
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

E-TOURISM RECOMMENDER

SYSTEMS

Relatore: Prof. Paolo Cremonesi

Correlatrice: Prof.ssa Franca Garzotto

Tesi di Laurea di:

Massimo Quadrana, matricola 766440

Anno Accademico 2012-2013

A mio papà Franco,

continuiamo a viaggiare assieme.

Sommario

I Sistemi di Raccomandazione (RSs) sono utilizzati in numerosi sistemi di

e-commerce per aiutare gli utenti a trovare prodotti interessati in grandi

cataloghi fornendo loro delle raccomandazioni personalizzate che si adattino

ai loro gusti ed interessi.

Lo scopo di questa tesi è di sviluppare un RS per il dominio dell’e-tourism.

Nell’e-tourism la disponibilità degli hotel dipende dalle circostanze in cui

avviene la prenotazione e varia col tempo. Gli hotel “migliori” sono soli-

tamente i primi a non essere disponibili. Mentre tradizionalmente i RSs

presumono che la disponibilità dei prodotti sia potenzialmente illimitata,

noi studiamo l’effetto della disponibilità variabile degli hotel sulle racco-

mandazioni fornite agli utenti.

Altro aspetto innovativo è l’utilizzo di un meccanismo di implicit elicita-

tion per estrarre le preferenze del cliente per poter cos̀ı fornire loro delle

raccomandazioni personalizzate. Abbiamo quindi valutato la qualità delle

raccomandazioni utilizzando sia esperimenti offline che online, basandoci su

differenti condizioni di disponibilità degli hotel.

Abbiamo potuto osservare come fornire raccomandazioni personalizzate man-

tenga gli utenti più soddisfatti anche in condizioni di scarsa disponibilità di

hotel. Infatti più del 70% degli utenti si è dichiarato soddisfatto delle propria

esperienza quando il sistema ha fornito loro raccomandazioni personalizzate.

Questo può essere di grande utilità, anche economica, per le agenzie di vi-

aggio online.

Inoltre, occorre notare che l’e-tourism comunemente implica un maggior ris-

chio da parte degli utenti rispetto ad altri sistemi di e-commerce. Gli utenti

sono quindi più propensi a fidarsi delle recensioni di altri utenti rispetto

alle descrizioni fornite dallo stesso gestore del servizio su un determinato

hotel. Abbiamo quindi introdotto una tecnica per analizzare le recensioni

degli utenti e riassumerne il contenuto in un singolo valore numerico. Le

informazioni cos̀ı estratte dalle recensioni testuali potranno essere utilizzate

potenzialmente per costruire dei RSs più accurati.

I

Abstract

Recommender Systems (RSs) are used in many e-commerce applications to

help users in discovering interesting items over huge catalogs of products by

providing them personalized recommendations that fit with their interests

and preferences.

The purpose of this work is to develop a RS for the e-tourism domain. In

e-tourism hotel availability depends on contextual circumstances and varies

over time. The hotels that are missing are often the “best” ones. Tradition-

ally RSs assume that items are potentially always available. We studied the

influence of variable item availability over the recommendation process.

Differently from many current applications in e-tourism, we used implicit

elicitation to assess users’ preferences and to provide them personalized rec-

ommendations. We evaluated the recommendations using both offline and

online methods in different experimental conditions of item availability.

We obtained that personalized recommendations make users the most sat-

isfied in condition of scarcity of hotels, with more than the 70% of satisfied

users. This fact can be of great utility and economical impact for online

travel agencies.

Moreover, e-tourism implies an higher risk for users than e-commerce appli-

cations. Hence, users tend to rely more on other users’ reviews than on the

descriptions given by service providers over hotels. We describe here a tech-

nique analyze user reviews and to summarize them into numerical ratings.

This information can be potentially used to build more accurate RSs.

III

Ringraziamenti

Vorrei ringraziare in primo luogo il Prof. Paolo Cremonesi e la Prof.ssa

Franca Garzotto per avermi guidato in tutte le fasi di questo lavoro. Il loro

supporto professionale ed al contempo amichevole è stato importante per

una mia crescita sia culturale che umana.

Vorrei ringraziare sentitamente tutti i miei amici, vicini e lontani. Sono stati

anni difficili ma intensi e pieni di soddisfazioni che non posso che condividere

con tutti voi. Grazie per non avermi fatto mai mancare il vostro sostegno

anche quando sono rimasto a lungo distante da casa. Grazie per donarmi

quei momenti di serenità, allegria e spensieratezza che donano sapore pieno

alla vita.

Un grazie speciale va a Barbara, grazie per accogliere tutti le mie idee, i

progetti e le incertezze, e donarmi continuamente nuove e rinnovate energie

indispensabili per continuare.

Infine il più grande dei ringraziamenti va alla mia famiglia, a mia madre

Antonella ed alle mie sorelle Ilaria e Sara. Grazie per essere le solide fonda-

menta da cui partire per costruire il mio futuro.

Massimo

V

Contents

Sommario I

Abstract III

Ringraziamenti V

1 Introduction 1

1.1 Struttura della Tesi . 3

1.2 Structure of the Work . 6

2 State of the art 9

2.1 Recommender Systems . 9

2.1.1 Content-based Methods 11

2.1.2 Collaborative Methods 13

2.1.3 Hybrid Methods . 16

2.2 Recommender Systems Evaluation 17

2.2.1 System-centric Evaluation 18

2.2.2 User-centric Evaluation 19

2.2.3 System-centric vs. User-centric Evaluation 19

2.2.4 Popularity Bias . 20

2.2.5 Non-Random Missing Ratings 22

2.3 Time-Evolution of RSs . 23

2.4 Elicitation Methods . 24

2.5 Opinion Mining and Summarization 26

2.5.1 The Problem of Sentiment Analysis 27

2.5.2 Sentiment and Subjectivity Classification 29

2.5.3 Feature Based Sentiment Analysis 29

2.5.4 Opinion Summarization 32

2.5.5 Opinion Mining and Recommender Systems 33

2.6 The Framework PoliVenus . 34

VII

3 Implicit Elicitation 39

4 Bounded Availability 45

5 Empirical Study 51

5.1 The Empirical Study . 51

5.1.1 Dependent and Independent Variables 52

5.1.2 Price Variability . 54

5.1.3 PoliVenus Extended 55

5.1.4 The Study Execution 58

5.2 Experimental Results . 60

5.2.1 System-centric Evaluation 60

5.2.2 User-centric Evaluation 62

5.2.3 Discussion over the Study 64

6 Opinion Summarization in PoliVenus 73

6.1 The Proposed Methodology 74

6.1.1 Language detection . 75

6.1.2 Feature-based Sentiment Analysis 75

6.1.3 Opinion Aggregation 78

6.1.4 Model Construction and Rating Prediction 79

6.2 Experimental Results . 81

6.2.1 Training the Instrument 82

6.2.2 Model Training and Evaluation 84

7 Conclusions and Future Work 87

Bibliography 89

A Appendix 97

A.1 Implicit Elicitation in Polivenus 97

A.2 Final Survey . 102

A.3 Opinion Observer Pseudo-Code 104

A.4 Frequent Features . 106

A.5 Linear Model Weights . 107

List of Figures

2.1 Parallel hybridization. 17

2.2 Rating distribution for Netflix and Movielens datasets. Items

are ordered according to popularity (most popular at bottom). 21

2.3 Recommendations in the hotel list page in PoliVenus 37

2.4 Recommendations in the hotel detail page in PoliVenus . . . 37

3.1 Active objects used in implicit elicitation, together with their

degrees of interaction. 43

4.1 Distributions of the average rating and popularity in the short-

head for k = 0.01 . 47

4.2 Distributions of the average rating and popularity in the short-

head for k = 1000 . 48

4.3 Distributions of the average rating and popularity in the short-

head for k = 10 . 48

4.4 Distribution of hotels for both high season and low season. . . 49

5.1 Linear regression of high season prices w.r.t. low season prices

for 60 sample hotels. 55

5.2 Unavailable hotels (in blue) in PoliVenus User eXperience. . . 57

5.3 Simulated room unavailability (in red) when the user is ex-

ploring the details of an hotel and passes from low to high

season and viceversa (in blue). 67

5.4 Simulated price (in red) change when the user is exploring

the details of an hotel and passes from low to high season a

nd viceversa (in blue). 68

5.5 Plots of the Top-N Recommendation recall and fallout in case

of low season availability (or fully availability). 69

5.6 Plots of the Top-N Recommendation recall and fallout in case

of high season availability (or limited availability). 70

IX

5.7 Histograms of the average user satisfaction in the 6 experi-

mental conditions (together with 95% confidence intervals). . 71

5.8 Histograms of the average price per night in the 6 experimen-

tal conditions (together with 95% confidence intervals). . . . 71

5.9 Histograms of the average elapsed time in the 6 experimental

conditions (together with 95% confidence intervals). 71

5.10 Histograms of the average number of explored hotels in the 6

experimental conditions (together with 95% confidence inter-

vals). 72

5.11 Histograms of the average percentage of user trusting the

booked hotel in the 6 experimental conditions (together with

95% confidence intervals). 72

6.1 Boxplot of the distributions of opinion records per hotel. . . . 86

A.1 Objects in the homepage. 97

A.2 Objects in hotel list page. 98

A.3 Objects in hotel list page. 98

A.4 Objects in hotel detail page (they are repeated in map and

review pages). 99

A.5 Objects in the hotel location map. 100

A.6 Objects in the reservation detail page. 100

A.7 Objects in the booking confirmation page. 101

List of Tables

2.1 Example of stem TF-IDF matrix in hotel booking domain. . . 13

2.2 Statistical properties of Movielens and Netflix datasets. . . . 21

2.3 Statistics of the URM, reviews and the number of features

used by PoliVenus. 36

3.1 Object used for implicit elicitation in Polivenus ordered by

signal weights. 42

4.1 Short-head dimension and ranking for different values of the

shrink factor k . 49

5.1 The six experimental conditions that were tested in our study. 59

6.1 Subdivision of the reviews from Venere.com according to lan-

guage. 74

6.2 Sample opinion words extracted for feature location, together

with their cumulative and dominant orientation. 83

6.3 Example of feature-based opinion mining. 84

6.4 Statistics over the opinion mining processing (Opinions refers

to the aggregated opinion record associated to a pair (user,hotel)). 85

A.1 Frequent features extracted from reviews in PoliVenus. Fea-

tures marked with asterisk (*) are subsequently removed with

sequential backward feature selection. 106

A.2 Resulting weight per feature together with their 95% confi-

dence intervals. 107

A.3 Resulting weight per feature together with their 95% confi-

dence intervals. 108

Chapter 1

Introduction

I Sistemi di Raccomandazione (RSs) sono utilizzati in numerosi sistemi di

e-commerce per aiutare gli utenti a trovare prodotti interessati in grandi

cataloghi fornendo loro delle raccomandazioni personalizzate che si adattino

ai loro gusti ed interessi.

La maggior parte dei RSs basano i loro suggerimenti sui ratings numerici

dati dagli utenti ai prodotti precedentemente acquistati. I RSs funzionano

bene in molti domini dell’e-commerce, quali i mercati di film e libri.

Lo scopo di questa tesi è quello di sviluppare un RSs per il dominio

dell’e-tourism, in collaborazione con Venere.com, una delle imprese leader

nel settore dell’e-tourism e parte del Gruppo Expedia.

Tradizionalmente i RSs assumono che i prodotti siano potenzialmente sem-

pre disponibili; l’unica variabilità considerata è l’aggiunta di nuovi prodotti

(items) al catalogo offerto. Contrariamente, nell’e-tourism gli hotel non sono

sempre disponibili; il catalogo degli hotel disponibili può ridursi a causa di

molte circostanze contestuali, come accade ad esempio nei periodi di alta

stagione. Nella letteratura sono stati studiati problemi simili ma intrinse-

camente differenti: le deviazioni introdotte dalla popolarità dei prodotti, la

distribuzione non casuale dei ratings mancanti e il problema dei nuovi items.

I RSs nel dominio dell’e-tourism fanno uso di explicit elicitation perchè sem-

plifica l’acquisizione delle preferenze dell’utente al fine di fornire raccoman-

dazioni personalizzate. Ciò nonostante, i meccanismi di explicit elicitation

spesso richiedono la registrazione dell’utente presso il sistema e il traccia-

mento delle sue attività attraverso le varie sessioni di lavoro. Questo è spesso

poco desiderabile, visto che gli utenti sono riluttanti nel fornire informazioni

personali al sistema.

Inoltre, nel dominio dell’e-tourism gli utenti considerano seriamente le re-

censioni degli altri utenti prima di effettuare la propria prenotazione. La

prenotazione di hotel implica rischi maggiori per l’utente rispetto a molte

altre attività di e-commerce; per questo gli utenti tendono a fidarsi maggior-

mente delle opinioni espresse da altri utenti piuttosto che della descrizione

dell’hotel data dal fornitore del servizio.

I contributi innovativi di questa tesi sono: (i) lo studio del comporta-

mento dei RSs in condizioni di limitata disponibilità di hotel dovuta a fattori

temporali o contestuali; (ii) l’uso di implicit elicitation in una singola ses-

sione utente; (iii) lo studio di una metodologia per riassumere le recensioni

degli utenti in un singolo valore numerico.

Per lo svolgimento di questo lavoro abbiamo largamente impiegato PoliVenus

[20], un framework sviluppato dal Politecnico di Milano in collaborazione con

Venere.com.

Utilizzando le informazioni raccolte in uno user study precedente, abbiamo

identificato l’algoritmo di raccomandazione personalizzato più adatto allo

scopo ed abbiamo progettato il sistema di implicit elicitation da utilizzare

per raccomandare hotels agli utenti. Abbiamo analizzato in dettaglio il pro-

cesso di fruizione degli hotels in modo da poter simulare la disponibilità

limitata di hotels in alta stagione. Abbiamo quindi confrontato gli effetti

di raccomandazioni personalizzate e non personalizzate sulla soddisfazione

degli utenti, utilizzando una valutazione sia offline che online. Infine abbi-

amo implementato un sistema in grado di predire i ratings dati dagli utenti

a partire dall’opinione da loro espressa nelle recensioni testuali.

Abbiamo potuto osservare come la disponibilità degli items abbia un

impatto notevole sulle prestazioni degli algoritmi non personalizzati. La

percentuale degli utenti soddisfatti cala del 50% quando gli hotel raccoman-

dati sono tra i più semplici, come ad esempio quelli più popolari.

Quando invece le raccomandazioni sono personalizzate per gli utenti, la loro

soddisfazione si mantiene costantemente sopra il 70% in entrambe le con-

dizioni sperimentali di disponibilità completa e limitata. Questo può essere

di grande aiuto per i fornitori dei servizi al fine di offrire un buon servizio ai

propri clienti anche nelle situazioni dove questo è più complesso e difficile,

con un conseguente grande impatto economico.

Abbiamo inoltre introdotto un nuovo sistema per riassumere le opinioni

espresse nelle recensioni. Questa è una fonte di informazioni potenzialmente

molto utile per poter sviluppare nuovi RSs che siano consapevoli delle opin-

ioni espressi dagli utenti sulle caratteristiche dei prodotti per mezzo di re-

censioni testuali.

A partire da questo studio e dai sui risultati è stato pubblicato il pa-

per Evaluating Top-N Recommendations ”When the Best are Gone” (Cre-

monesi, Garzotto, Quadrana). Il paper è stato accettato per la presentazione

2

come short paper alla conferenza ACM RecSys 2013, la più importante con-

ferenza mondiale sui Sistemi di Raccomandazione.

1.1 Struttura della Tesi

La struttura della tesi è la seguente:

Nel Capitolo 2 viene descritto lo stato dell’arte della ricerca sui Sistemi di

Raccomandazione e sull’Analisi dell’Opinione nei documenti testuali. La

prima parte riguarda le caratteristiche dei RSs e la loro tassonomia. Nella

seconda parte presentiamo l’analisi offline ed online dei RSs. Sono quindi

presentati tre problemi simili ma sostanzialmente differenti dal quello da

noi studiato, ossia la deviazione dovuta alla popolarità, la distribuzione non

casuale dei ratings mancanti ed il problema del nuovo item.

Nella terza parte sono presentati in dettagli i metodi di opinion mining e

summarization. In particolare analizziamo il concetto di feature-based opin-

ion mining, una sottoclasse dell’analisi dell’opinione che è particolarmente

adeguata allo scopo del nostro lavoro. Per concludere è presentata una

panoramica sul framework PoliVenus e sulle sue funzionalità principali.

Nel Capitolo 3 viene presentato il sistema di implicit elicitation che abbiamo

adottato per ottenere le preferenze delle utente. Siamo partiti da una tec-

nica grezza di implicit elicitation che abbiamo successivamente raffinato per

ottenere l’insieme finale di componenti e pesi da utilizzare nell’elicitation.

Nel Capitolo 4 viene presentato lo studio sulla disponibilità limitata di hotel

nel dominio dell’e-tourism. Viene presentato prima lo studio generico sulla

disponibilità limitata degli items, quindi la sua effettiva applicazione nelle

simulazioni che seguono.

Nel Capitolo 5 viene presentata la sperimentazione che abbiamo condotto al

fine di valutare gli effetti della disponibilità limitata di items sui RSs. Abbi-

amo effettuato un’analisi sia offline che online sotto la condizione di disponi-

bilità limitata. Vengono quindi presentati i risultati ottenuti da queste anal-

isi.

Nel Capitolo 6 viene presentato lo studio sull’analisi delle opinioni con-

tenute nelle recensioni utenti nel dominio dell’e-tourism. Viene presentata

la metodologia che abbiamo adottato per analizzare le recensioni testuali, e

viene presentato il modello lineare che suggeriamo per riassumere le recen-

sioni in PoliVenus.

Nel Capitolo 7 sono presentate le conclusioni della tesi ed i possibili sviluppi

futuri.

Nell’appendice A vengono riportati un presentazione dell’esperienza utente

in PoliVenus con l’uso di implicit elicitation, il questionario finale dell’esperimento

3

con gli utenti, l’algoritmo di feature-based opinion mining che abbiamo uti-

lizzato e i risultati dettagliati dell’analisi dell’opinione.

4

Introduction

Recommender Systems (RSs) help users in discovering interesting items over

huge catalogs of products by providing them personalized recommendations

that fit with their interests and preferences.

Most RSs make their suggestion based on the numerical ratings that users

gave to previously purchased products. RSs are known to perform well in

many e-commerce domains, such as the movie and the book markets.

The purpose of this work is to develop a RS for the e-tourism domain, in

cooperation with Venere.com, one of the leading companies in the e-tourism

sector and part of the Expedia Group.

Traditionally RSs assume that items are potentially always available and

the only variability over the catalog of products that is considered is the

addition of new items. Conversely, in e-tourism hotels are not always avail-

able and the catalog can be shrunk by many contextual circumstances, for

example in high season periods. In the literature are available some studies

over similar but indeed very different problems: the popularity bias, the

non-random distribution of missing ratings and the new item problem.

Previous works on RSs for the e-tourism domain used explicit elicitation

because it makes easier to infer users’ preferences necessary for building rec-

ommendations. However, explicit elicitation often requires user registration

and cross-session tracking, that are not always desirable because users are

reluctant to provide personal information to the system.

Moreover, in e-tourism users take seriously in account hotel reviews before

making their reservation. Hotel booking is an activity that implies a higher

risk with respect to other e-commerce activities, so users tend to trust more

on other users’ opinions than to the hotel description given by the service

provider.

The innovative contributions of our work are: (i) the study the behavior

of RSs in case when the availability of items is constrained by temporal or

contextual factors; (ii) the extensive use of implicit elicitation in a single

user session; (iii) the study of a technique to summarize user reviews into

numerical ratings.

To the purposes of our work we extensively used PoliVenus [20], a framework

developed by the Politecnico di Milano in cooperation with Venere.com.

