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Abstract 
 

 
In this master thesis a specific type of multithreading technique – Simultaneous 

Multithreading (SMT) is investigated. All experiments are conducted with Intel’s proprietary 

implementation of it, officially referred to as Intel Hyper - Threading Technology (HTT), 

which in fact represents two-way SMT. 

Simultaneous Multithreading aims to improve the utilization of processor resources by 

exploiting thread-level parallelism at the core level, resulting in an increase in overall system 

throughput. Intel uses this technology ubiquitously in its latest series of processors.  

An extensive number of benchmark runs have been performed to understand the performance 

impact of HTT resulting in around 90 hours of run under different configurations of the 

system under test (SUT). Two different benchmarking suites with their own features and 

measuring approaches have been utilized for this purpose: SPEC Power SSJ 2008 benchmark 

and a synthetic benchmark stressing both ALUs and memory hierarchy. It has been 

experimentally proven that SMT, and HTT in particular, has the potential to dramatically 

improve utilization of the processor, increase overall throughput of the system (up to 33%) 

and decrease the system response time. 

Unfortunately, modeling of SMT in Queuing Networks is still an open problem. Hence, we 

propose two Queuing Network models able to adequately predict performance impacts 

enabled by the technology. The first model is based on a birth-death Markov chain and the 

second is based on a Queuing Network with Finite Capacity Region (FCR). We validated the 

two proposed models on the datasets obtained from benchmark runs and observed that they 

achieve good accuracy with estimation error within the 3% - 10% interval. Lastly, we 

performed extensive comparisons between our models and the state of the art. 
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Sommario 
 

 
In questa tesi prendiamo in considerazione una particolare tecnica di multithreading, il 

Simultaneous Multithreading (SMT). Gli esperimenti sono stati effettuati 

sull'implementazione proprietaria realizzata da Intel, chiamata ufficialmente Intel Hyper-

Threading Technonlogy (HTT), che è sostanzialmente un SMT a due vie. 

Il Simultaneous Multithreading ha lo scopo di migliorare l'utilizzo delle risorse del processore 

sfruttando il parallelismo a livello di thread, risultando quindi in un aumento del throughput 

del sistema. Intel usa questa tecnologia nelle più recenti serie dei sui processori.  

Sono stati effettuati un vasto numero di benchmark per valutare l'impatto dell'HTT, per un 

totale di 90 ore, utilizzando differenti configurazioni del sistema di test (System Under Test - 

SUT). Due differenti suite di benchmark, con differenti caratteristiche e approcci di 

misurazione, sono state utilizzate per questo scopo: SPEC POWER SSJ 2008 e un benchmark 

sintetico che stressa sia le ALU che la gerarchia di memoria. Abbiamo mostrato sperimentale 

che il SMT, e l'HTT in particolare, hanno il potenziale di migliorare l'utilizzo del processore, 

incrementare drammaticamente il throughput del sistema (sino al 33%) e abbassare il tempo 

di risposta del sistema.  

Sfortunatamente, modellare il SMT nelle reti di code è ancora un problema aperto. Pertanto, 

proponiamo due modelli a code in grado di predire l'impatto prestazione della tecnologia e 

valutiamo la loro accuratezza sui data-set ottenuti dall'esecuzione dei benchmark. Il primo 

modello è modello è basato una catena di Markov nascita-e-morrte e il secondo è basato sulle 

reti di code con regioni a capacità finita (Finite Capacity Region - FCR). Abbiamo validato i 

due modelli posti sui dataset ottenuti dall'esecuzione dei benchmark e abbiamo osservato che 

ottengono una buona precisione con un errore di stima nell'intervallo 3%-10%. Infine, 

abbiamo effettuato un confronto esaustivo con lo stato dell'arte. 
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Chapter 1 

 

 
 
 
 

Introduction 
 

 

 

1.1 Background 
 

Continuous progress in manufacturing technologies results in the performance of 

microprocessors that has been steadily improving over the last decades, doubling every 

eighteen months (Moore’s law [26]). At the same time, the capacity of memory chips has also 

been doubling every eighteen months, but the performance has been improving less than ten 

percent per year [21]. The latency gap between the processor and its memory doubles 

approximately every six years, and an increasing part of the processor’s time is spent on 

waiting for the completion of memory operations. Matching the performances of the 

processor and the memory is an increasingly difficult task [10][21]. In effect, it is often the 

case that up to sixty percent of execution cycles are spent waiting for the completion of 

memory accesses. 

Many techniques have been developed to tolerate long-latency memory accesses. One such 

technique is instruction-level multithreading which tolerates long-latency memory accesses by 

switching to another thread (if it is available for execution) rather than waiting for the 

completion of the long–latency operation. If different threads are associated with different sets 

of processor registers, switching from one thread to another (called “context switching”) can 

1 
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be done very efficiently. 

In this work we analyze Simultaneous Multithreading (SMT) – the most advanced type of 

multithreading, where several threads can issue instructions at the same time. If a processor 

contains more than one pipeline, or it contains several functional units, the instructions can be 

issued simultaneously; if there is only one pipeline, only one instruction can be issued in each 

processor cycle, but the (simultaneous) threads complement each other in the sense that 

whenever one thread cannot issue an instruction (because of pipeline stalls or context 

switching), an instruction is issued from another thread, eliminating ‘empty’ instruction slots 

and increasing the overall performance of the processor. The objective of Simultaneous 

Multithreading is to substantially increase processor utilization in the face of both long 

instruction latencies and limited available parallelism per thread. The biggest advantage of 

Simultaneous Multithreading technique is that it requires only some extra hardware instead of 

replicating the entire core.  

Some time ago Intel announced about its proprietary implementation of SMT, later called 

Hyper – Threading Technology (HTT), which basically allowed each processor 

core physically present in the system to be addressed by the operating system as two logical or 

virtual cores, and to share the workload between them when possible. 

 

1.2 Motivation 
 

The multithreading paradigm has become more popular as efforts to further exploit instruction 

level parallelism. This allowed the concept of throughput computing to reemerge to 

prominence from the more specialized field of transaction processing.  Among different types 

of multithreading existing by far, Simultaneous Multithreading – the most advanced in terms 

of efficiency type of multithreading, became a common design choice due to its relative 

simple implementation and efficiency. As proof, the world largest and highest valued 

semiconductor chip maker - Intel Corporation, uses this technology ubiquitously in its latest 

2 
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series of processors. This fact motivated us to perform a series of experimental validations to 

understand real performance insights of the technology and the best usage practices of it, 

especially with regards to server-side equipment.  

Even though the technology exist on the market for some years, yet there are only few 

adequate models have been proposed able to accurately predict performance gain enabled by 

the technology. This issue becomes of particular interest on a data centers scale, where it is 

extremely important to have precise estimations of data center capacity.  

In fact, the presence of SMT significantly affects performance of the system, sometimes 

increasing it by one third over total capacity of the system, and in such a case utilization law, 

which establishes the linear relationship between the utilization and throughput of a 

computing systems and which is often intended as the basis for capacity planning in large data 

center, does not hold anymore. It can be clearly observed from the data we obtained for SPEC 

Power benchmark on system with 4 cores at 2660 MHz:  
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Figure 1.1: SPEC Power benchmark run: Processor 

Utilization with HT {on, off} for 4cores at 2660 MHz 

 

 

According to Utilization law, utilization must grow linearly with workload. As we can see 

from the Figure 1.1 this relation clearly does not hold, since utilization has increased 2.6 times 

while throughput just 2 times for the plot U [with HT]. 

Apparently, in such a case, the planed datacenter capacities would be heavily overestimated.  

This became one of the key moments led us to carry out research and to propose models for 

SMT/HTT processors possessing high predictive capacity and low estimation error.  

 

1.3 Contributions 

 
Thesis contributions are twofold. First, we perform a series of benchmark runs for different 

system configurations using two benchmarking suites. Second, we propose two different 

models to predict the performance (i.e. the response times and utilizations) of multi-core 

processors with SMT.  

First model is an analytical birth-death Markov chain model based on two parameters and the 

second is Queuing Network model with Finite Capacity region. To estimate parameters of the 

first model three different techniques have been employed. Validation of the second model is 

performed using JMT (Java Modeling Tool)[23]. Lastly, the models are compared with other 

mentioned in the work state of art models. 

 

1.4 Thesis outline 

 
While this chapter aims at providing an overview of the work, reveals motivation, scope of 

the research work and performs brief introduction to the work, the remainder of the thesis is 

structured as follows:  
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 Chapter 2 provides some necessary background information about Simultaneous-

Multithreading, Hyper-Threading technologies, as well as basic concepts about 

Queuing Network Models necessary for successful comprehension of the remainder. 

 Chapter 3 presents two state of art QN models aimed at modeling HTT and SMT 

technologies.  

 Chapter 4 presents results of benchmarking for different system configurations and 

reveals true potential of HTT. 

 Chapter 5 introduces to two developed SMT/HTT models based on birth-death 

Markov chain model and Queuing Network model with Finite Capacity Region (FCR), 

as well as method intended to reduce model estimation error. 

 Chapter 6 presents validation results for the proposed and mentioned in the work 

SMT/HTT models and models comparison results. 

 Chapter 7 concludes by summarizing the contributions and discusses possible 

directions for the future research based on available results. 
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Chapter 2 

 

 
 
 
 

Background 
 

 

 

 

2.1 Introduction 
 

Modern superscalar processors can detect and exploit high levels of parallelism in the 

instruction stream, being able to begin execution of high number of instructions every cycle. 

They do so through a combination of multiple independent functional units and sophisticated 

logic to detect instructions that can be issued (sent to the functional units) in parallel. 

