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Sommario

Negli ultimi decenni l’utilizzo di modelli matematici per descrivere l’evoluzione dei

tumori si è incredibilmente sviluppato. In questo lavoro l’attenzione è concentrata

in particolar modo sui modelli diffusione–reazione, specialmente nel modellizzare

la generazione e lo sviluppo dei tumori cerebrali infantili. Questi modelli sono stati

modificati e sviluppati nel corso degli anni, grazie al lavoro di Murray, Swanson

et al., che hanno largamente studiato il fenomeno biologico al fine di ottenere una

descrizione matematica soddisfacente.

Lo scopo di questo lavoro è di valutare la precisione di questo tipo di modelli

mediante simulazioni numeriche di un codice elementi finiti, su una griglia derivata

da una serie di risonanze magnetiche effettuate su di un paziente test. L’analisi

consiste nello studiare e comparare, dal punto di vista analitico e sperimentale,

i risultati ottenuti tramite un modello a diffusione lineare (tipico in letteratura),

similare ad un equazione del calore, ed un modello a diffusione non lineare proposto

nel presente elaborato, basato sull’equazione dei mezzi porosi.





Abstract

In the last decades the use of mathematical models to describe the evolution of

a cancer has been greatly developed. In this work the attention is focused on

diffusion–reaction models, especially in generation and development of childhood

brain cancers. These models has been modified and improved during the years,

thanking the work of Murray, Swanson et al., that have widely and intensively

studied the biological phenomenon in order to obtain a satisfactory mathematical

description.

The aim is to evaluate the precision of this kind of models through simulations

of a finite elements code on a mesh derived from MRIs of a test patient. The

whole analysis consists in studying and comparing, both under an analytical and

a numerical point of view, the results obtained through a usual linear diffusion

model, similar to the heat equation, and a non linear diffusion model implemented

in this paper, based on the porous medium equation.

Keywords

FE, Galerkin, MRI, Heat Equation, Porous Medium Equation, Tumor, Growth

Diffusion Reaction Models, Mesh Generation, VTK, FreeFem++.





Introduction

Mathematical Biology has encountered a huge development in the last decades,

and in the last years interactions between mathematics and medicine have been

even more significant and intense. Especially the use of mathematical models to

predict and describe complex physical and biological phenomena has incredibly

spread in the scientific community. Modeling tumor’s growth is an interesting and

intricate quest and there are a lot of ways to study this kind of processes. The

approach depends strictly on which kind of tumor is considered and where the

cancer is located.

Concerning in particular brain tumors, the details of their spatio–temporal growth

are still not well understood. Indeed their development and expansion process

present interesting challenges from the mathematical point of view. An attempt

to describe the growth of this kind of cancers can be done using a diffusion–

reaction system of partial differential equations, as can be seen in [Mur03] where

an heat equation is used.

In this kind of models the tumor is studied by analyzing the diffusion of its cells or

its cellular concentration in the brain. The generation of new cancerous cells has

been simulated via an appropriate reaction term, and the movement of the cells
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in brain tissues by a proper diffusion term, that takes into consideration spatial

heterogeneity by varying the diffusion coefficient over the relevant domain.

These models are easy to implement and study. While they work well in some

test cases, they present some problems dealing with more complex problems. The

determination of the diffusive parameters is a complex matter and a lot of articles

have been devoted to it, see for example [JMD+05]. This matter is somewhat

critical, indeed the brain is characterized by a complicated geometry,to describe

accurately its structure and the heterogeneity of the tissues is mandatory to create

a consistent mathematical model. Another lack of these models is the linearity

in the diffusion term, that could be not suitable to capture the propagation front

of the main cellular mass of the tumor, not representing the degeneration of the

invaded tissues.

Normally the tumors studied via these models are gliomas and similar brain tu-

mors like glioblastoma. In this work the focus is on the medulloblastoma, a highly

malignant primary brain tumor, discovered in 1925, that usually originates in the

cerebellum or posterior fossa that commonly affects the cerebra of children. For

this type of cancer there is no much literature that describes the study of its

growth using diffusion–reaction models.

In this work is presented an analysis of the growth of such a tumor on the basis of

the previously mentioned models, studying their properties and examining criti-

cally their capability to describe the phenomenon. Furthermore is proposed a non

linear version of the model, based on the porous medium equation, where a non

linearity in the diffusion term, which is supposed to be a function of the tumor’s

cells concentration, is introduced. By this modification of the linear model. it

is possible to describe the degeneration of invaded tissues and obtain a solution
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that captures the front of propagation of the expanding cancer. The modified

model is interesting for another reason. The classic linear model tend to overes-

timate the size of the growing cancer, while non linear diffusion alters the speed

of cellular propagation and alleviates the over diffusive effects. That means that

a sharper estimation of the cancer’s volume is found. This aspect can be crucial

when evaluating brain’s invasion during tumor’s growth and makes the model a

more helpful instrument from a medical point of view. Indeed using it to predict

the growth in time of a cancerous mass might help to understand how the disease

will affect the patient and could suggest when and where to intervene surgically.

The present work describes the two models above mentioned and analyzes their

effect on a real case of growing medulloblastoma, discussing their own proper-

ties and comparing the results obtained through numerical simulation. Chapter

1 contains an overview on the history of this kind of models, the derivation of the

governing equations from the phenomenon, and a study upon the existence of a

unique solution in linear and non linear diffusion case. The attention is focused

on the correct choice of the parameters; in particular, concerning the non linear

diffusion model, an analysis on the growth observed on the MRIs (Magnetic Res-

onance Images) is carried on, in order to select the correct function of the cell

concentration to be introduced in the diffusion term.

In Chapter 2 are briefly presented the discretization adopted for both the prob-

lems and the numerical methods.

The tests are performed over a brain mesh obtained from MRIs provided by

”Banca Dati www.tumori.net” of INT (Istituto Nazionale dei Tumori). The

mesh analysis and its creation derived from MRIs is discussed in Chapter 3,

where the techniques used to generate the computational mesh of the brain are
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introduced and the main issues about obtaining a good representation of the bio-

logical domain without increasing too much the computational costs to implement

the simulations are discussed. Two short paragraphs, one about the segmentation

method used to analyze the MRIs and the other one concerning the software

adopted for the simulations, are included.

In Chapter 4 are presented the main results obtained about the capability of these

models to describe the growth of a brain tumor, especially making a comparison

between the linear and the non linear approach on the basis of the solutions ob-

tained through numerical simulations.

In Appendices A and B are reported and described the codes and the procedures

used for the mesh generation and the simulations.



Chapter 1

Mathematical Models

1.1 History

Since the early steps in tumor’s growth studies, most of the models, were based on

the assumption that cancer’s cells divided at rates, varying among different type

of tumors, that could be considered approximately constant on large temporal

scales.

As described in [HAJS07] first studies on human cancers were conducted by Collins

et al., observing the evolution of metastases in lungs through plain x-rays discov-

ered that they grew at constant volume-doubling rate following an exponential

law [CLT56]. This article had an incredible echo in the scientific community and

in the years were proposed a lot of various relatively static models (see [AJ95],

[AJ94b], [AJ91], [AJ94a] and [HTC01]). This kind of models are called “static”

because they all basically lead to an exponential law, doesn’t take in account any

5



6 CHAPTER 1. MATHEMATICAL MODELS

form of cell motility, making them suitable only to describe the evolution of a

solid tumor, but totally inappropriate to describe the growth of cancers with a

strong dynamic of invasion.

For a theoretical analysis of the relation between the cell kinetics and evolution of

a cancerous mass, a pioneer is considered Steel [Ste77], with his works he started

to look at the different time scales that characterize the cell and the gross kinet-

ics. In this model were formulated several equations, each of them arithmetically

simple involving a large number of parameters: Tp (the potential doubling time),

Td (the actual gross volume- doubling time), Tc (the cell cycle time), Ts (the time

during which DNA is being synthesized within Tc), γ (a factor defining the timing

of Ts within Tc and the age distribution of the cells), LI (the labeling index), ϕ

(the cell loss factor, the proportion of newly formed cells that are lost), and GF

(the growth fraction, the proportion of the total cells that are actually cycling).