Starting from a previous user study, we identified the most appropriate per-

sonalized recommendation algorithm and we designed the implicit elicitation

method to be used to recommend hotels to users. We explored the item con-

sumption process in order to define the technique to simulate the bounded

availability of hotels in high season. We then compared the effects on users’

satisfaction of personalized recommendations against non-personalized rec-

ommendations, using both offline and online evaluation. At the end, we

implemented a system to predict user ratings starting from the opinions

expressed by users in their reviews.

We observed that items availability has a great impact over the perfor-

mances of non-personalized algorithms. The percentage of satisfied users

drops of the 50% when the most trivial recommendations are provided to

users, such as the most popular hotels.

On the other hand, the personalized algorithm is able to keep more than

the 70% of satisfied users in both the experimental conditions, i.e., fully

availability and limited availability. This can be of great utility for service

providers to offer a good service to their clients also when the contingent

circumstances makes it very harder, with a consequent great economical im-

pact.

We also introduced a novel approach to summarize opinions in user reviews.

This information can be a really powerful base of knowledge to develop new

RSs that are aware of the opinion expressed that users express in textual

reviews over product features.

The study and its results were published in the paper Evaluating Top-N

Recommendations ”When the Best are Gone” (Cremonesi, Garzotto, Quad-

rana). It has been accepted for short paper presentation at ACM RecSys

2013 Conference, the most important conference over recommender systems

worldwide.

1.2 Structure of the Work

The structure of the work is the following:

In Chapter 2 we describe the state of the art of the research in Recommender

Systems and Opinion Analysis. In the first part we cover in the detail the

characteristics of RSs and their taxonomy. In the second part we analyze

offline and online evaluation of RSs. We present three problems that are

similar but yet different to our, namely the popularity bias, the non-random

6

missing rating distribution and the new item problem.

In the third part we present in detail the opinion mining and summarization

tasks. We focus our attention on feature-based opinion mining, a subclass

of opinion mining techniques that is especially suitable to the purposes of

our study. At the end, we present an overview on the framework PoliVenus

and on its core functionalities.

In Chapter 3 we present the implicit elicitation mechanism we adopted to in-

fer user’s preferences. We started with a rough elicitation technique that we

subsequently refined to obtain our final elicitation components and weights.

In Chapter 4 we present our study over bounded availability of hotels in

e-tourism. We first present our study over the bounded condition and how

we simulate it in the subsequent experiments.

In Section 5 we present the experimentation over the influence of bounded

availability on RSs. We performed both offline and online evaluation under

the bounded condition. We finally present the results we obtained from each

analysis.

In Chapeter 6 we present our study over the opinion analysis of user reviews

in the hotel domain. We explain the methodology we adopted in review

processing, and we present the linear weighting model we suggest for sum-

marizing reviews in PoliVenus.

In Chapter 7 we present the conclusions we derived from the study and the

future works.

In Appendix A we report an overview over PoliVenus user experience with

implicit elicitation, final survey of the user experiment, the feature-based

opinion mining algorithm we adopted and some detailed results of the opin-

ion mining analysis.

7

8

Chapter 2

State of the art

In this chapter we present the state of the art knowledge in Recommender

Systems and Opinion Summarization.

In the first part we explore the nature of Recommender Systems (RSs).

We present the most recent and relevant works in algorithms and evaluation

methods for RSs. We focus our attention on their application in the e-

tourism domain. We then describe in detail PoliVenus, the system that

have been extensively used in our study.

In the second part we present the state of art knowledge in Opinion

Mining and Summarization. With the explosion of World Wide Web and

Social Networks, a huge amount of opinionated text have become available.

E-tourism is no exception. Among the several techniques have been pro-

posed by researchers so far, we used feature-based opinion mining to precess

hotel reviews, because its results are more suitable to be integrated with

Recommender Systems.

2.1 Recommender Systems

The explosion of e-commerce applications induced industry and academia

to develop new RSs, in order to reduce the burden on users in finding new

interesting products. Example of applications include recommending books

and other products by Amazon.com [35], and movies by Movielens [46]. In

these applications users have the capability to rate the product they have

purchased. In this way, they provide to other users and to the system their

opinion on the product they have just purchased.

In its most common formulation, the recommendation problem consists

in estimating the rating for the items unseen by the user. Once we the

ratings of unseen items have been estimated, we can recommend to the user

the items with highest ratings.

The recommendation problem can be formulated as follows [1]:

Let C be the set of all users and let S be the set of all possible items that can

be recommended. The set of possible items S and users C can be very large,

even millions of items in some applications. Let u be a utility function that

measures the usefulness of item s to user c, u : C × S → R. R is a totally

ordered set, because it contains only nonnegative integers or real numbers

within a certain range. Then, for each user c ∈ C, we want to choose such

item s′ ∈ S that maximizes user’s utility:

∀c ∈ C, s′c = argmax
s∈S

u(c, s) (2.1)

Usually the utility of an item is represented by its rating. However, in

general it can be any arbitrary function. The central problem of RSs lies

in that utility u is not usually defined in the whole C × S space, but only

on one subset of it. So u needs to be extrapolated to the whole space. In

RSs, where utility is usually represented by ratings, the initial C × S is

represented by an User-item Rating Matrix (URM).

Several kinds of RSs have been proposed by researchers in the last

decade. They can differ in many characteristics, such as the method they

adopt to estimate ratings, in the utility function and in the type of recom-

mendations.

RSs can predict the absolute values of ratings that individual users would

give to the yet unseen items, or they can predict the relative preferences of

users (preference-based filtering); in the latter case, RSs will try to predict

the correct relative order of items, rather than their individual ratings.

According to the type of recommendations, to RSs can be all classified into

two main categories:

• non-personalized RSs;

• personalized RSs.

Non-personalized RSs essentially do not take in account user’s model to

provide recommendations; thus, non-personalized RSs recommend the same

items for every user. For example, they can present to users unseen items

sorted out by popularity (e.g., the TopPop algorithm) or by average rating

(e.g., the MovieAvg algorithm).

On the other hand, personalized RSs build a specific user’s model to pro-

vide personalized recommendations. Such RSs can be classified, according

on how recommendations are made, in three main categories [1]:

10

Content-based recommendations, which provide the user items similar

to the ones the user preferred in the past;

Collaborative recommendations, also known as social filtering, which

provide the user items that people with similar tastes liked in the past;

Hybrid approaches, which combine the above methods to provide more

accurate recommendations.

There exist other types of RSs, such as knowledge-based RSs [8, 9, 45],

case-based RSs [39, 59] and context based RSs [34]. Each type of RSs tries to

limit the drawbacks of previous RSs by putting additional knowledge in the

recommendation process, e.g, the relationships among needs and preferences

of users [9]. Still, content-based, collaborative and hybrid approaches are

the most used in practice and the last RSs can be considered as special cases

of these three main categories to some extent.

2.1.1 Content-based Methods

Content-based recommenders provides recommendations for categories the

user liked in the past, by matching up the attributes of a user profile in

which preferences are stored, with the attributes of an item, in order to

recommend to the user new interesting items [39].

Frequently content-based RSs focus on recommending items containing tex-

tual information, such as description and reviews. Thus several information

retrieval techniques can be used to build user profiles from such textual

data. Typically this process involves the collection keywords in bag-of-

words (BOW), where are considered textual words along with their own

frequency information, discarding any grammar/semantic connection [5].

Usually words are preprocessed using tokenization, stopword filtering and

stemming [11]. The importance of a word ki in a document di is determined

with some weighting measure wi,j . One of the best-known weighting mea-

sures in Information Retrieval is term frequency/inverse document frequency

(TF-IDF) measure, where the more a word occurs in an item, the more im-

portance it has but, on the other side, the more this word is shared between

items, the less important it is for each one [61].

The TF-IDF weight of a word is therefore computed as:

wi,j = TFi,j × IDFi (2.2)

where, assuming that fi,j is the number of times keyword ki appears in

document dj ,

TFi,j =
fi,j

maxzfz,j
(2.3)

11

and

IDFi = log
N

ni
(2.4)

Once items are represented in term of weighted BOW, each user can be

represented as a vector of weights (wc1, . . . , wck), where each weight denotes

the importance of a keyword ki to user c. These weights can be computed

from user’s ratings with several techniques, such as averaging, Bayesian

classifiers, etc. [1]. Recommendations can be computed using the vector

similarity between the user profile vector w⃗c and item vector w⃗s, using

similarity measures such as the cosine similarity

u(c, s) = cos(w⃗c, w⃗s) =
w⃗c · w⃗s

∥w⃗c∥2 × ∥w⃗s∥2
(2.5)

For example, let us consider some keywords that are used by content-based

algorithms. In Table 2.1 are shown some of the keywords extracted from

hotel descriptions and reviews in the hotel booking domain, with their re-

spective TF-IDF scores.

If the user c has previously liked hotels associated to ki keywords (e.g., sta-

tion, restaurant, bus), such keywords will be represented with high weights

wci into the user profile w⃗c. Consequently, the content-based RSs, using its

own similarity measure, would assign a high utility u(c, s) to hotels s that

have high weighted such ki keywords in their own item vectors w⃗s.

In general, content-based recommender systems use item attributes to rec-

ommend items “similar” to items the user liked in the past [1].

Among the several content-based algorithm available in literature, we men-

tion LSA [5] and DirectContent [14], a simplified version of LSA.

Limitations of Content-based RSs

Two are the main issues in content-based RSs: overspecialization and the

so called new user problem.

Overspecialization regards the attitude of content-based RSs in recommend-

ing items that are too similar to user preferences; this can result in recom-

mendations to the user that are obvious and too homogeneous, while diver-

sity is really a desirable feature in recommender systems.

Content-based RSs also needs users to rate a sufficient number of items in

order to understand users’ preferences. Therefore, they can hardly provide

useful recommendations to new users.

12

Stem TF-IDF

luxury 0.2250

restaurant 0.0568

directly 0.0387

satisfy 0.0264

east 0.0261

bus 0.0248

time 0.0240

meeting 0.0236

opening 0.0231

foot 0.0215

offer 0.0205

find 0.0191

station 0.0181

Table 2.1: Example of stem TF-IDF matrix in hotel booking domain.

2.1.2 Collaborative Methods

Collaborative RSs try to predict the utility of items for a particular user

based on the items previously rated by other users [1]. They ignore the

content and try to exploit the “social” aspect of communities of users.

They are based on these two assumptions:

• there are groups of users with similar tastes, which rate the items

similarly;

• correlated items are rated by a group of users similarly.

Collaborative algorithms can be subdivided in the following two categories:

• Neighborhood models (user-based and item-based models)

• Matrix factorization models

Neighborhood models try to exploit the similarity relationship between

users (or items) to estimate the utilities, namely the missing ratings in the

user-item rating matrix.

More formally, the utility u(c, s) of an item s for a user c can be estimated

based on the utilities u(cj , s) assigned to item s by those users cj ∈ C who

are similar to user c; this approach is also called user-based, since it is based

on between-users similarity.

Another possible approach is to estimate utility u(c, s) based on utilities

u(c, si) assigned by user c to items si ∈ S who are similar to item s. This

approach is called item-based and it is based on between-items similarity.

13

Notice that this concept of similarity is completely different from the one

used content-based RSs. Since no content information is used, here we are

saying that whatever the content of an item is, such item is considered

somehow similar to another because the community has expressed the same

evaluation for both items [5].

Neighborhood models predict the missing ratings by averaging the rating of

the k-Nearest-Neighbors of the current user (or item).

In practice, user-based collaborative filtering is not used due to the poor

quality of results and their computational requirements. Item-based is gen-

erally more scalable, since the number of items is usually lower than the

number of items, and it makes easier to explain the reason of the recom-

mendation to the user in terms of items previously rated by him/her.

Another approach to collaborative RSs is matrix factorization, or latent

factor. Instead of studying users and items in the space of ratings, they are

represented as vectors in a common low-dimensional “latent factor” space.

In such space, users and items are directly comparable and the rating of

a user c on an item s can be estimated as the proximity (e.g., the inner-

product) between the respective latent factor vectors.

These methods are also called SVD models, because they rely on Singular

Value Decomposition (SVD) to move users and items from their original

space to the reduced “latent factor” space. An User-item Rating Matrix R

of dimensions n×m can be factorized as:

R̂ = U ·Σ · V T (2.6)

where U is a n × l orthonormal, V is a m × l orthonormal matrix and

S is a l × l diagonal matrix containing the first l singular values, sorted

in decreasing order. The number l of singular values corresponds to the

number of latent factors to be considered into the model. The rating of a

user c about item s can be predicted as:

r̂cs = uc ·Σ · vT
s (2.7)

where uc represents the c-row of U and vs the s-row of V . Since U and

V have orthonormal columns, by multiplying both terms of (2.6) by V , we

can state that:

uc ·Σ = rc · V (2.8)

where rc is the c-row of R (i.e., the profile vector of user c).

Consequently, (2.7) can be reformulated as:

r̂cs = rc · V · vT
s (2.9)

14

In order to predict all the ratings of the user c, we can extend the previous

equation as:

r̂c = rc · V · V T (2.10)

which depends on the profile vector rc, since the product between V and

V T can be precomputed when training the model.

SVD factorization allows the collaborative RSs to provide recommendations

to any user, even if his profile rc is new or it has been updated since the

model has been created.

It allows to represent users into a low-dimensional space of size l × l, much

less than the n ×m original space. Moreover, it reduces the noise of data,

because it allows to discard low-magnitude singular data that are usually

associated to least-informative data, typically noisy [23].

Finally, it strengthens the relationship among data, because related vectors

are represented closer in the l-dimensional space that in the original space.

It also allows to discover hidden dependencies among users or items.

Among the many SVD-based algorithms that are currently available we cite

PureSVD, which bases its estimation process on the conventional SVD fac-

torization, by treating missing items as zeros. It achieves very good perfor-

mances in recommendations, often better neighborhood based collaborative

RSs in many conditions [13, 15].

Limitations of Collaborative RSs

Collaborative RSs limit the problem in diversity in recommendations of

content-based ones. They do not rely on any kind of content information,

but only on other-users’ preferences; thus, they can deal with any content

and can recommend any items, since there is no need of the content of

recommended items to correspond to any item the user previously liked.

On the other hand, item-based collaborative RSs are affected by the new

item problem. Since such systems recommend the items most correlated to

those preferred by the user, a new item item cannot be recommended because

nobody has rated it so far.

They can be also limited by the sparsity of user-item rating matrix.

Usually the number of rating in such matrix is very small compared to the

number of ratings to estimate; this can prevent the recommendations to

users with unique tastes, because there will not be enough users (or items)

enough similar to him.

As a consequence of the previous limitations, collaborative RSs are se-

riously affected by the so called cold start problem. In fact, due to the

15

scarcity of user ratings, any brand new systems will not be able to provide

any accurate recommendations. Content-based systems are also affected by

such problem, but they can mitigate its effects thanks to their content-aided

approach [5].

2.1.3 Hybrid Methods

We have analyzed before the most important characteristics of content-based

and collaborative RSs. We have seen that every RSs has its own drawbacks

and limitations. We can overcome such limitations by combining the results

of different RSs. For instance, collaborative RSs that suffers of cold start

problem can be aided by content-based ones in providing recommendations

in the early stages.

These types of RSs are called hybrid Recommender Systems, because they

merge the results of different RSs to create a new “hybrid” recommender.

According to the different strategy adopted in the hybridization process,

they can be classified into:

• Parallelized hybrids

• Pipelined hybrids

• Monolithic hybrids

In parallelized hybrids (Figure 2.1) different RSs work independently and

produce separate recommendation lists. Their results are then combined to

produce the final recommendations to be provided to the user.

Different strategies can be adopted in combining the results of different

recommenders:

Weighted: the results of all RSs available in the system are combined to

predict the score of an item by, e.g., performing a linear combination

of the recommended scores.

Switched: the different recommendation techniques are switched according

to a switching criteria; e.g., a content-based RSs can be used first, and

then the system switches to a collaborative RSs when the content-

based RSs fails to predict ratings over a fixed confidence threshold.

Mixed: the results of more than one recommendation technique are com-

bined and are presented together to the user. One example of combi-

nation is interleaved hybridization, which interleaves the results of two

different recommenders, such as a content-based and a collaborative

RSs.

16

Figure 2.1: Parallel hybridization.

Pipelined hybrids use one RS as the input for a second recommender system.

The second RS can be used to refine the results of the first, or the model of

the first can be used as input for the second RS.

Monolithic hybrids merge the models of more RSs to create a new “aug-

mented model” to be used in the final recommendation stage.

A detailed survey on hybrid recommender systems, with a more comprehen-

sive taxonomy, can be found in [9].

Mixed interleaved hybrid RSs are known to behave well in the hotel domain,

so we will adopt them in our work [14].

2.2 Recommender Systems Evaluation

Recommender Systems are especially used in domains where it is necessary

to facilitate users in finding interesting items among large amounts of digital

contents. An excessively wide offer would burden users in searching the

contents they needs or they are interested into. Thus, recommendations can

potentially improve the decision making process by reducing the information

overload and, in general, by helping users to choose among a vast set of

alternatives.

As we have already seen, most RSs operate estimating the utility the

user would give to an unseen item, using a statistical model derived from

content information about items or from the peer knowledge available in the

community.

From now on we will consider utility as the rating. Consequently, the utility

estimation corresponds to the prediction of the rating that the user would

give to an unseen item.

Whatever is the type of RS, it is necessary to evaluate the effectiveness

of the recommendation process, and to investigate on its influence on the

users’ decision making process. The quality of a RS can be defined either in

terms of system-centric or user-centric evaluation.

We discuss here over the best known practices in RSs evaluation. In

particular, we consider the so-called Top-N Recommendation task.

17

2.2.1 System-centric Evaluation

In system-centric evaluation, usually called offline evaluation, the RS is

evaluated against a pre-built ground truth dataset. Users do not interact

with the system during the evaluation, but it is based on the comparison

between estimated users’ ratings and the ratings previously collected from

real users on the same items [14].

The original dataset is subdivided into a training set and a test set.

The former is used to compute the statistical model used by the RS. The

latter is used to assess the quality of the previously computed model in

terms of accuracy metrics and error metrics. The estimation of such metrics

can be performed with several methods, such as bootstrapping, k-fold cross-

validation or leave-one-out cross-validation. Still, 10-fold cross-validation is

widely considered as the best evaluation technique [31].

Error metrics can be computed when the RS estimates the exact rating

of an item for a user. The most commonly used metrics are the Root Mean

Squared Error (RMSE),

RMSE =

√∑
j,i(u(cj , si)− ũ(cj , si))2

∥testset∥
(2.11)

and the Mean Absolute Error (MAE),

MAE =

∑
j,i |u(cj , si)− ũ(cj , si)|

∥testset∥
(2.12)

where u(cj , si) and ũ(cj , si) are respectively the real and estimated ratings

of item si for user cj .

Often we are more interested in the ranking capabilities of RSs rather

than in their precision in estimating ratings. In fact, after a RS has ranked

the items according to their estimated ratings, it selects a subset, namely

the “best bet” subset, to be recommended to the user; this is indeed a clas-

sification process, which divides items into relevant and non-relevant ones,

and the evaluation of classification quality can be more interesting and in-

formative then the mere precision of the system.

Hence, we can apply here the classical accuracy measures used in classifica-

tion: the recall, i.e., the conditional probability of suggesting an item that

is relevant for the user; the fallout, i.e., the conditional probability of sug-

gesting an item that is irrelevant for the user.

These metrics are commonly evaluated considering the top N items with

largest predicted ratings, the so-called Top-N Recommendation task [18].

18

For each recommendation we have an hit if the relevant item is in the list.

