
POLITECNICO DI MILANO
SCUOLA DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Specialistica in Ingegneria Informatica
Dipartimento di Elettronica, Informazione e Bioingegneria

PuppetDroid: a Remote Execution
Environment and UI Exerciser for

Android Malware Analysis

Relatore: Prof. Stefano Zanero
Correlatore: Dr. Federico Maggi

Tesi di Laurea di:
Andrea Gianazza (M. 755119)

Anno Accademico 2012-2013
Facoltà di Ingegneria dell’Informazione (Ing.V - INF)

INGEGNERIA INFORMATICA (187)
Laurea Specialistica (ord. 509)

Abstract

With the growing popularity of smartphones and apps, cyber criminals have
begun infecting mobile devices with malware. The prevalence and complexity
of such malicious programs are constantly on the rise.

In response, researchers proposed various approaches for analysis and detec-
tion of malicious applications. In this work we focus on the fundamental
problem of malware analysis, which can be traditionally divided in two cate-
gories: static and dynamic analysis. Static approaches have the main advan-
tage of high code coverage and scalability, but they are ineffective against
code obfuscation or dynamic payloads. Conversely, dynamic approaches are
resilient to code obfuscation but they reach lower code coverage than static
ones. In particular, current solutions are unable to fully reproduce the typ-
ical usage of human users, so to only partially cover the malicious code
during dynamic analysis. Consequently, a malware sample may not exhibit
its malicious behavior, leading to an erroneous or incomplete analysis.

In this work we propose a new approach to exercise the user interface (UI) of
an Android application in order to effectively exercise potentially malicious
behaviors. To this end, our key intuition is to record and reproduce the
typical UI-interaction of a potential victim of the malware, so to stimulate the
relevant behaviors during dynamic analysis. Moreover, to make our approach
scale, we record a trace of the UI events while a human is using an app, and
then automatically re-execute this trace on apps that are “similar” to the
given one. We developed our approach in PuppetDroid, an Android remote
execution environment and UI exerciser for dynamic malware analysis.

We experimentally demonstrated that our stimulation approach allows to
reach higher code coverage than automatic UI exercisers, so to succeed in
stimulating interesting malicious behaviors that are not exposed when using
other approaches.

Finally, PuppetDroid relies on crowdsourcing to collect new stimulation
traces: we believe that our system can attract the interest not only of se-
curity analysts but also of normal users that want to safely test potentially
malicious applications.

Sommario

Gli ultimi anni sono stati testimoni di una crescita esponenziale nell’adozione
e diffusione di dispositivi mobili come smartphone e, più recentemente, ta-
blet. In particolare, gli attuali smartphone non possono più essere etichettati
come semplici dispositivi per fare chiamate telefoniche o mandare SMS, ma
sono diventati complessi e potenti strumenti che permettono la navigazione
web, l’utilizzo di social network, la navigazione tramite GPS e l’esecuzione
di operazioni bancarie. A supportare ulteriormente la diffusione di questi
dispositivi ha contribuito la comparsa di numerosi negozi virtuali che per-
mettono agli utenti di poter accedere ed installare sui propri dispositivi una
vasta gamma di applicazioni in maniera semplice ed immediata. Tutto que-
sto ha portato, verso la fine del 2012, al definitivo sorpasso del numero di
dispositivi mobili attivi rispetto al numero di PC convenzionali.

La crescente popolarità di smartphone e delle relative applicazioni ha ine-
vitabilmente attratto l’attenzione di criminali informatici, che hanno quindi
iniziato a sviluppare applicazioni malevoli per dispositivi mobili. Un’applica-
zione malevole, o malware, è un’applicazione sviluppata col chiaro intento di
compiere delle azioni all’insaputa dell’utente che possono spaziare dal furto
di informazioni sensibili, alla sottoscrizione a servizi a pagamento o all’esecu-
zione di operazioni con l’intento di rendere il dispositivo inutilizzabile. Come
mostrato inoltre da recenti report di produttori di anti-virus ed esperti del
settore, la diffusione e la complessità dei malware è in continua crescita e
Android risulta la piattaforma più colpita.

In risposta a questo fenomeno, sono state proposte diverse tecniche per ana-
lizzare ed individuare nuove minacce. In questo lavoro ci focalizziamo sul-
l’analisi di malware. In particolare, i due principali approcci adottati per lo
studio di nuovi malware sono l’analisi statica e quella dinamica. Le tecniche
di analisi statica prevedono l’utilizzo di strumenti di decifratura, decompi-
lazione o disassemblaggio per analizzare il codice di un’applicazione a vari
livelli. Per esempio, un tipico scenario di utilizzo è la ricerca all’interno
del codice di schemi di esecuzione tipici, detti signature, per poter indivi-
duare velocemente se un’applicazione può essere etichettata come malevola
oppure no: questa tecnica è solitamente alla base del funzionamento della

maggior parte degli anti-virus. Gli strumenti di analisi statica presentano
il vantaggio di raggiungere un’alta copertura di codice, poiché permettono
di analizzare percorsi di esecuzione di difficile accesso, e un’alta scalabilità,
perché l’analisi può essere automatizzata in maniera particolarmente agevo-
le. Questi strumenti risultano però spesso inefficaci in presenza di codice
offuscato, ovvero codice appositamente modificato per renderne difficile la
lettura e l’analisi, e payload dinamici, ovvero porzioni di codice che vengono
recuperate dal programma durante la sua esecuzione e quindi non accessibili
staticamente. Le tecniche di analisi dinamica prevedono invece di studiare il
comportamento di un programma, potenzialmente pericoloso, eseguendolo in
un ambiente sicuro e controllato, definito sandbox. Tipiche soluzioni adottate
in questo approccio prevedono l’utilizzo di network sniffer, ovvero strumenti
in grado di analizzare e tenere traccia del traffico di rete, o di tecniche di
istrumentazione del codice, per tracciare le chiamate di sistema invocate dal-
l’applicazione. Queste informazioni vengono poi utilizzate dall’analista per
risalire ai comportamenti malevoli, definiti malicious behavior, messi in atto
dal malware. L’analisi dinamica non risente della presenza di codice offusca-
to, dal momento che prima o poi questo codice deve “de-offuscarsi” durante
l’esecuzione, o di dynamic payload, però difficilmente riesce ad ottenere l’alta
copertura di codice o la scalabilità tipica dell’analisi statica. La copertura di
codice è in particolare la limitazione principale di questo approccio: infatti
l’analisi dinamica può studiare le azioni eseguite in un percorso di esecuzio-
ne solamente se quel percorso viene effettivamente esplorato. Le soluzioni
attualmente disponibili cercano di superare questa limitazione utilizzando
strumenti di stress-testing o sistemi che combinano l’uso di tecniche di ana-
lisi statica con stimolatori di User Interface (UI) automatici: il problema di
questi approcci è che difficilmente riescono a ricreare l’interazione tipica di
un utente umano, generando quindi una stimolazione spesso inefficace e una
scarsa copertura di codice.

L’obbiettivo di questo lavoro è di proporre un approccio innovativo per con-
durre test di analisi dinamica, definendo un metodo in grado di stimolare
in maniera efficace l’interfaccia di un’applicazione. L’approccio che propo-
niamo ruota intorno a due concetti chiave. Il primo è quello di sfruttare la
stimolazione fornita da un tester umano per riprodurre la tipica interazione
generata da una vittima del malware: a differenza infatti degli stimolatori
automatici, l’utente umano comprende la semantica degli elementi visualiz-
zati a schermo ed è in grado di stimolare l’applicazione in maniera corretta.
Il secondo concetto chiave è quello di registrare una traccia dell’interazione
dell’utente con l’applicazione e sfruttarla per stimolare applicazioni che pre-
sentino un layout simile a quello dell’applicazione originariamente testata.
La nostra idea è avvalorata da una pratica particolarmente diffusa tra gli
autori di malware, ovvero il repackaging di malware esistenti per creare delle
varianti in grado di non essere individuate dagli anti-virus. Tramite il nostro

approccio quindi, se almeno un utente riesce a stimolare un comportamento
malevolo in un malware, è molto probabile che rieseguendo quella traccia
di interazione su applicazioni simili, sia possibile stimolare comportamenti
malevoli simili.

Basandoci su queste osservazioni, abbiamo implementato il nostro approccio
in PuppetDroid, un ambiente di esecuzione remota per l’analisi dinamica di
malware Android. PuppetDroid mette a disposizione dell’utente 2 metodi
per eseguire l’analisi dinamica di un’applicazione (malevola):

1. Test Manuale: l’utente interagisce direttamente con l’applicazione
ed esegue il test utilizzando la sandbox che mettiamo a disposizione.

2. Test Automatico: l’utente sfrutta tracce di stimolazione, registrate
da test manuali precedentemente eseguiti, per stimolare in maniera
automatica la UI di applicazioni simili.

I test manuali permettono agli utenti di testare applicazioni potenzialmente
pericolose tramite il proprio smartphone, senza alcun rischio di infezione o
furto di dati sensibili. L’applicazione viene infatti eseguita su una sandbox
remota opportunamente istrumentata per poter effettuare analisi dinami-
ca. Inoltre l’interazione degli utenti con le applicazioni vengono registrate
in tracce di stimolazione: queste tracce vengono usate nei test automatici
per stimolare applicazioni simili in maniera automatica, rendendo quindi il
nostro approccio scalabile. Infine, il nostro sistema può fare affidamento
sul crowdsourcing per la raccolta di nuove tracce di stimolazione: riteniamo
infatti che PuppetDroid possa attirare l’attenzione non solo di esperti di
sicurezza informatica, ma anche di utenti comuni che vogliono provare in
maniera sicura delle applicazioni che hanno scaricato dal Web o da negozi
alternativi.

I risultati dei test sperimentali condotti per valutare il nostro approccio mo-
strano che sia i test manuali che i test automatici, eseguiti riutilizzando
tracce di stimolazione precedentemente registrate, permettono di ottenere
una copertura maggiore, in termini di behavior stimolati, rispetto a quella
ottenuta con i classici strumenti di stimolazione automatica. Inoltre, abbia-
mo individuato anche alcuni casi particolari in cui PuppetDroid riesce a
stimolare behavior malevoli, che non sono invece esposti utilizzando approcci
di stimolazione differenti.

I contributi originali presentati in questa tesi possono essere riassunti nei
seguenti punti:

– Proponiamo un nuovo approccio per l’analisi dinamica di malware per
Android che sfrutta la stimolazione eseguita da un tester umano in
modo da ottenere una maggiore copertura di codice.

– Proponiamo un metodo innovativo per stimolare in maniera automati-

ca la UI di un’applicazione, riutilizzando tracce di stimolazione eseguite
su applicazioni simili precedentemente analizzate.

– Abbiamo implementato il nostro approccio in PuppetDroid, un ser-
vizio di semplice utilizzo che sfrutta un ambiente di esecuzione remota
per permettere agli utenti di testare in maniera sicura applicazioni po-
tenzialmente pericolose, senza alcun rischio di infezione o furto di dati
sensibili.

– Abbiamo valutato sperimentalmente il nostro approccio e dimostrato
che sia la stimolazione manuale che quella automatica, ottenuta tramite
il riuso di tracce di stimolazione, permettono di ottenere una maggiore
copertura di codice rispetto a quella ottenuta con altri approcci di
stimolazione automatica.

Contents

Contents i

List of figures iii

List of tables v

List of listings vii

1 Introduction 1

2 Background and state of the art 7
2.1 The Android platform . 7

2.1.1 Overview . 8
2.1.2 Android security . 9
2.1.3 Android malware . 11

2.2 State of the art . 16
2.2.1 Malware analysis techniques 16
2.2.2 Exercising of Android applications 22

2.3 Open problems and Goals . 23

3 PuppetDroid 27
3.1 Approach overview . 28
3.2 System overview . 30

3.2.1 System architecture 30
3.2.2 PuppetDroid workflow 31

3.3 Implementation details . 34
3.3.1 Communication protocol 34
3.3.2 Storage . 42
3.3.3 Main Server . 44
3.3.4 Workers . 46
3.3.5 Web application . 49
3.3.6 VNC implementation 49
3.3.7 Puppet ReRunner . 55

i

Contents Contents

4 Experimental evaluation 67
4.1 PuppetDroid stimulation evaluation 67

4.1.1 Dataset . 67
4.1.2 Experimental setup . 69
4.1.3 Results . 70

4.2 PuppetDroid scalability evaluation 75
4.2.1 Dataset . 76
4.2.2 Experimental setup . 77
4.2.3 Results . 78

5 Limitations 88

6 Related work 92
6.1 Static malware analysis . 92
6.2 Android application similarity 94

7 Conclusion and future work 99

A Android tools 103
A.1 Android Emulator . 103
A.2 Android Debug Bridge . 105
A.3 Monkey . 106
A.4 HierarchyViewer and Viewserver 107

Bibliography 112

Acronyms 118

ii

List of figures

2.1 Android software stack. 8
2.2 Android malware growth - McAfee 2013 Q2 Threats Report [30]. 11
2.3 Number of Android threats - F-Secure 2012 Mobile Threat

Report [8]. 12
2.4 Mobile threats motivated by profit per year, 2006-2012 - F-

Secure 2012 Mobile Threat Report [8]. 12
2.5 Workflow of the repackaging technique - ITU Regional forum

on Cybersecurity [2]. 13
2.6 How Toll Fraud SMS Messages works - Lookout 2012 Mobile

Security Report [27]. 14
2.7 Android malware variants growth - ESET Trends for 2013 [7]). 15
2.8 TaintDroid architecture. 18
2.9 DroidScope architecture. 20
2.10 CopperDroid architecture. 21
2.11 SmartDroid architecture and workflow 23

3.1 Activity diagram of user interaction with PuppetDroid sys-
tem. 29

3.2 Architecture of PuppetDroid system. 30
3.3 Workflow of the manual test of a sample provided by the user. 32
3.4 (a) Workflow of the manual test of a sample retrieved by

Google Play. (b) Workflow of a test re-run. 33
3.5 PuppetDroid database Entity-Relationship diagram. 43
3.6 Sandbox life cycle diagram. 47
3.7 Virtual Network Computing (VNC) client/server architecture. 50
3.8 TightVNC client integration in PuppetDroid. 54
3.9 Format used to store input events. 56
3.10 Excerpt of a sample input events file. 56
3.11 Layout comparison of two similar applications. 58
3.12 Failure example of a monkey-based test re-run. 59
3.13 Input event relative position in respect to view object. 60
3.14 Examples of touch event management in Android. 63
3.15 androsim basic workflow. 65

iii

List of figures List of figures

4.1 Total behaviors per test. 71
4.2 Total behaviors per test for malware (on the left) and good-

ware (on the right) samples. 71
4.3 Comparison of exclusive behaviors stimulated with a stimula-

tion approach in respect to the others. 72
4.4 Comparison of exclusive behaviors stimulated with a stim-

ulation approach in respect to the others, considering only
malware (on the left) and goodware (on the right)samples. . 73

4.5 Steps to install BridgeProvider payloads: 1) Ask for appli-
cation update; 2) Install payload; 3) Restart application; 4)
Malicious service running on device. 75

4.6 Comparison of total behaviors stimulated in the original exe-
cution vs. the average total behaviors stimulated in re-executed
tests. 78

4.7 Comparison of distinct behaviors stimulated in the original
execution vs. the average distinct behaviors stimulated in re-
executed tests. 79

4.8 Comparison of exclusive behaviors stimulated in the original
execution vs. the average exclusive behaviors stimulated in
re-executed tests. 79

4.9 Another example of BaseBridge malware: 1) Ask for appli-
cation update; 2) Install payload; 3) Restart application; 4)
Malicious service running on device. 80

4.10 Layout comparison of com.keji.160 with com.keji.161. . . . 82
4.11 Comparison of behaviors stimulated with re-execution in re-

spect to behaviors extracted using automatic stimulation: to-
tal and distinct behaviors on the left, exclusive behaviors on
the right. 83

4.12 Example of similar samples with different layouts. 85
4.13 Example of re-execution failure due to the presence of partic-

ular UI elements. 86

6.1 DroidRanger architecture. 93
6.2 DroidMOSS architecture. 94
6.3 androsim analysis of similar methods. 96
6.4 Juxtapp workflow. 97
6.5 PyggyApp architecture. 97

A.1 Illustration of a view hierarchy, which defines a UI layout. . . 107
A.2 Screenshot of the HierarchyViewer interface. 108

iv

List of tables

3.1 Identification message (from server). 35
3.2 Request message (from client). 35
3.3 Possible values for request-code. 35
3.4 Device info messages (from client). 36
3.5 Authentication messages (from client). 36
3.6 Package name messages (from client). 36
3.7 Possible values for app-source. 36
3.8 Result message (from server). 37
3.9 Possible values for error-code. 37
3.10 Disconnect message (from client). 37
3.11 Get APK list message (from client). 38
3.12 Authentication messages (from client). 38
3.13 APK list length message (from server). 39
3.14 APK info message (from server). 39
3.15 Request message (from main server). 39
3.16 Possible values for request-code. 40
3.17 Device info messages (from main server). 40
3.18 Result message (from worker server). 40
3.19 Terminate test message (from main server). 41
3.20 Re-run info messages (from main server). 41
3.21 Re-run info messages (from main server). 41
3.22 Result message (from worker server). 42
3.23 Example of behavior list generated by CopperDroid. 48

4.1 Dataset used to compare stimulation approaches. 68
4.2 Summary of the results obtained in the experimental evalua-

tion of PuppetDroid stimulation approach. 70
4.3 Comparison of exclusive behaviors stimulated with a stimula-

tion approach in respect to the others.. 73
4.4 List of behaviors extracted testing com.keji.danti80 malware

sample. 74
4.5 Dataset used to validate our re-run approach. 76

v

List of tables List of tables

4.6 List of behaviors extracted testing com.keji.danti160 mal-
ware sample. 81

4.7 Information related to com.keji.danti161 sample. 81
4.8 List of behaviors extracted from com.keji.danti161 malware

sample with UI re-execution. 82
4.9 Summary of the results obtained in the experimental evalua-

tion of PuppetDroid re-execution approach (average values
per test). 84

A.1 Required and optional emulator image files. The list is ob-
tained by using the command emulator -help-disk-images. . 105

A.2 ADB main commands used in PuppetDroid implementation. 106
A.3 ViewServer commands reference. 109

vi

List of listings

3.1 Recorded input events . 57
3.2 Monkey events . 57
3.3 BaseBridge first sample info 57
3.4 BaseBridge second sample info 58
3.5 PuppetDroid ReRunner pseudo-code. 60
4.1 Static information extracted from xxx.apk payload 74
A.1 AVD creation from command line 103
A.2 AVD launching from command line 104
A.3 adb command syntax . 105
A.4 Monkey command used to stress-test an application 106
A.5 service command syntax . 108
A.6 ViewServer start command . 109
A.7 Data returned by ViewServer LIST command 109
A.8 Data returned by ViewServer GET_FOCUS command 110
A.9 Format of data returned by ViewServer DUMP command 110

vii

Chapter 1

Introduction

In recent years, we witnessed an explosive growth in smartphone sales and
adoption: as reported by Canalys [4], in 2011 the number of smartphones
sold worldwide surpassed the number of conventional PCs, and the total
number of active units surpassed the 1 billion mark in the third quarter of
2012 [3]. The popularity of smartphones can be partially attributed to the
particular functionality and convenience they offer to end users. In fact,
existing mobile phones are not simply devices used to make phone calls
and receive SMS messages, but powerful communication and entertainment
platforms for web surfing, social networking, GPS navigation, and online
banking. Furthermore, their usability has been greatly supported by the
emergence of many app marketplaces, online stores where users can browse
through different categories and genres of applications and automatically
download and install them on their devices. Ubiquity and ease of handling
of such devices made them the new personal computers.

Unfortunately, such popularity also attracted the attention of cyber crimi-
nals: as a matter of fact, security reports by Anti-Virus (AV) vendors [42,
40, 8, 30] illustrate a notable increase in the number of threats against mo-
bile platforms during the last year. In particular, these reports point out
that Android appeared to be the operating systems most targeted by mobile
threats in 2012.

The distribution of malicious software, commonly known as “malware” or
“mobile malware”, for smartphones is certainly the main threat. In response,
researchers proposed various approaches for analysis and detection of ma-
licious applications. In this work we focus on the fundamental problem
of malware analysis, which can be traditionally tackled with two types of
program-analysis techniques: static and dynamic analysis. Static approach
analyzes the code at various levels (e.g., machine, assembly or source). Static
analysis is used, for instance, to find known patterns of malicious code or

1

Chapter 1. Introduction

to reconstruct a program’s Control Flow Graph (CFG). Static analysis has
the main advantage of high code coverage and scalability, but it is ineffective
against obfuscated code (i.e., source or machine code properly modified in
order to make it difficult to be read and analyzed) or dynamic payloads (i.e.,
portion of code dynamically downloaded during program execution). On the
other hand, dynamic analysis studies the behavior of a program by observing
its execution in a sandboxed environment (i.e., a controlled environment ex-
pressly created to execute potentially dangerous applications in a safe way).
A malicious behavior identifies any possible action performed by the applica-
tion against the will of the user and it can range from sensitive information
leaking, to the subscription to premium-rate services or the disruption of
user’s device. Typical dynamic analysis techniques involve the use of packet
analyzers to intercept and log network traffic generated by the malware or
the use of instrumentation techniques in order to keep trace of system calls
invoked by a malicious application. This information is used by analysts to
examine the actions performed by an unknown program during its execution
and to reconstruct its behavior. Dynamic analysis is not circumvented by
code obfuscation because code has to deobfuscate itself sooner or later dur-
ing execution. Eventually, the malware will exhibit its malicious behavior.
However, the main limitation of dynamic analysis is its inability to reach
high code coverage: dynamic analysis can examine the actions performed in
an execution path only if that path is actually explored. Current solutions
mitigate this limitation leveraging stress-test tools or a combination of static
analysis and automatic User Interface (UI) exercisers: the problem of these
approaches is that they are often not able to reproduce the typical usage of
a human user, providing in this way an ineffective stimulation and unsatis-
factory code coverage. Exercising mobile applications in a proper way is not
trivial problem because mobile applications make use of highly-interactive
UIs in order to leverage the capabilities of modern touchscreen devices.

In this work we propose a new approach to exercise the UI of an Android
application in order to change the way malware analysis experiments are con-
ducted and effectively exercise potentially malicious behaviors. To this end,
our key intuition is to analyze and reproduce the typical UI-interaction of a
potential victim of the malware, stimulating in this way relevant behaviors
for analysis purposes. Unlike automatic exercisers, human user understands
the semantic of the UI elements and exercises the application accordingly.
A quite common practice among mobile malware authors is to repackage al-
ready existent malware samples, inserting small changes that allow them to
obtain new samples able to avoid detection techniques with minimum effort.
Our idea is to record a trace of the human-driven UI stimulation performed
during a test and automatically re-execute this trace on applications similar
to the one originally tested by the user. In this way, if at least one user in our
system succeeds in manually stimulating a malicious behavior in a malware,

2

Chapter 1. Introduction

it is quite likely that by re-using UI stimulation traces, we can stimulate
similar malicious behaviors.

Based on the above observation and intuitions, in this work we propose two
ways to perform dynamic analysis of a (malicious) Android application:

1. Manual Test: the user directly interacts with the application and
executes the test leveraging the sandboxed environment we provide.

2. Automatic Test: the user leverages previously recorded UI stimula-
tion traces performed on similar samples to automatically exercise the
application.

Manual testing allows us to exercise in an effective way the UI of the appli-
cation. Moreover, we record the interaction of the user with the application
and we store it in a stimulation trace: with this term we indicate the sequence
of actions performed by the user and the list of UI elements actually stimu-
lated during the test. We then leverage these stimulation traces to support
automatic testing: in this way, we can make our approach scale and effec-
tively test repackaged variants of malware previously tested by human users.
Finally, we can rely on crowd-sourcing to collect new stimulation traces: we
believe that our system can attract the interest not only of security ana-
lysts but also of normal users that want to safely try potentially malicious
applications they found on the web or in alternative markets.