Alvord and Shaw, in [AJS91], developed further Steel’s work adding to these un-

knowns the amount of tumor mass (mostly invisible) left behind after surgical

resection and creating a nomogram that approximated the interrelations between

most of Steel’s unknowns. Exploiting simple arithmetic of Steel’s equations, they

were able to include survival time. Survival time could either be predicted or,

more generally, be used retrospectively to estimate how much tumor that was

all or mostly invisible to the neurosurgeon or neuroradiologist that had been left

behind at the time of treatment. On the basis of these works Wilson could, in

[Wil92],estimate the gradient of glioblastoma cells as exponential and calculate its

concentration decreasing. After these pioneeristical studies on tumor’s growth dy-

namics (especially glioma cells evolution), a solid base for a mathematical model

began to take form. The creation of modern models was conducted with a step–
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by–step procedure, in which every new model presented new features in a process

of continuing transformation and modification. Every newly proposed model pro-

vided necessary improvements in order to adjust deficiencies of the previous ones.

In the early 1990’s Murray et al (see [Mur03])proposed a spatio–temporal model.

It was conceived for the glioma, but most of its characteristics are suitable for most

brain cancers. The basic model considers the evolution of the cancer’s cells to be

mainly governed by diffusion and proliferation. As in previous proposed models,

the cells are assumed to duplicate following an exponential law. This hypothesis

are reasonable, and reflect the biological processes involved at the time scale with

which Murray was concerned, the time of disease’s evolution. For this reason this

type of model doesn’t take in account necrosis, because its effects are significant

only in highly proliferative, and slowly diffusive tumors (however the model could

be easily modified to include it). This model is simplified by the assumption that

brain tumors rarely metastasize outside the brain, making possible to describe the

phenomenon by a balance law:

rate of change of cancer’s cells density =

diffusion of cancer’s cells in grey and white matter +

proliferation of cancer’s cells.

The models presented in this work are essentially based on the equation proposed

by Murray with some modifications.
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1.2 Model Derivation

1.2.1 Basic Model

As seen in [Mur03] we consider c(x, t) as the number of cancer’s cells at position

x and time t. The model could be written, in dimensional form, as a balance

equation:
∂c

∂t
= ∇ · J + ρc,

indicating with ρ(time−1) the net rate of cells growth, accounting proliferation

and death, and where J is the diffusive flux of cells. Under the assumptions of

classical gradient–driven Fickian diffusion, J is taken proportional to the gradient

of cell density:

J = D∇c,

D (length2/time) is the diffusion coefficient of tumor’s cells in brain tissues.

At this stage the governing equation is:

∂c

∂t
= D∇2c+ ρc. (1.1)

The brain tissue is here considered homogeneous, so that diffusion and growth

rates are taken constant among the domain. To deal with the complex structure

of the brain the model has to be modified.
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1.2.2 Spatial Heterogeneous Model

Brain tissues have different biomechanical properties and in particular in this con-

text, the tumor cells diffusion is to be considered. From in vivo studies, regarding

glioma cells diffusion conducted on rats (Chicoine and Sibergeld 1995, Chicoine

and Sibergeld 1997, Kelley and Hunt 1994), it appeared that white matter serves

as a channel of invasion between grey matters areas for cancer’s cells. These re-

sults suggest to take a larger motility coefficient for cells in white matter than in

grey matter.

On the basis of the models proposed by Swanson et al. (see [Swa99], [SAJM92],

[SAJ02], [SAJM02a], [SAJM03] and [SAJM02b]), the model can be modified to

allow diffusion coefficients to vary spatially among brain areas, so introducing a

description of the complex geometry of the brain. The equation (1.1) still applies

but the model now involves spatially varying diffusion D(x),

∂c

∂t
= ∇ · (D(x)∇c) + ρc, (1.2)

where usually D(x) has the following form:

D(x) =

Dw for x in white matter

Dg for x in grey matter
(1.3)

with Dw > Dg, reflecting the different diffusive properties of the white and the

grey matter.

The determination of the diffusion coefficients used in (1.3) has been the subject of

many article and studies. One technique is described in [SBMAJ03] and consists
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in relating v, velocity of detectable tumor boundary, with ρ (cancer cells prolif-

eration rate) and a random walk diffusion coefficient D obtained using Fisher’s

approximation (see [BKMAJ97] and [Mur03]):

D =
v2

4ρ
. (1.4)

This approximation comes from the observation that a population governed by

growth and diffusion expands at a velocity of 2
√
ρD for large time and is linear

for a given ρ and D.

From examination of medical images, precisely CT scans, is derived the rate of ad-

vance of the tumor margin within the grey and the white matter, vg and vw, respec-

tively. The analysis conducted in [TCW+95] and [TCW+96], studying the margin

of detectable tumor movement, gave an average velocity v = 0.008 cm/day. Using

as usual in these cases a net proliferation ρ = 0.012/day, relation (1.4) suggests

the diffusion coefficient D = v2/4ρ = 0.0013 cm2/day. Being these data obtained

from an invasion front in the proximity of the deep cerebral nuclei (predominantly

grey matter), this value is associated to Dg. So, having vg = v = 0.008 cm/day,

and considering that from the CT scans, the speed of advance of the tumor margin

across the corpus callosum (white matter) is two to three times faster than in (pre-

dominately) grey matter; is possible to estimate that vw > 2.2vg at 0.018 cm/day

and Dw > 5Dg giving as diffusion coefficient D(x):

D(x) =

Dw = 0.0065 cm2/day for x in white matter

Dg = 0.0013 cm2/day for x in grey matter
(1.5)
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To complete the phenomenon description, it is mandatory to add a boundary

condition to the model. From the hypothesis assumed in Section 1.1, knowing that

rarely brain tumors metastasize outside the brain, a null flux boundary condition

is imposed. So, considering B as the brain domain on which (1.2) is to be solved,

the model become:
∂c

∂t
= ∇ · (D(x)∇c) + ρc in B × (0, T )

n ·D(x)∇c = 0 on ∂B × (0, T )

c|t=0 = c0(x) in B

(1.6)

where ∂B is the boundary of the brain domain and 0 < T < +∞. The initial

condition c0(x) describes the cancer cell distribution in the brain at time t = 0

and has the following structure:

c0(x) =

C0 for x in cancer zone

0 otherwise

where C0, is a positive constant derived from the MRIs analysis.

1.3 Linear Diffusion Model

1.3.1 Model Formulation

Starting from the model (1.20) presented in previous Section, is here implemented,

with some modifications, a model suitable to describe the growth of a medulloblas-
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toma near to the ventricles under the corpus callosum.

The first modification to be made is to add a factor that considers the area of

the brain where a medullablastoma grows. Ventricles are filled with cerebrospinal

fluid, so modelling the evolution of cancer cells in this zone makes mandatory to

modify properly the diffusion term ((1.3)) dealing with the presence of the fluid.

The cell motility could be described with a D(x) of the following form:

D(x) =


Dw for x in white matter

Dg for x in grey matter

Dcsf for x in cerebrospinal fluid

(1.7)

where the newly introduced coefficient is taken Dcsf � Dw > Dg, this relation is

derived from the observation of the dynamics of medulloblastoma growth (in the

test case has been chosen a value of Dcsf = 0.1000 cm2/day ).

One problem analyzing this type of model is to determine the initial cells density

of the cancer at t=0, c|t=0 = c0(x). To avoid this complication, the equation

(1.2) could be divided by C0 (knowing that C0 ≥ 0 as seen above), thus obtaining

an equation for the non–dimensional quantity 0 ≤ c̃(x, t) ≤ 1, where c̃(x, t) now

indicates the concentration of cancer cell in x at time t:
∂c̃

∂t
= ∇ · (D(x)∇c̃) + ρc̃ in B × (0, T )

n ·D(x)∇c̃ = 0 on ∂B × (0, T )

c̃|t=0 = k(x) in B

(1.8)
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where k(x) is

k(x) =

 1 for x in cancer zone

0 otherwise
(1.9)

Working with c̃(x, t) force to modify properly also the reaction term of the equa-

tion, in fact using a linear reaction term doesn’t ensure that c̃(x, t) ≤ 1 ∀x and ∀t.

This could be solved using a different reaction term, however this modification is

treated later in this work.

Models like (1.8) belong to the class of linear parabolic problems, studying this

kind of system of partial differential equations makes necessary to establish whether

the problem has a solution, and if this solution exists analyze its uniqueness.

1.3.2 Model Analysis

Considering (1.8), following analysis steps proposed in [Sal], first of all is necessary

to find a weak formulation. The primary step is to multiply for a sufficiently

regular function φ = φ(x) the first equation of the system, integrating on the

brain domain B, indicating to ease the notation c̃ as c from now on:

∫
B

∂c(x, t)

∂t
φ(x)dx−

∫
B

∇ · (D(x)∇c(x, t))φ(x)dx−
∫
B

ρc(x, t)φ(x)dx = 0.