Therefore, recall can be computed as

recall(N) =
#{relevant items in the list}

#{recommendations}
(2.13)

Similarly, fallout is measured counting the number of non-relevant items int

the recommended list. Fallout can be computed as

fallout(N) =
#{non-relevant items in the list}

#{recommendations}
(2.14)

In general, small error metrics means good capabilities of the RS in predict-

ing missing ratings. However, very good performances in prediction may not

correspond to satisfying recommendations to users. Accuracy metrics helps

to evaluate the quality of the items recommended to users, and many times

are more helpful than error metrics in assessing the real quality of a RS.

Moreover, error metrics cannot used with recommenders that exclusively

produce a ranking of items, e.g., mixed hybrid RSs.

2.2.2 User-centric Evaluation

In user-centric evaluation, usually called online evaluation, users interact

with a running recommender and receive recommendations. The evaluation

process collects both subjective and objective measures.

Subjective measures are collected by asking the user (e.g., through inter-

views or surveys), and regards subjective aspects of the interaction with the

system, such as choice satisfaction, choice risk, perceived time, etc.

Objective measures are instead automatically collected by the system, by

recording user’s interactions with the system and then by analysing system

logs. Examples of objective measures are the elapsed time, the menu inter-

actions, the number of explored pages, etc.

In a word, user-centric evaluation focuses on the human-computer interac-

tion process, or User eXperience (UX).

The research in this field is still preliminary, due to the intrinsic difficulty

of performing user studies in the RS domain.

2.2.3 System-centric vs. User-centric Evaluation

System-centric evaluation is widely performed since it is immediate, econom-

ical and easy to perform in several domains and with multiple algorithms.

19

On the other hand, user-centric evaluation is difficult to perform, since in-

volves real users, and it is in general more costly and resource demanding

than system-centric one. Thus, several RSs are evaluated only against the

system and without involving users thanks to the minor overall efforts of

the former kind of evaluation.

But system-centric metrics may not be able to capture non-accuracy

metrics such as novelty (i.e., how recommendations are perceived as new). So

recently many researchers have argued that the system-centric evaluation of

RSs in e-commerce applications does not always correlate with the perceived

value of recommendations by the users.

Among them we cite two studies in the movie [13] and the hotel [14] do-

mains. Both studies tested some personalized and non-personalized RSs in

both offline and online experiments. The goal of both studies was to compare

measures of user’s perceived quality (e.g., user global satisfaction, accuracy

and novelty of recommendations) against measures of objective statistical

quality of RSs (recall and fallout) in the respective domains of application.

The results of these studies suggest that RSs evaluation, and especially the

relationship between system-centric and user-centric evaluation, is strongly

domain-dependent.

In the movie domain personalized algorithms, which have the best perfor-

mances in offline evaluation, have results comparable to the less sophisti-

cated non-personalized algorithms in online evaluation[13]. That is not the

case for the hotel domain, where offline metrics are good predictors for on-

line metrics [14].

This because each domain has its own characteristics and peculiarities that

influence the interests of users on items and, consequently, change users’

perception on the quality of the recommended items.

2.2.4 Popularity Bias

A factor of non-secondary importance that must be taken in account in RSs

evaluation is the distribution of ratings in the User-item Rating Matrix.

In the majority of applications the URM is very sparse. For instance, in

Table 2.2 are reported the statistics of Movielens and Netflix datasets, two

of the most popular datasets for RSs evaluation in the movie domain. These

two datasets have really low densities, respectively 4.26% for Movielens and

1.18% for Netflix dataset.

In [15] the distribution of rating in such datasets have been exhaustively

studied. As expected, ratings are not distributed at random into the URM.

Instead, the URM is affected by the so called popularity effect. In many

20

Dataset Users Items Ratings Density

Movielens 6,040 3,883 1M 4.26%

Netflix 480,189 17,770 100M 1.18%

Table 2.2: Statistical properties of Movielens and Netflix datasets.

Figure 2.2: Rating distribution for Netflix and Movielens datasets. Items are ordered

according to popularity (most popular at bottom).

commercial systems the majority of the ratings are condensed in a small

fraction of the most popular items [3].

Figure 2.2 show the rating distribution of Netflix and Movielens datasets.

We can observe the about 33% of ratings collected by Netflix involve only

the 1.7% of most popular items; analogously, the same percentage of ratings

involves the 5.5% of most popular ratings in Movielens. This small set of

very popular items is usually called the short-head, and the remaining set is

called the long-tail.

Recommending less known items is less trivial than recommend the most

popular ones. It also adds novelty and serendipity to the users. Therefore,

one must take in account the distribution of ratings before commenting the

results of the evaluation of a RS.

In [15] the authors also studied the accuracy of RSs in recommending

non-trivial items. To this purpose, they analyzed Netflix and MovieLens

datasets. They subdivided the test set into two separate subsets, Thead and

Tlong, which corresponds to items taken respectively from the short-head

and the long-tail of each dataset. Then several personalized collaborative

RSs and non-personalized RSs were tested against both the entire test set

and the Tlong dataset. By doing this, the authors were able to evaluate the

performances of RSs in recommending non-trivial items, namely the items

that are in the long-tail.

21

The experimental results show that the more non-personalized algorithms

perform very well when recommending items in the entire test set, even

better than several more sophisticated collaborative RSs. Conversely, they

significantly down-perform respect to the initial condition in recommending

items in the long-tail. This because non-personalized algorithms trivially

recommend the most popular items. When they are forced to recommend

items in the long-tail, they are not able to provide useful recommendations

at all.

On the other hand, collaborative algorithms perform well in every condition.

When recommending items in the long-tail, they are still able to provide use-

ful recommendation since they are less biased by item popularity.

This fact should suggests to take care about the construction of the test

set in the evaluation process, since a careless construction could bias the

entire offline evaluation toward non-personalized algorithms. This is the

so-called popularity bias.

The study of item popularity seems similar to the purpose of our work,

but it is indeed different. The study of item popularity solely aims to de-

scribe the influence of item distribution over the offline evaluation of RSs.

It shows that offline metrics are often biased toward popularity-based algo-

rithms, which are able to provide to users only the most trivial recommen-

dations.

We are instead interested in modelling the item consumption process and

in studying the behavior of RSs when item availability varies over time. As

we will see, this process is not exclusively affected by the popularity of the

items.

2.2.5 Non-Random Missing Ratings

The process through which the users select the items they choose to rate, i.e.,

the rating observation process [43], has a great impact on the distribution of

ratings in the URM. Users do not observe items at random. Consequently,

ratings are not missing at random in the URM.

Instead, the distribution of ratings in the URM is skewed by two effects:

• popularity effect, that refers to the short-head/long-tail distribution

we have talked in the previous Section;

• positivity effect, which refers to the propensity of users to rate more

often the items they like, and to rate less the items they do not like.

Many studies in RSs are founded on the assumption that ratings are missing

at random. But this incorrect assumption about missing data can bias the

22

models used by several recommendation algorithms.

For example, the study in [43] shows that collaborative algorithms (neigh-

borhood based and matrix factorization) can achieve significantly better

performances in rating prediction and ranking if a non-random missing data

model is considered when training the RSs.

Another recent study [54] studies the effect of (1) ignoring missing ratings,

and (2) treating them as negative ratings, on the ranking performances of a

RS.

The study shows that (1) ignoring missing ratings leads to a dramatically

biased evaluation in the presence of the positivity effect, and (2) considering

missing ratings as negative biases the evaluation toward models that favor

popular items, because the popularity effect has a greater order of magni-

tude than the positivity effect. These properties suggest that choosing the

importance of missing data can be crucial when training a recommender

algorithm with user-selected items.

Studying the impact of non-random missing ratings over the evaluation

of RSs still differs from the interests of our work. The studies we men-

tioned before focus on the distribution and management of missing ratings

in URMs, while we are interested in modeling the distribution of missing

items, that is indeed another issue.

2.3 Time-Evolution of RSs

Finally we want to present another important phenomenon in Recommender

Systems. Many e-commerce applications offer huge catalogs of products of

users. They help users in their decision process by recommending them in-

teresting items through collaborative RSs. Especially in the movie domain,

collaborative filters are preferred to content-based ones principally because

they rely on explicit or implicit opinions expressed by users rather then ex-

plicit content description [40].

However, collaborative RSs are affected by the cold-start problem we de-

scribed in Section 2.1.2.

Moreover, RSs evolve over time. At each point of time we can distinguish

between old existing users and new users, as well as between old and new

items:

• new users have very few ratings available to describe their profile when

they register with the RS;

• new items have no ratings when they are added to the catalog.

23

Therefore, at each point of time the system suffers from some cold-start

issues.

A study in [16] focuses on the time-evolution of RSs in the Interactive TV

domain. The authors modeled the time-evolution process of RSs when new

users and new items are continuously added to they system over time. More-

over, they evaluated the quality of two collaborative recommender systems,

one item-based and one matrix factorization (SVD-based) method, over

time. They also analyzed the time evolution of the algorithms with re-

spect to item popularity (Section 2.2.4).

Their results show that item-based algorithms perform better with respect

to SVD-based algorithms in the early stages of the cold-start problem. How-

ever, SVD-based algorithms, when used with a large-enough number of la-

tent features, can outperform item-based algorithms over time if the dataset

does not present a long-tail behavior.

The time-evolution of RSs is a really interesting problem and of great

practical impact, because it is really hard to predict how RSs will behave in

real non-static environments.

All the prior studies in this field consider the time-evolution of RSs as a

purely additive process, in which new users, new items and new ratings are

inserted in the system.

Conversely, in our study we are interested in analyzing the effects of the

subtractive evolution of the datasets. In this case neither items nor users

nor ratings are added the system, instead many items becomes unavailable

due to contingent situations depending on time or on context.

2.4 Elicitation Methods

In the e-tourism domain RSs can help travellers in finding attractive tourism

products and destinations that best fit with traveller’s expectations and at-

titudes. They can be used to enhance the quality of online travel agencies

(OTAs), by increasing the overall satisfaction of users over the entire e-

commerce process and, consequently, bringing better economic results to

companies.

RSs achieve these results by personalized user profiling. RSs try to infer

users’ interests and preferences to provide them personalized recommenda-

tions. Such information as well as information about the users’ previous

experiences is stored in a user profile.

A recommender system can maintain an individual user model or some users

models that represent classes of users (i.e., stereotypes). The way user mod-

els are stored may change the degree of fitting of the recommendations to

24

current user’s interests.

Whatever the kind of user model is maintained, it is necessary for the rec-

ommender system to acquire the information necessary to build the user

model. This information can be elicited explicitly or implicitly from the

user, or in both ways.

In explicit elicitation the user directly develop and maintain its online

profile. This allows the recommender system to build a high quality user

model and, consequently, to provide very good recommendations. However,

the number of questions required to build an accurate user model may bur-

den the user. Furthermore, users may not be able to describe accurately

themselves and their preference.

In implicit elicitation instead the user profile is inferred from user’s pre-

vious interactions with the system. Implicit user modeling is considered

more reliable and less intrusive than explicit user modeling. However, the

hypotheses generated by the system for each user may not be accurate.

Furthermore, the system may not have observed the user’s behavior for a

sufficient time to produce accurate hypotheses on user’s preferences.

In e-tourism explicit elicitation is often preferred to implicit elicitation.

This because hotels have a much more complex structure than, for example,

books or movies, and it is hard to establish reasonable user profiles by ob-

serving only user’s interactions with the system. Therefore, many currently

available approaches use explicit elicitation to acquire the preferences and

requirement of users before providing recommendations.

For example, Trip@vice [58] provides complete travel collaborative recom-

mendations based on an explicit user profile. During the first stage of in-

teraction with the system, the user is asked to provide some information

about personal and travel characteristics. This information is used to cre-

ate a set of collaborative features, that include group composition, means

of transport, type of accommodation, budget, etc. User’s preferences over

collaborative features are then used to build the user model and compared

with stored items’ features to provide collaborative recommendations.

Another example of explicit elicitation in e-tourism is adopted by ADVI-

SOR SUITE [28]. It uses a conversational approach between the user and

the system. The user profile is built from the answer to a series of questions

that the system poses to the user over its preferences.

DieToRecs [59] uses both techniques of elicitation. Explicit elicitation is

performed using the conversational nature of the system during all the user

session, by asking the user to provide some preferential features, such as

nationality and travel purpose). Meanwhile, implicit elicitation gathers in-

formation when the user selects a package suggested and the system stores

25

the content preferences expressed with this choice.

In [34] is proposed a context-based travel recommender system. It aims to

provide useful recommendations to users at the cold-start by asking them

information over their nationality and travel intent. Moreover, users are

asked to express their preference over a set of features, such as hotel loca-

tion, services, food, and rooms. This information is used to provide recom-

mendations that are aware of the current context of interest of the user.

Implicit elicitation is used by the Personal Travel Assistant (PTA) [12]

to recommend flights to users. The system uses implicit features that de-

scribe user’s preferences over previously viewed travel offers, and to rep-

resent user’s overall travel preferences. Such preferences are continuously

refined with every user-interaction, and then used to provide collaborative

recommendations. PTA was developed for PDA or mobile phones, where

the conversational approach used in explicit elicitation is not feasible.

2.5 Opinion Mining and Summarization

Before the World Wide Web there was a little amount of opinionated text

available. When an individual needed to make a decision, he/she typically

asked for opinions from friends and familiars. When an organization wanted

to investigate over the general public opinion over their products, it needed

to conduct surveys or opinion polls.

But the Web has dramatically changed this perspective. Now users can

post reviews of products on blogs, forums, discussion groups, etc. This is

often called user-generated content. Together with the explosion of the user-

generated content available online, also the behavior of users and company

has changed. Now consumers can directly use the reviews available online to

guide their purchases, and companies can extract consumer opinions about

their products directly from user-generated content available on the Web.

An interesting set of examples of the influence of peer-opinions over con-

sumers are reported in [49]. For instance, it has been discovered that con-

sumers have a greater willingness to pay (from 20% to 99% more) for a 5-

star-rated item than a 4-star-rated item; moreover, about the 80% of readers

of online reviews report that reviews had a great influence on their purchase

(studies were conducted over more that 2000 American adults each).

User-generated content can be categorized into two main types: facts

and opinions [37]. Facts are objective expressions about entities, events and

their properties. Opinions instead usually are subjective expressions that

describe people’s sentiments and feelings toward entities, events and their

properties.

26

The concept of opinion is very broad, but practical applications focuses

on opinion expressions that express positive or negative sentiments. The

automated process of opinion discovery over huge datasets of user-generated

content is called sentiment analysis, or opinion mining. Once collected,

opinions can be used to extract, summarize and organize user-generated

content to be easily accessed by a human reader. This process takes the

name of opinion summarization.

We examine here the main aspects of opinion mining and summariza-

tion. Because of their significant impact over the decision making process, we

want to investigate here over some possible connection between the analysis

of opinionated text and the role of recommender systems in real e-commerce

applications.

We therefore present here the problem of sentiment analysis; then we present

the state-of-the-art methods in sentiment and subjectivity classification, in

feature-based sentiment analysis and in opinion summarization. At the end,

we present the state-of-the-art RSs that use opinion mining in their process-

ing.

2.5.1 The Problem of Sentiment Analysis

Sentiment analysis or opinion mining is the computational study of opinions,

sentiments and emotions expressed in text [37]. In general opinion are can

be expressed on anything, e.g., a product, a service, an organization, etc.

This is the object of the opinion.

Usually specific opinions are expressed over a set features of the object.

Features can be subdivided into:

Explicit features, if a feature f or any of its synonyms appear in as sen-

tence s.

Implicit features, if neither f nor any of its synonyms appear in s but f

is implied through a feature indicator.

The holder of the opinion is the person of organization that expresses the

opinion, such as the authors of posts in reviews and blogs. An opinion on

a feature f is a positive or negative view, attitude, emotion or appraisal on

f from the opinion holder. Its orientation indicates whether the opinion is

positive, negative or neutral.

Using these elements it can be defined the feature-based sentiment analysis

model [26, 36, 38].

Model of an object: An object o is represented with a finite set of fea-

tures, F = {f1, f2, . . . , fn}, which include the object itself as a special

27

feature. Each feature fi ∈ F can be expressed with any one of a set of

synonym words or phrases W1 = {wi1, wi2, . . . , wim} or indicated by a

set of feature indicators Ii = {ii1, ii2 , . . . , iiq}.

Model of an opinionated document: A general opinionated document

d contains opinions on a set of objects {o1, o2, . . . , oq} from a set of

opinion holders {h1, h2, . . . , hp}. The opinions on each object oj are

expressed on a subset Fj of features oj .

An opinion can be any of the following two types:

1. Direct opinion, which expresses an opinion from the holder directly

over a feature of the object.

It is represented as a quintuple (oj , fjk, ooijkl, hi, tl), where oj is an

object, fjk is a feature of the object, ooijkl is the orientation of the

feature of object, hi is the opinion holder and tl is the time when the

opinion is expressed by the holder.

2. Comparative opinion, which expresses a relation of similarities or

differences between two or more objects, and/or object preferences of

the opinion holder based on some of the shared features of the objects.

They are usually expressed using the comparative or superlative form

of an adjective or adverb.

Comparative opinions should be handled because they are frequently used

by product review authors. But authors of hotel reviews, that is our domain

of interest, usually focus on the specific hotel they describe. They usually do

not compare the characteristics of different hotels in their reviews. There-

fore, this is not an essential task for our analysis and we do not consider it

here.

The goal of sentiment analysis or opinion mining can be formulated as

follows: Given an opinionated document di, opinion mining aims to

1. discover all opinion quintuples (oj , fjk, ooijkl, hi, tl) in di and

2. identify all the synonyms (Wjk) and feature indicators of each feature

fjk in di.

Opinion mining does not only aims (1) to infer positive or negative opinions

from text, but also (2) to discover other pieces of information which are

important for practical applications.

As we have mentioned before, user-generated content can be categorized

into facts and opinions. Therefore, in a typical document some sentences

28

express opinions and some do not.

Sentences can be therefore classified into objective sentences, which express

some factual information about the world, and subjective sentences, which

instead express some personal feelings or beliefs. The process of classifying

sentences according to their objectivity/subjectivity is called subjectivity

classification.

Opinions expressed into subjective sentences are called explicit opinions,

while opinions implied into objective sentences are called implicit opinions.

Sentences which express an explicit or implicit positive or negative opin-

ions are called opinionated sentences. They can be subjective or objective

sentences. Clearly identifying implicit opinions is a more challenging task

respect to identifying explicit ones.

2.5.2 Sentiment and Subjectivity Classification

Among the several topics in sentiment analysis, sentiment and subjectivity

classification are perhaps the most studied. Subjectivity classification is the

process that aims to classify sentences as opinionated or not opinionated.

Once opinionated sentences have been recognized, they need to be further

classified into positive or negative sentences, according to the opinion they

express. This process is called sentence-level sentiment classification, be-

cause sentences are considered as the basic information unit. When instead

document (e.g, a product review) is the basic information unit, we are talk-

ing about document-level sentiment classification.

Previous studies in sentiment and subjectivity classification used both su-

pervised [50, 64] and unsupervised [17, 60, 63] learning techniques.

However, compound sentences can express multiple opinions over dif-

ferent objects. In this cases, sentence-level classification is not applicable.

Moreover, also objective sentences may imply opinions. Therefore, it is nec-

essary a more flexible approach to mine opinions in this greater variety of

cases.

2.5.3 Feature Based Sentiment Analysis

Classifying opinionated text can be useful in many cases, but it does not

provide the sufficient level of detail required in many applications. For

example, a positive opinionated document does not mean that the author has

positive opinions for every feature of the object described in the document.

Analogously, an overall negative opinion does not imply that the author

dislikes everything about the object.

29

Typically user-generated opinion documents contains both positive and

negative aspects of the object, although the general opinion on the object

can be positive or negative. To reach the necessary level of detail it is nec-

essary to work at feature level.

Opinion holder, object and time extraction usually is performed by the sys-

tem through Named Entity Recognition and Coreference Resolution [62].

Time as well can be extracted easily from system’s timestamps and it is

useful in analyzing the temporal variation of opinions.

