
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

SCoReS

SeNSori COmposition & REtrieval Services

Relatore:

Prof.ssa Letizia Tanca

Co-Relatori:

Prof. Pierluigi Plebani

Prof.ssa Miriana Mazuran

Tesi di laurea di:

Claudia Foglieni

Matricola 782875

Giovannni Meroni

Matricola 783419

Table of Contents

1 Sommario 7

2 Abstract 8

3 Introduction 9

4 State of art 12

4.1 Similarity’s algorithms . 14

4.2 Service composition . 15

4.3 Other technologies: communication’s protocol 16

5 Tools and technologies utilized 18

5.1 Ontologies . 18

5.2 OWL . 18

5.3 RDF . 18

5.4 SPARQL . 18

5.5 Apache Jena . 19

5.6 REST . 19

5.7 JSON . 20

6 General Architecture 21

6.1 Information’s types present in the system 22

6.1.1 Ontology . 22

6.1.2 Database with real-time data 24

6.1.3 Database for composite services 24

6.2 Service Retriever . 25

6.3 Service Composer . 28

7 Service similarity algorithm 31

7.1 Support data preprocessing . 35

7.2 Service output penalty . 36

7.2.1 Last One . 36

7.2.2 Last X . 38

7.2.3 Interval . 40

7.3 Location penalty . 42

7.4 Time output penalty . 46

7.5 Algorithm tuning . 47

8 Service composition 54

1

9 Implementation of SCoReS 62

9.1 Service Retriever Module . 64

9.1.1 Server class . 65

9.1.2 Service Retriever class . 65

9.1.3 Service Describer class . 67

9.1.4 Service Evaluator class . 68

9.1.5 Service Inquirer class . 69

9.2 Workflow Engine Module . 70

9.2.1 Server Class . 70

9.2.2 Workflow Manager Class . 71

9.2.3 Database Interface class . 72

9.3 Simple Service Module . 74

9.3.1 Server class . 75

9.3.2 Request Manager class . 75

9.3.3 QueryDB class . 76

9.3.4 Aggregator package . 76

9.4 Shared utilities library . 79

9.4.1 Data Model package . 81

9.4.2 Real Data package . 82

9.4.3 Workflow Constructs package 84

9.4.4 Formatter package . 86

9.4.5 Executors package . 87

9.4.6 Ontology Manager package 87

10 Conclusion and future works 91

A Appendix A 92

A.1 General template . 92

A.2 Errors list . 93

B Appendix B 94

B.1 Service Retriever Module . 94

B.2 Workflow Engine Module . 96

B.3 Simple Service Module . 97

2

List of Figures

1 SeNSori architecture 10

2 General architecture of SCoReS 21

3 Structure of ontology 23

4 General features of service retriever 26

5 Strict vs relaxed queries 27

6 Operations to save a new template 29

7 Operations to save a new composite service 30

8 Location ontology instances example 44

9 Example A for location penalty 45

10 Example B for location penalty 46

11 Precision-Recall Graph for tuning 49

12 Precision-Recall Graph for the Test Set 50

13 Precision-Recall Graph for Last One services 51

14 Precision-Recall Graph for Last X services 52

15 Precision-Recall Graph for Interval services 53

16 Executable workflow 58

17 Template workflow 59

18 Example A of executable workflow 60

19 Example B of executable workflow 61

20 General structure of SCoReS 62

21 General structure of Service Retriever module 64

22 General structure of Workflow Engine Module 70

3

23 General structure of Simple Service Module 74

24 General structure of Aggregator package 77

25 General structure of shared utilities library 80

26 General structure of Data Model package 81

27 General structure of Real Data package 83

28 General structure of Workflow Constructs package 85

29 General structure of Executors package 87

30 General structure of Ontology Manager package 88

4

List of Tables

1 Different penalties in SCoReS service similarity algorithm 33

2 Time output similarity 47

3 Example A for testing 47

4 Example B for testing 49

5 Patterns supported in SCoReS workflow engine 57

6 REST invocations for Service Retriever Module 95

7 REST invocations for Workflow Engine Module 96

8 REST invocations for Simple Service Module 97

5

List of Algorithms

1 General operations for similarity algorithm 34

2 Find neighbor services function 34

3 Find time output compatible services function 35

4 Rank service function 35

5 Last One algorithm 37

6 Last X algorithm 40

7 Interval algorithm 42

8 Location algorithm 43

9 JSON template for Building concept 92

10 JSON template for Device concept 92

11 JSON template for Floor concept 92

12 JSON template for Location concept 92

13 JSON template for Node concept 93

14 JSON template for Room concept 93

15 JSON template for Service concept 93

16 JSON error for invalid request 93

17 JSON error for zero results 93

18 JSON error for no data found 93

6

1 Sommario

La diffusione delle reti di sensori e la conseguente installazione all’interno di edifici

residenziali, commerciali e industriali ha permesso di sviluppare soluzioni tecno-

logiche che spesso cadono sotto il nome di Smart Building. Tra queste soluzioni,

i sistemi a supporto del risparmio energetico negli edifici stanno avendo partico-

lare rilevanza.

L’approccio di base, che offre funzioni di controllo per mantenere bassi consumi,

richiede che tutti i dati raccolti siano inviati ad un archivio centralizzato. Un am-

ministratore deve poter esplorare tutti i dati e trovare la giusta interpretazione

per operare al momento giusto.

Tra queste soluzioni vi è la piattaforma SeNSori: una piattaforma basata sui

servizi adattivi per l’intelligenza ambientale il cui scopo è di monitorare il con-

sumo riguardante tutte le utenze energetiche. Con due tipologie di dispositivi

è possibile valutare ogni situazione: sensori, i quali registrano i dati riguardanti

l’ambiente, ed attuatori, che sono utilizzati per compiere azioni di adattamento

mirate a risolvere eventuali situazioni di criticità, o a migliorare il risparmio en-

ergetico.

Per nascondere l’eterogeneità e la complessità tecnica di tutti i dispositivi dis-

tribuiti in un edificio, un livello superiore sotto forma di servizi è stato fornito

per interagire con i sensori. In questo modo, per ottenere i dati o controllare i

sensori, è obbligatorio richiamare i metodi esposti da questi servizi.

Il presente lavoro di tesi punta ad arricchire gli strumenti messi a disposizione

dalla piattaforma SeNSori attraverso le seguenti funzionalità:

• Una funzionalità di ricerca, arricchita con un algoritmo di similarità, al fine

di trovare i servizi correlati.

• Una funzionalità di composizione, che consente all’utente di creare nuovi

servizi combinando quelli esistenti.

Il nostro approccio ha portato alla creazione di una dashboard per l’amministrazione,

che potrà essere utilizzata per sfruttare le nostre funzionalità principali: SCoReS

(SeNSori COmposition & REtrieval Services).

7

2 Abstract

The diffusion of wireless sensor networks and the subsequent installation in res-

idential, commercial and industrial buildings led to the development of techno-

logical solutions that often fall under the name Smart Building. Among these

solutions, systems supporting energy saving in buildings are gaining greater im-

portance.

The basic approach, which provides control functions for maintaining the energy

consumption low, requires that all the gathered data are sent to a centralized

repository. An administrator must be able to explore all the data and find the

right interpretation in order to operate at the right time.

Among these solutions there is the SeNSori platform: an adaptive service-based

platform for ambient intelligence whose aim is to monitor the energy consump-

tion concerning all the energy utilities. It is possible to evaluate every situation

by using two types of devices: sensors, that register measurements about the

environment,and actuators, which are used to enact the adaptation actions that

aim to solve possible critical situations or to improve the energy saving.

In order to hide the technical heterogeneity and complexity of all the devices

deployed in a building, a service layer is provided to interact with the sensors.

In this way, in order to obtain data or control the sensors, it is mandatory to

invoke the methods exposed by these services.

The present work aims at enriching the tools provided by the SeNSori platform

through the following features:

• A retrieval functionality, enriched with a similarity algorithm, in order to

find relevant services.

• A composition functionality, which enable the user to create new services

combining the existing ones.

Our approach has led to the creation of a governance dashboard that will be

utilized by the administrator in order to exploit our core functionalities: SCoReS

(SeNSori COmposition & REtrieval Services).

8

3 Introduction

In the recent years a new research area has been exploited by several researchers:

the utilization of different sensors inside a building to monitor its energy effi-

ciency. This idea generates the concept of Smart Buildings, as ”green” buildings

equipped with sensors that can analyze and interpret the received information in

order to assess if the amount of consumed energy is adequate for all the activi-

ties. For this reason is necessary to combine the data transmitted by the building

sensors with data about the context in which the building is located.

The basic approach provides efficient control functions for maintaining building

condition (e.g., temperature, humidity, air cleaning, light control, and reduc-

ing unnecessary energy consumption). All the data are gathered by a network

composed by different types of sensors, which send their measurements to a

centralized repository. An administrator, that wants to analyze all the received

information, needs to explore all the data and find the right interpretation in or-

der to operate at the right time. This procedure is time consuming and presumes

several bases:

• A general idea of the layout of the buildings.

• The knowledge about the different types of sensors present in the network.

• An understanding about the measurements, their values and their associ-

ated dates.

Our solution to this problem is an approach based on SeNSori: an adaptive

service-based platform for ambient intelligence whose aim is to monitor the en-

ergy consumption concerning all the energy utilities, i.e., water, electricity, gas

consumption in one or more buildings.

9

Figure 1: SeNSori architecture

Inside the SeNSori network there are two types of devices:

• The sensors, which register measurements about the environment,

• The actuators, which are used to enact the adaptation actions that aim to

solve possible critical situations or to improve the energy saving.

The user does not directly interact with this network, but a service layer is

provided in order to hide the technical heterogeneity and complexity of all the

devices deployed in a building. In this way, in order to obtain data or control the

sensors, the administrator needs to invoke the methods exposed by these services.

We have selected two main area to study in deep, in order to offer the maximum

support to the administrator or the common user. For this reason the focal points

of this thesis are:

• A search functionality, enriched with a similarity algorithm in order to find

relevant services;

• A composition functionality, which enable the user to create new services

combining the existing ones.

10

Our approach has produced on a governance dashboard that will be utilized by

the administrator in order to exploit our core functionalities: SCoReS (SeNSori

COmposition & REtrieval Services).

As stated by the name of our project, we offer two principal modules:

• A retrieval functionality, to search information about a service, specifying

a set of parameters.

• A composition functionality, to create new services.

The retrieval module of SCoReS is based on a similarity algorithm, which an-

alyzes the query submitted by the user and finds the services that match the

user’s query. The final list is ordered from the most relevant result to the least

one, with a complete analysis that compares all the main aspects characterizing

a service: the type of sensors, the most recent data and its location.

The composition module instead offers the possibility to create new services that

can satisfy new needs that can raise during SeNSori’s usage. This module can

produce many composed services covering the most disparate needs: from a new

service that implements an automatic action on an actuator based on data col-

lected by a sensor, to a weekly report about the energy consumption.

As surplus value inside our composition module, we provide the possibility to save

composite service templates, in order to create a model that can be re-utilized

whenever a user needs to create a service similar to the previous ones. In this

thesis, we will focus on the development of SCoReS. Our prototype is based on

a set of data registered in the past, with a complete ontology that covers all the

possible functionalities of our system. The programmer can utilize this standard

configuration or personalize it.

The rest of the thesis is organized as follows.

Section 4 analyzes the existing solutions, with the advantages and disadvantages

of their approaches.

Section 5 presents the basic tools and technologies for our project.

Section 6 discusses the SCoReS architecture, whit a general overview of all its

modules.

Section 7 presents a detailed description about our similarity algorithm.

Section 8 is used to describe the module about the service composition.

Section 9 describes the entire implementation of the core functionalities is pre-

sente.

Section 10 concludes the thesis mentioning what has been done and proposed

future works.

11

4 State of art

Our system is composed by different technologies. In order to understand and

utilize the right tools for every component, we have considered several fields of

interest:

• Algorithms evaluating the degree of similarity of web services.

• Tools to create composite services.

• A protocol to manage the communication between the graphical interface

and our system.

These three areas represent the core functionalities of SCoReS. In fact our system

is composed of two main modules, which interact with the user using our protocol.

As starting point we have analyzed the existing models and architectures that ex-

ploit the concept of sensor networks. As described by [1] there are two important

factors in every system:

• The design of the network itself, with all the characteristics supported by

the sensor,

• The communication architecture and the algorithms and protocols devel-

oped for each layer.

In similar works, sensor networks are used to monitor energy consumption in sev-

eral domains, such as extending the functionalities of sensors managed through

NAGIOS [8] to monitor the energy consumption and, by exploiting the func-

tionalities of a service oriented architecture, improving the energy saving by

optimizing the resource usage. The same approach is utilized in SCoReS, though

the different sensors and actuators are not directly accessible, and can be used

only by interacting with a service layer that allows only certain operations.

A much more similar architecture is the one presented by [30], where a coherent

infrastructure is developed, which treat sensors in an interoperable, platform-

independent and uniform way. This work addresses the problems related to the

format of the information exchanged by the sensor and user. The solution pro-

posed is similar to the one implemented in SCoReS, with the adoption of the

Representational State Transfer (REST) web services concept and the usage of

JavaScript Object Notation (JSON), as a lightweight approach that simplifies

the messages.

12

A different architecture, based on a multi-agent system, is proposed in [22], which

adopts machine learning techniques to predict the occupancy of rooms and, con-

sequently, to automatically adapt the configuration of HVAC systems, but it

limits the applicability to a specific domain. With SCoReS the central figure

that operate the final decision is the administrator, a human being supported by

knowledge built on top of a set of information collected and properly analyzed

by our system.

Fabric [14], a middleware inspired by the SOA paradigm to manage sensor net-

works that follows an approach similar, differs from SCoReS because is more

process-oriented to better manage the events that might arise from the sensors.

Our project is more data-oriented as the main objective is to analyze the data

in order to retrieve or create new services.