However, their ability to fully use this hardware is ultimately constrained by instruction 

dependencies and long-latency instructions limiting available parallelism in the single 

executing thread. The effects of these, as an example, are shown as vertical waste (completely 

wasted cycles) and horizontal waste (wasted issue opportunities in a partially-used cycle) in 

Figure 2.1, which depicts the utilization of issue slots on a superscalar processor and capable 

of issuing four instructions per cycle. 

Multithreaded architectures employ multiple threads with fast context switching between 

threads. Fast context switches require that the state (program counter and registers) of 

multiple threads be stored in hardware.  Latencies in a single thread can be hidden with 

instructions from other threads, taking advantage of inter-thread parallelism (the fact that 

instructions from different threads are nearly always independent).  
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Simultaneous Multithreading (SMT) and Intel’s implementation of it – Hyper-Threading 

(HTT), combines the superscalar’s ability to exploit high levels of instruction-level 

parallelism with multithreading’s ability to expose inter-thread parallelism to the processor.  

By allowing the processor to issue instructions from multiple threads in the same cycle, 

simultaneous multithreading  uses multithreading not only to hide latencies, but also to 

increase issue parallelism. SMT and HTT can deal with both vertical and horizontal waste, as 

shown in Figure 2.2 and Figure 2.3. 

  

Figure 2.1: Utilization of issue slots on a        

superscalar processor. 

 

Figure 2.2: Utilization of issue slots on a 

superscalar SMT processor with 5 threads. 

 

Figure 2.3: Utilization of issue slots on Intel’s Nehalem  

based processor with HTT. 
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In Intel’s HTT the key hardware mechanism underlying this capability is an 

extra architectural state supported by the hardware [1]. Each thread in the processor is simply 

an instruction stream associated with a particular hardware context, as shown in Figure 2.4.  

Thereby each architectural state can support its own thread. 

 

 

Figure 2.4: Intel’s HT Technology enables a single processor 

core to maintain two architectural states. 

 

 

 Many of the internal microarchitectural hardware resources are shared between the two 

threads. Operating systems and applications can schedule processes or threads on those 

logical processors. When one thread is waiting for an instruction to complete, the core can 

execute instructions from another thread without stalling. In addition, two or more processes 

can use the same resources. If one process fails then the resources can be readily re-allocated. 

The performance impact varies, depending on the nature of the applications running on the 

processors and on how the hardware is configured, but in most of the cases, Intel’s HTT and 

SMT allow substantial increase of the processor throughput, improving overall performance 

on threaded software. 
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2.2 The complexity of SMT 

 
SMT processor is more complex than a corresponding single-threaded processor [8]. Potential 

sources of that complexity include: 

 Fetching from multiple program counters — following multiple instruction streams 

will either require parallel access to the instruction cache(s) and multiple decode 

pipelines, or a restricted fetch mechanism that has the potential to be a bottleneck. 

 Multiple register sets — accessing multiple register sets each cycle requires either a 

large single shared register file or multiple register files with a complex 

interconnection network between the registers and the functional units. In either case, 

access to the registers will be slower than in the single-threaded case. 

 Instruction scheduling — in considered SMT processors, the scheduling and mixing of 

instructions from various threads is all done in hardware.  In addition, if instructions 

from different threads are buffered separately for each hardware context, the 

scheduling mechanism is distributed (and more complex), and the movement of 

instructions from buffers to functional units requires another complex interconnection 

network. 

 

2.2.1 Complexity of Intel’s HTT 

 
Intel processors can have varying numbers of cores, each of which can support two threads 

when Intel HT Technology is enabled [1]. For each thread, the processor maintains a separate, 

complete architectural state that includes its own set of registers as defined by the Intel 64 

architecture [3] [5]. Some internal microarchitectural structures are shared between threads. 

Processors support SMT by replicating, partitioning or sharing existing functional units in the 

core. Hyper-threaded processor installed in our system under test has the following 

implementation policy [3][5]: 
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1. Replication — the unit is replicated for each thread. 

 register state 

 renamed RSB 

 large page ITLB 

2. Partitioning — the unit is statically allocated between the two threads. 

 load buffer 

 store buffer 

 reorder buffer 

 small page ITLB 

3. Competitive Sharing — the unit is dynamically allocated between the two threads. 

 reservation station 

 cache memories 

 data TLB 

 2nd level TLB 

4. SMT Insensitive — all execution units are SMT transparent 

 

2.3 Introduction to Queuing Networks 

 
Since substantial part of the research work is dedicated to construction of appropriate 

SMT/HTT models, in this section some background information about Queuing Networks is 

provided to reader, which will help him to better comprehend the rest of the work. 

 

2.3.1 Queuing Network 

 
During many years, computer and communication systems have been studied as a network of 

queues [16]. According to [17] Queuing network modeling is a particular approach to 

computer system modeling in which the computer system is represented as a network of 
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queues which is evaluated analytically. A network of queues is a collection of service centers, 

which represent system resources, and customers, which represent users or transactions.  

Figure 2.5 illustrates a single service center. Customers or transactions arrive at the service 

center, wait in the queue if necessary, receive service from the server, and depart. In fact, this 

service center and its arriving jobs constitute a queuing network model. 

 

Figure 2.5: Single service center. 

 

Here there are some definitions of queuing networks used in the work: 

 Class: A class is a group of customers with each customer of that group having the 

same workload intensities (Ac, Nc, or N and Zc) and service demand (Sc,d). A class 

MUST define the service demand (Sc,d) at each service center [17] [24]. 

 Throughput: Throughput is the number of customers received service at service 

center in a unit of time. Usually it has notation Xk, where k is a service center [17] 

[24].  

 Response Time: Response Time is the average time a customer spends at a service 

center and has notation Rk [17] [24].  

 System Throughput: System Throughput is the number of customers/transactions 

serviced by the system within a given period of time and has notation    ∑      [17] 

[24]. 

 Visits: Average number of visits at service center. Usually it has notation Vk, where k 

is a service center. 

 System Response Time: System Response Time is the sum time a customer spends at 
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each service center.    ∑       , where    is the average number of visits at 

station k [17][24]. 

 Service center Utilization: Service center Utilization is a ratio between the busy time 

(the time a service center is being used) and the whole measured period. This ratio 

describes the extent of utilization of a service center. Utilization could be greater than 

0, but should be less than 1. Therefore, 0.5 utilization means half of the device’s 

possible capacity is being used [17] [24]. 

 Arrival Rate: Arrival Rate is the rate of customers/transactions at which they arrive 

arriving to a queue in a unit of time and has notation    [17] [24]. 

 User Think Time: Think Time represents the time a user spends before submitting a 

request/transaction and has notation Z [17] [24]. 

 Queue Length: Service center Queue Length identifies a number of customers 

waiting for service in a specific queuing center and has notation     [17] [24]. 

 

A Queuing Network can be open, closed, or mixed depending on its customer classes [13]: 

 Open Model: A Queuing Network is open if customers/transactions arrive from 

outside of the system. Arrival rate (  ) denotes arrival intensity. 

 Closed Model: A Queuing Network is closed if customers/transactions are generated 

inside the system (such as in a terminal system). In closed classes, the number of class 

c terminals (Nc) and think time for each class c terminal denote workload intensity 

(Zc). 

 Mixed Model: Systems that have both open classes (external input) and closed classes 

[13]. 
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2.4 Queuing Network Simulation 

 
Simulation modeling is becoming an increasingly popular method for network performance 

analysis. Generally, there are two forms of network simulation [13]: 

 

• Analytical Modeling 

• Computer simulation 

 

Analytical modeling is conducted by a mathematical analysis that characterizes a network as a 

set of equations. The main disadvantage is its overly simplistic view of the network and 

inability to simulate the dynamic nature of a network. Thus, the study of a complex system 

always requires a discrete event simulation package, which can compute the time that would 

be associated with real events in a real-life situation. A software simulator is a valuable tool, 

especially for today’s network with complex architectures and topologies. Designers can test 

their new ideas and carry out performance related studies, thus freeing themselves from the 

burden of “trial and error” hardware implementations. 

A typical network simulator can provide the programmer with the abstraction of multiple 

threads of control and inter-thread communication. Functions and protocols are described 

either by finite-state machine, native programming code, or a combination of the two. A 

simulator typically comes with a set of predefined modules and a user-friendly GUI. Some 

network simulators even provide extensive support for visualization and animation [13]. In 

this thesis the JMT tool [4] has been used to model and simulate the queuing network with 

Finite Capacity Region presented in Chapter 5. 
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2.5 Summary 

 
Most of the time processor resources are underutilized due to the reasons discussed in the 

chapter. Low utilization leaves a large number of execution resources idle each cycle.  

In this chapter we provided theoretical background for SMT and HT technologies and showed 

in theory that they can efficiently deal with stated above problem. We also showed that 

queuing networks is a powerful yet simple modeling instrument allowing representation of 

complex system by restricting modeling aspects only for truly relevant system details and 

omitting irrelevant ones. This valuable advantage of QN permits us to restrict our attention 

only on modeling of the processor subsystem and omitting direct representation of other 

system subparts, like disks or memory. 
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Chapter 3 

 

 
 
 
 

State of Art in SMT/HTT 

modeling  
 

 
 
 
 

Current chapter presents two state of art QN models aimed at modeling SMT and HT 

technologies and some extensions for them. 

 

 

3.1 SMT/HTT Model 1: Queuing Network Model 
 

Authors from BMC Software propose a simple Queuing Network model [6] aimed at 

modeling a Hyper – Threaded processor architecture with a single core. They base their model 

on the fact that a hyper-threaded processor duplicates just some parts of the hardware 

(supporting extra architectural state), adding less than five percent to the chip size on the path 

from memory to CPU, but not the CPU itself [6].  