Feature based sentiment analysis is essentially composed of two sub-tasks.

Feature Extraction

The feature extraction process aims to identify object features from docu-

ments, often online product reviews. In the most general case, documents

are free-format text (i.e., the users writes freely with no prior schematiza-

tion).

Free-format reviews can contain any kind of sentences. They can have any

kind of complexity and usually contain a large amount of noise. To ex-

tract features from free-format reviews an unsupervised learning method

is described in [26]. This method requires a large amount of reviews, and

consists of two steps:

1. Frequent feature extraction

2. Infrequent feature extraction

Frequent feature extraction consists of finding frequent nouns and noun

phrases in reviews. Reviews are preprocessed using stemming [52], stop-

words filtering, approximate string matching [48] and Part Of Speech Tag-

ging [11]. POS tagging is used to identify nouns and nouns phrases. Their

occurrence frequencies are counted and only frequent ones (i.e., the ones

with frequency greater than a minimum threshold) are kept. Frequent fea-

ture can be extracted using any of the state-of-the-art algorithms in frequent

itemset and association rules mining mining, e.g., the classical Apriori algo-

rithm [2].

In frequent feature extraction items are words and transactions are sen-

tences. Frequent itemset mining is therefore able to discover frequent words

and word phrases in a set of sentences. But mere frequent itemset mining

does not always generates useful or genuine features, and it can also extract

uninteresting and redundant ones. Thus feature pruning is required to filter

incorrect features [27]:

30

• Compactness pruning : it considers frequent feature phases (i.e., fea-

tures with more than one word). Since frequent itemset mining does

not consider the position of words in a sentence, it may generate non-

genuine features. Therefore compactness pruning aims to eliminate

candidate features phrases whose words do not appear together.

• Redundancy pruning : it does only consider features of size 1, and

removes frequent features that are redundant in the dataset, i.e., such

frequent features that have superfeatures that are also frequent.

This approach is justified from the following consideration: when people

comment on product features, their vocabulary usually converges, and most

product features are nouns or noun phrases. Therefore, by mining frequent

nouns and noun phrases we are able to catch important feature. Conversely,

irrelevant contents in reviews are often diverse and thus infrequent.

However, frequent features may not be enough to correctly characterize

opinions in review. Sometimes the same opinion word can be used to de-

scribe different feature objects, which can be both frequent or infrequent.

Therefore, opinion words that modify frequent features can be used to de-

tect interesting features that are not frequent in reviews.

Other solutions have been proposed in feature extraction which main use

the concept of topic modeling [44].

Opinion Orientation Identification

Once object features have been extracted, we want to determine the orien-

tation of opinions expressed on them in a sentence. One of the best known

approaches are lexicon-based approaches [19, 26].

These methods use opinion lexicons to infer opinion words orientations. An

opinion lexicon is a corpus or a dictionary of words annotated with their ori-

entations. Generally opinion lexicons are generated from dictionaries such

as WordNet [26], or other recent opinion lexicon as SentiWordNet [4].

Given a sentence s, the lexicon-based approach is basically subdivided into

four steps:

1. Identification of opinion words and phrases

This step identifies all opinion words and phrases. Each positive and

negative opinion word is assigned to score +1 and -1 respectively, while

context dependent opinion words are assigned to score 0.

2. Negation handling

In this step the previously computed scores are revised according to a

31

set of rules that consider the effects of negations in natural languafe

[37].

3. But-clause handling

A sentence containing “but” (or words with similar behavior such as

“except for” and “with the exception of”) is handled by applying the

following rule: the opinion before “but” and after “but” are opposite

to each other.

4. Opinion aggregation

At the end an opinion aggregation function is applied to the resulting

opinion scores of each opinion word {op1, op2, . . . , opn} to determine

the final orientation of the opinion of each object feature {f1, f2, . . . , fm}
in the sentence s.

Natural language is really complex and the previous set of rules may not

cover some special cases that may occur in user-generated content. Nonethe-

less, feature-based sentiment analysis is a general method able to detect

opinion in many real contexts.

2.5.4 Opinion Summarization

The born of World Wide Web bringed to everyone the possibility to express

their opinion on whatever product we are interested on. This has produced

an immense amount of opinionated data that it is almost impossible to man-

age “as is”. Opinion mining provides a very effective base of knowledge in

order to generate a concise and digestible summary of the opinions expressed

in big amounts of user-generated content over a specific product, individual

or organization.

In the previous Section we have presented a general framework to analyze

opinionated text and extract opinions from it. The simplest form of opinion

summary is the aggregation of the sentiment scores produced by sentiment

analysis. More advanced summarization techniques can produce structured,

textual and temporal summaries, which provide a more understandable and

detailed analysis of the opinion.

Opinion summarization techniques can be categorized into: aspect-based

and non-aspect-based opinion summarization [30].

Aspect-based opinion summarization is the most common summarization

technique. Generally it is composed of (1) feature-based sentiment analysis

and (2) summary generation.

The summary generation process aggregates the results of the previous steps

to produce a concise and understandable summary.

32

(a) Statistical summary from Bing.

(b) Summary generated

by [41].

One option is to create a statistical summary that directly shows the statis-

tics of positive and negative opinions for each feature. Several presentation

formats have been proposed in literatures, e.g., list [26] and graph [41] for-

mats. Figure shows an example of statistical summary from the website Bing
1. Another option is to perform a text selection to reach a better level of un-

derstandability. For example in [51] they propose to rank words associated

to features and show the strongest opinionated word for each aspect. But

also short representative phrases can be automatically generated, as shown

in [41]. They propose to aggregate ratings using clustering topic modeling,

then the sentiment scores for each aspects are averaged and presented with

representative phrases.

Non-aspect-based Opinion Summarization is usually combined or incor-

porated into the first, although it is based on different principles. Since

aspect-based format is strictly correlated with the feature based sentiment

analysis we are interested in, we do not explore it here.

A comprehensive survey on both kinds of summarization is available here

[30].

2.5.5 Opinion Mining and Recommender Systems

Sentiment analysis and opinion mining can act as in interesting source of

information for Recommender Systems. As we explained in Section 2.1,

content-based RSs use content information associate to items to recommend

to users items of its interest. On the other hand, collaborative RSs exploit

1http://www.bing.com

33

the interconnections between users and items to recommend to users items

that people with similar tastes liked in the past. Feature-based sentiment

analysis can be a very valuable source of structured information to improve

collaborative filtering performances, by adding qualitative information to

explicit user ratings.

However, only a little research have been done in this direction so far.

In [33] is presented a preliminary study about user rating enrichment via

the analysis of user-generated content in educational repositories.

In [34] is proposed a context-aware recommender system that uses the sen-

timent analysis of hotel reviews [37] to model user tastes according to their

nationalities and travel intents in order to provide better recommendations

in the cold-start phase.

2.6 The Framework PoliVenus

In our studies we have extensively used the framework PoliVenus. PoliVenus

has been developed by the Politecnico di Milano [20] in cooperation with

Venere.com 2. It provides a powerful environment based to test and evaluate

RSs in the hotel domain.

It is composed of different functional units, namely the dataset building and

data retrieval unit, the content management and processing unit, and the

testing unit.

The dataset building and data retrieval unit collects data from Venere.com

and crawled from Tripadvisor.com 3. Such data regards users’ ratings, re-

views and hotels’ descriptions.

The content management and processing unit manages such data to cre-

ate the necessary base of knowledge for the Recommender Systems. From

textual data (description and reviews), the TF-IDF schema necessary for

content-based algorithms is extracted. User ratings are instead used to cre-

ate the User-item Rating Matrix.

The test init provides all the necessary instruments to create and manage

several experiments. It allows to configure the recommendation algorithm

(content, collaborative, hybrid or none) to be used, the task asked to the

user and the availability of hotels.

PoliVenus offers an highly configurable environment to perform user-

centric evaluation of recommendation algorithms. It reproduces the same

user-experience of Venere.com (the payment is only simulated), with the ad-

2http://www.venere.com/
3http://www.tripadvisor.com/

34

dition of recommendations that are presented to users in different moments

of the user-experience. It can be schematized in the following parts:

• the homepage, in which the user selects the desired destination.

• the hotel list page, in which the system presents to the user the list of

hotels available in the desired place. Hotels can be filtered according

to budget, number of stars, typology of hotel, and location. The user

is able to sort the hotels according to price, number of stars, number

of views and hosts’ opinion.

• the hotel detail page, in which the user is able to explore the details

over a specific hotel. It contains the information over hotel general

description, location and comments. It presents to the user the list of

rooms available together with their capacity and prices. The user can

make the reservation only through this page.

• the confirm reservation page, which offers to users the possibility to

revise their reservation, and in case to confirm it.

It can be configured to work with more then 20 recommendation algorithms

(content-based, collaborative and mixed hybrid):

Content-based: use an Item Content Matrix extracted from users’ re-

views and hotel descriptions through a TF-IDF schema. PoliVenus im-

plements LSA, DirectContent k-Nearest-Neighbors and Naïıve Bayes

content-based algorithms.

Collaborative: Polivenus implements two latent factors algorithms (AsySVD

and PureSVD) and 8 neighborhood algorithms, mainly item-based al-

gorithms that use different similarity metrics, such as the cosine simi-

larity and the Pearson similarity.

Mixed hybrid: three mixed hybridization techniques are available, namely

maximum rating, average rating and interleaved results.

Non-personalized : three non-personalized algorithms are available, namely

MovieAvg, TopPopular and Random algorithms.

The recommendations algorithms in PoliVenus use an URM that collects the

ratings over 3164 italian hotels from users in Venere and Tripadvisor. The

URM is a very sparse matrix, with more than the 99.97% of missing ratings.

In average there are available ∼ 77 ratings per hotel and ∼ 0.8 ratings per

35

Total Venere TripAdvisor

Hotels 3164 3164 -

Users 293K 107K 186K

Reviews 246K 81K 165K

Avg. Ratings/User 0.82 0.75 0.88

Avg. Ratings/Hotel 77.72 25.46 52.26

Density 0.000265 0.000238 0.000281

Hotel features 481 481 -

Table 2.3: Statistics of the URM, reviews and the number of features used by PoliVenus.

user. The detailed statistics over the URM are reported in Table 2.3.

The desired type of recommender, as well as the content-based and collab-

orative algorithms to be used, can be easily configured before running any

test. PoliVenus allows to create a set of different test configurations to be

tested in user experiments. Each test configuration is stored in a database

record, and can be assigned to users in Round Robin fashion, in order to as-

sign uniformly each experimental condition over the set of users. For debug

purposes the test configuration can be also configured by changing the URL

parameters. Clearly this functionality can be disabled in the real experiment

session.

Recommendations are integrated into the user-experience of Polivenus and

they are provided to user in two different moments:

1. The list of recommended hotels is integrated into the list of hotels,

with the addiction of an option in the menu named “recommended for

you” (Figure 2.3). Recommendations are introduced with the same

information of the normal list content (short description, thumbnail,

user ratings and links to detail page).

2. Another list of recommended hotels is integrated in the hotel detail

page. Here hotels are presented with a reduced description due to

space constraints (Figure 2.4).

During the testing session, the system tracks all user activity (the interaction

with objects in the user interface and the spatial coordinates of the pointer)

in a log. This log can be analyzed a-posteriori to extract interesting infor-

mation over, for example, the time elapsed, the number of pages explored

by the user and number of user’s interactions. This information is useful, for

instance, to implement a more effective implicit elicitation technique, but

also to discard meaningless users’ testing sessions.

36

Figure 2.3: Recommendations in the hotel list page in PoliVenus

Figure 2.4: Recommendations in the hotel detail page in PoliVenus

37

38

Chapter 3

Implicit Elicitation

RSs help user in their decision making process by providing them personal-

ized recommendations. The RSs needs to infer user’s preferences and inter-

est in order to recommend items that fit with user’s needs. The information

needed to perform the recommendation step is stored in an user profile.

In implicit elicitation (Section 2.4), each profile is based on the user’s inter-

actions with the system. The system does not ask the user for its interests,

instead it tries to infer user’s preferences by observing him/her activity.

We decided to use implicit elicitation for three main reasons:

• e-tourism involves many personal preferences and tastes that the user

is reluctant to supply to the system. Consequently, many currently

available e-tourism applications allow also to unregistered users to

their reservations. To support users who have no rating history or

who are not interested in logging into the system, an implicit elicita-

tion method is necessary.

• we are interested in exploring a smooth integration of personalized

recommendations in existing online booking systems. Implicit elic-

itation is functional to this scope, because it does not requires the

introduction of an intrusive add-on into the system. Explicit elicita-

tion instead requires several modifications to the user experience to

ask user’s preferences and to the system’s back-end to handle the in-

formation retrieved from the user.

• according to a large number of works, the lower effort of implicit

elicitation with respect to explicit elicitation increases the perceived

effectiveness of recommendations [21, 24, 29, 57].

On the other hand, the analysis of user activity within the system has some

limitations:

• the absence of negative feedback, because we are only able to detect

what are the objects the user has interacted with, but we cannot know

why he/she does not used some of functionalities offered the system.

• user activity data is noisy, because we are not able to distinguish

whether the user interacted with an object for curiosity or guided

from real interest.

• the number of interactions does not necessarily express an interest

from the user, but only it express the frequency of the interactions.

This two measures are not necessarily related with each other, because

many interactions with an item may not imply user’s appreciation

for such item. However, the greater is the number of interactions

we are able to collect, the higher is the statistical significance of the

conclusions we can infer from it.

• implicit elicitation requires appropriate measurements to take in ac-

count, for instance, repetitiveness in user’s interactions.

The objects in the PoliVenus interface the user can interact with are links,

buttons, maps and pictures. In Appendix A.1 we report all the objects that

are available in the user experience. For each user action over an object,

PoliVenus stores the following information record:

• session id, which identifies the current user.

• page id, which identifies the page from which the action starts.

• page type, which identifies the category of the page (homepage, hotel

list, hotel detail, etc.).

• object, which identifies the object the user has interacted with.

• object type, which identifies the category of the object.

• timestamp, which stores the date and time of the action.

PoliVenus originally implements an implicit elicitation method that, when-

ever the user interacts with an object on the interface, it assigns a score

to the hotel related to the object. Not every object in the user interface

generates an hotel score, but only a selected subset of active objects.

At each interaction with an active object in the user interface, the implicit

elicitation method generates a signal. Each active object in the user inter-

face has a different weight proportional to extent to which the interaction

40

of the user with the object expresses an interest for the hotel that is related

to the object.

The user profile contains implicit hotel ratings, where each rating is the lin-

ear combination of all the signals generated for that hotel. The user profile

is used by recommendation algorithms to provide recommendations to new

users. Given an active object f , an user u and an item i, the explicit rating

r̂ui for the user profile is computed as follows:

r̂ui =
∑
f

wf · suif (3.1)

where wf is the weight associated to object f and suif is the number of

interactions of u with i through object f .

Each new signal updates the user profile, and, consequently, it updates the

list of recommended hotels. In order to give more importance to most re-

cent interactions, the signals are scaled with an exponential decay function.

Whenever a new signal is generated, all previous ratings in the user profile

are multiplied by a dumping factor. Formally, whenever a new signal f on

item i is collected for user u, all the other signals for the same user are

divided by a dumping factor h:

suif ←suif + 1

sujg ←sujgh (for j ̸= i and g ̸= f)
(3.2)

PoliVenus adopts a decay factor h = 0.75. This fact means that at every

new interaction, the weight of previous ones in reduced to the 75%.

Originally active objects and object weights were decided manually by

assuming a probable degree of importance of each kind of interaction. For

example, objects associated with the hotel availability check or booking ac-

tion were considered as more important than links to hotel gallery and map,

and consequently associated with higher weights. However, there was no

empirical evidence of the correctness of such assumptions.

To improve the quality of the estimation of user preferences, we analyzed

the information records obtained from a previous user experiment with Po-

liVenus over 240 users. The user experiment was used to evaluate user

satisfaction when different types of recommendations were provided by the

system [14].

We analyzed what were the real degrees of object interaction of users that

successfully concluded the experiment by booking a hotel. The interactions

of these users are clearly the most reliable. It turns out that the major-

ity of objects in the user interface are rarely used, a part from the objects

connected with hotel availability and booking. Therefore the less utilized

41

Object Page Function Weight Figure

Location tab Hotel details Link to hotel position on the map 0.7460 A.3

Box review Hotel details Link to hotel reviews 0.4874 A.3

Overview

tab

Hotel details Link to hotel detailed description 0.4439 A.3

Union check

availability

Hotel details Union of the links to hotel avail-

ability

0.2653 A.3

Big image Hotel details Link to hotel photo gallery 0.1929 A.3

Availability

button

Hotel list Link to detail page to check the

hotel availability

0.0956 A.2

Name link Hotel list Link to hotel detail 0.0942 A.4

Description

link

Hotel list Link to detailed description of

the hotel

0.0527 A.4

Review tab Hotel details Link to hotel reviews 0.0125 A.3

Table 3.1: Object used for implicit elicitation in Polivenus ordered by signal weights.

objects were deactivated, and some of the remaining ones where grouped

according to their semantic function. The resulting schema is shown in Fig-

ure 3.1.

From the number of interactions of each active object, we can were able to

learn the weights to be associated to each one. Since the user profile should

contain the estimated ratings of each user to the specific item he/she has

interacted with, we used real ratings taken from the URM of PoliVenus as

reference ratings.

If the rating given by user u to item i is rui, the weight wf associated to

feature f is computed by minimizing the squared error:

argmin
wf

(rui −
∑
u,i

wf · suif) (3.3)

We normalized the number of interactions suif in order to give the same

relevance to every active object. The resulting weights are reported in Ta-

ble 3.1. Normalization tends to assign higher weights to less used objects

such as the location tab, the box review and , because any interaction with

such objects is potentially more informative than any interaction with fre-

quently used objects. In other words, we can infer real interest when the

user’s behavior differs from the common actions that are usually done when

exploring the catalog of hotels. A part from these cases, our estimation as-

signs high weights to objects that can correlated to user interest by common

sense, such as the union of availability buttons and the link to hotel gallery

in the hotel detail pages.

42

Figure 3.1: Active objects used in implicit elicitation, together with their degrees of

interaction.

43

44

Chapter 4

Bounded Availability

In this chapter we present our study on simulating bounded availability in

the e-tourism domain. We want to study the effects of limited availability of

hotels over the perceived quality of recommendations by users. The scarcity

of hotels is a real issue in hotel booking, especially in high season periods.

Moreover, items are not consumed by users at random. Instead, as the num-

ber of available items decreases, the quality of the remaining one tends to

decrease, as the “best” hotels are the first to be consumed. Therefore, we

want to accurately simulate the item consumption process in order to study

the behavior of RSs in this circumstance.

We explain here the methodology we adopted to create an effective simu-

lation of limited availability of hotels during high season periods. This is

a general method that can be applied to any domain in which the offer of

items depends on contextual circumstances and varies over time.

In high season periods of the year, or when the time of booking is close

to to the desired time of usage, most of the “best” hotels are already booked

and the remaining ones are often the less interesting. This because the most

popular hotels and the ones with highest ratings are usually the first to be

consumed, and the remaining ones are often in the less attractive locations

of the city or may offer low quality service. We define this condition as “the

best are gone” condition, because the best items are now unavailable to the

current user since they have been consumed previously by other users.

This qualitative description reveals a peculiar aspect of the e-tourism

domain. In video-on-demand or e-book business, for example, the electronic

format allows a potentially infinite number of costumers to consume them

at any time. In e-tourism instead an item can be consumed by a limited

number of users, that corresponds to the number of rooms available in the

hotel in a certain day or period.

Items in hotel domain are bounded by their own capacity. An item can

be consumed until its capacity is reached. After that, the item has to be

considered as a missing item. The possibility for a customer of consuming

items depends on contextual circumstances and varies over time. For in-

stance, in e-tourism a hotel may become unavailable during high season or

when the booking time is close to the desired time of usage.