A much more similar approach to SCoReS is proposed by the EU project SANY

(Sensors ANYwhere) [2], that introduces SOA for accessing and managing sen-

sors regardless of their technical aspects. The main difference is that there are

no ontologies involved, which in our approach assume an important part in the

execution of the service similarity algorithm.

A more detailed survey about interoperability, integration, overhead, and band-

width is described by [15], which highlights the advantages of an IP-based and

RESTful architecture approach as the most suitable solution. The purpose re-

marked is the possibility to enable interaction of users with the sensor network

in the same way as with any website while ensuring energy efficiency.

Considering the correlation between the architecture and the data gathered,

TinyRest [20] is the solution that provides a set of functionalities similar to

SCoReS. In fact the described work exploits REST principles by defining a map-

ping between HTTP REST messages and TinyOS messages in order to allow high

level control and providing a software layer to enable HTTP data exchanges be-

tween the middleware and the devices. The same approach is implemented in

SCoReS with the retriever module.

The idea of using ontologies to register and discover sensor services has already

been introduced in [17] and [4]. Differently from these approaches, in SCoReS

we have enriched the already known OWL-S ontology for the representation of

services and used standard data models and languages. With the creation of

new services by using our composition modules, the administrators can add new

definitions in the ontology, with the same data models.

13

4.1 Similarity’s algorithms

In SCoReS we need to compare different services starting from a set of parame-

ters chosen by the user. The result is an ordered list with all the pertinent services.

In order to rate our set of services from zero, complete mismatch with all param-

eters selected by the user and the service’s ones, to one, perfect match, we have

analyzed different approaches. During our research we have discover two main

fields of applications:

• Algorithms for similarity based on semantic data.

• Algorithms for similarity based on numeric or measured data.

In fact we need a method that considers both the request submitted by the user

and the real-time data registered by every service. With this information SCoReS

can search the relevant services that can satisfy that request. [7] present an inter-

esting idea, about similarity calculated on the output of every service. This work

is one of our starting point, even if no similarity function is explicitly mentioned.

The basic idea that we have developed in our project follows the guidelines

described by [16] and [5]:

• We have five classes of services that are mutually exclusive.

• From the information present in our system we can classify every service

in one of these classes, with respect to the request sent by the user.

• Every class has a corresponding set of penalties, which creates the final

ranking.

• Only the sub-set of services that has a ranking higher that a certain thresh-

old will be presented to the user.

The final score for every service will be composed by two different sections, as

described by [11]. To determine the similarity of a request to a particular Web

service, we compute:

• Structural Similarity, that in our case is computed from the output of every

service,

• Semantic Similarity, calculated by the data present in the ontology.

For the structural similarity we can’t use the approach described by [23] and

[37], because it supposes that in our system we store the results of every single

14

query, in order to re-use the similarity computed in the past to refine the future

ranking. But our services are not a static entity; they can change during time,

with new values registered by the associated sensors. The ranking calculated in

the past could not be the same in the future.

Also the approach proposed by [33] is too much overkill for our system. We have

used the idea of different scoring functions for our different types of services. In

this way we can select the best method to evaluate a particular service, starting

from its definition stored in the ontology. These functions have a different flow

of operations, but they all have these comparable aspects:

• The request of the data registered by the associated sensors.

• Every datum is composed by two component, a value and the corresponding

timestamp for the registration date.

• The result is a penalty, with a value between zero and one.

We have discarded [12], [19] because their approach is based on the semantic. In

our system we don’t need a function to calculate semantic similarity. In fact we

use the ontology in order to understand if two different concepts are similar or

not.

4.2 Service composition

In order to exploit our service composition functionality, we have analyzed the

existing solutions. With the consideration stated in [6] and [21], the existing

models and languages are very complex and offer different tools to cover all the

possible aspects. In our case we need a flexible system, with standard modules

that the user can put together to build his personal workflow. For this reason we

have discarded the languages that do not offer this flexibility.

Also solutions created for the REST architecture, like the one described by [38],

don’t cover the model that we need. In fact in our model the user can insert a

code snippet, a function written in JavaScript. In order to evaluate this function

and point out eventual errors, we need to add extra controls, that are not sup-

ported.

A good starting point is the WS-BPEL, with the functionalities exposed in [25].

We have modeled our system to reflect a portion of the features offered by BPEL,

tuning our workflow engine to support flexibility and personalization. We have

adopted this strategy because the implementation from scratch of our ad-hoc

system offers the possibility to add future modules without being subject to a

steep learning curve, as opposed to BPEL.

15

4.3 Other technologies: communication’s protocol

There are several protocols that can be chosen for modeling the communication

between different systems. Since our project is web-based, we have analyzed the

following options:

• REST, an architectural style for distributed system [35].

• SOAP, a protocol specification for exchanging structured information [36].

As analyzed in [29], these two approaches have different strengths and weak-

nesses.

For SOAP we have as advantage the transparency and the independence. In fact

the same message in the same format can be transported across a variety of mid-

dleware systems. Using WSDL to describe a service interface helps to abstract

from the underlying communication protocol and serialization details as well as

from the service implementation platform. Further advantage of WSDL contracts

is that they provide a machine-processable description of the syntax and struc-

ture of the corresponding request and response messages and define a flexible

evolution path for the service. In particular, WSDL can model service interfaces

for systems based on synchronous and asynchronous interaction patterns. But

SOAP has also some weaknesses: it is important to avoid leakage across abstrac-

tion levels, interoperability problems can occur when, for instance, native data

types and language constructs of the service implementation are present in its

interface and impedance mismatch between XML and existing (object-oriented)

programming languages.

REST services are perceived to be simple because REST leverages existing well-

known W3C/IETF standards (HTTP, XML, URI, MIME) and the necessary in-

frastructure has already become pervasive. Such lightweight infrastructure, where

services can be built with minimal tooling, is inexpensive to acquire and thus has

a very low barrier for adoption. On the operational side, it is known how to scale

a stateless RESTful Web service to serve a very large number of clients, thanks

to the support for caching, clustering and load balancing built into REST. Due

to the possibility of choosing lightweight message formats, REST also gives more

leeway to optimize the performance of a Web service. But there is some confu-

sion regarding the commonly accepted best practices for building RESTful Web

services. Another limitation makes it impossible to strictly follow the GET vs.

POST rule. For idempotent requests having large amounts of input data (more

than 4 KB in most current implementations) it is not possible to encode such

data in the resource URI, as the server will reject such ”malformed” URIs6 – or

in the worst case it will crash, exposing the service to buffer overflow attacks. The

16

size of the request notwithstanding, it may also be challenging to encode com-

plex data structures into a URI as there is no commonly accepted marshalling

mechanism. Inherently, the POST method does not suffer from such limitations.

Analyzing the requirements of our system, we have decided to implement REST

architecture with JSON as message format. JSON is a text-based open standard

designed for human-readable data interchange [34]. Our architecture respects

the principles exposed by [28] and [13], with the base assumption that a service

essentially is a function-oriented interface exposed through distributed object

technology.

We have opted to not implement any framework, as described in [39], in order to

maintain agility and freedom in our message format, adding only the resources

need by our system. For the same reason we have discarded the model proposed

by [32], [24] and [3].

The REST model proposed by [13] can be good for our approach. In fact the

authors suggest that the mentioned REST model is conceptually similar to the

semantic web standard for the SPARQL language. With this starting point we

can model all the concepts present in our ontology as REST resources. Also one of

the main goals of the formalization of RESTful semantic services is the possibility

of describing interaction patterns between resources and clients, simplifying our

interaction with the graphical interface. Only the action with a REST definition

can be exploited by the user.

Also [27] offers an interesting idea: a composite RESTful service is a special kind

of intermediate element which not simply forwards requests to upstream origin

servers but may decompose a request so that it can be serviced by invoking more

than one origin server. In our case the request is sent by the graphical interface to

one of our modules, which can interact with the other ones in order to compose

the final message.

For a better compatibility between different modules, we have opted to follow

the guidelines suggested by [9]. In our case every function important for the user

has an equivalent REST end-point. It is easy to add a new function or modify

the existing ones, because our architecture reflects the real data of our system.

17

5 Tools and technologies utilized

5.1 Ontologies

An ontology is a structure that formally represents knowledge as a set of concepts

and relationships between them within a domain. An ontology provides a shared

vocabulary, which can be used to model a domain, that is, the type of objects

and/or concepts that exist, and their properties and relations.

Aims of ontologies are describing the knowledge in a computable form, standard-

izing and providing a rigorous definition for the terminology used in the domain,

and allowing automatic classification and inference. An ontology is composed by

the following components:

• Individuals: instances of objects.

• Classes: concepts, sets and types of objects.

• Attributes: properties that objects and classes can have.

• Relations: ways in which classes and individuals can be related to one

another.

5.2 OWL

OWL (Web Ontology Language) is a family of knowledge representation lan-

guages designed for use by applications that need to process the content of in-

formation instead of just presenting information to humans. The languages are

characterized by formal semantics and RDF/XML-based serializations

5.3 RDF

RDF (Resource Description Framework) is a family of specifications originally

designed as a metadata data model that are mainly used for conceptual descrip-

tion or modeling of information.

5.4 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a query language

for ontologies which is able to retrieve and manipulate data stored in RDF for-

mat. More in detail, with SPARQL it is possible to pull values from structured

and semi structured data represented in RDF, explore RDF data by querying

unknown relationships, apply transformations to RDF data, and join multiple

18

RDF repositories in a single query.

SPARQL provides the following query variations:

• SELECT, which is used to extract values in a tabular form.

• CONSTRUCT, that can be used to extract information and transform the

results into valid RDF.

• ASK, which answers the query with a simple true/false response.

• DESCRIBE, that returns the RDF graph.

5.5 Apache Jena

Jena is an open source Semantic Web framework for Java, which provides an API

to extract data from and write to RDF graphs, and also allows the execution of

SPARQL queries.

5.6 REST

REST (REpresentational State Transfer) is an architectural style for building

large-scale distributed hypermedia systems and, in conjunction with the HTTP

protocol, is often used for implementing web services.

The REST architectural style is based on four principles:

• Resource identification through URI: a RESTful Web service exposes a set

of resources which identify the targets of the interaction with its clients,

which are identified by URIs.

• Uniform interface: resources are manipulated using a fixed set of four create,

read, update, delete operations: PUT, GET, POST, and DELETE.

• Self-descriptive messages: resources are decoupled from their representation

so that their content can be accessed in a variety of formats (e.g., HTML,

XML, plain text, etc.).

• Stateful interactions through hyperlinks: every interaction with a resource

is stateless, i.e., request messages are self-contained, and stateful interac-

tions are based on the concept of explicit state transfer.

19

5.7 JSON

JSON (JavaScript Object Notation) is a text-based open standard designed for

human-readable data interchange. It is often used for serializing and transmitting

structured data over a network connection.

20

6 General Architecture

Our system is composed of two different modules, which represent its core fea-

tures:

• The service retriever, which allows the user to search particular services.

• The service composer, that lets the user create new services.

Both modules are based on different data sources, which enrich our system with

specific information:

• An ontology, with semantic data.

• A set of services, divided into simple and composite ones.

Figure 2 shows the general architecture of SCoReS, with its main elements.

Figure 2: General architecture of SCoReS

21

The two modules are independent from each other. The user can interact with

the graphical interface, which chooses the right module to forward the request.

In this way the system can be extended with new modules, without modifying

the existing ones.

6.1 Information’s types present in the system

A service is a set of operations that the user can apply to the associated sensor,

in order to gather real time data and analytic information.

Our system is based on this definition in order to communicate with the user.

There are two different types of services:

• The simple ones, which offer a single operation on a single sensor.

• The composite ones, whose operations are a workflow composed by single

services and/or other composite services.

Both kinds of services have a set of attributes, which provides information about

the service’s main characteristics. If the user wants more specific information, he

has to query our system for low level information.

The composite services can be created at runtime by the user, using pre-existing

template or creating a new pattern for the operations’ flow. Every new service is

indexed and made available for future search or execution.

All the information can be extracted from three different sources:

• An ontology, that specifies the meaning for every concept.

• A database with real-time data registered by every sensor.

• A database with the definition of every composite service.

6.1.1 Ontology

The ontology is made up of four different sections:

• A section with the definition of services and their direct attributes.

• A sensor ontology, with details about sensors and actuators active in our

system.

22

• A device ontology, with information about the type and energy consump-

tion.

• A location ontology, with the data about the spatial environment.

Figure 3: Structure of ontology, with link between different concepts

The different sections are linked one to another, creating a set of well defined

paths that the system can navigate in order to connect different concepts. For

example it is possible to find where a particular service is located by following

this path:

• From the Service entity we can connect to the corresponding sensor with

the relationship dataFrom.

• A Sensor is a specialization of the Node concept in our network,

23

• From our corresponding Node Entity is possible to find the related Location

entity with the relationship location.

The ontology allows our system to establish a hierarchy between different con-

cepts. For example, inside the definition of location, we can find a set of attributes

like room, floor and building. With the ontology we can model the hierarchy like

this:

• A building is composed of different floors.

• A floor is composed of different rooms.

• A room can house different locations.

The user can understand without difficulties how the location is structured and

we can use every step in our hierarchy to recognize where a particular sensor is

located.

The ontology also offers the possibility to evaluate the similarity between different

concepts. For example, two different sensors in two adjacent positions can be

similar if they register a temperature value during the same time span. The two

measured temperature values have the same units of measurements, in our case

Celsius Degree, and therefore can be compared.

6.1.2 Database with real-time data

The database with real-time data is used to store new information registered by

the sensors and to analyze previously collected data.

The user can access all this information by using the operations provided by the

service associated to the requested sensor. If he needs aggregated results or he

wants to combine different data in order to perform a new analysis, the user can

create a new service.

6.1.3 Database for composite services

The information about the composite services is saved in the second database.

In this way we can catalog all the data concerning aggregated services, distin-

guishing two different contributions:

• The templates, a set of models that the user can re-utilize in order to create

new services.

• The definition of new services.

24

Inside these definitions we store all the information that our system needs in

order to be able to run composite services.

As additional data, every composed service is linked to its original template. In

this way the user can know how a template is implemented and the differences

between composite services originated from the same template.