This architecture allows for some parallel processing except at the actual instruction execution 

phase. That keeps the CPU itself busier at the moments of stalls, increasing the actual 

instruction execution rate [7]. Of course in order to take advantage of HTT, as with any 

multiprocessor system, multiple threads (in one or several processes) must simultaneously 

want access to a processor.  

From the application’s point of view each job visits one of the two logical processors offered 
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to it by the operating system.  

On the chip, each instruction execution goes through two phases. On the first one, an instance 

of the duplicated part of the hardware does preparatory work, looking up data and instructions 

in the cache or getting them from memory. And then the single real CPU executes the 

instruction. 

The situation is modeled thus with three queues shown in Figure 3.1. Jobs arrive to the system 

at the rate of     per second and go to one of the two preparatory queues with probabilities p1 

and p2, respectively. Since each job goes someplace, sum of p1 and p2 must be equal to one. 

Under assumption that OS has load balancing mechanism we can assume that p1 = p2 = 1/2. 

 

 

 

Figure 3.1: Queuing network model of a single 

core processor with HTT and load balancing 

 

On the Figure 3.1, the solid circle represents the single physical CPU core, and open circles 

are the places where the work is done prior to the instruction execution. 

 

Supposing that service time at the preparatory queue is s1 seconds/job and the service time at 

the real CPU core is s2 seconds/job and that the job inter-arrival times and service times are 

exponentially distributed, the mean response time of an open Queuing Network models 

becomes [6]: 

(3.1) 
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With load balancing assumption p1 = p2 = 1/2, Response time (R) becomes: 

(3.2) 

  
  

  
 
   

 
  

      
 

 

In order to use model to predict system response time for real measured workload values λ, 

the parameters s1 and s2 need to be estimated. However there is a problem with parameters 

estimation, since the average total service time for each job, seen from the outside, can be 

measured but that does not tell anything about the internal service times, except that:  

(3.3) 

           

         , 

       

 

To validate the model authors ran a bon a single processor machine running at 2400 MHz 

Intel PowerEdge CPU. As a benchmark they use a self-made multithreaded Java application 

configurable to generate various kinds of compute intensive workloads. 

In order to test the model and to understand Hyper – Threading architecture, authors found the 

best fitting values of s1 and s2 for analyzed dataset. Those values turned out to be equal to s1 

= 0.13 and s2 = 0.81 for the model on Figure 3.2. These values suggest that about 15% of the 

work occurs in the parallel “preparatory phase” of the computation, while instruction 

execution consumes about 65% [6]. Figure 3.2 show the results of the experiment and 

analysis.  
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Figure 3.2: Response Time curves for one-second job (single 

processor, HT on, predictions for model from Figure 3.1) 

 

 

The fact that the measured data is fitted so well with reasonable parameter values suggests 

that the model is sound. Following section extends this model to take into consideration also 

dual core and quad core processors, that is, processors with two and four cores, respectively. 

 

3.1.1 Model Extension 

 
Unfortunately authors of the work do not extend their research on the technology for different 

processor types and propose model only for single core processor.  

In our research, instead, we try to evaluate SMT and HTT performance effects for different 

system configurations, which certainly will result in more realist case usages and produce 

more comprehensive assessment of the technologies. Under changed system configuration we 

intend a different number of active CPU cores and different processor clock frequency. All 
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examined configurations are listed in detail in “Methodology” section of next chapter.   

Finally, we tried to extend proposed model to reflect also system configurations examined in 

our work. 

 

3.1.1.1 Extension 1: Dual core processor with HTT 

 
Figure 3.3 illustrates an extension of previous model for dual core processor supporting HTT, 

or equivalently two-way SMT. The model is obtained simply by replication of the processor 

core, including all its instruction preparation and execution resources.  

 

 

 

Figure 3.3: QN model for Dual core processor with 

HTT and optimal load balancing mechanism 

 

 

On the Figure 3.3, the solid circles represent the execution units, and open circles are the 

places where the work is done prior to the instruction execution. 

From the application’s point of view, now with active HTT each job visits one of the four 

logical cores offered to it by the operating system. As in previous case, on chip, each 

instruction execution goes through two phases. First, an instance of the duplicated part of the 

hardware inside one of two cores does preparatory work, looking up data and instructions in 

the cache or getting them from memory; and then the single real CPU executes the instruction 
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within the core. 

The situation is modeled with six queues entering the service centers shown on the Figure 3.3, 

with three queues belonging to one core and remainder queues to another. Assuming perfect 

load balancing, jobs arriving to the system at the rate of     per second then are directed to one 

of the two cores with equal probabilities, where they are further distributed to preparatory 

queues again with equal probabilities. Since each job goes someplace, the sum over all 

probabilities results to be one. 

Again supposing that service time in four preparatory queues is s1 seconds/job and the service 

time at queues representing execution units is s2 seconds/job and that the job inter-arrival 

times and service times are exponentially distributed, the mean system response time of an 

open Queuing Network model from Figure 3.3 becomes: 

 (3.4) 

  
     

         
 

     

         
 

     

         
 

     

         

 
          

            
 

          

            
 

 

With load balancing both between and inside cores (                 ) the 

Response time becomes: 

  
  

  
 
    

 
  

  
 
    

  (3.5) 

In order to use model to predict system response time for real measured workload values λ, 

the parameters s1 and s2 need to be estimated. Unfortunately, authors of the original model do 

not describe the way they estimated values of parameters s1 and s2, but just mention that they 

are the best fitting values. 

In our case, optimal values estimation we use two-phase process based on error minimization. 

Under error we intend prediction error between dataset and model. First, we feed the model 
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with feasible s1, s2 parameter values found from the following set of equations: 

(3.6) 

 

 
         

 

 
         

 

Obtained in such way values of s1 and s2 are used to parameterize model, for which is then 

error estimated. Subsequently, this error is minimized using GRG Nonlinear solver, embedded 

in our tool used for processing, which always convergence to optimal values for all smooth 

nonlinear problems, which is also our case. Excessively, to ensure convergence to optimal 

values, another solving method – Evolutionary engine is applied. Obtained values are 

guaranteed to be optimal, thus producing lowest possible model prediction error. 

 

3.1.2 Extension 2: Quad core processor with HTT 

 
Figure 3.4 illustrates an extension for quad core processor supporting HTT. The model is 

again obtained by duplication of the processor core four times. The model characteristics 

remain the same as in case with Extension 1, but now OS recognizes eight virtual cores with 

active HTT.  

Again assuming that operating system has working load balancing mechanism, the probability 

of request being processed by any of eight virtual cores is equal 1/8, thus the mean system 

response time of an open Queuing Network model from Figure 3.4 becomes: 

 

  ∑
     

         

 

   

 ∑

 
    

  
 
    

 

   

  (3.6) 
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Figure 3.4: QN model for Quad core processor with 

HTT and optimal load balancing mechanism 

 

With load balancing both between cores and inside core (                ) 

 

  
  

  
 
    

 
  

  
 
    

  (3.7) 

In order to use model to predict system response time for real measured workload values λ, 

the parameters s1 and s2 need to be estimated. The methodology remains the same as for 

Extension 1, with the only difference that initial (border) values of parameters s1 and s2 are 

obtained from the following equations:  

(3.8) 
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Again, obtained parameter values are guaranteed to be optimal, thus producing lowest 

possible model prediction error. 

 

 

3.2 SMT/HTT Model 2: Birth-Death Markov chain Model 
 

3.2.1 Introduction 
 
Author of the second model propose a Birth-Death Markov model targeted at modeling SMT 

enabled single core processor architecture having up to eight threads [8].  

The key idea underlying is that SMT processor is best modeled as a load-dependent service 

center, while superscalar processor is easily modeled as simple service queue [8]. The same 

observation we use in our birth-death Markov chain model developed in Chapter 6, however 

with respect to this model we propose simpler model based only on two parameters   and  . 

The model we propose can be considered as a special case of this model. 

A Markov chain model allows solving for system performance metrics derived from a 

probability distribution (produced by the model) on the queue population. This provides more 

accurate results for a load-dependent system such as the SMT processor than simpler queuing 

models that depend only on the average population in the queue. 

Ordinary superscalar processor (superscalar represents the superscalar processor unmodified 

for SMT execution) is the M/M/1 queue, whose Markov model is shown in Figure 3.5.  

 

Figure 3.5: The Markov state diagram for a single 

superscalar processor 
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The numbers in the circles are the population in the queue; the arcs flowing right are the rate 

at which jobs enter the system, and the arcs flowing left are the rate at which jobs leave the 

system.  

The arrival rates for the superscalar processor on Figure 3.5 (   ) are all equal to a constant 

arrival rate (      . Because the throughput of the system is independent of the number of 

jobs in the system, the completion rates (    ) are all equal to a constant completion rate, 

(     ). The completion rate is assumed to be that of the unmodified superscalar processor 

found previously in their work. 

A Markov system can be solved for the equilibrium condition by finding population 

probabilities that equalize the flow in and out of every population state. 

Known values A and C, or for the most quantities       , the well-known solution for 

M/M/1 system can be used. 

The probability (   ) that k jobs are in the queue: 

(3.8) 

      (
 

 
)
 

    
  

 

Allows solving that zero jobs are in the queue: 

(3.9) 

   
 

  ∑      
 

     

Thus the utilization (U) is the probability that there is more than one job in the system, and it 

is simply: 

(3.10) 

         
 

 
 

 

The average population (N) of the queue is:  
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(3.11) 

 ̅  ∑ 

   

   

   
 

   
 

 

And the response time (R), from Little’s Law [17]: 

(3.12) 

  
 ̅

 
 

   

   
 

 

3.2.2 SMT processor model 

 
Similar, but more complex Markov model for the SMT processor is shown on Figure 3.6, 

aimed at modeling a limited load-dependent server.  