From this we can derive our definition of bounded domain:

Bounded domain It is any domain in which the availability of its items

is bounded by their capacity, i.e., the maximum number that can be

consumed in a certain time.

Bounded domains are, for example, e-tourism, the clothing market, and

event organization. In general, a domain is bounded whenever the con-

sumption of an item has a subtractive effect on the set of items available

to users. At any time in which the number of consumptions of an item

exceeds item’s capacity, this item becomes unavailable to any user, i.e., it is

subtracted from the set of items. The item becomes available only when a

new capacity of such item is added to system.

This domains are of great practical interest since this bounded conditions

affects many real applications. Moreover, it can be seen that as the number

of items decreases, also the quality of the remaining ones tends to decrease.

This because items are not consumed randomly. Instead, often the best

items are the first to be consumed.

The main issue concerns the identification of such best items. To identify

what are the best items two indicators can be taken in account:

1. Item’s average rating

2. Item’s popularity

According to common sense, the best items are the one with the largest

average rating. Given an item i its average rating can be computed as:

r̄i =

∑
u rui
ni

(4.1)

where rui is the rating given from user u to item i, and ni is the number

of users who rated item i (i.e., its popularity). However average ratings

computed over a larger support ni are considered as more reliable by the

users. The two metrics are not necessary correlated, as low popularity may

come with high hotel ratings and viceversa.

46

(a) Average rating. (b) Popularity.

Figure 4.1: Distributions of the average rating and popularity in the short-head for

k = 0.01

To overcome this ambiguity, we adopted the following definition of shrinked

average rating :

¯̄ri =

∑
u rui

ni + k
(4.2)

where the value k is the shrink factor. Here we defined as the short-head

as the set of items (hotels) that contains the first 66% of the ratings of

the URM. Different values of k produce different behaviors of the value ¯̄ri.

Analytically it can be seen that for k = 0, items are ranked according to the

average rating defined in (4.1). For k → ∞, items are ranked according to

their popularity. This because the lower is item support, the higher is the

weight of the shrink factor at the denominator of (4.2).

But we want to estimate a correct value of k that better comprises the effects

of popularity and average rating on the precedent measure. Therefore, we

have conducted an in-deep analysis of the impact of the shrink factor over

two factors over the short-head:

1. The distribution of the average rating

2. The distribution of popular items

We used the URM in PoliVenus we described in Table 2.3.

We ranked the items according to their shrinked average rating ¯̄ri, and then

we plotted the values for their average rating r̄i and popularity ni. Then we

studied the resulting rankings according to different values of k.

Figure 4.1 shows the ranking of the items in the short-head for k = 0.01.

Figure 4.1a confirms what we expected. For low values of k items are ranked

by average rating, since the average rating clearly decreases as the position

47

of the item in the short head increases. Moreover, no clear ordering is

advisable in popularity of items (Figure 4.1b).

(a) Average rating. (b) Popularity.

Figure 4.2: Distributions of the average rating and popularity in the short-head for

k = 1000

Figure 4.2 shows different results for k = 1000. In this case the short-

head includes only 702 hotels. Also in this case we have obtained the ex-

pected behavior. Now hotels are ranked by popularity (Figure 4.2b), while

no clear ordering can be advised in items’ average rating (Figure 4.2a).

(a) Average rating. (b) Popularity.

Figure 4.3: Distributions of the average rating and popularity in the short-head for

k = 10

Hence, we tried with intermediate values of k. Figure 4.3 shows the

results we obtained for k = 10. Now the ordering is not as finely shaped as

in the previous cases. However, it clearly shows that items are now ranked

according to both average rating and popularity, because both measures

tends to decrease as the position of the item becomes greater.

48

Therefore we used in our experiments a value of k = 10, since it allows

us to consider both average rating and popularity in defining the short-

head. Moreover, it includes in the short head 1458 hotels, almost the 50%

of the items in the URM. This are our best hotels. This number is closed to

the percentage of fully booked hotel as reported by Venere.com during high

season periods in Rome. In simulating high season, we removed the hotels in

Figure 4.4: Distribution of hotels for both high season and low season.

the short-head by making them unavailable to users. Figure 4.4 reports the

popularity ni of the 100 most popular hotels for both low and high season

scenario. Hotels are sorted in descending of popularity. It is clear that in the

high season scenario the best hotels, i.e., the short-head, are removed from

the dataset. Table 4.1 shows short resume of the experiments in short-head

definition.

k Short-head Size Ranking

0.01 1768 Avg. Rating

10 1458 Both

1000 702 Popularity

Table 4.1: Short-head dimension and ranking for different values of the shrink factor k

49

50

Chapter 5

Empirical Study

The purpose of this thesis is to develop a recommender system for the e-

tourism domain. To create a system that is able to provide useful recom-

mendations to users in this domain, we needed to select a recommender

algorithm among the plethora of currently available solutions. Based on a

precedent study over the same domain of application, we used a mixed in-

terleaved hybrid algorithm, which guarantees better users’ satisfaction.

To provide personalized recommendations, we implemented a concrete mech-

anism of implicit elicitation to infer user’s preferences.

Finally, we considered the influence of the variability of hotel availability

over time. We developed an empirical study to assess the impact of bounded

availability of items over the recommendations. We present here the struc-

ture of the empirical study and the results that we obtained from it.

5.1 The Empirical Study

The goal of the study is to investigate if and how missing (e.g., consumed)

items affects the quality of recommender systems trained on popularity-

biased datasets. We have already seen that items are not missing at ran-

dom. Instead, there is clearly a bias toward most popular items in the item

consumption process. Such bias makes a few number of hotels (i.e., the most

interesting) to be consumed first and, hence, unavailable in high season pe-

riods. This is the short-head. Conversely, the remaining hotels (i.e., the less

interesting) remain available in high season, and are the only that can be

effectively consumed by the user. This is the long-tail.

In this study we are interested into investigate two issues:

1. If non-personalized algorithms have an accuracy comparable to per-

sonalized algorithms also in bounded domains, where the time-varying

availability and distribution of items may affect algorithms trained on

popularity-biased datasets. We have already discuss about the distri-

bution of ratings in URMs in Sections 2.2.4 and 2.2.5.

2. How these phenomena are influential on the quality of recommenda-

tions measured using both user-centric and system-centric metrics

The study is organized in four steps:

1. Preliminary study devoted to identify the “most appropriate” person-

alized algorithms to be used in our final case study.

2. Investigate the results of the previous steps in order to design the

implicit elicitation mechanism to be used in our final study (Chapter

3).

3. Explore the process of items consumption and define the technique to

simulate our “the best are gone” condition (Chapter 4). This step also

includes the study of the variation of room prices between high and

low season periods.

4. Evaluate the effects of non-personalized algorithms against personal-

ized algorithms chosen in step 1). We want to explore the influence of

the bounded condition over the perceived quality of recommendations.

The comparison has been performed with both user-centric (online)

and system-centric (offline) evaluation.

The preliminary study in step 1) is well detailed in [14]. Here an empirical

study over 240 users was performed using PoliVenus. The study considers

three algorithms, one content-based algorithm DirectContent, one collabo-

rative algorithm PureSVD and one interleaved hybrid that combines the

two previous. It compares the effects over users’ perceived quality of intro-

ducing recommendations generated by different algorithms against the one

achieved by the baseline scenario without recommendations. The results

shown that the adoption of the hybrid algorithm significantly increases the

perceived quality of the user experience. Hence, we adopted the interleaved

hybridization of DirectContent and PureSVD in our experiments.

5.1.1 Dependent and Independent Variables

In this study we want to study the effects of the bounded condition over both

user-centric and system-centric measures. These are the dependent variables

of the study. User-centric evaluation considers two types of constructs:

52

Subjective variables: Attributes resulting from user’s perception and judg-

ment of the decision making process;

Objective variables: Objectively measurable attributes of the decision

process and outcome.

Further details on user-centric evaluation are reported in Section 2.2.2. We

used here an adapted subset of the ResQue variables for online evaluation

[55]. Subjective variables were measured using a web survey, proposed to

participants at the end of their reservation process. We have considered the

following subjective variables:

Choice satisfaction: The subjective evaluation of the reserved hotel in

terms of quality/value for the user. This variable is evaluated through

the following question posed to the user in the final survey: “Are you

satisfied with your final choice?”.

Trust: The perceived degree of matching between the characteristics of the

chosen hotel emerging from the use of the system and the real charac-

teristic of the accommodation. This variable is evaluated through the

following posed to the user in the final survey: “Will the description

of the chosen hotel match its real characteristics?”.

Objective variables are instead measured using interaction log data stored

by PoliVenus. The objective variables we measures are:

Hotel price: The cost of one night for the reserved hotel.

Elapsed time: The time taken for the user to search for hotel information

and make a reservation decision.

Extent of the hotel search: The number of hotels that have been searched,

for which detailed information has been acquired.

Choice satisfaction is used to measure the user’s perceived quality of the

interaction with the system and of the recommendations.

Elapsed time and the extent of the hotel search are used to measure the effort

of the user during the decision process. They are measured through the

tracking of user’s navigation in the web site. The elapsed time is computed

as the difference between the timestamp on which the user started the task

and the timestamp at the end of the task, i.e., the moment when the user

makes the purchase via a simulated irreversible transaction. The extent of

product search is measured as the number of hotels for which the user as

accessed to the detail page, and can be easily extracted from the navigation

53

log.

Hotel price is used to provide us perspective over the influence of price in

the decision process, since it is also influenced by our bounded condition

(Section 5.1.2).

Independent variables are room availability and recommendation algo-

rithm. Room availability has two possible values:

1. Low season, or fully availability;

2. High season, or limited availability. It corresponds to “the best are

gone” bounded condition. In this case hotels from the short-head are

unavailable to users.

The recommendation algorithm can be one of the following:

1. Editorial, which is our baseline “algorithm”. It ranks hotel according

to the ranking provided us by Venere.com, which is mainly based on

the number of users who booked the hotel.

2. Hybrid, which provide interleaved recommendations from PureSVD

(Section 2.1.2) and DirectContent. Content analysis takes in account

481 features (e.g., category, price-range, facilities) extracted from the

hotels’ description and reviews.

3. Popular, which ranks hotels according to shrinked average rating of

Chapter 4.

Editorial and Popular are non-personalized recommendation algorithms. In-

stead Hybrid is a personalized recommendation algorithm. We have a total

of 6 experimental conditions, each one associated to a different combination

of values of the two independent variables.

5.1.2 Price Variability

Another variable that is subject to time variation is room price. In e-tourism

prices tend to rise in high season, when many tourist are looking for an ac-

commodation in the city, and to fall in low season periods, when best prices

are offered by hotels’ owners to attract the maximum number of tourists.

Price is an important discriminant in the decisions of users in every e-

commerce activity. Therefore it must be somewhat modeled in order to

provide users the most authentic experience within our tests.

Price variation over time is a complex phenomena to be modeled. We

are not interested into an exact and precise modeling of such phenomena,

54

but rather into a simple but fair representation of its effects over the rooms’

prices in different seasons. Therefore, we have considered the best 30 hotels

in Rome and Florence according to the ranking provided by Tripadvisor.com.

For each hotel we have extracted the prices for both high and low seasons

from Venere.com. Then we applied linear regression to the obtained data

to model the prices in high season with respect to low season ones. Figure

Figure 5.1: Linear regression of high season prices w.r.t. low season prices for 60 sample

hotels.

5.1 shows the results of the linear regression. The low season price pl and

the high season price ph can be linearly combined by ph = β0 + β1pl, where

β0 = +27, 681 and β1 = +1, 4223. The R2 coefficient of the regression is

equal to 0, 6593 (65.93%), which stands for a quite good fit. In fact the

prices are well modelled by the regression line, apart from some outliers at

very high prices. The β1 coefficient shows that hotel owners tend to rise

prices of the about the 45− 50% in high season periods.

Hence, we decided to rise the prices of hotels in high season of the 50% in

our application to simulate. We used the initial room prices set in Polivenus

as low season prices.

5.1.3 PoliVenus Extended

Before proceeding with the experiments, we have extended the functionali-

ties of PoliVenus to handle our bounded condition. We had to modify both

the user experience and the back-end of PoliVenus in order to make the

experiments the more similar to the real conditions of limited availability of

hotels in high season.

55

The Back-End

PoliVenus already handles all the procedures to call the recommendation

algorithms and to present to users the recommendations in the user interface.

The only modification needed in the back-end regards the handling of our

first independent variable, namely the room availability, and the definition

of the periods of high and low season.

To this purpose we have introduce some fields into the test table of

PoliVenus database. In this table are specified all the characteristics of

the task (i.e., the experimental condition) to be done by the users. The

experimental conditions are chosen in Round-Robin fashion from active ones

specified in such table, in order to have an uniform number of tests among

all the participants to the study.

We report here all the fields of each task that can be customized (new added

ones are followed by symbol *):

Test identifer identifies the test. It is manually assigned and must be

spaced from the other identifiers (this to impede users to change the

test by modifying the URL string).

Kind of task is a string representing the scenario. In the original Po-

liVenus application it was possible to choose between two scenarios

(i.e., work and holiday). In our case this field is useless since we con-

sider only the holiday scenario.

Is recommender indicates whether the test is with RS support or not.

Is available condition specifies if the system simulates the hotel unavail-

ability or not. This fields refers to a first naive simulation of hotels

unavailability in PoliVenus. Also this field is useless in our case and

we keep it set to 1 (i.e., available hotels).

Is last is a boolean which indicates whether the test is the last test per-

formed by a user or not. It is used to control the Round Robin assign-

ment of tests to users.

Is active indicates whether the test is considered active or not, i.e., if it

has to been considered in the Round Robin assignation of tests.

Distance indicates the absolute distance (in module) between a test and

another, taking as reference the identifier of the tests.

Is high season* is a boolean value that establish whether the current test

has to simulate high season availabilities. If set to 1, hotels from the

56

short-head are unavailable to users in the high season period. If set to

0, all the hotels are always available to users.

High season start* is a datetime field that sets the starting date of the

high season period.

High season end* is a datetime field that sets the ending date of the high

season period.

High season period is defined by the two respective variables in the table.

When high season simulation is active, if the user tries to book an hotel

into the high season period, he/she will not be able to book the best hotels

(i.e., the ones in the short-head) and the remaining hotels will be presented

with an increased price (i.e., the high season price). If the user searches

out of this period, all the hotels become available at normal prices (i.e.,

the low season price). Users are forced to book a hotel within the high

season period defined by the respective two variables, whatever the kind of

availability (fully or bounded) is set by the experiment.

Other minor modifications were required to the back-end, especially to

manage unavailable hotels into high season periods. However, such modifi-

cations do not add any new value to the capabilities of PoliVenus described

in [20], so we do not report them in detail here.

Figure 5.2: Unavailable hotels (in blue) in PoliVenus User eXperience.

57

The User Experience

More significant modifications were required on the original user experience

of PoliVenus. We report here the most important ones.

Originally PoliVenus was not designed to permit the users to modify their

own check-in and check-out dates. Moreover, the number of hosts was fixed

to 2. We have enriched the user experience by allowing users to change the

dates of stay and the number of hosts.

These are essential modifications in order to offer a more authentic expe-

rience to users. The capability of changing dates is also functional to our

study. Users can now explore the whole catalog of hotels without setting

their staying dates, as Venere.com does. When an user selects staying dates

within the high season period may now find that many hotels are unavail-

able (Figure 5.2). This can also happen when the user changes the staying

dates while watching the detail of an hotel which he/her is interested into

(Figure 5.3). When the desired hotel is available in high season, its prices

are increased of the 50% (Figure 5.4).

These details significantly increase the level of realism of the booking

experience. Our intention was to create the same feeling of frustration and

disappointment that tourists feel when they are not able to find an hotel

that respects their own tastes and economic constraints. This surely has a

significant impact on the overall the quality of the study.

All the other functionalities have not significantly changed from the orig-

inal PoliVenus, especially regarding the way recommendations are inserted

into the user experience and regarding the booking process. The only other

difference regards the final survey we proposed to users, that is detailed in

the following Section.

5.1.4 The Study Execution

As we have already told, our study considers both offline and online eval-

uation. In particular, online evaluation required an user experiment to be

performed in order to assess the values of our quality metrics for each of

the 6 experimental conditions reported in Table 5.1. Each participant was

assigned to one experimental condition. Experimental conditions were as-

signed by the system in a Round Robin fashion in order to equally distribute

the users among each case of our interest. The participants were asked to

complete a task and then to complete a final survey. The detailed list of the

questions in the survey are available in Appendix A.2.

58

Room Availability Recommendation Algo.

1 Low season Editorial

2 Low season Hybrid

3 Low season TopRated

4 High season Editorial

5 High season Hybrid

6 High season TopRated

Table 5.1: The six experimental conditions that were tested in our study.

Participant Recruiting

Participants were picked from current students, ex-alumni and administra-

tive personnel of the School of Engineering and the School of Design of the

Politecnico di Milano. They were all aged between 20 and 40 and have some

familiarity with the use of the web and had never used Venere.com before

the study. This to control the potentially confounding factor of biases or

misconception derived from previous uses of the system. The total number

of recruited subjects that completed the subject by the deadline was 142,

equally distributed in the 6 experimental conditions.

The task

Users were asked to complete the following task:

“Imagine that you are planning a vacation in Rome and are looking for

an accommodation during Easter season; choose a hotel and make a reser-

vation for at most two 2 nights; dates and accommodation characteristics

(stars, room type, services, and location) are at your discretion. After con-

firming the reservation (simulated), please complete the final questionnaire.”

Easter is considered very high season in Rome. Hence, it is a very valu-

able period to the purposes of the study. Moreover, participants are left free

to explore the accommodations in any desired day, with no restriction on

the number of hosts and characteristics of the hotel. Only at the moment

of the purchase the constraints of the task have to be fulfilled to complete

the operation.

Reward Strategy

To increase the quality of the test we introduced a lottery incentive. We ex-

tracted randomly one participant who receives a prize. The prize consisted

of a coupon of the value of 100e to be used to stay in the hotel fictitiously

reserved using PoliVenus. The impact of lottery incentives on survey re-

59

sponse rates have been exhaustively studied in [53]. We expect the users to

make the test in a more realistic way.

5.2 Experimental Results

In this Section we present the experimental results of the study. As we

have stated before, we have performed both system-centric and user-centric

evaluation of the system. This to actually compare the computed quality

and the perceived quality of the recommendations. Moreover, with user-

centric evaluation we are able to differentiate the perceived quality over

various aspects such as the overall satisfaction, trust and effort of users.

5.2.1 System-centric Evaluation

We have exhaustively talked about system-centric evaluation, or offline eval-

uation, and related metrics in Section 2.2.1. System-centric quality can be

assessed using either error metrics (e.g., the RMSE and MEA) or accuracy

metrics (e.g., precision, recall and fallout).

Interleaved hybridization does not compute the estimated ratings, but

it combines the rankings of the two different recommendation algorithms.

Hence, error metrics cannot be used. We therefore analyzed the offline

quality using accuracy metrics. In particular we focused on the recall and

fallout metrics.

Recall measures the capability of recommending interesting items to

users. Fallout measures instead the attitude of the recommendation al-

gorithm to recommended uninteresting items to users. Hence, we want to

keep the recall the highest possible. Conversely, fallout should be the lowest

possible to avoid recommending unappealing items to users.

To evaluate these measures we divide the User-item Rating Matrix of

Polivenus into two sets, the training and the test set. The URM contains

ratings extracted from Venere.com and Tripadvisor.com. Details over the

URM are shown in Table 2.3 in Section 2.6.

Users in the URM were rearranged in random order and then assigned to

either the training or the test set, in order to have an equal subdivision of

the users in the initial URM. In other words, the training and the test set

contain respectively half of the original users. The training set was used to

train the 3 recommendation algorithms we chose (TopRated, Editorial and

Hybrid). Then the accuracy metrics are measured against the test set using

leave-one-out cross-validation. We compute accuracies for increasing values

of N (i.e., the number of items presented to users by the RS), with values

60

in (0, 100].