Applying integration by parts to the second term we get:∫
B

∂c(x, t)

∂t
φ(x)dx−

∫
∂B

n ·D(x)∇c(x, t)φ(x)dx+

+

∫
B

D(x)∇c(x, t) · ∇φ(x)dx−
∫
B

ρc(x, t)φ(x)dx = 0.
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Enforcing the boundary condition of null flux of the system (1.8), the integral

on ∂B is equal to zero, thus obtaining the following weak formulation for the

problem:

∫
B

∂c(x, t)

∂t
φ(x)dx+

∫
B

(D(x)∇c(x, t)) ·∇φ(x)dx−
∫
B

ρc(x, t)φ(x)dx = 0. (1.10)

At this point it is useful to consider c = c(x, t) as a function that for any value

t ∈ [0, T ] gives a function of x, in an appropriate Hilbert space V , c : [0, T ]→ V .

So using this convention is possible to use c(t) instead of c(x, t), resulting from

(1.10) ∫
B

ċ(t)φdx +

∫
B

(D(x)∇c(t)) · ∇φdx−
∫
B

ρc(t)φdx = 0. (1.11)

It’s now mandatory to find a proper functional environment, a suitable Hilbertian

tern (V,H, V ∗). Since an appropriate choice is to take c(t) ∈ H1(B), it’s quite

natural from the theory to pose H = L2(B) and V ∗ = H−1(B), so having H−1(B)

as natural space for ċ(t). It’s known from the functional analysis of Sobolev

spaces (see [Sal]), that since, from the spaces choice, are c ∈ L2([0, T ];V ) and

ċ ∈ L2([0, T ];V ∗) it follows that

c ∈ C([0, T ];H)

making possible to identify H = L2 a suitable space for the initial cell density

condition k.

Using the commonly adopted notation and interpreting in the duality sense the
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first integral of (1.11), and introducing the following bilinear form:

a(w, φ) =

∫
B

(D(x)∇w) · ∇φdx−
∫
B

ρwφdx. (1.12)

is now possible to write the weak formulation of the problem (1.8):

Find a function c ∈ L2([0, T ];V ) such that ċ ∈ L2([0, T ];V ∗) and :

1. for any φ ∈ V ,

〈ċ(t), φ〉∗ + a(c, φ) = 0 (1.13)

a.e in [0, T ];

2. c(0) = k.

Once a weak formulation is given, it is possible to prove that the problem (1.8)

has one and only one existing solution.

The bilinear form (1.12) is at least weakly coercive, in fact it is always possible

to choose a value λ ≥ 0 and α > 0 such that for any v ∈ V :

a(v, v) + λ‖v‖2
H ≥ α‖v‖2

V

where ‖ · ‖2
H and ‖ · ‖2

V , are the norm obtained using the internal product, in

H and V respectively. The above property gives the possibility to implement,

following the analysis conducted in [Sal] for evolution problems, the well known

Faedo-Galerkin method. This method grants that the problem (1.13) is well posed

under the assumptions made, and ensures the existence and the uniqueness of the

solution for the system (1.8) (in this work the complete implementation is omitted,
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see always [Sal] for details).

1.3.3 Model Properties

As seen in the previous Sections, the model (1.8) is a quite simple instrument to

describe the complex behavior of the brain cancer cells. Describe the growth of

the tumor using a diffusion–reaction equation for the cells concentration, gives the

possibility to analyze and synthesize molecular and cellular properties of tissues

from a macroscopic point of view. All the information on the biological processes

involved in the cell proliferation and diffusion trough the tissues is contained in

the diffusion coefficient D(x) and in the reaction one, ρ. In [SBMAJ03] there’s

a brief analysis of the role played by these coefficients, especially regarding the

ratio between them. From the assumptions made, the cell concentration depends

on the ρ/D(x). An interesting consequence of this fact is that, varying D(x)

and ρ, while keeping their ratio fixed, the geometry of the tumor growth and

invasion remains the same, only the time scale on which the growth and inva-

sion occurs is changed. Specifically, two different tumors with ρ/D(x) fixed could

appear exactly the same at a single observation time step but could reach their

ultimately fatal size in very different lengths of time. This illustrates the clinical

complications of using only one MRI observation of the lesion and proceeding

with treatment without really knowing the expected pattern of growth. Anyway

is possible to obtain cells concentration profiles for a specific tumor on the basis

of a model only by knowing the value of the above coefficients.

Is mandatory to observe the fact that studying this phenomenon with a system

of partial differential equation like (1.8), we are forced to modify the obtained
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Figure 1.1: Solution of the linear equation in a square domain.

solution in order to give it a physical sense. The model presented in the above

Section has a fundamental solution (see [Sal]), e.g solving the system in a square

domain, gives the result observed in Figure [1.1]. The remarkable fact to notice

is that this kind of solutions has a problem to deal with. The cells diffusion in

linear models, like (1.8), doesn’t reproduce the propagation front of cancer cells

in tissues. In fact looking at this equations, a positive concentration of cancer

cells could be found also far from the main mass of the tumor. This could be

possible looking at the tumor in the advanced phases of its growth, but in model-

ing these phenomenon is necessary to consider a model that better highlight the

tumor borders. To deal with this problem is possible, as done also by Swanson

et al., to put threshold beyond which the concentration of cancer cells is retained

negligible, see Figure [1.2] for an example in the square case.

Another fact that spots out studying this model, is that cell proliferation process

modeled in this way, doesn’t take in account the fact that the tissues in which the

cancer grows deteriorate and modify their diffusive properties during the prolifer-
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Figure 1.2: Solution with a threshold to avoid non physical behavior.

ation. It’s obvious that a partially invaded tissue has different diffusive properties

respect to a sane or a total invaded one. Now the aim will be to modify properly

the model (1.8) to consider this factors and model in a more physical way the

phenomenon.

1.4 Non Linear Diffusion Model

As seen in the previous Section, modeling tumor growth using linear equation to

describe cancer’s cells behavior, could be a smart and effective technique but has

a major problem to deal with, treating the diffusion in a linear way leads to obtain

non physical solution and is based on strict assumptions that couldn’t be justified.
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Is possible to modify in a quite simple way the existing equation to consider these

factors. The idea followed in this work is based on a “conversion” of the linear

equation to a porous medium equation where a non linearity is introduced in the

diffusive term.

1.4.1 Model Overview

Let’s consider the linear model (1.8), and modify the diffusion term introducing

a power m > 0 of the cell concentration as follows, for details see [Sal] for the

derivation of these models:

∂c

∂t
= ∇ · (mcm−1D(x)∇c) + ρc.

Where all the parameters are the same of the linear case, and the diffusion coef-

ficient D(x) has the same form of (1.7).

As seen in [Vaz12], the power of the cancer cell concentration plays a funda-

mental role in the implementation of the model. The exponent m varies mainly

in the range m > 1, obtaining the linear case for m = 1. It is even possible

to extend it to the fast diffusion range (FDE) m < 1 under the condition that

m > mc = max[(N − 2)/N, 0], where N is the dimension in which the problem

is studied. The complete form of the non linear model for the evolution of the
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cancer cell concentration is:
∂c

∂t
= ∇ · (mcm−1D(x)∇c) + ρc in B × (0, T )

n ·D(x)∇c = 0 on ∂B × (0, T )

c|t=0 = k(x) in B

(1.14)

The first things to notice is that the non linearity introduced gives a degenerate

diffusion term: when the cell concentration decreases to value near to zero the

diffusion vanishes.

1.4.2 Model Analysis

Here the analysis is carried on following the work done in [Vaz07], in order to

obtain the well posedness for the non linear model. In the following we start

considering a model without reaction term, further the well posedness is extended

to diffusion–reaction cases.
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Pure Diffusion Case

First of all, let’s introduce a suitable concept of weak solution, for the problem

without reaction term, defining BT = B× (0, T ) the following system is obtained:


∂c

∂t
= ∇ · (mcm−1D(x)∇c) in BT

n · (mcm−1D(x)∇c) = 0 on ∂B × (0, T )

c|t=0 = k(x) in B

(1.15)

Posing for ease the notation ∇ · (∇Φ(c)) = ∇ · (mcm−1D(x)∇c). Notice that the

function Φ(c) satisfies the properties required in [Vaz07]:

• Φ : R+ 7−→ R+ is continuous and strictly increasing in c with Φ(0+) = 0;

• Φ(±∞) = ±∞;

• Φ(c) is smooth with Φ′(c) > 0 for c > 0.