 

Figure 3.6: The Markov state diagram for 

single core eight-way SMT processor 

 

It is similar to the M/M/m queue - a queue with multiple equivalent servers, however, in the 

M/M/m queue the completion rates vary linearly with the queue population when the 

population is less than  , which is not true here. In this system on Figure 3.6, the completion 

rates are the throughput rates of non-modified superscalar processor (     ) multiplied by 

the factor which depends on queue population. The completion rate figures have been 

obtained by the authors after simulation performed on SMT processor. 

For example, when there is only one job in the system, the SMT processor runs at 0.98 times 

the speed of the superscalar, but when five jobs are in the system, it completes jobs at 2.29 

times the speed of the superscalar. That is, while the job at the head of the queue may be 
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running more slowly, because all five jobs are actually executing the completion rate is 

higher, proportional to the throughput increase over the superscalar. 

Another assumption - the rate of completion is constant once there are more jobs than thread 

slots in a system. This assumes that the cost of occasionally swapping a thread out of the 

running set (an operating system context switch) is negligible. This is the same assumption to 

use a single completion rate for the superscalar model. This assumption favors the 

superscalar, because it incurs the cost much earlier (when there are two jobs in the running 

set). 

Because the arrival rate is still constant, but the completion rates (   ) are not, the formula for 

the probability of population k is: 

     ∏
 

  

 

   

  (3.13) 

For the simulation results, this series becomes manageable because the tail of the Markov 

state diagram is once again an M/M/1 queue. So, 

(3.14) 
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Where M = (0.982) (1.549) … (2.425) (2.453). 

As with the M/M/1 queue, because all probabilities sum to one and we can express all 

probabilities in terms of p0, we can solve for p0, and thus the utilization.  

We can solve it because the sum of all probabilities fork     is a series that reduces to a 

single term (as long as A/2.463C < 1), as does the M/M/1 queue when A/C < 1, thus: 

 (3.15) 
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In order to calculate response times, first we need to know the average population in the 

queue: 

(3.16) 
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(3.17) 
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Response time can then be computed from the average population and the jobs arrival rate ( ) 

using Little’s Law [17]: 

(3.18) 

  
 ̅

 
 

 

Unfortunately, author of the model does not provide any validation approach. The validation 

results of our model, which can be considered as a special case of this model, are represented 

in Chapter 6. 
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Chapter 4 

 

 
 
 
 

Potential of SMT / HTT 
 

 
 
 
 

In this chapter we perform experimental validation of the SMT and HTT theoretical aspects 

discussed previously in Chapter 2. Also we perform a series of benchmark runs to reveal true 

performance impacts enabled by Simultaneous Multithreading and Hyper-Threading 

Technology for different system configurations using two types of benchmarking suite. 

 

4.1 Performance Claims 

 
The advantages of hyper-threading are listed as improved support for multi-threaded code, 

allowing multiple threads to run simultaneously; increased throughput and reduced response 

time. According to Intel, its first implementation only used five percent more die area on chip 

comparing to equivalent non-hyper threaded processor, but the performance increase was 15 –

30% greater [2][11]. For a previous generation processors Intel claims up to a 30% 

performance improvement compared with an otherwise identical, non-simultaneous 

multithreading processors [2][10][11].  

According to [10], in some cases a previous generation Pentium IV processor running at 3 

GHz clock frequency with HT activated can even beat a Pentium IV running at 3.6 GHz with 

HT turned off. Intel also claims significant performance improvements with a HTT in some 

artificial intelligence algorithms.  
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Technology improves throughput and efficiency for better performance and performance per 

watt. Intel HT Technology provides greater benefits in Intel Core i7 processors, and other 

processors based on the Nehalem core including the Xeon 5500 series of server processors 

than was possible  in the Pentium 4 processor era when it was first introduced [12].  The 

discussion in [12] refers to Intel 64 architecture, with particular emphasis on Intel processors 

based on the Nehalem core including the Core i7 Processor and the Xeon 5500 series of 

processors. According [12] the performance improvement for this workload is 30% (1.30x) 

when Intel HT Technology is enabled for the workload consisting mostly of integer ALU 

operations. The response time as viewed by the client dropped from 50 ms per transaction to 

37 ms per transaction with Intel HT Technology enabled (about 26%). 

 

4.2 Test bed configuration 

 
The system under test used for benchmarking has Intel Core i7 920 processor and 12 GB of 

DD3 DRAM installed. The processor is characterized by 4 cores, default clock speed of 2.66 

GHz, HT Technology and three eight-byte DD3 channels. Processor cache memory has 

following characteristics [5]: 

o 1
st
 level instruction cache: 32 KB per core 4-ways 

o 1
st
 level data cache: 32 KB per core 8-ways (write-back) 

o 2
nd

 level data cache: 256 KB per core 

o 3
d
 level data cache: 8 MB per four cores shared across all cores 

 

4.3 Methodology 
 

To achieve a fairly comprehensive assessment of SMT/HTT, the evaluation has been 

performed for different system configurations. Since the key component of the system, which 

we try to model, is a processor, using a small self-made java program we were able to alter 
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processor states. In total, performance impact of Intel’s HTT has been evaluated for all the 

following system configurations: 

 4 cores, HT enabled, 2660 MHz 

 4 cores, HT enabled, 1596 MHz 

 2 cores, HT enabled, 2660 MHz 

 2 cores, HT enabled, 1596 MHz 

 1 core, HT enabled, 2660 MHz 

 1 core, HT enabled, 1596 MHz 

 

2660 MHz is a maximum reachable clock frequency that a processor can have, and 1596 MHz 

is a lowest frequency that can be set for a processor. The choice of “border” frequencies is not 

accidental and it is intended to reveal the most productive technology usage cases and to 

understand how drastic changes in the processor clock frequency affects the performance gain 

enabled by SMT/HTT technology. Additionally, the configurations listed above represent of 

the most encountered computer systems. 

 

4.3.1 Obtain system measures 

 
Next, for each examined system configuration, representing changed processor state, the 

system needs to be measured under certain workloads to obtain workload and performance 

measures.  

Subsequently, in Chapter 6, this data will serve as an input for SMT/HTT models evaluation 

step and obtained model performance indices will be compared to the measured system 

outputs. 
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4.3.2 Benchmarking 

 
Benchmarks are used to generate workload and record both workload and performance 

metrics. In computing, a benchmark is the act of running a computer program, a set of 

programs, or other operations, in order to assess the relative performance of a system, 

normally by running a number of standard tests and trials against it, accordingly, the workload 

and performance measures are strictly dependent on the type of benchmark and on each 

benchmark run or trial itself. In our research we use two different benchmarking suites to 

assess SMT/HTT performance, each having its own measuring approach and features. 

 

4.3.3 SPEC Power SSJ 2008 
 

First benchmark used for evaluations is SPEC Power SSJ 2008. It is a product developed by 

the Standard Performance Evaluation Corporation (SPEC) and it is the first industry standard 

for measuring both performance and power consumption of computer systems [18].  

SPEC benchmark allows estimation of such performance measures, like system throughput 

and processor utilization, but unfortunately does not provide any suitable means to obtain 

system response time. 

At a high level benchmark models a server application with a large number of users [19]. 

Requests from these users arrive at random intervals (modeled with a negative exponential 

distribution), and processed by a finite set of threads of the server. The exponential 

distribution may result in bursts of activity; during this time, requests may queue up while 

other requests are being processed. The system will continue processing transactions as long 

as there are requests in the queue. 

The whole benchmark suite consists of three main components [18] [20]:  

 Server Side Java (SSJ) Workload: SSJ Workload is a Java program designed to 

exercise the CPU(s), caches, memory, the scalability of shared memory processors, 

JVM (Java Virtual Machine) implementations, JIT (Just In Time) compilers, garbage 
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collection, and other aspects of the operating system of the system under test (SUT).  

 Power and Temperature Daemon (PTDaemon): The PTDaemon is to offload the 

work of controlling a power analyzer or temperature sensor during measurement 

intervals to a system other than the SUT.  

 Control and Collect System (CCS): CCS is a multi-threaded Java application that 

controls and enables the coordinated collection of data from multiple data sources such 

as a workload running on a separate SUT, a power analyzer, and a temperature sensor. 

It also includes Visual Activity Monitor (VAM) - software package designed to 

display activity from one, two, or three SUT‟s simultaneously, in combination with 

the SPECpower_ssj2008 benchmark.  

 

In experiments the whole system has been configured without PTDaemon component because 

of non-availability of the required equipment, and secondly, because eventually the goal is to 

understand performance and not power impact enabled by the technology. 

Figure 4.1 illustrates the architecture of a standard SPECpower_ssj2008 benchmark 

implementation including Power Analyzer and Temperature sensor components, which in our 

case are omitted for the reasons listed above. 

 

Figure 4.1: Architecture of a s SPEC Power SSJ 2008 

benchmark implementation 
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4.3.3.1 SPEC’s Server Side Java (SSJ) Workload 
 

The SSJ Workload is a component responsible for benchmark workload generation. First, the 

system needs to be calibrated. The calibration phase is used to determine the maximum 

throughput that a system is capable of sustaining. Once this calibrated throughput is 

established, the system runs at a series of target loads. Each load runs at some percentage of 

the calibrated throughput. By default, 3 calibration intervals are used, each four minutes long. 

The calibrated throughput (used to calculate the target throughputs during the target load 

measurements) is calculated as the average of the last 2 calibration intervals. 