6.2 Service Retriever

Our system offers a feature to search and explore our complete set of services,

allowing the user to find the right information for its query.

There are two possible ways to compose a query:

• Creating a request by specifying a list of standard parameters,

• Writing a request in SPARQL.

The standard parameters are a set of data, which the user can select in order to

filter services according to his needs. For a request the user doesn’t need to know

a priori the value for every parameter. Our system offers a series of methods to

search and discover every possible value for the set of parameters. In this way

the user can select the right values for his request, like the location of interest

or the type of real-time data. This method is similar to a wizard-like procedure,

where in every step is possible to choose if a parameter is important or not and

which value is right for the final result.

In this first case there are two possible interpretation of a query:

• A strict one, where the result set must satisfy every single parameter.

• A relaxed one, where the user can relax some constrains, in order to include

some services that would be excluded from the strict interpretation.

25

Figure 4: General features of service retriever

If the user wants to create a more complex query, he can use the SPARQL lan-

guage in order to request particular services. In this case he can directly interact

with the ontology and he has wider options of parameters. This is an advanced

feature, that only expert user can utilize. In fact in order to exploit this method

it is necessary a good knowledge of different concepts present in the ontology

and the ability to write a query in SPARQL.

The result set of the relaxed interpretation will include every service present

in the strict one, plus other services that are compatible to the non-relaxed

parameters. For example: if the user requests services for temperature on floor

22, but he also want to loosen up the constrain about the location, our system

will select all the services on floor 22, but also the ones present in other floors.

For this partial result only the ones that register a temperature will be shown in

the result set.

26

Figure 5: Strict vs relaxed queries

27

For every query, the user can get the following results: an ordered list containing

information about simple and composite services matching the query require-

ments, or an error. The two results’ types are mutually exclusive.

A result list is composed by one or more services and it is ordered from the most

pertinent to the least one. In section 7 we will describe the analytical procedure

to select and order relevant services.

The result list will include only simple services. If the user wants to retrieve com-

posite services, he can invoke a set of methods that analyze that type of services.

In fact the composite ones are structured and have a behavior completely differ-

ent from the simple ones. Comparing the two types is computationally expensive:

in order to understand if two services have a similar output, our system would

need to execute every step in the composite service. Instead for a user is much

simpler to understand which type can better fulfill his requirements.

An error will be displayed when the request sent by the user is not well formatted

or our system doesn’t have any data related to the submitted query. In this case

the user can choose to re-create his query, relaxing some constraints or removing

some parameters.

6.3 Service Composer

In order to create new services, the user can choose between two solutions:

• Load a pre-defined template.

• Create a new template, defining the general queries for searching the right

services.

After the user completes the second solution, all the information inserted in the

template are stored in our system. In this way future users can access this new

template in order to generate new composite services.

28

Figure 6: Operations to save a new template

In both cases the final template is composed by:

• A series of standard operations, like branch, loop or sequence.

• A query whenever a service should be invoked, that defines the character-

istics of the service that the system will utilize in future.

• An optional transformation, like a function to search the maximum value.

• A result output, which can be a standard type or a report.

For the optional transformation, the user can choose from:

• A standard list, that contains a series of pre-defined operations, like a

maximum, a minimum and a mean function.

• Insert a code fragment written by the user. This second solution is called

snippet. The language for snippets is JavaScript and our system will vali-

date every code’s portion. If there are some errors, the user will be notified

by the system.

The final output is chosen by the user. There are different types:

29

• A value computed dynamically during the workflow execution.

• The output of a particular service, which can be dynamically selected dur-

ing the workflow execution.

• A report about the result of an operation, like the activation of an actuator.

After the user has defined his template, he can select every single service for

every invoker’s operation. The invoked services can be simple or composite. If

all selected services are correct, namely they exist and are obtained from the

original queries present in the template, the user can save the new composite

service.

Figure 7: Operations to save a new composite service

This is the standard way to save a new executable composite service. In this way

our system can run the new configuration and add it in the search list. In future

this service will be available to be executed also by other users.

From the same template it is possible to create different composite services. In

fact for every query presents in the template, the user can select different services

present in the result set, customizing and tuning the final workflow. Our system

offers a feature to request the list of composite services created from the same

template, helping the user finding similar workflows.

30

7 Service similarity algorithm

A very important part of SCoReS service retrieval component is the service

similarity algorithm, which is responsible for returning only meaningful results

whenever the user performs a query concerning services. The service retrieval

process is composed by the following two steps: at first all services that exactly

match the user query are retrieved, and then the service similarity algorithm,

which filters out results that are not interesting and adds other ones that are

worth including, is invoked. More in detail, services are considered not interest-

ing when their returned data have poor quality, whereas they are worth including

when they don’t precisely answer the user’s query but the returned data have

good quality.

Most of the research efforts in the service similarity topic concerns the compar-

ison of generic services, and thus service similarity is evaluated by syntactically

and semantically analyzing the service interface, and all of its parts, such as ser-

vice description, methods’ and parameters’ names, and input and output data

types. Since SCoReS simple service interfaces are predefined and only three kinds

of services exist (Last One, Last X and Interval), this approach would not be

much useful in our scenario.

What would be useful is the ability to compare services according to their input

and output values. However, very few research articles concerning this approach

have been written, probably due to the specificity of that problem: in [7] the

problem of service similarity is dealt by clustering services that, for the same

set of input values within the service’s domain, return similar output values.

However, this article does not mention how the service similarity function could

be, but only says that should return values in the [0-1] range, with 1 for perfect

match and 0 for complete mismatch.

In order to compute the degree of matching for a given pair of service and re-

quest, we have found that the approaches described in [16], [11] and [5] can be

useful: every found service can be classified in five different categories.

These categories are:

• Exact match: service S exactly matches request R.

• Plug-in match: when the Service S provides at least the required func-

tionalities and possibly adds new ones.

• Subsume match: when the functionalities provided by the service S are

less than the required ones.

31

• Intersection match: when the request R and the service S present some

common functionalities.

• Mismatch: when no common functionalities exist between the request R

and the service S.

For SCoReS the first three categories are the best to offer to the user. In fact,

from the request point of view, the first two kinds of match can be considered

equivalent, since in both cases the offer fulfills the request, whereas in the case

of subsume and intersection match the offer satisfies only partially the request.

There are two important characteristics, described by [11], that SCoReS must

calibrate:

• Granularity: The results of the matchmaking are coarse-grained. That

is, the matching services are associated only with some general similarity

degrees (exact, plug-in, and so on) and we cannot further discriminate

between services that have the same similarity degree.

• Precision: The matchmaking algorithm should provide high precision;

meaning that those Web services that are actually labeled as matching

should be compatible with the requests.

Due to the fact that we couldn’t find any solution that fully solved the problem

of evaluating service similarity based on input and output values, we chose to

design and implement from scratch our service similarity algorithm. In fact most

of the algorithms consider as a prominent part the analysis of the meaning’s

similarity, but in our case the real data need to be the relevant part. We can

utilize the ontology in order to understand the meaning of every concept and to

correlate different terms.

More in detail:

• SCoReS similarity algorithm at first retrieves all services that exactly an-

swer the user’s query (see Algorithm 1 line 1).

• If specified by the user, it adds to the result list services whose associated

sensors are not too far from the location specified in the initial query (see

Algorithm 1 lines 2 and 2).

• If specified by the user, it adds services having a time output property

different from the one specified in the initial query (see Algorithm 1 lines

3 and 3).

32

• After that, a score of 1 (perfect match) is assigned to each previously found

service (see Algorithm 4 lines 1 to 4).

• SCoReS similarity algorithm then computes the actual meaningfulness by

multiplying the service’s score by a penalty which is function of the quality

of the values returned by the service (service output penalty, see Algo-

rithm 4 lines 6, 7 and 8). If a service is unreachable the algorithm is

unable to get any result from this one, for this reason the service is removed

from the results list.

• Then the system multiplies each service’s score by a penalty which is func-

tion of the distance between the associated sensor and the one specified in

the initial query (location penalty, see Algorithm 4 lines 9 and 10).

• After the previous steps SCoReS similarity algorithm multiplies each ser-

vice’s score by a penalty based on the degree of compatibility between the

service’s time output property and the one specified in the query (time

output penalty, see Algorithm 4 lines 11 and 12). The time output

property reflects the kind of every service.

• Finally returns to the user only services whose score is above a certain

threshold, and sorts them in descending order by their score (see Algorithm

1 lines 5 to 11).

Table 1 summarizes the penalties computed by SCoReS similarity algorithm in

order to evaluate service similarity.

Penalty Meaning Can be optional?

Service output penalty It is based on the real data

registered by the sensor as-

sociated to the service.

No, it is computed for

every query.

Location penalty It is based on the position

of every service and its rela-

tive distance from the orig-

inal location requested by

the user.

Yes, the user can

choose to extend

or not his query to

different locations.

Time output penalty It is based on the service’s

kind and how it is different

from the original request.

Yes, the user can

choose to extend

or not his query to

different kinds of

services.

Table 1: Different penalties in SCoReS service similarity algorithm

33

A general complete execution follows these steps:

Algorithm 1 General operations for similarity algorithm

1: serviceList = retrieveServices(query parameters, ontology)

2: serviceList = serviceList U findNeighborServices(query parameters, ontol-

ogy)

3: serviceList = serviceList U findTimeOutputCompatibleServices(query pa-

rameters, ontology)

4: rating = rankServices(serviceList, query parameters)

5: serviceList.sortDescending(rating, descending)

6: rating.sortDescending()

7: for all i = 0: serviceList.length do

8: if rating[i] ¡ threshold then

9: serviceList(i).remove

10: end if

11: end for

12: return serviceList

Algorithm 2 Find neighbor services function

if query parameters.neighbor extension = true then

query parameters.remove(location)

return retrieveServices(query parameters, ontology)

else

return null

end if

34

Algorithm 3 Find time output compatible services function

if time output extension = true then

query parameters.remove(time output)

return retrieveServices(query parameters, ontology)

else

return null

end if

Algorithm 4 Rank service function

Double[] rating = new Double[serviceList.length]

for all k = 1: serviceList.length do

rating(k) = 1

end for

for all k = 1: serviceList.length do

service data = invokeService(serviceList(k))

SOPenalty = computeServiceOutputPenalty(service data, query parame-

ters.data constraints)

rating(k) = rating(k) * SOPenalty

LPenalty = computeLocationPenalty(serviceList(k), query parame-

ters.location)

rating(k) = rating(k) * LOPenalty

TOPenalty = computeTimeOutputPenalty(services(k), query parame-

ters.time output)

rating(k) = rating(k) * TOPenalty

end for

return rating

Since service meaningfulness must be in the range [0-1], penalties are applied

by multiplying by the location penalty (LPenalty) and the time output penalty

(TOPenalty) the service output penalty (SOPenalty), all in the range [0-1], ac-

cording to the following formula:

Similarity = Similarity * SOPenalty * LPenalty * TOPenalty.

7.1 Support data preprocessing

In order to compute the similarity between different services, we need to gather

some data from different sources, since information required for the algorithm is

partially distributed in the ontology and in the data returned by the services:

• Firstly we query the ontology for services having node type, kind, category,

time output and/or location specified in the user query (if the user asked

35

for neighbors extension or not strict time output, the time output and the

location constraints are removed).

• Having done so, for each result we store service name, time output and

associated node.

• If neighbors extension was asked by the user, fine-grained information about

the node location are extracted from the ontology, like the room, floor,

building and campus where the node is, in order to be able to compute the

location penalty.

• After that, we invoke each service returned in the previous step passing

for parameters the user constraints regarding the number of samples, the

interval when the values were stored and their granularity.

• By doing so, the real values registered by sensors associated to the given

services are retrieved, and the result set of each service’s response is com-

posed by pairs of real value and sampling date.

• Thank to these results, we are able to compute the service output penalty.

7.2 Service output penalty

Service output penalty depends on the quality of the output values provided by

services. The way quality is assessed depends on the service interface: for services

acting on actuators no penalty is applied since they don’t provide any output

value, whereas for services monitoring sensors quality is assessed according to

the output type that, as said in the service ontology description in part 6.1.1 of

this document, can be Last One, Last X or Interval.

7.2.1 Last One

Last One services simply return the most recent value collected by the associated

sensors and its sampling date.

Intuitively, service quality depends on the sampling date: the older is such date,

less accurate is the service. So, the simplest way to compute service penalty would

be to apply a penalty directly proportional to the difference from the returned

value’s date and a reference one.

Our procedure at first finds the most recent date within the ones associated to all

values returned by services. Then it uses that value to evaluate the quality of all

services. In this way the service, whose returned value is the most recent within

the ones provided by the result set, and that satisfies the user query, will get no

penalty. The others will receive a penalty directly proportional to the difference

between that date and the ones associated to their returned values.

36

For example, if we have two Last One services whose returned values are associ-

ated respectively to 10:32 PM and 2:15 AM of January 1, 2004, the former won’t

get any penalty, whereas the latter will be penalized by a value which is function

of the time difference between 10:32 PM and 2:15 AM.

More in detail, this penalty function is computed by following these steps:

• We find the most recent date within the set of services’ results, which will

be the start date (see Algorithm 5 lines 1 to 6).

• For every service we calculate the time difference as the difference in seconds

between the start date and the date registered for their output value (see

Algorithm 5 lines 7 to 10).

• The maximum value of the time difference is saved and is used to calculate

the rating of every service as 1-(time difference / max)*lastone penalty,

being lastone penalty a constant value (see Algorithm 5 lines 11 to 14).

In this way the service providing the most recent value will get a rating of 1,

whereas the rating of all the other ones will be lower than 1.

It is worth mentioning that we discarded to use the current date as reference

date, as we firstly thought, because by doing so we would have heavily penalized

services even if all of them had old sampling dates. Suppose sensors associated

to all services satisfying a certain query stopped sampling data one year ago:

by using the above mentioned method to compute service penalty, all of them

would get a very high one and probably no service would be considered suited

to answer the user query.