Definition 1. A weak solution of equation (1.14) in BT is a locally integrable

function, c ∈ L1
loc(BT ), such that

• z = Φ(c) ∈ L1([0, T ];W 1,1(B));

• c satisfies the identity

∫
B

∫ T

0

(∇Φ(c) · ∇w − cwt)dxdt =

∫
B

c0(x)w(x, 0)dx

∀w ∈ C1(B̄T ) which vanishes for t = T .

It’s possible to prove the following.

Theorem 1. Under the additional assumptions that Φ(c) ∈ L2([0, T ];H1(B)) and



22 CHAPTER 1. MATHEMATICAL MODELS

c ∈ L2(BT ). The problem (1.14) has at most one weak solution.

It is now possible to define the primitive of Φ

Ψ(s) =

∫ s

0

Φ(t)dt.

Concerning the initial data, such a setting leads us to assume that c0 is a mea-

surable function such that Ψ(c0(x)) ∈ L1(B). Let’s call this space LΨ(B). When

c0 belongs to LΨ(B) is possible to develop a theory for energy weak solutions.

Theorem 2. • Under the stated conditions on Φ, assume that c0 ∈ LΨ(B).

Then the problem (1.14) has a weak energy solution defined in an infinite

time interval, T =∞. So c ∈ L∞((0, T );LΨ(B)) and Φ(c) ∈ L2([0, T ];H1
0 (B)),

and the energy inequality

∫
B

∫ T

0

|∇Φ(c)|2dxdt+

∫
B

Ψ(c(x, T ))dx ≤
∫
B

Ψ(c0(x))x

holds. Moreover, c ∈ C([0,+∞);L1(B)).

• For every two solutions c and c̄ with initial data c0, c̄0 resp., for every

t > τ ≥ 0 holds

‖(c(t)− c̄(t))+‖1 ≤ ‖(c(τ)− c̄(τ))+‖1. (1.16)

where ‖ · ‖1 indicates the L1–norm. Following the steps made in [Vaz07] it

is also possible to extend the whole theory to general initial data that belongs to

L1.

Theorem 3. Let Φ be a monotone function as above. Then, for any c0 ∈ L1(B)



1.4. NON LINEAR DIFFUSION MODEL 23

there exists a unique c ∈ C([0,∞);L1) that solves problem (1.15) in the sense of

limit solutions. The weak energy solutions of the theorem 2 are limit solutions.

The map c0 7−→ c is an ordered contraction from L1(B) into C([0,∞);L1(B)) in

the sense that (1.16) holds for limit solutions.

Let’s write the limit solution c(t) obtained for data c0 ∈ L1(B) as Stc0.

Then:

Corollary. The map St define a continuous semigroup of contractions in L1(B),

and St preserves L1(B)+. The semigroup is uniformly bounded.

In this way the problem (1.15) is proved to be well posed and positive pre-

serving in L1.

Diffusion–Reaction Case

To extend the results obtained in the pure diffusion case to the problem (1.14), it

is possible to introduce a proper change of variables.

We consider the following substitution:
c̄ = e−ρtc;

τ =
1 + e(m−1)ρt

(m− 1)ρ
.

(1.17)

Substituting (1.17) in (1.14) and remembering that ρ is a fixed constant, we

obtain:
∂c̄

∂τ
= ∇ · (mc̄m−1D(x)∇c̄). (1.18)
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Applying the same analysis made in the pure diffusion case on (1.18), it is possible

to obtain the well posedness also for the diffusion–reaction case.

1.4.3 Model Properties

As seen in Section 1.3, the model is essentially governed by the values of the

diffusion and proliferation coefficients, particularly by the ratio between them.

Also the value of the coefficient m is important to describe the growth process.

The more evident difference consists in the non linearity introduced in the diffusion

term. In this way the solution of the system has a more physical behavior. The

solutions of these kind of equations highlights the sharp propagating front and

better describes the growth of a solid mass with defined boundaries. Another

interesting feature is that introducing in the diffusion a term that depends on

the cancer cells concentration means physically to describe also the degeneration

of the invaded tissues, modifying their properties when varying the value of cell

concentration.

In the following analysis the model will be studied posing m = 2, resulting


∂c

∂t
= ∇ · (2cD(x)∇c) + ρc in B × (0, T )

n ·D(x)∇c = 0 on ∂B × (0, T )

c|t=0 = k(x) in B

(1.19)

The value of the coefficient is chosen on the basis the speed of the tumor front in

the MRIs used for the numerical simulation. Studying the variation of the mean

diameter over the MRI slices on time, it is possible to obtain a proper value for
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Figure 1.3: Mean diameter over MRI layers on time.
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the exponent of the cell concentration in the diffusion term, in order to describe

the proliferation of tumor cells following their behavior basing on the variation

of the cancer mass during its evolution process. From [Vaz07] it is known that

solutions of the non linear equation has particular scaling properties, and from

them is possible to estimate that the radius of the growing mass follows the rule

r(t) ∼ tα

where

α =
N

N(m− 1) + 2

considering that the problem is studied in three dimension (N = 3), the choice of

m gives a value for the exponent α = 0.6, that is a good approximation according

to the diameter evolution studies, see Figure [1.3].

1.5 Reaction Term

As discussed in Section 1.3, the use of a linear reaction term, it is not a proper

choice when the cancer’s growth is described by studying the evolution of its cells

concentration, because it doesn’t ensure to obtain a bounded solution.Indeed,

to model the phenomenon in a proper way, is necessary to consider a function

c(x, t) ≤ 1. To ensure the preceding inequality a further modification of the dif-

fusion reaction models has been suggested, as done and suggested in [JMD+05].

This modification consist in modeling the reaction term as a function f(c) depend-

ing on the number of cancer cells that represent the temporal evolution pattern
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of the growth. In this way the models obtained, introducing such a reaction term,

remember the equations proposed in [GM77] for biological populations.

The function f(c) takes different forms:

f(c) = ρc

f(c) = ρc log
cmax
c

f(c) = ρc(cmax − c)

In the present work, the function chosen to describe the growth pattern, is a

logistic law of the following form flog(c) = ρc(1− c).

The linear model become:
∂c

∂t
= ∇ · (D(x)∇c) + flog(c) in B × (0, T )

n ·D(x)∇c = 0 on ∂B × (0, T )

c|t=0 = k(x) in B

(1.20)

while the non linear is now
∂c

∂t
= ∇ · (2cD(x)∇c) + flog(c) in B × (0, T )

n ·D(x)∇c = 0 on ∂B × (0, T )

c|t=0 = k(x) in B

(1.21)

The property of well posedness for both the systems presented remains, and it

can be proven using iterative or fixed point techniques.
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Chapter 2

Numerical Models

The models presented in the previous Chapter are governed by linear and non

linear parabolic equations. For the simulations was used the finite element method

with Galerkin discretization.

2.1 Linear Model

2.1.1 Galerkin Formulation

Consider the following bilinear forms taking c,z and φ in V = H1(B):

m(c, φ) =

∫
B

cφdx;

a(c, φ) =

∫
B

D(x)∇c∇φdx;

29
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and the trilinear form

r(z, c, φ) =

∫
B

c(1− z)φdx.

The problem (1.20) could be now written as

m(ċ, φ) + a(c, φ) + r(c, c, φ) = 0, ∀φ ∈ V

remembering as seen in Section 1.3 that c = c(t).

Let’s consider the spaces

Xr
h =

{
v ∈ C0, v|K ∈ Pr ∀K ∈ Th

}
,

Vh =
[
H1(B) ∩Xr

h

]
;

Th is a tetrahedralization of the domain B, and indicating with {ϕj} a base for

the space Vh is possible to introduce an approximation for c:

ch =

Nh∑
i

ciϕi.

The problem can be now written using the approximation ch and the proper spaces

introduced before

m(ċh, φh) + a(ch, φh) + r(ch, ch, φh) = 0, ∀φh ∈ Vh (2.1)

with ċh =
∑Nh

i ċiϕi.
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2.1.2 Algebraic Formulation

Defining c = (c1, c2, ..., cNh
)T and the following matrices

M = [mij] = m(ϕj, ϕi),

A = [aij] = a(ϕj, ϕi),

R(z) = [rij(z)] = r(z, ϕj, ϕi);

is possible to obtain a matricial formulation of the equation (2.1)

Mċ + (A + R(z))c = 0.

For the time discretization a Backward Euler scheme is used. Indicating with

∆t = tk+1 − tk the time discretization step and and choosing at every time step

a semi–implicit treatment of the reaction term by posing z = ck, the formulation

become:

M
ck+1

∆t
+ (A + R(ck)ck+1 = M

ck

∆t
,

Notice that at every time step the problem solved is linear. For further details on

discretization,stability and convergence properties see [Qua08].

