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ABSTRACT 

Pipe flow systems are used in a vast variety of applications, ranging from large 

scale oil and gas and refineries pipelines to very small scale application such as 

those used for medical applications. Design of such systems is currently 

governed by standards and common practices. Although they provide systems of 

adequate safety, they don’t allow a systematic assessment of their real-time 

performance due to presence of various sources of uncertainty. A detailed 

analysis aiming to quantify the impact of these uncertainties can lead to a more 

efficient design, more reliable systems and reduced maintenance requirements. 

Surface roughness, pressure drop coefficients, flow properties, corrosion 

deterioration etc, are only few of the variables governed by a high degree of 

randomness. This work has been developed with particular reference to 

multiphase flow systems where above mentioned uncertainties are a major issue 

for safe operation.  

The field of pipelines and piping systems in general is dominated by qualitative 

methods and no quantitative reliability assessment at the design stage has been 

applied yet. This work presents a systematic methodology to assess 

quantitatively the impact of uncertainties on the system so as to achieve a better 

understanding of the system performance. The results obtained can influence 

decision making in operation and maintenance of single system components.  

Here two different scales of flow systems are considered; one for large scale and 

another one for small scale applications, and the applicability of the method 

proposed was determined for both. The methodology that is proposed considers 

both direct numerical simulations and different response surface methods 

comparing their effectiveness and benchmarking their performance in terms of 

computational time and accuracy in the results. Particularly polynomial and non-

linear response surfaces are considered and then an estimate of the probability of 

exceedance of a permissible threshold is obtained through First Order Reliability 

Method, which result is heavily dependent on the accuracy of the response 

surface used. With these techniques it is also possible to know which points of 

the system are less reliable, thus allowing improvements in system safe 

operability.  

The methodology that is presented herein can be extended for different relevant 

problems encountered in engineering and scientific applications. 

Keywords:  

Quantitative Method for Probabilistic Assessment, Surrogate Modelling, 

Kriging, Dynamically Kriged Limit State, Pipeline, Predictive Engineering  
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1 INTRODUCTION 

Fluids are widely used and processed in many industrial fields. They often have to cover 

long distances between process operations or process units and they are handled and 

transported thanks to piping systems. Many different kind of processes and utilities are 

possible thanks to pipe networks: water distribution, refrigeration systems, fire 

protection systems, steam and compressed air utilities, waste and storm water, oil 

systems, lubrication circuits, gases and flue gases.  

These fluids are transported across a plant or a site thanks to pipes which are selected in 

accordance with the characteristics of the fluid and the operating conditions of the same 

(flow rate, pressure, temperature). Pipe selection procedure aims at choosing the best 

material, pipe diameter, pipe thickness for the current application. Pipes are connected 

and arranged in layouts according to the physical constraints and barriers on site by 

means of bends and fittings having various angles and pressure losses. Flow is 

controlled and diverted thanks to valves which exist in different shapes and with 

different functions (gate, globe and check just to mention some). In most occasions 

straight pipes are joined by means of a flange-gasket-flange assembly. 

During the design of this kind of system many different variables are to be measured 

and accuracy in this phase is required to minimise the final uncertainty of the system. 

Randomness in preliminary phases will result in applying safety factors, over-sizing 

components hence loss of money due to uncertainty. 

During the operation phase of the system uncertainties are even more present because is 

even more difficult to measure correctly key variables while the system is operating. For 

example pipe inner wall roughness or pipe thickness are variables largely affected by 

operating conditions and maintenance plans are required to inspect and replace 

components every now and then. This, as said, is a result of the intrinsic ignorance 

around the process itself. For example flow rate, pressure, temperature, surface 

roughness and wall thickness are some of the important quantities to be measured 

during the operation of such systems and they all affect the way the circuit safely 

operates. 

A large span of systems present the same uncertainty problem ranging from small 

medical application systems through water distribution ones and industrial utilities to 

large oil and gas pipelines.  

1.1 Background 

In order to face the problem and dealing in a smart way with uncertainties several 

methodologies have been developed throughout the years.  

Exploring the literature we can realise that many efforts have been put in qualitative 

approaches developing case-dependent methodologies based on historical data (WOAD, 

Oreda etc...) and personal experience. Some of those techniques such as RAM 

(Reliability Availability and Maintainability analysis), RCM (Reliability-Centered 

Maintenance), FMEA/FMECA (Failure Modes and Effects Analysis/Failure Modes, 
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Criticality and Effect Analysis) and FTA (Fault Tree Analysis) are referred to as 

traditional techniques. Together with innovative techniques such as R6 and GO-FLOW 

they are applied to get a qualitative estimate of the reliability of a system. Even if these 

are very rigorous procedures, the output they give is highly subjective and dependant on 

the person carrying out the analysis. Moreover, if this subjectivity has to be removed 

historical data can be used and efficiently manipulated. Globally: a) this procedures are 

only possible for already known systems for which past data are available; b) the 

qualitative evaluation is highly time consuming and still doesn’t give us a number to 

rely on. 

Particular focus has been put on leakage detection, which is somehow different from the 

scope of this work, and corrosion impact estimation.  For the first purpose Bayesian 

Networks have been successfully applied to pipelines [8] and a comparative study on 

different corrosion models and assessment of corrosion impact on failure has been 

carried out [13].  

Some quantitative analysis has been done using cumbersome simulation methods such 

as Monte Carlo Simulation technique, which is easy-to-implement and uses a simple 

algorithm but has the drawback of a long simulation time. Some other quantitative 

studies have been carried out with the support of DnV Proban © software package in 

[34] and [13], basically to solve the joint probability integral of the probability of failure 

(see Chapter 4 for further details on this aspect). 

A Markov model has been developed in [52] for the analysis of in-service inspection 

strategies for nuclear power plant piping systems which has been focusing on the 

transition probability between states of the system (success, flow, leak and rupture). 

As said corrosion is a main issue in the operability of piping systems, especially in 

offshore pipeline application where both the harsh environment and the fluid flowing in 

the pipe, with several and different mechanisms, contribute to pipe deterioration. In 

literature a lot of material is found to estimate pipe wall corrosion and a lot of work is 

carried out to assess the reliability and safe operability of a worn out pipe wall in ASME 

B31G-2009 and in [2, 4, 5, 6, 7]. Most of the times the assessment is based on 

inspection and no stochasticity of variables is considered. In some cases quantitative 

assessment is performed but only direct simulation techniques are employed. 

 Also published data can be found about corrosion rates estimation, for example for CO2 

corrosion (e.g. corrosion due to CO2 content in natural gas flowing in the pipe).  

Summarizing what found in literature, we can state that: 

- no systematic and analytical methods have been developed yet 

- largely qualitative methods are applied 

- most techniques available are based on historical data, which is a limiting factor 

for the development of innovative systems 

- some quantitative techniques are available out there but they imply inacceptable 

simulation times and are not effective with low probabilities of failure (e.g. 10
-3

, 

10
-4

) [33] 

- focus on corrosion impact and corrosion prediction 
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1.2 Measuring techniques and sources of uncertainty 

Flow rate can be measured with many different kind of devices based on several 

principles. Classic flow meters include differential pressure and positive displacement 

devices such as Venturi tube, orifice plate, V-cone, drag-plate, rotameter, turbine and 

diaphragm flow meters. Modern flow meters include vortex, electromagnetic, 

ultrasonic, Coriolis and thermal capacity meters. Many factors affect the reliability of 

the measurements obtained and they change mainly according to the operating principle 

of the flow meter. For example fluid conductivity, density and viscosity just to mention 

some, are affecting it. Moreover each measured value is affected by the velocity profile 

of the flow passing through it and this parameter is affected by the installation 

conditions of the meter itself. For example, if a flow meter is installed downstream two 

90° bends placed in orthogonal planes the well-known swirl effect occurs and bad 

measurements ensue from it. Another source of uncertainty may be the corrosion or 

fouling of the inner pipe wall from which bad estimation of the cross sectional area and 

finally of the flow rate derive. As said fluid properties affect the measurement and many 

devices working principles are based on them. If fluid properties are badly measured or 

estimated or are changing through the process a bad final measurement follows. 

Surface roughness of the inner pipe wall can be measured with different techniques 

using contact and non-contact devices. Profilometers (also known as styluses or 

phonographs) and atomic force microscopes are belonging to the former, optical and 

laser to the latter (ISO 25178). Moreover, because of the irregularity of the profiles, data 

elaboration is needed to achieve a meaningful result. This procedure is only possible if 

the surface to be evaluated is directly accessible by the instrument, if not no data can be 

drawn. This situation occurs when the component is in operation and is highly affecting 

the degree of randomness of the problem. Since the roughness is directly proportional to 

the friction coefficient hence to the frictional head loss, this parameter heavily affects 

the operation mode of the system and its output. Throughout the life of the system and 

because of the interaction material-fluid, fouling resulting in a non-quantifiable change 

of roughness occurs. 

If the fluid is corrosive to the material, extensive consumption of the pipe inner wall 

might happen. This phenomenon is not quantifiable because the measurement of the 

actual inner pipe diameter while the component is in operation is not possible. A too 

thin pipe wall thickness may affect the operability of the pipe in terms of allowable 

operating pressure, affecting in this way the limit states e.g. so-called burst pressure. 

Some other uncertainty can be brought in the design process by the pump characteristic. 

Because of ageing of the pump, intrinsic periodicity of the machine, lack of precision in 

testing the pump in order to build experimentally the characteristic curve and some 

other minor issues the information given by the manufacturer is always subjected to 

uncertainty. In particular for the last point stressed ISO 9906-2012 is a good reference 

and gives us a global picture of the problem. Pumps can be divided in three categories 

according to the accuracy in their characteristic: Grade 1, Grade 2 and Grade 3 which 

have respectively 3, 4 and 10% uncertainty in the differential head. 

Pipe fittings determine further uncertainties in the model because the losses across them 

are obtained in a similar experimental way as the pump differential head is obtained. 

Basically the pressure is measured before and after the device and the loss is then 
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calculated. Some experimental correlation between variables is always done by both 

manufacturers and pure academics as shown in [10, 12]. Anyway some uncertainty is 

always present because of the accuracy in these correlation derivation processes and 

because of changes in operating condition or device preservation.  

Many other variables, which are measured indirectly, present an intrinsic uncertainty. 

Some of them which can be taken into consideration in our case we find the overall heat 

transfer coefficient, the yield strength of a material etc… 

In the next subchapter a definition of the uncertainties seen overviewed up to now is 

done and in this way the inputs to our problems are quantitatively shaped. 

1.3 Uncertainties definition 

Since what is done in this section will affect the results obtained is important to first 

stress some points. Without having any experimental data from which fit a distribution 

for the considered input variables, assumptions on their distributions are done. Basically 

they are all considered to be normally distributed around the mean and values for 

standard deviation are derived from typical measurement accuracy as follows. If a 

variable, from actual data, is found to be distributed in a different way transformations 

can be applied to normalise the variable as shown in [9, 53]. 

According to measurements standards every value for accuracy is given at interval of 

confidence 95%, which in a normal distribution corresponds to +/- 2σ. If we indicate 

with a the accuracy of the measurement; 

 

Figure 1.1 Accuracy in the measurement affects variable uncertainty 

If a variable is not directly measured a reasonable coefficient of variation CoV=10% is 

considered. Uncertainties in the considered variables are gathered in Table 1.1. Later on 

these will be referred to actual design values for each variable. 

        (1.1) 
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Table 1.1. Typical accuracies 

 

Accuracy (on reading) Reference 

Pressure 0.50% [43] 

Temperature 0.20% [43] 

Flow rate 0,1-1% [44] 

Roughness 10-12% [43] 

Level 0,5-1% [16] 

Pump characteristic 10% ISO 9906 

Valve pressure drop 1,5-3% [34] 

Multiphase flow rate 0,15-0,5% [49] 

Well pressure 20% assumed 

Well temperature 5-10% assumed 

Sea water temperature ~1,5% [47] 

Heat transfer coefficient 20% assumed 
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1.4 Aims & Objectives 

The aim of this work is to apply a generic procedure for Reliability Analysis to a pipe 

flow system. Some methodologies are already available and largely applied in structural 

reliability, but they show some drawbacks.  

