

 

 

 

 

 

 

 

 

Ŧ= 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T12 T13 T16 T17 T18 T19 T20 T21 

T1 0.08 0.06 0.06 0.12 0.09 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T2 0.28 0.08 0.08 0.16 0.23 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T3 0.29 0.16 0.05 0.17 0.16 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T4 0.21 0.12 0.11 0.05 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T5 0.18 0.13 0.10 0.19 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T6 0.28 0.23 0.08 0.18 0.16 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T8 000 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T9 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T12 0.13 0.12 0.06 0.12 0.08 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T13 0.13 0.07 0.09 0.08 0.10 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T16 0.19 0.10 0.06 0.04 0.04 0.07 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.07 0.00 0.00 0.00 

T17 0.05 0.03 0.09 0.05 0.02 0.03 0.01 0.09 0.00 0.00 0.03 0.08 0.00 0.04 0.00 0.04 0.00 

T18 0.05 0.07 0.05 0.03 0.03 0.10 0.00 0.00 0.00 0.00 0.00 0.07 0.03 0.01 0.00 0.00 0.00 

T19 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.04 0.00 0.03 0.11 0.14 

T20 0.02 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.11 0.04 0.01 0.14 0.02 0.02 

T21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.14 0.01 0.02 
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Table 7.9: Causal influence level of contradictions. 

T D R D + R D - R 

T1 0.63 1.91 2.54 -1.28 

T2 1.05 1.19 2.24 -0.14 

T3 1.10 0.86 1.96 0.24 

T4 0.65 1.19 1.85 -0.54 

T5 0.76 1.01 1.77 -0.25 

T6 1.03 1.49 2.52 -0.46 

T7 0.00 0.30 0.30 -0.30 

T8 0.14 0.20 0.34 -0.06 

T9 0.26 0.00 0.26 0.26 

T12 0.68 0.05 0.73 0.64 

T13 0.58 0.04 0.61 0.54 

T16 0.60 0.32 0.92 0.27 

T17 0.56 0.13 0.69 0.44 

T18 0.45 0.13 0.58 0.32 

T19 0.42 0.33 0.75 0.09 

T20 0.41 0.18 0.59 0.24 

T21 0.20 0.18 0.38 0.01 

    Average 1.12 0 

The sum D + R shows the total connections of a contradiction with other contradictions in the AHS system. 

The higher this value, the higher interaction a contradiction has with others. The difference D – R shows the 

cause or the effect behavior of a contradiction. A higher negative this value for a contradiction implies an 

effect and a lower negative value shows a cause. For example, looking the D – R values of T1 (-1.28) and T2 

(-0.14), T2 is a cause and overcoming it provides solutions for many other contradictions, and T1 is an effect 

and solutions proposed for other contradictions eventually overcome the inherent contradiction in T1. 

Taking the averages of D + R = 1.12 and D – R = 0 as vertical and horizontal axes respectively, the causal 

diagram can be drawn as shown Figure 7.7. As it is shown in the figure, except the contradictions T1, T2, T3, 
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T4, T5, and T6, all the other contradictions (T7 to T21) have prominence values (D + R) below the average 

(1.12). This result implies that, contradictions from T7 to T21 do not have considerable interrelationships 

between with other contradictions in the system. However, contradictions T1 to T6 as expected
28

 have 

considerable interrelationship. Moreover, drawing all the relationships between the contradictions is too 

complex, and it will be difficult to visualize important relationships. 

 

Figure 7.7: DEMTEL causal relations between contradictions in AHS. 

To sort out significant causal relationships, a threshold of 0.  in Ŧ matrix is considered (Lee, et al. 2010). 

That is, to cut all the relationships which have the normalized direct/indirect relations below 0.2 and 

         matrix is constructed as shown in Table 7.10. 

Table 7.10: Normalized direct/indirect or total relation matrix Ŧcut = 20% of contradictions. 

 

 

 

Ŧcut = 20%= 

 T1 T2 T3 T4 T5 T6 

T1      0.21 

T2 0.28    0.23 0.22 

T3 0.29     0.27 

T4 0.21      

T5 

 

     

T6 0.28 0.23     

                                                     

28
 Contradictions T1 to T6 are formed from technical performance requirements, and these requirements are highly 

related to each other. 
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7.3.1.5 Derive rules to select contradictions to start SBCE processes 

From previous step 4, it has been possible to identify the causal relationships between contradictions and 

separate dependent and independent ones. From Table 7.10, contradictions T1 to T6 are dependent and the 

rest T7 to T23 are independent contradictions. Referring the discussions in section 7.2.5, the dependent 

contradictions are be prioritized taking the root cause contradictions and independent ones are prioritized 

using the rankings of the corresponding contradictory requirements.  

 Prioritizing dependent contradictions 

Using the          shown in Table 7.10 and the causal diagram in Figure 7.7, the causal relationships 

between of T1 to T6 can be shown as in Figure 7.8. The rule to select between dependent contradictions is 

given in Equation 15. For example, contradiction T2 is the root cause of T5, T6 and T1, therefore, designers 

should give priority for T2 to be overcome. Although T2 is in tie in ranking with T5 and dominated by T1 

and T6, starting SBCE process for T2 will provide solutions for T2, T5, T6 and T1 simultaneously. 

Therefore, more innovations can be obtained efficiently.  

Similarly, T3 is the root contradiction for T6 and T1. If designers have to select a contradiction for SBCE to 

purse, T3 should be given high priority although dominated by both its effect contradictions (T6 and T1).  

T4 on the other hand, is a root contradiction for T1 directly and for T6 indirectly. If designers have to choose 

between T4, T1 and T6, then T4 is given high priority irrespective of the ranking of the contradictory 

requirements, which are dominated by both the ranking of the contradictors requirements of contradictions 

T1 and T6. 

 

Figure 7.8: Causal relations of dependent contradictions.
29

 

                                                     

29
 Note that: the ranking of the contradictory requirement are shown in the brackets. 
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 Prioritizing independent contradictions 

For independent contradictions, prioritizing is based on the ranking of the contradictory micro-requirements 

(     ) calculated using Equation 14. The ranks of each micro-requirement are shown in Figure 7.6 above. 

Moreover, Figure 7.9 shows the independent contradiction and the rankings of the requirements in conflict. 

Looking at Figure 7.9, it is possible to identify dominating and tie contradictions in which prioritizing rules 

listed in Equation 15 can be used to select contradictions for further SBCE implementations.  

 

Figure 7.9: Independent contradictions and the rankings of corresponding contradictory requirements
30

. 

Taking T21 as example from Figure 7.9, it is dominated by T7 and 23, is in tie with T8, 9, 8 and 10, and it 

dominates all the rest of independent contradictions. If designers are confronted to choose between T21 and 

its dominating contradiction, using the rules listed in Equation 15, efforts should be made to overcome T7 

and 23 before T21.On the other hand, T21 should be selected for SBCE implementation before any 

contradictions that it dominates.  

Moreover, as it is stated in Equation 15, experts have to impose other criteria other than customer importance 

and competiveness to select between T21 and contradictions that are in tie (T8, 9, 8 and 10). These criteria 

could be resources and capabilities available in product development that are necessary to overcome the 

contradictions. Moreover, since the company is sourcing most of its components from suppliers, the 

capabilities are not limited to internal ones but also to the external suppliers. If suppliers’ technologies are 

not ready to make innovative solutions to overcome certain contradictions, experts should evaluate these 

                                                     

30
 According to the convention introduced in section 7.2.5, the rankings are decreasingly ordered except for zero. T22, 

T17 and T14 have the        
  , and these contradictions are shifted to        

   in Figure 7.9. 
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kinds of aspects into consideration during prioritizing contradictions. Nevertheless, these considerations are 

not limited to prioritize tie contradictions. If solving a dominating contradiction exceeds existing 

technological capabilities, experts might focus on a dominated one even if it is less of a priority to delight 

customers and achieve competitive advantages. 

In sum, most of the contradictions are potential areas and overcoming them lead to innovative improvements. 

Some contradictions need considerable time to pursue SBCE process for and some need less time. However, 

using the Figure 7.8 and Figure 7.9 the experts of AHS will have a rough understanding of which 

contradictions to target. They can also plan to conduct SBCE to offer innovative AHS in short or long terms 

bases. 

7.3.1.6 Map contradictions to design factors 

Once the contradictions are identified and prioritized, the next is to map the contradiction to the product’s 

subsystem, components and the associated factors (e.g. material types, configuration types, number of 

components, etc.). Every contradiction is related to one or more of the humidifier design characteristics 

which the designers can have influences to change. Therefore, to complete the SBCE IR, the contradictions 

are mapped to the product subsystem elements (or what sometimes called trade-space) as shown in Table 

7.11, below.  

The trade space is coded according to a subsystem code, function, elements, and factors. C (Cabinet), Rack 

(R), and Drop Separators (DS) are general subsystem of the AHS. Then, the functions that each general 

subsystems do are assigned a code (LP = low pressure, HP = high pressure, M = modulate, D = drain and so 

on).  