We developed our approach in PuppetDroid, an Android remote execution
environment and UI exerciser for dynamic malware analysis. Our system
let security analysts perform manual tests on potentially malicious Android
applications using their personal devices, avoiding any possible risk of infec-
tion or information leaking to them. The application actually executes on a
remote sandbox. The typical usage scenario of PuppetDroid is as follows.
The security analyst uploads a suspicious application to our service. If a
stimulation trace is available, PuppetDroid uses it to exercise the applica-
tion, which runs in the (instrumented) Android emulator. Upon test termina-
tion, the system returns recorded behaviors to the analyst. If no stimulation
trace is available, the analyst is prompted to either provide a stimulation
trace (i.e., by exercising the application from his or her smartphone) or to
enqueue the application for analysis. In this latter case, whenever a new
turk (i.e., a human worker in the crowdsourcing terminology) is available, he
or she provides the stimulation trace for the enqueued application.

We experimentally evaluated our approach. The results showed how both
manual exercising and re-execution of stimulation traces allow to reach higher
code coverage than the one obtained with automatic UI exercisers: as a
matter of fact, we succeeded in stimulating more than twice the number
of behaviors stimulated by other exercising strategies. Moreover, we found
some particular cases in which PuppetDroid succeeds in stimulating inter-

3

Chapter 1. Introduction

esting malicious behaviors that are not exposed using automatic application
exercising approaches.

The original contributions presented in this thesis can be summarized as
follows:

– We propose a new approach to Android dynamic malware analysis that
leverages human-driven UI stimulation to increase code coverage.

– We propose an original method to automatically exercise the UI of
an unknown application re-using UI stimulation traces obtained from
previously analyzed applications that present a similar layout.

– We implemented our approach in PuppetDroid, an easy-to-use ser-
vice that leverages remote sandboxing to allow users to safely test
potentially malicious applications without any risk of infection or in-
formation leakage.

– We experimentally evaluated our approach demonstrating that manual
exercising and stimulation trace re-execution allow to reach higher code
coverage than the one obtained with automatic UI exercisers.

The document is organized as follows.

In Chapter 2 we introduce the Android operating system, we describe the
problem of mobile malware and present the most relevant works in the fields
PuppetDroid deals with. We then analyze the current limitations of exist-
ing Android malware analysis systems and show how our approach can bring
an innovative contribution to the state of the art.

In Chapter 3 we explain the design and implementation choices we made
to build PuppetDroid. We initially present an overview of the system,
subsequently describing each component in detail. Here we also present
puppet_rerunner, the tool we implemented to re-execute previously recorded
UI stimulation on repackaged applications.

In Chapter 4 we describe the experiments we made to evaluate our approach.
Specifically, we compare our human-driven stimulation approach with cur-
rently used automatic stimulation strategies. Then we propose a set of ex-
periments to evaluate the effectiveness of our re-execution method.

In Chapter 5 we analyze the main limitations of PuppetDroid system,
focusing on performance and the problem of evasion from dynamic analysis
environments.

In Chapter 5 we overview relevant works in two fields related to this thesis:
static malware analysis and Android applications similarity.

Last, in Chapter 7 we draw the conclusions of our work, discussing the orig-
inal contributions that we provided and suggesting future developments and

4

Chapter 1. Introduction

improvements to PuppetDroid system.

5

Chapter 2

Background and state of the
art

In this chapter we introduce the Android platform, presenting a general
overview of the operating system and then focusing on security aspects (Sec-
tion 2.1). In Section 2.2, we present the state of the art in the main fields
this thesis deals with: malware analysis and UI stimulation. Finally, in Sec-
tion 2.3 we illustrate the limitations of existing Android malware analysis
techniques and introduces our approach to face them.

2.1 The Android platform

Android is a popular open-source operating system primarily designed for
touchscreen mobile devices, such as smartphones and tablet computers, and
developed and supported by a group of companies known as the Open Hand-
set Alliance, led by Google [23]. Publicly unveiled in 2007, Android has seen
an explosive proliferation during the last years. Eric Schmidt, Google’s ex-
ecutive chairman and former CEO, has recently announced [33] that his
company is now seeing 1.5 million activations per day, boasting an installed
base of about 750 million users. Thanks to these numbers, Android nearly
reached 80.0% of the mobile market share [22] and has an upward trend with
a growth of 73.5% in 2013.

To simplify the application distribution, discovering, purchasing and updat-
ing, the last years have seen the emergence of many app marketplaces, online
stores where users can browse through different categories and genres of ap-
plications, view information and reviews of them, and automatically down-
load and install the application files on their devices. Indeed, along with the
number of Android devices, the prevalence of the official app market, Google

7

2.1 The Android platform Chapter 2. Background and state of the art

Figure 2.1: Android software stack.

Play Store, increased this year hitting 48 billion downloads and over 1 million
available applications, as stated by Sundar Pichai, senior vice president at
Google, during Google I/O 2013 [43]. In addition to the official market, tens
of unofficial/alternative markets (e.g., Amazon App-Shop, Samsung Apps,
AndroLibs, AppBrain), offer exclusive applications, or applications that were
banned from the official repository.

2.1.1 Overview

The core operating system is built on top of the Linux kernel, which provides
a hardware abstraction layer to make Android easily portable to a variety
of platforms. Most of the core functionality is implemented as applications
running on top of a customized middleware. The middleware itself is written
in Java and C/C++. Figure 2.1 shows the various level of the Android
software stack.

Applications are most often written in Java and compiled to a custom byte-
code known as the Dalvik EXecutable (DEX) bytecode format. In particu-
lar, during the compilation process, a Java compiler first generates the Java
byte-code, as a set of .class files, and then the Dalvik dx compiler consumes
the .class files, recompiles them to Dalvik bytecode and finally writes the
resulting application into a single .dex file. However, all applications can

8

2.1 The Android platform Chapter 2. Background and state of the art

contain both Java and native components. Native components are simply
shared libraries that are dynamically loaded at runtime: the Java Native
Interface (JNI) is used to allow communications between the native and
Java code. The Dalvik Virtual Machine (DVM) is then used to provide a
Java-level abstraction in order to provide a sandboxed application execu-
tion environment. An Android application is distributed using the Android
Package (APK) format, that is basically a ZIP formatted file containing
the above mentioned classes.dex, an XML manifest file that describes the
application and finally libraries and resources used by the application.

2.1.2 Android security

The Android platform takes advantage of the Linux user-based protection as
a means of identifying and isolating application resources. As a matter of
fact, each application runs in a process with low-privilege user ID, assigned
at installation time, and applications can access only to their own files. By
default, an Android application can only access a limited range of system
resources. The system restricts Android application access to sensitive re-
sources, as telephony and SMS/MMS functions, network/data connections,
geolocation, etc. In order to implement these restrictions, the Android frame-
work provides a set of sensitive APIs that are intended for use only by trusted
applications and protected through a permission mechanism. According to
this mechanism, before installing a new application on the device, the sys-
tem displays a screen listing the permissions required by the application.
The user has to accept them in order to complete the installation.

To enforce permissions, various parts of the system invoke a validation mech-
anism to check whether a given application has a specified permission. There
is no centralized policy for checking permissions when an API is invoked.
Rather, the API implementation calls the validation mechanism to check
that the invoking application has the necessary permissions. A small num-
ber of permissions (e.g., INTERNET or BLUETOOTH) are enforced using Unix
groups ID control policy.

This permission mechanism is coarse-grained, because the user cannot grant
or deny individual permission. He or she must either grant or deny the whole
requested permissions. Furthermore, once granted, the permissions are ap-
plied to the application as long as it is installed and there is no mechanism
to re-adjust the permissions or constrain the runtime behavior of the appli-
cation later on. Some recent works try to address this problem by modifying
the original Android operating system with finer security modules.

For instance, TISSA [51] is a privacy module that allows users to have a fine-
grained control on which kind of user information can be accessible by an

9

2.1 The Android platform Chapter 2. Background and state of the art

untrusted application. TISSA adds lightweight control modules to the An-
droid framework and it is orthogonal to the Android permissions mechanism.
In particular, after the installation, when an untrusted application tries to
access sensitive data, the user has the possibility to choose if to provide
correct, empty, anonymized or bogus information: in this way the user can
prevent personal information leakage without affecting the normal behavior
of the application.

However the approach shown in TISSA relies on modification of the under-
lining software stack, which makes the deployment to off-the-shelf Android
phones difficult. This problem is addressed in AppGuard [1], a practical ex-
tension of the Android permission system that allows to dynamically control
enforced permissions and to apply fine-grained security policies, without re-
quiring modifications of the firmware (i.e., the software embedded in the
device) or root access to the smartphone. The basic idea of AppGuard is
to rewrite an untrusted application such that the code that monitors the
application is directly embedded into its bytecode. In this way AppGuard is
able to observe a trace of security-relevant events, injecting security checks
at critical points into the application code, and then to enforce custom se-
curity policy, suppressing or altering calls to security-relevant methods. As
mentioned above, third party applications installed on Android are assigned
distinct user ids and, by default, an application can neither access nor modify
another application: therefore, since AppGuard cannot simply modify already
installed applications, it has to repackage and reinstall the untrusted appli-
cation.

A recent study [9] analyzes the Android permission system focusing on the
case of over-privileged applications: this work shows how the lack of reli-
able permission information in the official documentation generate confusion
and lead the developers to ask for unnecessary permissions to make their
application work correctly. The situation for end users is even more com-
plicated, because they can hardly understand the proper semantics of the
permissions required at installation time: this fact makes them unaware of
possible security and privacy impact of their decision.

The Android permission mechanism is addressed also in Woodpecker [18]:
this work highlights how a bad enforcement of the Android permission model
could lead to capability leaks (i.e., the situations where an application can
gain access to a permission without actually requesting it). The authors
distinguish two categories of capability leaks: Explicit capability leaks, which
exploit some publicly accessible interfaces or services to access certain per-
missions, and Implicit capability leaks, which allows to an application to
inherit permissions from another application with the same signing key, sub-
verting in this way the permission-based security model. The first capability
leak happens when a privileged application allow any caller to invoke its

10

2.1 The Android platform Chapter 2. Background and state of the art

entry points, without checking the caller’s credentials before it accesses to
dangerous functionalities. An implicit capability leak happens when an ap-
plication has the attribute sharedUserId in its manifest but does not require
a dangerous permission: in this case is possible that another application, that
has both that specific permission and the same user id of the previous one,
is already installed on the smartphone. If it is the case, the first application
can use the same permissions of the second one without explicitly requesting
them.

2.1.3 Android malware

Nowadays, people use smartphones for many of the same purposes as desk-
top computers, most notably web browsing, social networking and online
banking. Moreover, smartphones provide features that are unique to mobile
phones, like SMS messaging, constantly-updated location data and ubiqui-
tous access. As a result mobile devices have become appealing for cyber
criminals, whose current activities include the infection of mobile devices
with the final goal of stealing sensitive data, or performing fraudulent mon-
etary transactions without the user’s consent. Recent reports published by
Anti-Virus (AV) vendors [27, 40, 8, 42, 30] show the importance of this trend,
as illustrated in Figures 2.2 and 2.3.

Figure 2.2: Android malware growth - McAfee 2013 Q2 Threats Report [30].

11

2.1 The Android platform Chapter 2. Background and state of the art

Figure 2.3: Number of Android threats - F-Secure 2012 Mobile Threat Report [8].

These reports also state that the mobile malware industry is mature and
become a viable business for attackers, as shown in Figure 2.4.

Figure 2.4: Mobile threats motivated by profit per year, 2006-2012 - F-Secure 2012 Mobile
Threat Report [8].

Another interesting study is by Zhou and Jiang [50], who present the first
scientific, thorough and comprehensive characterization of the Android mo-
bile malware phenomenon. The authors collected more than 1,200 malware
samples by crawling a variety of Android markets, both manually and au-
tomatically, between August 2010 and October 2011. They also publicly
released the resulting dataset [48].

12

2.1 The Android platform Chapter 2. Background and state of the art

This work presents an interesting characterization of Android malware based
on the installation method used. In particular, there are three main meth-
ods:

Repackaging – this is the most common technique used to hide ma-
licious payloads into an application: in essence, malware authors locate
and download popular apps, disassemble them, enclose malicious payloads
and finally re-assemble and submit the new application to official and/or
alternative Android markets1. This process is also shown in Figure 2.5,
taken from [2];

Figure 2.5: Workflow of the repackaging technique - ITU Regional forum on Cybersecu-
rity [2].

Update Attack – in this technique, the malicious payloads are down-
loaded at runtime. In this way the application has only to include an
update component and, as a result, it is more difficult to detect it through
static scanning;

Drive-by Download – it is the traditional drive-by download attack,
ported to mobile space, where the user is enticed through social-engineering
tricks to download “interesting” or “feature-rich” applications.

The authors present another interesting characterization, this time dividing
the malicious payload functionalities in 4 categories:

Privilege Escalation – the payload tries to exploit known platform-
level vulnerabilities in order to gain root privileges;

Remote Control – the infected phone is transformed in a bot in order
to be remotely controlled by a C&C server;

Financial Charge – the malware stealthily subscribes the victim to
attacker-controlled premium-rate services, such as by sending SMS mes-
sages as shown in Figure 2.6;

1A non-exhaustive list of alternative Android market is published here: http://blog.
andrototal.org/post/53390790840/unofficial-android-marketplaces

13

http://blog.andrototal.org/post/53390790840/unofficial-android-marketplaces
http://blog.andrototal.org/post/53390790840/unofficial-android-marketplaces

2.1 The Android platform Chapter 2. Background and state of the art

Figure 2.6: How Toll Fraud SMS Messages works - Lookout 2012 Mobile Security Re-
port [27].

Information Collection – the malware harvests various information
from the infected phone, such a SMS messages, phone numbers and user
accounts. To make an example, Zitmo, the Zeus version on Android, and
Spitmo, the SpyEye version on Android, intercept SMS verification mes-
sages in order to generate fraudulent transactions on behalf of infected
users.

Based on this analysis, the authors proposed a taxonomy that includes 49 dis-
tinct families. An in-depth analysis of the evolution of two families, namely
DroidKungFu and AnserverBot, further analyzed by the same authors in [49],
showed that their complexity increased over time. A retrospective analysis
of the variants diversity, published in [7], corroborates this result: as sum-
marized in Figure 2.7, not only the complexity of malware increased again
last year, but the number of variants also increased.

Some interesting examples demonstrating the increase of malware complexity
came out during the past year. SMSZombie, for instance, is a malware
first discovered around July 2012. It allegedly infected more than 500,000
smartphones in China and leveraged a vulnerability in the China Mobile
SMS Payment system process in order to generate unauthorized payments,
steal bank card numbers and gather other financial information. SMSZombie
pretends to be a clean wallpaper application, which instead stealthily carries
a malicious payload as a second APK file disguised as a JPEG asset. The

14

2.1 The Android platform Chapter 2. Background and state of the art

Figure 2.7: Android malware variants growth - ESET Trends for 2013 [7]).

trojan pushes user to install some additional files that included the actual
malicious code. Once the malicious package is installed, the user is forced
to register it as a Device Administration Application, making its removal
particularly tricky. The malware also enforces evasion tricks in order to
not be detected. The only way to remove SMSZombie consists in a manual
operation (i.e., Device Administration removal), which cannot be performed
by any antivirus application.

Another notable malware is FakeInstaller, also referred to as RuSMSMarket,
OpFake, Fakebrows, and FakeWAM: it is by far the most detected malware
by AV products in 2012, according to security reports published by AV ven-
dors [27, 42, 32]. FakeInstaller sends SMS messages to premium rate numbers,
without the user’s consent. This malware pretends to be the installer for a
legitimate popular application, such as Opera Browser (hence the names Op-
Fake and Fakebrows) or WhatsApp Messenger. The victim usually retrieves it
from fake official sites or from fake markets found through search engines or
social networks. These sites fool the user making the applications appear to
be legitimate, including screenshots, descriptions, user reviews, videos, etc.
There are many variants of this malware distributed on hundreds of websites
and fake markets. Furthermore, it uses server-side polymorphism, obfus-
cation, anti-reversing techniques and frequent recompilation, all to avoid
detection by antivirus solutions. A detailed description of this malware can
be retrieved here [32].

Finally, an interesting survey on mobile malware is presented in [10]. The
authors collected and analyzed malware samples for Android, iOS and Sym-
bian in order to categorize them and extract information about the motiva-
tions underlying malware propagation. Furthermore, the three frameworks
are compared according to enforced permission mechanisms and adopted

15

2.2 State of the art Chapter 2. Background and state of the art

reviews process in order to prevent the spread of malware.

2.2 State of the art

In this section we overview and compare the state of the art in the fields
addressed by PuppetDroid system. In particular in Section 2.2.1 we il-
lustrate malware analysis and present existing analysis tools for the Android
platform, while in Section 2.2.2 we present the main approaches used to
stimulate modern touchscreen User Interfaces.

2.2.1 Malware analysis techniques

Program analysis indicates the whole set of processes and techniques used
to reconstruct and analyze the behavior of an unknown program: software
developers usually leverage it for different purposes (e.g., to verify the cor-
rectness of their programs, to find possible flaws in the code or to test perfor-
mance during program execution). Malware analysis is a specific use-case of
program analysis, aimed to analyze the behavior of malicious applications:
it is a fundamental field in computer security because it allows to study the
execution patterns commonly exploited by malware authors, allowing in this
way to build robust and up-to-date security products.

Program analysis approaches can be divided in two categories: static and
dynamic analysis.

Static analysis involves different investigation techniques that analyze the
code at various levels (e.g., machine, assembly or source) and allow to ex-
amine a program without executing it. These techniques usually include de-
compilation, disassembling, decryption, control and data flow analysis and
others. A typical use-case of this approach is the discovering of sections of
code that follows known malicious pattern of execution, named “signatures”,
and is at the base of Anti-Virus (AV) products.

The main advantage of static analysis is that it can potentially see the whole
behavior of a program since it can examine parts of a program that normally
do not execute, reaching in this way a complete code coverage analysis.
Moreover static analysis is very fast and can easily scale, allowing the analysis
of a huge number of applications in a relative small amount of time.

The main disadvantage of this approach is its inability to manage obfuscated
code (i.e., source or machine code properly modified in order to make it dif-
ficult to be read and analyzed) or dynamic payloads (i.e., portion of code
dynamically downloaded during program execution), two things particularly

16

2.2 State of the art Chapter 2. Background and state of the art

present in malware samples. In particular, as previously mentioned, Upload
Attack and Drive-by Download are two techniques often used by malware au-
thors to let an application download malicious payloads at run-time: in this
case a static analysis approach cannot know the behavior of these payloads
and eventually fails.

On the other hand, dynamic analysis studies the behavior of a program
executing it: usually dynamic analysis tools include debuggers, function call
tracers, network sniffers, machine emulators and others. Typical examples of
dynamic analysis are the use of packet analyzers to intercept and log network
traffic generated by the malware or the use of instrumentation techniques in
order to keep trace of system calls invoked by the malicious application. A
common approach to dynamic analysis involves the execution of a program
in a sandboxed environment (i.e., a controlled environment expressly created
for running unknown software in a safe way).

Dynamic analysis often let the analyst to better understand the behavior of
an unknown program and it succeeds in overcoming the limitations shown
by static analysis. For instance, since dynamic payloads are download and
executed at runtime, dynamic analysis is able to examine also these por-
tions of code. Moreover, instrumentation techniques let dynamic analysis
be resilient against code obfuscation: in fact, code has to deobfuscate itself
sooner or later during execution and, eventually, the malware will exhibit its
malicious behavior.

The clear disadvantage of this approach is that it can only see the executed
paths: hence, if the malicious behavior is hidden in a path not executed
during the analysis, it is not detected. Other disadvantages of dynamic
analysis are that it requires some human-driven or automatic strategy to
exercise the UI of a program and it usually requires more time to examine
an application in respect to static analysis. Finally, dynamic analysis often
involves the use of instrumentation at user or kernel level that makes this
approach detectable by the program under analysis.

As said, both these analysis approaches present advantages and drawbacks:
then, the best practice to perform a complete and effective malware analysis
involves the usage of a combination of these techniques.

In this work we focus on dynamic analysis, then we present here the state of
the art in this field. Static analysis will be discussed in Section 6.1.

Dynamic malware analysis

One of the most used dynamic analysis framework of the last years is surely
TaintDroid [6]. This analysis system has been developed to face the problem
of private information management in mobile-phone systems, with particular

17

2.2 State of the art Chapter 2. Background and state of the art

Figure 2.8: TaintDroid architecture.

reference to Android. As previously mentioned, Android provide only a coarse-
grained permission system that allows to establish if an application can access
to sensitive data, but it do not provide any insight on how this data is actually
used. TaintDroid is an extension of Android that allows to keep trace of the
flow of privacy sensitive data through third-party applications. The authors
instrumented Android original code in order to label all system resources that
try to take access to privacy-sensitive sources and notify the user in case there
is the possibility that sensitive information can leave the system using the
network, SMS messaging systems or other ways. Figure 2.8 presents an
overview of TaintDroid architecture.

The main limitation of TaintDroid is that it modifies the native library loader
to ensure that third-party applications can only load native libraries from
the firmware: this means that applications that use custom native libraries
cannot work on TaintDroid. Another limitation of this system is that it
is based on the manual instrumentation of the Android source code: this
means that each version of TaintDroid can work only on the targeted Android
version. Originally TaintDroid has been released for Android version 2.1 and
2.3, but recently a new version for Android 4.1 has been released.

Even if it had some limitations, TaintDroid has been one of the first really
usable dynamic malware analysis framework for Android. For this reason it
has been integrated and extended by other analysis systems: the two most
famous system based on TaintDroid are DroidBox2 and Andrubis [25].

DroidBox extended TaintDroid in order to add to the original taint-tracking
system the ability to keep trace and log information related to network traffic,
SMS sent, phone calls, file operations, cryptographic operations and started

2DroidBox project page: https://code.google.com/p/droidbox/

18

https://code.google.com/p/droidbox/

2.2 State of the art Chapter 2. Background and state of the art

services. Since it is based on TaintDroid, this project brings with it all the
limitations previously listed: moreover this project is no more supported and
the last version addresses Android 2.3. Last year the authors of DroidBox
released a new tool for dynamic analysis, named APIMonitor: instead of
instrumenting Android source code, this new tool instruments the source code
of the application under analysis. Even if this allows to untie the tool from
a particular version of Android, there is the clear drawback that the original
application must be modified and repackaged: this means that the malware
author only needs to insert a signature check to make his/her application
able to avoid this analysis.

Andrubis is the Android extension of Anubis3, the famous Windows malware
analysis service provided by International Secure Systems Lab. Andrubis lever-
ages TaintDroid and DroidBox to perform automatic dynamic malware anal-
ysis of Android samples uploaded on its platform: in order to automatically
stimulate Android applications, Andrubis leverages Monkey, a tool contained
in the Android Software Development Kit (SDK) that will be described in
Section A.3. Moreover, Andrubis makes use of apktool4 and Androguard5, two
widely used tools for Android application reversing, to perform basic static
analysis on the APK sample.

Another recently released framework for automatic dynamic malware anal-
ysis that leverages TaintDroid is AppsPlayground [36]. This framework inte-
grates TaintDroid taint analysis with other dynamic analysis techniques in
order to detect anomalous behaviors. Moreover, it provides a testing en-
vironment as similar as possible to the one of a real device, in order to
mitigate evasion attempts. To automatically stimulate Android applications,
AppsPlayground analyzes the information displayed on the screen in order to
reconstruct application’s logic and perform intelligent execution.

All the solutions presented so far exploit the instrumentation of Android
source code in order to perform dynamic analysis. The main advantage of
this approach is that a real device can be used as sandbox to host dynamic
analysis testing, eliminating in this way performance limitations related to
the use of an emulated environment. On the other hand, this type of in-
strumentation has a clear drawback: if a malware succeeds in obtaining root
privileges, it can detect the presence of the analysis framework and hide its
malicious behavior.

To overcome this limitation, all the analysis components must be at a more
privileged level in respect to Android system environment. The only way
to do that is to perform out-of-the-box dynamic analysis, instrumenting the

3Anubis project page: http://anubis.iseclab.org/
4apktool project page: https://code.google.com/p/android-apktool/
5Androguard project page: https://code.google.com/p/androguard/

19

http://anubis.iseclab.org/
https://code.google.com/p/android-apktool/
https://code.google.com/p/androguard/

2.2 State of the art Chapter 2. Background and state of the art

code of the hypervisor that runs the Virtual Machine (VM) hosting the
testing environment. The main advantages of this approach are:

• as the analysis runs underneath the virtual machine, even the most
privileged attacks can be detected;

• a malware can very hardly disrupt the analysis, since it is performed
externally.