In this work some of these problems are tackled and solutions are found.  

The main focus of the work is on one-phase flow systems but the generic procedure is 

also applied to a two-phase flow system. This is done just to show the wide applicability 

of the method also to different systems, being a system “a set of things working together 

as parts of a mechanism or an interconnecting network, a complex whole”. [50]. Once 

the methodology is developed and shown to be applicable, the reader could be able to 

use such tools for a more accurate analysis. 

As said first a one-phase flow system is analysed, in particular the test rig used in the 

FlowLab, Cranfield University. 

Then a fictitious but realistic pipeline plus riser from wellhead to platform is 

investigated. Here also a corrosion rate model is embedded in the probabilistic analysis. 

What we would like to obtain from this analysis is a prediction on failure in the pipeline 

due to exceeded burst pressure (depending on corroded thickness during pipeline 

expected life). 
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2 PIPE SYSTEMS MODELLING 

2.1 One-phase system 

The system has been modelled using different tools: Matlab and Pipe Flow Expert 2010, 

available in a trial version. Comparing the responses to different inputs from a 

commercial software package is possible to perform a validation of the Matlab 

analytical model. Having different operating conditions for the system a different output 

is obtained and comparing the output from the Matlab code with the one coming from 

the commercial software package we can state if the code is right or wrong, accurate or 

not.  

A reliable code is necessary for our application because we can shape it in whatever 

way we want giving as input variables those quantities which present an intrinsic 

uncertainty (e.g. pressure, flow rate, roughness, pressure drop coefficients...). 

Commercial packages are all working in the other way round: specifying two pressures, 

or tank levels, across a geometrically defined system they calculate the flow rate 

necessary to obtain these conditions, being the pressure difference driving the flow. 

This is maybe less intuitive but it’s the way nature works so software packages have 

been developed in this way.  

Since both a global solution of the system (from differential pressure to flow rate) and a 

partial solution (from flow rate and one pressure to the missing one) are needed to 

analyse the system, two generic analytical models are developed. An analytical 

derivation of the basic equation for the two is given from now on and the validation 

procedure followed for both is given later on. 

2.2 Analytical model 

The model built in Matlab is based on well-known fluid mechanics basic equations. 

Having a system, or a sub-system, delivering a flow from an inlet node to an outlet node 

we can define its geometry specifying the quantities below: 

- L, straight length [m] 

- h, elevation [m] 

- D, pipe diameter [cm] 

- ε, pipe roughness [mm] 

- number and type of bends and valves 

- kcomp, component losses (from a pump, a measuring instrument..) 

- pump characteristic 

Inlet conditions of the operating fluid have to be specified as well: 

- pressure [Pa] 

- flow rate [m
3
/s] 
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- temperature [K] 

Before analysing the solution procedure for the circuit it is appropriate to explain 

properly some of these variables. The elevation is considered positive if increasing 

moving from the inlet node to the outlet node. The pipe roughness is dependent from 

the material and, as said, can change during the system life and so represent a source of 

uncertainty. Bends and valves in a piping system have a huge variability and building a 

code taking into account even half of them is first of all useless and second of all too 

cumbersome.  Only few of them (3 bends and 3 valves types) are considered and the 

code will ask the number of each of them present in the system. A free variable is left 

where a total sum of all other component losses can be put allowing in this way 

flexibility and completeness to the code. A pump characteristic can be defined with 

half a parabolic curve symmetrical to the y-axis and concave downwards, hence only 

two coefficients are needed to define its behaviour (pump head vs. flow rate). No heat 

loss is considered from the pipe (temperature constant). 

According to the Bernoulli theorem, for a perfect incompressible fluid in permanent 

motion that doesn’t exchange energy in whatever form with the surroundings and with 

straight and parallel trajectories: 

where s is an infinitesimal length of the trajectory and H; 

Basically, to solve the system the energy conservation equation has to be applied to our 

case and solved: 

where; 

   

  
   (2.1) 

     
 

 
 

  

  
 (2.2) 

                      (2.3) 

              (2.4) 
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Frictional losses represent the portion of head loss occurring because of the presence of 

a component where the flow is disturbed and turbulence is induced e.g. a bend, a 

valve... They can be generally defined as; 

where k is a typical value for each fitting which can be either found in [12] or in the 

PFE2010 database. 

Component losses can be defined according to the Darcy-Weisbach equation [10]; 

where f is defined as a friction factor coefficient for which several formulations are 

given. Below are reported the Colebrook-White implicit formulation and the Haaland 

explicit one; 

either the first one or the second one can be used, obtaining results of the same 

accuracy [10]. The first one is implicit i.e. f cannot be derived explicitly because on 

both sides of the equal sign, hence for easiness of solution the assumption of fully 

turbulent flow i.e. Re ∞ can be done so that the second term in the logarithm can be 

neglected and an explicit formulation is obtained. A check on the acceptability of the 

assumptions has to be done at the end of the routine, particularly the ones about 

incompressibility of the fluid and fully turbulent flow. Further assumptions are made 

about fluid incompressibility and they also have to be checked. 

If the aim is to globally solve the circuit, so to obtain flow rate value knowing the 

differential pressure the following equation applies; 

                              (2.5) 

              
  

  
 (2.6) 

               
  

   
 (2.7) 

 
 

  
         

 

     
 

    

    
  (2.8) 

 
 

  
            

 

    
 

    

 
   

  
  (2.9) 
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then simply multiplying by the cross sectional area we can obtain the value for the flow 

rate. 

Considering the partial solution of the circuit, so knowing the flow rate and wanting to 

obtain the outlet pressure, the condition at the outlet is obtained solving the energy 

balance equation given above; 

Density and viscosity of the fluid have to be estimated and simple subroutines are built 

considering properties from [46]. Matlab code is reported in Appendix C, the first 

global solver is called dp2fr.m (differential pressure to flow rate) and the second one is 

called fr2pout.m (flow rate to outlet pressure). 

2.3 Commercial software  

Pipe Flow Expert 2010 has been chosen to validate the Matlab code because a free trial 

version is available. The software works in steady-state only and has two 

environments: the designer and the solver.  

In the first one fluid characteristic (type, temperature) and features of the circuit can be 

chosen. Modelling the transportation of a fluid from a node to another, situation which 

can be seen both as a system or a sub-system, fittings and valves can be specified 

choosing in the available library or customising them. Pumps can be placed along the 

pipe specifying the characteristic curve (reported in Appendix A), the efficiency curve 

and the NPSHr curve point-by-point. Pump data have been assumed reasonably 

considering a medium application as a 100mm diameter impeller pump, running 

constantly at 3450rpm. Curves and data are reported in Appendix A.  

In this situation we don’t need to consider a particular layout detailing how fittings and 

valves come one after the other since a general solution equation for outlet values is 

used by the solver. If we are particularly interested in a point of a circuit we can split it 

into two sub-systems and solve them in series, giving the output from the first one as 

an input for the second one. 

Unfortunately, the logic behind this software is different from the one implemented in 

Matlab fr2pout.m script as here pressure specifications at nodes or level specification 

for tanks are given as an input and the flow rate, driven by pressure, is then calculated 

     

  
              

      
  

     
  

  

  (2.10) 

         
   

 
                          (2.11) 
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by means of the Hardy-Cross method. In the model validation procedure section details 

about matching the two worlds are given. 

In the second environment detailed calculations are reported and there is the possibility 

to edit and export results sheets. 

2.4 Model validation procedure 

After having the Matlab code and a test-bench circuit in PFE2010 many different 

scenarios have been created playing with circuit features and operating conditions.  

In order to match the two worlds the model in PFE2010 has been built after the Matlab 

run. Tanks are placed at inlet and outlet nodes and their level is chosen to obtain a 

certain pressure at the bottom of the tank. For the inlet tank inlet pressure is considered, 

for the outlet tank the result from the Matlab run is imposed. Running the PFE model 

we obtain a flow rate as an output and comparing this to the one given as an input to 

Matlab we can see if the models match or not. A visualisation of this procedure is given 

in Figure 2.1 and Figure 2.2 below. 

 

Figure 2.1. fr2pout.m logic 
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Figure 2.2. dp2fr.m logic 

A validation of the model has been done cross-checking results obtained from several 

scenarios. Validation data are reported in Appendix A. A further check using formulas 

given in the previous section has been done by hand calculations. By means of hand 

calculations further confidence is obtained in the tools developed and additional 

understanding is obtained. 
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2.5 Two-phase system 

The two-phase system analysed is modelled in a specialised software for offshore 

pipeline applications, which is OLGA © from SPT Group. This particular software is 

strong in slug detection and slugging mechanisms modelling, hence on dynamic flow 

modelling. In this work just steady state simulation will be run since slug control and 

detection go beyond the scope of this Thesis. 

The software permits us to specify the geometry of the pipeline giving coordinates of 

pipe sections ending points. Data on pipe diameter, thickness, material and roughness 

can also be given. Each pipe section can be divided into segments, basically integration 

points where the software will compute fluid properties.  

Giving estimated heat transfer coefficients, surrounding environment temperatures and 

piping material conductivity the software is also able to compute the heat loss in the 

fluid and its temperature in each segment. 

Basically, the model implemented in the software is a modified version of a complete 

example given in the OLGA © manual [51]. This example is expanded and modified in 

order to perform probabilistic analysis 

Having a wellhead we need to connect it to the offshore platform. The platform, named 

Wigot Alpha is standing 510m from the sea bed and 30 above the sea water level. The 

well, named Harthun is 255m below the sea surface. 

The riser is vertical and 510m long, then we have a 100m horizontal top-side pipe. Both 

have a 4 inch (0.1m) diameter pipe having 0.0075m wall thickness. The pipeline 

connecting the well head to the riser base is composed by 4 pipes laying on the sea bed 

which is irregular and going deep up to 500m depth. This pipe is 0.12m diameter and 

has 0.009m wall thickness. All the pipes are assumed to be in steel. 

The sea water temperature is assumed to be 6°C, the well pressure 100bar, the mass 

flow rate 15kg/s and the heat transfer coefficient 6.5 W/m
2
.°C. 

The situation is depicted in Figure 2.3 below and the sketch of the geometry editor in 

OLGA © is also given in Figure 2.4. 
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Figure 2.3. Pipeline and riser depiction 

 

Figure 2.4. Pipeline and riser geometry 

The fluid is assumed to be two-phase flow only (e.g. gas and oil) so nor water neither 

sand is assumed to flow together with it.  

Normal steady-state operating conditions, for what concerns pressure and temperature, 

are reported in Figure 2.5 below. 
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Figure 2.5. Pressure and temperature profile along the pipeline 

2.6 Corrosion modelling 

Literature has been explored looking for empirical correlations for pipeline corrosion. In 

particular the interest was in finding some correlations coming from appropriate data 

mining, which also gave distribution over time like the ones found in [24, 29] Few and 

incomplete data are available [30, 31] and the main focus is on CO2 corrosion, which all 

reported to the same source correlation (e.g. eq. 2.12) 

Since the aim is to carry on a simple analysis to show the applicability of the 

methodologies without any specific goal other than that, corrosion is assumed to act 

internally only and in particular caused by CO2. This is reasonable because of absence 

of water/sand in the pipe and assumed external protective coating on the pipeline. 

So, corrosion rate is modelled thanks to the well-known DeWaard and Milliams 

correlation [4, 5] 

             
    

 
                

    (2.12) 
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Where     
is the CO2 mole fraction, the corrosion rate is given in mm/year, the 

temperature in K and the pressure in bar. 