2.2 Non Linear Model

The most challenging quest in using this model is to treat the non linearity in

the diffusion term in a proper way. To deal partially with it is used a fixed point

technique. Let’s see how the formulation of the problem change.
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2.2.1 Galerkin Formulation

First of all consider the trilinear form ã(·, ·, ·), always taking c,w and φ in V =

H1(B):

ã(w, c, φ) =

∫
B

2wD(x)∇c∇φdx.

Using same spaces and notation of Section 2.1, the problem (1.21) become

m(ċh, φh) + ã(ch, ch, φh) + r(ch, ch, φh) = 0, ∀φh ∈ Vh.

2.2.2 Algebraic Formulation

In order to obtain a full discrete formulation, consider the matrix

Ã(w) = [ãij(w)] = ã(w,ϕj, ϕi)

As done for the linear model an implicit time discretization is used, treating the

reaction term in a semi–implicit way, leading to the matricial formulation

M
ck+1

∆t
+ (Ã(w) + R(ck))ck+1 = M

ck

∆t
. (2.2)

At every time step the algebraic problem (2.2) has to be solved. As said before

the non linearity is treated using a fixed point technique posing at the first step

of the fixed point iteration w = ck. A convergence criterion based on the distance

in L2 between the solution at two consecutive steps is used:

ep = ‖cp+1 − cp‖L2(B) ≤ tol
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where tol is a convergence threshold and p represent the fixed point iteration step.

In this way the problem solved at any fixed point iteration is linear and it can

be solved as in the previous case using iterative methods. To avoid the problem

of the oscillations provided by the steep gradients near the zones where the cells

concentration goes to zero, the solution is modified at every time step posing to

zero the concentration below a threshold.
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Chapter 3

Numerical Implementation

3.1 Mesh Generation

Simulate phenomena in biological process forces to describe complex domains. It

is then essential to create well refined meshes close to the reality of the prob-

lem without exceed in computational costs. In the present work the modeling

of the brain domain has been performed using V TK (Visualization Tool Kit,

http://www.vtk.org) and vmtk (Vascular Modelling Tool Kit, http://www.vmtk.org),

through a Python interface, and working on a series of MRIs of a patient provided

by the INT (Istituto Nazionale Tumori, ”Banca Dati www.tumori.net”).

35
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Figure 3.1: Example of MRI, trasversal slice.

3.1.1 Medical Images Segmentation

The output of a MR (Magnetic Resonance) is a grey scale image, e.g. Figure

[3.1]. The grey intensity is correlated to the tissue’s diffusion properties. To

obtain information about tissues and their features, it is necessary to segment

the brain areas putting labels on different regions. In the simulation carried out

applying the models presented in Chapter 1, the segmentation process has the

aim to identify five different areas of the image:

• Grey Matter :

• White Matter ;
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• Cerebro Spinal Fluid ;

• Tumor ;

• Background.

Indeed the interest is to have a map of the brain, from which is possible to detect

the location of the brain’s boundary, to estimate the local values of diffusion D(x)

(defined in (1.7)) and where the tumor is located.

The procedure is performed using fuzzy logic segmentation and classification. To

provide an automatic identification of the area of interest a fuzzy set classification

is used, basing on the T1 grey level intensity of the brain tissues. For every area

of the brain that is needed for the domain description, it is defined a membership

function using a Gaussian kernel centred on a proper diffusion value. The values

for the center of these kernels and their standard deviation are optimized by

expectation maximization on a subset of the tissue of the brain considered. The

results of this fuzzy segmentation are five maps that report the probability of

each pixel to belong to the five tissue types. The values of these maps range

from 0 to 100, where 100 represents the maximum probability to belong to a

particular discrete fuzzy set label. By comparing the values of the different maps,

and putting a threshold on the probability of belonging to a certain tissue, is

possible to create a single label map. The obtained map describes the location of

the tissues in the brain domain, and contains all the information needed for the

numerical implementation of the model.
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3.1.2 Mesh Creation

The creation of the computational mesh is divided in two phases:

• Grid creation and refinement

• Label assignment

after these operations the computational domain is ready to be used for the nu-

merical simulations. Let’s see the whole process in more detailed way

Grid Creation and Refinement

Starting from the MRI, where the skull has already been removed, a surface using

vmtk is extracted, excluding the background of the image. After some processes

of cleaning and filtering a smooth and closed surface is obtained. The surface is

now remeshed with a triangulation. For the remeshing phase is very important to

work with regular objects without holes or sharp edges. Once this process is com-

pleted, a tetrahedral mesh is generated using Tetgen (http://tetgen.berlios.de/ ).

The resulting unstructured grid is properly refined near the area where the cancer

grows: in this way the computational cost are kept the same increasing the pre-

cision in the area of interest. In Figures [3.2], [3.3], [3.4] and [3.5] the final mesh

is represented.

Label Assignment

After the mesh refinement, it is necessary to superpose the segmented map to

the grid, in this way the information on geometry and the regions position of
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Figure 3.2: A view of the mesh.

Figure 3.3: Coronal view of the mesh.

Figure 3.4: Sagittal view of the mesh.



40 CHAPTER 3. NUMERICAL IMPLEMENTATION

Figure 3.5: Trasversal view of the mesh.

the MRI are passed to the brain mesh. This operation is performed using V TK

and the C++ library MhdOrientation (for details on the implementation and

the development of the library see Appendix B). The grid and the label map

are superimposed assigning to every cell of the mesh the value of the map in the

corresponding point. Every label of the map is related to a diffusion value, that at

the end of this phase is assigned to the unstructured grid. During this operation it

is also created the initial condition putting the value one in the cells corresponding

to the cancer invaded areas, and zero in the others (for an example of the mesh

compared to the map see Figure [3.6]). Once these steps are done, the mesh is

ready for the simulation and contains all the properties necessary to implement

the diffusion coefficients based models. All the codes used for the phase of mesh

generation are reported in Appendix A.1.
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Figure 3.6: A detail of the mesh superimposed on the segmented map in the cancer area.
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3.2 Software and Implementation Details

3.2.1 FreeFem++ Implementation

All the simulations performed in this work were executed using the software

FreeFem++ (http://www.freefem.org/ff++/ ). Its interface with the VTK li-

braries, is essential for the brain mesh loading. However not all the VTK features

are implemented under FreeFem++; this is the case, in particular, for the cell

data reading that is fundamental to obtain the diffusion information and the ini-

tial condition assigned to the the grid in Section 3.1. So it is necessary to pass this

data to the code in a different way. In the phase of label assignment, discussed in

the previous Section, two files are created: one containing all the diffusion values

and another containing initial cancer’s cells concentration. These files are loaded

in execution phase as piece–wise constant functions defined on any element of the

mesh. At every time step the function containing the diffusion coefficients is up-

dated considering the cancer cell concentration in the examined tissue, in fact the

diffusive properties of the brain regions are compromised when the tumor heavily

invades a zone. To model this behavior the update of the diffusion function is

done putting a threshold on the cell concentration, when it goes over a critical

value the diffusion is changed. All the outputs are written in VTK format.

3.2.2 Data Visualization

The output data of the simulations are all examined using VTK and Paraview.

To follow the growth of the tumor, the unstructured grid containing the value of
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cells concentration is clipped with slices where a contour plot is displayed. The

segmented map of the brain at different phases of the cancer evolution is compared

with those contour plots in both linear and non linear case.

Another comparison is based on the fraction of volume occupied by the tumor at

different stages, the data are represented using Gnuplot through its interface in

Matlab(http://www.mathworks.com/matlabcentral/ ). All the codes used for the

simulations are included in Appendix A.2.



Chapter 4

Results

The results of the simulations of tumor growth using the two models, presented

in Chapter 1 and Chapter 2, are reported in this Chapter. The scope of these

simulations is to compare the results of the two models, and verify if the evolution

predicted by the tests matches with the experimental data.

The data, provided by INT , consists in MRIs of a specific patient affected by

a medulloblastoma located near the ventricles, under the corpus callosum. The

images considered for the evaluation of the models are taken along a period of 16

months. The results are discussed focusing on two different aspects. In Section 4.1

the models are compared with the data by a superimposition of the simulation’s

results over a map, obtained from the segmentation of the medical images, at

two different phases of the growth. In Section 4.2, the aim is to evaluate how

the volume of the evolving cancer mass is consistent with the clinical observation.