Two frameworks following this approach have been presented last year: Droid-
Scope [44] and CopperDroid [37].

DroidScope is an Android malware analysis platform built on top of QEMU.
As previously said, the emulator has been instrumented in order to main-
tain intact the original Android environment and perform external dynamic
analysis. More specifically, the authors modified the translation phase from
Android code to Tiny Code Generator (TCG), an intermediate representation
used in QEMU, in order to insert extra instructions that allows to perform
system call tracing and memory map analysis. Then, to reconstruct the
two semantic levels of Android, the Linux OS level and the Dalvik VM one,
Virtual Machine Introspection (VMI) has been exploited. An overview of
DroidScope architecture is shown in Figure 2.9. An interesting feature of
this framework is that it exposes a set of APIs that allow the development of
plugins to perform both fine and coarse-grained analyses (e.g., system call,
single instruction tracing and taint tracking).

Figure 2.9: DroidScope architecture.

CopperDroid presents an approach very similar to DroidScope: as a matter
of fact, it is a framework built on top of QEMU to automatically perform
out-of-the-box dynamic behavioral analysis of Android malware. In partic-
ular, the authors instrumented the Android emulator in order to precisely

20

2.2 State of the art Chapter 2. Background and state of the art

trace system call invocations at runtime. Afterwards, Virtual Machine In-
trospection (VMI) is exploited in order to analyze the sequence of collected
system calls and extract behaviors both at low-level (OS-specific) and high-
level (Android-specific). Figure 2.10 presents an overview of CopperDroid
architecture. The authors base their approach on the assumption that even
high-level Android-specific behaviors are indeed achieved via system call in-
vocations: as a matter of fact, they deeply inspected the structure of Binder,
the Android-specific Inter-Process Communication (IPC) and Remote Pro-
cedure Call (RPC) mechanism, in order to develop a system call-centric
analysis system. Furthermore, CopperDroid presents a new automatic stim-
ulation approach based on the static information that can be retrieved from
the manifest: the basic idea is to reach high code coverage triggering all the
entry points (i.e., activities and services) of the application and to stimulate
them generating a number of events of interest.

Finally, last year Google presented Google Bouncer [26], an automated scan-
ning service developed to reject malicious applications from the official Google
Play market. Little is known about it, except that it is a QEMU-based dy-
namic analysis framework. All the other information we have come from
reverse-engineering attempts [35] that also showed how the Bouncer’s analy-
sis can be detected and thus evaded [21].

Figure 2.10: CopperDroid architecture.

21

2.2 State of the art Chapter 2. Background and state of the art

2.2.2 Exercising of Android applications

In order to analyze the dynamic behavior of a program, it is of primary im-
portance to correctly exercise it. In particular, the main goals of an effective
exercising are two: reach the highest possible code coverage and generate a
stimulation as similar as possible to the real case usage. Satisfying these re-
quirements in modern touchscreen-based GUIs is not trivial: in this section
we want to cite some existing approaches that face Android UI stimulation
both for testing and dynamic analysis purposes.

One of the most used tools for automatic testing of Android applications is
Monkey. This tool is included in the Android SDK and can generate pseudo-
random UI events in order to stress-test an application. It is used in different
automated dynamic malware analysis systems (e.g., Andrubis bases its au-
tomated stimulation approach on it). Its native integration in the Android
system makes this tool very usable, however its pseudo-random event gener-
ation can unlikely lead to an efficient stimulation. We will describe Monkey
in details it in Section A.3.

Another tool, always provided by the Android SDK, designed for functional-
level testing of Android applications is MonkeyRunner. While Monkey directly
runs inside the emulator/device, MonkeyRunner controls the emulator from
a workstation by sending specific commands and events from an API. This
tool can run automated tests on Android applications, but the developer has
to provide the list of events that have to be executed.

An interesting work that proposes an improvement of the simple fuzz testing
of Monkey is Dynodroid [28]. The basic idea is to apply an “observe and exe-
cute” approach (i.e., first of all analyze the contents of the window displayed
and then generate random input events that can stimulate View elements
able to consume them). In this way, Dynodroid is able to reach the same code
coverage obtained with Monkey but generating much less events. In order to
reach this result, the authors leverage MonkeyRunner and HierarchyViewer,
another tool of Android SDK used to inspect the application UI (it will be
described in detail in Section A.4).

The most interesting work on UI stimulation is surely SmartDroid [45]: this
framework leverages static and dynamic analysis in order to extract a se-
quence of UI events that allow to stimulate sensitive behaviors, like sending
SMS or getting user private data. The aim of the authors is to provide a tool
to efficiently stimulate Android applications during dynamic malware analy-
sis. The initial static analysis phase is characterized by three steps. First of
all, SmartDroid builds the Function Call Graph (FCG) and the Activity Call
Graph (ACG) of the application. Then bytecode instructions are extracted
from the APK and analyzed in order to find sensitive method invocations.

22

2.3 Open problems and Goals Chapter 2. Background and state of the art

Figure 2.11: SmartDroid architecture and workflow

Finally, sensitive paths from application’s entry points to sensitive method
invocations are built. Thereafter, an automated dynamic analysis approach
is used to verify the validity of the paths previously found. In order to do
that, the authors modified the original Android code: in this way they can
force the execution to try to follow the sensitive paths and verify if a sen-
sitive behavior is actually triggered. Figure 2.11 presents an overview of
SmartDroid architecture and workflow.

Finally, we want to cite also RERAN [12], a tool for Android that allows to
record and replay low-level UI events directly reading from and writing on
system input devices. This work uses an approach very similar to the one
used by PuppetDroid to inject input events, but it is limited to propose a
mere re-execution of the original recorded touch events without offering any
analysis of application User Interface: as we will see in Section 3.3.7, this
re-execution approach is not very robust.

2.3 Open problems and Goals

As mentioned before, the main limitation of dynamic analysis is its inabil-
ity to reach high code coverage: dynamic analysis can examine the actions
performed in an execution path only if that path is actually explored. This
is a particularly thorny problem for malware analysis: if the malware is not
properly exercised there is the possibility that it does not expose its malicious
behavior and consequently analysts end up to label it as good software. We
previously described (Section 2.2.1 and 2.2.2) current solutions that try to
mitigate this limitation integrating automatic exercising techniques in their
frameworks. These techniques usually leverage stress-test tools, like Mon-
key, or a combination of static analysis and automatic User Interface (UI)
exercisers, like SmartDroid. The problem of stress-test tools is that they rely

23

2.3 Open problems and Goals Chapter 2. Background and state of the art

on pseudo-random generation of UI input events: randomly stimulating UI
elements displayed on the screen can hardly reproduce the typical usage of
human users, providing in this way low code coverage and unsatisfactory
stimulation of interesting malicious behaviors. Exercising mobile applica-
tions in a proper way is not trivial problem, because these applications make
use of highly-interactive UIs in order to leverage the capabilities of modern
touchscreen devices, making then automatic exercising of their interfaces
harder in respect to conventional PCs’ scenario. For this reason, approaches
like DynoDroid or SmartDroid leverage static analysis to reconstruct the se-
mantic of UI elements on the screen in order to find execution paths that
expose malicious behaviors. However, as we said, static analysis is ineffective
in case of obfuscated code or dynamic payloads, two techniques widely used
by modern malware: in presence of these two evasion techniques, automatic
exercising approaches based on static analysis cannot properly identify ma-
licious execution paths and, consequently, they cannot provide an effective
UI stimulation.

In this work we then focus on the problem of application exercising for mal-
ware analysis purposes. We propose a new approach to exercise the UI of an
Android application in order to change the way malware analysis experiments
are currently conducted and effectively stimulate potentially malicious be-
haviors. To this end, we have to find a practical way to reproduce the typical
usage of a potential victim of the malware. As said, automatic exercising
approaches fail in reaching this intent for multiple reasons: our key intuition
is to leverage human-driven exercising. As a matter of fact, human users
can properly interact with the UI of an application because, unlike auto-
matic exercisers, they understand the semantic of elements displayed on the
screen and can exercise the application accordingly. In order to analyze the
huge amount of application published every day, we cannot only leverage
human-driven exercising. Analyzing security reports by AV vendors [7, 42],
we discovered that a quite common practice among mobile malware authors
is the repackaging of already existent malware samples in order to obtain
slightly different variants able to avoid Anti-Virus detection techniques. We
leverage this phenomenon to make our approach scale: in fact, our idea is to
record a trace of the human-driven UI stimulation, that we name stimulation
trace, performed during a test and leverage code similarity to automatically
re-execute this trace on applications similar to one originally tested by the
user. In this way, if at least one user in our system succeeds in manually
stimulating a malicious behavior in a malware, it is quite likely that by re-
using the same stimulation trace on similar applications, we can stimulate
similar malicious behaviors.

The goal of this work is then to define and develop an Android sandboxed
environment able to support both manual application testing, in order to
collect new stimulation traces, and automatic application exercising, which

24

2.3 Open problems and Goals Chapter 2. Background and state of the art

leverages previously recorded UI stimulation traces. Furthermore, we also
want to experimentally verify if manual exercising allows to better stimulate
malicious behaviors than automatic exercising techniques. Finally, we want
to experimentally validate our approach and demonstrate that it brings an
original contribution to the state of the art, allowing to overcome current
limitations in application exercising for malware analysis purposes.

25

Chapter 3

PuppetDroid

In this chapter we describe PuppetDroid, a remote execution environment
designed to exercise Android applications and perform dynamic malware anal-
ysis. As explained in Section 2.3, we designed PuppetDroid with two main
goals in mind:

1. To provide a sandboxed environment that allows to safely perform
manual tests on malicious applications and, at the same time, to record
user interaction with the UI of the application.

2. To implement a re-runner framework in order to automatically exer-
cise unknown applications, leveraging previously recorded stimulation
traces.

To accomplish the first goal, we developed our framework in order to exploit
remote sandboxex to safely run applications and, at the same time, to allow
users to seamlessly interact with an application as if it was running locally on
their device. Thanks to this solution, we let users test potentially malicious
Android applications on their personal devices, avoiding any possible risk
of infection or information leaking to them. As described in Section 3.3.7,
we extended our sandboxed environment in order to store user interaction
with the application in stimulation traces: with this term we indicate the se-
quence of actions performed by the user and the list of UI elements actually
stimulated during the test. In addition to this, the sandbox has been prop-
erly instrumented to collect information about application behavior through
dynamic analysis techniques.

To make PuppetDroid exercising approach scale, we designed our frame-
work in order to support the re-use of stimulation traces, collected through
manual exercising, on applications with a layout similar to the one originally
tested. To this end, we developed Puppet ReRunner, our stimulation traces
re-execution tool, whose description is presented in Section 3.3.7.

27

3.1 Approach overview Chapter 3. PuppetDroid

Thanks to these functionalities, our framework is able to collect efficient
human-driven stimulation traces and re-use them on similar applications,
making in this way our approach scale. In particular, PuppetDroid relies
on crowd-sourcing to collect new stimulation traces: we believe that our sys-
tem can attract the interest not only of security analysts but also of normal
users that want to safely try potentially malicious applications they found
on the web or in alternative markets. Finally, as last resort, we can leverage
the abundance of crowd-sourcing services, like Amazon Mechanical Turk1, in
order to retrieve human workers to generate new stimulation traces.

In the following sections we present PuppetDroid system, starting with an
introduction of the logical workflow of the approach (Section 3.1), presenting
then an overview of its architecture(Section 3.2) and going on illustrating
some implementation details that allow to understand how the whole system
has been developed (Section 3.3).

3.1 Approach overview

In this section we present the typical usage scenario of PuppetDroid in
order to illustrate the logical workflow of our approach. Figure 3.1 shows
the UML activity diagram of analyst interaction with our system.

The first step to be performed by the user is the selection of the APK to
be tested: the user can upload a new APK to our system, choose one of the
samples already available or retrieve an APK from Google Play.

In case the selected APK has been already tested, the user can examine the
results of previously executed tests. These results illustrate the output of
the dynamic analysis and indicate if the test has been performed leverag-
ing manual exercising or re-executing an available stimulation trace. If the
available test results do not satisfy the user, he or she can manually exer-
cise the application: in this case the user leverages our Android application
in order to directly interact with the sample. Upon test termination, the
results are shown to the user that can decide if execute another manual test
or terminate his or her activity.

If the selected APK has never been tested, our system looks for available
stimulation traces associated to similar samples: if any, the user can decide to
automatically exercise the application using one stimulation trace available.
The rerun test is automatically performed by the system and, at the end of
stimulation trace re-execution, test results are shown to the user. The user
has then the possibility to perform another rerun test leveraging a different

1Amazon Mechanical Turk service page: https://www.mturk.com/

28

https://www.mturk.com/

3.1 Approach overview Chapter 3. PuppetDroid

APK

View Test Results

[apk already tested]

Manual Test

Execution

[execute new

manual test]

[terminate]

[else]

[similar apk with

stimulation trace

available]

[else]

[execute new

manual test]

Test request

enqueued

[enqueue for

human workers]

[rerun

stimulation trace]

[else]

Test rerun

View test

rerun results

[successful rerun]

[else]

[else]

[rerun another

stimulation trace]

[else]

[other stimulation

traces available][else]

[rerun another

stimulation trace]

[terminate]

Figure 3.1: Activity diagram of user interaction with PuppetDroid system.

stimulation trace, if available, or to manually exercise the application or,
finally, to terminate his or her activity.

In the diagram we also present the possibility to enqueue a test for human
workers as alternative to manual exercising: as we previously mentioned, our
system can leverage crowd-sourcing services, then this option indicates the
possibility to ask our system to retrieve a turk (i.e., a human worker in the
crowdsourcing terminology) to manually test the application.

This is the methodology we propose to test an unknown application. How-
ever, current implementation of PuppetDroid has been developed for test-
ing purposes in order to validate our approach: for this reason it slightly
differs from the approach we just presented. In particular, at the moment,
the re-execution functionality is performed in a different way: the user does
not choose an available stimulation trace in order to automatically exercise

29

3.2 System overview Chapter 3. PuppetDroid

an unknown application, but it choose one of the stimulation traces avail-
able on our systems and then PuppetDroid automatically rerun this trace
on all the application similar to the one originally tested through manual
exercising. This particular implementation helped us in the collection of
experimental results: when PuppetDroid will be published, its implemen-
tation will be modified in order to fit the logical workflow we presented in
this section.

3.2 System overview

In this section we provide a high-level introduction of PuppetDroid system,
leaving the implementation details to the following sections.

Section 3.2.1 provides a high-level description of the system architecture,
introducing the main components that constitute it.

Section 3.2.2 introduces the basic workflow of the system, from the moment
the user uploads the application on PuppetDroid server, till the time the
results are available.

3.2.1 System architecture

This section provides a high-level description of PuppetDroid system: each
component presented here will be described in detail in the following sec-
tions.

WEB BROWSER

ANDROID APP

RDBMS
File

System

RESULT AND SAMPLE

REPOSITORY

MAIN SERVER

POOL OF WORKERS

WEB APPLICATION SIMILARITY

SERVER

MIDDLE TIERCLIENT TIER

DATA TIER

WORKER TIER

Start/Terminate

test session

Upload APKs /

View test results /

Start re-run tests

Start re-run tests

POOL OF AVD

WORKER 1 WORKER 2 WORKER n

AVD 1 AVD 2

AVD n

Ask for similarity

comparison

Send

new job

VNC session

Get APKs /

Store similarity

results

Get workers /

Create tests /

Store APKs from

Google Play

Get APKs /

Store tests results

Figure 3.2: Architecture of PuppetDroid system.

PuppetDroid has a multi-tier architecture (Figure 3.2) to allow decou-
pling the different system components and facilitate future modifications and

30

3.2 System overview Chapter 3. PuppetDroid

improvements.

Client tier – It includes the two entry points used by the user to interact
with the system: the web frontend, used to upload new APKs, view test
results and start re-run tests, and the Android application, used to start
and execute manual test sessions.

Middle tier – It is composed by the PuppetDroid core system: the
Main server, which has the task of communicating with Android appli-
cation, creating tests and finding available workers to perform them, the
Web Application, which receives the samples uploaded by users and shows
test results, and, finally, the similarity server, which has the task of cal-
culating the similarity score between two applications.

Data tier – It includes a storing system for the results of the tests, the
repository for the uploaded samples and the repository for the similarity
comparisons.

Worker tier – This is the level where worker machines reside. Each
worker is devoted to execute test requests received from the main server.

PuppetDroid is a highly interactive system, because when a new test ses-
sion request is sent to our servers, we need a worker with an available sandbox
to actually host that test session: to address this point, the Worker Tier has
been designed to have a distributed architecture, so as to easily scale by
simply increasing hardware resources.

3.2.2 PuppetDroid workflow

We present here the basic workflow of PuppetDroid, showing what hap-
pens behind the scenes when the user interacts with our system. The user
can interact with PuppetDroid system in two ways: using the web appli-
cation, to upload the APKs he/she wants to test, to see the results of tests
previously executed tests and to leverage our re-execution functionality, or
using the Android application, to actually manually exercising the applica-
tion.

Figure 3.3 shows the basic workflow that let the user manually test an
application directly provided by him. We can identify 8 main steps: the
steps colored in green indicate actions that must be taken by the user, while
blue ones indicate actions that are internally performed by the system.

1. APK upload: through our web frontend the user uploads the APK
he/she wants to test.

2. Sample storage: after performing some consistency and security

31

3.2 System overview Chapter 3. PuppetDroid

ANDROID DEVICE

MAIN SERVER

RDBMS

File

System

POOL OF WORKERS

Step 1

(APK upload)

Step 3a

(Select application

and start test)

Step 2

(sample storage)

Step 4a

(Retrieve an

available worker)

Step 6

(VNC session)

Step 4b

(Send task

to worker)

WEB BROWSER

Step 3b

(Contact the

server and

start test)

POOL OF AVD

AVD 1 AVD 2

AVD n

Step 5a

(Retrieve

APK)

Step 5b

(Initialize sandbox)

Step 7d

(Store test results)

Step 7a

(Terminate test)

Step 8

(View results)

Step 7b

(Terminate test)

Step 7c

(Terminate test)

Figure 3.3: Workflow of the manual test of a sample provided by the user.

checks, the uploaded sample is stored into the PuppetDroid sam-
ple repository.

3. Start test: through our Android application the user selects the app
he/she wants to test and start a new test session. The Android appli-
cation contacts our main server and sends the request.

4. Send task to worker: our main server checks if there is an available
worker and, if found, sends the task request to it.

5. Sandbox initialization: the selected worker retrieves the APK to be
tested from the sample repository and initializes the sandbox that will
hold the test session.

6. VNC session: when the sandbox is ready, a VNC (Section 3.3.6)
channel is established with the Android application and the user can

32

3.2 System overview Chapter 3. PuppetDroid

a b

ANDROID DEVICE

MAIN SERVER

RDBMS

File

System

POOL OF WORKERS

Step 1a

(Select application

and start test)

Step 6b

(retrieve

test results)

Step 2a

(Retrieve an

available worker)

Step 4

(VNC session)

Step 2b

(Send task

to worker)

WEB BROWSER

Step 1b

(Contact the server

and start test)

POOL OF AVD

AVD 1 AVD 2

AVD n

Step 3a

(Retrieve

APK)

Step 3b

(Initialize sandbox)

Step 5d

(Store test results)

Step 5a

(Terminate test)

Step 6a

(View results)

Step 5b

(Terminate test)

Step 5c

(Terminate test)

GOOGLE

PLAY STORE

Step 1c

(Retrieve APK

from Google Play)

MAIN SERVER

RDBMS

File

System

POOL OF WORKERS

Step 1a

(Select test to re-run)

Step 1b

(re-run request)

Step 2

(Retrieve a worker)

Step 4

(Send task

to worker)

WEB BROWSER

POOL OF AVD

AVD 1 AVD 2

AVD n

Step 5a [For each similar APK]

(Initialize sandbox and re-execute test)

Step 6

(View results)

Step 6

(Store results)

Step 3

(Retrieve similar APKs)

Figure 3.4: (a) Workflow of the manual test of a sample retrieved by Google Play. (b)
Workflow of a test re-run.

interact with the sandbox.

7. Test termination: when the user decides to terminate the test, the
Android application contacts our main server that sends a termination
request to the worker server. The worker terminates the sandbox and
stores the results on PuppetDroid result repository.

8. Result view: the user can now view test results using our web fron-
tend.

This is the basic workflow to perform a manual test on PuppetDroid. Our
system also allows to test free applications retrieved from Google Play, the
official Android application market: for sake of completeness, we also show
the workflow in this case in Figure 3.4a. As you can see, the only difference
is that the user has not to previously upload an APK, but he/she chooses it
using our Android application. The main server has the task of connecting
to Google servers and retrieving the desired APK.

Finally, we show the workflow of an automatic test re-run in Figure 3.4b.
As first step, the user has to select, through the web frontend, which test
he/she wants to leverage to perform re-execution. Thereafter, our system
retrieves the list of APKs similar to the one originally tested and automati-
cally re-execute the stimulation trace associated to the chosen test on these

33

3.3 Implementation details Chapter 3. PuppetDroid

applications. We remind that current version of re-execution functionality
has been implemented for testing purposes in order to validate our approach.
In the final implementation, the user should choose the APK he/she wants
to test and then select one of the available stimulation traces on our system
to automatically exercise that application.

3.3 Implementation details

In this section we provide a detailed description of PuppetDroid main com-
ponents. We start introducing the internal communication protocol used in
our system (Section 3.3.1). We then present a description of the components
that make up our multi-tier architecture: the Storage system (Section 3.3.2),
the Main Server (Section 3.3.3), the Workers (Section 3.3.4) and finally the
Web Application (Section 3.3.5). We conclude the chapter providing some
technical details on the implementation of two fundamental aspects of our
system: the VNC integration (Section 3.3.6) and the test re-execution (Sec-
tion 3.3.7).

3.3.1 Communication protocol

This section describes the protocols used by the different components of Pup-
petDroid system to communicate with each other. Two protocols have been
defined: the first one is used for the communication between the Android
client application and the PuppetDroid main server, while the second is
used for the internal communication between the main server and the worker
servers.

3.3.1.1 Communication between clients and main server

This section describes the protocol used for the communication between the
Android client application and the PuppetDroid main server. At the be-
ginning of the communication, the server sends a string message to let the
client know that it is speaking with the correct endpoint (Table 3.1). After
this simple handshake phase, the client sends a byte indicating its request
(Table 3.2). Table 3.3 shows the values that request-code can take: 1 is
used to ask for a new manual test session, 2 is used to terminate the cur-
rent test session and save the results, 3 is used to abort the current test
session and discard the results, while 4 is used to retrieve the list of available
APKs.

34

3.3 Implementation details Chapter 3. PuppetDroid

N. of bytes Type Description

4 U32 identification-string-length
identification-string-length U8 array identification-string

Table 3.1: Identification message (from server).

N. of bytes Type Description

1 U8 request-code

Table 3.2: Request message (from client).

Start a new test session

In case of a new manual test session request, the client sends information
about the device on which it is running (Table 3.4). In order to correctly
initialize the emulator instance that will host the test, we need to know
the Android Operating System (OS) version (API-level), the ABI and the
information about screen size and DPI. Thereafter, if the client needs to
test an application on Google Play, it sends Google authentication info to
the server (Table 3.5). Finally the client has to specify which application
has to be tested: first of all it sends a byte to indicate if the app has to
be retrieved from Google Play or if it already present on PuppetDroid
repository; then it sends a string indicating the package name of the app, in
case it has to be downloaded from Google Play, or the ID used to identify the
application on PuppetDroid system, if the application has been previously
uploaded (Table 3.6).

This information is sent by the main server to an available worker server that
properly initializes a sandbox for the test. When the initialization phase is
completed, the server sends to the client a result message (Table 3.8). The
first 4 bytes of server response indicate the result: if it is negative, it means
that an error occurred during the initialization phase. In this case the server
sends a byte indicating which type of error occurred (error-code). Otherwise,
if the result is positive, it means that no error occurred and the result value
indicates the port number that will be used for VNC communication: in this

Value Description

0x01 Connect request
0x02 Disconnect request
0x03 Abort request
0x04 APK list request

Table 3.3: Possible values for request-code.