The lower level sub-systems and components that are necessary to execute the desired functions are mapped 

as numbers. For example, CHP2, is a pump that should be in a cabinet and uses for pressuring the water in 

high pressure (HP). RM1 is a valve type that is assembled in the Rack to modulate or control the water flow 

into the manifold of the Rack. Using the mapping of contradictions to sub-systems/components on can 

clearly see critical components that need innovation. For instance, contradictions from T1 to T6 are all 

related to similar components (CHP2 = pump, CMEP = PLC, programmable logic controller, RH1 = nozzles, 

and RM1= valves normal closed). These components are highly integrated. Thus, during SBCE 

implementation, exploring solutions to solve the contradictions requires seamless integrations between the 

subsystems specialists. Moreover, testing and developing of limit-curves are tightly related to the 

performances of these components, indicating who should be involved in SBCE implementation process. 
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Table 7.11: Mapping contradiction to AHS.  

 

7.3.1.7 Plan for SBCE to overcome contradictions 

The SBCE IR is a very powerful and strategic instrument for the industry to plan efforts to pursue SBCE. 

The rules developed and the mapping activities complete what has been taken as a prime objective of this 

chapter. Experts of AHS can use the information posed in Figure 7.8 and Figure 7.9 and Table 7.11 to make 

rational choices to start SBCE implementation. Therefore, SBCE IR helps designers as a systematic guide to 

narrow-down design improvement initiatives that can be handled by SBCE.  

The SBCE IR is developed considering criteria such as customer importance and competitive advantages. 

However, there could also be other criteria experts might need to consider in selecting contradictions such as 

the technological capabilities, resource required and efforts needed to overcome contradiction using SBCE 

process. 

In the next section, a pilot to conduct an SBCE process for a contradiction (T21) will be presented. The 

purpose of the next section is to experiment on how to use the SBCE IR to further pursue SBCE process. 

LP HP MEP MC SEP SC FS H M D TD AF FS D SHD M

T1 P2 P4 (1,3 ) 2 1

T2 P4 P5 (3 ,0 ) 2 6 1 1

T3 P4 P6 (3 ,0 ) 2 1 1

T4 P5 P6 (0 ,0 ) 2 1 1

T5 P2 P8 (1,4 ) 2 6 1 1

T6 P4 P10 (3 ,6 ) 2 1 1

T7 P2 U3 (1,1) 2 2 1 1,2

T8 U3 C1 (1,4 ) 1,2,4

T9 U3 C2 (1,6 ) 1

T10 A4 C2 (1,6 ) 1

T11 P3 C3 (7,3 ) 1

T12 P10 C3 (6 ,5) 2

T13 P11 C3 (2 ,5) 1,2 5 1

T14 A1 C3 (0 ,5) 2

T15 A3 C3 (2 ,5) 1 to 11 1 to 14 1 to 14 1

T16 P4 C4 (3 ,3 ) 1 1 2

T17 P6 C4 (0 ,3 ) 1,2 2,5

T18 P8 C4 (4 ,3 1 1

T19 A4 C4 (1,3 ) 1 1 2

T20 C1 C4 (4 ,3 ) 1 to 4 1 2

T21 C5 C5 (2 ,2 ) 1 1 1,2

T22 A1 M1 (0 ,1) 2

T23 A4 M1 (1,1) 2
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7.3.2 SBCE on Rack subsystem  

Designers and managers organized a workshop in order to select a contradiction to begin a SBCE process. 

T21 has been selected by designers. Looking at Figure 7.9, the contradiction considered is dominated by T7 

and T23 and is in tie with contradictions (T9, T10, T18 and T19). However, considering the time available 

within the period of this thesis, T21 has been chosen to start because of overcoming it in SBCE process takes 

considerably less time than the other contradictions that dominates it or tie with it in rankings.  

The designers noted that, some contradictions take longer time to solve taking a SBCE paradigm. For 

example, the contradictions T1 to T6 which are related to contradictions between technical performances 

(P1, P2, P3, P4, P5 and P6) are harder to solve in short term. Because, the product structured is defined 

around accepting the tradeoffs in between the requirements. Taking T1 as example, the contradiction is 

between Multi-zone up to 12 and Modulation range, implying that it is not possible to increase the number of 

zone areas the humidifier can serve, and at the same time increase the modulation range or the capacity of 

water flow (liter per hour), because an asynchronous motor that runs the pump in the current design has 

limitation to do so. The current number of zones the humidifier can serve is 6, and the customers want to 

increase the number to 12. The current modulation range the humidifier has is between 30 l/h (liter per hour) 

to 50 l/h, and the customers want to have a range between 1 l/h to 50 l/h (the wider the range the better 

performance). The minimum motor speed in the current design is 14% of its maximum speed (2400 rpm, 

revolution per minute). At this minimum speed and below, the quality of modulation (water flow) is low; 

because the humidifier start spraying water more than needed (the water flow should increase in steps rather 

than jumping to a higher flow). Given this constraint, one possible solution is to have two different pump 

types. One that work at lower speed so as to achieve a good level of modulation at low speed, the other that 

works at higher level of speed to expand the number of zones (the higher the number of zones, the higher 

speed required to arrive to different areas or zones). This solution doesn’t avoid the inherent contradiction. 

Having two pumps costs more. In fact, it creates another contradiction with another requirement (C3 – pump 

cost reduction). Another solution was proposed using the TRIZ principle called “changing parameter” 

(Altshuller 1984, 1994, 1999). That is, to have a motor speed that extends the range of speed from 0 to 2400 

rpm, so that it solves the contradiction to have both higher numbers of zones and at the same time higher 

level of modulation at lower speed (14% of the max). However, this solution needs more time to develop (up 

to 1 year) and to communicate with suppliers to obtain their support in the innovation.  

On the other hand, the selected physical contradiction T21 (between requirement non-VDI Rack (C5) and 

with itself) can be solved in short term (1-2 months). The contradiction is explained as follows: the current 

AHS design is compliant with European hygienic requirement called VDI6022. However, the company is 

expanding its business to different business applications or markets such as Tabaco industries, painting shops 
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of automotive industries and in different emerging countries (e.g. China and Brazil). In this market (let’s call 

this market as non-VDI market) there is no mandatory VDI6022 compliancy requirement. Moreover, these 

customers are requiring cheaper design and there are non-value adding features in the current design that 

have no value for non-VDI market. Therefore, the purpose is to overcome this contradiction to satisfy both 

types of markets (VDI requiring market and non-VDI market). The framework used in this thesis and also in 

the company to address the contradiction is summarized in Figure 7.10. 

 

Figure 7.10: SBCE framework to overcome T21. 

In order to overcome the contradiction, the company agreed to use the TRIZ “principle of separation” 

(Altshuller 1984, 1994, 1999). That is to separate the product version for two markets (VDI and non-VDI 

markets). This implies that, the current AHS design will be offered to VDI market and a new version has to 

be designed for non-VDI market.   

Therefore, the role of SBCE is to design a new Rack version for non-VDI market. In this thesis, the reports in 

the next sections focus on the activities done to conduct the SBCE for new Rack version, i.e.: exploring of 

design concepts which can minimize the costs of the Rack for non-VDI Rack market; identify key constraints 

to test Rack concepts explored; test Rack concepts for constraints; and converge into a Rack concept that 

maximizes the value for non-VDI customers.  

7.3.2.1 Basics of Rack subsystem and mapping T21 to design factors 

Before going in detail with the SBCE process, in this section the basic working principle of Rack and its 

components are explained. Moreover, the identified design factors by experts that need to be changed to 

overcome T21 are identified in this subsection.  

The right side of Figure 7.11 shows the Rack schematic diagram with the components. The left side of Figure 

7.11 sows the mapping of contradiction T21 to Rack design factors. 
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The simplified working principle of the Rack subsystem is as follows: highly pressurized water (about 70 

bars) will be pumped from the pumping unit or Cabinet (motor and pump, see Figure 7.5) to the solenoid 

modulating valves which are normally closed (see Figure 7.11, ≠4). These valves pass the modulated water 

to the Rack distribution system. Because the water pressure inside the Rack will increase to a desired level 

step by step, the modulating solenoid valves are connected with each other using flexible hoses (i.e. when the 

water flow reaches the last manifold column, the desired pressure will achieved). Then, the water passes 

through the vertical manifolds (see Figure 7.11, ≠6), and sprayed out to a room through nozzles (see Figure 

7.11, ≠ ). Empty holes which are used to clean the Rack will be covered by cubs (see Figure 7.11, ≠6). 

Finally, once the Rack finishes operation, the water leaves the Rack distribution system through the solenoid 

drain valves (see Figure 7.11, ≠9).  

 

Figure 7.11: Rack components and mapping contradiction T21 to Rack design factors. 

7.3.2.2 Exploration of Rack concepts for non-VDI market 

Designers of the Rack subsystem conducted more than three workshops to explore alternative design 

solutions to reduce costs of the Rack for non-VDI market. After brainstorming on several sessions, designers 

explore four different concepts for the new Rack version: (a) frameless Rack, (b) changing the solenoid 

stainless-steel drain valves to mechanical brass valves, (c) using one solenoid modulating valve for two 

manifolds, and (d) eliminate the number of cups and holes on the manifolds. The summaries of the 

advantages, disadvantages, tests required of the concepts generated are given in Table 7.12. 

(a) Concept 1: is to remove the non-value adding stainless-steel frames (see Figure 7.11, ≠1) and side 

brackets (see Figure 7.11, ≠7) in the Rack structure which are very expensive for non-VDI market. Most 
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of the non-VDI customers are industrial facilities, the frames and brackets added in the current Rack 

design are not necessary. The metal frames that are used to slide the Rack into an AHU unit (Air 

Handling Units) are needed when cleaning operation is desired. However, thanks to the separation of the 

markets, the frames are removed as non-value adding because the non-VDI Rack doesn’t need removal 

from the AHU unit for cleaning, and can be welded (fixed attachment with AHU) by the users 

themselves. The cost advantage of this concept is estimated by the AHS experts to be 10% of the Rack 

cost, including material and assembly operation costs. 