Corrosion is the main factor affecting thickness deterioration hence the maximum 

allowable pressure in a pipe. Typically the burst pressure is given by the Barlow’s 

formula, where we can see the direct proportionality between thickness and pressure; 

[5] 

Where F is a design factor 0.72, SMYS the specified maximum yield strength (i.e. the 

yield strength itself) 

      
          

 
  (2.13) 
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3 SURROGATE MODELLING 

In the last years the need of very cumbersome system analysis and simulation led the 

academics world to focus on developing model approximation techniques basically 

building a function between interesting inputs and outputs from a model bridging the 

gap between them. After doing this, the function obtained is used as a black box with no 

care of what is happening in the system itself but just of the outputs coming from it. 

This bridge between input and output variables is called surrogate model. If the 

surrogate model is built properly it can permit us to have a lighter model to handle and 

to perform simulation analysis directly on it. As shown in [17] probabilistic analysis 

tools are more effective and less time consuming. 

If the function is smooth and with no or few singularities this surrogate modelling 

process can be accomplished using simple techniques, as an k-dimensional quadratic 

polynomial where k is the number of design variables we are interested in. If the 

function to approximate is curvier other, more complex, methods can be applied so as to 

catch the sharpness of the function all over the design domain. One of these is Kriging 

and a combination of this method with Monte Carlo Simulation in order to carry out 

probabilistic analysis on the system can be found in [37].  

The surrogate model which best fits the actual real function cannot be chosen a priori 

since the shape to imitate is unknown. In a trial and error process, tuning different 

methods and comparing their response on the whole design space we can state which 

tool best suits for our specific application. 

Two methods are later applied in this work and hence a dissertation on these is given in 

this document. Further information can be found in [15] and in [22]. 

In particular, Stochastic Response Surface Method with quadratic polynomial and 

Kriging are considered. The first one present simple algorithm but is not accurate in 

presence of non linearities and to catch particular behaviour of the functions. This may 

lead to an erroneous probabilistic analysis of the system and incorrect estimation of low 

probabilities of failure; but this concept will be recalled and deepened later. The second 

one, theoretically much more complex and in the algorithmic implementation is shown 

to be more accurate and has already been introduced in probabilistic analysis and 

coupled with Monte Carlo Simulation. 

3.1 Stochastic Response Surface Method 

Assuming the shape of the real function can be imitated with a simple mathematical 

function a quadratic polynomial can be chosen and their response compared to the real 

one. 
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Figure 3.1. Sampling strategies [17] 

 

Generally, the quadratic relation between inputs and the output can be written as 

where every design variable appears in the linear form and the quadratic one. 

The coefficients a, bi and ci are unknown and we can determine their value solving a 

system of equations obtained sampling the real function. In order to sample evenly the 

whole design space different sampling strategies can be applied. In Figure 3-1 we can 

see a graphic representation for some of them. 

Taking into account that what we need is a system of      equations where   is the 

number of design variables, the first sampling strategy is the most suitable for our 

application. As said, it is important to spread evenly the samples across the design 

domain and this can be done considering a ±3σ variation on each variable maintaining 

all the others unchanged on the mean value. After sampling our function what we obtain 

should be in the form; 

where   and   are the column vectors of output and coefficients respectively and   is 

the so-called design matrix, where by row the input variables appear first in linear and 

then in quadratic form. 

Working out the expression given in 3-2 and multiplying by the transpose design matrix 

on both sides we obtain 

                  
  (3.1) 

      (3.2) 

            (3.3) 
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and then the solution derivation 

In this way we can write the predicted value from our brand new surrogate as 

 

in vectorial form and in scalar form, respectively. The residuals are indicated with   and 

the vector containing them with  .  

where n=2k+1 is the number of samples taken. 

An important remark has to be done concerning close to singular matrices. If our design 

matrix X presents such a property, implementing the solution of the system of equation 

3.2 may represent a challenge. The inversion results heavily affected by the singularity 

of the matrix hence if a warning is returned by Matlab probably the matrix is close to 

singular and function pinv.m can be employed to overcome this. 

  

              (3.4) 

         (3.5) 

               
     (3.6) 

    

  

 
  

  (3.7) 
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3.2 Kriging 

3.2.1 Introduction to kriging 

Kriging is an approximation method developed by the mining engineer Danie Kriege in 

the 1950s to predict the concentration of mineral in the ground having just some 

distributed samples and draw conclusions about the suitability of this ground to be 

mined or not. 

Assuming to have an array of n sample data such that 

Where each   is a vector of k design variables which represents a set of input data for 

the problem we can assume to have an output variable 

As the result from a random variable  . 

This may be seen as a vector of combinations of stochastic design variables, which have 

the same mean and same standard deviation. 

3.2.2 Kriging predictor 

If we would find a value of the same function in another point of the space a sort of 

common behaviour between the known points should be found. Assuming noise-free 

data, this may be seen as a prediction of the output and can be written as 

which is linear combination of radial basis functions evaluated in the distance between 

the predicted point and the centre point c of the i-th sample. Another way of 

representing the same, shifting all the centres on sample points, is 

                                (3.8) 

                        (3.9) 

                                            (3.10) 

                         

 

   

 (3.11) 
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which is a linear combination of radial basis function, expressed in a general form and 

centred on a sample point, plus a constant term. So the prediction happens always 

starting from a value   which will be constant and moving with some deviations from 

there. Intuitively, this value can be thought to be somewhere in the middle of the 

sampled points and will be derived later on. 

 The local deviation at the prediction point is formulated using stochastic processes. The 

sample points are fitted using the Gaussian random function as correlation function 

which is slightly modified for this particular purpose of the Kriging predictor  

This basis function is clearly similar to the Gaussian basis function and differs from it 

just for    and    which can control the shape of the basis function in each dimension of 

the design space. They account for a different impact of the design variables on the 

predicted output. 

The common behaviour among the sample sets affects the prediction and this property 

of the predictor can be expressed by the correlation of random variables.  

3.2.3 Kriging correlation 

From what discussed above random variables are assumed to be correlated in the 

following form 

hence, for the assumptions done it is possible to state the same for a generic sample and 

the predicted value. 

As we can see the correlation depends mainly on three parameters. 

                        

 

   

 (3.12) 
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First, the Euclidean distance between the points. If it goes to zero (points close to each 

other) the correlation rends to unity, if it goes to infinity correlation tends to zero. 

Then, the smoothness coefficient    expresses the quickness of the function. If it is 

small, the correlation goes suddenly to one as soon as the distance goes to zero and goes 

slowly to zero if the distance tends to infinity. If the smoothness is high, the correlation 

goes smoothly to one when the distance goes to zero and drops to zero when the 

distance increases. 

Eventually, the “width parameter” or “activity parameter”    describes how wide the 

basis function is around the training data. In other words, it expresses how large the 

sphere of influence is for the data points that are evaluated. The more the j-th variable 

affects the correlation the higher this value and the faster the correlation drops as you 

move in the j-th direction. Summarising: 

- having a small    the output dependent on    approximates to a flat line or in 

other words the j-th variable is not so active on the response 

- having a big   , the j-th variable will have a high influence on the response and 

this will be changing a lot and rapidly depending on this variable. 

The distance between the prediction and the sample will matter just if the correlation 

coefficient is high; in the other case it will have a little influence anyway. 

If the activity parameter for a certain variable is low, in order to obtain a better 

prediction, the corresponding variable can be removed from the analysis and assume it’s 

not influencing the output at all. Reducing the dimension of the design space kriging 

can achieve higher accuracies. 

We can gather all the correlations in a correlation matrix 

which, by definition of correlation, will have ones on the diagonal and is symmetric 

because                                            . Since all         have the 

same mean and same standard deviation, according to the definition of correlation we 

can write 

This characterizes the way   varies moving in different coordinate directions and is 

depending on parameters                which are unknown for our problem and have 

    
                                           

   
                                           

  (3.16) 

              (3.17) 
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to be estimated. A way to do it is to maximize the likelihood of the experimental data. If 

we consider only a random realization, since it is assumed to be normally distributed 

with mean   and standard deviation    we can write its likelihood as 

If we want to express the likelihood of all our sample sets we can just combine the 

single likelihood expressions 

which, following the notation proposed, can be rewritten as 

In order to maximize it, a simplification turning it in logarithmic scale is found to be 

useful and effective. An expression for the likelihood named log-likelihood is found 

Differentiating this function with respect to       and setting the derivatives to zero 

means that we want to find the values for     , indicated as       , which maximize the 

likelihood of our sample. Looking for a maximum value for this expression is 

interpreted as the will of having the function which is most compatible with our 

observed data. 
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which result, after some basic algebraic manipulation in an estimate at maximum 

likelihood (indicated from now on by a circumflex over the quantity) 

Now, substituting in equation 3-21 and neglecting the constant terms an expression for 

the concentrated log-likelihood function is found and given in equation 3-26. We may 

notice that it’s a function of     only and we should find values for these which 

maximize it as well 

since this expression is not differentiable with respect to     a numerical optimization 

technique to find the function directly is then used. Applicable techniques may be 

genetic algorithm or simulated annealing.  

The parameter    can assume many different values from 0 to 2 or even higher 

depending on the smoothness of the problem to solve and singularities. 

In current practice, for most engineering applications,    is chosen constant equal to 2 

and a maximization considering only   is carried out. 

Particular care has to be taken when computing the log-likelihood because an iterative 

evaluation procedure is followed and it may turn out to be too much computationally 

expensive. In particular, inverting matrix   can be so and a Cholesky factorization 

followed by backwards and forward substitution is suggested. 

3.2.4 Kriging prediction 

If we call the predicted value by the model at the new sampling point    , we can expand 

the vector of the responses as 

and we can write and nx1 vector of correlations and rewrite the correlation matrix as 
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If we apply the same procedure seen in the previous chapter, we obtain an augmented 

log-likelihood function which has to be maximized as well.  

The latter expression can be approximated and rewritten as 

Inverting matrix    can be cumbersome and time consuming as well and since it can be 

written in the form expressed in 1-24 the procedure derived in [55] may be applied. (See 

Appendix on Matrix Algebra for further details) 

Manipulating equation 1-23 we can write and differentiate with respect to    
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and solving 

 

which is the expression of the Kriging predictor and can be compared to the general 

expression given in 1-5. We can see the constant term   assuming the form of    and the 

sum expressed in matrix form. Here we can distinguish    as    and            as 

         . 

3.2.5 Kriging errors and remarks 

There are different behaviours for which the augmented log-likelihood function can 

depend on the predicted value. It can happen that, moving away from the optimum 

value of the prediction    (i.e. the best guess possible) the function drops or remains 

almost flat. In the first case, it means that if the predicted value is not the best one the 

consistency of the prediction with the observed data is low. In the second case, many 

different values of    around the best one give the same performance hence there is no 

discrimination between them. In the latter situation is less the confidence we put in the 

model and a greater potential error may occur.  

A measure of this potential error is the curvature of the augmented log-likelihood 

function: the higher the lower the potential error, and vice versa. The curvature can be 

expressed taking the second derivative of the augmented log-likelihood function with 

respect to    . 

hence from considerations done above; 

The strength of kriging is in the fact that it doesn’t use Euclidean distances but  
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which is weighted differently on each variable axis. The tuning of the function, 

maximizing the likelihood, permits us to achieve optimum values for       and a better 

interpretation of each variable contribution. Moreover scaling of variable is not 

necessary as in other fitting methods because the difference is absorbed by the weight 

parameter. It’s also worth saying that a proper scaling on design variables allows us to 

obtain    comparable from problem to problem. One more wariness to get better results 

is to look for      on a logarithmic scale, since we can experimentally spot out that there 

is more change in the correlations with low weight parameter values than with high 

ones. 

3.2.6 Regression kriging for noise removal 

In case of a high number of variables and a lot of sample responses it may happen that 

noise occurs. Even if the trend is clear because of the pass-through all points condition 

kriging struggles in being accurate [15]. This scattering is well represented in Figure 3-

2. 