35

3.3 Implementation details Chapter 3. PuppetDroid

N. of bytes Type Description

1 U8 API-level
4 U32 abi-string-length
abi-string-length U8 abi-string
4 U32 screen-width
4 U32 screen-height
4 U32 screen-dpi

Table 3.4: Device info messages (from client).

N. of bytes Type Description

1 U8 auth-enabled
4 U32 android-id-length
android-id-length U8 android-id
4 U32 auth-token-lenght
auth-token-lenght U8 auth-token

Table 3.5: Authentication messages (from client).

N. of bytes Type Description

1 U8 app-source
4 U32 package-name-length
package-name-length U8 package-name
4 U32 app-ID-length
app-ID-length U8 app-ID

Table 3.6: Package name messages (from client).

Value Description

0x01 Google Play
0x02 PuppetDroid Server

Table 3.7: Possible values for app-source.

36

3.3 Implementation details Chapter 3. PuppetDroid

N. of bytes Type Description

4 U32 result
4 U32 VNC-IP-length
VNC-IP-length U8 VNC-IP
4 U32 test-ID-length
test-ID-length U8 test-ID
1 U8 error-code

Table 3.8: Result message (from server).

Value Description

0x00 AVD_ERROR
0x01 AUTH_ERROR
0x02 APK_ERROR
0x03 UPLOAD_TOKEN_ERROR
0x04 APK_SOURCE_ERROR
0x05 TEST_NOT_FOUND
0x06 APK_FILE_NOT_FOUND
0x07 NO_WORKER_AVAILABLE_ERROR
0x08 COMMUNICATION_ERROR
0x09 UNKNOWN_REQUEST_ERROR
0x10 UNKNOWN_ERROR

Table 3.9: Possible values for error-code.

case the server can send the IP that the client has to use to start the VNC
session and the ID used to uniquely identify the test session.

Close the current test session

When the client terminates the test session, it sends a disconnect request
in order to inform the server to terminate the test and save the results. To
correctly identify which test session has to be terminated, the client sends the
IP and the port used for the VNC communication and the ID that identifies
the test session (Table 3.10).

N. of bytes Type Description

4 U32 VNC-IP-length
VNC-IP-length U8 VNC-IP
4 U32 VNC-port
4 U32 test-ID-length
test-ID-length U8 test-ID

Table 3.10: Disconnect message (from client).

37

3.3 Implementation details Chapter 3. PuppetDroid

If the information provided matches a running test session, the server ter-
minates the session, deallocates the resources associated to it and stores the
results.

Abort the current test session

This request is handled in a similar way the close session request is managed:
the only difference is that the server does not store test results but it discards
them.

Retrieve the APK list

Before starting a new test session, the client has to know which applications
can be actually used for the test. This request allows retrieving the list of
available APKs from the PuppetDroid server.

First of all the client sends to the server the string to be used in the search;
then it indicates where the application should be retrieved, if from Google
Play or from PuppetDroid APK repository (Table 3.11).

N. of bytes Type Description

4 U32 search-string-length
search-string-length U8 search-string
1 U8 app-source

Table 3.11: Get APK list message (from client).

app-source can take the same values shown in Table 3.7. In case the client
asks for an application from Google Play, it has to send Google authentica-
tion info to the server (Table 3.12).

N. of bytes Type Description

4 U32 android-id-length
android-id-length U8 android-id
4 U32 auth-token-lenght
auth-token-lenght U8 auth-token

Table 3.12: Authentication messages (from client).

The server uses the info received to retrieve the list of APKs matching the
search request then it sends the number of APKs found to the client (Ta-
ble 3.13). For each application found, the server sends to the client the
application and package names, the version, the APK ID used to identify
the sample on PuppetDroid repository, if the source is PuppetDroid
server, and finally the app icon image (Table 3.14).

38

3.3 Implementation details Chapter 3. PuppetDroid

N. of bytes Type Description

1 U8 num-apks-found

Table 3.13: APK list length message (from server).

N. of bytes Type Description

4 U32 app-name-length
app-name-length U8 app-name
4 U32 package-name-lenght
package-name-lenght U8 package-name
4 U32 version-length
version-length U8 version
4 U32 apk-ID-lenght
apk-ID-lenght U8 apk-ID
4 U32 icon-image-size
icon-image-size U8 icon-image

Table 3.14: APK info message (from server).

3.3.1.2 Communication between workers and main server

This section describes the protocol used for the communication between the
PuppetDroid main server and the worker servers. The communication is
always started by the main server and it is used to start a new test session, to
terminate or abort a currently running test or to ask the worker to automat-
ically exercise an application re-running a previously recorded stimulation
trace (Table 3.15).

N. of bytes Type Description

1 U8 request-code

Table 3.15: Request message (from main server).

Start a new test session

When the server receive a connect request from a client, it looks for an
available worker to start a new test session. In order to correctly initialize
the emulator on which the test will be executed, the main server sends to
the worker the info retrieved from the client and the info needed to retrieve
the APK that has to be installed on the emulator (Table 3.17).

The worker uses this information to start a new emulator for the test session.
When it terminates the initialization phase, it sends a result message: if
positive, its value indicates the worker port used for VNC session, else, if

39

3.3 Implementation details Chapter 3. PuppetDroid

Value Description

0x01 New test request
0x02 Terminate request
0x03 Abort request
0x05 Re-run request

Table 3.16: Possible values for request-code.

negative, it signals that something went wrong and a further byte is sent to
indicate the type of error occurred (Table 3.18).

N. of bytes Type Description

1 U8 API-level
4 U32 abi-string-length
abi-string-length U8 abi-string
4 U32 screen-size-string-length
screen-size-string-length U8 screen-size-string
4 U32 screen-dpi
4 U32 package-name-length
package-name-length U8 package-name
4 U32 apk-url-length
apk-url-length U8 apk-url
4 U32 test-url-length
test-url-length U8 test-url

Table 3.17: Device info messages (from main server).

N. of bytes Type Description

4 U32 result
1 U8 error-code

Table 3.18: Result message (from worker server).

Terminate a test session

To terminate a running test session, the main server has to sent the ID
that uniquely identifies the test(Table 3.19). The worker terminates the
emulator associated to the test and stores the results.

Abort a test session

As for the terminate request, the worker only needs the test ID to abort a
running test session (Table 3.19).

40

3.3 Implementation details Chapter 3. PuppetDroid

N. of bytes Type Description

4 U32 test-ID-length
test-ID-length U8 test-ID

Table 3.19: Terminate test message (from main server).

Re-run a test

In case of a re-run request, the worker needs the following information:

• Emulator settings – to correctly initialize the sandbox that will host
the test.

• Test ID – to retrieve stimulation trace files needed to the re-runner.

• APK list – the list of similar APKs on which the test should be re-
executed

N. of bytes Type Description

1 U8 API-level
4 U32 abi-string-length
abi-string-length U8 abi-string
4 U32 screen-size-string-length
screen-size-string-length U8 screen-size-string
4 U32 screen-dpi
4 U32 test-ID-length
test-ID-length U8 test-ID
4 U32 num-apks

Table 3.20: Re-run info messages (from main server).

num-apks indicates the size of the APK list: for each APK the main server
sends the URL needed to retrieve it from PuppetDroid sample repository
(Table 3.21).

N. of bytes Type Description

4 U32 apk-url-length
apk-url-length U8 apk-url

Table 3.21: Re-run info messages (from main server).

When the worker terminates to re-execute the stimulation trace associated
to the selected test on all applications in the list, it sends a result message to
the main server: if result value is negative, it means an error occurred and a
further byte is sent in order to indicate the type of error. If no error occurs
during the re-execution, the result has value 0 (Table 3.22).

41

3.3 Implementation details Chapter 3. PuppetDroid

N. of bytes Type Description

4 U32 result
1 U8 error-code

Table 3.22: Result message (from worker server).

In the final implementation of PuppetDroid, the worker will not receive a
list of applications on which perform re-run tests but only the application
the user selected to be automatically exercised.

3.3.2 Storage

PuppetDroid storage system is built on top of 2 main components: a
Relational Database Management System (RDBMS) and a shared filesystem
layer.

PuppetDroid leverages an Object Relational Mapper (ORM) to access its
RDBMS (specifically, it uses SQLAlchemy mapping over MySQL). This en-
sures high decoupling between data models and the chosen database system,
in addition to some other features provided out of the box by the specific
ORM (such as session and transaction management, lazy data loading and
SQL injection mitigation). The Entity-Relationship (ER) diagram of the
PuppetDroid database schema is reported in Figure 3.5.

As we previously mentioned, PuppetDroid stores the metadata of any
newly uploaded sample in the database. The table responsible for keep-
ing this information is named apk_sample. It includes the following at-
tributes:

md5sum – the sample MD5 hash value;

sha1sum – the sample SHA1 hash value;

sha256sum – the sample SHA256 hash value;

package_name – the Android package name;

version – the Android application version;

app_name – the Android application name;

main_activity – the Android application main activity;

apk_url – the sample file path;

icon_url – the sample image icon path;

source – indicates if the file has been uploaded through the web applica-

42

3.3 Implementation details Chapter 3. PuppetDroid

Figure 3.5: PuppetDroid database Entity-Relationship diagram.

tion or it has been retrieved from Google Play;

size – the sample file size.

The database is also used to keep information about PuppetDroid worker
servers: when a new worker is connected to system, a new entry is added to
the DB in order to allow the Main Server to properly send jobs to it. The
table responsible for keeping workers metadata is worker:

ip – the IP address of the worker server;

max_avd – the maximum number of concurrent sandboxes that can be
hosted by the worker.

All metadata about test execution are stored in test table:

timestamp – a timestamp indicating when the test started;

apk_sample – reference to the APK sample tested;

abi – ABI of the user’s device;

api – Android API level of the user’s device;

screen_size – screen dimensions of the user’s device;

43

3.3 Implementation details Chapter 3. PuppetDroid

screen_dpi – screen DPI of the user’s device;

worker – IP address of the worker hosting the test;

vnc_port – port used in the VNC session;

is_running – flag indicating if the test is still in execution;

url – path to the folder containing test results.

Finally, we have similarity_comparison table to store information about the
similarities between the samples in our repository:

sample1_uuid – reference to the first APK sample of the comparison;

sample2_uuid – reference to the second APK sample of the comparison;

similarity – similarity score between the two samples (expressed as per-
centage);

compression – compressor used during the comparison.

The concrete sample and test results storage is instead performed directly on
a specific partition of the filesystem. The Main Server and the Workers can
concurrently access to this partition using SSH Filesystem (SSHFS): this
allows them to interface with a FUSE-based filesystem, without worrying
about the specific filesystem implementation on each machine.

In particular, for each sample stored in our APK repository, we have a folder,
identified by its UUID, containing the APK file, the image icon of the ap-
plication and a text file containing some static information extracted from
the manifest. The results for each test executed on our system are stored
in a folder, identified by test UUID, containing the report files produced
by the dynamic analysis sandbox (see Section 3.3.4), the files collecting
information about UI stimulation trace (see Section 3.3.7.1) and a folder
containing the results of the re-run tests. Each re-run test has a folder,
identified by the UUID of the APK sample on which the stimulation trace
has been re-executed, that contains the report files produced by the dy-
namic analysis sandbox and a log file produced by our ReRunner tool (see
Section 3.3.7).

The final version of PuppetDroid will store re-run test in a different the
way: each re-run test will be saved as a normal test and a column indicating
the type of test, manual or re-run, will be added to test table.

3.3.3 Main Server

The Main Server has different system management roles:

44

3.3 Implementation details Chapter 3. PuppetDroid

• Management of requests from Android application clients.

• Creation of new tests and job delivering to workers.

• Balancing of the workload on available workers.

• Database management.

• Google Play APKs retrieval.

The communication with Android clients is managed through the use of TCP
sockets: each request from the clients is processed in a different thread in or-
der to ensure concurrency. To protect sensible data received from the client
during the communication, as Google authentication data or device infor-
mation, the socket channel is encrypted using TLS. Since is not possible
to expect that each client has its own certificate, the authentication is only
server-side. The current version of PuppetDroid uses self-signed certifi-
cates, so in order to allow the Android application to correctly connect to
our server, the public certificate of the main server has been stored inside the
APK, leveraging the Key and Certificate management tool keytool and the
Java Cryptographic Extension (JCE) provider from Bouncy Castle.

The communication with the clients follows the protocol directions presented
in Section 3.3.1.

When a new request is received by the Main Server, it has the task to
dispatch the job to an available worker, trying to equally distribute the
workload on the different workers. The communication with the worker
servers is managed through the use of TCP sockets encrypted using TLS: in
this case the authentication is bilateral and each worker is provided with a
different certificate.

As previously mentioned, our system allows to test also APKs from Google
Play: to retrieve the list of APKs on the official Android store and to actually
download the desired APK, we leverage the Google Play Unofficial Python
API developed by E. Girault 2: this Python library simulates the network
activity generated by the Android Google Play client application in order
to communicate with Google servers and retrieve the desired information.
The communication between Google Play servers and Android client appli-
cation is based on Google’s Protocol Buffers, a library that allows to encode
messages in binary, compact blobs before sending them on the network. In
order to correctly decode these messages, you have to know the structure
of the exchanged messages: the author of this interesting library exploited
Androguard3 in order to reverse the official Android Google Play application

2Google Play Unofficial Python Play are released under the BSD License. The reader
may refer to https://github.com/egirault/googleplay-api to retrieve the source code
of the project.

3Androguard project page: https://code.google.com/p/androguard/

45

https://github.com/egirault/googleplay-api
https://code.google.com/p/androguard/

3.3 Implementation details Chapter 3. PuppetDroid

and retrieve the structure of the messages exchanged with Google servers.
A detailed description on how this library has been developed can be found
here [11].

In order to simulate the communication of the Android Google Play appli-
cation, we need user’s credentials to log in on Google Play servers: in par-
ticular, the PuppetDroid application retrieves from the user’s device the
androidId, the Google account name and a temporary GoogleAuthToken.
These information are safely sent to our server using a TLS socket and they
are only used for authentication purposes and discarded after the retrieval
of the desired APK.

3.3.4 Workers

PuppetDroid tests are safely hosted by remote Android sandboxes trans-
parently accessible to the user through our Android application: the Worker
Servers have the task of hosting one or more of these sandboxes, managing
the communication between the sandbox and the Android application and
storing the results once a test is terminated.

As mentioned in Section 3.3.3, the Worker receives job requests from the
Main Server through a TLS communication socket. The protocol adopted
for the communication is shown in Section 3.3.1.

The core component of Worker implementation is the Android sandbox host-
ing the test session: it is basically an Android emulator instance, properly
modified in order to perform dynamic malware analysis. As mentioned in
Section 2.2.1, different Android sandboxes for dynamic malware analysis have
been implemented so far and most likely others will be implemented in the
future. In order to avoid to tie our system to a specific sandbox implemen-
tation, we implemented a Python class, named avd, to manage generic AVD
instances: when we want to add the support for a new sandbox implemen-
tation, we only have to define a new Python class that inherits from the
original avd class and to properly override methods related to dynamic anal-
ysis. Figure 3.6 shows the life cycle common to all the sandboxes. The red
colored boxes indicate the phases that are usually customized to meet the
requirements of the specific sandbox implementations.

The first phase is the preparation of the environment to host the sandbox:
during this phase the Worker receives information about sandbox features
from theMain Server and looks for 4 free ports to be dedicate to the sandbox.
In particular a couple of ports are requested by the ADB server to correctly
communicate with the ADB daemon and a couple of ports are needed for
the VNC session. Then the AVD instance is created using the command

46

3.3 Implementation details Chapter 3. PuppetDroid

Test session

Prepare the

environment

Sandbox

features retrieval

ADB and VNC ports

retrieval

android create avd

Modify config files

Start emulator

Start VNC server

VNC port forwarding

Install APK

Start analysis

Stop analysis

Retrieve UI stimulation

Delete AVD

Create

AVD

Start

AVD

Start

test

Terminate

test

Figure 3.6: Sandbox life cycle diagram.

android create avd, as explained in Section A.1: to exactly adhere to user’s
device features, further changes are applied to AVD configuration files. The
Worker can now start the emulator: this phase can be customized in order to
properly load system images during emulator startup. During this phase the
VNC server daemon is started and connected to the ports retrieved during
the preparation phase. When the emulator is ready, it is initialized to host
the test: this phase is usually customized according to the requirements of
each specific sandbox. When the user terminates the test, the Worker stops
the analysis, retrieves from the emulator the files storing UI stimulation data
and delete the AVD. In case of a re-run test, the life cycle is quite the same,
with the only differences that VNC operations are removed and the test
session is automatically managed by our ReRunner tool.

We have successfully added to PuppetDroid the support for DroidBox and
CopperDroid sandboxes following this approach. The current implementation
of our system uses CopperDroid sandbox for multiple reasons: it has better
performance, it allows to test more applications and it is currently still devel-
oped and supported. In the following section we provide some details about
CopperDroid integration in our system.

3.3.4.1 CopperDroid

CopperDroid has been introduced in Section 2.2.1: it leverages an instru-
mented Android emulator to perform system call tracking and out-of-the-box
system call-centric analysis. This tool has been realized by Royal Holloway
University of London in collaboration with Università degli Studi di Milano:
we had the possibility to cooperate with CopperDroid’s authors in order to
integrate their sandbox in our system.

47

3.3 Implementation details Chapter 3. PuppetDroid

Behavior Blob Hit

write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write [MKDIR] /data/data/com.keji.danti80/files 1

write {’filename’:
u’/data/data/com.keji.danti80/files/xxx.apk’}

1

write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2

write [MKDIR]
/data/data/com.sec.android.bridge/shared_prefs

1

write [UNLINK] /data/data/com.keji.danti80/files/xxx.apk 1
connect {’host’: ’10.0.2.3’, ’retval’: 0, ’port’: 53} 1

outgoing_dns_query {’query_data’: ’b3.8866.org. 1 1’} 1
connect {’host’: ’221.5.133.18’, ’retval’: -115, ’port’: 8080} 1

write
{’filename’:

u’/data/data/com.sec.android.bridge/shared_
prefs/first_app_perferences.xml’}

3

write [UNLINK] /data/data/com.sec.android.bridge/shared_
prefs/first_app_perferences.xml.bak

2

write {’filename’:
u’/data/data/com.keji.danti80/files/atemp.jpg’}

1

write [UNLINK] /data/data/com.keji.danti80/files/atemp.jpg 1
write {’filename’: ’221.5.133.18 port:8080’} 2

Table 3.23: Example of behavior list generated by CopperDroid.

CopperDroid instrumented the QEMU hypervisor in order to intercept when
the swi and the cpsr_write instructions are executed: swi is the ARM ISA
instruction used for the invocation of system calls, triggering the software
interrupt that causes the user-to-kernel transition, while cpsr_write is the
instruction used, as the name suggest, to write on cpsr register. Monitor-
ing the value contained in the cpsr register allows to keep trace if a switch
from supervisor to user mode happened: this is a robust way to know if
a system call terminated. After having established this approach to track
system call invocations, the authors studied the structure of Binder, the
Android-specific Inter-Process Communication (IPC) and Remote Procedure
Call (RPC) mechanism, in order to extract human-readable information
from the system calls they collect through CopperDroid. As final step, Cop-
perDroid automatically analyzes the list of collected system calls in order
to find semantic associations between them and therefore identify a list of
behaviors performed by the analyzed application. The term behavior is used
here to indicate a sequence of system call invocations identifying a high-level
action, such as write on file or contact a remote server.

As result of the analysis, CopperDroid generates the following files:

48

3.3 Implementation details Chapter 3. PuppetDroid

copper_trace.log – a log file containing static information about the
sample and the list of actions performed by CopperDroid framework;

copper_trace.pcap – a file containing the network traffic produced by the
application;

copper_trace.pickle – a file containing the serialized Python data struc-
tures used to store information on recorded behaviors.

Table 3.23 shows an example of the behavior list extracted from the pickle
file (copper_trace.pickle) generated by CopperDroid.

As said, CopperDroid only modifies QEMU, while it leaves unchanged Android
system images loaded on emulator startup. The integration of this tool
in PuppetDroid has been quite simple: it has been enough to override
some methods of avd class in order to inform the system to use CopperDroid
instance of QEMU and to store the behavior list files generated after test
execution.

3.3.5 Web application

PuppetDroid web application is built on top of the Flask framework and
let the user perform the following actions:

• Upload new APK on PuppetDroid system.

• View the list of available APKs.

• Examine test results.

• Ask for leverage an available stimulation trace in order to perform
re-run tests.

The current version of our web application has been developed for testing
purposes: at the moment there are not distinctions on the type of user
accessing to it, so a generic user can access to the test results performed by
others or test the APK samples uploaded by other users. We are planning to
improve the current implementation of web application in order to provide
user authentication and a better presentation of test results.

3.3.6 VNC implementation

As mentioned before, PuppetDroid leverages Virtual Network Comput-
ing (VNC) to allow the user to interact with the remote sandbox through
our Android application. We decided to use VNC because it is a platform-
independent de facto standard for graphical desktop sharing systems and

49

3.3 Implementation details Chapter 3. PuppetDroid

several open-source solutions have been implemented in the last years. VNC
was originally developed as an internal solution at the UK Olivetti & Oracle
Research Lab (ORL): when AT&T Research Lab acquired and subsequently
closed the ORL, the original developers released the source code under the
GNU General Public License (GNU GPL).

Section 3.3.6.1 presents the protocol on which VNC is based on. Sec-
tion 3.3.6.2 and 3.3.6.3 show how we exploited existent open-source VNC
solutions in order to integrate it in our system.

3.3.6.1 Protocol description

Virtual Network Computing (VNC) has a client/server architecture, where
the server is the endpoint that actually shares its screen and let the clients
take control of it and the clients, or viewers, watch, interact and eventually
control the server (Figure 3.7).

RFB

Protocol

VNC server

VNC viewer

VNC viewer

Figure 3.7: Virtual Network Computing (VNC) client/server architecture.

VNC is based on Remote Framebuffer (RFB), a simple protocol for remote
access to Graphical User Interfaces. Because it works at the framebuffer
level, it is applicable to all windowing systems and applications: the pro-
tocol has been designed to make the clients as simple as possible in order
they could run on the widest range of hardware. The protocol also makes
the client stateless: if a client disconnects from a given server and subse-
quently reconnects to that same server, the state of the user interface is
preserved.

50

3.3 Implementation details Chapter 3. PuppetDroid

The display side of the protocol is based around a single graphics primitive:
“put a rectangle of pixel data at a given x,y position”. As the same authors
state, it might seem an inefficient way of drawing many user interface com-
ponents: however, allowing various different encodings for the pixel data
gives a large degree of flexibility in how to trade off various parameters such
as network bandwidth, client drawing speed and server processing speed. A
sequence of these rectangles makes a framebuffer update, where an update
represents a change from one valid framebuffer state to another. The update
protocol is demand-driven by the client: an update is only sent from the
server to the client in response to an explicit request from the client. This
gives the protocol an adaptive quality: the slower the client and the net-
work are, the lower the rate of updates becomes. With a slow client and/or
network, transient states of the framebuffer can be ignored, resulting in less
network traffic and less drawing for the client.

The input side of the protocol is based on a standard workstation model of
a keyboard and multi-button pointing device, but it can be easily adapted
to any I/O device, such the modern touchscreen systems. Input events are
simply sent to the server by the client whenever the user presses a key,
touches the screen or the pointing device is moved.

Initial interaction between the RFB client and server involves a negotiation
of the format and encoding that will be used to send the pixels. As previously
said, the protocol has been designed to make the client as simple as possible:
the basic idea is that the server must always be able to supply pixel data in
the form the client wants. However if the client is able to cope equally with
several different formats or encodings, it may choose one that is easier for
the server to produce. Pixel format refers to the representation of individual
colors by pixel values. The most common pixel formats are 24-bit or 16-bit
“true color” and 8-bit “color map”. Encoding refers to how a rectangle of
pixel data will be sent on the wire. Every rectangle of pixel data is prefixed
by a header giving the X,Y position of the rectangle on the screen, the
width and height of the rectangle, and an encoding type that specifies the
encoding of the pixel data. The data itself then follows using the specified
encoding.