Algorithm 5 Last One algorithm

for all k = 1:total number of services do

extract the corresponding date

if recent date¿date extracted then

update recent date

end if

end for

for all k = 1: total number of services do

extract the corresponding date

time difference =calculate the difference between recent date and the corre-

sponding date

end for

max=find maximum time difference;

for all k = 1: total number of services do

rating(k)=1-(time difference/max)*penalty;

end for

37

7.2.2 Last X

Last X services, given in input the desired number of output values, return to the

user the most recent values collected by the associated sensors and their sampling

dates. If the number of requested output values is greater than the number of

values collected by the service, SCoReS returns all the available values. Instead if

the service has more values than the ones requested by the user, SCoReS returns

the most recent ones.

There are two different parameters that we use in order to catalog and order

SCoReS simple services:

• The number of values, or real time data, registered by the associated sensor.

• The date associated to the most recent value.

So we expect that a service able to retrieve exactly the same number of values

as the one specified by the user should have higher quality than a service that

satisfies the user request only partially by giving him fewer values than the ones

he requested. That quality should depend on the number of returned values. We

also expect that the penalty associated to a service that returns five results, when

the user asked for ten, should be greater than the one associated to the same

service if the user have asked for six results.

Moreover, we expect that, if two services return the same number of output

values, their quality should vary according to their output values’ sampling dates:

a service returning values that are more recent than the values returned by

another one have higher quality than the latter.

Such expectations are fulfilled by the service output penalty computation algo-

rithm. In fact, for services having Last X output type, we follow these steps:

• For every service we count the number of items in the result set (see Algo-

rithm 6 lines 1 to 3).

• We use the number of samples given by the user as a comparison value. In

this way we can calculate the rating as the difference between the compar-

ison value and the real number of items for each service (see Algorithm 6

lines 5 to 8).

• Then we consider the most recent date for every service. If a service has a

result set with two or more items, we compare all the dates present in the

pair real value - date, and we extract the most recent one (see Algorithm

6 line 9).

• The algorithm catalogs every service in a set of classes, where every class

corresponds to the number of samples. For example a service with four

38

samples is inserted in the Class Four; instead the service with ten samples

is in Class Ten.

• For every class we extract the most recent date.

• We finally compute an additional penalty for each service based on the

difference between their most recent date and the most recent one in their

class. This procedure is similar to the one followed for the Last One services,

with the particular use of service’s class. In this way we can find the best

service for every range of items (see Algorithm 6 line 13).

39

Algorithm 6 Last X algorithm

1: for all k = 1: total number of services do

2: total element(k)=count number of items in the result set for the service

(k);

3: end for

4: for all k = 1: total number of services do

5: rating(k)=1;

6: if total element(k)¡sampleNumber then

7: rating(k)=total element(k)/sampleNumber;

8: end if

9: lastvalue(x)=extract most recent date

10: end for

11: for all k = 1: max(total element) do

12: for all services having total element=k do

13: calculate with the same procedure of Last One the temporal penalty

14: end for

15: end for

7.2.3 Interval

Interval services return values that are within an interval specified by the user in

the input parameters. In order to assess services’ quality, a third input parameter

named granularity is required, which specifies within how many seconds at least

one output value should be. For example, by setting the granularity parameter

to 60 seconds, we expect at least one output value every 60 seconds. By doing

so, we can subdivide the interval specified by the user in subintervals having the

same duration as indicated by the granularity parameter, and thus we can count

the number of values that fall in each subinterval and apply penalties to services

having subintervals with zero values (gaps).

Intuitively, penalties should be directly proportional to the number of gaps for

services that have the same interval and granularity. Anyway, simply counting

the number of gaps won’t be enough to precisely assess service quality: suppose

to query two Interval services providing the same interval but different granular-

ities for the input parameters, say 30 seconds for the former and 300 seconds for

the latter, and finding out that both results have two gaps. It would be unfair

to apply the same penalty to both services, since the former has many more

subintervals than the latter, and so the result it provides is much more accurate

than the one provided by the other service. Now, suppose to query two Interval

services providing the same granularity but different intervals, say 10:00 AM to

2:00 PM of January 1, 2004 for the former and 8:00 AM to 4:00 PM of March 9,

40

2004 for the latter (both intervals’ dates in the same day), and receiving results

that have both three gaps: again, if we would apply the same penalty to both

services we wouldn’t consider that the former is less accurate since its interval is

shorter than the one specified for the latter.

For these reasons, the best way to compute Interval service penalty is dividing

the gap count by the number of subintervals, and using the obtained value, which

is the percentage of gaps with respect to the interval, to assess service quality.

The steps in our analysis are the following ones:

• We divide the interval between the start and the end date in several time

spans, according to the granularity chosen by the user (see Algorithm 7

line 1).

• For every service we count the number of items present in every time span

of the result set, creating an aggregated result (see Algorithm 7 lines 2 to

11).

• We then analyze the aggregated result and calculate a penalty as the num-

ber of empty time spans divided by the total number of time spans (see

Algorithm 7 lines 12 to 20).

41

Algorithm 7 Interval algorithm

1: number of time span= (end date - start date)/granularity

2: for all k=1: number of time span do

3: for all for i=1: total number of services do

4: for all for j:total number of items in the result set do

5: extract corresponding date for the item(j)

6: if corresponding date is inside the time span (k) then

7: aggregator(current service, k)++

8: end if

9: end for

10: end for

11: end for

12: for all k=1: total number of services do

13: timeSpanAbsence=0;

14: for all i=1: number of time span do

15: if aggregator(k,i)==0 then

16: timeSpanAbsence++

17: end if

18: end for

19: rating(k)=1-timeSpanAbsence/ number of time span

20: end for

7.3 Location penalty

As previously said, location penalty depends on the distance between the loca-

tion where the sensor associated to the service is and the one specified by the

user. Intuitively, we expect that services whose associated sensors are distant

from the specified location should receive a penalty greater than the one given

to services whose sensors are close to that. For example, if a service monitors a

room that is next to the one we specified, we expect a very low penalty, whereas

we expect a greater penalty for a service associated to a room which is in another

building.

It is also natural to consider that the broader the location monitored by a ser-

vice, the greater the penalty. For example, given by the user a certain room in

the service list query, a service that monitors the room’s building should have

greater penalty than another one that monitors the floor where such room is.

It is also worth noting that, if a broader location is specified by the user, the

location penalty should be relaxed, and services associated to locations that are

more specific than the specified one shouldn’t get any penalty. For example, a

42

service associated to a floor different from the one specified by the user should

have lower penalty than the one it would have got if the user had specified a

room in the service list query instead (and the room was in a floor different from

the one associated to the service), and a service monitoring a room which is on

the specified floor should have no penalty.

That said, we are able to deal with such expectations by exploiting the location

ontology: since each location can be a room, a floor, a building or a campus,

and relationships between locations exist in the ontology, we can represent the

whole ontology as an unweighted and undirected graph having for nodes the

concepts’ instances and for edges their relationships (see Figure 8). By doing so,

we can compute the service location penalty by finding the shortest path between

the location associated to a service and the location specified by the user, then

counting the number of edges in the path found that connect locations that are

less specific or as specific as the specified one (e.g. a floor is less specific than a

room, as specific as another floor, and more specific than a building), and finally

multiplying a constant value (which is in the range [0-1]) by itself as many times

as the value computed in the previous step (see Algorithm 8).

Algorithm 8 Location algorithm

1: Edge count=0

2: for all edge: edges composing shortest path do

3: if !lessSpecific(edge.fromNode, user location) and! lessSpe-

cific(edge.toNode, user location) then

4: Edge count++

5: end if

6: end for

7: Location penalty = LOCATION PENALTY CONSTANTEdge count

43

Figure 8: Example A for location penalty

For example, if we asked for services belonging to Room3, Service3 won’t get

any location penalty since its associated location is exactly Room3, whereas

Service2 will get a location penalty that is equal to LOCATION PENALTY

CONSTANT1 since in the shortest path between Room3 and Room2 (which is

the location where Service2 is) there is one edge and Room2 is as specific as

Room3 (see Figure 9).

44

Figure 9: Example B for location penalty

If we asked for services belonging to Floor3 instead, Service4 won’t get any

penalty because the shortest path is made only of an edge that connects Room4,

which is more specific than Floor3, Service5 will get a penalty equal to LOCA-

TION PENALTY CONSTANT1 since the only edge of the shortest path links

Floor4 that is as specific as Floor3, and Service1, Service2 and Service3’s penalty

will be equal to LOCATION PENALTY CONSTANT3 because there are only

three edges in their shortest path that connect locations less specific or as specific

as Floor3, which are Floor3-Building2, Building2-Building1 and Building1-Floor3

(see Figure 10).

45

Figure 10: Example C for location penalty

7.4 Time output penalty

Time output penalty depends on the degree of compatibility between services

having different time output property values. For example, if we asked for ser-

vices having time output value equal to Last X, we could also be interested in

services having Interval as time output property value, because by setting the

properties of an Interval service opportunely we can get a similar result; on the

contrary, we won’t be interested in Last One services because they provide only

the most recent value, and so they are unsuited in answering a query asking for

the last n values.

That said, we can summarize the services’ time output property similarity with

Table 2.

46

Service time output property

Query time output

property

Last One Last X Interval

Last One Exact Close Close

Last X Mismatch Exact Close

Interval Mismatch Close Exact

Table 2: Time output similarity

The algorithm simply compares each service time output property with the one

specified in the query parameters by using that table, and assigns a penalty equal

to 1.0 when the correspondence is exact, to the time output penalty constant

value when it is close, and to 0.0 when there is no correspondence, thus discarding

that service.

7.5 Algorithm tuning

By defining location and service output penalties in the previous sections, we

introduced 3 constants: service output penalty, location penalty and time output

penalty. In order to get the best results with SCoReS similarity algorithm, an

accurate tuning of these constants is required.

The first step consists in defining three queries asking for services having the

requirements mentioned in Table 3, and collecting all services satisfying these

constraints:

Name Time

output

Neighbors

extension

Location Specific parameters

Query 1 Interval No - Range:

from 28/2/2004 10:30 AM

to 28/2/2004 6:30 PM

Granularity: 1 hour
Query 2 LastX No Floor22 Samples: 14

Query 3 Now Yes Room27 -

Table 3: Example A for testing

Notes: for queries asking for neighbors extension, we simply ignore the specified

location in the query constraints, whereas for queries without that constraint we

include services whose associated location is more specific than the one specified

in the query constraints. For queries asking for exact time output, we include

47

only services having the time output property value identical to the one specified

in the query constraints, whereas for queries without that constraint we simply

do not check the services’ time output property. Due to lack of data collected

by all services other than the ones having Light kind and Electricity category in

our test-bed, we introduce in the requirements of all queries the following further

constraints: Kind: Light, Category: Electricity.

After that, for each query we order the returned services by hand according to

how meaningful the values provided by these ones are (the first position is given

to the services whose returned data are the most meaningful ones), and then

we mark as discarded the ones whose values are not meaningful enough. These

results, named training set, will be used to tune the algorithm.

Having done so, we execute SCoReS similarity algorithm by providing in input

the same constraints and compare its output results with the training set. In

order to do such comparison we plotted a precision-recall graph following these

criteria:

• We calculate the resulting rating for every service, with a value between 1

and 0.

• We compute a valid matrix, adding a 0 if the rating is lower that a certain

threshold, 1 otherwise.

• Running an external function [31], it is possible to draw a precision-recall

graph and a ROC curve.

48

Finally, we iterate the previously mentioned step varying the algorithm’s constant

values until we get the best precision-recall ratio, which is shown in Chart 11:

Figure 11: Precision-Recall Graph for tuning SCoReS similarity algorithm

In order to be sure that SCoReS similarity algorithm works as expected, we have

also defined three more queries similar to the previous ones whose constraints

are shown in Table 4.

Name Time

output

Neighbors

extension

Location Specific parameters

Query 4 Interval No - Range:

from 28/2/2004 6:30 PM

to 29/2/2004 2:30 AM

Granularity: 1 hour
Query 5 LastX No Floor12 Samples: 11

Query 6 Now Yes Room111 -

Table 4: Example B for testing

49

We then order and classify the results obtained by these queries the same way

we did for the previous ones. The result of this procedure, named test set, will

be used to test the algorithm’s goodness.

In fact, this time we execute SCoReS similarity algorithm with the test set’s query

constraints only once keeping the constant values fixed, and then we compare

the algorithm’s results with the test set, obtaining Chart 12.

Figure 12: Precision-Recall Graph for the Test Set

All these results are obtained by using a threshold of 0.5. The threshold is the

minimum ranking value that a service must get in order to be listed in the final

results set.

We have chosen this specific value after controlling the performance of SCoReS

similarity algorithm with different threshold (see Charts 13, 14 and 15). With

a range between 0.3 and 0.9, we have analyzed the precision-recall graph for the

three types of services:

• For Last One and Last X we have found that a value from 0.7 to 0.5 shows

good results.

• For Interval we need to lower the threshold to a value between 0.5 and 0.4.

50

Figure 13: Precision-Recall Graph for Last One services, with different thresholds

51

Figure 14: Precision-Recall Graph for Last X services, with different thresholds

52

Figure 15: Precision-Recall Graph for Interval services, with different thresholds

For values of threshold under 0.3 we have registered poor quality results. In fact

SCoReS similarity algorithm includes a lot of services that do not satisfy the

query constraints at all. Vice versa for thresholds above 0.7, the result set is very

small or empty.

The core feature of SCoReS similarity algorithm is to create a valid list for the

service retriever component. Too many results would confuse the user, who could

difficultly find the service suited for his needs. Few results would limit the variety

in the response, forcing an unexpert user to create a lot of similar queries in order

to find the right parameters for his needs.

In order to have the same threshold for the three different types of services, we

chose to implement SCoReS with a standard value of 0.5. With this number we

can offer a not too wide result set, with different services that can be right for

the sent query.

53

8 Service composition

As said in the previous chapters, in SCoReS we have simple services, which

provide data associated to a specific sensor, and composite services, which are

services that provide complex functionalities, like getting values from certain sen-

sors and using them to act on some actuators.