(b) Concept 2: is to substitute the electronic stainless-steel solenoid drain valves (see Figure 7.11, ≠9) 

with mechanical valves (brass material), which are used to release water once the Rack finishes 

operation. The VDI hygienic requirement dictates materials to be made of stainless-steel that are in 

contact with the water. However, once the markets are separated, the non-VDI Rack version will not 

require this material. Thus, an alternative mechanical and cheaper valve which is made up of brass 

(copper and zinc) can be used. The market prices for the stainless steel and brass valves are 18 €/piece 

and 5 €/piece respectively (a cost reduction of 1  €/piece). Moreover, since the VDI requirement 

demands a close control on the water quality inside the Rack, the drain values are connected with the 

PLC (Programmable Logic Controller, see Figure 7.5) using electrical wiring. But, these wirings will not 

be required in the new Rack version. Thus, the cost advantages of this concept come from reducing the 

material and wiring costs. Mechanical brass valves are less corrosion resistant than stainless-steel valve, 

but brass material will corrode within a longer period of time. Therefore, the valve type is a better 

candidate for the new Rack design. 

(c) Concept 3: the third concept is to reduce the number of modulating solenoid valves (see Figure 7.11, 

≠9) by assigning one valve for two vertical manifolds (see Figure 7.11, ≠6). This concept enables cost 

reduction by minimizing the number of valves and associated wiring costs used to connect with the PLC 

system. The price of each valve is about  0 €/piece. The cost advantages vary depending on the size of 

the Rack, the smaller and the biggest sizes have 4 and 30 manifolds respectively. Therefore, the average 

cost savings per Rack are estimated to vary from 40 €/Rack to  000 €/Rack. 

(d) Concept 4: the last concept is to eliminate the holes and the cubs on the manifolds (see Figure 7.11, 

≠6). In the current design, the empty holes were used to clean the manifolds when it is thought to be dirty 

(requirement of VDI). However, in non-VDI version the holes and the cups (to close the holes) have no 

functions. So they are eliminated as non-value adding features. The advantages of the concept are to 

minimize cups’ costs and reduce time for drilling the holes during manufacturing process. 
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Table 7.12: Summary of Non-VDI Rack concepts generated, advantages, disadvantages, and tests required
31

. 

  Concept 1 Concept 2 Concept 3 Concept 4 
Concepts 

merging
32

  

Improvement  Remove frames 
from stainless steel to 

brass valves 

One solenoid 

valve for two 

manifolds 

Remove holes 

and cups on 

manifolds 

Combination of 

concepts 1, 2, 3, 4 

Advantages  
10% cost 

reduction 

- 1  € saving/piece 

- less administrative 

costs 

- less electrical wiring 

cost 

- reduction of 

valves ( 0 € 

saving for each 

valve reduced) 

- less electrical 

wiring cost  

- reduction of 

cup costs 

- reduction  of 

drilling 

operation time  

30% cost 

reduction 

compared to the 

current Rack 

design  

Disadvantages none corrosion of brass 
less water spray 

quality 
none 

corrosion, less 

water spray 

quality 

Test required no 

- max. pressure 

resistance 

- min. pressure to open 

flow rate test no 
final functional 

test 

The four concepts generated are subject to improving the current Rack design to suit to non-VDI market. The 

SBCE IR helps designers to identify the need for satisfying this market by offering cheaper Rack. As noticed, 

the explored concepts are small modifications on the current design. The SBCE process to follow is 

narrowed one in terms of the design space considered. Nevertheless, the experts estimate a considerable cost 

advantages for non-VDI market. This cost benefits has been obtained by removing non-value adding features 

and associated manufacturing operations which have been designed into the existing AHS design. The next 

step in SBCE process is to test the concepts for the constraints identified in Table 7.12. 

7.3.2.3 Testing Rack concepts 

In SBCE process, the evaluations or testing of concepts for constraints are important to facilitate the ‘test & 

then design’ paradigm (Kennedy and Harmon 2008). This paradigm in SBCE is paramount to anticipate 

failure modes early in concept generation phase to check feasibilities of alternative solutions. Therefore, for 

each Rack concepts generated, the sources of failures are identified as shown in Table 7.12 to test them 

                                                     

31
 All the data reported on the cost advantages are based on estimation obtained from the experts of AHS. Note that the 

cost advantages address only for non-VDI market not VDI market. 

32
 Since the concepts generated can be combined the concept merging is referred to combining all the concepts into one. 
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before going to detail design phase. Concept 2 needs ‘pressure test’ and concept   needs ‘flow rate test’. The 

evaluations of the concepts for constraints done by the AHS experts are explained as follows: 

  Pressure tests for concept 2: the mechanical brass valve proposed for drain valve has never been used 

before, and need to be tested for the maximum pressure it can withstand, and the minimum pressure at 

which the valve will close. The working pressure of the Rack is 70 bars. The maximum allowed pressure 

in the Rack system could be +10% of the working pressure. So, the new valve should withstand the 

deviation from the nominal working pressure. Moreover, the minimum pressure that the valve (which is 

normally open) will close should be investigated. If the minimum pressure that makes the valve close is 

higher than 0.5 bar, there is the risk that the valve will not close when it is needed, and water kept 

draining. Three new valves are sourced from three different alternative suppliers. The components from 

the three suppliers are tested for hours (this type of test is called life test in the industry. Figure 7.12 

shows the limit curve of the pressure test of components from each supplier. As shown in the figure, 

supplier 2 has passed the upper and lower pressure constraints. Since the prices from all the three 

suppliers are similar, the only consideration to choose among the suppliers is the passing of the 

constraints. Therefore, supplier 2 is taken as the candidate to supplier the drain valve for non-VDI Rack 

design. 

 

Figure 7.12: Limit curve for pressure test of mechanical drain valves and suppliers evaluation. 

 Flow rate test for concept 3: when one valve substitutes two valves, the maximum desired water flow 

of 100 l/h should able to pass though the single valve to serve the nozzles on the two manifolds (see 

Figure 7.11, ≠6). If the concept is not able to deliver the required amount of water to manifolds, pressure 

drop will be the risk. Pressure drop occurs when the required pressure is not achieved while the nozzles 
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spray the atomized water. Pressure drop creates low quality of precision. The concept has been tested, 

and able to allow the maximum water flow when the number of manifolds is more than 5. Thus, the 

concept works very well when the number of manifolds is more than five.  

7.3.2.4 Merging Rack concepts 

All the four concepts are combined to maximize the benefits or the value of the new Rack version. Concept 

merging is synonyms the convergence process in SBCE. The final merged concept is estimated by designers 

of AHS to have a 30% less cost than the current Rack design considering all the cost advantages of the 

concepts generated. After final functional test, the company is expecting to launch the new Rack design to 

customers soon. Moreover, the new version is expected to have high market share since no competitor has a 

non-VDI Rack (see the competitors’ performances of C5 on Figure 7.6). 

7.3.3 Assessment of SBCE IR by AHS experts 

The SBCE IR is tested in AHS case study and the roadmap for this particular system is developed. Moreover, 

using the roadmap SBCE process has been experimented on Rack subsystem which shows the relationships 

between SBCE IR and SBCE process. The new Rack design will have significant cost advantage for non-

VDI customers. The experts estimate a 30% cost reduction from the new Rack design for non-VDI 

customers. The SBCE experiment on Rack subsystem is a narrow one. The number of components explored 

and the configuration proposed are few in numbers. However, most of the identified and prioritized 

contradictions are potential projects the company can launch in short and long terms. 

In order to verify and assess the potentials and limitations of the SBCE IR for the company an open 

questionnaire is prepared. The questions in the questionnaire are categorized in three classes: (i) differences 

and synergies with existing methods used in the company, this is to understand what is the existing method 

the company follows to identify improvement areas for new projects and investigate the differences and 

synergies with SBCE IR methodology; (ii) effectiveness of SBCE IR, this is to measure if the SBCE IR 

achieves its objectives in terms of reducing the extensive nature of SBCE process, its effectiveness to 

identify improvement areas for SBCE, its effectiveness in evaluating customer value, its effectiveness in 

evaluating competitors’ products and its contribution to enhance innovation at early phase of design; and (iii) 

simplicity/ difficulties/ scalability/skills and capabilities needed to build SBCE IR, in this category the aim is 

to measure the efficiency of building the SBCE IR methodology in the case company. Interviews are made 

with four experts who are knowledgeable about technical, market, business and improvement related issues 

in the company. The interviews are made individually with each expert. The experts are extensively involved 

in building the steps of SBCE IR for AHS system and are knowledgeable about the existing practices in the 
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company. Table 7.13 summaries the response of the experts in assessing the SBCE IR. The following 

subsections elaborate the results of the assessment briefly. 

7.3.3.1 Differences and synergies with existing methods used in the 

company 

The questions asked in this category is to identify the differences of SBCE IR with methods that are used in 

the company and to meter the value the company can obtain in adopting the SBCE IR methodology.  