All the simulations are performed on a tetrahedral mesh, generated following the

steps shown in 3.1, with 188028 elemnts and 30393 vertices. Since for the tests

45
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was chosen a discretization using P2 finite elements, the number of degrees of

freedom is equal to 250512.

4.1 Tumor Growth

In this Section is conducted an analysis working over the segmented maps. The

V TK output, obtained from the code presented in Appendix A.2, is studied mak-

ing a contour plot, on a threshold imposed on the non–dimensional cancer cell

density equal to 1e−4 (beyond this threshold the non linear model results remain

unchanged), over three different slices(transversal, coronal and sagittal). The

slices are chosen selecting planes that cut the cancerous spheroid in its central

part to describe the entire dimension of the mass. As said in Section 3.2 all the

images included to show the results are displayed using Paraview. The images

considered for this study correspond to two different stages of the tumor growth,

they are divided in two sets, for each sets are represented the linear and the non

linear diffusion model compared to the experimental data. The first set of im-

ages refers to the evolution at 195 days, while the second makes reference to the

segmented map related to the MRIs of the patient at 492 days.

As seen, for example in Figures [4.1] and [4.7], the linear diffusion model

overestimates the tumor mass size, as reported also by Swanson works([HAJS07],

[JMD+05] or [SBMAJ03]). The non linear diffusion’s modification, reduces this

exaggerated cells motility. This is evident looking at Figures [4.2] and [4.8]. In

the non linear diffusion case the cells movement decreases in areas already invaded

by the tumor. This follows from the introduction of cells density in the diffusion
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Figure 4.1: Transversal view of the contour plot at t = 195 days linear diffusion case.

Figure 4.2: Transversal view of the contour plot at t = 195 days non linear diffusion case.
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Figure 4.3: Sagittal view of the contour plot at t = 195 days linear diffusion case.

Figure 4.4: Sagittal view of the contour plot at t = 195 days non linear diffusion case.
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Figure 4.5: Coronal view of the contour plot at t = 195 days linear diffusion case.

Figure 4.6: Coronal view of the contour plot at t = 195 days non linear diffusion case.
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Figure 4.7: Transversal view of the contour plot at t = 492 days linear diffusion case.

Figure 4.8: Transversal view of the contour plot at t = 492 days non linear diffusion case.
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Figure 4.9: Sagittal view of the contour plot at t = 492 days linear diffusion case.

Figure 4.10: Sagittal view of the contour plot at t = 492 days non linear diffusion case.
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Figure 4.11: Coronal view of the contour plot at t = 492 days linear diffusion case.

Figure 4.12: Coronal view of the contour plot at t = 492 days non linear diffusion case.
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Figure 4.13: Detail of image [4.8].

Figure 4.14: Detail of image [4.10].

term.

Considering all the Figures, that shows the results of the non linear model, is

evident, particularly looking at the images at t = 492 days, that there’s a discrep-

ancy in the growth represented by the model and the data. The zooms in Figures

[4.13] and [4.14] highlight that the model reproduce the correct flux of tumor cells

properly in the ventricles area towards the posterior part of the brain. The failure

in this area is probably due to the fact that the segmentation of this zone of the

domain, as described in Section 3.1, is too rough and doesn’t describe properly

the structures involved in the process of cancer’s growth.
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T Linear Model Non Linear Model MRIs Segmentation Data

195 41.1188 16.9968 8.1858
492 173.5311 50.8594 13.9298

Table 4.1: Comparison of volumes at different time of growth, with fixed threshold at
1e− 4, the volume is expressed in cm3.

4.2 Volume Evaluation

The study of the growing volumes is carried out analyzing the output of the

simulations using MATLAB and Paraview combined with V TK. In Table 4.1

are reported the value of the tumor’s volume at both different stage of growth. As

seen in the results presented in Section 4.1, models overestimate the dimension

of the tumor mass. The larger motility of the linear diffusion term model gives,

looking at the volume, a big error on the estimation. The non linear diffusion

term, as said in the previous section, decreases the over diffusive effect giving

results more near to the data obtained from the segmentation of the MRI. To

make a further comparison between the two models is made also another kind

of analysis. Considering at every time step of the simulation, the following data,

evaluating the fraction of volume occupied by the cancer mass in the whole brain:∫
B
χcdx∫

B
1dx

(4.1)

where χc is:

χc =

 1 for c ≥ 1e− 4

0 for c < 1e− 4
(4.2)
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Figure 4.15: Comparison of the two models examining fraction of volume occupied by
the cancer.

In Figure 4.15 is possible to evaluate the growth during the simulation of the

tumor’s volume, where is evident how the linear model overestimate the cells

motility, while the usage of a non linear diffusion term helps to reduce considerably

this effect.
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Chapter 5

Conclusions

In this work were studied two different diffusion–reaction model in order to eval-

uate their ability to predict the growth of a brain tumor. Their properties were

studied comparing the results, obtained through numerical simulations, and var-

ious label maps, created from a segmentation process on MRIs of a test patient.

The data shown in Chapter 4, suggest that both models give interesting results

in the description of brain tumor’s evolution. As shown by the analysis carried

on in Section 4.1 the models describe well the evolution of the tumor, while is

the non linear diffusion model presents better results showing a closer relevancy

to the experimental data. The application of the models presented in this work

to the test case considered could be considered encouraging and suggests their

intense use and study.

Both models are characterized by an overestimation of the cancer expansion, as

seen in Section 4.2, but with a further work of calibration of the parameters we

are confident that is possible to improve the accuracy of the models.
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The discrepancy between simulations and data images could be also reduced by

refining the segmentation process. Describing in a more detailed way the brain

structure in the area of the growth should give a sensible improvement in the

evolution modeled. Both models could be also modified introducing a further

anisotropy in the diffusion term, considering a tensor that describes the fibers

orientation in the brain’s areas considered during the evolution of the cells mass.

This will lead to consider also the structural properties of the brain, modeling the

fact that cells motility in zone with strongly directional fibers tends to follow the

way in which fibers are oriented. The code used for the simulations, see Appendix

A.2, is already modified by the introduction of such a tensor in the diffusion term,

setting the values of the tensor in the proper way will model the above mentioned

conditions.

However is evident that a model like the linear one, though suitable to give an

idea of the tumor growth, has a lot of limitations. Considering a diffusion term

that doesn’t depend from the cell concentrations lead to non physical solutions

and doesn’t describe the effect that invasion of the cancer has on the brain tissues.

Introducing in the model an exponent of the cells concentration in the diffusion

term accounts for the deterioration and consequentially improve the results keep-

ing more compact the cancer’s cells mass. This surely improves the detection of

the tumor propagating front. Indeed the description of the growing tumor bor-

ders turns out to be crucial to understand their evolution and their behavior,

particularly from a medical point of view. The price to be paid to use a non

linear model, to describe better the physical behavior of the tumor, are the higher

computational costs, due to the use of a fixed point technique. Needless to say

that the use of a more suitable numerical scheme to model the non linear diffusion
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is mandatory, especially concerning the front detection and the treatment of the

tumor boundaries.

The behavior of the two models suggests the possibility to combine them to de-

scribe different stages of the cancer evolution. The non linear diffusion is suitable

to describe the early phases of brain invasion, it tends to illustrate an evolution

of a compact mass keeping a low cell motility, indeed when the tumor starts to

grow is difficult to find cells far from the main mass. Instead in advanced phases

of the tumor’s growing process is possible to find cells far from the main mass,

this fact makes the linear diffusion model’s properties more suitable to describe

this trend.

Starting from these models could be interesting also to consider further modifi-

cations, particularly to solve the problem of a clear definition of tumor’s borders.

One possibility could be to implement another modified version of the linear dif-

fusion model, using a model similar to the Cahn-Hillard equations, that substan-

tially consists in an introduction of a bilaplacian term that helps to define more

precisely the contours of the growing cancers.

Another way to analyze and use the models presented in this work is to find an

expression for the velocity of the tumor boundary, that makes possible to imple-

ment zero level set methods. This methods are particularly suitable to deal with

growth of objects with defined boundaries, indeed they describe only the evolu-

tion of the front using an hyperbolic equation with a known speed of propagation.

Obviously for this kind of models is necessary to implement and study proper

numerical methods different from the ones used in this work.