To filter this scattering in the data series a well known technique may be employed [15]: 

adding a so-called regression constant to the main diagonal of the correlation matrix  

Of course modifying this definition also the other variables calculated in the Kriging 

prediction procedure will have another formulation. In particular 

The value of the regression constant is not known a priori and is searched with the 

MLE procedure, so directly searching a maximum for the likelihood function. 
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Figure 3.2. Noise sample responses for variable CD [15] 
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3.3 SRSM vs Kriging comparison 

From the overview of the two methods given in this chapter we can see at a first sight 

that the algorithmic complexity is a determining factor in Kriging. But it is actually this 

aspect that may give us benefits using it.  

3.3.1 General qualitative comparison considerations 

Kriging, as shown in the previous section can get through all the sampling points and if 

there are some on peaks it can get those points. SRSM with quadratic polynomial 

cannot do so, even more so if some samples are on a peak. If the sampling is done 

properly (evenly distributed and reaching the peak points) Kriging shows far better 

accuracy compared to SRSM. Some comparative tests have been done to show this 

concept and results are reported in the following chapter. 

If we are dealing with noisy data, Kriging can cope with this and noise removal 

techniques are effective [15] while we cannot remove noise with SRSM surrogate 

modelling. 

Another important aspect is that using the quadratic polynomial we assume a priori a 

shape for the function we are trying to approximate, which is a k-dimensional quadratic 

polynomial surface. Kriging doesn’t do that and leaves open the possibility to build 

whatever surface based on the samples we have. 

In perspective of a Reliability Analysis to carry out on the surface we are building, the 

complexity of the expression which can result from Kriging is to be remarked as it may 

increase the computational effort for its evaluation and manipulation. Mainly the 

complexity increases with the square of the number of sample points since they 

explicitly appear in the Kriging prediction expression. 

3.3.2 ‘Sombrero’ test 

Considering a 3D space where two variables act as inputs and the third one represents 

the output we can easily visualise and make some consideration on the effectiveness of 

the two surrogate modelling methods above mentioned.  

Considering the situation where we have a model function similar to the one depicted in 

Figure 3.3 it is certainly difficult to represent it with a simplified function. 

If we try to build a surrogate of this simple three-dimensional function using a SRSM 

quadratic polynomial technique what we obtain is in Figure 3.4, which is largely far 

from what we expect to reconstruct despite from the high number of reconstruction 

points used. 
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Figure 3.3. ‘Sombrero’ function 

 

Figure 3.4. SRSM quadratic polynomial 'Sombrero' surrogate model 
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From what we can see the peak is highly underestimated and an almost flat curve is 

obtained. We could do the same using a fourth order polynomial expecting a better 

result, which is showed in Figure 3.5. 

 

 

Figure 3.5. SRSM fourth order polynomial 'Sombrero' surrogate model 

What we obtain is something slightly better but still largely wrong. Probably increasing 

the order of the polynomial better results could be obtained but because of the sudden 

changes in curvature of the original function the results obtained wouldn’t always be 

satisfactory. 

If we try the same test on Kriging, which by definition passes through all the samples 

points what we should obtain is something more similar to the original function. This is 

obtained only if the sampling is appropriate and results in sample points on the peak. 

What we obtain is showed in Figure 3.6 (few samples and few prediction points) and 

Figure 3.7 (lots of samples and lots of prediction points). 
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Figure 3.6. Kriging 'Sombrero' surrogate model, few points 

 

Figure 3.7. Kriging 'Sombrero' surrogate model, many points 

As said the quadratic polynomial cannot cope with sudden changes in curvature and this 

is proved by the obtained results. Theoretically we could approximate the function using 
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the quadratic polynomial on the peak only, selecting samples just from the very tip of it. 

What we obtained is shown in Figure 3.8 and Figure 3.9 with two different sampling 

domains e.g. x1 and x2 belonging to intervals [-2, 2] and [-3, 3] respectively.  

As we can see, even if the second considered domain is just slightly bigger than the first 

one the quadratic polynomial approximation cannot do the job because there is a small 

sign of curvature change. 

 

Figure 3.8. Local SRSM quadratic polynomial in the sampling domain [-2, 2] 
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Figure 3.9. Local SRSM quadratic polynomial in the sampling domain [-3, 3] 

3.4 Techniques for Kriging accuracy 

Since the quantity and quality of samples in Kriging is so important, particular attention 

has been paid. 

High quality sampling can be guaranteed through Latin Hypercube Sampling [9]. 

The minimum quantity of samples needed to obtain a good surface cannot be 

determined analytically and a trial-and-error procedure is followed. A particular 

algorithm for checking this has been developed. The considerations behind it are 

reported in 3.4.2 and the code used in Appendix. 

3.4.1 Latin Hypercube Sampling 

LHS is stratified sampling technique for which each variable in a design space is evenly 

sampled in a range. Knowing the range for the variable to change this can be divided in 

several non-overlapping ‘bins’ and a random sample in each bin can be taken. Using 

this particular sampling procedure we ensure that the variable is fully represented and, 

since the intervals have all the same size (e.g. the bins seeds are equally spaced), no 

local accumulation of samples occurs. [9]. 

This is performed for all the variables and then in order to obtain coordinates for points 

where to sample our function in our design space, sampling values for different 

variables are paired. This matching procedure is showed in Figure 3.10. Once these sets 

are obtained sample responses are generated. 

To ensure this variables pairing is the best possible to fully represent the design space 

many techniques and codes are available in literature [15]. 
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Figure 3.10. Latin Hypercube Sampling procedure 

Usually samples generation routines create sets of k variables assuming they are ranging 

from 0 to 1. Then scaling of the same on the actual range is done. 

Assuming the variables normally distributed we define a so-called cumulative 

probability for the i-th sample of the actual variable x we are considering. 

where n is the size of the sample and m is a cardinality index for xi. This is indicating 

the cardinal position of the actual sample in the range considered. In some references 

[9] is found that the index m is considered as a position index for    indicating its 

position in the sample array and not in the sampling range. Applying the slight 

modification we can obtain broader representation for the actual variable x.  

Having the cumulative probability Pi we can obtain the scaled value for xi as 
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                      (3.45) 
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3.4.2 Minimum number of samples determination 

Since the functions we will deal with are not simply 3-dimensional, we cannot perform 

a comparative analysis between the real function and the surrogate model as we have 

done with the ‘Sombrero’ test because the n-dimensional space is not visualisable. 

What we can do is to compare an array containing real values with one containing 

predicted values generated through Kriging. 

Since the real function, as said, is not visualisable we can reconstruct it on the whole 

design space. To do so every variable is taken at some regularly spaced points (not 

randomly chosen as in LHS) which we can call seeds. So having the same number of 

seeds on every variable axis we can combine them to obtain all the possible points in 

the design space where to calculate values for the test function. 

Using instead random sampling through LHS we can obtain some sample points and 

responses to perform Kriging and build the surrogate. Evaluating the surrogate in the 

whole design space (seeds of the real function) we obtain the value which would be 

predicted by Kriging in that point. 

Comparing the values obtained by the prediction with the real values we can find the 

average and maximum errors of the ‘kriged’ surface. Setting a limit for this and 

repeating the procedure for different sample size we can assess which is the minimum 

number of samples needed to well represent our original surface. Typically, and also in 

this work, a limit of 1% [37] on the maximum and average error is considered. 
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4 RELIABILITY ANALYSIS 

4.1 Introduction to reliability engineering 

Traditionally, in the design of a piping system the uncertainty in some input variables is 

taken into account over-sizing components or installing more pumping power than 

required. This results in an increase in equipment and installing costs. Some other 

uncertainties which occur during the operational life of the system result in frequent 

maintenance actions and extra costs as well. 

The actual engineering practice does not consider how variables analytically affect the 

output of a system and is simply recommending to the designer some guidelines to 

follow, which have been written up according to past experience in the field. 

In some engineering fields, like structural engineering, a new so-called probabilistic 

approach through reliability analysis is spreading but it is still characterised by niche 

techniques, employed by few [23, 32]. 

Reliability analysis is nothing but the set of tools that allow us to estimate the 

probability of failure of a system, where failure has to be intended as non-fulfilment of a 

specific requirement.  

Reliability is defined as “the ability of a system to fulfil its design functions under 

designated operating and environmental conditions for a specified period of time” [48]. 

Theoretically is defined as the complementary to 1 of the probability of failure. 

4.2 Concepts of reliability engineering 

The probability of failure can be seen as the probability for which a limit state for our 

system is exceeded. This can be expressed using a Limit State Function as 

where L is the limit and V the actual value of the limited variable. 

Our problem, as said, is subjected to k stochastic input variables which can be written in 

a vector form as 

                  (4.1) 

       (4.2) 
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Both actual value V and limit value L can be dependent on the stochastic variables 

hence the LSF is 

According to the definition of Limit State Function given above, we can mathematically 

define the probability of failure as the probability for the limit state condition to be 

unsatisfied 

We can identify three different situations: 

- failure region        

- failure surface        

- safe region        

This concept is depicted in Figure 4.1. 

If the Limit State Function is linear, mean, standard deviation and reliability index can 

be defined as follows; 

The reliability index is a measure of how far our PDF is from the zero or in other words 

the margin of safety that the expected value (mean) has. Following the notation given in 

Figure 15 the probability of failure can be rewritten as; 

                  (4.3) 

                (4.4) 

              (4.5) 

          (4.6) 

       
    

           (4.7) 

   
  

  
 (4.8) 
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As the PDF moves left the reliability index decreases, if it moves right it increases. This 

leads us to intuitively define its Cumulative Distribution Function as the area below the 

PDF which is still in the positive half plane. Hence the probability of failure can be re-

stated also as 

 

Figure 4.1. Probability density function of the Limit State Function g(X), [9] 

The Probability Density Function of the LS g(X) is, as said, depending on all the 

stochastic variables which characterise our system. So considering the multi-

dimensional case, the PDF is nothing but the joint probability of the design variables 

which integral has to be computed in order to obtain the probability of failure. 

The solution of this integral presents difficult or even impossible calculations to 

perform hence probabilistic methods each characterised by different computational 

effort and accuracy exist. 

               
      

 

  

 (4.9) 

           (4.10) 

                                     (4.11) 
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Many approximation techniques have been developed and applied. Basically, they all 

consist in an approximation of the stochastic variables through an equivalent 

geometrical representation of the same.  

Stochastic variables are represented by their moments, or better the moments of area of 

the curves which represent their stochasticity (first momentmean, second 

momentvariance, third momentskewness, fourth momentkurtosis). 

Originally two main methods were adopted: First Order Second Moment (FOSM) and 

Second Order Second Moment (SOSM); which consisted in a Taylor expansion (up to 

first or second order) around the mean value under the failure condition       , see 

Figure 16. 

An extensive dissertation about those can be found in [9]. From what can we see only 

low levels of accuracy can be reached even with second order approximation and a 

different formulation of the methods has been given by (Hasofer and Lind, 1973).  

According to their formulation we can obtain a substantial improvement in accuracy 

performing a transformation of the design space (Figure 4.2) and choosing the Failure 

Point as the approximation point for the Taylor expansion. In this way the failure point 

is referred to as the Most Probable failure Point (MPP). 

This last formulation is widely known as First Order Reliability Method (FORM) and 

an analytical derivation of the methodology is given in the next chapter. 
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Figure 4.2. Hasofer and Lind transformation [9] 

 

Figure 4.3. Limit State approximation 
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4.3 First Order Reliability Method 

Considering L and V as the only variables (reasonable assumption since all the others 

combine in them) the 3D situation can be easily represented and visualised. The 

condition        implies that          , hence the limit condition is represented 

by the bisector of the L-V plane. Projecting the limit state on this plane we can easily 

identify the failure area, the failure surface (that degenerates in a line in this simplified 

case), the Most Probable failure Point and the safe area (Figure 4.4). 

 

Figure 4.4. L-V plane failure region representation 
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Applying the transformation we have  

As we could expect both a transformation in the space and in the functions occurs, so 

that the limit condition won’t be represented any more by the bisector of the axes but by 

a different curve. 