Before any new products are developed the company uses different methods to identify and select projects 

(improvement areas) to pursue. These methods are: new market requirements (that is when customers are 

requesting improvements for products), correction of previous mistakes (this is related to when failures on 

products occur during use, the company initiate new projects to fix problems), technology push (this is 

related to internal initiatives to design new products and technologies), company strategy (this is related to 

long term plans of the company in terms of new products to develop, new markets to enter and so on) and 

portfolio management (the company has a formal portfolio management process to prioritize and select 

projects coming from new customer requirements, correction of mistakes, technology push and company’s 

strategy).  

 Problems with existing methods used in the case company 

The existing methods used in the company to identify and prioritize projects for new products have the 

following drawbacks: 

- Existing methods are not structure: the dominate sources used to identify new projects in the 

company are reactive to external changes. For example, new requirements emerging from 

customers can happen any time and the company has to react to these requests to plan new 

projects. Projects that are initiated to fix corrections are also highly unpredictable and can 

happen at any time. The only existing method that can be used as proactive is from technology 

push. However, this method leaves the company to be dependent on few and highly experienced 

designers who can have imagination to initiate new technologies to be developed. Technologies 

push can be very random method where ideas for new product development projects arise at any 

time. Therefore, the existing methods make the company to react to changes and leave less 

flexibility to make effective and efficient planning. As a result, the product development 

organization becomes disruptive.  
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- Existing methods are based on top-down approach: the portfolio management is used in the 

company to prioritize projects. However, there are limited information related to customer 

importance, competitive priorities and resource availability to make effective selection of project 

ideas for new products. These leave planners to base their choices based on experience. In a 

sense there is discontinuity between strategic planning at portfolio management level and 

technical level. This often results in selecting wrong projects or eliminating the right projects for 

new products to be developed. 

- Existing methods are not based on contradictions: project proposals for new products are not to 

overcome contradictions. Often what seems to be simpler or available ideas are chosen. This 

limits the potential of the company to offer innovative products to customers. 

 Benefit and synergies of SBCE IR to support existing methods 

The experts identified the following key benefits of SBCE IR and possible synergies between existing 

methods: 

- SBCE IR will make existing methods structured and proactive: using the methodology 

improvements on products or new projects can be planned and resource requirements can also be 

anticipated beforehand. The SBCE IR methodology provides contradictions and their priorities. 

Thus, new projects can be planned according to the resources available and based on their 

priorities. Since requirements forming contradictions are collected and evaluated, the company 

can benefit to be proactive to emerging requirements and technologies.  

- SBCE IR is based on bottom-up approach: using the roadmap build for products, planners 

involved in portfolio profiling can use the SBCE roadmaps to make informed decisions to select 

project proposals. Since the SBCE IR contains information from customer, market, technical and 

resource perspectives, it enables planners to plan for innovative projects for short and long time 

horizons.  

- SBCE IR focuses on contradictions: focusing on contradictions, and then overcoming them using 

SBCE’s principles will improve the innovation process in terms of methodological structure and 

generate innovative ideas. Of course the identification of contradictions doesn’t mean that 

designers can innovative. However, it gives them the opportunity to overcome specific 

contradictions. Moreover, identification contradictions surface challenges to address and 

improvements to make. In order to help them to solve contradictions, methods such as TRIZ’s 

principles and tools can be used. 
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Figure 7.13 summarizes the benefits and synergies between existing methods used in the case company and 

the SBCE IR methodology. 

 

Figure 7.13: Benefits and synergies of SBCE IR and existing methods used in the case company.  

7.3.3.2 Effectiveness of SBCE IR 

The questions asked to experts to assess the effectiveness of the SBCE IR methodology can be categorized in 

four aspects: the effectiveness of the methodology to reduce the extensiveness of SBCE process, the 

effectiveness of the methodology to identify improvement areas and to evaluate customer value, the 

effectiveness of the methodology to evaluate competitive products and the effectiveness of the methodology to 

enhance innovation. The questions are selected based on the main objectives of the SBCE IR and the criteria 

used to build it. The response results are summarized as follows: 

- SBCE IR and extensiveness of applying SBCE: the experts acknowledge the effectiveness of the 

SBCE IR methodology in terms of its ability to help them focalize where SBCE should be 

applied. The focus on contradictions and the prioritization rules provided in the SBCE IR 

contribute to the effectiveness. However, the experts also noted that, SBCE should be used as a 

rough-cut planning methodology than to make final decisions on which contradictions to solve. 

Other sources should also be taken to make final decisions on which area to improve (e.g. 

company’s strategy should also be considered as one criterion to select contradictions for 

SBCE).   
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- SBCE IR and evaluating customer value for improvements: the experts appreciate the use of 

AHP method to evaluate customer importance. This helps them to systematically evaluate the 

requirements. However, the experts underlined two important considerations to take during the 

customers’ requirements collection step of the SBCE IR. First, the list of requirements should 

also include future predictions on emerging needs. Otherwise, the SBCE IR becomes unstable 

since customers often changes requirements or new requirements emerge. Therefore, designers 

and mangers building the roadmap should make careful investigations on the future needs and 

they should create close collaborations between customers to identify list of requirements. The 

second note is related to the variety of customers the case company should satisfy. The case 

company has multiple levels of customers which often have different importance on a single 

requirement. Taking AHS product for example, there are four layers of customers: Contractors, 

who buy large number of the product from the case company; Installers, who buy the product 

from contractors and install it at customer sites; OEMs, who directly buy the product from the 

case company; and Final customers, who are using the product. These customers have different 

needs and importance. For example, Contractors are more interested in cost or price, Installers 

are more interested in on easiness to install, OEMs are more interested on technical 

performances and Final customers are more interested in technical performance or simplicity to 

use. Therefore, while assigning judgment on the importance for requirements in the first step of 

SBCE IR, care must be taken to balance the needs of the different customer types.  

- SBCE IR and evaluating competitive products for improvements: the experts acknowledge the 

effectiveness of the SBCE IR in evaluating competitive products. Moreover, using SBCE IR for 

sure lead them to produce products that have better performances than competitors. However, 

the experts noted a drawback. Basing innovation roadmap based solely on benchmarking 

competitors’ performances limit innovativeness of designers. Designers might only do 

improvements just to beat competitors and no more. This aspect needs attention.  

- SBCE IR and enhancing innovation: four questions were asked related to the effectiveness of the 

SBCE IR to enhance innovation during exploration phase of SBCE process. The effectiveness of 

idea generation phase can be measured taking four measures (Shah and Vargas-Hernandez 

2003): quantity, is a measure of the total number of ideas generated; quality, is a measure of the 

feasibility of an idea and how close it comes to meet customer requirements; novelty, how 

unusual or unexpected an idea is as compared to other ideas; and variety, is a measure of the 

explored solution space during the idea generation process. For quantity and variety the experts 

agree on the effectiveness of SBCE to enhance these measures. In particular, if the idea 
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generation process in SBCE is supported by methods such as TRIZ, designers will have the 

opportunity to structure design problems to explore number of ideas as well as good varieties 

among the ideas. For novelty and quality, designers acknowledge that SBCE IR contributes to 

improve these measures. However, the experts noted that, novelty and quality largely will 

depend on the experience and imaginations of the designers who are overcoming contradictions. 

Thus, there are rooms that personal skills and experiences will affect the effectiveness of SBCE 

IR.  

7.3.3.3 Simplicity/ difficulties/ scalability/skills and capabilities needed to 

build and use SBCE IR 

The final aspect of the assessment is related to the simplicity/ difficulties/ scalability/ skills and capabilities 

needed to build and use the SBCE IR. The responses of the AHS experts are summarized as follows: 

- Simplicity/ Difficulties of building SBCE IR: all the experts interviewed said that it is not difficult 

to build the SBCE IR for products. But, they said that it is time consuming to collect data to 

build it. They suggest possible remedies to tackle the problem. The first one is to have simpler 

SBCE IR version for small and simple projects and the full SBCE IR for large and very new 

products. The second recommendation given is to use SBCE IR for modules or platforms which 

are shared by many products. In this way, it will be less time consuming, and also make the 

SBCE IR robust to changes in customer requirements and technologies. Normally, standard 

modules or platforms are stable in terms of change in requirements and technologies. 

- Scalability: this question is to check if the SBCE IR can be built for any product. Experts find no 

reason to apply it for mechanical or electronic products. However, when the product becomes 

complex, building SBCE IR might consume time. 

- Skills and capabilities needed to build SBCE IR: there are several skills and capabilities needed 

to build and use the SBCE IR. Among which the following are reported by the experts: (1) SBCE 

expertise, designers should have a good understanding on the principles of SBCE and training on 

how to explore, communicate and make converge based on sets; (2) Process knowledge, people 

who build SBCE IR should have a good understanding of the product development process 

starting from customer value research to all the lifecycle of a product. Otherwise, many possible 

flaws can occur in collecting data and conducting the steps of SBCE IR; (3) TRIZ training, as 

SBCE IR is based on analyzing contradictions, designers should have good understanding and 

knowledge on how to apply TRIZ’s principles and tools to overcome contradictions. This skill 

are not available in the case company but will be needed to make SBCE IR more usable. 
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Table 7.13: Summaries of SBCE IR’s assessments by AHS experts.
33

 

Aspects Questions Summary of interviews responses 

Difference and 

synergies with  

existing method 

used in the 

company 

What is/are the current 

method/s to identify 

improvement areas for new 

products? 

New market requirements, corrections of previous mistakes, 

technology push, company strategy that define the evolution of 

products, portfolio management to prioritize projects. 

How different existing 

methods are compared to 

SBCE IR? 

 Existing methods used in the company are not structured, difficult 

to plan for emerging/changing marketing requirements and 

correcting previous mistakes, technology push could also be 

random. 