For compliant runs, the sequence of load levels decreases from 100% to 0% in increments of 

10%. At each load level the system is measured for 120 seconds.  The intervals between load 

level measurements, the so-called “warm-up” and “cool-down” are equal to 30 seconds.  

Measuring the points in decreasing order limits the change in load to 10% at each level, 

resulting in more stable performance measurements. Using increasing order would have 

resulted in a jump from 100% to 10% moving from the final calibration interval to the first 

target load, and another jump from 100% to Active Idle at the end of the run. 

 

4.3.4 A synthetic benchmark 

 
On the system under test (SUT) we run a simple web application written in Java (a *.war file) 

deployed on Apache Tomcat webserver. This application is composed of a single page which 

performs a computation on floating point numbers and stresses both the CPU and memory 

hierarchy. The service time of this page is exponentially distributed. 

To load the system we use a multi-threaded load generator that generates http requests with 

exponentially distributed inter-arrival times. The load generator runs on  a separate machine 

connected with the system under test by 100 MBits/s network connection to avoid network 

bottlenecks. 

The advantage of using the load generator and a synthetic workload is that we can create a 
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load which can be easily modeled, e.g., exponential inter-arrival times and exponential 

service-times. Moreover, the load generator besides processor utilization can also measure 

system response time, so that we can analyze not only the utilization and throughput, but also 

the response time.  

 

4.3.4.1 Synthetic Workload 

 
The crucial points of workload can be listed as: 

 Time complexity for the processing of one request should be O(n) 

 The workload should stress the memory hierarchy 

 Partially memory and partially CPU bound 

 Possibility to tune impact of memory accesses 

The workload consists of two phases: initialization phase and actual execution phase. At 

initialization phase a working set of   vectors and a filter vector   of length   are generated. 

Each vector has a random length uniformly distributed between      and     .  

At execution phase a random vector   is selected and two vectors   and   of length n are 

allocated. Then vector   is filled with sums of p random strides of length w from v and 

convolved with filter vector     Convolution result is stored in   . Finally the sum of the 

elements in    is returned. 

Summarizing, execution phase consists of three main steps having complexity O(n): 

1. Filling the source vector a 

2. Compute b performing the convolution of a and f 

3. Sum the elements of b 

There are some cache size considerations which must be met for optimal workload generation. 

The memory used by the working set vectors should exceed the size of the LLC (Last Level 

Cache), that is to say:  
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        (      
             

 
)            (4.1) 

 

Source and destination vectors   and   should fit in a private cache L1 or L2: 

                    (4.2) 

 

Filter vector   must fit in the first level cache: 

               (4.3) 

 

Figure 4.2 demonstrates the process of filling the source vector    with number of strides 

    each having length     : 

 

 

Figure 4.2: Synthetic workload: Filling source vector   

 

 

For small w, a full cache line is read but not used; the prefetcher helps only for large w. 

Figure 4.3 demonstrates the convolution process for obtained source vector a with filter vector 

f; the results is stored in destination vector b: 
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Figure 4.3: Synthetic workload: Convolution process 

between source vector a and filter vector f 

 

 

Finally, Figure 4.4 how the result value is obtained: 

 

Figure 4.4: Synthetic workload: Result calculation 

 
 

In our benchmark runs to generate optimal workload the values of p, w and n have been 

defined adhering to defined above observations and are equal to 20, 32 and 10000, 

respectively.  

 

4.3.4.2 IronLoad Generator 

 
IronLoad generator is used to generate benchmark workload and able of capturing such 

performance measures like processor utilization and system response time. For each system 

configuration listed in Section 4.3 the benchmark run is performed. Each benchmark run 

consists of two main phases: maximum throughput estimation that system is capable of 

sustaining for closed loop and run at series of target loads. Each load runs at some percentage 

of target utilization.  If utilization is I, then target load is equal to: 

 

        
    

   
   

(4.4) 

 

For compliant runs the sequence of target utilization load levels decreases from 80% to 5% in 

increment of 5%, in total resulting in 16 load levels. Load level duration is set to be 1200 
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seconds and interval between load levels is equal 30 seconds. All the measured data is saved 

in CSV format. 

 

 

4.4 Performance results 

 
The following performance data have been obtained after a series of benchmark runs for 

System Throughput, Processor Utilization and System Response Time.  

The Response Time measure is available only for synthetic benchmark, since SPEC Power 

SSJ 2008 does not provide ant suitable means get this measure. Feasible values for Utilization 

vary in range from 0 to 100%. 

Each plot illustrates performance data obtained at specific CPU clock frequency for all 

examined combination of cores. 

 

4.4.1 System Throughput 

 
System Throughput is estimated as number of operations performed in a second. The 

measurement results are available for both synthetic and SPEC Power benchmarks. 

Estimated performance gain enabled by HTT over the equivalent system configuration but 

without HTT, is indicated in the right upper corner of each plot and it is strictly related to the 

value of parameter Alpha, calculation of which is discussed in the corresponding section of 

next chapter:                 
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4.4.1.1 SPEC Power SSJ 2008 benchmark 
 

 

Figure 4.5: System Throughput with HT {on, off} for 

{4, 2, 1} cores at 2660 MHz 

 

 

 

 

Figure 4.6: System Throughput with HT {on, off} for 

{4, 2, 1} cores at 1596 MHz 

 

 

SPEC Power benchmark exhibits significantly higher performance increase range. Depending 

on the configuration, throughput increase varies from 9 to 33%. Again, greater increment is 

achieved at “weaker” configurations.  
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4.4.1.2 Synthetic benchmark 
 

 

Figure 4.7: System Throughput with HT {on, off} for 

{4, 2, 1} cores at 2660 MHz 

 

 

 

Figure 4.8: System Throughput with HT {on, off} for 

{4, 2, 1} cores at 1596 MHz 

 

 

Experiment data reveals that for synthetic benchmark throughput gain varies from 9 to 22% 

depending on the configuration of the system. Interestingly, gain ration is preserved for 

different frequencies, except for configuration with 4 cores. Maximum gain (in relative terms) 

is achieved at “weaker” configurations.  
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4.4.2 Processor Utilization 

 
Measurement of processor utilization can be very misleading. Generally, multi-core systems 

present a reporting dilemma to the measurement community [6]. For example, when both 

processors on a dual processor machine are active during an interval is the utilization 100% or 

200%? To eliminate the ambiguity, the number of processors for which the utilization is 

reported has to be specified and a performance measurement tool must use one convention 

consistently and make clear how its output is to be interpreted.  

For a hyper-threaded processor, which is a single physical CPU designed to appear to the 

operating system and its measurement tools as two separate cores, the problem is even more 

compounded. Since hyper-threading is in principle transparent to the operating system and 

applications, existing measurement tools need no modifications to run in a hyper-threaded 

environment [6]. But what will they report for processor Utilization – the answers vary. 

Traditional way is to define utilization as a fraction of utilized threads. In the case with HTT 

on number of available to the system threads doubles, hence resulting in lower utilization.   

Below there is a series of plots for utilization measured for different system configurations 

using SPEC Power SSJ 2008 benchmark and a synthetic benchmark.   

As a reader can notice from Figures 4.10 – 4.13 and figure from Motivation section, 

utilization curves with HTT off are straight lines for all system configurations. This fact can 

be easily described by Utilization law [17][24], which represents linear relationship between 

utilization and workload: 

 

                            (4.1) 

where dCPU is a service demand. In fact, for configurations with HTT off, according to plots 

utilization scales linearly with workload. However, the situation changes in the presence of 

SMT (Figures 4.10 – 4.13) and the growth becomes nonlinear. 

There are several research papers focusing on service demand estimation under the 

40 



51 
 

assumption that Utilization law holds. As an example parameter dCPU can be estimated on 

some data samples using Utilization law, by measuring U and X for some intervals. The 

resulting U versus X must be reported on a chart. Since we have linear dependence we can 

find the line that better approximates obtained U versus X samples using Linear Regression 

estimation. The slope of the line would represent service demand (dCPU).  

Figure 4.4 illustrates example of dCPU calculation for the SPEC Power dataset. In example 

below              erminology and notation details can be found in Chapter 2. 

 

 

Figure 4.9: Service demand (d) estimation for SPEC Power 

benchmark data samples at 4 cores, 2660 MHz wit HT configuration 

 

 

 

90,70957447 

73,35659574 

60,01887324 

48,8693617 

39,13382979 
32,02673759 

25,29169014 
18,32489362 

12,44471831 
6,707253521 

0,319731801 0

10

20

30

40

50

60

70

80

90

100

0 25.000 50.000 75.000 100.000 125.000 150.000 175.000 200.000

U
(s

ar
) 

[ 
%

 ]
 

Target X [ ops/sec ] 

Service demand (dCPU) estimation 

UCPU = 0,0005*X + 5,5361 

41 



51 
 

 
 

Figure 4.10: Synthetic benchmark: Processor Utilization 

with HT {on, off} for {4, 2, 1} cores at 2660 MHz 

 

 

 

 

 
 

Figure 4.11: Synthetic benchmark: Processor Utilization 

with HT {on, off} for {4, 2, 1} cores at 1596 MHz 
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Figure 4.12: SPEC Power: Processor Utilization with HT 

{on, off} for {4, 2, 1} cores at 2660 MHz 

 

 

 

 

 
 

Figure 4.13: SPEC Power: Processor Utilization with HT 

{on, off} for {4, 2, 1} cores at 1596 MHz 
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Utilization curves on Figures 4.10 – 4.13 for configurations with HTT on are slightly convex. 

It means that Utilization law does not appropriately hold for the cases when HTT is on. 

 

 

4.4.3 System Response Time 

 
System Response time is important characteristic, which ultimately also identifies user waiting 

time. Response time is measures as elapsed time from the moment when the request has been 

submitted to the system and until it get serviced. Than lower this performance characteristic, 

that greater system performance. The figures below illustrate response time data of synthetic 

benchmark for different system configurations. 