The currently main supported encodings are:

Raw – the simplest encoding type, supported by all client and server
VNC implementations;

CopyRect – used to copy a rectangle of pixel data the client already
has elsewhere in the framebuffer, avoiding to re-send it;

RRE – rise-and-run-length encoding, in which a rectangle of pixel data is
partitioned into rectangular subregions, each of which consists of pixels of
a single value, and the union of which comprises the original rectangular

51

3.3 Implementation details Chapter 3. PuppetDroid

region;

Hextile – a variation of RRE, where the rectangles are split up into
16x16 tiles;

ZRLE – stands for Zlib Run-Length Encoding, and combines Zlib com-
pression, tiling, palettisation and run-length encoding;

Tight – uses a combination of Zlib and JPEG compression in order to
maximize compression ratio and minimize CPU usage;

Ultra – uses LZO compression in order to compress and de-compress
pixel data in real-time, favoring speed over compression ratio.

The communication between client and server can be divided in three stages:
a first handshaking phase, the purpose of which is to agree upon the protocol
version and the type of security to be used, an initialization phase, where the
client and server exchange ClientInit and ServerInit messages, and a final
stage dedicated to the normal protocol interaction. A detailed description
of the RFB communication protocol can be retrieved from RealVNC official
documentation [38].

3.3.6.2 VNC server

The first step in the integration of the VNC protocol in our system has
been the development of an Android VNC server. There are a few open-
source projects that take a stab in this challenge: the most interesting one is
Fastdroid VNC4, developed starting from the original framebuffer VNC server
for the iPAQ and Zaurus and adapted to the Android system. Our initial VNC
server implementation starts from this project, which we then modified and
extended to satisfy our requirements. The project is based on LibVNCServer,
a set of widely used, cross-platform C libraries that allow to quite easily
implement VNC server functionality. These libraries provide all the low-
level stuff needed to the development of a VNC server: encodings, RFB
communication protocol, communication sockets and so on. The developer
has only to implement “high-level” methods that allow to initialize server
structure for the management of the framebuffer and to instruct the server
about how to manage input events.

Android relies on the standard Linux frame buffer device, usually accessible
at /dev/graphics/fb0. In particular, every displayed window gets imple-
mented with an underlying Surface object, an object that gets placed on
the framebuffer by SurfaceFlinger, the system-wide screen composer. Each
Surface is double-buffered: the back buffer is where drawing takes place and
the front buffer is used for composition. Android flips the front and back

4Fastdroid VNC server project page: https://code.google.com/p/fastdroid-vnc/

52

https://code.google.com/p/fastdroid-vnc/

3.3 Implementation details Chapter 3. PuppetDroid

buffers, ensuring a minimal amount of buffer copying and that there is al-
ways a buffer for SurfaceFlinger to use for composition. In order to avoid
frame misses during VNC session, it is fundamental to take into account the
double buffering mechanism used by Android. In particular, to know which
buffer has been last used by SurfaceFlinger, it is possible to call ioctl pass-
ing as request parameter FBIOPUT_VSCREENINFO: since the double buffer can
be seen as a virtual display that has twice the size of the physical screen,
the yoffset attribute of the screeninfo structure, obtained as result of the
call, will say which buffer you have to consider.

Then, we can summarize the actions performed by the VNC server when it
receives a framebuffer update in the following points:

• It uses ioctl to identify which buffer has to be checked.

• It compares the system framebuffer with the local copy of the frame-
buffer (updated at the last framebuffer update request).

• In case of discrepancies, it uses LibVNCServer libraries to notify the
client.

The management of input events is quite simple: since we are working
only on the Android emulator, the devices associated to the touchscreen
and to the keyboard are fixed and respectively are /dev/input/event1 and
/dev/input/event2. Furthermore, since our VNC server implementation has
to communicate only with our Android application, we established a conve-
nient way to distinguish different touch events:

• Android touch up event is sent as a PointerEvent with button-mask
equal to 0.

• Android touch down event is sent as a PointerEvent with button-mask
equal to 1.

• Android touch move event is sent as a PointerEvent with button-mask
equal to 2.

Finally, our VNC server implementation has been extended in order to allow
UI stimulation recording, as better explained in Section 3.3.7.1.

3.3.6.3 VNC client

Our Android client application integrates in its implementation a VNC viewer.
Since a lot of Java open-source VNC client implementations can be found
on the web, we decided to exploit one of this solutions to realize our Android
VNC client.

53

3.3 Implementation details Chapter 3. PuppetDroid

Transport Rendering Encodings
Message

format

GLAVSOFT BACKEND LIBRARIES

PUPPETDROID RFB LIBRARIES

RFB protocol

manager

RFB comm

handler

PUPPETDROID VIEWER ACTIVITY

Pixel

drawing
GUI

Input

intercepting

Figure 3.8: TightVNC client integration in PuppetDroid.

Our choice fell on TigthVNC Java Viewer Version 25, developed by GlavSoft
LLC. The reasons that lead us to choose TightVNC are the following:

• The authors release the code under GNU GPL license.

• It is implemented in Java, then it can be easily integrated in Android.

• It is nearly as fast as the native version, always released by GlavSoft
LLC.

As shown in Figure 3.8, of the original source code, we kept unchanged the
backend used for the low-level management of the RFB protocol: encode/de-
code functions, message format structures and portions of the transport and
rendering methods. Then we developed custom RFB and communication
handlers, in order to interface with original TightVNC code, that are used
by our Android Viewer Activity to display the results of the communication
with the VNC server.

5TightVNC official website: http://www.tightvnc.com/

54

http://www.tightvnc.com/

3.3 Implementation details Chapter 3. PuppetDroid

3.3.7 Puppet ReRunner

In this section we present how we developed our stimulation traces re-
execution strategy. We remind that our re-execution approach bases on
the assumption that if we succeed in stimulating a malicious behavior in a
malware, it is quite likely that if we re-use the same stimulation trace to
exercise an application similar to that malware, we are able to stimulate
similar malicious behaviors. The motivations behind this assumption have
been illustrated in Section 2.3.

First of all, we describe here the development and implementation of the
technique we use to record user interaction with the application during a
manual test: this technique allows to keep trace of the sequence of user
actions and UI elements stimulated during the test and to save this informa-
tion in stimulation traces. We then introduce Puppet ReRunner, the tool we
developed to actually re-execute previously recorded stimulation traces on
similar applications (Section 3.3.7.1). Last, we describe the solution adopted
to calculate if two samples can be classified as similar (Section 3.3.7.2).

3.3.7.1 Input events recording

In this section we present the strategy used in PuppetDroid to record UI
stimulation.

First of all, we need to keep trace of the sequence of input events generated
by the human user. This can be done with the minimum effort thanks to how
we structured manual test execution: as a matter of fact, to let the Android
application interact with the remote sandbox we leverage VNC. This means
that our system already receives the low-level input events generated by the
user: our Android application intercepts these events and translates them in
a sequence of RFB PointerEvent or KeyEvent messages that are sent to the
VNC server. Therefore we extended our VNC server implementation to save
on file the sequence of input events received. Figure 3.9 shows the format
used to store input events on file. For each event the following information
is saved:

timestamp – the moment in which the event is executed;

event_type – the type of event, 0 for touch events and 1 for key ones;

action – the type of action performed, 0 for up, 1 for down and 2 for
move;

x_pos – x position on the screen;

y_pos – y position on the screen;

55

3.3 Implementation details Chapter 3. PuppetDroid

timestamp event_type action info

timestamp 0 action x_pos y_pos

INPUT EVENT

timestamp 1 action key_code

TOUCH EVENT KEY EVENT

Figure 3.9: Format used to store input events.

88.178580|0|1|159|458

88.181193|0|2|159|456

88.183601|0|2|160|455

88.195368|0|0|160|455

103.787289|0|1|167|366

103.814748|0|2|167|365

103.816820|0|2|168|371

103.819672|0|0|168|371

107.938857|1|1|158

108.179822|1|0|158

112.758374|0|1|210|211

112.762422|0|2|209|210

112.819634|0|2|207|207

112.853343|0|0|207|212

155.617206|1|1|158

155.760906|1|0|158

164.920825|0|1|221|202

164.960888|0|2|220|202

164.999936|0|2|220|203

165.28386|0|0|220|205

TAP EVENTS

KEYSTROKES

Figure 3.10: Excerpt of a sample input events file.

key_code – code used to identify which button has been pressed.

Figure 3.10 shows an excerpt of a sample input events file generated by the
VNC server.

The input events file generated can be easily translated into a sequence of
monkey events, as shown in Listing 3.1 and 3.2, in order to reproduce
exactly the same sequence of input events of the original test. Unfortunately
this approach is not reliable. As a matter of fact, it may happens that two
similar application have about the same graphical layout but still there are
some small differences, such as a button slightly shifted, that can make test
re-execution fail.

56

3.3 Implementation details Chapter 3. PuppetDroid

Listing 3.1: Recorded input
events

88.178580|0|1|159|458
88.181193|0|2|159|456
88.183601|0|2|160|455
88.195368|0|0|160|455
103.787289|0|1|167|366
103.814748|0|2|167|365
103.816820|0|2|168|371
103.819672|0|0|168|371
107.938857|1|1|158
108.179822|1|0|158
112.758374|0|1|210|211
112.762422|0|2|209|210
112.819634|0|2|207|207
112.853343|0|0|207|212
155.617206|1|1|158
155.760906|1|0|158
164.920825|0|1|221|202
164.960888|0|2|220|202
164.999936|0|2|220|203
165.28386|0|0|220|205

Listing 3.2: Monkey events

touch down 159|458
sleep 2.613
touch move 159|456
sleep 2.408
touch move 160|455
sleep 1.1767
touch up 160|455
sleep 15591.921
touch down 167|366
sleep 27.459
touch move 167|365
sleep 2.072
touch move 168|371
sleep 2.852
touch up 168|371
sleep 4119.185
key down 158
sleep 240.965
key up 158
sleep 4578.552
touch down 210|211
sleep 4.048
touch move 209|210
sleep 57.212
touch move 207|207
sleep 33.709
touch up 207|212
sleep 42763.863
key down 158
sleep 143.700
key up 158
sleep 9159.919
touch down 221|202
sleep 40.063
touch move 220|202
sleep 39.048
touch move 220|203
sleep 28.450
touch up 220|205

We explain this point using a real case example. We take, from our repos-
itory, two malware samples from BaseBridge family (Listing 3.3 and 3.4)
and run them on the Android emulator: Figure 3.11 shows that their layout
is very similar, but the central button of the second sample is slightly shifted
down.

Listing 3.3: BaseBridge first sample info

package_name: com.keji.danti207

57

3.3 Implementation details Chapter 3. PuppetDroid

Figure 3.11: Layout comparison of two similar applications.

version_name: 15
version_code: 2.4
sha1: 73 bb65b2431fefd01e0ebe66582a40e74928e053

Listing 3.4: BaseBridge second sample info

package_name: com.zhangling.danti275
version_name: 19
version_code: 3.0.1
sha1: 00 c154b42fd483196d303618582420b89cedbf46

If we try to merely re-run on the second sample the sequence of input events
recorded during the original testing of the first sample, the situation shown
in Figure 3.12 may occur. We can see that the user taps on the button
during the test, the VNC server records the coordinates of the tap and then
monkey injects the touch event in the same point during test re-execution:
the problem is that in that point there is not any button and the event is
lost, invalidating the rest of execution.

To resolve this problem, we need more information about the view that
has been stimulated during the original test: more precisely, we want a
method that allows us to know which view has consumed the input event
during the original test and a method to find that same view during test
re-execution.

In Section A.4 we introduced Android ViewServer: using this tool we can
retrieve all the information regarding the views displayed on the screen.
Combining this information with the coordinates of the touch events gener-
ated by the user, we can identify the sequence of view objects that have been

58

3.3 Implementation details Chapter 3. PuppetDroid

The user taps here:

x-pos: 157

y-pos: 286

Monkey injects

event here:

x-pos: 157

y-pos: 286

Figure 3.12: Failure example of a monkey-based test re-run.

stimulated during the test. Unfortunately, as we mentioned in Section A.4,
the DUMP command used to retrieve this information is quite slow and it can-
not be realistically used during an interactive test session. Luckily, we are
not the only ones interested in a speed-up of ViewServer performance: as a
matter of fact, we found an open-source project created to make ViewServer
really usable for testing purposes6. The authors implemented a new dump
command, named DUMPQ, that is 20x to 40x faster than the original DUMP
command. To reach this result, it has been necessary to avoid the use of
introspection as much as possible: therefore the authors modified the origi-
nal Android system code in order to directly integrate the dump information
inside the view objects, avoiding in this way the need of using introspection.
Moreover, since we are interested only in the information needed to locate a
view object on the screen, we further modified their code to only supply the
information useful to our purposes.

Loading the patched Android system image at the emulator startup, we can
now retrieve the view hierarchy displayed on the screen at run-rime in a
reasonable time. We then further extended our VNC server implementa-
tion in order to perform the following steps when a new input event is re-
ceived:

1. Process PointerEvent message.

2. Retrieve currently displayed window sending GET_FOCUS command to
ViewServer.

3. Retrieve view hierarchy of the window sending DUMPQ command to
ViewServer.

6Android testing patches project page: https://code.google.com/p/android-app-
testing-patches/

59

https://code.google.com/p/android-app-testing-patches/
https://code.google.com/p/android-app-testing-patches/

3.3 Implementation details Chapter 3. PuppetDroid

BUTTON
INPUT

EVENT

btn_length

btn_height

input_x

input_y

x_ratio à input_x / btn_length

y_ratio à input_y / btn_height

Figure 3.13: Input event relative position in respect to view object.

4. Search in the view hierarchy the deepest and rightmost view object
(the last view drawn by SurfaceFlinger in case of overlapping views)
containing the coordinates of the input event.

5. Save on file the path to the previously found view node.

At the end of test execution, we have now two files that store information
about UI stimulation: a file containing the sequence of input events gener-
ated by the user and a file containing the sequence of path to the views that
consumed those input events. As additional information, when we retrieve
the view that consumed an event, we also keep trace of the relative posi-
tion of the input event in respect to view (as shown in Figure 3.13): this
information will be useful during test re-run.

The files generated by the VNC server are given as input to the Puppet-
Droid ReRunner tool, whose execution follows the pseudo-code shown in
Listing 3.5:

Listing 3.5: PuppetDroid ReRunner pseudo-code.

1 INPUT: event_list_file , path_to_view_list_file;
2
3 // Extract lists from files
4 event_list = process_file(event_list_file)
5 path_to_view_list = process_file(path_to_view_list_file)
6
7 // The number of elements in each list must be the same
8 if len(event_list) != len(path_to_view_list)
9 abort()

10 endif
11
12 // Process the events
13 i = 0
14 while i < length(event_list)
15 ev = event_list[i]
16 if ev.type == ’TOUCH ’

60

3.3 Implementation details Chapter 3. PuppetDroid

17 if ev.action == ’DOWN ’
18 view_path = path_to_view_list[i]
19 original_x_pos = ev.x_pos
20 original_y_pos = ev.y_pos
21 x_ratio = view_path.x_ratio
22 y_ratio = view_path.y_ratio
23
24 // Get the view hierarchy of the currently
25 // displayed window using viewserver
26 view_hierarchy = get_focused_window_hierarchy ()
27
28 // Search in the hierarchy the view that
29 // consumed input event in the original test
30 view = find_view_in_hierarchy(view_hierarchy , view_path)
31 if view == NULL
32 abort()
33 endif
34
35 // Calculate new event coordinates
36 new_x_pos = view.x_pos + (view.width * x_ratio)
37 new_y_pos = view.y_pos + (view.height * y_ratio)
38
39 // calculate the deviation from the
40 // original coordinates
41 x_deviation = new_x_pos / original_x_pos
42 y_deviation = new_y_pos / original_y_pos
43
44 // Update ev coordinates and inject it
45 ev.x_pos = new_x_pos
46 ev.y_pos = new_y_pos
47 inject_touch_event(ev)
48
49 // Apply deviation to the following events
50 // until a touch up event is found
51 i = i + 1
52 ev = event_list[i]
53 while not(ev.type == ’TOUCH ’ and ev.action == ’UP ’)
54 if ev.type == ’TOUCH ’
55 original_x_pos = ev.x_pos
56 original_y_pos = ev.y_pos
57 ev.x_pos = original_x_pos * x_deviation
58 ev.y_pos = original_y_pos * y_deviation
59 inject_touch_event(ev)
60 elif ev.type = ’KEY ’
61 inject_key_event(ev)
62 elif ev.type = ’WAIT ’
63 execute_wait_event(ev)
64 else
65 abort()
66 endif
67 i = i + 1
68 ev = event_list[i]
69 endwhile
70

61

3.3 Implementation details Chapter 3. PuppetDroid

71 // Process touch up event
72 if ev.type == ’TOUCH ’ and ev.action == ’UP ’
73 original_x_pos = ev.x_pos
74 original_y_pos = ev.y_pos
75 ev.x_pos = original_x_pos * x_deviation
76 ev.y_pos = original_y_pos * y_deviation
77 inject_touch_event(ev)
78 endif
79 elif ev.type = ’KEY ’
80 inject_key_event(ev)
81 elif ev.type = ’WAIT ’
82 execute_wait_event(ev)
83 else
84 abort()
85 endif
86 i = i + 1
87 endwhile

As shown, the ReRunner automatically adapts the original coordinates of
input events in order to fit them to the layout of the similar APK sample,
avoiding in this way event loss due to small layout changes. Unfortunately,
during our tests, we found out that this approach can still fail in some cases:
it could happen that the view that receives the input event is not the view
that eventually consumes it.

To explain this passage, we have first to briefly introduce how Android han-
dles touch events. When a touch event is generated by the system, the
Activity.dispatchTouchEvent() method of the currently running Activity is
called. This method dispatches the event to the root view in the hierar-
chy and waits for the result: if no view consumes the event, the Activity
calls onTouchEvent() in order to consume itself the event before terminating.
When a View object receives a touch event, the View.dispatchTouchEvent()
is called: this method first tries to find an attached listener to consume the
event, calling View.OnTouchListener.onTouch(), then tries to consume the
event itself calling View.onTouchEvent(). If there is neither a listener nor
the onTouchEvent() method is implemented, the event is not consumed and
it flows back to the parent. When a ViewGroup receives a touch event, it
iterates on its children views in reverse order and, if the touch event is inside
the view, it dispatches the event to the child. If the event is not consumed
by the child, it continues to iterate on its children until a view consumes the
event. If the event is not consumed by any of its children, the ViewGroup
acts as a View and tries to consume itself the event. Eventually, if it is not
able to consume the event it sends back to the parent. A more detailed
description on Android Touch System works can be found here [39].

Figure 3.14 shows a couple of examples of touch events management: in
the first case, the event flows down through the hierarchy, and since it is not

62

3.3 Implementation details Chapter 3. PuppetDroid

Activity.dispatchTouchEvent() ViewGroup.dispatchTouchEvent() View.dispatchTouchEvent()

View.onTouchEvent()ViewGroup.onTouchEvent()Activity.onTouchEvent()

NO VIEW CONSUMED THE EVENT

Activity.dispatchTouchEvent() ViewGroup.dispatchTouchEvent()

View.dispatchTouchEvent()

View.onTouchEvent()

EVENT CONSUMED HERE

View.dispatchTouchEvent()

View.onTouchEvent()

Figure 3.14: Examples of touch event management in Android.

consumed by any view, it comes back to the Activity. In the second case, the
event is consumed by the second View child of the ViewGroup object: this
is the case that sometimes can cause problems to our system. To face this
issue, we slightly modified Android source code in order to log which activity
has consumed the touch event. Moreover, we modified the VNC server in
order to store the path to all the deepest nodes in the hierarchy that can
consume the touch event. Finally we combine the information thus collected
to extract the list of the paths to the views that actually consumed the touch
events. In this way we succeeded in obtaining a very robust method to record
and re-execute UI stimulation on similar application.

3.3.7.2 Similarity

In this section we present some implementation details on how we calculate
the similarity between two Android samples.

In Section 6.2 we describe some theoretical approaches addressing this topic.
Between them, we choose to use the one that leverages Normalized Com-
pressed Distance (NCD) in order to approximate Kolmogorov complexity.
This approach has been implemented in androsim, a tool included in An-
droguard7, a widely used suite of python scripts used to analyze, decompile,
reverse and manipulate Android applications. androsim is the tool in the
suite used to compare two Android APKs, in order to find out similarities

7Androguard project page: https://code.google.com/p/androguard/

63

https://code.google.com/p/androguard/

3.3 Implementation details Chapter 3. PuppetDroid

and differences between them. Given two application as input, it provides
as result:

• the identical methods;

• the similar methods;

• the deleted methods;

• the new methods;

• the skipped methods;

• a similarity score (between 0.0 and 100.0).

To calculate this values, androsim retrieves the list of methods of the two
samples decompiling them, then it removes the identical methods basing on
a hashing comparison, filters a set of elements labeled as “skippable”, such as
methods from known libraries, and finally uses NCD on remaining methods
to find similarity associations. Basing on the results obtained it calculates a
final similarity score. Figure 3.15 shows androsim basic workflow.

For the computation of sample similarities, we dedicated a separated ma-
chine, accessible by PuppetDroid Main Server through a set of restful
APIs. During our tests we encountered some problems in the use of an-
drosim.

The first one is that it seems not to be symmetrical: inverting the order in
which the two samples are passed as parameters leads to different results.
This is probably due to an internal implementation error: unfortunately we
did not succeed in finding it. To face this problem, we decided that two
samples are similar over a threshold T only if androsim provides a similarity
score greater than T for both the way the two samples can be compared. At
the moment we consider similar two applications whose similarity score is
greater than 80%.

The second problem is related to the computation time needed for a compar-
ison: it is usually in the order of tens of seconds, even if sometimes it may
require some minutes. Using a quad-core machine as similarity server and
exploiting parallelization, we can reach an average time of about 11s. The
problem is that, when a new sample is uploaded on our repository, we should
be able to calculate the similarity score between that sample and the whole
sample repository in a reasonable time. Moreover, following this approach,
the growth of the repository also leads to a linear growth of the computation
time needed to calculate the similarity score of a new sample. To make an
example, our sample repository contains more than 7000 APKs: in order to
compare a single APK with the other samples in the repository, the time
required is:

64

3.3 Implementation details Chapter 3. PuppetDroid

SAMPLE_1 SAMPLE_2

method_a1

method_b1

method_c1

method_d1

...

method_a2

method_b2

method_c2

method_d2

...

FILTERING

SKIPPED

METHODS

IDENTICAL

IDENTICAL

METHODS

NCD

SORTING

DELETED

METHODS

SIMILAR

METHODS

NEW

METHODS

Figure 3.15: androsim basic workflow.

computation_time = 2 ∗#_samples ∗ avg_comp_time = 2 ∗ 7000 ∗ 11s =
154000s ≈ 42h

As we can see, it is a huge time to compare a single sample with the whole
repository. In Section 6.2 we present alternative methods that propose quick
and scalable strategies to calculate similarity on great set of applications. Un-
fortunately these techniques have not been implemented in publicly available
tools yet, so, due to time constraints, current implementation of Puppet-
Droid relies on androsim. However, this is only a temporary solution and
we are planning to integrate in our system a scalable and fast method to
calculate application similarity.

65

Chapter 4

Experimental evaluation

In this chapter we present the experimental tests performed in order to evalu-
ate our approach. In particular, our experimental evaluations can be divided
in two sets: with the first one, presented in Section 4.1, we wanted to verify
the effectiveness of PuppetDroid UI stimulation, while the second one,
presented in Section 4.2, has been conducted with the aim of testing the
feasibility of our re-run approach.

4.1 PuppetDroid stimulation evaluation

We recall that PuppetDroid aids dynamic analysis of Android (malicious)
applications. PuppetDroid collects dynamic behaviors data about the
APK samples, which should reach better coverage than automatic methods.
First, we verify that our stimulation approach leads to a better stimulation
compared to other automatic analysis approaches. For this, we compare the
number of behaviors exercised with PuppetDroid with the number of be-
haviors exercised with automatic approaches, namely Monkey, used in some
dynamic malware analysis framework such as Andrubis [25], and the system
events stimulation strategy proposed in CopperDroid [37].