 Existing methods are top-down approach and often have 

limitation in planning projects based on real customer benefits, 

competitors' analysis and resources availabilities. 

 Existing methods in the company are not focusing in 

contradictions rather they concentrate what is easy to change. 

This might limit the potential of offering innovative products to 

customers. 

 SBCE IR is proactive rather than reactive and improvements on 

products can be planned and resource requirements can also be 

anticipated beforehand. 

 SBCE IR is bottom-up approach in which designers and project 

managers can use SBCE IR to propose improvement projects to 

top management during strategic and portfolio planning. 

 SBCE IR can be integrated with existing methods. It helps to 

structure the existing methods (to effectively identify 

improvement projects) and support portfolio profiling or 

prioritizing. 

 SBCE IR is based on identifying contradictions and overcoming 

them using SBCE process. Focusing on contradictions is new 

way of working for the company but enables us to advance 

product technologies and excite customers and achieve higher 

market share compared to competitors. 

Effectiveness of 

SBCE IR 

Does SBCE IR able to 

reduce the extensiveness 

nature of SBCE by 

prioritizing contradictions 

or tradeoffs as 

improvement areas? 

 Yes, SBCE IR helps us to define where innovation should takes 

place. Moreover, the prioritization scheme will help us to known 

what type of improvements or projects should be launched.  

 However, SBCE IR should be taken as a rough planning scheme, 

and then management should give more detail planning to 

prioritize contradictions based on company's strategy. 

                                                     

33
   positive feedback for SBCE IR;  limitation of existing methods used in the company or limitation of SBCE IR. 
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Is SBCE IR effective in 

identifying improvements 

areas for SBCE 

 Yes, the first step of SBCE IR is to identify and assign 

importance of customer requirements. The AHP method used 

helps us to systematically weight the requirements to satisfy our 

customers. 

 However, customer requirements that are feed to SBCE IR should 

reflect the future needs of customers; otherwise the plan becomes 

unstable if customers frequently change their requirements. In 

order to make SBCE IR a robust planning methodology, 

designers and managers should study very well the current and 

emerging requirements in close collaboration with customers. 

 It is also important not to make inaccurate judgment about 

customers. Carel Industries is operating in a market where there 

are different levels of customer types (e.g. installers, contractors, 

OEMs and final customers). These customers usually have 

different importance for a requirement of a product. Therefore, in 

building SBCE IR the weighing of customer requirements should 

take care of balancing the needs of the different customer types. 

Is SBCE IR effective in 

evaluating customer value? 

Is SBCE IR effective in 

evaluating competitive 

products? 

 SBCE IR is effective in evaluating competitors' product. So that, 

we can make sure that we stay competitive in the competitions by 

offering better products. 

 However, taking competitors' evaluation solely as a criterion to 

build SBCE IR has limitations to foster innovation. Often, 

innovative ideas might arise from internal or personal initiatives. 

Thus, improvement products better than competitors might lead 

designers to do only low level innovations just to beat 

competitors.  

Will SBCE IR help to the 

quantity of ideas or 

concepts to generate 

(quantity)? 

 Yes, SBCE IR creates more opportunities for designers to 

increase number of solutions because of specific problems given 

to them to overcome. 

Will SBCE IR help to 

increase the quality of 

conceptual ideas to 

generate (quality)? 

 Yes, if the customer requirements are well captured and evaluated 

in SBCE IR, it will help us to satisfy and also excite customers by 

overcoming contradictions. Moreover, the principles of SBCE 

increase the success of concepts to be feasible and to meet 

customers’ expectations. 

 However, to improve quality of ideas, we need personal 

experience and ambitions of designers to explore concepts which 

can overcome contradictions. 

Will SBCE IR help to 

identify novel ideas or 

concepts (novelty)? 

 Yes, if we use TRIZ principles and tools, SBCE IR increases the 

chance of having novel ideas which might be out of the box. 

 However, to improve novelty of ideas, we need personal 

experience and ambitions of designers to overcome contradictions 

in SBCE process. 
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Will SBCE IR help to 

increase variety of concept 

to generate (variety)? 

 Yes it creates variety in idea generated if it is supported by TRIZ 

principles and tools to overcoming contradictions. 

Simplicity/ 

Difficulties/ 

Scalability/Skills 

and capabilities 

needed for 

SBCE IR 

Is building SBCE IR easy 

for a product? 

 Not difficult.  

 But time consuming, in terms of data collection. 

 Therefore, SBCE IR can be simplified by taking simpler version 

for small projects and full version for large projects.  

 Another way to simplify it will be apply it on modules or 

platforms that are shared by different products. In this way, it will 

be possible to share an SBCE IR by many projects and stabilize it 

(since customer requirements are stable for modules).  

Is SBCE IR applicable to 

other products? 

 Yes, the SBCE IR is applicable irrespective of product types. 

 But it might be time consuming for big and complex products. 

Can SBCE IR be applied 

for product platforms or 

modules? 

 Yes, is might be effective to apply SBCE IR at module levels that 

can be shared across products. This might reduce the time to 

construct SBCE IR and make it robust to changes in customer 

requirements and technologies.  

What skills and 

capabilities are needed to 

use SBCE IR? 

 SBCE expertise, vision on the development process from 

customer requirement collection phase to the whole life-cycle of a 

product, TRIZ training, knowledge about customers and 

application areas where a product is used. 

7.4 Conclusions, limitations and future researches 

The main purpose of this chapter has been to propose a systematic methodology that guides designers to 

make rational choices to start SBCE implementation projects. Researches show that companies have failed 

and obtain negative performance results trying to implement SBCE. One of the rationales of such negative 

results can be attributed to its extensive nature to apply it to a product. The other reason is that, there is no 

systematic methodology that currently exists to support designers and managers to make effective and 

rationale choices about where SBCE projects should focus on. Thus, SBCE is an extensive process that 

demands a careful investigation upfront before deciding on which area to apply it. The SBCE IR 

methodology developed in this thesis answers these particular shortcomings in practice and academia.  

The SBCE IR methodology is based on identifying and prioritizing contradictions in a product system. 

Contradictions are taken as a central element of SBCE IR. According to TRIZ (Theory of Inventive Problem 

Solving) identifying contradictions between requirements is taken as gate ways for product innovation. The 

existing literature on SBCE has been focusing on tradeoffs but in practice this leads to accepting 

compromises and as a consequence limits innovation. Moreover, understanding and modeling tradeoffs 
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between alternative sets are challenging in particular for small or medium sized companies where there is 

little resources/ capabilities. Therefore, SBCE IR benefits from synergies between SBCE principles and 

TRIZ concept of contradictions.  

To develop SBCE IR, three additional criteria and assumptions are taken to prioritize contradictions: 

customer value information, competitive advantages and resources/ capabilities. The criteria are used to 

evaluate customer requirements, competitor performances, and consider the resource capabilities of the 

company to solve design problems.  

The SBCE IR involves six steps and each step is supported by common tools and methods found in 

literature. To structure the steps of the SBCE IR, QFD (Quality Function Deployment) method is used. The 

first step is to identify customer requirements and assign importance. AHP (Analytical Hierarchical Process) 

is used to assign weights to customer requirements. The second step is assess competitors’ products and set 

targets for each requirements identified. The third step is to identify technical and physical contradictions in a 

product system. The fourth step is to identify causal relations between contradictions to sort out dependent 

and independent contradictions.  DEMATEL (Decision Making Trial and Evaluation Laboratory) method is 

used to find the causal relations between the contradictions in the fourth step. In the fifth step rules are 

derived to prioritize contradictions based on the information obtained from previous steps. For dependent 

contradictions the roots will be given high priority for SBCE implementation. For independent contradictions 

rankings (derived from steps 1 and 2) of their contradictory requirements are used to prioritize them for 

SBCE implementation. The final step is to map prioritized contradictions to design factors to being SBCE 

process to improve a product. This final step should be done by experts designing and developing the 

product. 

Three validations have been made to test the SBCE IR, to use it to experiment an SBCE process and to assess 

the pros and cons of the SBCE IR methodology by experts.  

First, AHS was taken as case study to apply the SBCE IR. In fact, strong collaboration has made with the 

AHS experts to collect the data to build the roadmap. Several contradictions were identified in the system, 

some contradictions are between technical performances, some are between business related performances 

and some are between technical and business related performances.  

Second, based on the roadmap, designers choose a contradiction called non-VDI Rack (T21), and begun 

experimenting SBCE process. The contradiction was easier to solve in short time compared to other 

identified contradictions. Designers conducted workshops to explore Rack concepts that can minimize the 

cost of the Rack for those customers who don’t need a VDI hygienic requirement. Four concepts were 

explored, and tests were conducted if the concepts work. Finally, the concepts were merged to create a high 
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value Rack that has significant cost reduction with respect to the current design. The experts estimate a 30% 

cost reduction of this new Rack for non-VDI market. This Rack is under development to be launched soon. 

Third, an open questionnaire was provided to four experts to assess the SBCE IR using interviews. The 

experts are highly experienced designers and managers involved in AHS design and also manage several of 

the products the case company is developing. The following positive feedbacks are obtained related to SBCE 

IR: 

- SBCE IR will help the case company to be proactive to plan ahead projects for new products. 

- SBCE IR will help the company to structure the innovation process. 

- SBCE IR will help the company to build innovation roadmap for projects on new products from 

bottom-up basis. 