 

 

Figure 4.15: System Response Time with HT {on, off} 

for {4, 2, 1} cores at 2660 MHz 
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Figure 4.16: System Response Time with HT {on, off} 

for {4, 2, 1} cores at 1596 MHz 

 

 

 
It can be observed that with active HTT significant response time decrease is achieved at 

“weaker” configurations having low number of cores – one or two, while, absolutely 

unexpectedly, some performance degradation is observed for configurations with max number 

of cores. So, at 1596 MHz it turns out that the system without HTT would outstrip 

corresponding system with HTT for any workload level. 

 

 

4.4.4 Conclusion 

 
In this chapter we performed experimental validation of two-way simultaneous 

multithreading, or equivalently, Intel’s Hyper-Threading technology. The following 

conclusions can be made from the obtained results: 
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 Performance of HTT is strictly dependent on hardware configuration and on type of 

software used.  

 Performance growth may achieve from 9 to 33 % depending on the above factors and 

application scenario, which means that at some moments with HTT the capacity of the 

system, can be raised by one third over total system capacity. This very important 

results and it is the main reason why underestimation of the technology may result to 

enormous capacity wastes on a datacenter scale if neglect the effect of HTT. It 

becomes absolutely clear that Utilization law, which establishes linear relationship 

between utilization and throughput in computing systems and serves as the basis for 

capacity planning in large data centers is not suitable anymore in the presence of SMT, 

since it does not account effects enabled by SMT. For this reason, new “adequate” 

models accounting for SMT effects need to be developed. In next chapter we propose 

two such models, validation of which will be performed later in Chapter 6. 

 As experiments reveal, much greater technology impact can be expected at “weaker” 

configurations having ones or two cores active. Most likely, relatively low 

performance increase at maximum configurations explained by the fact that we get 

high number of request simultaneously competing for limited shared and partitioned 

between them processor resources, like cache memories, load and store buffers. 

Another possible reason that may help to explain this fact is workload parallelization 

constraint of benchmarks, that is to say, a workload does not scale well with number 

of threads. If this is the case, taking into account also the fact the benchmarks offer 

vary intensive workload, able to utilize all system resource, we can very roughly set 

“effective threads threshold” for modern computing systems that may slightly vary 

from four to eight, while subsequent increase will apparently add only no to negligible 

performance increase.  

 Another discovered positive aspect of technology is impact on system response time 
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impacting user waiting time. HTT allows significantly decrease user waiting time, 

from 15% to 20% depending application scenario. Surprisingly, there also have been 

revealed some cases when HTT slightly decrease this performance characteristic – at 

system configurations with max number of cores. 

 All obtained results justify Intel’s claims about usage advantage of Hyper – Threading 

Technology. 
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Chapter 5 

 

 
 
 
 

Proposed models 
 

 
 
 
 

In current chapter we propose two models of SMT/HTT processor, developed using birth-

death Markov chain model and Queuing Network model with Finite Capacity Region (FCR). 

 

 

5.1 Introduction  

 
In the real world, the main part of the work is about building the right model, that correctly 

characterizes the system and estimating the parameters of such model. 

The success of queuing network modeling is based on the fact that the low-level details of a 

system are largely irrelevant to its high-level performance characteristics [17]. Queuing 

Network (QN) models appear abstract when compared with other approaches to computer 

system analysis. The underlying philosophy is to begin by identifying the principal 

components of the system and the ways in which they interact, and then supply any details 

that prove to be necessary [15][17].  

Modeling cycle begins with the definition of the model, which includes selection of those 

system resources and workload components that will be represented, identification of any 

system characteristics that may require special attention (e.g., priority scheduling, paging), 

choice of model structure (e.g., separable, hybrid), and procedures for obtaining the necessary 
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parameters from the available measurement data.  

This feature of QN modeling permitted us to concentrate our attention directly on modeling of 

the principal component of this research – processor, and omitting direct representation of 

details related to other components of the system, like disks or memory. 

Next, the system is gauged to obtain workload measures, from which model inputs will be 

calculated, and performance measures, which will be compared to model outputs. In some 

cases these are the same; for instance, device utilizations are workload measures, since they 

are used to calculate service demands, and also performance measures, since they are used to 

assess the accuracy of the model.  

The workload measures then are used to parameterize the model, a step that may require 

various transformations. After, the model is evaluated, yielding outputs. These are compared 

to the system’s outputs. Discrepancies may indicate flaws in the process, such as system 

characteristics that were ignored or represented inappropriately, or model inputs whose values 

were established incorrectly. An overview of the whole modeling process is illustrated on 

Figure 5.1. 

 

 

Figure 5.1: Modeling cycle overview. 
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5.2 SMT/HTT Model 1: Birth-Death     Markov - Chain 

model 

 
5.2.1 Introduction 

 
As it was mentioned, in our work we restrict our attention on Intel’s Hyper-Threading 

Technology, which, in fact, represents two-way Simultaneous Multithreading – case when 

each physical present core is recognized by the operating system as two virtual ones.  

For the sake of simplicity, we consider exactly two-way simultaneous multithreading (SMT), 

which can be found on recent Intel processors based Nehalem, Westmere, Sandy Bridge and 

Atom micro-architectures. The model, however, can be easily extended to four – way SMT, 

adopted in the Intel’s Xeon and IBM Power7 processors, and eight – way SMT, implemented 

in the Oracle Sparc T3 processors. 

The proposed model based on two parameters (  and  ) and can be considered as a special 

case of the birth-death Markov model presented in Chapter 3. 

 

 

5.2.2 Model definition 

 
The key idea underlying is that SMT processor is best modeled as a load-dependent service 

center, while superscalar processor can be easily modeled as simple service queue and, 

secondly, SMT processor exhibits linear growth up with number of cores; however after 

activation of SMT the growth is not linear anymore and represented by parameter  . 

Let   to be the number of CPU cores, and   to be the service rate when a single job is in the 

system.  Under the assumption that the operating system scheduler is aware of SMT, when 

      jobs are present in the system, they are placed on the separate CPU cores.  In this 

case, assuming low contention for memory and shared caches, the service rate of the system 

becomes   .   
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SMT allows us to exploit up to   additional jobs. When           , threads are 

scheduled,  the service rate  of the system  is increased,  since        cores are still 

completing  requests  at rate   , while the other        cores are completing  requests  at  

rate            due to increased  utilization of computational units [22].   Therefore, the total 

processing rate is equal to: 

 

                      (5.1) 

 

The parameter   is heavily workload dependent and its estimation is discussed in the 

following section.   

For       , the overall service rate is           and equals to the maximum sustained 

throughput of the system. 

 

 

 

Figure 5.2: The Markov Chain representing a system 

with m CPU cores and two – way SMT. 

 

 

The steady state probabilities     for        are: 
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Defining the                     
 

        
, these equations can be rewritten as follows: 
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By definition of probability: 
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It follows that the steady state probability of an empty queue is: 
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Writing the rightmost summation as        ∑    
    
    and observing that     is required for 

stability, we can use the proof of convergence for geometric series and write p0 as follows: 

(5.10) 
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The average number of jobs in the queue is: 

(5.11) 
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The infinite series can be simplified with some simple algebraic operations and using 

convergence of the geometric series: 
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From Little’s law [17] we can find Response time: 
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(5.18) 

 

Since each job is placed on separate thread, utilization is defined as number of  “busy” 

threads: 
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5.2.3 Alpha     estimation: standard way 

 
In the context of the model, parameter Alpha indirectly defines performance gain enabled by 

HT technology activation and it is heavily workload dependent. There have been defined two 

ways in which parameter   can be estimated.  

First way is a standard way, in which   is calculated based on maximum throughputs obtained 

with HT on and HT off:  

                     (5.19) 

               (5.20) 
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    (5.22) 

Where,   – number of physical cores;   – service rate when a single job is in the system. 

          is a maximum system throughput measured with HT being activated and 

           is a maximum system throughput measured without HT technology. 

An advantage of this technique is relative ease of computation, since we can supply the 

parameters to our model by performing only two experiments. 

 

5.2.4 Alpha     estimation through error minimization 

 
The optimization technique has been developed to further increase accuracy of the defined 

above model, and in fact can be applied to optimize any analytical models. Optimization 

application does make sense only in the presence of noticeable discrepancies between system 

and model data. As a rule, it is applied after first model evaluation phase to reduce 

discrepancies between such system and model performance measures, like system response 

time and processor utilization. The process itself consists in finding of optimal value of 

parameter Alpha    , by that enabling maximum fitting between selected system and model 

performance measures and reducing estimation error. 

 

5.2.4.1 Mean Squared Error (MSE) estimation 

 
Optimization is based on estimation and following minimization of Mean Squared Error 

(MSE). MSE of a model is one of many ways to quantify the difference between values 

implied by the model and the true values of the quantity being estimated. MSE measures 

the average of the squares of the “errors”. The error is the amount by which the value implied 
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by the model differs from the quantity to be estimated. Why such “errors” occur is mentioned 

in introduction of the chapter. 

The MSE is the second moment (about the origin) of the error, and thus incorporates both 

the variance of the model and its bias. Like the variance, MSE has the same units of 

measurement as the square of the quantity being estimated. 

If   ̂  is a vector of    model estimations, and    is the vector of true values, obtained after 

system measurement, then the estimated MSE of the model is:  

 

    
 

 
∑  ̂     

 

 

   

  (5.23) 

Since, the number of system measurements equal   depends on the type of benchmark, then, 

for SPEC Power SSJ 2008 benchmark MSE becomes equal to:  
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  (5.24) 

And for Open-load benchmark MSE is: 

 

    
 

  
∑  ̂     

 

  

   

  (5.25) 

For minimization of MSE a GRG Nonlinear and Evolutionary Engine solving method have 

been exploited, supplied with Excel Develop tools. 