Notice that, in real applications, interesting values of N are often lower than

20, because users cannot actually handle with many recommended items at

time. RSs are studied to help the user in the decision process, so providing

many items is not very useful. The optimal value of N depends on many

factors we do not investigate here.

When estimating the accuracies in high season availability, we removed

from the test set all the hotels that belong to the short-head. However,

recommendation algorithms are still trained over the original training set,

which still contains the unavailable hotels and they are still able to recom-

mend hotels in the short-head. This is what exactly occurs in real applica-

tions, where models do not take in account the possible variation over time

of items availability. Hence, we impede the recommendation algorithms to

recommend hotels in the short-head. This permits us to correctly estimate

the metrics we are interested into.

Figure 5.5 shows the experimental results in conditions of low season

availability, when all the hotels are available with no restriction. The plot of

recall (Figure 5.5a) shows non-personalized algorithms actually outperform

the personalized hybrid algorithm. For N ≤ 20 the TopRated algorithm is

clearly the best one, followed by the Editorial algorithm. Fallout (Figure

5.5b) shows no significant difference between algorithms. Consequently, al

algorithms have almost the same capabilities in filtering uninteresting items.

Figure 5.6 shows the most interesting results. Now the recommenda-

tion algorithms are required to recommend hotels when the short-head is

removed. By construction (see Section 2.2.4) the short-head contains the

best hotels, namely the one with best popularity and average rating. These

items cannot be recommended anymore since they are not available to users.

The plot of recall (Figure 5.6a) shows that now non-personalized algorithms

significantly down-perform with respect to the condition of full availability.

In particular, TopPop algorithm is not able to provide any useful recom-

mendation at all for N ≤ 20. Straightforwardly, TopPop cannot recommend

any hotel when the best ones are removed, because it simply recommends

the top popular ones.

Instead, the Editorial algorithm is not entirely based on popularity, thus it

can recommend some interesting item also in conditions of limited availabil-

ity.

The hybrid algorithm has the best accuracy. Moreover, it does not sig-

nificantly change it performances from the previous case. This means that

the hybrid algorithm is more robust and less sensitive to our bounded con-

61

dition.The hybrid algorithm also has a greater fallout than others (Figure

5.6b). Still, when evaluating the Top-N Recommendation task using RSs, we

are more interested in their capabilities of providing useful recommendation

rather than excluding less interesting ones. Non-personalized algorithms

are not able to provide useful recommendation with our bounded condition.

Therefore, the Hybrid recommendation algorithm is the best performing one

in Top-N Recommendation task in condition of limited availability of hotels,

according to offline evaluation.

5.2.2 User-centric Evaluation

User-centric evaluation allows us to compare the perceived quality of recom-

mendations in the different experimental conditions. We performed an user

experiment (Session 5.1.4) and collected the data from 142 participants. We

first removed the data referring to subjects who shown apparent evidences

of gaming with the testing system. For example, users who interacted with

the system for less than 2 minutes are pruned from the dataset, since we

considered 2 minutes as the minimum time to complete the task. Similarly,

users who left too many questions unanswered are not considered reliable

and thus pruned.

In the end, we considered data referring to 125 participants, almost

equally distributed in the six experimental conditions. Each experimental

condition involves a number of subjects between 20 and 24.

We performed ANalisis Of VAriance (ANOVA) [22] over the 6 experi-

mental conditions, which depends on the type of algorithm and on the hotel

availability. ANOVA returns a p value < 0.05, which confirms us that the

independent variables have a statistically significant impact over the depen-

dent ones (subjective and objective).

We are now interested into finding relationships between dependent vari-

ables in the different experimental condition. To this scope, we performed

a multiple pairwise comparison post-hoc test using Turkey’s method on the

mean values of the dependent values. We report here the results together

with the 95% confidence intervals.

Figure 5.7 shows the values of the user satisfaction in all the experi-

mental conditions. In low season scenario (Figure 5.7a) top popular non-

personalized recommendations make users the most satisfied, with more

than the 90% of users happy of their choice. Editorial recommendations dif-

ferers significantly in perceived satisfaction from popular ones, with about

the 60% of satisfied users.

In high season scenario users are overall less satisfied than in low season

62

in all the 3 experimental sub-conditions. Due to the scarcity of hotels in

high season, users may impute the unavailability of hotels to a weakness of

the catalogue of services. Hence, they can ascribe the phenomenon to the

service provider rather than to the contingent situation of booking in a high

season period. Non-personalized algorithms are now not able to provide in-

teresting items to users, because the best one are gone, and the percentage

of satisfied users almost halves: from 60% to 30% in the editorial case, and

from 90% to 45%. In contrast, the hybrid algorithm now makes its users

the most satisfied. About the 70% of users which received personalized rec-

ommendations are satisfied, and their number does not significantly differ

from the low season scenario.

Figure 5.8 shows the histograms for the average price per night of the

hotels reserved by the users. Differently from user satisfaction, price is an

objective variable. In non-personalized conditions there is statistically sig-

nificant negative correlation between hotel price and user satisfaction. In

the low season scenario (Figure 5.8a) users who received popular recom-

mendations are more satisfied and pay less, on average, than users in the

editorial scenario, our baseline scenario. About 150e per night in the edito-

rial scenario, against about 100e with top popular recommendations. Again,

no statistically significant difference emerges when users are recommended

through the hybrid algorithm.

In high season the average price per night increases by construction (Sec-

tion 5.1.2). In this scenario the average price increases by more then 70%

in the editorial condition and approximately 50% in the top popular one.

Still, when the personalized algorithm is used, no statistically significant

difference can be advised in the average price (Figure 5.8b).

Figure 5.9 shows the histograms for the average elapsed time, which

corresponds to task execution time. This data confirms that searching for

hotels during the low season period takes shorter time that in the high season

period. In high season most of the best hotels are unavailable, and the entire

decision making process is more complex and requires more time.

A part from this intuitive and predictable behavior, a more interesting

fact is the following: the most satisfied users invested more time on the

decision process than less satisfied users. This fact is consistent with the

findings on the effort measured with the average number of explored hotels

(Figure 5.10). Figures 5.9a and 5.10a show that users who received top

popular recommendations in low season are the most satisfied, explored

the largest number of pages and required the largest time to complete the

task. The same happens in high season to users who received personalized

recommendations (Figure 5.9b and 5.10b).

63

Figure 5.11 shows the overall trust over the booked hotel by users, i.e,

how much they believe the hotel characteristics matches its description.

Interestingly, in both the scenarios the most satisfied used totally trust the

system. Trust significantly drops from low to high season for the users

recommended with the editorial algorithm.

5.2.3 Discussion over the Study

We have presented before the experimental results of system-centric and

user-centric evaluation of the system in the different 6 experimental condi-

tions. We now explain a possible interpretation of this results, also respect to

the results obtained in previous studies related to this argument [13, 14, 15].

We have previously discussed of some of them in Section 2.2.3.

System-centric evaluation partially confirms the results of previous works.

The performance of non-personalized popularity algorithms in the Top-N

Recommendation task is higher than the hybrid personalized algorithm,

which is clearly more sophisticated than the TopPop and Editorial algo-

rithm.

When the best items, namely the most popular and widely ranked items,

are removed (the high season scenario) the accuracy of non-personalized

algorithms decreases. The best algorithm becomes the most accurate and

its accuracy does not significantly changes from one scenario to the other.

Differently from [15], the effect of removing the short-head is negligible on

the personalized algorithms.

The robustness of the hybrid recommendation algorithm can be ex-

plained considering the partial content-based nature of the algorithm. The

strong effect of the short head removal reported in [15] is measured on col-

laborative algorithms, which tend to exhibit a bias toward popular items. In

contrast, content-based algorithms, that do not base their models and rec-

ommendations on community ratings, do not exhibit such bias. When best

items in the short-head are removed, biases are removed for the collabora-

tive portion of the hybrid algorithm of the hybrid algorithm only, while the

content-bases portion is only marginally affected. The overall effect of miss-

ing items on accuracy of is marginal. This fact can explain the mismatch

with respect to prior studies.

Other significant differences between the low season and high season

scenarios emerge from user-centric evaluation. The low season condition

is comparable to the situation of potentially unlimited capacity, when all

the items are always available. This condition characterizes most domains

considered by recommender systems research, such as the movie domain.

64

Thus, it is not surprising that results on user satisfaction in the low season

scenario are in line with prior findings in the movie domain [16]. They show

that the perceived quality of non-personalized algorithm is comparable to

the one of personalized algorithms. One of the possible interpretations of

this phenomenon consistent with our results is the following:

the opinion of the crowd has a strong persuasion effect, often

time higher that individual unexpressed preferences.

In case of fully availability, there is a large amount of products potentially

satisfying the characteristics specified by the user (e.g., stars, services, lo-

cation). For example, Rome has tens of hotels with more than 3 stars next

to the most touristic zones of the city. When the users have to choose over

many interesting items, the most important attributes that drive the deci-

sion process are the number of ratings and their value. Trivially, most users

are biased by success, therefore algorithms based on popularity are perceived

as the best ones.

Non-personalized algorithms are based on a First Order Persuasion cri-

teria (FOP), i.e., the product success. More sophisticated personalized al-

gorithms, are based on a Second Order Persuasion criteria (SOP), i.e., per-

sonalization. When there is no limitation on item availability, FOP prevails

on SEP. Personalized recommendations are not appreciated and less trusted

because they do not match the opinion of the crowd. This mismatch can

be easily noticed by users by looking at the popularity and ratings of the

recommended items.

We have already talked about the peculiarities of the hotel domain in

Section 2.2.3. We know that novelty does not have a great value in the hotel

domain, because users tend to book the same hotel in the past if it offered

a satisfactory experience. Hence, when this accommodation is available,

recommendations of something new or unexpected might not be taken in

account, regardless its adherence with personal tastes. This justifies the

better perceived quality of non-personalized algorithms in the low season

scenario.

In high season, when the best hotels are not available, personalized rec-

ommendations are the most effective. In conditions of scarcity of offer the

most popular hotels are not available because the short-head has been re-

moved. Available hotels now have no or few user ratings (Figure 4.4) and

they are now indistinguishable from one another, with respect to popularity

and average rating that act as persuasion factors when the offer is abundant.

Users in these conditions are less biased by popularity and popularity-based

algorithms are now perceived as less effective. SOP now takes the place of

65

FOP, since it provides an acceptable match between item characteristics and

personal needs. Personalized algorithms are unbiased by popularity and help

users in finding alternative and novel by yet satisfactory solutions. Hence,

in conditions of bounded availability of items, their persuasion strength in-

creases.

In high season trust and effort, measured through variables elapsed time

and extension of the hotel search, increase and reach the top level with per-

sonalized recommendations, while they decrease with popularity-based rec-

ommendations. When the best and most obvious solutions are not available,

users are forced to spend more effort in searching for items and exploring

information related to the choice process. But this burden is mitigated by

benefits of a more satisfying and trustworthy decision process.

Finally, the analysis of the price per night of the booked hotel provides

other interesting results. It is intuitive that higher levels of choice satisfac-

tion are related to lower price of the chosen hotel. What is more surprising,

but is consistent with the above analysis and the findings on effort, is that

the average cost of reserved hotels in the condition of personalized recom-

mendation is not affected by the scarcity of offer, remaining stable in low

and high season. By effect of personalized recommendations, users tend to

explore more items, become more conscious of alternative offers, and seem

to be more able to discover hotels at reasonable prices.

66

(a) Low season.

(b) High season.

Figure 5.3: Simulated room unavailability (in red) when the user is exploring the details

of an hotel and passes from low to high season and viceversa (in blue).

67

(a) Low season.

(b) High season.

Figure 5.4: Simulated price (in red) change when the user is exploring the details of an

hotel and passes from low to high season a nd viceversa (in blue).

68

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

re
ca

ll

Hybrid

TopRated

Editorial

(a) Recall.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

fa
llo

ut

Hybrid

TopRated

Editorial

(b) Fallout.

Figure 5.5: Plots of the Top-N Recommendation recall and fallout in case of low season

availability (or fully availability).

69

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

re
ca

ll

Hybrid

TopRated

Editorial

(a) Recall.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

fa
llo

ut

Hybrid

TopRated

Editorial

(b) Fallout.

Figure 5.6: Plots of the Top-N Recommendation recall and fallout in case of high

season availability (or limited availability).

70

(a) Low season. (b) High season.

Figure 5.7: Histograms of the average user satisfaction in the 6 experimental conditions

(together with 95% confidence intervals).

(a) Low season. (b) High season.

Figure 5.8: Histograms of the average price per night in the 6 experimental conditions

(together with 95% confidence intervals).

(a) Low season. (b) High season.

Figure 5.9: Histograms of the average elapsed time in the 6 experimental conditions

(together with 95% confidence intervals).

71

(a) Low season. (b) High season.

Figure 5.10: Histograms of the average number of explored hotels in the 6 experimental

conditions (together with 95% confidence intervals).

(a) Low season. (b) High season.

Figure 5.11: Histograms of the average percentage of user trusting the booked hotel in

the 6 experimental conditions (together with 95% confidence intervals).

72

Chapter 6

Opinion Summarization in

PoliVenus

In e-commerce items often come with many reviews that express opinions

over the characteristics of the items. In the e-tourism domain, users often

leave a comment on the quality of the services of the hotel and they express

their feelings over the overall quality of their stay. Such information can be

many times more informative than the mere rating that a user express on a

hotel. In fact, peer reviews can have great influence on the decision making

process. When an user has to decide the hotel to book, he/she may prefer

the hotel that has good reviews over the aspects he/she is more interested

on.

However, opinionated reviews are really hard to handle, due to the in-

trinsic difficulties of natural language. Users can express their opinion us-

ing different languages, idioms and, e.g., using irony, which is really hard

to model and detect by automated systems. Nonetheless, many useful in-

formation can be extracted from free text to model the opinions that are

expressed in.

PoliVenus comes with many reviews extracted from Venere.com and Tri-

padvisor.com. Until now, reviews were only used to extract features for

content-based algorithm. No study on the opinions expressed by reviewers

was performed.

In this Chapter we present a possible application of sentiment analysis

on reviews in PoliVenus. We applied feature-based opinion mining on these

reviews. Then we create a model to predict user ratings using opinion scores.

In this way, one can assign a numerical rating to users who have written a

review without any explicit rating, and consequently to reduce the sparsity

of the User-item Rating Matrix.

Language Reviews

English 73348

Italian 9549

Total 82897

Table 6.1: Subdivision of the reviews from Venere.com according to language.

We detail here the proposed methodology to summarize user reviews

in PoliVenus. We present the details of the implemented system and its

performances.

6.1 The Proposed Methodology

PoliVenus comes with many reviews extracted from Venere.com and Tripad-

visor.com. These reviews were only used to create the model for content-

based algorithms using the TF-IDF schema, but no further investigation

on the information they contain was performed originally. More precisely,

there are available 82897 reviews from Venere.com and 97831 reviews from

Tripadvisor.com. Reviews from Venere.com are both in English and Italian

(Table 6.1), while only Italian reviews were crawled from Tripdavisor.com

at the time of construction of PoliVenus. This constitutes a huge limitation,

since almost all the solutions in Natural Language Processing and Opinion

Mining consider English language. Consequently, we were able to process

only the English fraction of reviews from Venere.com, that is composed of

about 70K reviews. Still, this is a sufficient quantity of information to model

opinions in hotel reviews, as we will see later.

The extent of our study is to model efficiently the opinions expressed in

reviews in order to predict user ratings over the reviewed hotel. Each review

is processed to extract the opinion expressed over a set of homogeneous

features. Then a model based on such features is trained against the ratings

in the User-item Rating Matrix. Our approach can be subdivided in different

steps as follows:

1. Language detection to distinguish reviews’ language and process only

English reviews.

2. Feature-based opinion mining to create an homogeneous set of features

to be used in opinion extraction.

3. Opinion aggregation to compute the dominant opinions expressed by

each user over each item he/she reviewed.

74

4. Model construction to construct an precise model for summarization

purposes.

5. Rating prediction to summarize opinionated reviews with a single nu-

merical rating.

6.1.1 Language detection

The first task to be performed is necessarily language detection. At the

best of our knowledge, we are able to extract opinion only from English

reviews. Therefore it is necessary to detect the language in which reviews

are written to discard non-English ones. This is a huge limitation, especially

if we consider that about the 60% of the reviews we have are written in

Italian. However, English guarantees the generality of our approach, since

it is currently the most used language on the Web1.

There exists various tools that can automatically translate from Italian text

to English(e.g., Google Translate2 and Bing Translator3); however, many of

these instruments are not for free. Moreover, automatic translation is not an

exact process and can act as source of noise in our environment. Therefore,

we decided to consider only native-English reviews in our analysis, to keep

it the more clean and effective possible.

Several techniques based on statistical analysis of text are available,

based on, e.g., language trees [6], language n-grams models [10] or func-

tion words [25]. In our work we used the Java library LanguageDetection4,

which uses a Näıve Bayes model with character n-grams to detect 49 lan-

guages with more than 99% of accuracy.

6.1.2 Feature-based Sentiment Analysis

Opinionated text has to be processed properly to extract the opinions ex-

pressed the reviewer. We have already introduced sentiment analysis, or

opinion mining, in Section 2.5. Sentiment analysis is the computational

study of opinions, sentiments and emotions expressed in text. In our study

we adopted the feature-based approach to sentiment analysis we described

in Section 2.5.3. Hotel reviews, such as many other domains as movies or

books, tend to express opinions over the same set of aspects and qualities of

an hotel. For example, reviewers often express their feelings over the quality

1Source: http://www.internetworldstats.com/stats7.htm
2https://developers.google.com/translate/?hl=it
3http://www.bing.com/translator
4https://code.google.com/p/language-detection/

75

of the services of an hotel (e.g., air conditioning, breakfast, internet connec-

tion), or over its location and prices. Hence, hotel reviews are really suitable

for frequent feature extraction process. Here we report some reviews taken

from Venere.com dataset:

“A convenient hotel for a night before departure or onward jour-

ney. Typical chain hotel lacking the personal touch, but run

efficiently up to a good standard. The receptionist was friendly

and polite.”

“We loved the hotel, and the location was close to the main

area of Bologna. However, the street it was on was very busy

and industrial without any restaurants or anything really. That

being said, once you stepped into the hotel, it was amazing, and

we loved it so much that we stayed an extra night! Really quiet,

and comfortable.”

“Very good hotel on the whole; a bit far from the centre but there

is a good bus service within walking distance. Could do a bit

better as far as cleanliness in the rooms is concerned. Nothing

offputting though.”

It can be easily seen that the vocabulary of the three tends to converge

to a common set of opinionated features, such as hotel, receptionist, loca-

tion, rooms and centre. By extracting this common vocabulary we are able

to identify what are the aspects that really interest hotel reviewers. This

common set of variables, together with their opinion values, can be used to

train a comprehensive model of the opinions expressed in all the reviews.

However, opinions are expressed in different ways, so a robust opinion

mining application is needed to perform this kind of operation. Hence, we

decided to adopt the approach to feature-based sentiment analysis described

in [19]. This approach is exactly what we described in Section 2.5.3, and

it is reported to achieve very interesting performances in opinion extraction

from reviews over several different products, e.g., cameras and mp3 players.

It describes the extension of a prior opinion mining tool, called Opinion Ob-

server [38], with new functionalities in recognizing context-dependent opin-

ions. They used a lexicon-based approach to detect orientations of opinion

words in opinionated text associated to a frequent and infrequent features.

The detailed pseudo-code of the application is reported in Appendix A.3.