Another issue of interest that could be researched in further works is to obtain,

starting from a certain stage of the tumor growth, information on cancer’s early
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stages of development, basing on the suggested models. This kind of procedures

are known as inverse problems, and also in this case a whole theory, and also

ad hoc numerical methods must be implemented. These studies could help to

understand where and when the disease started, observing the phenomenon when

it was not yet detectable via magnetic resonance, making possible to observe the

tumor in its early phases of evolution.
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Appendix A

Code Used

A.1 Python Code

Meshing Phase

#Meshing.py

from vmtk import pypes

from vmtk import vmtkscripts

from vmtk import vtkvmtk

import vtk

import sys

reader=vtk.vtkXMLPolyDataReader()

reader.SetFileName(sys.argv[1])

reader.Update()

surf=reader.GetOutput()

stm=vmtkscripts.vmtkSurfaceToMesh()

stm.Surface = reader.GetOutput()

stm.Execute()

#sizing mesh elements

sizingFunctionArray=vtk.vtkDoubleArray()

sizingFunctionArray.SetName("SizingFunction")
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sizingFunctionArray.SetNumberOfTuples(stm.Mesh.GetNumberOfPoints())

stm.Mesh.GetPointData().AddArray(sizingFunctionArray)

for i in range(stm.Mesh.GetNumberOfPoints()):

sizingFunctionArray.SetTuple1(i,4)

#call tetgen

tetgen=vmtkscripts.vmtkTetGen()

tetgen.Mesh= stm.Mesh

tetgen.GenerateCaps = 0

tetgen.UseSizingFunction = 1

tetgen.Refine=0

tetgen.SizingFunctionArrayName = "SizingFunction"

tetgen.Order = 1

tetgen.Quality = 1

tetgen.PLC = 1

tetgen.NoBoundarySplit = 1

tetgen.RemoveSliver = 0

tetgen.OutputSurfaceElements = 0

tetgen.OutputVolumeElements = 1

tetgen.Execute()

#mesh

writer=vtk.vtkUnstructuredGridWriter()

writer.SetFileName("Mesh_uni.vtk")

writer.SetInput(tetgen.Mesh)

writer.Update()

Mesh Refinement

#Refinement.py

from vmtk import vtkvmtk

from vmtk import pypes

from vmtk import vmtkscripts

import vtk

from math import sqrt,pow

reader = vtk.vtkUnstructuredGridReader()

reader.SetFileName("Mesh_uni.vtk")

reader.Update()

mesh=reader.GetOutput()

pb=[0.0,0.0,0.0]



A.1. PYTHON CODE 65

pt=vtk.vtkPoints()

sizingFunctionArray=vtk.vtkDoubleArray()

sizingFunctionArray.SetName("newSizingFunction")

sizingFunctionArray.SetNumberOfTuples(mesh.GetNumberOfPoints())

mesh.GetPointData().AddArray(sizingFunctionArray)

for i in range(mesh.GetNumberOfPoints()):

pb=mesh.GetPoint(i)

dist=sqrt(pow((pb[0]-35),2) + pow((pb[1]-303),2)+ pow((pb[2]+40),2))

if dist <= 20:

sizingFunctionArray.SetTuple1(i,1)

else:

sizingFunctionArray.SetTuple1(i,2.5)

tetgen = vmtkscripts.vmtkTetGen()

tetgen.Mesh = mesh

tetgen.GenerateCaps = 0

tetgen.UseSizingFunction = 1

tetgen.Refine=1

tetgen.SizingFunctionArrayName = "newSizingFunction"

tetgen.Order = 1

tetgen.Quality = 1

tetgen.PLC = 0

tetgen.NoBoundarySplit = 1

tetgen.RemoveSliver = 1

tetgen.VarVolume = 1

tetgen.OutputSurfaceElements = 0

tetgen.OutputVolumeElements = 1

tetgen.Execute()

writer = vtk.vtkUnstructuredGridWriter()

writer.SetFileName("Mesh_adapt.vtk")

writer.SetInput(tetgen.Mesh)

writer.Update()

Label Assignment

#Label.py

from vmtk import vtkvmtk

from vmtk import pypes

from vmtk import vmtkscripts
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import vtk

from math import sqrt,pow

def barycenter(points,pbar):

nop=points.GetNumberOfPoints()

for ii in range(0,3):

summ=0.0

for jj in range(nop):

summ= summ + (points.GetPoint(jj))[ii]

pbar[ii]= summ/nop

return

reader = vtk.vtkUnstructuredGridReader()

reader.SetFileName("Mesh_tran.vtk")

reader.Update()

mesh=reader.GetOutput()

pb=[0.0,0.0,0.0]

pt=vtk.vtkPoints()

ptlst=vtk.vtkIdList()

ireader = vtk.vtkMetaImageReader()

ireader.SetFileName("Ras_res_3.mhd")

ireader.Update()

img=ireader.GetOutput()

ploc=vtk.vtkPointLocator()

ploc.SetDataSet(img)

ploc.AutomaticOn()

ploc.BuildLocator()

iml=img.GetPointData().GetScalars()

ncells=mesh.GetNumberOfCells()

cell_label=vtk.vtkDoubleArray()

cell_label.SetNumberOfTuples(ncells)

cell_label.SetName("cell_labels")

mesh.GetCellData().AddArray(cell_label)

cell_label.FillComponent(0,0.0)

#Label Assignment

for ig in range(ncells):

mesh.GetCellPoints(ig,ptlst)

mesh.GetPoints().GetPoints(ptlst,pt)

barycenter(pt,pb)

pt.Reset()

im=ploc.FindClosestPoint(pb)
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cell_label.SetTuple1(ig,iml.GetComponent(im,0))

writer = vtk.vtkUnstructuredGridWriter()

writer.SetFileName("Mesh_adapt_final.vtk")

writer.SetInput(mesh)

writer.Update()

s=str(ncells)

#Creation of the diffusion file

f = open(’Diff’, ’w’)

f.write(s+’\n’)

for z in range(ncells):

if(mesh.GetCellData().GetArray("cell_labels").GetComponent(z,0)

==20):

f.write(’0.0013\n’)

if(mesh.GetCellData().GetArray("cell_labels").GetComponent(z,0)

==50):

f.write(’0.0065\n’)

if(mesh.GetCellData().GetArray("cell_labels").GetComponent(z,0)

==10):

f.write(’0.1000\n’)

if(mesh.GetCellData().GetArray("cell_labels").GetComponent(z,0)

==0):

f.write(’0.\n’)

if(mesh.GetCellData().GetArray("cell_labels").GetComponent(z,0)

==100):

f.write(’0.\n’)

f.close()

#Creation of the initial condition

c = open(’C0’, ’w’)

c.write(s+’\n’)

for zc in range(ncells):

if(mesh.GetCellData().GetArray("cell_labels").GetComponent(zc,0)

==100):

c.write(’1.\n’)

else:

c.write(’0.\n’)

c.close()
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A.2 FreeFem++ code

A.2.1 Linear Diffusion Case

Main Code

//Linear.edp

verbosity=1;

load "iovtk"

int[int] ffordervel=[0];

mesh3 Th;

Th=vtkload 3("Mesh_adapt_final.vtk");

int cd;

int cc;

real cpu=clock();

real ciclo;

include "Timing.idp"

include "FEspace_lin.idp"

include "Param.idp"

cpu=clock();

ciff=c0FE[];

diff=D[];

for(cd=0; cd<dimYh; cd++)

{

if(ciff[cd]>=1)

diff[cd]=0.;

}

D[]=diff;

time("DIFFUSION CORRECTION");

include "Variational_lin.idp"

Xh uno=1.;

real VT=int3d(Th)(uno);

c=c0;

set(C,solver=GMRES);

for (t=1;t<=T;t+=dt){

cout << "STEP= " << t << ";" <<endl;

ciclo=clock();
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cold=c;

cpu=clock();

rhs = varrhs(0,Xh);

time("RHS");

cpu=clock();

C=varcc(Xh,Xh);

c[]=C^-1*rhs;

time("RISOLUZIONE SISTEMA");

cpu=clock();

cxD=c;

ciff=cxD[];

diff=D[];

for(cd=0; cd<dimYh; cd++)

{

if(ciff[cd]>=1)

diff[cd]=0.;

}

D[]=diff;

time("DIFFUSION")

timeCiclo;

cout << "VOLUME: " << int3d(Th)(volume*(c>1e-4))/VT << endl;

if(t==195)savevtk("Tumor1000_"+e11+e22+e33+"_newmap_"+t+".vtk",

Th,c,order=ffordervel,dataname="Tumor");

}

savevtk("Tumor1000_"+e11+e22+e33+"_newmap_"+T+".vtk",

Th,c,order=ffordervel,dataname="Tumor");

FE Space Code

//FEspace_lin.idp

fespace Xh(Th,P23d);

fespace Yh(Th,P03d);

Xh c,cold,k,erp;