 

5.2.5 Model Validation 

 
Validation of this and other presented in this work models, along with aposterior optimization, 

is performed in next chapter. 
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5.3 SMT/HT Model 2: Queuing Network Model with Finite 

Capacity Region (FCR) 

 
5.3.1 Introduction 

 
Among existing modeling techniques, Queuing Networks with Finite Capacity Regions (FCR) 

have largely proven to be effective in characterizing simultaneous resource possession in 

which a customers or requests can hold more resources simultaneously. Such queuing 

networks impose upper bounds on the number of jobs that can simultaneously reside in a set 

of stations [21][25], and can be used to model also high-level application constraints. These 

are sub networks where the number of circulating jobs is constrained.  

Finite capacity regions are characterized by two types of constraints: a dedicated constraint 

bounds the number of jobs in a region for a specified class; a shared constraint limits the 

number of jobs without class distinctions. In our model we impose only shared constraint 

since all jobs belong to only one class [21]. 

Jobs arriving to a Finite Capacity Region enqueue in a waiting buffer outside the region. The 

presence of the waiting buffer makes it difficult to obtain an analytical solution to models 

with Finite Capacity Regions. Therefore, only approximation techniques have been 

developed. However, simulation remains the most important analysis technique for models 

with FCR in presence of realistic workloads. 

 

5.3.2 Model definition 
 

The key underlying idea in the model is that at any instant of time only two requests, and no 

more, can be simultaneously processed in two-way SMT processor, or equivalently, in Intel’s 

HTT processor. 
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Single core two-way SMT processor model is illustrated on the Figure 5.3. Area surrounded 

by bold shaded line represents Finite Capacity Region with simultaneous possession capacity 

equal to two jobs at any instant of time. 

 

 

Figure 5.3: Queuing Network Model with FCR for single 

core two-way SMT processor. 

 

In some sense the model can be considered as a possible enhancement of the model proposed 

by authors from BMC software and described in corresponding section of Chapter 3. 

Similarly, duplicated parts of the processor, which enable support of extra architectural state, 

are represented in parallel subpart of FCR, where two identical service centers are arranged in 

parallel. The third service center (sequential part of FCR) represents all resources that 

competitively shared by requests in FCR or completely unaware of SMT resources, like 

execution units.  

Again, from the application point of view each job visits one of the two logical processors 

offered to it by the operating system. On the chip, each instruction execution still goes 

through two phases. On the first one, an instance of the duplicated part of the hardware does 

preparatory work in parallel part of FCR, looking up data and instructions in the cache or 

getting them from memory and then in sequential part instruction is executed. 

Jobs arriving to FCR are queuing in a buffer outside the region, if the FCR limits are 

exceeded. The buffer is assumed to have infinite capacity to store “waiting” requests. 

The situation can be modeled as following: when first request arrives, it first passes through 

instruction preparation phase and then gets directly executed, meanwhile, if there is a second 

request arriving, it occupies second “preparation” service center. In such a case there is no 
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anymore place for any other requests, until first instruction receives service, all arriving 

request will get buffered outside FCR. 

 

5.3.3 Model extension for dual-core processors 

 
The model is obtained simply by scaling above model with respect to a number of cores, 

which in this case is equal to two. Figure 5.4 presents an extension for dual core processor 

supporting two-way SMT. 

 

 
 

Figure 5.4: Queuing Network Model with FCR for single 

core two-way SMT processor. 

 

 
Peculiarity of the model is that it has a separate waiting buffer for each physical core. From 

the application point of view, now each job can visit one of the four logical cores offered to it 

by the operating system (with active HTT). Since we assume that OS is aware of SMT 

presence, load balancing should work correctly distributing workload equally between 

physical cores. 

As in previous case, within FCR, each instruction execution goes through two phases. First, 

an instance of the duplicated part of the hardware inside one of two cores does preparatory 

work, looking up data and instructions in the cache or getting them from memory; and then 

the single real CPU executes the instruction within the core. 
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5.3.4 Model extension for quad-core processors 

 
Figure 5.5 illustrates a model of quad-core processor with HTT. The model is obtained by 

duplication of the processor core four times.  

 

Figure 5.5: Queuing Network Model with FCR for single 

core two-way SMT processor. 

 

The model characteristics remain the same as in case with Extension 1, but now OS 

recognizes eight virtual cores when HTT is active. Again assuming that operating system has 

correct load balancing mechanism, each virtual core would receive only forth part of the 

overall workload. 

 

5.2.6 Model Validation 

 
Because of non-availability of adequate analytical solution techniques for open QN models 

with FCR, the main technique used to solve such models is simulation. The principal strength 

of simulation is its flexibility. In this thesis the JMT (Java Modeling Tool) tool has been used 

to model and simulate the SMT/HTT queuing network model with Finite Capacity Region. 

All validation results are presented in next chapter.  
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Chapter 6 

 

 
 
 
 

Validation and Comparison 
 

 
 
 
 

This chapter pursues a double goal: to present validation results for SMT/HTT models that we 

developed in Chapter 5 and perform comparative analysis with other state of art QN models to 

identify models with lowest prediction error. 

 

 

6.1 Test bed configuration 

 
The system under test used for benchmarking to produce workload and performance measures 

has the same configuration as the one described in Chapter 4. For details please refer to “Test 

bed configuration” section of Chapter 4. 

 

6.2 Methodology 

 
After model has been defined, next step would be to measure the system under different 

workload levels for each examined system configuration, to obtain workload measures, which 

can be used directly to feed and parameterize our models, and performance measures, which 

will be compared to the model outputs.  

Models are constructed for the following system configurations: 
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 4 cores, HT enabled, 2660 MHz 

 4 cores, HT enabled, 1596 MHz 

 2 cores, HT enabled, 2660 MHz 

 2 cores, HT enabled, 1596 MHz 

 1 core, HT enabled, 2660 MHz 

 1 core, HT enabled, 1596 MHz 

 

To generate workload and record performance measures two benchmarking suites are used: 

synthetic and SPEC Power SSJ 2008 benchmarks. More details about both of them can be 

found in dedicated subsections of Chapter 4. All validation data produced by benchmarks is 

also available in Chapter 4. 

As we mentioned in Chapter 5, there are two alternative approaches to solve models: based on 

analytical modeling and based on computer simulation. 

Analytical modeling is conducted by a mathematical analysis that characterizes a network as a 

set of equations, while simulation permits modeling of complex computing systems using 

special software tools. Simulation technique is appropriate tool for representing complex 

events, when analytical modeling becomes too complicated or when solution techniques, 

either exact or approximate, have not been yet proposed or are not precise. 

In our work computer simulation is used to validate QN model with FCR proposed in 

previous chapter. The presence of the waiting buffer makes queuing network non-separable 

and makes difficult to obtain analytic solution especially for open models with FCR.  

Therefore, only approximation techniques have been developed. However, simulation remains 

the most important analysis technique in presence of realistic workloads. 

All other presented in this work models are solved based on their analytical solutions. 
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6.2.1 Simulation 
 

The principal strength of simulation is its flexibility. There are few restrictions on the 

behavior that can be simulated, so a computer system can be represented at an arbitrary level 

of detail. At the abstract end of this spectrum is the use of simulation to evaluate networks of 

queues. While the principal weakness of simulation modeling is cost of evaluation, because 

running a simulation requires substantial computational resources, especially if narrow 

confidence intervals are desired. 

 

6.2.1.1 JMT tool 

 
In this thesis the JMT (Java Modeling Tool) [28] tool has been used to model and simulate the 

SMT/HTT queuing network model with Finite Capacity Region. 

JMT is a suite of applications developed by Politecnico di Milano and released under GPL 

license. The project of JMT offers a complete framework for performance evaluation, system 

tuning, and capacity planning and workload characterization studies. 

One of the embedded JMT tools is JSIMgraph – a simulation application within the suite of 

JMT allows the design of a queuing network model in graphical way [25][27]. The model can 

be solved either with simulation techniques or, if the model is BCMP compliant, 

automatically exported to JMVA to be solved with exact or approximate Mean Value 

Analysis (MVA) algorithm. 

 

6.2.1.2 JSIM model simulation 
 

As it mentioned in [27] JSIM simulation module of the Java Modeling Tools (JMT) is an 

open-source fully-portable Java suite for capacity planning studies. The simulator has been 

purposely developed to help both inexperienced and advanced users. Most of the difficult 

decisions that are needed in order to run simulations properly, such as the detection of the 
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transient part of samples to be discarded, have been automated. The tool also provides 

guidance over the graphical design of the network and over the analysis and the plot of the 

results. What-if parametric analysis for parametric evaluation of complex systems is 

supported. Several features that increase the generality of the applications to capacity 

planning studies are provided, among them fork-join service centers, regions with finite 

capacity, state-dependent routing algorithms, priority classes and import of real workload 

distributions from log files.  The JSIMgraph has been designed to be very flexible. The 

important feature is separation between the GUI and computation engine by introducing an 

XML layer as shown in Figure 6.2. 

 

 

Figure 6.2: JSIM Framework 

 

 

The tool can be divided in 3 layers. 

1. GUI layer (Graphical User Interface to design and configuring models) 

2. XML layer (saving and reading models to file system) 

3. SIMULATION layer (actual implemented strategies and logic) 
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In JSIMgraph, the model of Queuing Network created using the Graphical User Interface (i.e. 