With the explosion of social networks many companies started to become

interested on the opinion over their products, and sentiment analysis have

became a critical tool in mining the enormous quantity of user-generated

76

content available on such networks. Research in opinion summarization and

mining have taken great advantage from this increasing interest of great

companies in this field. On the other hands, many the best algorithms

that have been developed are not freely available due to their big economic

potential, and are the base of many startups. Opinion Observer and its

extensions are no exception. Therefore, we needed to totally re-implement

the entire application to perform our analysis. Only the opinion lexicon used

by the authors is open-access5.

Regarding feature-based opinion analysis, there are some observations

that can be made by taking in account our domain of interest. In general,

the mining task consists of discovering any quintuple (oj , fjk, ooijkl, hi, tl)

and identifying all the synonyms Wjk and feature indicators Ijk of feature

fjk.

In the hotel domain, the object and the opinion holder can be deduced easily

from the review. The object oj is the reviewed hotel i and the opinion holder

hi is the user u who made the review.

We are interested in time tl, because a user u can express his/her opinion

over hotel i more than one time in different sentences or by writing different

reviews.

We will consider only frequent features, since we are interested in building

an homogeneous set of features in common with all the reviews. Infrequent

features are likely to appear in very few sentences and, although they can

bring useful information over the less common aspects of an hotel, they

cannot be used to compare a reviews with each other in a consistent and

coherent way.

Consequently, the original feature-based opinion mining problem can be

reduced to the following:

Given a set of reviews V = {vuil} written by user u over feature i at time

tl, we want to discover a set of features F = {f1, f2, . . . , fm} frequent in all

the reviews in V . A feature fk is frequent if it occurs in more than the 1%

of reviews in V , that is, if it has a support sup(fk) ≥ 0.01∥V ∥.
Since a frequent feature fk may not be opinionated in review vuil, we intro-

duced a new binary parameter pkuil, that we called feature presence:

pkuil =

{
+1 if review vuil contains featurefk

0 otherwise.
(6.1)

We want to discover any quadruple (fk, pkuil, ookuil, tl); if feature fk is

present in review vuil (i.e., pkuil = 1), then its quadruple contains the orien-

5http://www.cs.uic.edu/ liub/FBS/sentiment-analysis.html

77

tation oouikl of the opinion expressed by user u and hotel i over feature fk
at time tl. If feature fk it is not present in review vuil (i.e., pkuil = 0), then

its opinion orientation is meaningless and set to 0.

6.1.3 Opinion Aggregation

The result of feature-based opinion mining is a set of orientation values for

each feature present in each sentence of a review that we formalized in the

previous Section. Orientations are expressed in quadruples (fk, pkuil, ookuil, tl)

and are still dependent on time tl. Orientations should be then aggregated

in order to obtain the opinion of the user over the subset of features he/she

is interested in regarding a specific hotel.

More formally, we are interested in obtaining all triples (fk, pkui, ookui) which

express the overall opinion orientation ookui of user u and hotel i over all

the occurring features fk (i.e., pkui = 1), independently from time tl.

There exist two possible cases in which a user u express its opinion on

feature fk for hotel i, i.e., ∃l ̸= m|pkuil = 1 ∧ pkuim = 1: the user express

its opinion over feature fk in different sentences into the same review, or in

separate reviews. More specifically, these are the special cases we have to

handle:

1. A feature fk can have different orientation in different sentences of the

same review.

2. An user can review the same hotel more than one time (e.g., after

he/she has returned in the same hotel he booked previously, and he/she

wants to leave another comment on it).

In both cases a feature can be associated to more than one orientation score.

To correctly handle these cases, we associate to each feature its dominant

orientation, i.e., the orientation score that occurs more times for a specific

feature fk. Given the set of quadruples (fk, pkuil, ookuil, tl), for each feature

fk we fist compute the sum of its orientations over all time L:

skui =
∑
l∈L

pkuil · ookuil

=
∑
l∈L

ookuil,
(6.2)

since ookuil = 0 when pkuil = 0.

Then the dominant orientation ôkui of feature fk expressed by user u over

78

hotel i is computed as follows:

ôkui =

min(skui,+1) if skui > 0,

max(skui,−1) if skui < 0,

0 otherwise.

(6.3)

For example, consider the following two reviews, written by the same user

over the same review:

“Location[+1] perfectly central. Room[+1] and hotel[+1] of a

high standard. Staff[+1] excellent. However, the air conditioning[-

1] was not working at all. We’ll be coming back.”

“We returned to the same hotel[+1] as last year - so obviously

we like it! Great location[+1] at the end of the Ponte Ve-

chio. Quiet dispite being very central. Staff[+1] very help-

ful in (amoungst other things)providing an early breakfast [0] on

marathon morning! And now air conditioning[+1] was re-

newed and perfectly working!!!”

We typed in bold font the features in common between the two reviews.

Straightforwardly, the dominant orientations of features hotel, location and

staff is positive, with score +1. One may expect that opinions of users over

the same hotel should be consistent in every review. But this should not be

the fact, because the offer of services by hotels may vary over time, and so

the opinions of its hosts. That is the case for feature air conditioning, which

will be assigned to a dominant neutral opinion (score 0). Using dominant

opinion we are able to catch the overall feeling of the user over hotel features,

from oldest to newest ones.

6.1.4 Model Construction and Rating Prediction

After feature-opinion mining and opinion aggregation we have a set of triples

(fk, pkui, ôkui). For each user u, hotel i and feature fk, each triple tells us

whether fk is opinionated, pkui, and its dominat opinion orientation, ôkui.

The User-item Rating Matrix R = {rui} contains the ratings expressed

by user u on hotel i. The rating rui = 0 if the user u has not rated hotel

i. Otherwise, we consider ratings rui ∈ {1, 2, . . . , 5}. Our discussion can be

straightforwardly extended to other rating scales using translations.

We want to model ratings rui ∈ R using feature opinion orientations. Hence,

79

each rating rui can be expressed as follows:

rui =
∑
k,u,i

αkui · pkui +
∑
k,u,i

βkui · ôkui

=
∑
k,u,i

(αkui · pkui + βkui · ôkui)
(6.4)

This equation expresses the rating rui as the linear combination of two vari-

ables, namely the feature presence and feature orientation. Their effects

are considered separately and weighted differently through two weighting

matrices A = [αkui] and B = [βkui].

If we group the effects of feature presence and feature orientation, we

obtain the following simplified model:

rui =
∑
k,u,i

αkui · pkui · ôkui (6.5)

where the weighting matrix A = [αkui] now weights both feature presence

and opinion orientation. Moreover, since ôkui = 0 when pkui = 0, the (6.5)

can be further simplified to the following:

rui =
∑
k,u,i

αkui · ôkui (6.6)

In this way, ratings are estimated taking in account only the opinion ori-

entation of feature fk for user u and item k, regardless of feature presence.

Effectively, opinion orientation includes the information on feature presence

when ôkui ̸= 0. In case of neutral opinion ôkui = 0, we lost the informa-

tion about the presence of the feature fk and the model cannot distinguish

whether the user expressed a neutral opinion on the feature, or if he/she did

not considered it at all. However, we considered this loss of information less

important than the opportunity of managing a more simplified model.

The weighting matrix A is a tridimensional matrix of size ∥F∥ × ∥U∥ ×
∥I∥, where F is the set of features, U is the set of users and I is the set

of items. This weighting matrix is the real source of complexity in the

model, since it can be of very huge dimensions in real applications and very

hard to compute. To reduce its complexity, we introduce the following two

assumptions:

1. The importance of a specific feature fk is independent on user u, i.e.,

the weights of feature fk are not related with user u.

2. The importance of a specific feature fk is independent on item i, i.e.,

the weights of feature fk are not related with item i.

80

With these assumptions the model can be reduced to:

rui =
∑
k

αk · ôkui (6.7)

where α = [αk] is contains the weights of every frequent feature fk ∈ F .

The (6.7) can be transcribed as follows:

R = αT ·O (6.8)

where R is the URM of size ∥U∥ × ∥I∥, α is column vector of length ∥F∥,
and O is the opinion orientation matrix of size ∥F∥ × ∥U∥ × ∥I∥.
The vector α can be estimated by solving the following least squares prob-

lem:

argmin
ᾱk

(rui −
∑
k

ᾱk · ôkui)2 (6.9)

Once all weights ᾱk that minimize the squared error have been computed,

the predicted rating r̂ui is computed as:

r̂ui =
∑
k

ᾱk · ôkui (6.10)

6.2 Experimental Results

The first phase of the work, and the largest time consuming, regarded the

total re-implementation of the feature-based opinion mining application de-

scribed in [19]. We needed to totally recode a Java application that imple-

ments all the characteristics of the application, a part from the opinionated

lexicon that was available on the author’s website.

We used several open source libraries to this purpose:

• Apache OpenNLP 1.56 and Apache Lucene 4.0.07 libraries for natural

language processing operations like tokenization, stop-words filtering

and stemming;

• JWNL 1.38 to access to WordNet 2.1 Dictionary9;

• Simmetrics Library10 that provides several string similarity metrics to

be used to implement approximate string matching;

6http://opennlp.apache.org/
7http://lucene.apache.org/core/
8http://jwordnet.sourceforge.net/
9http://wordnet.princeton.edu

10http://sourceforge.net/projects/simmetrics/

81

• We extended the Apriori-Java Library11 to compute frequent features

in review sentences.

We tested our implementation on some of the test datasets used by the

authors to confirm the validity of our implementation. We obtained very

valuable results, although not equal due to the intrinsic difficulties in repli-

cating exactly another technology. Moreover, each possible context requires

an extensive study in order to identify possible context-depended opinion

words, feature indicators and synonyms. Nonetheless, we were not inter-

ested into obtaining a perfect match between the original and our applica-

tion, but more in obtaining a correctly tuned instrument to be used in the

subsequent elaborations.

6.2.1 Training the Instrument

Feature-based opinion mining tool is a unsupervised learning instrument

that needed to be properly trained in order to process correctly all the review

in the dataset. We trained the feature-based opinion mining instrument over

10K randomly selected reviews (i.e., the training set) taken from the 73348

English reviews of Venere.com. The training process is necessary to extract

frequent features, to identify synonyms and antonyms of opinion words, and

to assign the orientation to context-dependent opinion words. This data will

be subsequently used in the actual elaboration of all the reviews, as it can

be seen from the pseudo-code of the application we reported in Appendix

A.3.

Each sentence was extracted and considered as a transaction. We set the

minimum support threshold to 1%, i.e., all the words and words and word

phrases that occurs more at least in the 1% of the extracted sentences are

considered as frequent features.

We successfully extracted 65 frequent features from the training set. They

are completely reported in Table A.1 together with their support informa-

tion. It can be seen that this process extracts several words and word phrases

that are really meaningful for the tourism domain. For example, the most

frequent words are hotel, room, breakfast and staff, which clearly are broadly

used by reviewers and are very valuable features to describe hotels. Further-

more, also some interesting word phrases are automatically extracted, such

as train station and room clean.

Some sample opinion words related to feature location is reported in Ta-

ble 6.2. Opinion words are associated to each feature together to their

11code.google.com/p/apriori-java/

82

cumulative orientation value, i.e., the sum of the opinions collected over all

sentences, and their respective dominant opinion. It is necessary to compute

dominant opinion in handling context-dependent opinion words, for which

opinion cannot be defined a-priori. It can be seen that the opinion words

are clearly related with the feature location.

Opinion Words Cum. Orientation Dom. Orientation

limited -1 -1

satisfied 13 +1

benefit 2 +1

thrilled -1 -1

nice 54 +1

fortunately 1 +1

optimal 2 +1

strange -1 -1

free 3 +1

excellent 10 +1

appealing 0 0

right 20 +1

enjoyable 1 +1

Table 6.2: Sample opinion words extracted for feature location, together with their

cumulative and dominant orientation.

Once the opinion mining tool has been properly trained, we processed

all the reviews in dataset to extract all the triples (feature, feature presence,

opinion orientation). For each sentence, all the features that occur are first

extracted, and then their opinion orientation is computed. After that, for

each review is computed the dominant orientation of all the features that

have been previously mined. Finally, opinions are from reviews on the same

hotel from the same user are aggregated.

In the end, we obtained the matrix O of opinion orientations we described

in the previous section. The opinion aggregation step reduces the number

of opinionated records from the initial 73348 to 43737 records, regarding the

opinion expressed by 43154 users over 2297 hotels.

Table 6.4 reports some statistics over the opinion mining process. We can

see that almost every user have expressed one opinion. This fact justifies the

first assumption we made to simplify the model described in the previous

Section, i.e., considering features as independent from users. In fact, if users

tends to express only one opinion, there is no need to model the weight of

features per user.

Hotels instead received in average 20 opinions each. However, the median

83

number of opinions per hotel is only 8. The box plot in Figure 6.1 shows

that hotels with really many opinion records are outliers in the distribution,

therefore also our second assumption, i.e., the independence between feature

weights and hotels, still holds. This because it would be really difficult to

create a statistically significant model of the importance of each feature

per hotel with such poor base of opinion records, with consequently poor

performances in rating prediction.

We provide here only an excerpt of the results we can obtain after the

opinion mining elaboration. For example, consider the following review:

“The place was good and the breakfast was excellent.

My only complaint is that we had requested a non-smoking room

and the room we got reeked of smoke so bad we had to leave the

window open-in December.”

The features that have been identified, together with their feature presence

and opinion orientation values are the following:

Feature Presence Orientation

place 1 +1

good 1 +1

breakfast 1 +1

room 1 -1

window 1 -1

Table 6.3: Example of feature-based opinion mining.

It shows that features and opinions are well detected. In fact, the users

express a favourably over the place and breakfast, and complains over the

room. Moreover, it can be seen that feature presence is a redundant field if

no neutral opinion is expressed by the user.

6.2.2 Model Training and Evaluation

After the opinion extraction processes, we have a sufficient amount of data

to train the model we described in Section 6.1.4. We used Matlab R2009b

for matrix processing, and its Statistics Toolbox to train the model and

check the quality of predictions. Matlab provides several instruments to

solve least squares problems and, in general, to train and test linear models.

We started from the matrix O, a tridimensional sparse matrix of size

∥F∥ × ∥U∥ × ∥I∥, where ∥F∥ = 65, ∥U∥ = 43154 and ∥U∥ = 2297. O

contains ∥U∥ · ∥I∥ opinion orientation records computed in the previous

step.

84

Processed reviews 73348

Aggregated opinions 43737

Users 43154

Hotels 2297

Max Opinions/User 10

Min Opinions/User 1

Avg. Opinions/User 1.098

Median Opinions/Users 1

Max Opinions/Hotel 563

Min Opinions/Hotel 1

Avg. Opinions/Hotel 20.619

Median Opinions/Hotel 8

Table 6.4: Statistics over the opinion mining processing (Opinions refers to the aggre-

gated opinion record associated to a pair (user,hotel)).

Together we extracted the rating matrix R from the URM of PoliVenus, by

picking the rating corresponding to each pair (user,item) in O. R is also a

sparse matrix with values in [1, 5]. The missing ratings are treated as zeros.

We divided both matrices into two sets, namely the training and the test set.

The training set comprises the 80% of randomly selected opinion records of

O and their respective ratings in R. The remaining 20% is used as test set.

We slightly modified the general model in (Equation 6.8) by adding a

constant term α0 to include constant variations in user ratings. The result

is the following:

R = α0 +αT ·O
= α̂T · [1|O]

(6.11)

We computed the weighting vector α̂ by solving the least squares problem

in (6.9) over the training set. We then evaluate the accuracy of predictions

using the (6.10). To assess the quality of predictions we computed the Root

Mean Squared Error (RMSE) with 10-fold cross-validation over the test set.

We obtained a RMSE of 0.6739.

The resulting weight vector, together with the 95% confidence intervals,

is reported in table A.2. We have obtained appreciable performances in

prediction, especially if we consider how noisy and hard to manage is the

user-generated content we started from.

85

0

100

200

300

400

500

1

Figure 6.1: Boxplot of the distributions of opinion records per hotel.

86

Chapter 7

Conclusions and Future

Work

In the previous chapters we have explained the characteristics of a RSs in

suitable for application in the e-tourism domain. We have introduced an

effective implicit elicitation method. We have accurately modeled the phe-

nomenon of constrained availability of items and the variation of items avail-

ability across time. We have exhaustively studied the impact of bounded

availability of hotels on the quality of recommendations. We performed both

offline system-centric analysis and online user-centric analysis of the quality

of recommendations through an accurate user experiment.

It results that personalized recommendations combined with implicit elici-

tation are able to provide very good recommendations in every experimental

condition. Especially, they can mitigate the potentially negative effects of

circumstantial scarcity of resources and to increase customers’ trust.

This research can be useful to design recommendation algorithms opti-

mized for “the best are gone” condition. This condition is of really practical

interest, since there are many domains affected by such type of item con-

sumption. The absence of the most interesting items can be seen by users as

a weakness of the catalogue of offers. Users may ascribe this phenomenon

to the provider, reduce their trust on it, and eventually leave the system

in favour of a competitor. Providing personalized recommendations when

many of the most interesting items are not available can really make the

difference, keeping user satisfaction high also when the contingent situation

makes the decision making process harder.

Moreover, we proposed a novel approach in user review summarization.

We have used the English reviews available in PoliVenus to extract the

opinions that users expressed on the most interesting features of every ho-

tel. We then computed a linear model to weight features according to the

numerical rating given reviewers on hotels. We were able to achieve good

performances in predicting the numerical rating starting from the opinion

orientation records extracted from textual reviews.

This type of opinion summarization associates the qualitative set of opin-

ions expressed in reviews to a single numerical rating that express the overall

feeling of the user on the hotel. This potentially allows to enrich User-item

Rating Matrices with new ratings generated from users’ reviews, leading to

more reliable results in collaborative recommendations.

There exist several more potential developments in the integration be-

tween RSs and user textual reviews. In the hotel domain users tends to

review the same hotel more times, hence some temporal decay schema can

be introduce to give greater importance to newer reviews than to older ones

in computing dominant opinions, since the most recent reviews may reflect

better the actual feelings of the user on hotel qualities.

Feature-based opinion mining provides detailed information on the opinion

that each user have on a selected subset of interesting features. By opinion

summarization we lost this detailed information in favour of a more compact

numerical rating. Consequently, it would be advisable to use feature opin-

ions in an mixed collaborative/content-based algorithm, which integrates

hotel features with the information over the opinions expressed by users on

these features. Such kind of opinion-based recommendation algorithm will

be aware of user interests and tastes, and can recommend him/her items

similar to what he liked in the past and on which other users expressed

favourable opinions.

Finally, it is well known that numerical user ratings are often biased by

the systematic tendency for some group of users to rate higher then others.

Each user has a different perception of the value subsumed by every numer-

ical value, and this has great influence on the ratings they give to items.

But in textual reviews users can freely express their opinion on items with-

out being constrained by a rigid numerical scale. Therefore, the opinions

contained in reviews can potentially be more reliable than the mere numer-

ical rating. Consequently, by adopting a different opinion summarization

schema, we are able to create more reliable URMs and, thus, to provide

more effective recommendations.

88

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next gen-

eration of recommender systems: A survey of the state-of-the-art and

possible extensions. Knowledge and Data Engineering, IEEE Transac-

tions on, 17(6):734–749, 2005.

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for min-

ing association rules. In Proc. 20th Int. Conf. Very Large Data Bases,

VLDB, volume 1215, pages 487–499, 1994.

[3] Chris Anderson. The long tail: Why the future of business is selling

less of more. Hyperion Books, 2008.

[4] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiword-

net 3.0: An enhanced lexical resource for sentiment analysis and opinion

mining. In LREC, volume 10, pages 2200–2204, 2010.

[5] Riccardo Bambini, Paolo Cremonesi, and Roberto Turrin. A recom-

mender system for an iptv service provider: a real large-scale produc-

tion environment. In Recommender Systems Handbook, pages 299–331.

Springer, 2011.

[6] Dario Benedetto, Emanuele Caglioti, and Vittorio Loreto. Language

trees and zipping. Physical Review Letters, 88(4):048702, 2002.