In order to provide these functionalities, the design of composite services implies:

• Getting and setting data by invoking other services, which could be simple

services or composite services as well.

• Manipulating data by combining them and/or performing simple opera-

tions, like computing the average value or the maximum.

Moreover, the task of building composite services should be done by local man-

agers, who usually don’t have much technical expertise. For this reason the user

should be allowed to create new services in an intuitive way, involving as less

coding as possible.

The approach that best meets these requirements is the creation and execu-

tion of a workflow: workflows are easy to understand by inexperienced people,

since they can be designed by using tools that graphically show the control flow,

but nevertheless are very powerful since they allow to express a great variety of

constructs. For these reasons, by using workflows during the composite services

creation process, this procedure can be made extremely intuitive.

After considering many preexisting workflow languages by examining [26], [18],

[25] and [21], we chose not to use any of them and to build our own workflow

language. We made this choice because adapting a preexistent workflow engine

capable to run one of these languages to our purpose would have required a

greater effort than building an ad-hoc workflow language and its engine from

scratch.

SCoReS workflow language implements the most important workflow patterns

available in other languages, like WS-BPEL, as stated in Table 5:

54

Pattern Description Implemented?

Sequence Execute two or more activities in

sequence

Natively

Parallel Split Execute two or more activities in

any order or in parallel

No

Synchronize Synchronize two or more activi-

ties that may execute in any or-

der or in parallel; do not proceed

with the execution of the follow-

ing activities until all these pre-

ceding activities have completed

No

Exclusive Choice Choose one execution path from

many alternatives based on data

that is available when the execu-

tion of the process reaches the ex-

clusive choice

Natively

Simple Merge Wait for one among a set of activ-

ities to complete before proceed-

ing; it is assumed that only one of

these activities will be executed

Natively

Terminate Terminate execution of activi-

ties upon defined event or status

change

No

Multiple Choice Choose several execution paths

from many alternatives

No

Conditional Choice Choose one execution path from

many alternatives according to

discriminated status conditions

Indirectly

Synchronizing

Merge

Merge many execution paths;

synchronize if many paths are

taken; do the same as for a simple

merge if only one execution path

is taken

No

Multiple Merge Wait for one among a set of activ-

ities to complete before proceed-

ing; if several of the activities be-

ing waited for are executed, the

simple merge fires each time that

one of them completes

No

55

Table 5 – continued from previous page

Pattern Description Implemented?

Discriminator Wait for one among a set of activ-

ities to complete before proceed-

ing; if several of the activities be-

ing waited for are executed, the

discriminator only fires once

Indirectly

N-out-of-M Join Same as the discriminator but it

is now possible to wait until more

than one of the preceding activ-

ities completes before proceeding

by setting a parameter N to some

natural number greater than one

No

Arbitrary Cycle Do not impose any structural re-

strictions on the types of loops

that can exist in the process

model

Natively

Implicitly Termi-

nate

Terminate an instance of the pro-

cess if there is nothing else to be

done

Indirectly

Multiple Instances

without synchro-

nizing

Generate many instances of one

activity without synchronizing

them afterwards

No

MI with a prior

known design time

knowledge

Generate many instances of one

activity when the number of in-

stances is known at the design

time (with synchronization)

Indirectly

MI with a prior

known runtime

knowledge

Generate many instances of one

activity when a number of in-

stances can be determined at

some point during the runtime

Indirectly

MI without a prior

runtime knowledge

Generate many instances of one

activity when a number of in-

stances cannot be determined

Indirectly

56

Table 5 – continued from previous page

Pattern Description Implemented?

Deferred Choice Execute one of a number of alter-

native threads. The choice which

thread is to be executed is not

based on data that is available at

the moment when the execution

has reached the deferred choice,

but is rather determined by an

event

No

Interleaved Parallel

Routing

Execute a number of activities in

any order (e.g. based on availabil-

ity of resources), but do not exe-

cute any of these activities at the

same time/simultaneously

No

Milestone Allow a certain activity at any

time before the milestone is

reached, after which the activity

can no longer be executed

Indirectly

Cancel Activity Stop the execution of an enabled

activity

No

Cancel Case Stop the execution of a running

process

Indirectly

Cancel Wait Continue execution of a running

process without prior completion

event

No

Table 5: List of patterns supported in SCoReS workflow

engine

Note: with the term ”natively” we indicate that SCoReS workflow language

has a construct which has the same behavior of that pattern, whereas with

the term ”indirectly” we indicate that the behavior of that pattern can be

simulated by opportunely combining one or more of SCoReS constructs.

We chose not to implement all of them because at this stage we just want to pro-

vide a prototype workflow engine capable of satisfying the most common needs.

In future we will expand SCoReS workflow engine capabilities by implementing

all patterns.

As for the workflow activities, we decided to make available two particular types:

• Service invocation activities, which are used to invoke services and store

57

their result, if any, into a workflow variable.

• User code execution activities, which can be used to execute arbitrary code

written by the end user in order to perform operations on data.

Taking inspiration from WS-BPEL, we distinguish workflows into executable

workflows and templates:

• Executable workflows are the ones whose invoke statements contain refer-

ences to actual services and thus, as the name suggests, can be directly

executed as composite services.

• Templates, on the other hand, are workflows whose invoke statements con-

tain references to queries that, if executed, provide a list of services match-

ing the specified requirements. They can’t be executed. Their purpose is to

allow the end user to choose from the result set of each query stored in the

template a service and, after having done so, create an executable workflow

that has the same structure as the template, but has the previously chosen

services instead of the service queries. In this way it is possible to create

executable workflows having the same control flow structure but different

invoked services (hence the name template).

Figure 16: Elements in an executable workflow

58

As shown in Figure 16, an executable workflow contains an element, which can

be a Sequence, an Arbitrary cycle, an Exclusive choice, a Service invocation or

User code. Sequence, Arbitrary cycle and Exclusive choice elements contain one

or more elements that can have any of the above specified categories. This way

it is possible to nest a construct inside another until either a Service invocation

or a User code one is specified.

By doing so, it is possible to represent a workflow as a tree having:

• The top element as root.

• Sequence, Arbitrary cycle and Exclusive choice elements as nodes.

• Service invocation and User code as leaves.

This way workflow execution essentially consists in a depth first analysis of the

tree.

Figure 17: Elements in an Template workflow

Templates are almost identical to executable workflows: the only difference is

that, instead of Service invocation elements, there are Service query ones, which

contain a query that will be executed whenever the user choose to create an

executable workflow based on that template (see Figure 17. Templates will be

59

transformed into executable workflows by replacing Service query blocks with

Service invocation ones invoking services selected by the user from the query

results.

To better understand how SCoReS workflow language works, suppose that we

need to know the temperature of a room without sensors. We can easily solve

that problem by creating a service that invokes simple services monitoring the

temperature of rooms adjacent to the required one (say Service1, Service5 and

Service8) and then returns the average value of the ones provided by the invoked

services. This task can be easily accomplished by creating a composite service

which uses the workflow shown in Figure 18.

Figure 18: Example A of executable workflow

As we can see, the workflow uses a Sequence element that contains three Service

invocation elements for invoking the services, and an User code element in order

to compute the average value.

(Note: elements contained into the Sequence one are evaluated from left to right)

If we knew in advance that Service1 generally provides temperature values very

similar to the ones in the required room, we could modify the procedure by firstly

invoking Service1, then checking their returned value and, if it is either missing

or wrong (i.e. a value too low or too high due to a malfunction of the associated

sensor), by computing the average value between the values returned by Service5

and Service8. In this case the associated workflow would be modified in this way

60

(see Figure 19):

Figure 19: Example B of executable workflow

This time the workflow uses a Sequence element that contains a Service invoca-

tion element for invoking Service1, and an Exclusive choice to evaluate if data

returned by Service1 are valid. The false branch of the Exclusive choice element,

which is executed whenever the choice condition is false, is associated to another

Sequence element that contains two Service invocation elements for invoking Ser-

vice5 and Service8, and an User code element that computes the average value

of the results provided by the previously mentioned services.

(Note: elements contained into the Sequence ones are evaluated from left to

right)

61

9 Implementation of SCoReS

In order to have a scalable and distributed infrastructure, we chose to design and

implement our project using the Service Oriented Architecture paradigm. Figure

20 shows the main components of our architecture.

Figure 20: General structure of SCoReS

As stated in the diagram, backend functionalities are provided by the following

web services:

• SimpleServices, which provides data belonging to a certain service given

the service id.

• ServiceRetriever, which is responsible for finding services that satisfy

the specified conditions and ranking them according to their similarity.

• WorkflowEngine, which is responsible for saving, retrieving and execut-

ing composite services.

More in detail, SimpleServices interacts with an ontology, which contains infor-

mation about services, sensors, locations and their relationships (SensoriOntology),

and a database where data collected from sensors are stored (SensorDB).

WorkflowEngine, instead, interacts with a database containing workflows associ-

ated to composite services (WorkflowDB).

62

Finally, ServiceRetriever invokes SimpleServices and interacts with SensoriOn-

tology.

All these services use a shared library, which is used to interact with the ontology,

build and parse JSON objects, invoke external services and share the workflow

constructs and data models.

63

9.1 Service Retriever Module

ServiceRetriever web service is composed of the following classes, as shown in

figure 21:

Figure 21: General structure of Service Retriever module

Inside the module there is a ConfigurationManager class, used to read the config-

uration file and get values associated to some parameters. Every single parameter

configure a part of our core functionalities, that the developer can personalize

for its needs.

64

9.1.1 Server class

The Server Class manages the entire REST requests sent by the user. Every

request has the same base URL, but appending at the end different paths can

generate different methods:

• In order to search specific services is possible to utilize two different re-

quests, one parametric, and the other, raw, for more advanced users.

• To find the right value for every parameter there are several support re-

quests that describe all the possible correct values.

• For the details of a specific concept present in the ontology it is possible to

request a JSON description.

All these methods generate an error if the request is not well formatted or if a

mandatory parameter is missing. For the complete list of the entire set of oper-

ations see section B.

The parametric search functionality is very detailed and the user can find specific

services by tuning the right parameters.

There are two types of support requests:

• A general one, which describes all the possible values for a parameter.

• A specific one, which searches the values that correspond to some charac-

teristics chosen by the user.

9.1.2 Service Retriever class

This class is a general interface that lets the client interact with the server by

invoking useful operations.

Its methods can be divided in three different types:

• The query ones, which let the user request a list of services with particular

characteristics.

• The parametric ones, that allow the user to receive a list of parameters

that can be used as input parameters for the previous type of methods.

• The advanced ones, for expert users.

Each method returns a JSON string that can be formatted in two possible ways:

as a list of objects, in which every item has properties and assertions extracted

from the ontology, or an error string, containing details about the cause of such

65

error.

For every object in the ontology there is a set of properties that are specific for it.

In section A, a complete list of general templates for every ontology concept is

published, together with a list of all possible errors.

In order to retrieve a list of specific services, the user can invoke the method

getAllServices with the following parameters:

• Kind, with a value within the response of the getAllKinds method.

• Category, with a value within the response of the getAllCategories method.

• NodeType, that must be either the Actuator or Sensor constant value.

• TimeOutput, with a value within the response of the getAllTimeOutputs

method.

• ExactTimeOutput, either true if the user wants only services having time

output property equal to the previously defined one, or false if also services

having time output property different but compatible with the previously

defined one should be considered (this parameter is considered only if the

previous one is specified).

• location, with a value within the response of the getAllBuildings, getAll-

Campuses, getAllFloors or getAllRooms methods.

• extendToNeighbor, either true if the user also wants services near the spec-

ified location, or false if he doesn’t (this parameter is considered only if the

previous one is specified).

• sampleNumber, used to indicate the minimum number of results that a

service with LastX timeOutput property should return (if not specified it

is set to 1).

• from, used to indicate the starting date that a service with Interval time-

Output property should consider in order to provide the desired result (if

not specified the interval is lowerly unbounded).

• to, used to indicate the ending date that a service with Interval timeOut-

put property should consider in order to provide the desired result (if not

specified the interval is upperly unbounded).

66

• granularity, used to indicate the duration (in seconds) of each sub-interval

that a service with Interval timeOutput property should consider in order

to provide the desired result (if not specified coincides to the interval).

Expert users can use sendSPARQLRequest method to send a preformatted

SPARQL query and the desired result type. In this way it is possible to query

the ontology in order to extract various types of data, which can also be obtained

with the general methods described above.

9.1.3 Service Describer class

This class invokes OntologyInquirer and ServiceEvaluator methods in order to

collect information about available services and possible query parameters, and

return that in a structured way.

More in detail, the class constructor instantiates the OntologyInquirer class,

which will be available for the whole class lifecycle.

The method getPossiblePropertyValues builds a SPARQL query that asks

to retrieve all possible values of the category, kind or timeOutput data property

according to the given parameter’s value, invokes the executeQuery method of

the OntologyInquirer instance and returns the results of this one.

The method getLocationType specifies the type of the given location (room,

floor, building, campus or specific location) by simply invoking the getLocation-

Type method of the OntologyInquirer instance.

There are also some methods for getting specific information about certain ser-

vices, like the node or location descriptions. All these methods are implemented

in the following way:

• At first the executeQuery method of the OntologyInquirer instance is in-

voked, having in input the SPARQL query specified by the user, in order

to have a list of ids.

• Then specific methods of the OntologyInquirer instance for each result type

are invoked for each id.

• Finally the returned values are put in a support class instance, this one is

added in a collection and, when all ids have been processed, the collection

is returned.

More in detail, these methods are the following:

67

• getLocationDescription, which uses LocationDataModel support class

and invokes getLocationData for each service id multiple times passing re-

spectively room, floor, building and campus for the location type parame-

ter.

• getNodeDescription, which uses NodeDataModel support class and in-

vokes getCategory, getKind, getNodeType, getLocationId and getDeviceId

methods for each node id.

• getDeviceDescription, which uses DeviceDataModel support class and

invokes getDeviceType and either getConsumptionData or getProduction-

Data for each device id.