GUI) is saved in the form of a XML. The graphical user interface developed using Java Swing 

Architecture. The GUI modifies the model which is saved in the java class, which is then 

converted into an XML file using the JSIM.xsd file. The architecture allows reuse of the 

simulation or computation engine by other tools or projects by providing a suitable XML 

input file. At the end of the computation and simulation the performance measures and indices 

are in to the solution element of input file. 

The core module of the simulation engine is a discrete event calendar that acts as messaging 

service provider, sending messages to simulation engines. The arrival of a job to the queuing 

station and corresponding departure after service completion is represented by message. When 

all the events for a given time are processed, the simulation current time is moved forward to 

the next instant with a given time in the calendar. 

In the simulation network, each service station is composed of three parts, called Sections. 

The three sections are named as Input section, Service section and Output section. The service 

demands are specified through the GUI interface in the service section of the queuing station. 

In a queuing station the input section receives incoming jobs to be processed by the service 

section. The service section simulates the service process with the user specified service time 

distribution. After service completion, jobs are forwarded to the output section called Router 

which sends the request to the input section of another queuing or service center according to 

user specified routing policy. 

 

6.2.1.3 Parameters estimation 
 

The service demands for service centers inside FCR for QN models illustrated on Figures 6.3 

– 6.5 have been estimated with trial and error method. Since model, in some sense, enhances 

the model of authors from BMC software presented in Chapter 3, the optimal parameter 

values of their model have been taken as a starting point (estimation is discussed in 
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corresponding section of Chapter 3). Obviously, service demands values inside FCR have to 

be smaller to process the same amount of request, since only two requests can simultaneously 

reside inside region. By trials and errors, preserving service demand ratios, the parameters 

have been found and are listed in the Comparison section of the Chapter. 

 

 

Figure 6.3: QN model with FCR for 2-way single-core 

SMT processor  

 

 

 

 

 
 

Figure 6.4: QN model with FCR for 2-way Dual-core 

SMT processor  
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Figure 6.5: QN model with FCR for 2-way Quad-core 

SMT processor  

 

 

6.3 Models Validation  

 
The main performance characteristic for model accuracy estimation is System Response Time 

is also utilized as main measure for comparative analysis between models.  

Utilization data from all benchmark runs is used to validate developed birth-death   

  Markov chain model alongside with different parameter estimation techniques.  

 

The series of plots listed below depict System Utilization versus Model Utilization for 

different system configuration for both benchmarks with parameters estimated in a standard 

way (details can be found in Chapter 5). Parameter values can be found in right upper corner 

of each plot. 
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Figure 6.6: SPEC benchmark: {System vs. Model} Utilization 

with HT for {4, 2, 1} cores at 2660 MHz 

 

 

 

Figure 6.7: SPEC benchmark: {System vs. Model} Utilization 

with HT for {4, 2, 1} cores at 1596 MHz 
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Figure 6.8: Synthetic benchmark: {System vs. Model} 

Utilization with HT for {4, 2, 1} cores at 2660 MHz 

 

 

 

 

Figure 6.9: Synthetic benchmark: {System vs. Model} 

Utilization with HT for {4, 2, 1} cores at 1596 MHz 
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From the above figures we can say that birth-death     Markov chain model seems to be very 

sound because of truly accurate results for utilization. Just some fairly negligible 

discrepancies that stay within experimental error are present for four cores configuration. 

We can summarize that model possesses great predictive capacity for utilization measure. 

 

 

6.3.1 Parameter estimation based on error minimization  

 
Birth-death     Markov chain model has been evaluated not only for Utilization, but also for 

Response Time performance measure, and then yielding outputs has been compared to the 

system’s performance measures.  For system Response time some configurations, primarily 

the ones with two and four cores, exhibited small discrepancies which stay within 5% to 10% 

error. It may indicate some flaws in the process or some small system characteristics that were 

ignored or represented inappropriately. However, achieve better model results and to further 

reduce error to 3-5%, parameter estimation based on error minimization technique can be 

applied. More in detail described in Chapter 5. In our case it is intended to reduce the model 

error for Response time and it is strictly dependent on the estimation of parameter Alpha.  
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Figure 6.10: Synthetic benchmark: {System vs. Model} 

Response time with HT for {4, 2, 1} cores at 2660 MHz 

 

 

As we it can be noticed from the Figures 6.10 and 6.11 the values of parameter   are tuned so 

that to achieve the best possible fitting with original synthetic dataset. Especially it can be 

observed on Figure 6.11 representing scaled version of 6.10. 
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Figure 6.11: Synthetic benchmark: {System vs. Model} 

Response time with HT for {4, 2, 1} cores at 1596 MHz 

 

 
 

Figure 6.12: Response Time after optimization for 4 cores, 

1596 MHz with HT  
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6.4 Comparison 

 
Figures 6.13, 6.14 and 6.15 illustrate comparison results between models for synthetic 

benchmark data. The following models have been confronted: 

 M/M/1 Queuing Network model: on plots referred as “M/M1” 

 M/M/2 Queuing Network model: on plots referred as “M/M2” 

 M/M/4 Queuing Network model: on plots referred as “M/M4” 

 SMT/HTT Model 1: Queuing Network model: Two-way SMT QN model proposed 

by authors from BMC Software and described in detail in Chapter 3. On plots referred 

as “SMT/HTT QN model”. 

 Queuing Network model with Finite Capacity Region (FCR): This model is 

considered rather as enhancement of “SMT/HTT QN model”, which restricts the 

number of requests that can be served at any instant of time to two. Complete 

description of the model can be found in Chapter 5. On plots referred as “QN model 

with FCR”. 

 Birth-death     Markov chain model: Model possessing highest accuracy, 

analytical model of which can be found in Chapter 5. On plots referred as  “Markov 

chain model” 

From the Figures 6.13 – 6.15 it can be observed that the best predictive capability in all 

considered cases possess “Markov chain model” and “QN model with FCR”. They provide 

the best fitting with system measured data. 

At the same time “M/M/x” models provide acceptable results, outperforming in some cases 

more sophisticated “SMT/HTT QN model”.  “SMT/HTT QN model”, instead, improve results 

with increment of number of cores. 

 

Below each plot, for the models the reader can find estimated relevant parameters. 
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Figure 6.13: Response Time measure for 1 core, 2660 

MHz with HT  

 

 

 

On the figure 6.13: 

 For “Markov chain model”:   has been estimated to be 0,221. 

 For “M/M/1”: service time   has been estimated to be 0,049. 

 For “SMT/HTT QN model”:    and    are equal to 0,076ms and 0,001ms 

respectively. 

 For “QN model with FCR”:    and    are equal to 0,063ms and 0,0001ms 

respectively. 
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Figure 6.14: Response Time measure for 2 cores, 2660 

MHz with HT  

 

 

On the figure 6.14: 

 For “Markov chain model”:   has been estimated to be 0,210. 

 For “M/M/1”: service time   has been estimated to be 0,026. 

 For “SMT/HTT QN model”:    and    are equal to 0,066ms and 0,001ms 

respectively. 

 For “QN model with FCR”:    and    are equal to 0,055ms and 0,0001ms 

respectively. 
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Figure 6.15: Response Time measure for 4 cores, 2660 

MHz with HT  

 

 
On the figure 6.15: 

 For “Markov chain model”:   has been estimated to be 0,095. 

 For “M/M/1”: service time   has been estimated to be 0,015. 

 For “SMT/HTT QN model”:    and    are equal to 0,055ms and 0,003ms 

respectively. 

 For “QN model with FCR”:    and    are equal to 0,052ms and 0,0001ms 

respectively. 

0

10

20

30

40

50

60

70

80

90

100

110

120

0,00 10,00 20,00 30,00 40,00 50,00 60,00

R, ms 

X, ops/s 

Response Time 

R (M/M/4) R (SMT/HTT QN model) R (Model with FCR)

Markov chain model Measured Response Time

76 



51 
 

 
 
 
Chapter 7 

 

 
 
 
 

Conclusion and future works 
 

 

 
In this thesis an extensive research on Simultaneous–Multithreading and Hyper–Threading 

technologies have been performed. Technologies that improve overall efficiency of CPU by 

exploitation of multiple threads that better utilize resources provided by modern superscalar 

processors. In most cases SMT/HTT hides memory latencies increasing throughput of 

computations per amount hardware used. The biggest advantage of simultaneous 

multithreading technique is that it requires only some extra hardware instead of replicating the 

entire core. 

As we have experimentally validated using two different benchmarks, both technologies allow 

substantial performance increase sometimes reaching up to 33% over total system capacity 

and significant reduction of user waiting time (up to 20%). Such performance results should 

not be overlooked, and in fact, price and performance benefits make it a common design 

choice on the market. This raises another issue: Utilization law [17], which establishes linear 

relationship between utilization and throughput of a computing systems and which is often 

intended as the basis for capacity planning in large data center, as we proved experimentally, 

does not hold anymore in the presence of Simultaneous-Multithreading or Hype-Threading 

technologies. Apparently in such a case the overall capacity is heavily underestimated and 

there is a strong need of techniques that take into account performance effects enabled by the 
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technologies.   

In our work we propose two such models, based of birth-death Markov chain model and 

Queuing Network model with Finite Capacity Region. Both of them demonstrate high 

predictive capabilities with estimation error being within 3% to 10% and easily model 

SMT/HTT technologies. The proposed models are compared to other state of art models. 

In the future work, another technology aspect that can be validated is power/energy efficiency 

of SMT. Intel claims that HTT enabled processors are extremely energy efficient across a 

broad range of applications. This effect is achieved due to fewer idle execution units that 

consume power without contributing to performance [1]. Investigations can be performed 

again using SPEC Power benchmark – an industry standard for measuring both the 

performance and the power consumption of servers [19]. 
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