[7] Michael W Berry. Large-scale sparse singular value computations. In-

ternational Journal of Supercomputer Applications, 6(1):13–49, 1992.

[8] Robin Burke. Integrating knowledge-based and collaborative-filtering

recommender systems. In Proceedings of the Workshop on AI and Elec-

tronic Commerce, pages 69–72, 1999.

[9] Robin Burke. Hybrid recommender systems: Survey and experiments.

User modeling and user-adapted interaction, 12(4):331–370, 2002.

89

[10] William B Cavnar, John M Trenkle, et al. N-gram-based text catego-

rization. Ann Arbor MI, 48113(2):161–175, 1994.

[11] Eugene Charniak. Statistical techniques for natural language parsing.

AI magazine, 18(4):33, 1997.

[12] Lorcan Coyle and Pádraig Cunningham. Improving recommendation

ranking by learning personal feature weights. In Advances in Case-

Based Reasoning, pages 560–572. Springer, 2004.

[13] Paolo Cremonesi, Franca Garzotto, Sara Negro, Alessandro Vittorio

Papadopoulos, and Roberto Turrin. Looking for good recommenda-

tions: A comparative evaluation of recommender systems. In Human-

Computer Interaction–INTERACT 2011, pages 152–168. Springer,

2011.

[14] Paolo Cremonesi, Franca Garzotto, and Roberto Turrin. User-centric

vs. system-centric evaluation of recommender systems. In Human-

Computer Interaction–INTERACT 2013, pages 334–351. Springer,

2013.

[15] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of

recommender algorithms on top-n recommendation tasks. In Proceed-

ings of the fourth ACM conference on Recommender systems, pages

39–46. ACM, 2010.

[16] Paolo Cremonesi and Roberto Turrin. Time-evolution of iptv recom-

mender systems. In Proceedings of the 8th international interactive

conference on Interactive TV&Video, pages 105–114. ACM, 2010.

[17] Kushal Dave, Steve Lawrence, and David M Pennock. Mining the

peanut gallery: Opinion extraction and semantic classification of prod-

uct reviews. In Proceedings of the 12th international conference on

World Wide Web, pages 519–528. ACM, 2003.

[18] Mukund Deshpande and George Karypis. Item-based top-n recommen-

dation algorithms. ACM Transactions on Information Systems (TOIS),

22(1):143–177, 2004.

[19] Xiaowen Ding, Bing Liu, and Philip S Yu. A holistic lexicon-based ap-

proach to opinion mining. In Proceedings of the international conference

on Web search and web data mining, pages 231–240. ACM, 2008.

[20] Antonio Donatacci. Exploring recommender systems for decision-

making in e-tourism. Master’s thesis, Politecnico di Milano, 2012.

90

[21] Sara Drenner, Shilad Sen, and Loren Terveen. Crafting the initial user

experience to achieve community goals. In Proceedings of the 2008 ACM

conference on Recommender systems, pages 187–194. ACM, 2008.

[22] Andy P. Field. Analysis of Variance (ANOVA), pages 33–36. SAGE

Publications, Inc., 0 edition, 2007.

[23] George W Furnas, Scott Deerwester, Susan T Dumais, Thomas K Lan-

dauer, Richard A Harshman, Lynn A Streeter, and Karen E Lochbaum.

Information retrieval using a singular value decomposition model of la-

tent semantic structure. In Proceedings of the 11th annual international

ACM SIGIR conference on Research and development in information

retrieval, pages 465–480. ACM, 1988.

[24] Nadav Golbandi, Yehuda Koren, and Ronny Lempel. On bootstrapping

recommender systems. In Proceedings of the 19th ACM international

conference on Information and knowledge management, pages 1805–

1808. ACM, 2010.

[25] Gregory Grefenstette. Comparing two language identification schemes.

In Proceedings of the 3rd International Conference on Statistical Anal-

ysis of Textual Data (JADT 95), pages 263–268, 1995.

[26] Minqing Hu and Bing Liu. Mining and summarizing customer reviews.

In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 168–177. ACM, 2004.

[27] Minqing Hu and Bing Liu. Mining opinion features in customer reviews.

In AAAI, volume 4, pages 755–760, 2004.

[28] Dietmar Jannach, Markus Zanker, Markus Jessenitschnig, and Oskar

Seidler. Developing a conversational travel advisor with advisor suite.

Information and Communication Technologies in Tourism 2007, pages

43–52, 2007.

[29] Nicholas Jones and Pearl Pu. User technology adoption issues in recom-

mender systems. Proceedings of NAEC, ATSMA, pages 379–39, 2007.

[30] H Kim, Kavita Ganesan, PARIKSHIT Sondhi, and CHENGXIANG

Zhai. Comprehensive review of opinion summarization. Illinois Envi-

ronment for Access to Learning and Scholarship, Tech. Rep, 2011.

[31] Ron Kohavi. A study of cross-validation and bootstrap for accuracy

estimation and model selection. pages 1137–1143. Morgan Kaufmann,

1995.

91

[32] Yehuda Koren. Factorization meets the neighborhood: a multifaceted

collaborative filtering model. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining,

pages 426–434. ACM, 2008.

[33] Antonis Koukourikos, Giannis Stoitsis, and Pythagoras Karampiperis.

Sentiment analysis: A tool for rating attribution to content in rec-

ommender systems. In Proceedings of the 2nd Workshop on Recom-

mender Systems for Technology Enhanced Learning (RecSysTEL 2012).

Manouselis, N., Drachsler, H., Verbert, K., and Santos, OC (Eds.).

Published by CEUR Workshop Proceedings, volume 896, pages 61–70,

2012.

[34] Asher Levi, Osnat Mokryn, Christophe Diot, and Nina Taft. Find-

ing a needle in a haystack of reviews: cold start context-based hotel

recommender system. In Proceedings of the sixth ACM conference on

Recommender systems, pages 115–122. ACM, 2012.

[35] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recom-

mendations: Item-to-item collaborative filtering. Internet Computing,

IEEE, 7(1):76–80, 2003.

[36] Bing Liu. Web data mining: exploring hyperlinks, contents, and usage

data. Springer, 2007.

[37] Bing Liu. Sentiment analysis and subjectivity. Handbook of natural

language processing, 2:568, 2010.

[38] Bing Liu, Minqing Hu, and Junsheng Cheng. Opinion observer: ana-

lyzing and comparing opinions on the web. In Proceedings of the 14th

international conference on World Wide Web, pages 342–351. ACM,

2005.

[39] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-

based recommender systems: State of the art and trends. In Recom-

mender Systems Handbook, pages 73–105. Springer, 2011.

[40] Pasquale Lops, Marco Degemmis, and Giovanni Semeraro. Improving

social filtering techniques through wordnet-based user profiles. In User

Modeling 2007, pages 268–277. Springer, 2007.

[41] Yue Lu, ChengXiang Zhai, and Neel Sundaresan. Rated aspect sum-

marization of short comments. In Proceedings of the 18th international

conference on World wide web, pages 131–140. ACM, 2009.

92

[42] Christopher D Manning and Hinrich Schütze. Foundations of statistical

natural language processing, volume 999. MIT Press, 1999.

[43] Benjamin M Marlin and Richard S Zemel. Collaborative prediction

and ranking with non-random missing data. In Proceedings of the third

ACM conference on Recommender systems, pages 5–12. ACM, 2009.

[44] Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and ChengXiang

Zhai. Topic sentiment mixture: modeling facets and opinions in we-

blogs. In Proceedings of the 16th international conference on World

Wide Web, pages 171–180. ACM, 2007.

[45] Stuart E Middleton, Harith Alani, and David C De Roure. Exploiting

synergy between ontologies and recommender systems. arXiv preprint

cs/0204012, 2002.

[46] Bradley N Miller, Istvan Albert, Shyong K Lam, Joseph A Konstan,

and John Riedl. Movielens unplugged: experiences with an occasionally

connected recommender system. In Proceedings of the 8th international

conference on Intelligent user interfaces, pages 263–266. ACM, 2003.

[47] George A Miller. Wordnet: a lexical database for english. Communi-

cations of the ACM, 38(11):39–41, 1995.

[48] Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Sutinen, and Jorma

Tarhio. Indexing methods for approximate string matching. IEEE Data

Eng. Bull., 24(4):19–27, 2001.

[49] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foun-

dations and trends in information retrieval, 2(1-2):1–135, 2008.

[50] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?:

sentiment classification using machine learning techniques. In Proceed-

ings of the ACL-02 conference on Empirical methods in natural lan-

guage processing-Volume 10, pages 79–86. Association for Computa-

tional Linguistics, 2002.

[51] Ana-Maria Popescu and Orena Etzioni. Extracting product features

and opinions from reviews. In Natural language processing and text

mining, pages 9–28. Springer, 2007.

[52] Martin F Porter. An algorithm for suffix stripping. Program: electronic

library and information systems, 14(3):130–137, 1980.

93

[53] Stephen R Porter and Michael E Whitcomb. The impact of lottery

incentives on student survey response rates. Research in Higher Edu-

cation, 44(4):389–407, 2003.

[54] Bruno Pradel, Nicolas Usunier, and Patrick Gallinari. Ranking with

non-random missing ratings: influence of popularity and positivity on

evaluation metrics. In Proceedings of the sixth ACM conference on

Recommender systems, pages 147–154. ACM, 2012.

[55] Pearl Pu, Li Chen, and Rong Hu. A user-centric evaluation framework

for recommender systems. In Proceedings of the fifth ACM conference

on Recommender systems, pages 157–164. ACM, 2011.

[56] Vijay Raghavan, Peter Bollmann, and Gwang S Jung. A critical inves-

tigation of recall and precision as measures of retrieval system perfor-

mance. ACM Transactions on Information Systems (TOIS), 7(3):205–

229, 1989.

[57] Al Mamunur Rashid, George Karypis, and John Riedl. Learning pref-

erences of new users in recommender systems: an information theoretic

approach. ACM SIGKDD Explorations Newsletter, 10(2):90–100, 2008.

[58] Francesco Ricci and Fabio Del Missier. Supporting travel decision mak-

ing through personalized recommendation. In Designing personalized

user experiences in eCommerce, pages 231–251. Springer, 2004.

[59] Francesco Ricci, Daniel R. Fesenmaier, Nader Mirzadeh, Hildegard

Rumetshofer, Erwin Schaumlechner, Adriano Venturini, Karl W.

Wöber, and Andreas H. Zins. Dietorecs: a case-based travel advisory

system. Destination Recommendation Systems: Behavioural Founda-

tions and Applications, pages 227–239, 2006.

[60] Ellen Riloff and Janyce Wiebe. Learning extraction patterns for sub-

jective expressions. In Proceedings of the 2003 conference on Empirical

methods in natural language processing, pages 105–112. Association for

Computational Linguistics, 2003.

[61] Gerard Salton. Automatic Text Processing: The Transformation, Anal-

ysis, and Retrieval of. Addison-Wesley, 1989.

[62] Sunita Sarawagi. Information extraction. Foundations and trends in

databases, 1(3):261–377, 2008.

94

95

[63] Peter D Turney. Thumbs up or thumbs down?: semantic orientation

applied to unsupervised classification of reviews. In Proceedings of the

40th annual meeting on association for computational linguistics, pages

417–424. Association for Computational Linguistics, 2002.

[64] Janyce M Wiebe, Rebecca F Bruce, and Thomas P O’Hara. Develop-

ment and use of a gold-standard data set for subjectivity classifications.

In Proceedings of the 37th annual meeting of the Association for Com-

putational Linguistics on Computational Linguistics, pages 246–253.

Association for Computational Linguistics, 1999.

96 Chapter 7. Conclusions and Future Work

Appendix A

Appendix

A.1 Implicit Elicitation in Polivenus

We report here the detailed objects used in PoliVenus for implicit elicitation

we described in detail in Section 3. Each figure shows all the objects available

in the user interface. Active objects are highlighted, and generate signals

that are used to create the user profile.

Figure A.1: Objects in the homepage.

98 Appendix A. Appendix

Figure A.2: Objects in hotel list page.

Figure A.3: Objects in hotel list page.

A.1. Implicit Elicitation in Polivenus 99

Figure A.4: Objects in hotel detail page (they are repeated in map and review pages).

100 Appendix A. Appendix

Figure A.5: Objects in the hotel location map.

Figure A.6: Objects in the reservation detail page.

A.1. Implicit Elicitation in Polivenus 101

Figure A.7: Objects in the booking confirmation page.

102 Appendix A. Appendix

A.2 Final Survey

Here we report the final survey that the participants of the user experiment

has to complete at the end of the task. Each question is associated with the

possible responses (parenthesis) and sub-questions (square brackets).

1. Is this the first time you stay in Rome? (Yes/No)

2. Did you previously stay in the hotel you choose? (Yes/No)

3. Is there any other hotel, different from the one you choose, that you

would like to book but it was not available? (Yes/No)

4. Are you satisfied with your final choice? (No/Sufficient/Yes)

5. How much time did you approximately spend to make your reserva-

tion? (5/10/15/20/30 or more minutes)

6. Do you feel that such time was: (short/normal/long)

7. Do you feel that this activity was: (simple/correct/hard)

8. Will the description of the chosen hotel match its real characteristics?

(Yes/No)

9. Do you think that this web site offers a satisfying hotel booking ser-

vice? (No/Sufficient/Yes)

10. How many times do you use online hotel booking services? (Never/1

or 2/3 or more times per year)

11. Do you usually use Venere.com? (Never/1 or 2/3 or more times per

year)

12. What are your priorities whey travel for vacation? [Price/Serices/Po-

sition/Adequate to my family] (Modest/Indifferent/Very important)

13. How old are you?

14. Gender

15. Nationality

16. Educational qualification

17. Profession

A.2. Final Survey 103

18. Where are you at the moment? (At Home/University/Work/Holi-

day/Other)

19. Do you have any commend you would like to express over PoliVenus?

(Free text)

104 Appendix A. Appendix

A.3 Opinion Observer Pseudo-Code

We report here the entire pseudo-code of the feature-based opinion min-

ing tool we have re-implemented. The detailed explanation of the code is

available in [19].

Algorithm A.1 OpinionOrientation()

1: foreach Sentence si that contains a set of features do

2: F ← features in si
3: foreach Feature fi ∈ F do

4: orientation← 0

5: if Feature fi is in “but” clause then

6: orientation← apply the “but” clause rule

7: else

8: Remove “but” clause from si if it exists

9: foreach Unmarked opinion word ow ∈ si do

10: /∗ ow can bee a TOO word or Negation word as well ∗/
11: orientation += WordOrientation(ow,fi,si)

12: if orientation > 0 then

13: fi’s orientation in si = 1

14: else if orientation < 0 then

15: fi’s orientation in si = −1
16: else

17: fi’s orientation in si = 0

18: if fi is an adjective then

19: (fi).orientation += fi’s orientation in si
20: else

21: oij ← nearest opinion word to fi in si
22: (fi, oij).orientation+=fi’s orientation in si

23: /∗ Context-dependent opinion words handling ∗/
24: foreach fi with orientaiton = 0 in sentence si do

25: if fi is an adjective then

26: fi’s orientation in si = (fi).orientation

27: else

28: /∗ Synonym and antonym rule should be applied too ∗/
29: oij ← nearest opinion word to fi in si
30: if Exists (fi, oij) then

31: fi’s orientation in si = (fi, oij).orientation

32: if fi’s orientation in si = 0 then

33: fi’s orientation in si = apply inter-sentence conjunction rule

A.3. Opinion Observer Pseudo-Code 105

Algorithm A.2 WordOrientation(word, feature, sentence)

1: if word is a Negation word then

2: orientation = apply Negation Rules

3: mark words in sentence used by Negation rules

4: else if word is a TOO word then

5: orientation = apply TOO Rules

6: mark words in sentence used by TOO rules

7: else

8: orientation = orientation of word in opinionWord list

106 Appendix A. Appendix

A.4 Frequent Features

We report here the frequent features used in feature-based opinion mining

over reviews in PoliVenus. Features marked with asterisk (*) are subse-

quently removed using sequential backward feature selection.

Feature Support

hotel 9414

room 6696

breakfast 3407

staff 3276

locat 3117

good* 2467

place 1738

stay 1626

great 1624

station 1566

night 1410

price 1375

time 1195

walk 1150

friend* 1139

restaur 1101

area* 1087

bathroom* 1050

servic 1041

hotel room 1013

train 990

street 928

clean* 891

small* 851

hotel locat 842

littl 842

citi* 830

room breakfast 793

bus* 786

help 760

hotel staff 746

train station* 729

bed 692

Feature Support

view 683

valu 682

quiet 642

problem* 622

peopl 620

distanc 585

nois 566

floor* 556

metro 531

shower* 530

hotel station 528

room clean 522

room bathroom 522

room staff 520

front* 501

site 495

hotel breakfast 484

money 468

staff help 467

way 460

staff friend 459

b&b* 457

trip 455

english 454

airport 446

window 436

thing 430

recept 428

desk 424

hotel price* 422

owner 421

central 421

Table A.1: Frequent features extracted from reviews in PoliVenus. Features marked

with asterisk (*) are subsequently removed with sequential backward feature selection.

A.5. Linear Model Weights 107

A.5 Linear Model Weights

We report here the complete list of feature weights used in our opinion

summarization in PoliVenus. Each weight is presented together with its

95% confidence interval.

Feature Weight Lower Limit Upper Limit

α0 4.3796 4.3693 4.3899

hotel 0.1341 0.1222 0.1461

room 0.0596 0.0231 0.0961

breakfast 0.0735 0.0605 0.0866

staff 0.1421 0.1151 0.1691

locat 0.0520 0.0374 0.0665

place 0.0385 0.0082 0.0687

stay 0.0283 0.0075 0.0491

great 0.0580 0.0266 0.0895

station 0.1321 0.1098 0.1544

night -0.0208 -0.0423 0.0006

price 0.1562 0.1421 0.1704

time 0.0629 0.0370 0.0888

walk 0.0343 0.0117 0.0568

restaur 0.0720 0.0359 0.1080

servic -0.0172 -0.0426 0.0081

hotel room 0.0940 0.0422 0.1457

train 0.0162 -0.0249 0.0573

street 0.0470 0.0228 0.0712

hotel station 0.1484 0.0798 0.2171

littl 0.0306 0.0081 0.0532

room breakfast 0.0588 0.0150 0.1025

help 0.0667 0.0365 0.0968

hotel staff 0.1306 0.0891 0.1722

hotel locat 0.0215 -0.0098 0.0527

bed 0.0393 0.0063 0.0723

view 0.0616 0.0407 0.0825

valu 0.0353 -0.0000 0.0707

quiet 0.0605 0.0274 0.0936

peopl 0.0957 0.0758 0.1156

distanc -0.0464 -0.0707 -0.0222

nois -0.0677 -0.1034 -0.0319

metro 0.0205 -0.0054 0.0464

Table A.2: Resulting weight per feature together with their 95% confidence intervals.

108 Appendix A. Appendix

Feature Weight Lower Limit Upper Limit

room clean 0.0383 0.0104 0.0662

room bathroom 0.0461 0.0108 0.0814

room staff 0.1999 0.1091 0.2908

site 0.1261 0.1071 0.1451

hotel breakfast 0.1092 0.0189 0.1994

money 0.0527 0.0234 0.0821

staff help 0.1518 0.1225 0.1810

way 0.1211 0.0818 0.1604

staff friend 0.0984 0.0723 0.1245

trip 0.0847 0.0702 0.0992

english 0.0209 -0.0152 0.0569

airport -0.2157 -0.2496 -0.1818

window 0.0503 0.0272 0.0733

thing 0.0356 0.0024 0.0688

recept 0.0411 0.0073 0.0749

desk 0.0330 -0.0306 0.0965

owner 0.0643 0.0297 0.0988

central 0.1492 0.1061 0.1924

Table A.3: Resulting weight per feature together with their 95% confidence intervals.