4.1.1 Dataset

We conducted our experimental evaluation on a set of 10 APK samples:
8 of them are malware samples provided by the Android Malware Genome
Project [48] while the other 2 are goodware samples retrieved from Google
Play. Specific details on each sample used in our tests are reported in Ta-
ble 4.1.

67

4.1 PuppetDroid stimulation evaluation Chapter 4. Experimental evaluation

Malware Samples

Pagkage Name com.keji.danti207
Version 15

SHA1 73bb65b2431fefd01e0ebe66582a40e74928e053
Malware Family BaseBridge

Pagkage Name com.keji.danti80
Version 13

SHA1 58f2bcf5811fcde82172d7e1e2faba25c5c75edd
Malware Family BaseBridge

Pagkage Name com.zhangling.anTest20
Version 10

SHA1 7c0af89dd083b97db3dd70b7a2329c4a21a2c592
Malware Family DroidKungFu

Pagkage Name com.tutusw.onekeyvpn
Version 7

SHA1 98b83e122178ebe9e6b43aaec09af4661a5e92ec
Malware Family DroidKungFu

Pagkage Name com.atools.cuttherope
Version 5

SHA1 64013d749086e90bdcfccb86146ad6e62b214cfa
Malware Family DroidKungFu

Pagkage Name HamsterSuper.Client.Game
Version 2

SHA1 aa9216c96ab29477966d0ff83b0326241f733734
Malware Family YZHC

Pagkage Name HamsterSuper.Client.Game
Version 1

SHA1 593dd0ec6d6b9802d5d4626978cead4c83051b4a
Malware Family YZHC

Pagkage Name com.systemsecurity6.gms
Version 1

SHA1 c9368c3edbcfa0bf443e060f093c300796b14673
Malware Family Zitmo

Goodware Samples

Pagkage Name jp.sblo.pandora.jota
Version 81

SHA1 437a1f8059c3458fa2d1f4a1d902bbeefae9e8a9

Pagkage Name com.WhatWapp.Briscola
Version 30

SHA1 d32b99235a6c9effa6e69cff523732c1fbc964b8

Table 4.1: Dataset used to compare stimulation approaches.

68

4.1 PuppetDroid stimulation evaluation Chapter 4. Experimental evaluation

The dataset we used is quite small because we performed multiple tests on
each sample and the output of each test has been manually inspected in
order to examine the differences between different approaches. Therefore,
we preferred focus on a small dataset in order to perform a deeper analysis
of each test result.

4.1.2 Experimental setup

First of all, in order to carry on this experimental evaluation, we need an
effective way to compare two stimulation approaches. We then decided to
leverage the comparison method proposed by CopperDroid’s authors in their
work [37]:

• Use the CopperDroid instrumented emulator to collect system call traces
during test execution.

• Semantic analysis of system call traces collected in order to extract a
list of the stimulated behaviors.

• Use CopperDroid libraries to compare the behavior lists extracted from
two test executions.

In this way, given two test executions, we can establish the total stimulated
behaviors in each test, the behaviors stimulated by both the tests (intersec-
tion) and the behaviors stimulated only by either test (set difference).

A single test instance consists of the following sequence of actions:

1. Create and start a clean CopperDroid sandbox.

2. Install the APK sample on the sandbox.

3. Perform the selected stimulation approach.

4. Retrieve CopperDroid result files and delete the AVD instance.

For each sample in the experimental dataset, we performed the following
tests:

• 1 test without stimulation (labeled as NoStim).

• 1 test using CopperDroid stimulation strategy (labeled as Copper).

• 20 tests using Monkey stimulation (labeled as Monkey):

– 5 tests injecting 500 input events;

– 5 tests injecting 1000 input events;

– 5 tests injecting 2000 input events;

69

4.1 PuppetDroid stimulation evaluation Chapter 4. Experimental evaluation

– 5 tests injecting 5000 input events.

• 1 test using PuppetDroid approach (labeled as Puppet).

In particular, for both the test NoStim and Copper, we started the applica-
tion, waited 30 seconds and finally terminated the execution.

Since Monkey sometimes hangs, for each monkey test we set a timeout of 10
minutes, thereafter the test is terminated.

PuppetDroid tests have been executed using a HTC Wildfire S as user’s
device.

Finally, as previously said, we leveraged CopperDroid libraries to implement
a couple of scripts in order to compare behavior lists of two test execu-
tions.

4.1.3 Results

We present here the results of our experimental evaluations. First, we intro-
duce the terminology used to label the results:

Total bhvs – average number of behaviors per test observed by Copper-
Droid. It can include duplicate behaviors.

Distinct bhvs – average number of distinct behaviors per test observed
by CopperDroid (i.e., without duplicates).

Exclusive bhvs of A in respect to B – average number of behaviors
observed by CopperDroid only in test exercised by A and not observed in
test exercised by B.

For each exercising approach, we extracted the total behaviors stimulated:
Figure 4.1 provides a graphical overview of this first analysis. The blue
bars indicate total behaviors per test while the red bars indicate distinct
behaviors.

Stimulated Behaviors

No Stimulation 14.7 (7.1 distinct)
Monkey 17.925 (6.69 distinct)
CopperDroid 19.0 (10.6 distinct)
PuppetDroid 46.8 (16.4 distinct)

Table 4.2: Summary of the results obtained in the experimental evaluation of Puppet-
Droid stimulation approach.

70

4.1 PuppetDroid stimulation evaluation Chapter 4. Experimental evaluation

NoStim Monkey Copper Puppet
0

10

20

30

40

50

1
4.
7 1
7
.9
3

1
9

46
.8

7.
1

6
.6
9 1
0
.6

1
6
.4

Total bhvs Distinct bhvs

Figure 4.1: Total behaviors per test.

NoStim Monkey Copper Puppet
0

10

20

30

40

50

10
.5

18
.7
5

13
.2
5

43
.2
5

4

6.
54

6
.1
3 12

.2
5

Total bhvs Distinct bhvs

NoStim Monkey Copper Puppet
0

20

40

60

31
.5

14
.6
3

42

61

19
.5

7
.2
8

28
.5 33

Total bhvs Distinct bhvs

Figure 4.2: Total behaviors per test for malware (on the left) and goodware (on the right)
samples.

71

4.1 PuppetDroid stimulation evaluation Chapter 4. Experimental evaluation

As we expected, PuppetDroid human-driven stimulation succeeds in stim-
ulating more behaviors than automatic approaches: we are able to stimulate
254% of total behaviors and 200% of distinct behaviors more than the au-
tomatic stimulation methodologies. To make result presentation more clear,
we report behavior data also in table Table 4.2. In Figure 4.2 we provide
the same information, but dividing the results between the tests performed
on malware and on goodware samples.

NoStim Monkey Copper Puppet
0

2

4

6

8

10

12

14

2.
6
4

0

2
.0
4

1
.4
8

4.
2

5.
9

0

0
.8

9
.9

7.
5

11
.6
4

0

Monkey Copper Puppet

Figure 4.3: Comparison of exclusive behaviors stimulated with a stimulation approach in
respect to the others.

The data collected from CopperDroid result files allow us to extract another
interesting information: the exclusive behaviors stimulated by only one ap-
proach compared to another, that is the number of behaviors that are only
stimulated with the first approach but not with the second one. Figure 4.3
shows this information: as we can see, the exclusive behaviors of Monkey
and CopperDroid (identified by the bars in blue and red) are fewer than the
ones of PuppetDroid. In particular, considering the exclusive behaviors
generated by the three approaches compared with the NoStim test, we have
that PuppetDroid is able to stimulate 375% exclusive behaviors more in
respect to Monkey and 235% more i respect to CopperDroid. We also illus-
trate comparison data in Table 4.3, in order to make result presentation
more clear. As before, we report also the data regarding only malware and
goodware (Figure4.4) samples.

72

4.1 PuppetDroid stimulation evaluation Chapter 4. Experimental evaluation

Only in \ in respect to NoStim Monkey Copper Puppet

Monkey 2.64 0 2.04 1.48
Copper 4.2 5.9 0 0.8
Puppet 9.9 7.5 11.64 0

Table 4.3: Comparison of exclusive behaviors stimulated with a stimulation approach in
respect to the others..

NoStim Monkey Copper Puppet
0

2

4

6

8

10

2.
5
3

0

1
.7
8

1.
422
.1
2

1

0

0
.5

8.
5

7
.3 8

0

Monkey Copper Puppet

NoStim Monkey Copper Puppet
0

10

20

30

3.
08

0

3.
08

1
.7

1
2.
5

2
5
.5

0

2

1
5
.5

29

5
.5

0

Monkey Copper Puppet

Figure 4.4: Comparison of exclusive behaviors stimulated with a stimulation approach in
respect to the others, considering only malware (on the left) and goodware (on the right
)samples.

This data confirm our first assumption: PuppetDroid UI stimulation ap-
proach allows to obtain better results in respect to automatic approaches
used in other dynamic analysis frameworks.

Finally, we point up a particular case where PuppetDroid succeeded in
stimulating a malicious behavior that the other stimulation strategies did
not exercised. The malware sample under analysis is com.keji.danti80, be-
longing to BaseBridge malware family. BaseBridge is a trojan that, once
installed, prompts the user with an upgrade dialog: if users accept to do so,
the malware will install a malicious service on the phone. This service com-
municates with a control server to receive instructions to perform malicious
actions (e.g., place calls or send messages to premium numbers). Meanwhile,
the malware also blocks messages from the mobile carrier in order to pre-
vent users from getting fee consumption updates: in this way all malicious
activities are undertaken stealthily without the users’ knowledge or consent.
More details on this malware can be found in [34, 31, 41] .

73

4.1 PuppetDroid stimulation evaluation Chapter 4. Experimental evaluation

Behavior Blob Hit

write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write [MKDIR] /data/data/com.keji.danti80/files 1

write {’filename’:
u’/data/data/com.keji.danti80/files/xxx.apk’}

1

write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2

write [MKDIR]
/data/data/com.sec.android.bridge/shared_prefs

1

write [UNLINK] /data/data/com.keji.danti80/files/xxx.apk 1
connect {’host’: ’10.0.2.3’, ’retval’: 0, ’port’: 53} 1

outgoing_dns_query {’query_data’: ’b3.8866.org. 1 1’} 1
connect {’host’: ’221.5.133.18’, ’retval’: -115, ’port’: 8080} 1

write
{’filename’:

u’/data/data/com.sec.android.bridge/shared_
prefs/first_app_perferences.xml’}

3

write [UNLINK] /data/data/com.sec.android.bridge/shared_
prefs/first_app_perferences.xml.bak

2

write {’filename’:
u’/data/data/com.keji.danti80/files/atemp.jpg’}

1

write [UNLINK] /data/data/com.keji.danti80/files/atemp.jpg 1
write {’filename’: ’221.5.133.18 port:8080’} 2

Table 4.4: List of behaviors extracted testing com.keji.danti80 malware sample.

Analyzing the sample with PuppetDroid we obtained the list of behaviors
shown in Table 4.4. The red colored lines indicate a behavior that none
of the other stimulation techniques were able to reveal. The malware writes
another APK file, xxx.apk, on the filesystem. As a matter of fact, during the
test, the application prompts the user to install a new application, named
BridgeProvider, to complete the update, as shown in Figure 4.5.

BridgeProvider is the service used by BaseBridge trojan to accomplish its ma-
licious behaviors, as it can seen by analyzing the APK with the Android
Asset Packaging Tool (aapt). The extracted information is shown in List-
ing 4.1.

Listing 4.1: Static information extracted from xxx.apk payload

application_name: BridgeProvider
package_name: com.sec.android.bridge
version_name: 13
version_code: 4.2
sha1: 9dd5052b09f9b82eecaedc5d02391cbe0e8e515e
used_permissions: android.permission.READ_SMS

android.permission.RECEIVE_SMS ’

74

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

1 2 3 4

Figure 4.5: Steps to install BridgeProvider payloads: 1) Ask for application update; 2)
Install payload; 3) Restart application; 4) Malicious service running on device.

android.permission.SEND_SMS ’
android.permission.READ_PHONE_STATE ’
android.permission.INTERNET ’
android.permission.WRITE_SMS ’
android.permission.RECEIVE_BOOT_COMPLETED ’
android.permission.VIBRATE ’
android.permission.WRITE_EXTERNAL_STORAGE ’
android.permission.READ_EXTERNAL_STORAGE ’

In conclusions, the other stimulation approaches did not exercised the mal-
ware such that it revealed its true malicious behavior, with the consequent
risk to consider the sample as safe. Instead, using PuppetDroid, the ana-
lyst is able to detect such a potential dangerous behavior and subsequently
analyze in detail the functioning of the application.

Conclusions The results of the experiments confirmed our intuition that
automatic UI stimulation approaches can only exercise a subset of the (mali-
cious) behaviors of a malware during dynamic analysis. On the other hand,
PuppetDroid approach based on human-driven UI exercising allows to re-
produce typical victim interaction with the malware and to reach then higher
code coverage.

4.2 PuppetDroid scalability evaluation

To make our approach scale, PuppetDroid leverages the re-execution of
previously recorded UI stimulation traces on applications with a similar lay-
out. As explained in Section 2.3, our idea is based on 2 assumptions:

75

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

• Many malware samples are actually repackaged versions of other sam-
ples.

• If we succeed in exercising the (malicious) behaviors in a sample, we
exercise the same behaviors, or behaviors triggered by the same UI
stimulation, in similar samples.

This section presents the tests performed in order to verify these assump-
tions.

4.2.1 Dataset

For this experimental evaluation we took 4 APK samples from the Android
Malware Genome Project [48]. Then, we exploited Androguard to retrieve
similar APKs from a repository of over 7000 samples taken from the Android
Malware Genome Project, Google Play and alternative Android markets. As
mentioned in Section 3.3.7.2, Androguard similarity tool is not very fast in
calculating the similarity score, so we calculated our similarity comparisons
only on a subset of our sample repository. This is a temporary limitation of
current implementation of PuppetDroid: in fact, as explained in Section 7,
we are going to substitute androsim with a scalable and fast application
similarity strategy. Specific details on the 4 samples originally stimulated
with PuppetDroid are reported in Table 4.5.

Malware Samples

Pagkage Name com.keji.danti207
Version 15

SHA1 73bb65b2431fefd01e0ebe66582a40e74928e053
Malware Family BaseBridge

Pagkage Name com.tutusw.onekeyvpn
Version 7

SHA1 98b83e122178ebe9e6b43aaec09af4661a5e92ec
Malware Family DroidKungFu

Pagkage Name HamsterSuper.Client.Game
Version 2

SHA1 aa9216c96ab29477966d0ff83b0326241f733734
Malware Family YZHC

Pagkage Name com.keji.danti160
Version 14

SHA1 87f1eb6baa69745d306e8765bb085621410c241f
Malware Family BaseBridge

Table 4.5: Dataset used to validate our re-run approach.

76

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

4.2.2 Experimental setup

To verify if our re-execution approach is feasible, we need a way to evaluate
the results of the re-executed tests. We follow three methods:

ManualVsRe-exec – Compare the behaviors exercised with the manual
stimulation technique with the behaviors extracted from the re-executed
tests.

Re-execBhvs – Verify if an interesting malicious behavior stimulated in
the original sample is also stimulated during the re-execution on a similar
application.

AutomaticVsRe-exec – Compare the behaviors exercised in the re-
executed tests with the behaviors extracted using automatic stimulation
tools, as done in the first set of experimental evaluations.

These two evaluation approaches provide different information: with the first
one we can know if we succeed in stimulating interesting malicious behaviors,
seen in the original sample, also in the re-executed tests, whereas the second
one indicates if the original stimulation applied on a different application
allows us to still obtain a better stimulation compared with the automatic
stimulation approaches.

We structured each test as follows, for each of the 4 APKs:

• Use PuppetDroid to manually test the application: the system au-
tomatically stores information related to UI stimulation during test
execution.

• Use androsim to search APKs similar to the one previously tested: we
consider two samples as similar if their similarity score is greater than
80%.

• Leverage PuppetDroid framework to automatically re-execute pre-
viously recorded UI stimulation on similar applications.

• Test similar applications with automatic stimulation approaches:

– 1 test without external stimulation

– 20 tests using Monkey stimulation

– 1 test using CopperDroid stimulation strategy.

• Perform the two evaluation strategies explained before.

For each sample in the dataset presented in Table 4.5, we performed one
test, except for com.keji.danti207 sample that we used in two tests (the
reason for this choice will be explained in Section 4.2.3).

77

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

PuppetDroid and automatic stimulation tests have been executed as pre-
viously described in Section 4.1.2, using a HTC Wildfire S as the user de-
vice.

Finally, for each test re-execution, we also calculated a re-execution score,
expressed as a percentage, that indicates how many UI events have been
successfully re-executed. For example, suppose we have a recording of a
UI stimulation with 20 events: if our puppet_rerunner tool succeeds in re-
executing 10 UI events but it is not able to find the correct view to inject
the 11th event, the re-execution is terminated. We then have a re-execution
score of 50%.

4.2.3 Results

ManualVsRe-exec We first show the results of the comparison between
the behaviors retrieved using the manual stimulation of the original sample
and the behaviors extracted from similar applications stimulated with the
re-execution of the same stimulation.

Test1 Test2 Test3 Test4 Test5
0

50

100

150

200

19
9

15
8

42

12
6

92

82
(4
1%

)

97
(6
1%

)

76
(1
81
%
)

10
2
(8
1%

)

79
(8
6%

)

Total bhvs original Total bhvs re-run

Figure 4.6: Comparison of total behaviors stimulated in the original execution vs. the
average total behaviors stimulated in re-executed tests.

In particular, Figure 4.6 shows the comparison between the total number
of behaviors stimulated in the original test (in blue) in respect to the average
of the ones stimulated in re-executed tests (in red), Figure 4.7 shows the
comparison of distinct behaviors, while Figure 4.8 shows the exclusive be-

78

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

Test1 Test2 Test3 Test4 Test5
0

10

20

30

40

50

42

28

18

39

19

26
(6
2%

)

29
(1
04
%
)

25
(1
39
%
) 37

(9
5%

)

19
(1
00
%
)

Distinct bhvs original Distinct bhvs re-run

Figure 4.7: Comparison of distinct behaviors stimulated in the original execution vs. the
average distinct behaviors stimulated in re-executed tests.

haviors stimulated only in the original test (always in blue) in respect to the
exclusive behaviors stimulated on average only in re-executed tests.

Test1 Test2 Test3 Test4 Test5
0

5

10

15

20

21

5

1 1

11

5

6

4

1

8

Exclusive bhvs in original Exclusive bhvs in re-run

Figure 4.8: Comparison of exclusive behaviors stimulated in the original execution vs. the
average exclusive behaviors stimulated in re-executed tests.

At first one would expect that the behaviors extracted in the original test are

79

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

more than the ones stimulated in re-executed tests. In some cases it is not
true, (e.g., in Test3). This is due to the fact that we are comparing the be-
haviors exercised in different, even if similar, applications: it is possible that
an application similar to the one originally tested, generates more behaviors
even if less stimulated. To make an example, it is possible that when an
application A is started it generates 10 behaviors, while when an application
B, similar to A, is started it generates 20 behaviors: the same holds also for
the UI stimulation, so clicking on a button of A we have 2 behaviors, while
clicking on the same button on B leads to 4 behaviors.

Re-execBhvs We now verify if an interesting malicious behavior stimu-
lated in the original sample is also stimulated during the re-execution on a
similar application. To do so we consider the application com.keji.danti160,
belonging to BaseBridge malware family: information about this sample are
shown in Table 4.5, while experimental data related to this test are labeled
as Test5 in the diagrams. We chose this sample because during the test
it showed a behavior similar to the one shown by com.keji.danti80 sample
described in Section 4.1.3: when started, the application asks the user to
update it and installs a malicious service, named BridgeProvider, on the
phone. This behavior is shown in Figure 4.9, while the list of behaviors
extracted with CopperDroid during the test is presented in Table 4.6: red
lines indicates the malicious actions executed by the application.

1 2 3 4

Figure 4.9: Another example of BaseBridge malware: 1) Ask for application update; 2)
Install payload; 3) Restart application; 4) Malicious service running on device.

Scanning our sample repository with androsim, we found one sample, named
com.keji.danti161, that produces a similarity score greater than 80%: infor-
mation related to this sample is presented in Table 4.7, while a comparison
of the layout of the two samples is shown in Figure 4.10. As we can see,
the two applications seem to be identical, even if they have a different pack-

80

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

Behavior Blob Hit

write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write [MKDIR] /data/data/com.keji.danti160/shared_p refs 1
write [MKDIR] /data/data/com.keji.danti160/files 1
write {’filename’: u’/data/data/com.keji.danti160/files/xxx.apk’} 1
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write [MKDIR] /data/data/com.sec.android.bridge/shared_prefs 1

connect {’host’: ’10.0.2.3’, ’retval’: 0, ’port’: 53} 1
outgoing_dns_query {’query_data’: ’b3.8866.org. 1 1’} 1

write [UNLINK] /data/data/com.keji.danti160/files/xxx.apk 1
write [MKDIR] /data/data/com.keji.danti160/databases 1

write
{’filename’:

u’/data/data/com.keji.danti160/databases/db.db’}
24

write
{’filename’: u’/data/data/com.sec.android.bridge/shared_

prefs/first_app_perferences.xml’}
3

write
[UNLINK] /data/data/com.sec.android.bridge/shared_

prefs/first_app_perferences.xml.bak
2

connect {’host’: ’221.5.133.18’, ’retval’: -115, ’por t’: 8080} 2

write
{’filename’: u’/data/data/com.keji.danti160/shared_

prefs/com.keji.danti160.xml’}
22

write
[UNLINK] /data/data/com.keji.danti160/shared_

prefs/com.keji.danti160.xml.bak
21

Table 4.6: List of behaviors extracted testing com.keji.danti160 malware sample.

age name and a different hash value: this is a typical example of malware
repackaging.

Pagkage Name com.keji.danti161
Version 14

SHA1 b457113c46b19dcec6ebb68efe24f1460237389d
Malware Family BaseBridge

Table 4.7: Information related to com.keji.danti161 sample.

Re-executing the UI stimulation recorded with PuppetDroid on the ap-
plication com.keji.danti161, we extracted the list of behaviors shown in
Table 4.8: red colored lines present the same malicious actions stimulated
in the original test execution. This example illustrates that re-execution
approach is valid: in fact, we succeeds in automatically stimulating an inter-
esting malicious behavior in an application leveraging application similarity,
to discover repackaged samples, and UI stimulation re-execution.

81

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

Behavior Blob Hit

write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write [MKDIR] /data/data/com.keji.danti161/shared_prefs 1
write [MKDIR] /data/data/com.keji.danti161/files 1
write {’filename’: u’/data/data/com.keji.danti161/files/xxx.apk’} 1
write {’filename’: u’/sys/qemu_trace/process_name’} 2
write {’filename’: u’/sys/qemu_trace/process_name’} 2

write
[MKDIR] /data/data/com.sec.android.bridge/shared_

prefs
1

write
{’filename’: u’/data/data/com.sec.android.bridge/shared_

prefs/first_app_perferences.xml’}
2

write
[UNLINK] /data/data/com.sec.android.bridge/shared_

prefs/first_app_perferences.xml.bak
1

connect {’host’: ’10.0.2.3’, ’retval’: 0, ’port’: 53} 1
outgoing_dns_query {’query_data’: ’b3.8866.org. 1 1’} 1

write [UNLINK] /data/data/com.keji.danti161/files/xxx.apk 1
connect {’host’: ’221.5.133.18’, ’retval’: -115, ’por t’: 8080} 1
write [MKDIR] /data/data/com.keji.danti161/databases 1

write
{’filename’: u’/data/data/com.keji.danti161/shared_

prefs/com.keji.danti161.xml’}
17

write
[UNLINK] /data/data/com.keji.danti161/shared_

prefs/com.keji.danti161.xml.bak
16

write
{’filename’:

u’/data/data/com.keji.danti161/databases/db.db’}
24

write {’filename’: u’/data/system/dropbox/drop68.tmp’} 4

Table 4.8: List of behaviors extracted from com.keji.danti161 malware sample with
UI re-execution.