Approximating the curve with a first order or a second order polynomial, its shape will 

be properly represented by 

Where A and B are generic terms, in FORM; 

The failure point will be moved as well in the design space and what we want to obtain 

is its distance to the origin of the axes O(0,0). After the transformation what we obtain 

is a k-dimensional standard normal PDF, centred in the origin which has the property to 

be rotationally symmetrical. 

What we are interested in now is the transformed condition 

In our k-dimensional design space we will find more than one point satisfying this 

condition and we are particularly interested in the point that has the maximum 

probability density function value (e.g. the most prone point to failure). Identifying this 

point and measuring its distance to the origin gives us how much our system is reliable 

and we express this distance in standard deviation units. This is also well displayed in 

Figure 16). 

    
     

  
 (4.12) 

                     (4.13) 

                                (4.14) 

         (4.15) 

     (4.16) 

               (4.17) 
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This number of ‘standard deviations’ is defined with the reliability coefficient β which, 

as said, gives us a measure of how safe we are in the design and operation of the 

system. 

Since we need a minimum distance our problem is minimisation problem [23]. 

Approximating the curve with a First Order Taylor expansion in    and writing it 

explicitly after the considerations done above 

The derivative in the j-th direction, according to what stated in 4-17, can be rewritten as 

According to the definition of β given in 4-7 and re-elaborating 4-18 the minimum 

distance from the origin to the surface can be given as 

Defining the coordinates of the MPP in the normalised design space 

where the cosine is the direction cosine. This trigonometric variable expresses the 

influence of the j-th variable on the total variation or in other words how the curve 

changes moving along the j-th axis. This, by definition of direction cosine, can be 

expressed as 

                                               (4.18) 

                 

   
            

   (4.19) 

    

   
        

   
        

 (4.20) 

   

          
   

        
   

 

    
  
   

        
 

 

 (4.21) 

            
 (4.22) 
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These factors are so-called sensitivity factors because the value they take in the last 

iteration (e.g. final value after convergence) tells us the impact that the j-th variable has 

on failure. 

The coordinates of the MPP can also be given in the original non-transformed design 

space. 

Unlike other approximations mentioned before, for example MVFOSM, the Hasofer 

and Lind formulation of FORM is an iterative process and hence requires an algorithm 

to get to the solution. This is illustrated in Figure 4.5 below. 

          
 

   
   

        

    
  
   

        
  

 (4.23) 

                    
       (4.24) 
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Figure 4.5. HL algorithm diagram 

This procedure assumes that the input stochastic variables are normally distributed but 

in nature it may happen to have different distributions (i.e. log-normal, Weibull, t-

Student, exponential). In order to handle these situations an extensive and deep 

coverage is given in [9] and is just a matter of transforming our variables into equivalent 

normal variables before starting with the algorithm iterations (normalisation in the block 

diagram above). In this work only normally distributed variables are considered because 

they are derived as shown in chapter 1.2. Moreover the main aim of this work is not to 

treat such non-normally distributed variables which only require basic statistical 

knowledge to be handled. 

As we can see in the block diagram in Figure 4.5 the first iteration assumes some value 

from which to start. Basically we need the actual design point where to evaluate our 

function gradient but we have none. We can proceed mainly in two ways: 

- assume the initial design point as the mean point (point in the design space 

identified by the mean value on all the coordinate axes) 
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- assume values for reliability index and sensitivity factors, bearing in mind that 

by definition of director cosine the following condition holds 

Having betas and alphas we can compute the coordinates of a design point and then 

proceed evaluating the gradient and with the first iteration of the algorithm. 

4.3.1 SRSM for FORM 

Among the most used techniques for quantitative assessment of systems, structures 

above all, there is a combination of SRSM and FORM early discussed [23, 32].  

In this case the Limit State for FORM (e.g. the input function to the FORM-HL routine) 

is given by a second order polynomial in k variable which approximates our actual 

system. The approximation is given by SRSM as it has been discussed early on. So our 

function g will have a shape like 

If the limit condition (upper) is deterministic or  

if the limit condition is in some way affected by uncertainties, hence stochastic itself. In 

this case not the output from the system, but the difference between actual limit and 

actual limited variable is considered. This can be defined as a Margin of Safety and is 

given by formula 4-26 

So the quadratic polynomial straight bridges the gap between inputs and MoS. 

  

    
    (4.25) 

                

 

   

     
 

 

   

 (4.26) 

            

 

   

     
 

 

   

 (4.27) 

                     
(4.28) 
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4.4 Monte Carlo Simulation 

Another method to compute the probability of failure is simulation method 

(distinguishing from the previously discussed numerical one). 

Monte Carlo simulation is widely used in several engineering and non-engineering 

applications because it doesn’t require much knowledge and statistical understanding of 

the problem. The algorithm is pretty easy to implement and relies on a massively high 

number of iterations. 

It consists in launching several times the analytical model with different inputs. At each 

run the stochastic inputs take values according to their distribution and these values are 

generated randomly by a computer. Checking if the output we are interested in is above 

or below a certain threshold we can assess if in that particular run the system would fail 

or not. Thanks to a counter which increases every time we have a failure we can 

estimate the failure probability as 

where Nf is the counter for the number of failures and N the total number of runs. A 

representation of the algorithm is given in Figure 4.6. 

Typically to get an accurate result we should run at least 10
2
 times more than the 

reciprocal of the probability of failure we are trying to estimate to get an accurate result 

[9]. 

Not knowing the probability of failure we can start running MCS with low N just to 

have an idea about the order of magnitude of the number we are trying to approach. 

Then we can go further with more runs to ensure the number it is actually as more 

correct as possible. 

In this way we are like sampling our problem and we are not always sure that the 

samples we take are effectively representing the situation we are dealing with. In 

particular, this sample suffers of sometimes high variance hence variance reduction 

techniques have been developed and are well illustrated in [9]. Moreover in [33] is 

found that this method is not suitable for low probabilities of failure. 

Hence we can state that if we are not dealing with too low probabilities this is actually 

the most accurate method for probability of failure estimation. This is due to the fact 

that there is no system approximation. 

One more drawback of the method is that, as said, it is computationally cumbersome 

and time consuming. Even if this can be limited applying variance reduction is still 

present and inacceptable for some applications. 

    
  

 
 (4.29) 

      
 

  
     (4.30) 
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Figure 4.6. MCS algorithm 
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5 CONVENTIONAL METHODS FOR 

RELIABILITY ANALYSIS 

A general overview of all the methodologies employed is given in this chapter, 

highlighting pros and cons, important aspects and remarks. Here only a block diagram 

of the code written in Matlab to implement each methodology is reported. The codes are 

then fully available in Appendix C. 

5.1 Direct MCS 

This direct simulation technique has just been applied to the first system because the 

second one doesn’t permit to do so since it is modelled implicitly (e.g. with no explicit 

equations but by means of an interface tool, OLGA). 

The way to proceed with this in order to use a number of runs large enough to obtain 

reliable results is to start from few runs (e.g. 10
3
) and increase the number of runs by 

one order of magnitude until the result is stabilised. A rule of thumb suggests going two 

orders of magnitude higher than the reciprocal of the probability of failure to catch, 

following formula 4-29. 

In this application no variance reduction techniques have been employed so as shown in 

[33] MCS is probably not able to get too low probabilities of failure. Anyway this 

methodology is considered as reference to benchmark the other ones. 

This, as said in the previous chapters, takes a lot of time and a large computational 

effort often not acceptable. Simulation times up to 10’000 seconds have been 

experienced during the system analysis. 

The random input sets are generated according to the distribution every variable shows. 

Random number generation functions are widely available in commercial software 

packages, in particular in Matlab this can be done with the function normrnd.m, giving 

as an input to the function the distribution parameters. 

A block diagram explaining the code is given in Figure 5.1. 
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Figure 5.1. Direct MCS algorithm 
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5.2 SRSM - MCS 

In order to speed up the analysis procedure approximation techniques can be applied to 

the system first, still using MCS as reliability analysis tool. What can happen applying 

this approximation procedure is that some failure points are not ‘detected’ . This effect 

is also overlapped to the one given by MCS which is an inaccurate system failure 

sampling technique for low probabilities of failure. 

A block diagram showing the procedure followed by the code is given in Figure 5.2 

 

Figure 5.2. SRSM-MCS block diagram  
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5.3 Kriging - MCS 

To have a better approximation of the system but still faster than the direct simulation 

Kriging can be applied. Then every MCS run a random prediction point can be created 

and the function predicted and evaluated. The Kriging function has to be built before 

running MCS according to evenly spread sample points. A block diagram of the 

procedure followed is given in Figure 5.3 

 

Figure 5.3. Kriging-MCS block diagram  
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5.4 SRSM - FORM 

Introducing a further approximation on the reliability method the simulation time 

drastically drops to few seconds per each Limit State evaluation. 

This is by all means the fastest procedure among the ones analysed but also the most 

approximated one. This is proven by the fact that sometimes the results are not accurate 

at all (e.g. far away from the ones obtained using direct MCS). 

 

Figure 5.4. SRSM-FORM block diagram  
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6 ADVANCED SURROGATE MODELLING 

METHODS FOR RELIABILITY ANALYSIS 

As seen in literature, there’s now a movement towards new techniques for Reliability 

Assessment especially in the system approximation. An interesting study can be found 

in [37] where the system is approximated using kriging and Reliability Analysis is 

carried out using direct simulation method (i.e. Monte Carlo Simulation). A 

development of new techniques and a trial to couple kriging and FORM is done in this 

work.  

Here the method is illustrated for normal variables only. Non normal variables can be 

incorporated using the same concepts in various conventional methods. In particular is 

possible to refer to [9, 53] where extensive discussion is reported. 

Basics of the theory behind the process are given in this chapter. 

6.1 Analytical Kriging for First Order Reliability Analysis 

In actual applications the limit state is, mostly represented by a second order polynomial 

in k variables. 

kriging parameters were obtained though kriging approximations performed on the 

reference system can be used to explicitly write our limit state expressing through the 

kriging predictor 

As seen in Chapter 3, the kriging predictor can be written as 

Elements in this equation are defined as: 

   is a 1xn vector of correlations between the prediction point and the i-th sample.  

   is the inverse of the square nxn matrix of correlations between the samples. 

      is the nx1 vector of responses diminished of the MLE mean value. 

What we obtain from this multiplication is a single value that represents the deviation 

from the mean value   . 

If we try to express this matrix multiplication we can distinguish between one part of 

the formula dependent on the new prediction point, which is    and a second part 

independent from this,             . 

  is a nx1 matrix where each line can be expressed as 

                       (6.1) 

                                                           (6.2) 
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The multiplication     can also be expressed as 

Where, as previously mentioned 

as the limit state is then expressed as 

If the limit condition is not stochastic; or simply 

if it is; as explained for the case of quadratic polynomial SRSM. 

The previously analysed procedure is what is later on mentioned as Limit State 

definition. 

The algorithm followed for this analytical kriging implementation in FORM is shown in 

Figure 6.1. 

                                                 (6.3) 

                       
 
              

 
  

(6.4) 

                            (6.5) 

          (6.6) 
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Figure 6.1. Analytical kriging-FORM algorithm 
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6.2 Kriging and Dynamic Stochastic Response Surface Method for 

First Order Reliability Analysis 

The methodology here described is referred throughout this work to as ‘dynamic 

SRSM’ or ‘dynamically Kriged LS’. The name refers to the dynamicity of the method 

with regards to the continuous change in the LS through Kriging prediction and local 

approximation of the LSF. 

As discussed earlier on in the chapter, where a comparison between kriging and SRSM 

is done, the ability of kriging is to reach all the sample points. This can’t be done using 

SRSM despite a local approximation is considered only. Moreover kriging is very good 

in predicting function values. 

If a small domain around a peak point is considered then SRSM is also able to map the 

function well.  

Furthermore, kriging function complexity increases with the number of samples and it is 

hard to manipulate it effectively when the number of points is high. Function 

manipulation (e.g. evaluation, differentiation etc...) is essential to perform Reliability 

Analysis. 