-  SBCE IR is based on contradictions and this helps the company to overcome them and offer 

innovative product and technologies. 

-  SBCE IR reduces the extensive nature of conducting SBCE process, and will enable the 

company to focus on important improvement areas. 

- SBCE IR is effective in structuring the evaluation of requirements for customer importance. 

- SBCE IR is effective in evaluating competitive products. 

- SBCE IR has the potential to improve the quantity, quality, novelty and variety of new ideas to 

be generated during the exploration phase SBCE process. 

- SBCE IR is not difficult to build. 

- SBCE IR is scalable and applicable to different kinds of products or modules. 

The experts also identified limitations related to building and using the SBCE IR methodology. These 

limitations are summarized as follows: 

- SBCE IR should be considered as a rough-cut methodology to identify areas for SBCE 

implementation. More detail investigation should be considered based on company’s strategy on 

which contradictions should be targeted. 

-  SBCE IR becomes unstable if the list of customer requirements identified in step 1 of the 

methodology changes frequently by customers. Close collaborations and interactions are needed 

to avoid this problem. 



171 

 

- SBCE IR doesn’t consider the different type of customers the company is targeting. Thus, 

difference customers might have different judgment of importance for a requirement. Take must 

be taken to balance the needs of different customer types. 

- Taking competitors analyses might mislead designers to make only small improvements just to 

beat competitions rather than making great and high level innovation.  

- Personal experience and imagination of designers are necessary to make SBCE IR enhance 

quality and novelty of ideas generated. 

- Building SBCE IR is time consuming in particular for big, complex and highly new products. 

- SBCE needs skills and training such as SBCE training, TRIZ training. Moreover, building SBCE 

needs expertise in having a holistic vision of product development process from the customer 

needs collection phase to the whole lifecycle of a product. 

There are several potential future researches to improve the SBCE IR methodology. The following future 

research questions are proposed for future researches: 

- How to align SBCE IR with company’s strategy for projects on new products and portfolio 

management process?  

- How to improve SBCE IR to consider different types or levels of customers? And what are the 

impacts of having different customer types in solving contradictions using SBCE process? 

- How to build SBCE IR for product modules or platforms? And what are the benefits in terms of 

stabilizing the SBCE IR and reducing the time it takes to build SBCE IR? 

- How to simplify SBCE IR for small projects (new product with small improvements from the 

current design)? And, How to automate the SBCE IR for complex products to make the analyses 

involved in SBCE IR less time consuming? 

- How to distribute contradictions to different development organizations? (For example, 

development organization in the case company is divided into two: product development, 

focusing on designing products upon customer request; and technology centers, which aim to 

develop new technologies and feed knowledge to the product development organization). 

Therefore, which contradictions to assign to which development organization is an open issue. 



172 

 

8 THESIS SUMMARY AND FINAL CONCLUSIONS 

The underlying idea of SBCE is not new. In fact, it has been more than a decade since it has appeared in 

literature. Although, the original proponents formalize and name it as SBCE, the principles are well-known 

to many inventors and experimenters well before Toyota. The Wright brothers who invented the first flying 

machine once said “…if some method could be found by which it would be possible to practice by the hour 

in tead of by the  econd there  ould be hope of advancing the  olution of a very difficult problem…and 

without any serious danger” (Kennedy  010). This notion of focusing on experimenting, exploring, testing of 

sets has been the norm to several inventors who contributed to the industrial revolution and humanity. 

Designers in any company face several unpredictable and uncertain conditions in early design phases. In 

these conditions, the principles of SBCE make much more sense 

than PBCE. Moreover, design is a process where problems are 

discovered, solved and knowledge is created. However, in the 

current industrial context, PD has become more formal and 

structured process rather than a knowledge creation factory. 

Developers start to focus on meeting deadlines and milestones. 

Experimentation, testing, and consideration of sets started to be 

given less attention or less practiced. This trend, however, result 

many companies to suffer on PD performances. Lack of innovation, 

project delays, cost overruns, poor qualities, knowledge wastes, and 

poor learning capabilities are among the challenges that industries 

are facing at the moment. SBCE, if integrated well, will be 

significantly contributes to alleviate the challenges. SBCE 

contributes to revolutionize companies to be a true learning 

organization. Through its principles, SBCE will guide designers and 

managers to orient themselves for the creation of high value 

products and strive to create usable knowledge in PD. 

The conception of this thesis was born by asking if SBCE really be 

a practice that industries can adopt it with full consciousness. After 

several personal experiences, what lies beneath the industrial 

practice in early phase of design is all about consciousness. 

Designers are well aware of the fact that PBCE has many 

drawbacks. In fact, there are several elements of SBCE that are practiced in many organizations, such as the 
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consideration of alternative concepts, knowledge front-loading at early phase of design, test before 

commitment, communication, collaborations and so on. Nevertheless, if SBCE is not acknowledged by 

industries as a standard process to be followed, the potentials of SBCE cannot be fully utilized. Having said 

this, the existing literature of SBCE has not been well contextualized to be readily adopted by many 

industries.  

Irrespective of its popularity in academic discussions or consultants ads, industries have little knowledge and 

guidelines on how to execute the principles and the necessary capabilities needed are not well articulated in 

existing literature. As a result, it has been observed that there is low awareness level in many of the industries 

interviewed in this thesis (as other researches showed). SBCE is a promising paradigm; many believe can 

benefit the industries in several ways. Nevertheless, still its understanding in practice is at the fledging state. 

Moreover, practical methodologies are required to make SBCE principles and process pragmatic. 

In conclusion, this thesis advances the existing academic and practical gaps in three main directions. A first 

advancement is related to the integrated framework of SBCE’s enablers discussed in chapter 4. A first 

methodological contribution is the development of SBCE serious game which is discussed in chapter 6 

(PART I). Moreover, thanks to the introduction and validation of the SBCE serious game in the case 

industry, several lessons are obtained that will be insightful for both practice and theory. The second 

methodological contribution is the related to SBCE IR which is introduced and validated in chapter 7 (PART 

II). This methodology will have significant contributions to guide designers on which improvement areas 

SBCE should be applied. Hereafter, each contribution is analyzed and summarized again in brief: 

8.1 Integrate framework of SBCE’s enablers and its 

implications for practice and theory 

The proposed integrated SBCE framework is composed of the pillars of SBCE, its principles and enablers. 

Extensive literature review has been conducted to build the framework. The review includes literature from 

product design, knowledge management, tools, methods, technologies, and concurrent Engineering bodies of 

knowledge in product development. The SBCE framework can significantly contribute to both the industry 

and the theory. For the industry, the framework will show what enablers SBCE demands to be adopted in 

practice to effectively execute the principles and the process. Companies can investigate their practices and 

capabilities to assess their PD for SBCE adoption. For the literature, the framework will enrich the arguments 

presented about the roles of SBCE. Several concurrent engineering literatures portray SBCE as a mere 

consideration of multiple alternatives in parallel (e.g. Terwarch, et al. 2002; Bogus 2006). These literatures 

further advice to limit the number of alternatives to consider when the value creating in doing so is less than 

the cost. However, the value of SBCE is much richer and often difficult to quantify (e.g. learning/ 
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knowledge, innovation). Moreover, there is a lack of an integrated framework showing organizational 

changes required to put the SBCE’s principles into practical world. Therefore, if the enablers are included in 

the discussion about the role of SBCE in PD, the existing narrowed view of SBCE will have the possibility to 

expand and enriched. Furthermore, future researchers can focus on studying the impact of the enablers in the 

effectiveness of SBCE and devising strategies based on the framework to measure maturity levels of PD 

organizations in adopting the enablers to make SBCE more effective. 

8.2 SBCE serious game and its implications for practice and 

theory 

The SBCE serious game is designed to bring a hand-on experience to practitioners on how execute the 

principles and process of SBCE, in an engaging manner. Some of enablers of SBCE are embedded in the 

game. Enablers such as tool, communication, involvement, knowledge capturing and using are designed in 

the game to educate players about their roles in SBCE. The game is used for two purposes. First to introduce 

SBCE to players and second to measure the learning outcomes of the game play. Measuring the learning 

outcomes of the game enable to derive theoretical and practical insights about the understanding, 

applicability, and steps of SBCE implementation in practice. Based on Garris model (Garris, et al. 2002) for 

measuring the learning outcomes of games, three learning classifications are measured in SBCE game 

(declarative, procedural and strategic). Moreover, questionnaire based on Likert five scales model has been 

developed to measure the learning outcomes. The game has been played by more than 60 designers and 

project managers who work in one company, which develops products for HVACR (Heating, Ventilation, 

Air-Conditioning and Refrigeration) markets. For measuring the learning outcomes of the play, appropriate 

descriptive and inferential statistics are used. From the measurement, it has been possible to derive several 

insights related to the advantages, hurdles, and implementation challenges of applying SBCE in this 

particular case company. The results obtained from this company are summarized in Table 6.14. Moreover, 

the lesson learned from the case which can highlight important significances for practice and theory are 

recapped as follows: 

- The SBCE serious game is effective to educate practitioners, increase their awareness level about 

SBCE and convince them to adopt principles and enablers of SBCE in their design practice. 

Moreover, the game has been effective in helping practitioners on how to use SBCE’s principles 

and tools in practice. 

- Industrial practitioners assert that, SBCE has significant potential to improve PD performances 

even for smaller or medium sized companies. Tools such as tradeoff curves, checklists, and limit 

curves are perceived as key enablers to effectively integrate stakeholders in SBCE process (e.g. 
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customers and testing department as downstream function). Moreover, the tools are perceived to 

be effective to evaluate sets for compatibility issues and understand feasibilities of alternatives. 