Figure 4.10: Layout comparison of com.keji.160 with com.keji.161.

82

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

AutomaticVsRe-exec We now evaluate the stimulation obtained with re-
execution compared with the automatic stimulation approaches. Comparing
the behaviors extracted from re-executed tests with the ones retrieved stim-
ulating the same samples with Monkey and CopperDroid, we obtained the
data shown in Figure 4.11. As we can see, the re-executed stimulation
still allows to stimulate more behaviors in respect to automatic approaches:
in fact, using PuppetDroid re-execution, we are able to stimulate 187%
of total behaviors and 137% of distinct behaviors more than the automatic
stimulation methodologies. Moreover, with re-execution we stimulate 276%
exclusive behaviors more respect than Monkey and 312% more respect than
CopperDroid. It is also worth noting that this is a conservative estimate of
re-execution effectiveness: as a matter of fact, our experimental data contain
also cases in which re-execution promptly failed after test beginning. We will
examine these particular failure cases in the next lines. Finally, Table 4.9
sums up the results obtained with these tests.

NoStim Monkey Copper Puppet
0

20

40

60

80

100

29
.8

51
.3
4

43
.2
7

88
.1
7

17
.3
3

19
.4
4

24
.7
9

27
.4
9

Total bhvs Distinct bhvs

NoStim Monkey Copper Puppet
0

5

10

15

5
.4
7

0

5
.5
6

6.
52

4.
85

5
.0
6

0

5
.7
6

15
.1
4

13
.8 14
.7
1

0

Monkey Copper Puppet

Figure 4.11: Comparison of behaviors stimulated with re-execution in respect to behaviors
extracted using automatic stimulation: total and distinct behaviors on the left, exclusive
behaviors on the right.

Re-execution failures

We now illustrate some particular cases that can make a test re-execution
fail.

We observed the first case during the execution of the test labeled as Test3.
In this test we found 6 samples similar to the originally tested application: re-
executing the UI stimulation recorded with PuppetDroid on these samples,
we noticed that 3 executions obtained a re-execution score of 100%, while

83

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

Overview

Number of similar APKs 4.00
Re-execution score 60.62%

Comparison with original test

Original test behaviors 123.00 (29.00 different)
Re-executed tests behaviors 88.17 (27.49 different)
Exclusive behaviors in
original 7.00

Exclusive behaviors in
re-executed 4.00

Comparison with automatic stimulation

Stimulated Behaviors

No Stimulation 29.80 (17.33 different)
Monkey 51.34 (19.44 different)
CopperDroid 43.27 (24.79 different)
PuppetDroid 88.17 (27.49 different)

Exclusive Behaviors

Only in \ in respect to NoStim Monkey Copper Puppet

Monkey 5.47 0 5.56 6.52
Copper 4.85 5.06 0 5.76
Puppet 15.14 13.80 14.71 0

Table 4.9: Summary of the results obtained in the experimental evaluation of Puppet-
Droid re-execution approach (average values per test).

3 obtained a re-execution score of 0% (i.e., the re-execution promptly failed
after test beginning).

Analyzing the layout of the samples for which the re-execution failed with
the layout of the originally tested application, we found out that they con-
siderably differ, as shown in Figure 4.12. Clearly, our puppet_rerunner tool
cannot find the correct view to be stimulated in such a different layout and
the test unavoidably fails.

So, the first cause for re-execution failure is due to a wrong identification of
similar applications: our similarity comparison approach can consider two
applications as similar, even if they greatly differ in the layout. In order
to solve this problem, we should use a different similarity methodology that
allows to give more importance to layout similarity. We are looking for
alternative solutions to calculate similarity, as explained in Section 7.

The second cause of re-execution failure has been more difficult to discover
than the first one just described. In this case the failure is due to the presence
of a particular View object in the original sample’s layout that however is

84

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

Figure 4.12: Example of similar samples with different layouts.

not present in the layouts of similar applications.

We discovered this particular case during the execution of Test1 : during
the stimulation of the original sample, we clicked on a link embedded in a
TextView object. Re-executing the test on a similar application, the con-
tent of the TextView changed with the following disappearance of the link:
hence, clicking on the TextView in the original sample led to open a new
window, while the same click on the similar application did not generate
any transition, making the re-execution test fail. This case is shown in Fig-
ure 4.13.

In Test2 we tried to stimulate the same application, com.keji.danti.207,
avoiding to click on that link: as expected, the re-execution has reached a
score of 100%. Clearly, this particular failure case cannot be easily avoided,
since a deep knowledge of the layout of the original and of the similar appli-
cations would be necessary.

Conclusions The results of the experiments supported our key intuition
on the re-execution of UI stimulation traces: we demonstrated that if (ma-
licious) behaviors are exercised during a manual test, it is quite likely that
stimulating in the same way the UI of similar applications, similar behav-
iors are exercised. Moreover, these tests showed that exercising the UI of
an application with the re-execution of stimulation trace allows to reach
higher code coverage (i.e., exercising more behaviors) than automatic exer-
cising strategies. We also discovered limitations in the re-execution technique
adopted: one of them is tied to the current implementation of the similarity
strategy used. As explained in Section 7, we can overcome this limitation
adopting a different similarity approach. The second limitation is tied to the

85

4.2 PuppetDroid scalability evaluation Chapter 4. Experimental evaluation

Tap on

central button

Tap

on link

Link not found

Execution terminated

Figure 4.13: Example of re-execution failure due to the presence of particular UI elements.

presence of unexpected UI elements in the layout of an application: at the
moment there is not a solution to this problem. However, we observed that
this limitation sporadically exhibits and, consequently, it does not affect the
results of re-execution approach.

86

Chapter 5

Limitations

In this section we analyze the main limitations of PuppetDroid system.
First of all we consider some implementation aspects that limit the perfor-
mance of the system: we remind that PuppetDroid offers a highly interac-
tive service, so reaching good performance during test execution is one of the
main goals we sought during system development. Then, we comment on
the problem of evasion, a common problem in the field of dynamic malware
analysis. Finally, we recall the limitations related to the current re-execution
implementation, which exhibited during experimental tests.

Performance

PuppetDroid provides an Android remote execution environment to per-
form tests: as explained in Section 3.3.6, users’ devices communicate with
our sandboxes through a VNC communication channel. Even if modern
VNC encoding and compression algorithms allow to reach remarkable trans-
mission performance, the overall speed of the session depends on network
speed and computational power of both the endpoints. Considering the
network, the bandwidth required to obtain good usability depends on the
dimensions of the screen images exchanged between VNC client and server.
We performed our tests using a smartphone with 320x480 pixels as screen
size, labeled as Normal screen by Android, and we did not notice any perfor-
mance degradation due to VNC transmission. However, using a smartphone
with a 1280x800 pixel screen, labeled as Extra Large screen, we noticed a
slowdown in the updating of the image. Indeed, this problem can be solved
slightly modifying current PuppetDroid implementation in order to limit
sandbox screen dimensions or introduce light image quality degradation in
order to improve transmission speed.

Actually, the real performance bottleneck of PuppetDroid is the Android

88

Chapter 5. Limitations

emulator used as sandbox to host tests. As a matter of fact, Android em-
ulator, or better QEMU, has to emulate ARM instructions on top of a X86
architecture provided by the host machine: this is clearly highly processor
intensive and make the emulator run much slower than a real device. The
first consequence of the poor performance of the emulator is that is very
hard to run highly interactive applications, such as games.

Indeed, Google official documentation [16] suggests to exploit hardware ac-
celeration and switch to the x86 version of Android emulator in order to
make it run faster: we discarded this option because we prefer to execute
our dynamic malware analysis in an environment as similar as possible to
the physical environment used by real Android devices. Moreover, supporting
ARM is currently necessary since there are Android malware samples that
exploit ARM specific vulnerabilities to perform malicious actions.

Another alternative is to use physical devices instead of emulator: this so-
lution can lead to a great performance improvement and, in addition, we
obtain an optimal test environment. The drawback of this approach is that
we have to modify the way we perform dynamic analysis: as a matter of
fact, CopperDroid relies on the instrumentation of QEMU to perform system
call tracking, while the use of a physical device would require the adoption
of an instrumented Android image, such as done in solutions like TaintDroid
or DroidBox.

Evasion

PuppetDroid executes test sessions in an emulated environment: this
fact does not only imply performance limitations but it has been demon-
strated [29] that a generic application can detect that it is running inside
an Android emulator. As a matter of fact, the binary translation technique
used in a QEMU fully-emulated environment does not properly respect the
typical unpredictable behavior of a multitasking implementation based on
timer interrupts: this is because QEMU, in order to speedup emulator per-
formance, schedules new threads only after the execution of a complete basic
block, while in a real environment the execution flow can be interrupted in
any time inside a basic block. This is only an example about how to exploit
particular implementation features of an emulator for evasion purposes: the
point is that there always is the possibility that a malware can detect to be
running in an emulated environment and can thus decide to hide its malicious
behavior in order to not be analyzed.

A possible solution could be to use a physical device running an instru-
mented Android image. However, also in this case, since the analysis is per-
formed inside the Android environment, if the malware succeeds in gaining
root privileges, it can detect the presence of the analysis framework and hide

89

Chapter 5. Limitations

its malicious behavior.

Finding a solution to the evasion problem is still an open problem, not only
for Android framework, but in general for the research field of dynamic mal-
ware analysis [24].

Re-execution

We recall here two limitations we found during the experimental evaluation
of PuppetDroid re-execution approach. The first one is tied to the current
solution used to calculate the similarity between two Android applications:
it may happen that androsim considers two applications as similar, even if
they greatly differ in the layout. This is actually a temporary limitation: in
fact we are going to adopt a more reliable and scalable solution to calculate
app similarity, as explained in Section 7. The second limitation is tied to
the presence of a particular UI element in the original sample’s layout that
however is not present in the layouts of similar applications. At the moment
we have not a solution to this particular case. Fortunately, we observed that
it is a sporadic scenario and it does not affect the results of our re-execution
approach.

90

Chapter 6

Related work

In this chapter we present an overview of relevant works in the fields related
to this thesis: static malware analysis (Section 6.1) and Android applications
similarity (Section 6.2).

6.1 Static malware analysis

As mentioned in Section 2.2.1, there are two approaches commonly used by
analysts to study the behavior of an unknown program: static and dynamic
analysis. We already introduced these two techniques and we discussed about
main advantages and limitations of each. We present here the most relevant
static analysis frameworks developed for Android.

The most common static analysis approach, at the base of anti-virus soft-
ware products, is the filtering of samples basing on the research of sections of
code that follows known malicious pattern of execution, named signatures.
The main advantage of this approach is that it allows to develop thin client
analyzers (i.e., anti-virus products), since it does not require much compu-
tational power. The clear drawback is that it is a blacklist approach, so
malware signatures must be known in advance and anti-virus products must
be constantly kept updated.

A lot of alternative static analysis approaches have been presented in the
last years: we want to cite here DroidRanger [52], DroidMOSS [46] and
RiskRanker [19].

DroidRanger is an interesting static analysis framework that leverages a fast
signature-based scanning to detect known malware, in combination with a
heuristic-based approach in order to identify zero-day threats. It has been
developed to analyze the health of existing Android markets, having thus as

92

6.1 Static malware analysis Chapter 6. Related work

first requirement the ability to quickly analyze a huge amount of APK sam-
ples. In particular, in order to identify known malware samples, it retrieves
from the manifest the information about requested permissions and if they
match a known malware pattern of permission usage, then the sample is
further analyzed using a signature based scanning. On the other hand, to
detect unknown threats, the authors, basing on the study of known malware,
defined some heuristics that allow to detect untrusted code in an application:
these heuristics have been used to perform a first filtering of the samples to
be analyzed. Then, the samples that passed this first step (i.e., that have
been labeled as potentially malicious from one of the heuristics) are manu-
ally analyzed in order to establish if they are a zero-day threats or variants
of existing malware. Figure 6.1 presents an overview of DroidRanger archi-
tecture.

Figure 6.1: DroidRanger architecture.

This method has proved to be very effective, since it allowed to quickly
analyze more than 200,000 applications and detect more than 200 malware
samples, with 20% of them being zero-day threats.

DroidMOSS is an application similarity measurement system designed to de-
tect repackaged APKs in third-party Android markets. The original idea at
the base of this work is the use of a fuzzy hashing technique to generate a
fingerprint of the bytecode of an application: the use of fuzzy hashing allows
to obtain slightly different fingerprints for slightly different bytecodes. In
this way it is possible to easily detect repackaged applications. The anal-
ysis is performed in 3 steps: first of all, each sample is analyzed in order
to collect a set of identifying information. Then, fuzzy hashing is applied in
order to generate a fingerprint from the list of bytecode instructions. Finally,
the fingerprints of the application on alternative markets are compared with
the fingerprints of the application on official Google Play market: if two
applications have a high similarity score and are signed by two different au-
thors, a repackaged application has been found. An overview of DroidMOSS
architecture is shown inFigure 6.2.

93

6.2 Android application similarity Chapter 6. Related work

Figure 6.2: DroidMOSS architecture.

RiskRanker is an automated system that has been developed to detect zero-
day malware that can compromise phone integrity, cause users financial loss
or disclose sensitive information. We cite this work because it proposes an
interesting approach to face code obfuscation with static analysis. As a mat-
ter of fact, RiskRanker uses two different types of analysis depending on the
case a sample includes obfuscated code or not. In the case code obfuscation
is not present, a two steps analysis is performed: the first step leverages a
signature-based scanning to detect known exploits that allow to gain root
privileges. The second step performs a control-flow analysis to identify crit-
ical paths to methods that can cause sensitive information disclosure or fi-
nancial loss, without requesting user’s approval. On the other hand, in case
of code obfuscation, after a pre-processing phase to filter only applications
using cryptographic methods, RiskRanker tries to identify applications that
execute encrypted native code. To do that, it looks for execution paths that
include both methods used to decrypt the contents of res or asset folders
and methods used to execute native code through JNI.

6.2 Android application similarity

In this section we introduce some relevant works that address Android appli-
cation similarity, a very useful information if you want to identify repackaged
applications.

To our knowledge, the only currently available tool to calculate Android
application similarity is androsim [5], distributed with Androguard reverse-
engineering suite. This tool has been developed with the aim to easily
discover pirated version of a genuine application or to evaluate the effi-
ciency of code obfuscators. The authors leverage Normalized Compressed
Distance (NCD) to approximate Kolmogorov complexity and to calculate
the distance between two elements using real world compressors. In partic-
ular, given a compressor C, the NCD of two elements A and B is defined

94

6.2 Android application similarity Chapter 6. Related work

by:

dNCD(A,B) =
LA|B −min(LA, LB)

max(LA, LB)

where L is the length of a string, LA = L(C(A)) and A|B is the concatenation
of A and B.

The compressor C must be normal, i.e it has to satisfy the 4 inequali-
ties:

1. Idempotency: C(xx) = C(x), and C(ε) = 0, where ε is the empty
string.

2. Monotonicity: C(xy) ≥ C(x).

3. Symmetry: C(xy) = C(yx).

4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz).

Moreover the compressor must be able to calculate C(x) within an acceptable
amount of time.

The algorithm used to calculate the similarity between two applications
works as follows:

• Extract the lists of methods from the bytecode of the two samples.

• Identify identical methods using an hashing comparison.

• Generate signatures for remaining methods.

• Identify similar methods using NCD.

So the global idea is to associate each method of the first application with
others of the second application, excluding identical methods, by using NCD
with an appropriate compressor, as shown in Figure 6.3. Finally, according
to the number of identical methods and the distance between the remaining
ones, a similarity score is given as output.

The algorithm just illustrated is very efficient in calculating the similarity
between two applications: however pair-wise comparison does not scale if you
have to calculate similarity on a large amount of applications. Juxtapp [20]
faces this problem proposing a fast and scalable infrastructure for code simi-
larity analysis among Android applications. To efficiently tackle the problem
at large-scale, Juxtapp uses k -grams of opcode sequences of compiled appli-
cations and feature hashing. The authors used a combination of these tech-
niques in order to have a robust and efficient representation of applications.
Using this representation, this tool is able to quickly compute pair-wise sim-
ilarity between applications in order to detect code reuse among hundreds of

95

6.2 Android application similarity Chapter 6. Related work

Figure 6.3: androsim analysis of similar methods.

thousands of applications. Figure 6.4 shows the Juxtapp’s workflow.

Another effective approach used to identify repackaged Android applications
is the technique used by DroidMOSS to generate a fingerprint of the bytecode
of an application leveraging fuzzy hashing (we mentioned this work in Sec-
tion 6.1). Unfortunately this method presents the same scalability problem
of androsim due to pair-wise comparison. In order to face this limitation,
the same authors proposed PyggyApp [47]: this tool has been designed to
quickly detect piggybacked samples (i.e., a special kind of repackaged appli-
cations that involve only the injection of additional code without modifying
the already existing one). In particular, the authors propose a module de-
coupling technique that allows to partition the code of an application in
primary and non-primary modules. Then, relying on the assumption that
piggybacked applications share the same primary modules of the original
sample, they extract from the primary module various semantic features
and convert them into a feature vector. Finally, these feature vectors are
organized into a metric space and a linearithmic search algorithm is used
to quickly detect piggybacked applications. The architecture of PyggyApp is

96

6.2 Android application similarity Chapter 6. Related work

Figure 6.4: Juxtapp workflow.

Figure 6.5: PyggyApp architecture.

presented in Figure 6.5.

97

Chapter 7

Conclusion and future work

The goal of our work was to propose a new approach to exercise the UI
of Android applications in order to change the way malware analysis experi-
ments are currently conducted and effectively stimulate potentially malicious
behaviors. Our key intuition has been to analyze and reproduce the typical
UI-interaction of a potential victim of the malware, stimulating in this way
relevant behaviors for analysis purposes. To this end we designed and de-
veloped PuppetDroid, an Android sandboxed environment able to support
both manual application testing, in order to collect new stimulation traces,
and automatic application exercising, which leverages previously recorded
UI stimulation traces.

In order to build PuppetDroid, we dealt with various challenges. First, we
faced the problem of developing an efficient communication channel between
users’ Android devices and PuppetDroid sandboxes: for this, we leveraged
VNC technology and implemented a thin Android VNC client and a cus-
tom VNC server. This solution allows our system to leverage human tester
to manually exercise unknown applications and generate new stimulation
traces. We then developed an original re-running technique that allows to
re-execute the collected UI stimulation traces on applications with a layout
similar to the one originally tested. We implemented this solution in Puppet
ReRunner.

The combination of stimulation traces re-execution and collection of new
traces from human tester makes our approach scale. We believe in fact that
our system can attract the interest not only of security analysts but also of
normal users that want to safely try potentially malicious applications on
their devices. As last resort, our approach allows to leverage the abundance
of available crowd-sourcing services in order to retrieve human workers to
generate new stimulation traces.

99

Chapter 7. Conclusion and future work

We designed PuppetDroid to support different Android sandbox imple-
mentations in order to be flexible to future improvements. To this end, we
defined a generic class implementing the concept of Android Virtual Device,
which can be easily extended to support a specific sandbox for dynamic mal-
ware analysis: at the moment our system supports CopperDroid and DroidBox
sandboxes.

Our experimental evaluations revealed that PuppetDroid human-driven
stimulation is more effective than other approaches based on automatic UI
stimulation: as a matter of fact, PuppetDroid is able to stimulate 254% of
total behaviors and 200% of distinct behaviors more than the automatic stim-
ulation methodologies, and, moreover, to stimulate 375% unique behaviors
more respect than Monkey and 235% more respect than CopperDroid.

We experimentally demonstrated that our Puppet ReRunner tool is able to
stimulate the same malicious behaviors seen during the original test also on
similar applications. Moreover, our re-executed stimulation revealed to be
more effective than automatic stimulation approaches: as a matter of fact,
during our re-executed tests, we were able to stimulate 187% of total be-
haviors and 137% of distinct behaviors more than the automatic stimulation
methodologies and 276% unique behaviors more respect than Monkey and
312% more respect than CopperDroid.

Our main contributions to the state of art have been the definition of a new
approach to Android dynamic malware analysis that leverages human-driven
UI stimulation to increase code coverage and the development of an original
method to automatically exercise an unknown application re-using UI stim-
ulation traces obtained from previously analyzed applications. Moreover, we
implemented our approach in an easy-to-use service that leverages remote
sandboxing to allow users to safely test potentially malicious applications
without any risk of infection or information leakage.

Future Work

We plan to release PuppetDroid as a public service so as to leverage crowd-
souring and collect new stimulation traces. To this end, first of all, we have
to improve our web application in order to integrate user authentication
and provide a better presentation of test results. As a matter of fact, the
current available version is quite simple because it has been developed only
for testing purposes.

As mentioned in Section 5, we are planning to substitute emulated sandboxes
with physical devices. This solution will allow to improve overall performance
giving the possibility to test also highly interactive applications. Another

100

Chapter 7. Conclusion and future work

advantage of using physical device is obtaining an analysis system more
resilient to evasion. Moreover, regarding this aspect, we want to follow the
example of AppsPlayground [36] and enrich our test environment with realistic
data, such as contacts, SMS, pictures, files on SD card and so on: in this way
we can provide a test environment that looks like a real device, preventing
possible detection capabilities of modern malware.

In Section 3.3.7.2 we showed how our current similarity solution, based on
the use of androsim, revealed to be too slow for our purposes. Then, we are
looking for alternative solutions for the computation of similarity between
Android applications: since our aim is to quickly detect repackaged applica-
tions, a possible solution is to integrate in PuppetDroid one of the scalable
approaches presented in Juxtapp [20] and PyggyApp [47].

101

Appendix A

Android tools

PuppetDroid is essentially focused on creating an Android execution envi-
ronment to test Android applications. Therefore, we introduce here some of
the Android SDK tools that are used in PuppetDroid implementation and
that are critical to the operation of the test environment.

A.1 Android Emulator

One of the most important development tools included in the Android SDK
is definitely the handset emulator. Based on QEMU, it can natively emulate
all the official Android ROMs, mimicking all of the hardware and software
features of a typical mobile device.

The emulator utilizes the Android Virtual Device (AVD) configurations to
let users define certain hardware aspects of the emulated environment to
easily test different Android platforms and hardware permutations. Since
PuppetDroid has the goal to create a test environment that is as similar as
possible to the real environment provided by the user device, it is important
to understand how to correctly customize an AVD.

Creating an AVD can be done either by using the graphical interface (AVD
manager) or by leveraging the command line tool android create avd, whose
syntax is reported in Listing A.1.

Listing A.1: AVD creation from command line

$ android create avd -n <name > -t <targetID > -b <abi > -s <skin >
[-<option > <value >] ...

The parameter named targetID is the identifier of the Android platform the

103

A.1 Android Emulator Chapter A. Android tools

new AVD will be based on. The list of all the supported platforms and
their respective identifiers can be obtained by issuing the command android
list targets. The parameter abi indicates the Application Binary Inter-
face (ABI), i.e., the low-level interface used to communicate with the oper-
ating system that the emulator instance will load. The two ABI currently
supported in Android are armeabi and armeabi-v7a. The parameter skin in-
dicates the screen dimensions, in pixel, of the emulator. All these parameters
must be correctly set to match the features of user’s device.

Once an AVD is defined, it can be launched by using the command emulator
followed by the AVD name (Listing A.2).

Listing A.2: AVD launching from command line

$ emulator -avd <avd_name > [<options >]

This command takes various parameters. For example, launching the emula-
tor with the -no-window parameter will start the emulator in headless mode,
allowing its execution without a Graphical User Interface (GUI).

One of the most criticized aspects of the Android emulator is its slow startup.
Indeed, starting the emulator can really take a long time, ranging from 2 to
10 minutes, depending on the hardware it is hosted on. To reduce this
time, starting from the Android SDK R9, Google introduced the possibil-
ity to leverage the snapshots functionality that allows to start the emulator
skipping all the time-consuming Android startup procedure. Since in Pup-
petDroid each test execution, in order to fit the wide range of available
Android devices, requires an emulator with an unpredictable set of features,
this functionality cannot be exploited: in fact, it would require a snapshot
for each possible screen configuration. However, to partially mitigate this
problem, we preload a clean image of the user data before the emulator is
started: in this way we can reduce the startup time because we cut the time
required to load all the default user applications.