SRSM is shown not to work well globally but can do a good job locally. Since kriging 

works well globally the positive features of the two methods can be coupled together, 

avoiding the drawbacks. A valuable example to show to the reader that the local 

approximation starting from a ‘kriged’ surface works is  ‘Sombrero’ test (chapter 3.3.2) 

because the results can be visualised properly. 

Here a kriging prediction of the function is done with more points than the sample ones. 

Particularly an evaluation of the predicted curve is done at equally spaced points. The 

result is reported in Figure 6.2. 
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Figure 6.2. Kriged 'Sombrero' surface, equally spaced prediction points 

If we consider this function on a restricted domain, let’s say [-2, 2] performing SRSM 

and evaluating the obtained second order polynomial at equally spaced points we 

obtain; 
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Figure 6.3. SRSM from ‘kriged’ prediction 

which is far better than what achieved and showed in Figure 3.4. 

As we can see the top of the peak achieved by this last function is pretty much the same 

as the initial function. Hence we can state that an extremely good and light local 

approximation of our initial function is achieved in this way.  

To couple this accurate approximation with reliability analysis we can proceed as 

follows. We can predict some points around the current design point using kriging and 

approximate this ‘local’ curve using SRSM. Then a quick FORM iteration can be done 

using this quadratic polynomial as the LSF because it is much lighter than the analytical 

kriging one. Through the FORM iteration we can approach and calculate a new design 

point around which predict some values, build an SRSM and proceed for the next 

iteration. 

This procedure algorithm is showed in Figure 6.4. 

An intelligent point from which the algorithm can be initiated (as in a normal FORM-

HL optimisation algorithm) is the mean point (i.e. the mean value point for each 

variable). Following the 2k+1 combination rule for sampling we can get the n samples 

to build the SRSM. 

                     
     

 (6.7) 
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The f factor can be termed as ‘amplitude’ of the domain mapped by kriging and 

approximated by SRSM. This also gives us the size of the area considered in the 

following FORM iteration. For this reason it can be considered as an ‘horizon factor’ 

giving us a measure of how far the FORM iteration goes to search for the optimum 

point. The bigger f the farther the research can go and the quicker we can get to the 

optimum point since we do ‘bigger steps’ iteration by iteration. The smaller the horizon 

factor the closer we stay to the design point, the more accurate the approximation of the 

function, the smaller and more the steps towards the optimum point. In this second case 

the simulation time will definitely increase but the accuracy of the result obtained will 

be higher. A sensitivity study on this factor has been carried out with values from 0.001 

to 1.8 and good results have been obtained with values between 0.2 and 0.4. 
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Figure 6.4. Dynamically kriged LS-FORM algorithm 
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7 APPLICATION AND DISCUSSION OF 

RESULTS 

In this chapter applications of the discussed methodologies and the aspects under which 

the system analysis is carried out are reported. First the models built are described and 

visualised through clarifying 3D views.  

Then, after describing the functioning of the systems, some criticalities are pointed out 

and critical scenarios are built.  

A resume of the available methodologies is given analysing how to match the different 

techniques described in the previous chapters. Here also pros and cons of each 

methodology are discussed, giving the expected behaviour of each one regarding 

accuracy and simulation time. 

Finally results are presented and discussed, commenting what obtained and comparing 

the effectiveness of different analysis strategies. 

All the methodologies have been applied to the first system. Because the model is 

explicit even direct simulation techniques could be applied. 

This gives us the opportunity to evaluate and benchmark the performance of different 

methodologies so as to highlight pros and cons of each. Having this information is also 

easier which to choose for future applications. 

From the analysis carried out on the first system we can say that the most accurate tool, 

after the direct MCS is Kriging-MCS. Since as said direct MCS is not applicable 

because no explicit model is present this second option is considered.  

Then, being SRSM-FORM the quickest and most diffused simulation technique, it’s as 

well applied. Because of the high number of elements (segments of pipeline) and the 

need to perform an analysis over time all the computationally expensive techniques 

other than Kriging-MCS are put aside. Because of the quickness showed and the global 

accuracy achieved, Dynamically Kriged LS is also applied. 

In the second case study a complete analysis on the whole system is performed using 

SRSM-FORM, which is the quickest one. Then, in order to save time further 

investigation is performed on critical points only for which the results are confirmed 

using other techniques. In particular, Kriging-MCS and Dynamically Kriged LS are 

applied. 
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7.1 Analysis scenarios 

7.1.1 Limit states 

Our system output is as said limited either by a deterministic limit or by a stochastic 

one. It has already been shown in equation 4-25 and 4-26 how to formulate limit states 

in the two different cases. 

The functioning mode of the system has some intrinsic limits that the analyser has to 

detect and explore with the presented methods. 

Many failure modes can be represented quantitatively and a qualitative study to identify 

them before performing a quantitative analysis is suggested. 

7.1.2 One-phase system analysis scenarios 

For what concerns the one-phase system 4 different scenarios are analysed. In the first 

three 6 stochastic variables are considered: pressure in the tank, tank water level, 

roughness of the pipe, temperature, gate valve component loss and pump characteristic. 

In the last one more is considered, the flow rate, since the pump is assumed to work at a 

certain regime (rotating speed) so delivering a certain flow rate independently from the 

head loss to overcome. 

The first one, named scenario 1A, is formulated so that the limit is represented by a 

maximum pressure in the pipe. The aim of this analysis is to assess, through the 

methodologies presented, what is the probability of failure of the system considering as 

a failure mode the exceedance of the burst pressure. The limit value is in this case 

deterministic and taken from the piping [1]. Even this value is dependent from wall 

thickness and yield strength of the material (Equation 2-13) which are stochastic 

variables a deterministic value is taken instead. An advanced analysis which takes into 

consideration also this is performed in the second case study. In particular for this 

scenario the pressure limit is considered just downstream the pump, in the point called 

A in the 3D schematic given in Figure A.4. 

The second analysis scenario for the first application, named scenario 1B, is considering 

the maximum pressure allowable in a flange. Since no particular flange is selected and 

no manufacturers’ indications are given for the one in the real rig, a maximum value for 

the pressure is assumed. In this scenario the failure mode leakage due to high pressure is 

investigated. 

Scenario 2 analyses the energy efficiency of the system assuming that the power supply 

is limited. The pump, which is the only energy consuming device in the system, has to 

work in a regime so that its efficiency is higher than a certain assumed limit value. 

In the last analysis, scenario 3, the difference in pressure is taken as a limit. The flow 

has to be ensured because of this difference so at least atmospheric pressure has to be 

present in the tank. As said the pump is assumed to work in a constant regime delivering 

a given flow rate. 

The uncertainties are expressed in terms of CoV and given in Table 7.1. 
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Table 7.1. One-phase flow case study uncertainties 

  CoV 

Pipe roughness [mm] 10,9% 

Inlet pressure [Pa] 0,5% 

Temperature [K] 0,2% 

Elevation [m] 0,5% 

Globe valve k 15,4% 

Pump characteristic a [m] 10,1% 

Flow rate [m3/s] 5,0% 
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7.1.3 Oil-gas pipeline analysis scenario 

As said the maximum pressure allowed in a pipe so that the pipe itself withstands the 

load is given by the Barlow’s formula. This is mainly depending on yield strength, 

thickness and diameter. The last one can be considered as deterministic but the first two 

have to be considered stochastic so that stochasticity is introduced also in the limit. So, 

the limit state is formulated in terms of MoS as the limit value minus the actual value. A 

surrogate model is then built directly from stochastic inputs (stochasticity coming both 

from system inputs and system limit) to the MoS values.  

Since the environment where the pipe has to operate is harsh, corrosion is an important 

factor to be considered. Only internal corrosion is assumed and modelled according to 

equation 2.12. External corrosion is prevented by means of coating materials and 

because frequent external inspection and maintenance can be carried out. Regarding 

internal corrosion, thickness deterioration occurs over-time so that the pressure the pipe 

can withstand is diminishing. The safe operability level, represented by the safety index, 

is also changing over-time and in particular decreasing. An estimate of the time needed 

before inspection or maintenance can in this way be done choosing some target safety 

levels. Typical safety levels for pipelines [5]. 

In our application limits at 10
-4

 and 10
-5

 are chosen as maximum danger and warning 

levels (Ultimate Limit State and Serviceability Limit State). 

The uncertainties level considered for this particular case expressed in terms of CoVs 

are reported in Table 7.3 below. 

Table 7.2. Target Reliability levels [5] 

Limit states Safety classes 

  Low Normal High 

SLS 10
-1

-10
-2

 10
-2

-10
-3

 10
-2

-10
-3

 

ULS 10
-2

-10
-3

 10
-3

-10
-4

 10
-4

-10
-5

 

FLS 10
-3

 10
-4

 10
-5

 

ALS 10
-4

 10
-5

 10
-6
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Table 7.3. Two-phase flow case study uncertainties 

  CoV 

Well pressure [bar] 1,0% 

Temperature [°C] 0,2% 

Flow rate [kg/s] 0,3% 

Pipe roughness [mm] 10,7% 

Sea temperature [°C] 0,8% 

Heat transfer coefficient [W/m
2
.°C] 10,0% 

Yield strength [MPa] 1,0% 

7.2 Results  

The results obtained with different methodologies are reported in terms of safety index 

and compared on that scale. Sometimes very low probabilities of failure are obtained 

and it doesn’t make much sense to compare them on a scale ranging from 10
-5

 to 10
-6

. 

Simulation times are also reported to show the benefits in terms of saved computational 

effort using some approximation techniques. 

Moreover, for those scenarios where analysis over-time is carried out (e.g. two-phase 

flow system) prediction of the safety index trend is also given. 

Finally, for each case the impact of the single stochastic variable on failure is discussed 

through the analysis of FORM sensitivity coefficients αj and Kriging activity parameters 

θj. 

The numerical results are first reported in tables and then summarised in graphs so that 

the concepts that inspired the analysis are easily spotted. 

7.2.1 One-phase flow system 

First of all benchmark data are collected from computer experiments using MCS. The 

procedure to determine the minimum number of runs to get accurate values is the one 

discussed in chapter 4. 

Values for the reliability index are reported in Table 7.4 and a graph showing the 

convergence of the result value for scenario 1B is shown in Figure 7.1. 
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Table 7.4. MCS results for one-phase system 

 
# runs 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 

b
et

a 

1A 2.75 2.88 3.01 3.06 3.09 3.11 3.09 3.09         

1B 1.73 1.80 1.69 1.67 1.68 1.67 1.67 1.67 
   

  

2 1.64 1.66 1.61 1.63 1.64 1.64 1.64 1.65 
   

  

3     3.72 3.93 3.89 3.78 3.82 3.85 3.84 3.83 3.83 3.83 

Where the beta value is not reported that means that the probability to catch is too low 

with the actual number of iterations. 

It’s easy to notice that the higher beta the lower the probability of failure hence the 

higher the maximum number of runs needed. 

The same investigations are then carried out using SRSM-FORM standard procedure, 

approximating the LSF with a quadratic polynomial as shown in the previous chapters. 

In table 7-6 are reported the results. 

 

Figure 7.1. MCS results convergence 

Table 7.5. MCS simulation times 

 
runs 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 

si
m

 t
im

e 
[s

] 1 2.99 2.73 26.7 26.5 261.6 257.5 2606.9 2575.5         

2 8.05 8.96 85.2 86.3 885.7 869.3 6563.9 6867.0 
   

  

3 4.03 4.08 40.1 40.5 400.1 404.5 3445.9 3444.4 32657 31865 315982 317497 
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Table 7.6. SRSM-FORM results for one-phase system 

 
1A 1B 2 3 

Pf 0.000698 0 0.0447 0.000367 

beta 3.1954 10.9436 1.6984 3.3767 

time [s] 0.79 0.69 0.65 0.49 

Table 7.7. SRSM-MCS results for one-phase system 

 
# runs 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 

b
et

a 

1A   3.09 3.43 3.12 3.23 3.12 3.21 3.18     

1B   

   

3.94 3.89 3.89 3.90 3.88 3.88 

2 1.79 1.70 1.68 1.66 1.70 1.71 1.71 1.72 
 

  

3 3.09     3.72 3.81 4.01 3.93 3.92     

As we can see we don’t get high accuracy in the results for all scenarios so further 

analysis is required. SRSM-MCS which is another common technique is applied next. 