- In order to effectively deploy SBCE, experience of designers and managers is found to be 

important. Coaching and mentoring of novice engineers from highly experienced ones help less 

experienced designers to conduct SBCE. Furthermore, SBCE enablers such as tools (tradeoff 

curves, checklists, and limit curves) are very important to capture and visually depict 

performance information about sets to further transfer to less experienced designers. 

- Project or product development managers should work to obtain organizational wide buy-in 

before starting a real implementation of SBCE. The game result shows that, managers and 

technical designers have significant differences in understanding SBCE and perceiving its 

benefits. Mangers have high expectations from implementing SBCE in terms of performance 

improvements and success. However, without the support of technical designers, the success of 

SBCE might fall in jeopardy. Therefore, implementation of SBCE should be taken as a change 

process where managers convince, support and involve technical personnel in the change 

process. 

- Industrial players assert that using tradeoffs in practice limit innovation. In the SBCE game, 

tradeoffs have been used to explore alternative subsystems and facilitate communication 

between teams. However, accepting tradeoffs or compromises might limit the potential of SBCE 

to enhance innovation (in terms of discovering out of the box solutions). This, however, can be 

overcome by integrating SBCE with established theories of innovation such as TRIZ (SBCE IR 

has been conceived based on this inkling from practitioners). 

- Some of the enablers (tradeoffs and limit curves) are difficult or challenging to generate in 

practice. In companies where there are limitations in employing technologies for prototyping and 

simulations, generating these SBCE enablers might be challenging. Moreover, modeling and 

generating of tradeoff curves are not seemingly simple in practice because performance 

parameters are difficult to relate. Similarly, testing alternative solutions to their constraints need 

extensive time in preparing and evaluating alternative prototypes. 

- Set based communication where designers communicate with internal teams or external 

suppliers based on alternatives, rough/vague/unfinished information is perceived not critical and 

unpractical in this particular case company. Four practical reasons can be attributed to this result 

from the game. First, new product development projects involve few designers and managers 

(sometime one or two). In this situation, SBCE tools such as checklists are not that critical to 



176 

 

use. A notice to take is the origin of SBCE. Principles such as set based communication are 

originated from big automakers like Toyota where there are several subsystems teams involved 

in a vehicle development which are dispersed across the globe. In this situation, SBCE should be 

facilitated by checklists as communication mechanism between team members to evaluate their 

respective sets of alternatives. In Carel Industries, where there are few and collocated team 

members involved, verbal communication might be sufficient to communicate about sets of 

alternatives. The second reason might be related to the complexity of products developed in this 

particular company (HVACR) where there are few subsystems to develop in a particular project. 

Again, in this situation, set based communication might not be as critical as it would be in 

developing very complex products in automotive or aerospace industries. The third reason is 

related to the impact of set based communication when it comes to external suppliers. In its 

original sense, SBCE principle of set based communication is formed between Toyota and its 

partnering suppliers. Toyota asks for its suppliers to explore multiple solutions for a vehicle [e.g. 

up to 10-50 prototypes of exhaustive systems (Sobek and Ward 1996)]. Toyota does this to 

understand the tradeoffs between the performances of alternatives. That means Toyota obtain 

knowledge about alternatives and can plan its development of cars accordingly. Such kinds of 

opportunities are rare in many other industries in particular for small and medium sized ones. 

Small and medium companies have difficulties to create strong relationships between partners to 

do extensive prototyping in their behalves. As a result, such companies will have little 

opportunities to build knowledge about alternatives and between their suppliers. The fourth 

reason is related to the well-known cliché about the price based relationships between companies 

and their suppliers within the Western business philosophy. The original inception of set based 

communication is from the Japanese companies as of Toyota, Honda, etc. Even these Japanese 

companies conduct set based communication with their partners (not common suppliers). Set 

based communication leave rooms for suppliers to abuse the relationships to offer bad 

performing alternatives just to make more profit (Liker, et al. 1996). In this context, designers 

and mangers of Western companies want to make point based communication (i.e. 

communicating based on a single alternative or defined and precise information) to avoid the 

risks. 

-  The final lesson learned obtained from the game play can be summed as ‘SBCE is a journey’. In 

order to improve performances using SBCE principles, the understanding, adoption of SBCE 

enablers are important. Developing tools, involving stakeholders, and effective communication 

should be in place to build knowledge. Then, performance benefits can be shown as a result and 

companies can successful implement SBCE and develop products in a knowledge based 
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environment. But, it needs efforts and investments to effectively build an organization that 

effective manage and share knowledge to develop products. Therefore, SBCE should be taken as 

a process and as a journey where knowledge is systematically captured as a long term strategy. 

In sum, the game can be used by any company who wants to train its designers and managers. Moreover, it 

can be used to identify the advantages, difficulties and applicability of adopting SBCE process in a particular 

industrial context before implementing it in real PD process, and drive strategic roadmap to begin SBCE 

implementation program. 

More researches can also be done on the game design and on the validation sides. To improve the game 

design, other enablers of SBCE which are not considered in the current version can be embedded in the 

game. These enablers for example are related to organizational aspects, people competences, chief 

engineering system and so on (refer to in chapter 4 to the details of SBCE enablers). From the measurement 

and validation side, researchers should be pursued to experiment playing the game in different industrial 

contexts (e.g. SMEs, big OEMs, small suppliers, simple products, complex products etc.) and identify the 

differences in the results. Moreover, robust and externally valid results can be obtained by playing and 

measuring the game in different industrial contexts.  

8.3 SBCE Innovation Roadmap (SBCE IR) and implications for 

practice and theory 

At a product level, the application of SBCE is not a random initiative. Designers should know where SBCE 

can bring significant improvements. Otherwise, implementation failures will likely to occur. The extensive 

nature of SBCE process requires the systematic methodology which is developed in this thesis. The 

methodology is called SBCE innovation roadmap (SBCE IR). This roadmap is used as a guideline for 

designers to prioritize product subsystems for SBCE implementation. Before building the methodology, key 

criteria and assumptions are identified such as: (a) the process of overcoming contradictions will follow 

SBCE process, (b) areas of improvements should be valuable for customers, (c) areas of improvements 

should give competitive advantages, and (d) areas of improvements should be achievable with respect to the 

resources available. Using the criteria and assumptions, the six steps SBCE IR methodology has been 

develop. Moreover, the steps are built on prevalent tools and methods available in literature. The steps 

include, (1) Identification of customer requirements & assigning importance, ( ) Assess competitors’ 

products for each customer requirements & set targets, (3) Identify system contradictions, (4) Identify casual 

contradictions, (5) Derive rules to select contradictions, and (6) Map contradiction to products’ subsystems 

or components or in general to design factors. Contradictions are used to identify knowledge gaps that have 

been unsolved in a product system. However, each contradiction will not lead to same level of innovation, so 
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rules have been developed to prioritize them. The rules are based on customer information, competitors’ 

analyses, technology trends, and causal relations between contradictions. Using the above steps, SBCE 

innovation roadmap can be developed. Using it, designers can make prioritization of contradictions to pursue 

SBCE process.  

The SBCE IR methodology is validated in AHS (Adiabatic Humidification System) case study. In order to 

test and validate the methodology, the SBCE IR is built for AHS. Data for the steps are collected from the 

experts of AHS. Next, using the roadmap of AHS, designers choose a subsystem called Rack. The 

contradiction related to this has been ‘non-VDI requirement’. TRIZ principle of separation is agreed by the 

company to be used. That is, two Rack versions will be offered to clients who require VDI6022 and for those 

who don’t require the hygienic requirement. Then, exploration of alternative Rack concepts was generated, 

tested and merged for non-VDI Rack (i.e. conducting SBCE process). From the experiment, experts 

anticipated an estimated of 30% cost reduction in comparison of the current design (VDI compliant Rack). 

The cost advantages were obtained by looking for alternatives materials, removing non-value adding 

components, and reducing unnecessary manufacturing and assembly operations. 

Then, pros and cons (e.g. advantages compared to existing methods used in the company, applicability, 

effectiveness, limitations, etc.) of the SBCE IR have been assessed by conducting interviews with designers 

and project managers involved in the case study for AHS. An open questionnaire is provided to evaluate the 

advantages, limitations and applicability of SBCE IR in the company. Interviews are made with four experts 

in the company who are well experienced and have technical, managerial and market competences. These 

experts have been extensively involved collecting data and building SBCE IR for case product (AHS). The 

results of the interview are summarized in Table 7.13 and discussed in detail in sections (7.3.3.1, 7.3.3.2 and 

7.3.3.3).  

In summary, the SBCE IR has been effective to meet the objective set for it. The SBCE IR as assessed by the 

AHS experts help/ will help them to be proactive to plan ahead projects for new products, structure the 

innovation process, build innovation roadmap for projects on new products from bottom-up (from designers/ 

technical level to management level, see Figure 7.13) basis, overcome contradictions and thereby start 

innovating, reduce the extensive nature of conducting SBCE process and will enable the company to focus 

on important improvement areas, structure the evaluation of requirements for customer importance (customer 

value focus) and improve the quantity, quality, novelty and variety of new ideas to be generated during the 

exploration phase SBCE process. 