• getRoomDescription, which uses RoomDataModel support class and in-

vokes getNearRooms and getFloorId for each room id.

• getFloorDescription, which uses FloorDataModel support class and in-

vokes getUpFloor and getBuildingId for each floor id.

• getBuildingDescription, which uses BuildingDataModel support class

and invokes getCampusId and getNearBuildings for each building id.

• getCampusDescription, which uses CampusDataModel support class

and saves each campus id in a support class instance.

• Finally, getServiceDescription, which uses ServiceDataModel support

class and invokes getTimeOutput and getNodeId methods for each service

id.

9.1.4 Service Evaluator class

This class evaluates the quality of services’ responses, provides for each service

a score and filters out irrelevant results by implementing the service similarity

algorithm described in part 7.

More in detail, the class constructor instantiates the ServiceInquirer and Ser-

viceEvaluator classes that will be available for the whole class lifecycle.

The method evaluateServices starts with a list of unordered services and fol-

lows a sequence of steps in order to rate them from the best result to the worst:

• At first the getNowDataRanking, getLastXDataRanking or getInter-

valDataRanking private methods are invoked according to the time out-

put property value requested by the user. These three methods compute

the service output penalty for all the provided services.

68

• Then for each service, if the user asked to relax the time output constraint,

the computeTimeOutputPenalty private method is invoked and the

time output penalty is applied.

• If the user asked neighbor extension, the computeLocationPenalty pri-

vate method is invoked and the location penalty is applied too.

• After that, services are filtered according to their penalty and services

whose penalty is below a certain threshold are removed from the service

list.

• Finally the ranked and filtered service list is returned to the user.

In details, the penalty based on service data is computed as it follows:

• For the method getNowDataRanking, the most recent data receives the

highest ranking.

• For the method getLastXDataRanking, the ranking is calculated by

combining two aspects: the number of data returned by a service and their

respective timestamp. The service with the highest number of items and

the most recent data will receive the highest ranking.

• For the method getIntervalDataRanking, the ranking is calculated by

aggregating the data for a given service in the time span decided by the

user and calculating the intervals of time covered by such values. The ser-

vice with the highest number of intervals covered will receive the highest

ranking.

9.1.5 Service Inquirer class

This class uses the REST API in order to get data from simple sensor network

services.

More in detail, methods getNowData, getLastXData and getIntervalData

follow this procedure:

• Firstly invoking the createRequest private method with parameters given

by the user in order to build the service URI.

• Then calling up the getServiceResponse private method that returns

the service response in JSON format.

• Finally converting the response from JSON to, respectively, NowData-

Model, LastXDataModel or IntervalDataModel, and returning that response

to the user, or throwing either a ServiceMalfunctionException or a Service-

UnreachableException if problems arise.

69

9.2 Workflow Engine Module

WorkflowEngine web service is composed of the following classes, as shown in

figure 22:

Figure 22: General structure of Workflow Engine Module

Inside the module there is a ConfigurationManager class, used to read the config-

uration file and get values associated to some parameters. Every single parameter

configures a part of our core functionalities, that the developer can personalize

for its needs.

9.2.1 Server Class

The main purpose of this class is providing a REST web service interface to this

component. Thus, all of its functionalities are exploited by invoking Workflow-

70

Manager class methods.

9.2.2 Workflow Manager Class

This class uses DatabaseInterface and ConfigurationManager classes to respec-

tively interact with the workflow database and read the service configuration file,

and the OntologyInquirer class of the shared library to interact with the ontology.

More in detail, the class constructor instantiates the DatabaseInterface, Config-

urationManager, and OntologyInquirer classes. In particular, the latter is initial-

ized by providing the path to the OWL file, that is provided by invoking the

ontologyFile method of the ConfigurationManager class.

A second version of the constructor, which accepts a boolean as input, is used to

let the application be run as a Java application, which is mandatory for being

able to run JUnit tests:

• If the given value is true, the DatabaseInterface class is initialized by pass-

ing a connection string read from the configuration file.

• If it is false, its behaviour is exactly the same as the constructor with no

parameters.

The listItems method checks the provided Integer parameter to determine if

the user is asking for an executable workflow or a template, and invokes either

the method listExecutableWorkflows or the listTemplateWorkflows one of the

DatabaseInterface class, returning its result.

The getExecutableWorkflows method simply invokes the method listExe-

cutableWorkflows of the DatabaseInterface class.

The getItem method checks the provided Integer parameter to determine if

the user is asking for an executable workflow or a template, invokes either the

method getExecutableWorkflow or the getTemplateWorkflows one of the Databa-

seInterface class, converts the value given by the previous method invocation

from a JSON string to either an ExecutableWorkflow or a TemplateWorkflow

Java instance, and finally returns this one.

The saveItem method firstly checks if the provided Workflow parameter already

exists in the database and ontology, and if it is an instance of an executable

workflow or a template. Then its behaviour changes according to the previously

collected information:

71

• If the provided parameter is a preexistent workflow, the method updates

it in the database by invoking the editExecutableWorkflow method of the

DatabaseInterface class, and in the ontology by invoking the methods delete-

CompositeService and createCompositeService of the OntologyInquirer class.

• If it is a nonexistent workflow, the method adds it to the database and the

ontology by invoking editExecutableWorkflow and createCompositeService.

• If it is a preexistent template, the method updates it by invoking the

method editTemplateWorkflow of the DatabaseInterface class.

• If it is a nonexistent template, the method adds it by invoking the method

addTemplateWorkflow of the DatabaseInterface class.

The deleteItem method checks the provided Integer parameter to determine if

the user is asking for an executable workflow or a template, and invokes either

the method deleteExecutableWorkflow or the deleteTemplateWorkflows one of

the DatabaseInterface class.

The executeWorkflow method simply invokes at first the getItem method of

its own class, and then the execute one of the ExecutableWorkflow instance found

in the previous step, passing the workflow variables provided by the user as input

parameters.

9.2.3 Database Interface class

This class is used to directly interact with the workflow database by sending SQL

queries to the DBMS.

The class constructor instantiates a connection to the DBMS by getting a data

source from the application server JNDI resources, or by using the provided con-

nection string.

Methods listTemplateWorkflows and listExecutableWorkflows perform a

SELECT SQL query asking the names of, respectively, all templates or all exe-

cutable workflows based on the specified template (if the template parameter is

not specified, all executable workflows are retrieved), and populate an IdData-

Model with the query results.

Methods getTemplateWorkflow and getExecutableWorkflow perform a

SELECT SQL query asking the data field (that contains the workflow JSON

string) of, respectively, a template or an executable workflow having the pro-

vided name, and return the query results.

72

Methods addTemplateWorkflow and addExecutableWorkflow perform an

INSERT SQL query that adds to the database respectively, a template or an

executable workflow whose data are provided as input parameters.

Methods editTemplateWorkflow and editExecutableWorkflow perform an

UPDATE SQL query that updates information about, respectively, a template

or an executable workflow based on data provided as input parameters.

Methods deleteTemplateWorkflow and deleteExecutableWorkflow per-

form a DELETE SQL query that deletes from the database, respectively, a tem-

plate or an executable workflow having the specified name.

73

9.3 Simple Service Module

SimpleService web service is composed of the following classes, as shown in figure

23:

Figure 23: General structure of Simple Service Module

Inside the module there is a ConfigurationManager class, used to read the config-

uration file and get values associated to some parameters. Every single parameter

configure a part of our core functionalities, that the developer can personalize

for its needs.

74

9.3.1 Server class

The Server Class manages the entire REST requests sent by the user. Every

request has the same base URL, but appending at the end a specific path causes

the invocation of a certain service’s method. More in detail:

• For the three types of service (Last One, Last X and Interval, as described

in section 6.1.1), it is possible to show particular values registered by the

associated sensor.

• In order to operate an aggregation on the data saved by a particular service.

• To activate a particular actuator.

Every method can be configured with dedicated parameters, which can be op-

tional or mandatory. In this way the user can personalize his request. For the

complete list of all operation see section B.

In particular:

• For every request, the parameter serviceId is mandatory and represents the

identifier of the service that the user wants to access.

• For a Last X request of data it is possible to limit the number of values

returned with the parameter sampleNumber. If the service has fewer values,

all the data present are returned. If the service has more values, only the

most recent ones are returned.

• For an Interval request it is possible to set the temporal span to search

particular data, defining the start date and the end date.

• For an aggregation operation it is mandatory to define the type of function

that will be applied to the data (for more details see section 9.3.4).

• For an actuator it is possible to also send a parameter defining the desired

operation.

All the results are translated into JSON strings.

9.3.2 Request Manager class

The RequestManager analyzes all the parameters sent by the Server Class in

order to translate and control the entire request received.

75

Every method follows the same procedure:

1. At first the received serviceId parameter is controlled: if a service with

that identifier exists and has an associated sensor or actuator, the method

executes the next step, otherwise it will launch an exception.

2. Then the associated QueryDB or Aggregator method is executed for the

requested operation.

3. The final result, a list of values or an exception, is translated in a Data-

Model format, in order to be translated in JSON by the Server class. For

the complete details about DataModel see section 9.4.1.

9.3.3 QueryDB class

QueryDB is the class that manages the interaction with the SCoReS’ ontology

and the real-time data database. Starting from the requested service, it searches

the associated sensor or actuator with setActuatorId or setSensorId.

With the result found with these methods it is possible to invoke one of the

following methods:

• searchNowValue, that finds the most recent value registered by the sen-

sor.

• searchLastXValues, that returns a list with the most recent values. The

size is imposed by the variable sampleValues requested by the user and it

can be equal or less than that parameter.

• searchIntervalValues, that creates a list with the values registered be-

tween two dates: from, the start date, and to, the end date. Both quantities

are parameters specified by the user.

9.3.4 Aggregator package

The Aggregator package is used to analyze the data registered by a sensor.

As shown in figure 24, the package is composed by two basic structures:

• A general aggregation, which utilizes an operation on all the data.

• A temporal aggregation, which filters the values with a couple of dates and

applies an operation on the subset.

The result is a list that contains the aggregated data.

76

Figure 24: General structure of Aggregator package

A temporal aggregation needs some additional parameter in order to operate:

• A start date and an end date for the considered time interval.

• A granularity, the quantity (expressed in seconds) of the sub-interval that

will be used for dividing the list of values.

With the method checkTemporalData it is possible to analyze all these pa-

rameters and find the missing ones. For example if the start date is not set, the

method finds the least recent value registered and imposes the associated date

as the start one.

The set of pre-defined operations is composed by:

• AvgOperation, which calculates the mean value of a list.

77

• CountOperation, which computes the size of the list.

• MaxOperation, which finds the maximum value.

• MinOperation, which search the minimum value.

78

9.4 Shared utilities library

Our shared library is made up of the following elements, as shown in figure 25.

This library contains all the utilities used by the different modules in our project.

In addition, it also contains classes that facilitate the integration of our modules

in SeNSoRi and the interaction with the graphical interface. As a result the

Shared Library is a tool for the programmer, not for the final user.

For a basic interaction, in order to utilize predefined methods in SCoReS, is

possible to include:

• Constant Definition package, with the explanation and values of the

entire set of constant present in SCoReS.

• Exceptions package, with the entire set of custom exceptions that can

be raised in our project.

• Formatter package, with a series of methods that convert strings to dates

and vice versa. For a more specific description see section 9.4.4.

• REST Request package, with a set of utilities to interact with the Simple

Service Module. With the methods contained in this package, it is possible

to generate an automatic request to obtain data for a particular service.

79

Figure 25: General structure of shared utilities library

80

9.4.1 Data Model package

In order to have a unified definition of all the possible concepts present in

SCoReS, we have created a series of models with special attributes. In figure

26 are shown all the classes.

Figure 26: General structure of Data Model package

The main class is DataModel, an abstract class that defines the methods that

every item must have:

• jsonTemplate, which converts the structured data in a JSON object. Ev-

ery attribute is translated in a JSON format with a couple of parameter

81

names and real values. The real value is extracted from the ontology or the

databases present in SCoReS.

• convertJson, which receives a JSON definition and converts it in the

respective DataModel.

• validJson, which controls that a JSON string received is well formatted

and doesn’t contain an error.

All the remaining classes inherit these methods and, in particular, personalize

the jsonTemplate and convertJson ones with their respective set of attributes.

The GeneralListDataModel is the only different method: it converts a list of

DataModel in a JSON string and vice versa. In order to be executed successfully

it is mandatory that:

• The programmer defines the type of DataModel requested, associating the

right constant present in the package.

• A list of JSON definitions or DataModel instances is ready to be analyzed.

9.4.2 Real Data package

Inside SCoReS we utilize a particular set of Data Model classes in order to define

the values registered by the sensors associated to a specific service.

There is a predefined hierarchy of classes that compose the final definition of a

data set, as shown in figure 27:

1. First a pair made up of a value and its respective timestamp is created,

with the data received by the Simple Service Module.

2. Then if the user has requested only a single value, the Data Model created

is SingleValueDataModel. Otherwise a list with all the results is saved

inside ListNameValuePair.

3. As last step, the most general Data Model is returned, which represents

the requested operation.

In this way it is possible to control the flow of steps and throw an error if some

information are missing.

82

Figure 27: General structure of Real Data package

83

9.4.3 Workflow Constructs package

This package contains the classes used for representing executable workflows and

templates, as shown in figure 28.

These classes and their relationships reflect the structure of our workflow lan-

guage, as stated in chapter 9.2, with the following differences:

• The distinction between executable workflows and templates is made by

an inheritance relationship between the Workflow abstract class and the

ExecutableWorkflow and TemplateWorkflow classes.

• The same class (Invoke) is used for representing both service invocation

and service query workflow elements.

• Instead of containing the service invocation or service query data, the In-

voke class contains a reference to either a Service class or a Query one

containing, respectively, all data needed to invoke a service or execute a

query that retrieves the desired services.

• It is possible to specify a query either by a SPARQL statement or by

providing all constraints by using an instance of, respectively, SPARQL-

Query or ParametricQuery classes, which are descendant of the Query

abstract class.