Results obtained are reported below in Table 7.7. 

As we can see the method is still inaccurate in estimating the probability of failure for 

scenario 1B even if the simulation time is definitely decreased if we compare it with 

direct MCS. Simulation times reported in Table 7.8 . 

What we can conclude up to now is that SRSM is not giving an accurate approximation 

of the system. Following these considerations the analysis is then conducted using a 

different surrogate modelling technique, kriging. 

The first analysis where kriging surrogate modelling is used is kriging-MCS. Results are 

reported in Table 7.9 below; 

 

Table 7.8. SRSM-MCS simulation times 

 
# runs 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 

si
m

 t
im

e 
[s

] 1 0.63 0.67 3.34 3.43 32.12 32.06 313.59 318.95 3251.00 3079.00 

2 0.32 0.50 2.13 2.13 19.82 19.92 203.18 208.49 
 

  

3 0.20 0.20 2.00 2.03 19.93 20.61 202.73 201.02     

Table 7.9 Kriging-MCS results for one-phase system 

 
# runs 1.00E+03 1.00E+04 1.00E+05 1.00E+06 

b
et

a 

1A 2.88   3.29 3.19 3.20 3.18 3.12 3.13 

1B   

 

2.17 2.37 2.26 2.24 2.26 2.27 

2 1.64 1.55 1.61 1.58 1.58 1.57 1.58 1.58 

3 3.09 2.88 2.93 3.04 3.09 2.97 3.06 2.99 
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Table 7.10. Kriging-MCS simulation times 

 
# runs 1.00E+03 1.00E+04 1.00E+05 1.00E+06 

si
m

 t
im

e 
[s

] 1 115 224 220 380 540 513 4879 5394 

2 148 152 157 161 301 290 2971 2866 

3 198 180 210 221 588 564 3715 3694 

After this analysis we see some improvement in the results and the simulation times are 

still reasonably low. Carefully looking at the results it can be realised that probably also 

using MCS a bad sampling is done. For this reason coupling of Kriging and FORM is 

done in the two different newly explored techniques. 

First implementation of analytical kriging in LSF is done and results are reported below. 

Table 7.11. Analytical kriging-FORM results for one-phase system 

 

1A 1B 2 3 

beta 3.154 1.730 1.686 3.415 

Pf 0.000806 0.041838 0.045863 0.000319 

time [s] 120.411 124.753 130.22 124.374 

Then the Dynamically Kriged LS algorithm is applied. 

Table 7.12. Dynamically Kriged LS results for one-phase system 

 

1A 1B 2 3 

#samples 30 75 30 100 

f 0.1 0.1 0.3 0.2 

Pf 0.00086 0.03912 0.04946 0.00050 

beta 3.135486 1.761015 1.650127 3.288858 

time [s] 223 389 212 467 

#iterations 117 238 87 168 

Since the results reported in this way are not readable and they have to be carefully 

analysed to get some meaning out of them a better visualisation of the same is given in 

Figure 7.2. Also a comparison of the simulation times is given, in Figure 7.3. 
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Figure 7.2. Safety index results for one-phase system, comparative graph 

 

Figure 7.3. Simulation times for one-phase system, comparative graph 
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7.2.2 Two-phase flow system 

As said no direct simulation can be implemented in this scenario and the first analysis is 

carried out using SRSM-FORM. Target reliability levels to maintain over-time are 10
-4

 

and 10
-5

 corresponding to 3.71 and 4.26 safety index respectively. The analysis 

conducted spotted out which points are likely to fail first and the time range when this 

can happen.  

To have an idea, simulations have been run for time instants ranging from 1 to 2.7 

years. High probability of failure is obtained in a so short time because of the operating 

condition assumed. The operating pressure is quite high and for this reason even the 

smallest thickness deterioration affects a lot the safety of the system. 

The results are reported below in Figure 7-4, Figure 7.5 and Figure 7.6 where 

visualisation of safety levels is done through colours mapping. Red means low 

reliability (e.g. high probability of failure) and blue the opposite. 

Detailed numerical results are reported in Appendix D.  

 

Figure 7.4. Reliability contours of the pipeline for t=2 years 
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Figure 7.5. Reliability contours of the pipeline for t=2.5 years 

 

Figure 7.6. Reliability contours of the pipeline for t=2.7 years 
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Commenting the results displayed above we can say that they make perfectly sense 

because the highest corrosion rate is shown to happen for high pressures and the margin 

of safety is intuitively lower for the same pipe segments. In particular segments that 

have higher operating pressure conditions are between pipe segment #40 and #50. 

Another interesting visualisation of the results can be given if only the exceedance of 

USL and SLS is considered. A figure to visualise this is produced for t=2.5 years only. 

The legend is the same used in Appendix D. 

 

Figure 7.7. Safety Levels exceedance map for t=2.7 years 
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Considering only segment #49 which is the first that over-time shows safety levels 

below target SLS and ULS we can plot his behaviour over-time in Figure 7.8. 

For some low probability of failure values we cannot represent the safety index in the 

scale considered. During years from 1 to 2 beta is so high (Pf so low) that we are not 

interested in representing it properly. Setting as a limit below which represent the safety 

index trend the beta value of 8 we realise that just after the second year this is 

overcome. 

To confirm these results other techniques have been applied. As discussed previously 

Kriging-MCS and Dynamically Kriged LS are applied. Because of the relatively high 

number of segments and the low interest in investigating those who don’t show failure 

first, further analysis techniques are just applied to the critical segment #49. The aim of 

this further investigation is to show the applicability of the methodologies also in a 

reliability analysis over-time.  

Comparative results are reported in Figure 7.9. 

 

Figure 7.8. Safety index over-time for critical segment 
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Figure 7.9. Methodologies comparison on critical segment safety index over-time 

Setting some limits to the safety index we can predict when troubles may arise hence 

plan inspection and maintenance. What we would expect after such intervention is to 

pull the safety index back far above the safety thresholds.  

One more thing that can be done without simulating for too many discrete events in 

time is to run simulations just for few time instants (at least 3) and interpolate them with 

a curve. What the analyst can expect is that this curve will accurately predict the trend 

over-time. This concept associated to maintenance planned according to predictive 

engineering is well shown in Figure 7.10. 

 

Figure 7.10. Maintenance planning effect, seg#49 
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Thanks to the spatial and time integration (such terms are inappropriate since every 

analysis has been carried out for different spatial points on different time instants, 

results have been then interpolated to have a continuous trend) we can have values of 

probability of failure for each segment of the geometry over time hence determine 

where and when failure will occur first.  

An analysis on sensitivity factors (direction cosines of HL-FORM) can be done in order 

to spot out which ones have the largest impact on the system failure. Some pie charts at 

different discrete time are created to represent the relative contribution to failure and 

they are reported below. In the charts the value for the angles corresponding to the 

direction cosine is given. The direction cosine itself can vary between -1 and 1 and 

gives the steepness of the curve close to the MPP, hence how a variation in an input 

variable can move the MPP far from the actual one. 

Analysing the charts we can assess that initially just yield and well pressure are 

affecting failure most, while other variables have minor impact. Time passing the well 

pressure is more and more participating in failure as a cause of it. Also fluid temperature 

and heat transfer coefficient start having large slices of the pie of failure. In particular, 

the last pie chart shows that temperature and heat transfer coefficient. This makes 

perfectly sense since the thickness is decreasing and it’s not appearing as a considered 

variable. In the MoS what appears is the pressure allowable in the pipe, direct 

proportional to the thickness and inverse proportional to the fluid temperature. 

 

Figure 7.11. Sensitivity factors, t=1 year 
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Figure 7.12. Sensitivity factors, t=2 years 

 

Figure 7.13. Sensitivity factors, t=2.5 years 

An interesting comparison can be done with kriging activity parameter which just gives 

an idea of how much a variable is active on the output (MoS). In kriging no stochastic 

analysis is included hence no stochasticity of the variables is considered. What we 

obtain for the same time instants is shown in the graphs below. We can observe that the 

variable importance position is completely mixed compared with the ones given in the 

charts above. That’s because no stochasticity is considered there hence the width of the 

distribution doesn’t really matter. Meanwhile this largely matters in the failure of the 
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surrogate built. 

HL-FORM sensitivity factors, t=2years 

Well Pressure 

Temperature 

Mass Flow Rate 

Roughness 

Seawater Temperature 

Heat Trasfer Coeff 

Yield Strength 

HL-FORM Sensitivity factors, t=2.5 years 

Well Pressure 

Temperature 

Mass Flow Rate 

Roughness 

Seawater Temperature 

Heat Trasfer Coeff 

Yield Strength 



 

81 

 

Well Pressure 

Separator Temperature 

Mass Flow Rate 

Roughness 

Seawater Temperature 

Heat Trasfer Coeff 

Yield Strength 





 

83 

 

8 CONCLUSIONS 

8.1 Summary 

Since no quantitative probabilistic assessments have ever been applied to piping 

systems and no systematic analysis has ever been carried out, the present work 

attempted to cover this.  

The analysis has been focused both on one-phase systems and two-phase oil-gas flow, 

where uncertainties, especially in harsh operating environments, are higher and their 

impact is critical. Moreover the risk related to failure in such conditions is extremely 

high because of the impact of the failure event itself on the environment. 

Conventional tools, already employed in the structural reliability world, have been 

applied to pipe flow systems and, in order to perform a more accurate analysis, some 

new tools have been developed. Particularly surrogate modelling using kriging has been 

coupled to probabilistic analysis tools which included direct simulation by means of 

MCS and optimisation algorithm to seek for the MPP distance from the failure region 

(e.g. FORM-HL). 

Due to the focus on corrosion and the many works present in literature where corrosion 

impact assessment is carried out, particular attention has been given to this aspect. 

Furthermore, a discrete events analysis of the system behaviour has been carried out. 

This leads to predictive engineering considerations about where and when the failure is 

going to happen. The accuracy of such prediction is subjected to the approximations 

introduced by system surrogate modelling and by probabilistic analysis, which are 

generally considered acceptable. 

8.2 Achievements 

Quantitative reliability assessment of pipe flow systems has been introduced and a 

systematic approach to analyse them has been developed. 

Conventional reliability analysis tools have been transferred successfully from structural 

design world (where they have been first developed) to pipe flow system world.  

Accurate and innovative analysis tools have been developed and proved to be applicable 

to pipe flow systems. 

Both one-phase flow and two-phase flow systems have been analysed. In particular, 

corrosion impact on the latter has been assessed and a discrete events analysis has been 

performed. 

8.3 Future work 

The present work opens many possibilities of analysis regarding pipe flow systems and 

systems in general. 

Firstly, the new analysis tools developed should be tested on other types of systems to 

show their broad applicability.  

Further studies should be carried out to analyse a real system where different failure 

modes for pipe systems are investigated. Having real system geometries and field data, 
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from which to derive variables distributions and generalised corrosion models, a 

prediction estimate of the real behaviour of the system can be done. Moreover deeper 

and more realistic analysis can be done obtaining more meaningful results. 
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APPENDICES 

Appendix A Models details 

A.1 Model validation data 

A.1.1 Pump data 

A typical pump characteristic which is also varied throughout the validation procedure 

is given below. It is intended to serve just as a reference for the reader since the defining 

parameters are changed to obtain different validation responses. 