On the other hand, limitations are identified related to building and using the SBCE methodology. These are: 

SBCE IR should be considered as a rough-cut methodology to identify areas for SBCE implementation, 

where more detail investigation can be considered based on company’s strategy; SBCE IR becomes unstable 
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if the list of customer requirements changes frequently by customers, to avoid this close collaboration and 

frequent visit at customer sites are suggested; SBCE IR doesn’t consider the different type of customers the 

company is targeting, this is related to the consideration of customer layers and the aggregation of 

importance for a requirement; personal experience and imagination of designers are necessary to make SBCE 

IR enhance quality and novelty of ideas generated; building SBCE IR is time consuming in particular for big, 

complex and highly new products; and skills and training are needed related to SBCE’s principles, TRIZ 

principles, PD process knowledge across the whole lifecycle of a product. 

Future researches can target to improve the limitations of the SBCE IR methodology. For example, 

integrating SBCE IR with company’s strategy, redesigning SBCE IR steps to consider multiple types of 

customers, redesigning SBCE IR methodology for modules or platforms, simplifying the SBCE IR steps for 

small projects which are based on incremental improvements, automate the steps of the methodology and 

devising strategies on how to distribute contradictions to different organizations (e.g. which contradictions to 

assign to development process, and which to assign to R&D organization?). 

8.4 Integrated framework of SBCE’s enablers, SBCE serious 

game and SBCE IR – Synergies and future perspectives 

The above contributions are highly interrelated pieces of works. From industrial implementation perspective, 

the SBCE serious game helps companies to educate and introduce the concept of SBCE at a glance. Then, 

managers can meter the applicability of SBCE in their particular company. Before the development of SBCE 

IR in this thesis, the feedback from the game results has been educative. The limitation of concentrating on 

tradeoffs and the extensive nature of applying the SBCE’s principles give hints on the criteria to build the 

SBCE IR. Similarly, industries can play the game and can plan for a methodology that can suit them to begin 

SBCE implementation journey. This shows the synergies between the SBCE serious game and the innovation 

roadmap methodology. The SBCE IR can be used as an independent methodology to identify and prioritize 

contradictions and to overcome them using the SBCE principles. Before implementing SBCE IR, however, 

the game can help to educate players on what the SBCE principles mean and how to practically implement 

them using a simplified airplane. Referring to (Table 7.13), one of the skills required to effectively build an 

innovation roadmap is knowledge about SBCE principles, therefore, the game has a synergies in this aspect 

with SBCE IR. 

Looking at the integrated framework of SBCE enablers, the SBCE serious game is designed by embedding 

some of the enablers. Obviously, it is not easy to embed all the enablers of SBCE into a game, nonetheless 

future researchers might study on how to embed some of the enablers which are not considered in SBCE 
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game’s current version. Therefore, there are potentials for future researches by looking the enablers and the 

game design. 

Future researches can also look at the synergies between enablers of SBCE and SBCE IR methodology. The 

current version is designed by integrating some of the SBCE enablers into the SBCE IR’s steps. QFD, TRIZ 

and AHP have been mentioned as enablers of SBCE. These tools and methods are used in SBCE IR. Future 

researches might look at other enablers such as Value Engineering (VE), Axiomatic Design (AD) and etc. to 

improve the methodology or solve different kinds of problems or challenges related to SBCE application in 

industry. 

A final research perspective will be to see SBCE as a journey, and integrate the SBCE serious game, SBCE 

IR and the framework of SBCE enablers. Using the game, a company can train designers the principles and 

enablers of SBCE. Then, building SBCE IR will be the next step. Taking specific products, a company can 

identify and prioritize areas which are critical to be addressed using SBCE. Finally, taking the enablers from 

the integrated SBCE framework, the necessary organization capabilities and changes can be assessed and 

implemented on the selected part of the organization. However, integrating the three will demand future 

research.  

I hope researchers will find these as important endeavors and will have exciting and challenging time ahead!! 
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APPENDIX 

Appendix A1:Semi-structured questionnaire used to assess the practices of SBCE in industries 

The questionnaire is developed by University of Cranfield and the purpose has been to investigate lean product 

development practices across industrial partners under the EU funded project LeanPPD (www.leanppd.eu). The 

questionnaire is reused in this thesis to assess the industrial practices of SBCE principles and enablers across industries 

in Italy. There were 39 questions in the questionnaire, however, here only those which are used in chapter 5, section 

5.2.2. 

 

Figure A1: Introduction and ownership of the Field study questionnaire. 

http://www.leanppd.eu/
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Figure A2: PD models practices and its effectiveness. 

 

Figure A3: PD models practices and its effectiveness. 

 

Figure A4: PD models practices and its effectiveness. 
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Figure A5: Knowledge capturing mechanisms, usage and effectiveness.
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Appendix B 

B1: Trade-offs curves for Body, Wing, Cockpit, and Tail departments  
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B2: Checklists for Body, Wing, Cockpit, and Tail departments 
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B3: Limit curves for technical feasibilities 

 

 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L

2/3 L

Ws

1,25 1,25 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RW

Max

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L

2/3 L

Ws



207 

 

 

 

 

 

 

 

0 0 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RW

Max

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L

2/3 L

Ws

0 0 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Max

RW



208 

 

Appendix C1: Questionnaire for measuring the learning outcomes of the SBCE serious game 

Questionnaire 

This questionnaire is prepared to understand the learning outcomes of playing the SBCE game. Moreover, 

the results of the questionnaire help us to improve the design of the game in order to achieve better learning 

outcomes. Please, provide us your honest opinion about the listed questions and contribute for a better SBCE 

game.  

I. Background information  

Your working position  

(Circle that fits you) 

1. Product manager/Project leader/other 

management position 

2. Change agent/Lean Manager etc. 

3. Mechanical part designer 

4. Electrical part designer 

5. Thermal part designer  

6. IT part designer and/or debugger 

7. Engineering student  

8. Engineering management student  

9. Consultant services 

10. Other, please 

specify…………………………………. 

 

Age   

Approximate years of design and product development 

experience  
 

Gender 

(Circle that fits you) 

1. Female  

2. Male 

 

II. SBCE game questions  

Strongly disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4), Strongly disagree (5) . 

 

                                                            (Circle your evaluation) 

Strongly 

disagree  

   Strongl

y  

agree 

1. Playing the SBCE game is worthwhile to your product 

development process  

1 2 3 4 5 

2. Playing SBCE game will improve your problem solving 

ability in new product design 

1 2 3 4 5 
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3. The game help you to understand the challenge of 

designing a product that fully satisfy customer 

requirements 

1 2 3 4 5 

4. The game help you to understand the challenge of 

designing a product that fully satisfy testing requirements 

1 2 3 4 5 

5. The game help you to clearly understand the problem of 

communication within a product development team 

1 2 3 4 5 

6. The game let you understand how SBCE works along 

with its enabling tools 

1 2 3 4 5 

7. Playing SBCE game make me believe that SBCE is a 

better design process than the one we followed in the 

company  

1 2 3 4 5 

8. The game help me to understand how to explore 

alternative design solutions using the tools played in the 

game 

1 2 3 4 5 

9. The game help me to design sets of solutions rather than 

one solution 

1 2 3 4 5 

10. The game help me to communicate about set with my 

team than one solution 

1 2 3 4 5 

11. The game help me to effectively understand the usage of 

limit-curves 

1 2 3 4 5 

12. The game gives me an insight how to communicate with 

my teams about sets of design solutions  

     

13. It is possible to develop some limit-curves (as shown in 

the game) for a product I a am designing but it is not easy 

1 2 3 4 5 

14. It is possible to develop some limit-curves (as shown in 

the game) for a product I a am designing and it is easy 

1 2 3 4 5 

15. It is not possible at all to generate limit-curves as shown 

in the game 

1 2 3 4 5 

16. The game gives me insights about the importance of 

capturing design knowledge in a in the form of tradeoff 

and limit curves  

1 2 3 4 5 

17. The game gives me insights on how to use tradeoff and 

limit curves in my current and future design problem 

1 2 3 4 5 

18. It is possible to develop a mechanism for communicating 

set of solutions with in a design team in our company 

1 2 3 4 5 

19. Playing the game gives me a better insight how to 1 2 3 4 5 
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communicate in my design practice  

 

In your opinion which of the following advantages of SBCE is 

evident by playing SBCE game 

Strongly 

disagree  

   Strongl

y  

agree 

1. Reduction of product and process cost, by reducing 

rework and penalty cost 

1 2 3 4 5 

2. Reduction of development time 1 2 3 4 5 

3. Improve innovation potential 1 2 3 4 5 

4. Better communication within a team  1 2 3 4 5 

5. Avoid design risks (risk is defined us the possibility of 

not arriving into optimal product that satisfy internal and 

external customer) 

1 2 3 4 5 

6. Improve product quality 1 2 3 4 5 

7. Facilitate learning about alternative design solutions  1 2 3 4 5 

 

III. Practical questions  

From your experience please give at least one example where a SBCE model can be applied. It could be at component 

level, module level or full product level. 

 

 

From your experience please give at least one example where a tradeoff curves can be generated and reused for 

exploring alternative design solutions. It could be at component level, module level or full product level. 

 

 

From your experience please give at least one example where a limit curves can be generated and reused for 

testing alternative design solutions. It could be at component level, module level or full product level. 

 

 

Please provide us any comment that you think is important from practical implementation perspective. That is, 

what potential problem you think will inhibit SBCE to be effectively implemented in your design practice.  
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Please provide us any comment that you think is important to improve the SBCE game.  
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