• Workflow variables are declared by instantiating the Variable class

84

Figure 28: General structure of Workflow Constructs package

Executable workflows are executed by invoking the execute method of the Exe-

cutableWorkflow class: this method invokes its namesake of the root element,

whose behavior depends on the class instance:

• Sequence classes invoke in sequence the execute method of their referenced

elements.

• While classes keep invoking the execute method of their referenced ele-

ments as long as the specified condition is true.

• If classes check if the specified condition is true: if so they invoke the

execute method of the element referenced in the then branch, else they

invoke the execute method of the one referenced in the else branch.

85

• CodeSnippet classes instantiate the ScriptExecutor class and then in-

voke the loadEnvironment, executeScript and getEnvironment methods of

this one in order to, respectively, load into the engine all workflow variables,

execute the code snippet and retrieve the workflow variables modified by

the code snippet execution.

• Invoke classes instantiate the ServiceInvoker class, find the Service

instance having the same name as the one specified in the Invoke one,

assign the right variables to the service input and output parameters and

finally invoke the invokeService method of the ServiceInvoker class.

In this way it is possible to execute the workflow elements in a depth-first manner,

according to the behavior specified in chapter 9.2.

9.4.4 Formatter package

We have fixed some conventions for defining the specific part of a date:

• yyyy indicates an year with four digits

• MM represent a month with two digits, months between January and

September have a leading zero

• dd is the number of a day with two digits, days months 1 January and 9

have a leading zero

• h indicates the hours of a day from 0 to 23, in which the midnight is 0

• m represent the minutes of the day

• s is the second of the specific date

• S represent the millisecond

In order to operate on a specific date, the DateFormatter class offers some

utilities. Its methods are:

• convertDateToString, that converts a specific date to a string with the

following format ”yyyy-MM-dd h:m:s.S”

• createDateFromString, that parses a specific string in its corresponding

date. The possible value for the string are ”yyyy-MM-dd h:m:s.S”, ”yyyy-

MM-dd h:m:s” or ”yyyy-MM-dd”

86

9.4.5 Executors package

This package contains the following classes:

Figure 29: General structure of Executors package

The ServiceInvoker class is used to invoke services via the invokeService

method.

More in detail, this method instantiates the ConnectionManager class, builds

the parameter name - value list via the createParametersList private method

and invokes either the getServerResponse or postServerResponse method of the

ConnectionManager class according to the request type specified for the given

service.

The ScriptExecutor class is used to execute workflow code snippets.

The class constructor instantiates a JavaScript engine.

Methods setEnvironment and getEnvironment are used to, respectively, assign

and retrieve a list of variables to/from the JavaScript engine.

The method evaluateExpression is used to evaluate if the given expression is

either true or false.

Finally, the method executeScript executes the provided code snippet.

9.4.6 Ontology Manager package

This package contains the OntologyInquirer, that uses Apache Jena framework

[10] in order to query the ontology via SPARQL and to navigate the ontology’s

structure by returning specific property values for instances that have the given

IDs.

87

Figure 30: General structure of Ontology Manager package

More in detail, the class constructor invokes Jena methods to load the ontology

model, which from now on will be available for the whole class lifecycle.

The executeQuery method sends to Jena a user defined SPARQL query, fetches

query results (if any) and sends them back to the caller as a list of instance ids.

Methods getAbstractServiceType, getNodeType, getDeviceType and get-

LocationType check if the given instance belongs to a specific class (Service

or CompositeService for getAbstractServiceType, Sensor or Actuator for getN-

odeType, Producer or Consumer for getDeviceType, Location, Room, Floor,

Building or Campus for getLocationType) by checking rdf:type object property.

88

Methods getTimeOutput, getKind and getCategory give the value of the

timeOutput, kind and category data properties for the given instance.

The method getNodeId gives the node id associated to the given service by

checking either dataFrom or configures data property according to the associ-

ated node type (sensors have the dataFrom property, whereas actuators have the

configures one).

Similarly, methods getSensorId and getActuatorId give respectively the sen-

sor id and actuator id associated to the given service by checking either the

dataFrom or the configures data properties.

The method getConsumptionData gives the values of the minConsumption,

maxConsumption, avgConsumption and measureUnitConsumption data proper-

ties for the given instance in an aggregated form.

We chose not to have a method for each single data property because we expect

the user to be interested only in their aggregated form and not in the single

property value.

The method getProductionData gives the values of the minProduction, max-

Production and avgProduction data properties and the from object property

(specifying if that property relates to a photovoltaic power plant, a wind power

plant or the national power grid) in an aggregated form.

Even in this case we chose to aggregate data for the previously mentioned reasons.

Methods getLocationId, getFloorId, getUpFloor, getNearRooms, get-

BuildingId, getCampusId and getNearBuildings give the values of, respec-

tively, hasLocation, onFloor, upFloor, nearRoom, inBuilding, inCampus and near-

Building object properties for the given instance.

The method getDownFloor gives the instances having upFloor object property

equal to the given value.

The method getDeviceId either gives the value of the actsUpon object prop-

erty for the given instance if it is an actuator, or gives the id of the device whose

influences data property is associated to the given instance if this one is a sensor.

The method getLocationData gives the value of the in object property for the

given instance limiting the results to the location type specified in the method’s

parameters (room, floor, building or campus).

The method getComposedOf gives the service IDs associated to the given com-

89

posite service by checking the composedOf object property.

The method getUsesAggregate gives the list of values of the usesAggregate

data property for the given composite service.

The method addCompositeService adds a composite service to the ontology

and, if specified, associates it with the provided abstract services via the com-

posedOf object property and creates the usesAggregate data property values.

The method deleteCompositeService deletes the specified composite service.

The method createComposedOf adds the provided service to the composedOf

object property of the specified composite service.

The method deleteComposedOf removes the provided service from the com-

posedOf object property of the specified composite service.

The method createUsesAggregate adds the provided value to the usesAggre-

gate data property of the specified composite service.

Finally, the method deleteUsesAggregate deletes the provided value from the

usesAggregate data property of the specified composite service.

90

10 Conclusion and future works

In this document we have presented the SCoReS (SeNSori COmposition & RE-

trieval Services) project, that offers a retrieval functionality to search information

about a service, and a composition functionality to create new services.

The retrieval functionality has been realized by using an ad-hoc similarity algo-

rithm that compares the main aspects in a service, filters out irrelevant services,

and returns a ranked list to the user.

The composition functionality, instead, was made available by implementing a

custom workflow language and its engine based on JSON, and allows to create

new services either from scratch or by using previously defined templates.

At this stage, all SCoReS services have been implemented. Future work will focus

on the integration of SCoReS services with the other modules of the SeNSori

project, some of which are currently under development, and on the extension of

the list of supported workflow patterns (e.g. including the Parallel construct).

91

A Appendix A

A list of the entire set of JSON message, with examples for every template

A.1 General template

Building Template

Algorithm 9 JSON template for Building concept

”id”: ”Building1”,

”inCampus”: ”Campus1”,

”nearBuilding”: [”Building2”]

Device Template

Algorithm 10 JSON template for Device concept

”energyData”: {”avgEnergy”: 0, ”maxEnergy”: 700, ”measurementUnit”:

”W”, ”minEnergy”: 700 },
”id”: ”TV3D143”,

”type”: 1,

”typeDescription”: ”Consumer”

Floor Template

Algorithm 11 JSON template for Floor concept

”id”: ”Floor11”,

”inBuilding”: ”Building1”,

”upFloor”: ”Floor12”

Location Template

Algorithm 12 JSON template for Location concept

”buildingId”: ”Building1”,

”campusId”: ”Campus1”,

”floorId”: ”Floor32”,

”id”: ”Location97”,

”roomId”: ”Room194”

92

Node Template

Algorithm 13 JSON template for Node concept

”category”: ”Gas”,

”deviceId”: ”KitchenGasOven160”,

”id”: ”Sensor164”,

”kind”: ”Gas”,

”locationId”: ”Location136”,

”nodeType”: 1,

”nodeTypeDescription”: ”Sensor”

Room template

Algorithm 14 JSON template for Room concept

”id”: ”Room39”,

”nearRoom”: [”Room40”,”Room38”],

”onFloor”: ”Floor5”

Service Template

Algorithm 15 JSON template for Service concept

”id”: ”Service439”,

”nodeId”: ”Sensor472”,

”ranking” : 1,

”timeOutput”: ”Now”

”type”:”SERVICETYPE SIMPLE”

A.2 Errors list

Algorithm 16 JSON error for invalid request

”id”: ”ERROR1”,

”errorDefinition”: ”Invalid request”

Algorithm 17 JSON error for zero results

”id”: ”ERROR2”,

”errorDefinition”: ”Zero results”

Algorithm 18 JSON error for no data found

”id”: ”ERROR3”,

”errorDefinition”: ”No data found”

93

B Appendix B

The three main modules developed in SCoReS have a REST interface that allows

the user to request data.

The following guidelines explain how to invoke and format every request.

B.1 Service Retriever Module

Base URL: http://localhost:8080/serviceRetrieverImpl/serviceretriever/

Relative path Parameters Meaning

details id=identifier of the desired

object

type=category of the ob-

ject (for example actuator

or sensor)

Request the details of an ob-

ject present in the system

rooms floorId=identifier of the

floor on which search the

rooms

Request a list of all the

rooms

floors buildingId=identifier of the

building inside which search

the floors

Request a list of all the

floors

buildings campusId=identifier of the

campus on which search the

buildings

Request a list of all the

buildings

campuses Request a list of all the cam-

puses

sparql queryString=a well formed

query in SPARQL

outputType=the type of the

expeted result

Request a particular object

from the ontology with a

SPARQL query

kinds Request the list of the entire

set of possible value for the

parameter kind

categories Request the list of the entire

set of possible value for the

parameter category

timeoutputs Request the list of the entire

set of possible value for the

parameter timeoutput

94

Table 6 – continued from previous page

Relative path Parameters Meaning

services kind=value obtained from

the REST request kinds

category=value obtained

from the REST request

categories

nodeType=can assume

only two values, one for the

sensors the other for the

actuators

timeOutput=value ob-

tained from the REST

request timeoutputs

exactTimeOutput=can be

true or false, in the second

case all types of services

are considered

location=identifier of the

location of interest

extendToNeighbor=can

be true or false, in the

first case all locations are

considered

sampleNumber=maximum

number of registered values

for every Last X service

from=timestamp for the

start date, considered only

for the the time span for

an Interval service

to=timestamp for the end

date, considered only for

the the time span for an

Interval service

granularity=time span for

the interval described by

the parameters from and

to

Request for a list a services

with particular characteris-

tics

Table 6: REST invocations for Service Retriever Module

95

B.2 Workflow Engine Module

Base URL: http://localhost:8080/workflowengine/engine

Relative path Parameter Meaning

retrieve type=can assume only two

values, one for the exe-

cutable workflow the other

for the template

Request the entire list of

the workflows present in

SCoReS

executablewf templateId=identifier of

the specific template

Request a list of executable

workflows derived from the

same template

workflow workflowId=identifier of

the workflow to search

type=can assume only

two values, one for the

executable workflow the

other for the template

Search a specific workflow

or template

delete workflowId=identifier of

the workflow to delete

type=can assume only

two values, one for the

executable workflow the

other for the template

Delete a specific workflow

[Mandatory: DELETE re-

quest]

executablewf/save Save a new executable

workflow, in the body of

the request is necessary

to add all the specifica-

tion. [Mandatory: POST

request]

templatewf/save Save a new template, in the

body of the request is neces-

sary to add all the specifica-

tion. [Mandatory: POST

request]

Table 7: REST invocations for Workflow Engine Module

96

B.3 Simple Service Module

Base URL: http://localhost:8080/simpleServiceImpl/serverDB

Relative path Parameter Meaning

now serviceId=identifier of the

specific service

Request the last value regis-

tered by the specific service

interval serviceId=identifier of the

specific service

from=timestamp for the

start date, considered only

for the the time span

to=timestamp for the end

date, considered only for

the the time span

Request the list of values

registered by the specific

service between the interval

dates

lastx serviceId=identifier of the

specific service

sampleNumber=maximum

number of registered values

Request the most recent

values registered by the spe-

cific service

temporal serviceId=identifier of the

specific service

from=timestamp for the

start date, considered only

for the the time span

to=timestamp for the end

date, considered only for

the the time span

granularity=time span for

the interval described by

the parameters from and to

op=operation to execute on

the data

Request a temporal aggre-

gation on the data regis-

tered by the specific service

general serviceId=identifier of the

specific service

op=operation to execute on

the data

Request an aggregation on

the data registered by the

specific service

actuator serviceId=identifier of the

specific service

parameter=value for the

activation of the actuator

Request an activation of the

specific actuator

Table 8: REST invocations for Simple Service Module

97

References

[1] Ian F Akyildiz et al. “Wireless sensor networks: a survey”. In: Computer

networks 38.4 (2002), pp. 393–422.

[2] Sensors Anywhere. 2009. url: http://www.sany-ip.eu.

[3] Michael Athanasopoulos, Kostas Kontogiannis, and Chris Brealey. “To-

wards an interpretation framework for assessing interface uniformity in

REST”. In: Proceedings of the Second International Workshop on REST-

ful Design. WS-REST ’11. Hyderabad, India: ACM, 2011, pp. 47–50. isbn:

978-1-4503-0623-2. doi: 10.1145/1967428.1967440. url: http://doi.

acm.org/10.1145/1967428.1967440.

[4] Davide Francesco Barbieri et al. “Querying rdf streams with c-sparql”. In:

ACM SIGMOD Record 39.1 (2010), pp. 20–26.

[5] D Bianchini, V De Antonellis, and M Melchiori. “Capability matching and

similarity reasoning in service discovery”. In: CAiSE Int. Workshop on

Enterprise Modeling and Ontologies for Interoperability, EMOI. 2005.

[6] Antonio Bucchiarone and Stefania Gnesi. “A Survey on Services Compo-

sition Languages and Models”. In: Proceedings of International Workshop

on Web Services Modeling and Testing 2006 (WS-MaTe 2006). 2006.