 

Figure A.1. Pump characteristic 
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Figure A.2. Pump efficiency 

This real curve has been approximated differently from time to time depending on the 

flow rate with an equation similar to the one below and just changing the coefficient b. 
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A.1.2 Validation data: dp2fr.m 

Table A.1. Validation data for dp2fr.m 

System Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

L [m] 10.00 15.00 20.00 2.00 200.00 

D [cm] 5.2502 7.7927 5.2502 2.6645 10.2260 

ε [mm] 0.0460 0.0460 0.0460 0.0150 0.0460 

h [m] 0.00 2.00 1.00 0.00 0.00 

bends [1,1,1] [7,0,0] [1,0,0] [0,0,0] [0,0,0] 

valves [1,1,1] [1,1,0] [0,0,1] [0,0,0] [0,0,0] 

a 17.50 17.50 17.50 17.50 17.50 

b       47,000     44,378.5        42,200        42,200        47,000  

T [K] 293 293 293 293 293 

  

    

  

Matlab 

    

  

V' [m3/s] 0.010 0.013 0.008 0.008 0.010 

p_in [Pa]     400,000      300,000      300,000      400,000      200,000  

p_out     376,530      325,310      361,800      404,660      298,350  

  

    

  

PFE2010 

    

  

L_in [m] 40.87 30.653 30.653 40.87 20.435 

L_out [m] 38.472 33.239 36.967 41.347 30.484 

V' [m3/s] 0.010 0.013 0.008 0.008 0.010 

      e 0% 0% 0% 0% 0% 
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A.1.3 Validation data: fr2pout.m 

Table A.2. Validation data for fr2pout.m 

System Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

L [m] 10.00 15.00 20.00 2.00 200.00 

D [cm] 5.2502 7.7927 5.2502 2.6645 10.2260 

ε [mm] 0.0460 0.0460 0.0460 0.0150 0.0460 

h [m] 0.00 2.00 1.00 0.00 0.00 

bends [1,1,1] [7,0,0] [1,0,0] [0,0,0] [0,0,0] 

valves [1,1,1] [1,1,0] [0,0,1] [0,0,0] [0,0,0] 

a 17.50 17.50 17.50 17.50 17.50 

b       47,000     44,378.5        42,200        42,200        47,000  

T [K] 293 293 293 293 293 

  

    

  

Matlab 

    

  

p_out     376,530      325,310      361,800      404,660      298,350  

p_in [Pa]     400,000      300,000      300,000      400,000      200,000  

V' [m3/s] 0.010 0.013 0.008 0.008 0.010 

      PFE2010 

    

  

L_in [m] 40.87 30.653 30.653 40.87 20.435 

L_out [m] 38.472 33.239 36.967 41.347 30.484 

V' [m3/s] 0.010 0.013 0.008 0.008 0.010 

      e 0% 0% 0% 0% 0% 
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A.2 Systems geometry 

A.2.1 One-phase system 

 

Figure A.3. One-phase system geometry 

 

Table A.3. One-phase system operating data 

Elevation [m] 1 

Temperature [K] 293 

Pipe length [m] 10 

Diameter [cm] 5.2502 

Pipe roughness [mm] 0.046 

Inlet pressure [Pa] 101325 

Outlet pressure [Pa] 101325 

Pressure in A [Pa] 233960.3 

Pressure in B [Pa] 141025.57 

Friction coefficient 0.203 

Flow rate [m3/s] 0.01 
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Figure A.4. One-phase system 3D snapshots 
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A.2.2 Two-phase system 

Table A.4. Two-phase system geometrical data 

Pipe x [m] y [m] 
Length 

[m] 
Elevation 

[m] 
# 

Sections 
Diameter 

[m] Roughness [m] 

Wall 
thickness 

[m] 

Start 
Point 0 -255 

      PIPE-1 2200 -270 2200,05 -15 22 0,12 2,80E-05 0,009 

PIPE-2 3100 -450 917,824 -180 9 0,12 2,80E-05 0,009 

PIPE-3 4100 -500 1001,25 -50 10 0,12 2,80E-05 0,009 

PIPE-4 4800 -480 700,286 20 7 0,12 2,80E-05 0,009 

PIPE-5 4800 30 510 510 5 0,1 2,80E-05 0,0075 

PIPE-6 4900 30 100 0 1 0,1 2,80E-05 0,0075 

   

5429,41 285 
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Appendix B Matlab codes 

Some pieces of code used to perform Kriging were not developed by the author and 

they were just taken from http://www.southampton.ac.uk/~aijf197/academic.htm, where 

they are supplied as learning material from [15]. The codes employed in this work are 

listed below and they have been used and sometimes modified according to the attached 

GNU GPL license. No copyright infringement is intended and it belongs to the original 

authors Alexander IJ Forrester, András Sóbester and Andy Keane. 

List of codes used:  

- ga.m  

- bestlh.m 

- jd.m 

- mm.m 

- mmlhs.m 

- mmphi.m 

- mmsort.m 

- perturb.m 

- reglikelihood.m 

- regpredictor.m 

- rlh.m 

B.1 Models 

B.1.1 fr2pout.m 

 

http://www.southampton.ac.uk/~aijf197/academic.htm
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X 

 

B.1.2 dp2fr.m 

 

 

 



 

XI 

 

 

 

B.1.3 density.m 

 



 

XII 

 

 

 

B.1.4 viscosity.m 

 

B.1.5 colebrook_white.m 
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B.2 Reliability analysis 

B.2.1 MCS.m 
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B.2.2 SRSM.m 
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B.2.3 SRSM_FORM.m 
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B.2.4 FORM_7.m  

Just the 7 variables case is reported here to show how the algorithm works and how the 

author has implemented it. The same code can be easily written for more or less 

variables maintaining the same structure. 
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B.2.5 SRSM_MCS.m 



 

XX 

 

 



 

XXI 
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B.2.6 KriMCS.m 

 



 

XXIII 
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B.2.7 KriMCS_2ph.m 
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XXVI 

 

        

 



 

XXVII 
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B.2.8 MoS.m 

 



 

XXIX 

 

 

 

B.2.9 KriFORM.m 



 

XXX 
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B.2.10 dynSRSM.m 
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B.2.11 dynSRSM_2ph.m 
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B.3 Surrogate modelling 

B.3.1 krichk.m 
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Appendix C Matrix algebra 

C.1 Partitioned inverse derivation 

                
  
  

  
  

   
   

  
  

   

 

 

 
 

 
        
      

        
      

   

 

 

 
 
 

 
                            

                   

                       

              

   

 

C.2 Cholesky factorization 

       

where    is the transpose complex conjugate. Since in our particular application there is 

no complex domain analysis it coincides with the transpose. 
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Appendix D Results 

Colours are mapped according to the legend: 

 

 

 
year 

el# 1 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 

1 - - - - - - - - - 

2 - - - - - - - - - 

3 - - - - - - - - - 

4 - - - - - - - - - 

5 - - - - - - - - - 

6 - - - - - - - - - 

7 - - - - - - - - - 

8 - - - - - - - - - 

9 - - - - - - - - - 

10 - - - - - - - - - 

11 - - - - - - - - - 

12 - - - - - - - - - 

13 - - - - - - - - - 

14 - - - - - - - - - 

15 - - - - - - - - - 

16 - - - - - - - - - 

17 - - - - - - - - - 

18 - - - - - - - - - 

19 - - - - - - - - - 

20 - - - - - - - - - 

21 - - - - - - - - - 

22 - - - - - - - - - 

23 - - - - - - - - - 

24 - - - - - - - - - 

25 - - - - - - - - - 



 

LI 

 

26 - - - - - - - - - 

27 - - - - - - 8.076571 - - 

28 - - - - - - - - 8.209536 

29 - - - - - - - - 7.757533 

30 - - - - - - 7.118466 7.869778 7.23673 

31 - - - - - - 7.972552 7.360526 6.674624 

32 - - - - - 8.209536 7.641094 6.992328 6.261359 

33 - - - - - 8.0414 7.452972 6.782261 6.022901 

34 - - - - - 7.877848 7.259404 6.56486 5.775273 

35 - - - 8.209536 8.209536 7.698505 7.060531 6.341147 5.518202 

36 - - - - 8.125891 7.516181 6.856092 6.109375 5.250203 

37 - - - - 7.941444 7.32814 6.644955 5.869223 4.970104 

38 - - - - 7.764209 7.135345 6.428668 5.620703 4.676606 

39 - - - 8.209536 7.586514 6.937758 6.204799 5.362172 4.368176 

40 - - - 8.014016 7.404921 6.734205 5.97336 5.092457 4.041666 

41 - - - 7.835685 7.219034 6.525465 5.733963 4.81058 3.695535 

42 - - - 7.748126 7.118887 6.41115 5.601373 4.652021 3.496435 

43 - - - 7.728523 7.097454 6.386129 5.57082 4.613463 3.444849 

44 - - 8.209536 7.711503 7.075611 6.360131 5.539198 4.573659 3.391818 

45 - - 8.209536 7.692463 7.054077 6.333823 5.507157 4.533236 3.337915 

46 - - 8.209536 7.672441 7.031454 6.306906 5.47434 4.491773 3.282091 

47 - - 8.209536 7.655089 7.00918 6.280062 5.441272 4.449585 3.224929 

48 - - 8.209536 7.633364 6.985381 6.251703 5.406635 4.40566 3.165556 

49 - 7.232089 6.025717 5.355374 4.104562 2.448713 -0.04884 -2.07642 -2.98489 

50 - - - 7.580521 6.75608 5.789865 4.621976 3.129823 0.989601 

51 - - - - - 7.972552 7.190842 6.280169 5.199463 

52 - - - - - - - 8.209536 7.606326 

53 - - - - - - - - - 

54 - - - - - - - - - 

 

 

 

 



 

i 

NOMENCLATURE 

Symbols 

  accuracy 

  centre of radial basis function 

    covariance 

    Coefficient of Variation 

  diameter 

  approximation error vector 

  friction factor 

  ‘horizon’ factor 

  design factor 

  gravitational acceleration 

  LSF 

  kriging predictor term independent from prediction point 

  height  

  head 

  component pressure loss coefficient 

  number of variables 

  length 

  limit value 

   mass flow rate 

    Margin of safety 

  number of samples 

    
 carbon dioxide mol% 

   number of failures 

  number of runs 



 

ii 

   ‘smoothness’ coefficient 

  pressure 

  probability 

   probability of failure 

   Reynolds number 

  trajectory 

     Yield strength 

  thickness 

  temperature 

  velocity 

   corrosion velocity 

   volumetric flow rate 

  actual value 

  inputs 

  design matrix, samples matrix 

  outputs 

   approximated output 

   predicted output, predicted response 

   approximated responses vector 

  responses vector 

     variables realisation 

  elevation 

  HL-transformed design variable 

  HL director cosines, sensitivity factors 

  SRSM vector coefficient 

  reliability index 



 

iii 

  density 

  roughness 

  approximation error 

   ‘activity’ parameter 

  noise-removal constant 

  mean 

  pi constant 

   variance 

  standard deviation 

  correlation function 

    CDF 

    PDF 

  correlation matrix 

  correlation vector 

Abbreviations 

CU Cranfield University 

CV, CoV Coefficient of Variation 

FMEA Failure Modes and Effects Analysis 

FMECA Failure Modes, Effects and Criticalities Analysis 

FORM First Order Reliability Method 

FORM-HL First Order Reliability Method – Hasofer and Lind formulation 

FOSM First Order - Second Moment 

FP Failure Point 

FTA Fault Tree Analysis 

HL Hasofer and Lind 

ISO International Standards Organisation 

LHS Latin Hypercube Sampling 

LSM Least Square Method 

MCS Monte Carlo Simulation 



 

iv 

MLE Maximum Likelihood Estimate 

MoS Margin of Safety 

MPP Most Probable failure Point 

MVFOSM Mean Value First Order Second Moment 

NPSHa Net Pressure Suction Head available 

NPSHr Net Pressure Suction Head required 

Oreda Offshore Reliability Data 

PDF Probability Distribution Function 

PFE2010 Pipe Flow Expert 2010 

RA Reliability Analysis 

RCM Reliability-Centered Maintenance 

SOSM Second Order – Second Moment 

SRSM Stochastic Response Surface Method 

WOAD Worldwide Offshore Accidents Databank 
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