In order to run appropriately, the Android emulator needs various image files
(Table A.1). In particular, in order to correctly record UI stimulation and
perform dynamic malware analysis, PuppetDroid system uses properly
modified system images that are loaded during emulator startup.

More information on how to use the Android emulator can been retrieved
from Google official documentation [16, 14].

104

A.2 Android Debug Bridge Chapter A. Android tools

Filename Description

kernel-qemu The emulator-specific Linux kernel image
ramdisk.img The ramdisk image used to boot the system
system.img The initial system image
userdata.img The initial data partition image

userdata-qemu.img An optional persistent data partition image
system-qemu.img An optional persistent system image
cache.img An optional cache partition image
sdcard.img An optional SD Card partition image
snapshots.img An optional state snapshots image

Table A.1: Required and optional emulator image files. The list is obtained by using the
command emulator -help-disk-images.

A.2 Android Debug Bridge

Android Debug Bridge (ADB) is a command line tool used to communicate
with an emulator instance or connected Android device. It is a client-server
program that comprises three components:

Client – It runs on the user machine and is used to issue commands to
the Android system.

Server – It runs as a background process on the user machine. It man-
ages communication between the client and the ADB daemon running on
an emulator or device.

Daemon – It runs as a background process on each emulator or device
and executes the commands received from the ADB clients.

The ADB client application can be accessed through the adb command,
whose syntax is shown in Listing A.3.

Listing A.3: adb command syntax

$ adb [-d|-e|-s <serialNumber >] <command >

The full list of supported options and subcommands can be found in the
Android official documentation [13]. We hereby report only the main com-
mands we leveraged in PuppetDroid. These commands are summarized
and described in Table A.2.

105

A.3 Monkey Chapter A. Android tools

Command Description

install <path-to-apk> Push and install an Android applica-
tion (specified as a full path to an APK
file) to an emulator/device.

forward <local> <remote> Forward socket connections from a
specified local port to a specified re-
mote port on the emulator/device
instance.

logcat [option]
[filter-specs]

Print log data to the screen.

shell <command> Run a remote shell command on the
emulator/device.

push <local> <remote> Copy a file to the emulator/device.

pull <remote> <local> Copy a file from the emulator/device.

Table A.2: ADB main commands used in PuppetDroid implementation.

A.3 Monkey

As part of the functional-level application testing tools, the Android SDK
includes a tool called UI/Application Exerciser Monkey (usually referred to
as monkey). Monkey runs on the emulator or device and generates pseudo-
random streams of user events such as clicks, touches, or gestures. It is
mainly used to stress-test applications and includes some non-documented
features to replicate a specific sequence of inputs.

Monkey is usually used by by some of the Android sandboxes that perform
automatic dynamic malware analysis in order to stimulate potentially mali-
cious behaviors. It has been used in our experimental tests to compare its
pseudo-random stimulation with PuppetDroid human-driven stimulation.
Results of this comparison can be found in Section 4.1.

Monkey can be run by invoking the monkey command from an Android shell
(accessible via adb). In particular, the typical command used to stress-test
an application is reported in Listing A.4.

Listing A.4: Monkey command used to stress-test an application

$ adb shell monkey [options] <event -count >

Where the parameter event-count indicates the number of pseudo-random
events that must be generated by the tools.

106

A.4 HierarchyViewer and Viewserver Chapter A. Android tools

More information on Monkey tool can be found in [17].

A.4 HierarchyViewer and Viewserver

One of the most interesting features of PuppetDroid is the possibility to
re-execute the human-driven stimulation used in a test to stimulate other
applications that have a layout similar to the one of the originally tested
application. In order to reach this goal, knowing which point on the screen
has been touched by the user is not enough: we need to exactly know which
element, inside the Android application layout, has been stimulated in order
to achieve a robust re-execution.

Before going any further, we want to spend a few words about Android User
Interface (UI) Layout. All UI elements in an Android application are built
using View and ViewGroup objects. A View is an object that draws some-
thing on the screen that the user can interact with. A ViewGroup is an
object that holds other View (and ViewGroup) objects in order to define the
layout of the interface. The user interface for each component of an Android
application is defined using a hierarchy of View and ViewGroup objects, as
shown in Figure A.1. Each view group is an invisible container that or-
ganizes child views, while the child views may be input controls or other
widgets that draw some part of the UI. A detailed description of Android UI
Layout can be found in Google official documentation [15].

Figure A.1: Illustration of a view hierarchy, which defines a UI layout.

Since view elements can be added at runtime by an application, we need a
way that allows us to dynamically extract the exact view hierarchy when-
ever the user interacts with the UI. In order to do so, we exploit another
interesting tool provided by the Android SDK: the HierarchyViewer, a visual
tool that can be used to inspect the application user interfaces to analyze

107

A.4 HierarchyViewer and Viewserver Chapter A. Android tools

all the aspects of an applications layout at runtime. A screenshot of the
HierarchyViewer tool execution is reported in Figure A.2.

Figure A.2: Screenshot of the HierarchyViewer interface.

As we can see, the tool shows a graphical hierarchy of the views displayed
on the running Android instance. As in the case of other SDK tools, Hierar-
chyViewer lacks of official documentation. Indeed, there is no explanation on
how the tool internally works and no mention about the origin of the shown
data. Nevertheless, analyzing HierarchyViewer source code, we found out that
it retrieves the displayed information from an Android internal component
called ViewServer.

When started, ViewServer opens a socket on a specified local port to accept
commands from a client (usually HierarchyViewer) to dump the current view
state of the device. The ViewServer dispatches these calls by serializing the
view state and transmitting it to the client over the socket.

The ViewServer service can be launched by invoking the service command
in an Android shell, with the syntax reported in Listing A.5.

Listing A.5: service command syntax

root@android :/ # service call <service_name > <service_code > \
> [i32 <int_value > | s16 <str_value >]

The parameters’ meaning is:

• service_name – the name of the service to communicate with. In the
case of ViewServer it must be window.

108

A.4 HierarchyViewer and Viewserver Chapter A. Android tools

• service_code – an integer code identifying the action to be performed
by the service. In the case of ViewServer, the acceptable values are:

– 1 = starts service

– 2 = stops service

– 3 = checks service status

• int_value and str_value – an integer or string parameter that is passed
as argument to the called service. In the case of ViewServer the ex-
pected value is an integer number representing the socket port where
the service will start listening for connection.

Thus, for instance, starting the ViewServer service to listen on the socket
port 4939 can be done with the command reported in Listing A.6.

Listing A.6: ViewServer start command

root@android :/ # service call window 1 i32 4939
Result: Parcel (00000000 00000001 ’........ ’)

When correctly executed, the command returns:

Result: Parcel(00000000 00000001 ’........’)

otherwise the displayed string will be:

Result: Parcel(00000000 00000000 ’........’)

We derived a list of accepted commands (Table A.3) from ViewServer’s
source code.

Command Description

LIST Dumps the list of all the Activity currently running
on the device, along with their hashcodes.

GET_FOCUS Gets the name and hashcode of the focused Activity.

DUMP root_hashcode Dumps the currently displayed view hierarchy, start-
ing from the given root view. If root_hashcode =
-1, then all the views are dumped.

Table A.3: ViewServer commands reference.

The data returned by the LIST command is basically a list of “<hashcode>
<activity>” pairs (separated by newlines), while the GET_FOCUS commands
returns just a single “<hashcode> <activity>” pair (Listing A.7 and A.8).

Listing A.7: Data returned by ViewServer LIST command

LIST

109

A.4 HierarchyViewer and Viewserver Chapter A. Android tools

40517538 com.android.internal.service.wallpaper.ImageWallpaper
40917368 com.android.launcher/com.android.launcher2.Launcher
40935528 TrackingView
40 a28018 StatusBarExpanded
407 af408 StatusBar
DONE.

Listing A.8: Data returned by ViewServer GET_FOCUS command

GET_FOCUS
40917368 com.android.launcher/com.android.launcher2.Launcher

The data returned by the DUMP command is more complex. It basically
contains the serialization of all the information regarding the views displayed
on the screen, starting from a given root view. This data follows the format
we report in Listing A.9 and can be used to programmatically build a local
hierarchy of the views shown on a running Android instance.

Listing A.9: Format of data returned by ViewServer DUMP command

<tree_node_depth ><component_name >@<hashcode > [<property_name >=<
value_length ,property_value >] ...

...

<tree_node_depth> is expressed as a sequence of whitespaces, denoting the
depth of the node with respect to the root node.

It is important to note that the DUMP command appears to be quite slow. One
entire view hierarchy DUMP can take up to 40 seconds. This delay is due to
Android’s ViewServer component that makes heavy use of Java introspection
to discover which members are to be dumped. We explain how we faced this
problem in Section 3.3.7.

110

Bibliography

[1] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maf-
fei, and Philipp Styp-Rekowsky. AppGuard - Real-time policy enforce-
ment for third-party applications. Technical report, Saarland University,
2012. URL http://scidok.sulb.uni-saarland.de/volltexte/2012/
4902.

[2] Mario Ballano. Android malware. In ITU Regional forum on Cyberse-
curity. Symantec, 2012.

[3] Scott Bicheno. Global Smartphone Installed Base Fore-
cast by Operating System for 88 Countries: 2007 to 2017.
http://www.strategyanalytics.com/default.aspx?mod=
reportabstractviewer&a0=7834, October 2012.

[4] Canalys. Smart phones overtake client PCs in 2011. http://www.
canalys.com/newsroom/smart-phones-overtake-client-pcs-2011,
February 2012.

[5] Anthony Desnos and Geoffroy Gueguen. Android: From Reversing
to Decompilation. http://developer.android.com/tools/help/adb.
html.

[6] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX conference on Oper-
ating systems design and implementation, OSDI’10, pages 1–6, Berke-
ley, CA, USA, 2010. USENIX Association. URL http://dl.acm.org/
citation.cfm?id=1924943.1924971.

[7] ESET Latin America Lab. Trends for 2013, Astounding growth of mo-
bile malware. Technical report, ESET Latin America Lab, November
2012.

[8] F-Secure. Mobile Threat Report Q4 2012. Technical report, F-Secure,
March 2013.

112

http://scidok.sulb.uni-saarland.de/volltexte/2012/4902
http://scidok.sulb.uni-saarland.de/volltexte/2012/4902
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7834
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7834
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971

Bibliography Bibliography

[9] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In Proceedings of the 18th
ACM conference on Computer and communications security, CCS ’11,
pages 627–638, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0948-6. doi: 10.1145/2046707.2046779. URL http://doi.acm.org/10.
1145/2046707.2046779.

[10] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and
David Wagner. A survey of mobile malware in the wild. In Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, SPSM ’11, pages 3–14, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-1000-0. doi: 10.1145/2046614.2046618. URL http:
//doi.acm.org/10.1145/2046614.2046618.

[11] Girault, Emilien. Reversing Google Play and Micro-Protobuf
applications. http://www.segmentationfault.fr/publications/
reversing-google-play-and-micro-protobuf-applications/.

[12] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein.
Reran: timing- and touch-sensitive record and replay for android. In
Proceedings of the 2013 International Conference on Software Engineer-
ing, ICSE ’13, pages 72–81, Piscataway, NJ, USA, 2013. IEEE Press.
ISBN 978-1-4673-3076-3. URL http://dl.acm.org/citation.cfm?id=
2486788.2486799.

[13] Google Inc. Android Debug Bridge. http://developer.android.com/
tools/help/adb.html, .

[14] Google Inc. Managing AVDs from the Command Line.
http://developer.android.com/tools/devices/managing-avds-
cmdline.html, .

[15] Google Inc. Android User Interface. http://developer.android.com/
guide/topics/ui/index.html, .

[16] Google Inc. Using the Emulator. http://developer.android.com/
tools/devices/emulator.html, .

[17] Google Inc. UI/Application Exerciser Monkey. http://developer.
android.com/tools/help/monkey.html, .

[18] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic
detection of capability leaks in stock Android smartphones. In Proceed-
ings of the 19th Network and Distributed System Security Symposium,
NDSS’12, February 2012. URL http://www.csc.ncsu.edu/faculty/
jiang/pubs/NDSS12_WOODPECKER.pdf.

[19] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xux-
ian Jiang. Riskranker: scalable and accurate zero-day android mal-

113

http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046614.2046618
http://doi.acm.org/10.1145/2046614.2046618
http://www.segmentationfault.fr/publications/reversing-google-play-and-micro-protobuf-applications/
http://www.segmentationfault.fr/publications/reversing-google-play-and-micro-protobuf-applications/
http://dl.acm.org/citation.cfm?id=2486788.2486799
http://dl.acm.org/citation.cfm?id=2486788.2486799
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/devices/managing-avds-cmdline.html
http://developer.android.com/tools/devices/managing-avds-cmdline.html
http://developer.android.com/guide/topics/ui/index.html
http://developer.android.com/guide/topics/ui/index.html
http://developer.android.com/tools/devices/emulator.html
http://developer.android.com/tools/devices/emulator.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf

Bibliography Bibliography

ware detection. In Proceedings of the 10th international conference on
Mobile systems, applications, and services, MobiSys ’12, pages 281–
294, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1301-8.
doi: 10.1145/2307636.2307663. URL http://doi.acm.org/10.1145/
2307636.2307663.

[20] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and
Dawn Song. Juxtapp: a scalable system for detecting code reuse among
android applications. In Proceedings of the 9th international confer-
ence on Detection of Intrusions and Malware, and Vulnerability As-
sessment, DIMVA’12, pages 62–81, Berlin, Heidelberg, 2013. Springer-
Verlag. ISBN 978-3-642-37299-5. doi: 10.1007/978-3-642-37300-8_4.
URL http://dx.doi.org/10.1007/978-3-642-37300-8_4.

[21] Oliva Hou. A Look at Google Bouncer. http://blog.trendmicro.com/
trendlabs-security-intelligence/a-look-at-google-bouncer/,
July 2012.

[22] IDC. Apple Cedes Market Share in Smartphone Operating System
Market as Android Surges and Windows Phone Gains, According to
IDC. http://www.businesswire.com/news/home/20130807005280/
en/Apple-Cedes-Market-Share-Smartphone-Operating-System,
August 2013.

[23] Google Inc. Android open source project: Philosophy and goals. http:
//source.android.com/about/philosophy.html.

[24] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barebox:
efficient malware analysis on bare-metal. In Proceedings of the 27th
Annual Computer Security Applications Conference, ACSAC ’11, pages
403–412, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0672-0.
doi: 10.1145/2076732.2076790. URL http://doi.acm.org/10.1145/
2076732.2076790.

[25] International Secure Systems Lab. Andrubis: A tool for analyz-
ing unknown android applications. http://blog.iseclab.org/
2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-
applications-2/.

[26] Hiroshi Lockheimer. Android and Security. http://googlemobile.
blogspot.it/2012/02/android-and-security.html, February 2012.

[27] Lookout Mobile Security. Lookout Mobile Security: State of Mobile
Security 2012. Technical report, Lookout Mobile Security, September
2012.

[28] Aravind MacHiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An in-
put generation system for android apps. In Proceedings of the 2013 ACM

114

http://doi.acm.org/10.1145/2307636.2307663
http://doi.acm.org/10.1145/2307636.2307663
http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/
http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/
http://www.businesswire.com/news/home/20130807005280/en/Apple-Cedes-Market-Share-Smartphone-Operating-System
http://www.businesswire.com/news/home/20130807005280/en/Apple-Cedes-Market-Share-Smartphone-Operating-System
http://source.android.com/about/philosophy.html
http://source.android.com/about/philosophy.html
http://doi.acm.org/10.1145/2076732.2076790
http://doi.acm.org/10.1145/2076732.2076790
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://googlemobile.blogspot.it/2012/02/android-and-security.html
http://googlemobile.blogspot.it/2012/02/android-and-security.html

Bibliography Bibliography

Symposium on Foundations of Software Engineering, FSE’13, 2013.

[29] Matenaar, Felix and Schulz, Patrick. Detecting Android Sandboxes.
http://www.dexlabs.org/blog/btdetect.

[30] McAfee. McAfee Threats Report: Second Quarter 2013. Technical
report, McAfee, 2013.

[31] McAfee Inc. Virus Profile: Android/BaseBridge.G. http://home.
mcafee.com/virusinfo/virusprofile.aspx?key=665341, .

[32] McAfee Inc. ‘FakeInstaller’ Leads the Attack on Android
Phones. http://blogs.mcafee.com/mcafee-labs/fakeinstaller-
leads-the-attack-on-android-phones, .

[33] Donald Melanson. Eric Schmidt: Google now at 1.5 million An-
droid activations per day. http://techcrunch.com/2012/09/05/
eric-schmidt-there-are-now-1-3-million-android-device-
activations-per-day/, April 2013.

[34] Mobile Antivirus. New Android Trojan Detected, Called BaseBridge.
http://www.mobiantivirus.org/antivirus/basebridge.html.

[35] Jon Oberheide and Charlie Miller. Dissecting the Android Bouncer.
In SummerCon 2012, June 2012. URL http://jon.oberheide.org/
blog/2012/06/21/dissecting-the-android-bouncer/.

[36] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground: au-
tomatic security analysis of smartphone applications. In Proceedings
of the third ACM conference on Data and application security and
privacy, CODASPY ’13, pages 209–220, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1890-7. doi: 10.1145/2435349.2435379. URL
http://doi.acm.org/10.1145/2435349.2435379.

[37] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system
call-centric analysis and stimulation technique to automatically recon-
struct android malware behaviors. In Proceedings of the 6th European
Workshop on System Security, EUROSEC’13, April 2013.

[38] Tristan Richardson. The rfb protocol - version 3.8. Technical report,
RealVNC Ltd, 2010.

[39] Dave Smith. Mastering the android touch system. In Proceedings of the
2012 Fourth Android Developer Conference, AnDevConIV, 2012.

[40] Sophos. Security Threat Report 2013. Technical report, Sophos, 2013.

[41] Symantec Corporation. Android.Basebridge. http://www.symantec.
com/security_response/writeup.jsp?docid=2011-060915-4938-
99.

115

http://www.dexlabs.org/blog/btdetect
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=665341
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=665341
http://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones
http://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones
http://techcrunch.com/2012/09/05/eric-schmidt-there-are-now-1-3-million-android-device-activations-per-day/
http://techcrunch.com/2012/09/05/eric-schmidt-there-are-now-1-3-million-android-device-activations-per-day/
http://techcrunch.com/2012/09/05/eric-schmidt-there-are-now-1-3-million-android-device-activations-per-day/
http://www.mobiantivirus.org/antivirus/basebridge.html
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
http://doi.acm.org/10.1145/2435349.2435379
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99

Bibliography Bibliography

[42] Trend Micro. Repeating History. Technical report, Trend Micro, Jan-
uary 2013.

[43] Chris Welch. Google: Android app downloads have crossed 50 bil-
lion, over 1M apps in Play. http://www.theverge.com/2013/7/24/
4553010/google-50-billion-android-app-downloads-1m-apps-
available, July 2013.

[44] Lok Kwong Yan and Heng Yin. Droidscope: seamlessly reconstructing
the os and dalvik semantic views for dynamic android malware analysis.
In Proceedings of the 21st USENIX conference on Security symposium,
Security’12, pages 29–29, Berkeley, CA, USA, 2012. USENIX Associa-
tion. URL http://dl.acm.org/citation.cfm?id=2362793.2362822.

[45] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xin-
hui Han, and Wei Zou. Smartdroid: an automatic system for revealing
ui-based trigger conditions in android applications. In Proceedings of
the second ACM workshop on Security and privacy in smartphones and
mobile devices, SPSM ’12, pages 93–104, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1666-8. doi: 10.1145/2381934.2381950. URL
http://doi.acm.org/10.1145/2381934.2381950.

[46] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repack-
aged smartphone applications in third-party android marketplaces. In
Proceedings of the second ACM conference on Data and Application Se-
curity and Privacy, CODASPY ’12, pages 317–326, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1091-8. doi: 10.1145/2133601.
2133640. URL http://doi.acm.org/10.1145/2133601.2133640.

[47] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou.
Fast, scalable detection of "piggybacked" mobile applications. In Pro-
ceedings of the third ACM conference on Data and application security
and privacy, CODASPY ’13, pages 185–196, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1890-7. doi: 10.1145/2435349.2435377. URL
http://doi.acm.org/10.1145/2435349.2435377.

[48] Yajin Zhou and Xuxian Jiang. Android malware genome project. http:
//www.malgenomeproject.org/.

[49] Yajin Zhou and Xuxian Jiang. An analysis of the anserverbot trojan,
2011.

[50] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Char-
acterization and evolution. In Proceedings of the 2012 IEEE Sym-
posium on Security and Privacy, SP ’12, pages 95–109, Washington,
DC, USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4681-0doi:
10.1109/SP.2012.16. URL http://dx.doi.org/10.1109/SP.2012.16.

116

http://www.theverge.com/2013/7/24/4553010/google-50-billion-android-app-downloads-1m-apps-available
http://www.theverge.com/2013/7/24/4553010/google-50-billion-android-app-downloads-1m-apps-available
http://www.theverge.com/2013/7/24/4553010/google-50-billion-android-app-downloads-1m-apps-available
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://doi.acm.org/10.1145/2381934.2381950
http://doi.acm.org/10.1145/2133601.2133640
http://doi.acm.org/10.1145/2435349.2435377
http://www.malgenomeproject.org/
http://www.malgenomeproject.org/
http://dx.doi.org/10.1109/SP.2012.16

Bibliography Bibliography

[51] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh.
Taming information-stealing smartphone applications (on android). In
Proceedings of the 4th international conference on Trust and trustwor-
thy computing, TRUST’11, pages 93–107, Berlin, Heidelberg, 2011.
Springer-Verlag. ISBN 978-3-642-21598-8. URL http://dl.acm.org/
citation.cfm?id=2022245.2022255.

[52] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off
of my market: Detecting malicious apps in official and alternative An-
droid markets. In Proceedings of the 19th Annual Network & Distributed
System Security Symposium, NDSS’12, February 2012.

117

http://dl.acm.org/citation.cfm?id=2022245.2022255
http://dl.acm.org/citation.cfm?id=2022245.2022255

Acronyms

ABI Application Binary Interface

ACG Activity Call Graph

ADB Android Debug Bridge

API Application Programming Interface

APK Android Package

AV Anti-Virus

AVD Android Virtual Device

CFG Control Flow Graph

CPU Central Processing Unit

DEX Dalvik EXecutable

DPI Dots Per Inch

DVM Dalvik Virtual Machine

ER Entity-Relationship

FCG Function Call Graph

GNU GPL GNU General Public License

GUI Graphical User Interface

I/O Input/Output

IP Internet Protocol

IPC Inter-Process Communication

ISA Instruction Set Architecture

JCE Java Cryptographic Extension

JNI Java Native Interface

118

Bibliography Bibliography

NCD Normalized Compressed Distance

ORM Object Relational Mapper

OS Operating System

RFB Remote Framebuffer

RDBMS Relational Database Management System

RPC Remote Procedure Call

SDK Software Development Kit

SQL Structured Query Language

TCG Tiny Code Generator

TCP Transmission Control Protocol

TLS Transport Layer Security

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

UUID Universally Unique Identifier

VM Virtual Machine

VMI Virtual Machine Introspection

VNC Virtual Network Computing

119

	Contents
	List of figures
	List of tables
	List of listings
	Introduction
	Background and state of the art
	The Android platform
	Overview
	Android security
	Android malware

	State of the art
	Malware analysis techniques
	Exercising of Android applications

	Open problems and Goals

	PuppetDroid
	Approach overview
	System overview
	System architecture
	PuppetDroid workflow

	Implementation details
	Communication protocol
	Storage
	Main Server
	Workers
	Web application
	VNC implementation
	Puppet ReRunner

	Experimental evaluation
	PuppetDroid stimulation evaluation
	Dataset
	Experimental setup
	Results

	PuppetDroid scalability evaluation
	Dataset
	Experimental setup
	Results

	Limitations
	Related work
	Static malware analysis
	Android application similarity

	Conclusion and future work
	Android tools
	Android Emulator
	Android Debug Bridge
	Monkey
	HierarchyViewer and Viewserver

	Bibliography
	Acronyms