[7] J. Church and A. Motro. “Discovering Service Similarity by Testing”. In:

Services Computing (SCC), 2011 IEEE International Conference on. 2011.

[8] Nagios Enterprises. url: http://www.nagios.org..

[9] Federico Fernandez and Jaime Navón. “Towards a Practical Model to Fa-

cilitate Reasoning About REST Extensions and Reuse”. In: Proceedings

of the First International Workshop on RESTful Design. WS-REST ’10.

Raleigh, North Carolina: ACM, 2010, pp. 31–38. isbn: 978-1-60558-959-6.

doi: 10.1145/1798354.1798383. url: http://doi.acm.org/10.1145/

1798354.1798383.

[10] Apache Software Foundation. Apache Jena. 2012. url: http://jena.

apache.org/.

[11] Akin Gunay and Pinar Yolum. “Structural and Semantic Similarity Metrics

for Web Service Matchmaking”. In: E-Commerce and Web Technologies.

Ed. by Giuseppe Psaila and Roland Wagner. Vol. 4655. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2007, pp. 129–138. url:

http://dx.doi.org/10.1007/978-3-540-74563-1_13.

98

http://www.sany-ip.eu
http://dx.doi.org/10.1145/1967428.1967440
http://doi.acm.org/10.1145/1967428.1967440
http://doi.acm.org/10.1145/1967428.1967440
http://www.nagios.org.
http://dx.doi.org/10.1145/1798354.1798383
http://doi.acm.org/10.1145/1798354.1798383
http://doi.acm.org/10.1145/1798354.1798383
http://jena.apache.org/
http://jena.apache.org/
http://dx.doi.org/10.1007/978-3-540-74563-1_13

[12] Jeffrey Hau. “A Semantic Similarity Measure for Semantic Web Services”.

In: In: Web Service Semantics Workshop at WWW (2005. 2005. url:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

59.9924.

[13] Antonio Garrote Hernández and Maŕıa N. Moreno Garćıa. “A formal defi-

nition of RESTful semantic web services”. In: Proceedings of the First In-

ternational Workshop on RESTful Design. WS-REST ’10. Raleigh, North

Carolina: ACM, 2010, pp. 39–45. isbn: 978-1-60558-959-6. doi: 10.1145/

1798354 . 1798384. url: http : / / doi . acm . org / 10 . 1145 / 1798354 .

1798384.

[14] John Ibbotson et al. “Sensors as a service oriented architecture: Middle-

ware for sensor networks”. In: Intelligent Environments (IE), 2010 Sixth

International Conference on. IEEE. 2010, pp. 209–214.

[15] Younghan Kim. “Restful architecture of wireless sensor network for build-

ing management system”. In: KSII Transactions on Internet and Informa-

tion Systems (TIIS) 6.1 (2012), pp. 46–63.

[16] Matthias Klusch, Benedikt Fries, and Katia Sycara. “Automated semantic

web service discovery with OWLS-MX”. In: Proceedings of the fifth inter-

national joint conference on Autonomous agents and multiagent systems.

AAMAS ’06. Hakodate, Japan: ACM, 2006, pp. 915–922. isbn: 1-59593-

303-4. url: http://doi.acm.org/10.1145/1160633.1160796.

[17] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. “Devel-

oping Registries for the Semantic Sensor Web using stRDF and stSPARQL”.

In: International Workshop on Semantic Sensor Networks. 2010.

[18] F. Lecue et al. “SOA4All: An Innovative Integrated Approach to Services

Composition”. In: Web Services (ICWS), 2010 IEEE International Con-

ference on. 2010, pp. 58–67. doi: 10.1109/ICWS.2010.68.

[19] Min Liu et al. “An weighted ontology-based semantic similarity algorithm

for web service”. In: Expert Systems with Applications 36.10 (2009), pp. 12480

–12490. issn: 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.

2009.04.034. url: http://www.sciencedirect.com/science/article/

pii/S0957417409003741.

[20] Thomas Luckenbach et al. “TinyREST-a protocol for integrating sensor

networks into the internet”. In: Proc. of REALWSN. Citeseer. 2005.

[21] R. Maigre. “Survey of the Tools for Automating Service Composition”.

In: Web Services (ICWS), 2010 IEEE International Conference on. 2010,

pp. 628–629. doi: 10.1109/ICWS.2010.72.

99

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9924
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9924
http://dx.doi.org/10.1145/1798354.1798384
http://dx.doi.org/10.1145/1798354.1798384
http://doi.acm.org/10.1145/1798354.1798384
http://doi.acm.org/10.1145/1798354.1798384
http://doi.acm.org/10.1145/1160633.1160796
http://dx.doi.org/10.1109/ICWS.2010.68
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2009.04.034
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2009.04.034
http://www.sciencedirect.com/science/article/pii/S0957417409003741
http://www.sciencedirect.com/science/article/pii/S0957417409003741
http://dx.doi.org/10.1109/ICWS.2010.72

[22] Sunil Mamidi, Yu-Han Chang, and Rajiv Maheswaran. “Improving build-

ing energy efficiency with a network of sensing, learning and prediction

agents”. In: Proceedings of the 11th International Conference on Autonomous

Agents and Multiagent Systems-Volume 1. International Foundation for

Autonomous Agents and Multiagent Systems. 2012, pp. 45–52.

[23] Umardand Shripad Manikrao and T. V. Prabhakar. “Dynamic Selection of

Web Services with Recommendation System”. In: Proceedings of the Inter-

national Conference on Next Generation Web Services Practices. NWESP

’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 117–. isbn:

0-7695-2452-4. doi: 10.1109/NWESP.2005.32. url: http://dx.doi.org/

10.1109/NWESP.2005.32.

[24] Tobias Nestler. “Towards a mashup-driven end-user programming of SOA-

based applications”. In: Proceedings of the 10th International Conference

on Information Integration and Web-based Applications & Services. iiWAS

’08. Linz, Austria: ACM, 2008, pp. 551–554. isbn: 978-1-60558-349-5. doi:

10.1145/1497308.1497408. url: http://doi.acm.org/10.1145/

1497308.1497408.

[25] Cesare Pautasso. “BPEL for REST”. In: Business Process Management.

Ed. by Marlon Dumas, Manfred Reichert, and Ming-Chien Shan. Vol. 5240.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008,

pp. 278–293. isbn: 978-3-540-85757-0. doi: 10.1007/978-3-540-85758-

7_21. url: http://dx.doi.org/10.1007/978-3-540-85758-7_21.

[26] Cesare Pautasso. “Composing RESTful Services with JOpera”. In: Soft-

ware Composition. Ed. by Alexandre Bergel and Johan Fabry. Vol. 5634.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009,

pp. 142–159. isbn: 978-3-642-02654-6. doi: 10.1007/978-3-642-02655-

3_11. url: http://dx.doi.org/10.1007/978-3-642-02655-3_11.

[27] Cesare Pautasso. “On Composing RESTful Services”. In: Software Service

Engineering. Ed. by Frank Leymann et al. Dagstuhl Seminar Proceed-

ings 09021. Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, Germany, 2009. url: http://drops.dagstuhl.de/opus/

volltexte/2009/2043.

[28] Cesare Pautasso and Erik Wilde. “RESTful web services: principles, pat-

terns, emerging technologies”. In: Proceedings of the 19th international

conference on World wide web. WWW ’10. Raleigh, North Carolina, USA:

ACM, 2010, pp. 1359–1360. isbn: 978-1-60558-799-8. doi: 10.1145/1772690.

1772929. url: http://doi.acm.org/10.1145/1772690.1772929.

100

http://dx.doi.org/10.1109/NWESP.2005.32
http://dx.doi.org/10.1109/NWESP.2005.32
http://dx.doi.org/10.1109/NWESP.2005.32
http://dx.doi.org/10.1145/1497308.1497408
http://doi.acm.org/10.1145/1497308.1497408
http://doi.acm.org/10.1145/1497308.1497408
http://dx.doi.org/10.1007/978-3-540-85758-7_21
http://dx.doi.org/10.1007/978-3-540-85758-7_21
http://dx.doi.org/10.1007/978-3-540-85758-7_21
http://dx.doi.org/10.1007/978-3-642-02655-3_11
http://dx.doi.org/10.1007/978-3-642-02655-3_11
http://dx.doi.org/10.1007/978-3-642-02655-3_11
http://drops.dagstuhl.de/opus/volltexte/2009/2043
http://drops.dagstuhl.de/opus/volltexte/2009/2043
http://dx.doi.org/10.1145/1772690.1772929
http://dx.doi.org/10.1145/1772690.1772929
http://doi.acm.org/10.1145/1772690.1772929

[29] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. “Restful web

services vs. ”big” web services: making the right architectural decision”.

In: Proceedings of the 17th international conference on World Wide Web.

WWW ’08. Beijing, China: ACM, 2008, pp. 805–814. isbn: 978-1-60558-

085-2. doi: 10.1145/1367497.1367606. url: http://doi.acm.org/10.

1145/1367497.1367606.

[30] Mohsen Rouached, Sana Baccar, and Mohamed Abid. “RESTful Sensor

Web Enablement Services for Wireless Sensor Networks”. In: Services (SER-

VICES), 2012 IEEE Eighth World Congress on. IEEE. 2012, pp. 65–72.

[31] Stefan Schroedl. Precision-Recall and ROC Curves. 2008. url: http://

www.mathworks.com/matlabcentral/fileexchange/21528-precision-

recall-and-roc-curves.

[32] Amit P. Sheth, Karthik Gomadam, and Jon Lathem. “SA-REST: Seman-

tically Interoperable and Easier-to-Use Services and Mashups”. In: IEEE

Internet Computing 11.6 (Nov. 2007), pp. 91–94. issn: 1089-7801. doi: 10.

1109/MIC.2007.133. url: http://dx.doi.org/10.1109/MIC.2007.133.

[33] D. Skoutas et al. “Ranking and Clustering Web Services Using Multicriteria

Dominance Relationships”. In: Services Computing, IEEE Transactions on

3.3 (2010), pp. 163–177. issn: 1939-1374. doi: 10.1109/TSC.2010.14.

[34] Wikipedia. JSON — Wikipedia, L’enciclopedia libera. [Online; in data 1-

agosto-2013]. 2013. url: http://it.wikipedia.org/w/index.php?

title=JSON&oldid=60017155.

[35] Wikipedia. Representational State Transfer — Wikipedia, L’enciclopedia

libera. [Online; in data 1-agosto-2013]. 2013. url: http://it.wikipedia.

org/w/index.php?title=Representational_State_Transfer&oldid=

58342996.

[36] Wikipedia. SOAP — Wikipedia, L’enciclopedia libera. [Online; in data 1-

agosto-2013]. 2013. url: http://it.wikipedia.org/w/index.php?

title=SOAP&oldid=58165108.

[37] Li Zhang et al. “An Approach for Web Service QoS Prediction Based on

Service Using Information”. In: Service Sciences (ICSS), 2010 Interna-

tional Conference on. 2010, pp. 324–328. doi: 10.1109/ICSS.2010.34.

[38] Haibo Zhao and P. Doshi. “Towards Automated RESTful Web Service

Composition”. In: Web Services, 2009. ICWS 2009. IEEE International

Conference on. 2009, pp. 189–196. doi: 10.1109/ICWS.2009.111.

[39] I. Zuzak and S. Schreier. “ArRESTed Development: Guidelines for De-

signing REST Frameworks”. In: Internet Computing, IEEE 16.4 (2012),

pp. 26–35. issn: 1089-7801. doi: 10.1109/MIC.2012.60.

101

http://dx.doi.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://www.mathworks.com/matlabcentral/fileexchange/21528-precision-recall-and-roc-curves
http://www.mathworks.com/matlabcentral/fileexchange/21528-precision-recall-and-roc-curves
http://www.mathworks.com/matlabcentral/fileexchange/21528-precision-recall-and-roc-curves
http://dx.doi.org/10.1109/MIC.2007.133
http://dx.doi.org/10.1109/MIC.2007.133
http://dx.doi.org/10.1109/MIC.2007.133
http://dx.doi.org/10.1109/TSC.2010.14
http://it.wikipedia.org/w/index.php?title=JSON&oldid=60017155
http://it.wikipedia.org/w/index.php?title=JSON&oldid=60017155
http://it.wikipedia.org/w/index.php?title=Representational_State_Transfer&oldid=58342996
http://it.wikipedia.org/w/index.php?title=Representational_State_Transfer&oldid=58342996
http://it.wikipedia.org/w/index.php?title=Representational_State_Transfer&oldid=58342996
http://it.wikipedia.org/w/index.php?title=SOAP&oldid=58165108
http://it.wikipedia.org/w/index.php?title=SOAP&oldid=58165108
http://dx.doi.org/10.1109/ICSS.2010.34
http://dx.doi.org/10.1109/ICWS.2009.111
http://dx.doi.org/10.1109/MIC.2012.60

	Sommario
	Abstract
	Introduction
	State of art
	Similarity's algorithms
	Service composition
	Other technologies: communication's protocol

	Tools and technologies utilized
	Ontologies
	OWL
	RDF
	SPARQL
	Apache Jena
	REST
	JSON

	General Architecture
	Information's types present in the system
	Ontology
	Database with real-time data
	Database for composite services

	Service Retriever
	Service Composer

	Service similarity algorithm
	Support data preprocessing
	Service output penalty
	Last One
	Last X
	Interval

	Location penalty
	Time output penalty
	Algorithm tuning

	Service composition
	Implementation of SCoReS
	Service Retriever Module
	Server class
	Service Retriever class
	Service Describer class
	Service Evaluator class
	Service Inquirer class

	Workflow Engine Module
	Server Class
	Workflow Manager Class
	Database Interface class

	Simple Service Module
	Server class
	Request Manager class
	QueryDB class
	Aggregator package

	Shared utilities library
	Data Model package
	Real Data package
	Workflow Constructs package
	Formatter package
	Executors package
	Ontology Manager package

	Conclusion and future works
	Appendix A
	General template
	Errors list

	Appendix B
	Service Retriever Module
	Workflow Engine Module
	Simple Service Module