Yh D,c0FE,cxD;

int dimXh=Xh.ndof;

int dimYh=Yh.ndof;

real [int] corr(dimXh);

real [int] ciff(dimYh);



70 APPENDIX A. CODE USED

real [int] diff(dimYh);

Varational Forms Code

//Variational_lin.idp

varf varcc(c,k) = int3d(Th)(c*k/dt - rho*(1.-cold)*c*k + (D *

[e11*dx(c)+e12*dy(c)+e13*dz(c),

e21*dx(c)+e22*dy(c)+e23*dz(c),

e31*dx(c)+e32*dy(c)+e33*dz(c)] ) * Grad(k));

varf varrhs(c,k) = int3d(Th) (cold*k/dt);

cpu=clock();

real [int] rhs(dimXh);

A.2.2 Non Linear Diffusion Case

Main Code

//Nonlinear.edp

verbosity=1;

load "iovtk"

int[int] ffordervel=[0];

mesh3 Th;

Th=vtkload 3("Mesh_adapt_final.vtk");

int cd;

int cc;

real cpu=clock();

real fixtime=clock();

real ciclo;

real tol=1e-6;

int maxit=1000;

int i;

real err;

include "Timing.idp"

include "FEspace_nl.idp"

include "Param.idp"
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cpu=clock();

ciff=c0FE[];

diff=D[];

for(cd=0; cd<dimYh; cd++)

{

if(ciff[cd]>=1)

diff[cd]=0.;

}

D[]=diff;

time("DIFFUSION CORRECTION");

include "Variational_nl.idp"

Xh uno=1.;

real VT=int3d(Th)(uno);

c=c0;

for (t=1;t<=T;t+=dt){

cout << "STEP= " << t << ";" <<endl;

ciclo=clock();

cold=c;

cpu=clock();

rhs = varrhs(0,Xh);

time("RHS");

cpu=clock();

C=varcc(Xh,Xh);

time("C EXTRACTION");

int i=0;

real err=1;

fixtime=clock();

while(i<=maxit && err>tol)

{

cpu=clock();

Cnl=varf ix(Xh,Xh);

time("Cnl");

Ct=C+Cnl;

set(Ct,solver=GMRES);

c[]=Ct^-1*rhs;

time("SYSTEM RESOLUTION");

erp=c-cold;

err=sqrt(int3d(Th)((erp)^2));

cout << "L2 ERROR: " << err << endl;
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cold=c;

i++;

}

timef;

cpu=clock();

cxD=c;

ciff=cxD[];

diff=D[];

for(cd=0; cd<dimYh; cd++)

{

if(ciff[cd]>=1)

diff[cd]=0.;

}

D[]=diff;

time("DIFFUSION");

corr=c[];

for(int bc=0;bc<dimXh;bc++)

{

if(corr[bc]< 1e-5)

corr[bc]=0;

}

c[]=corr;

timeCiclo;

cout << "VOLUME :" << " " << int3d(Th)(volume*(c>1e-4))/VT << endl;

if(t==195)savevtk("Tumor1000_"+e11+e22+e33+"_nl_newmap_"+t+".vtk",

Th,c,order=ffordervel,dataname="Tumor");

}

savevtk("Tumor1000_"+e11+e22+e33+"_nl_newmap_"+T+".vtk",

Th,c,order=ffordervel,dataname="Tumor");

FE Space Code

//FEspace_nl.idp

fespace Xh(Th,P23d);

fespace Yh(Th,P03d);

Xh c,cold,k,erp;

Yh D,c0FE,cxD;

int dimXh=Xh.ndof;
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int dimYh=Yh.ndof;

real [int] corr(dimXh);

real [int] ciff(dimYh);

real [int] diff(dimYh);

Varational Forms Code

//Variational_nl.idp

fespace Xh(Th,P23d);

fespace Yh(Th,P03d);

Xh c,cold,k,erp;

Yh D,c0FE,cxD;

int dimXh=Xh.ndof;

int dimYh=Yh.ndof;

real [int] corr(dimXh);

real [int] ciff(dimYh);

real [int] diff(dimYh);

varf varcc(c,k)=int3d(Th)(c*k/dt - rho*(1-cold)*c*k );

varf varf ix(c,k) = int3d(Th)( (2*cold*(D *

[e11*dx(c)+e12*dy(c)+e13*dz(c),

e21*dx(c)+e22*dy(c)+e23*dz(c),

e31*dx(c)+e32*dy(c)+e33*dz(c)]) ) * Grad(k));

varf varrhs(c,k) = int3d(Th) (cold*k/dt);

matrix C;

matrix Cnl;

matrix Ct;

real [int] rhs(dimXh);

A.2.3 Other Include Files

Model Parameters

//Param.idp

//Diffusion Function

ifstream dfile("Diff");
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dfile >> D[];

//Initial Condition

ifstream cfile("C0");

cfile >> c0FE[];

func c0=c0FE;

macro Grad(c) [dx(c),dy(c),dz(c)] //EOM

real t;

real dt=1;//day

real T=492;//days

real e11=1;

real e12=0;

real e13=0;

real e21=0;

real e22=1;

real e23=0;

real e31=0;

real e32=0;

real e33=1;

real rho=0.012;//day^-1

Time Calculation Code

//Timing.idp

macro time(name)

{

cout << name << ": " << clock() - cpu << " s." << endl;

cpu=clock();

}//

macro timeCiclo()

{

cout << "CICLE TIME: " << clock() - ciclo << " s." << endl;

}//

macro timef()

{

cout << i << " FIXED POINT ITERATIONS: " << clock() - fixtime << " ←↩
s." << endl;

fixtime=clock();

}//
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Appendix B

MhdOrientation

B.1 Medical Images

B.1.1 Orientation of the Images

Working on MR’s output data is mandatory to be familiar with the concepts of

orientation and base direction. The base directions are:

• R = right;

• L = left;

• A = anterior;

• P = posterior;

• S = superior;

77
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(a) Base directions

(b) Patient

Figure B.1: Patient coordinate system.

• I = inferior;

indicating the axis using as reference the patient, see Figure [B.1]. These base

directions could be combined in different manners in order to create a tern of axis,

the letter related to a base direction indicates a positive semi–axis of the tern, see

Figure [B.2]. The so generated tern could be left–handed ([B.2b]) or rigth–handed

([B.2a]) and defines the anatomical orientation of the image.

B.1.2 Problems in Working with Medical Images

We consider images formatted as MetaImage. They consist of two files: a .mhd file

(a header file containing parameters used to read the image), and a .raw/.zraw
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(a) R=+X, A=+Y, S=+Z.

(b) L=+X, A=+Y e S=+Z.

Figure B.2: Terns indicated by base directions.

file containing the data. In the header file is stored the information about the

orientation, the rotation matrix and the offset.

Usually in biological process modeling, the interest is to obtain from a given med-

ical image a proper computational mesh. Once the mesh is created, it is used for

the numerical simulations and at the end of this process the results are analyzed

comparing the mesh and the image by superposing them. Unfortunately during

the process of mesh generation is possible to loss the information about the orig-

inal position of the medical image.

This problem is partially solved using vmtk to create the mesh basing on a MetaIm-

age, indeed it includes routines that allows to move the grid obtained on the start-

ing image, if it is RAS oriented.

The aim of the library implemented is to solve the problem executing an image
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orientation’s conversion from a generic anatomical orientation to a RAS orien-

tation. In this way the process of mesh generation can be performed on a RAS

oriented image and via the vmtk ’s routines is possible to superpose the mesh on

the image without loss of geometrical information.

B.1.3 Conversion Algorithm

The conversion is performed working on the header file of the image. The aim is to

obtain a new header file that allows to read the image in a RAS coordinate system.

First we calculate the Euler angles from the rotation matrix with the algorithm

proposed in [Sla08], after that the angles and the offset are converted in to a RAS

system. From the converted angles and the converted offset is possible to write a

new header file that allows to read the image RAS oriented. For example in the

case LAS→RAS (see Figure [B.3]) the conversion is

• XRAS=−XLAS;

• YRAS=YLAS;

• ZRAS=ZLAS;

• αXRAS
=αXLAS

;

• αYRAS
=−αYLAS

;

• αZRAS
=−αZLAS

.

Working similarly is possible to obtain a conversion to RAS for generic anatomical

orientation. Following orientations are included in the library
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(a) RAS.

(b) LAS.

Figure B.3: Orientation conversion from LAS to RAS.
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• AIL→RAS;

• ASL→RAS;

• LAS→RAS;

• RAI→RAS.

B.2 Library Implementation

It is possible to download and install the library via github by typing:

git clone https://github.com/drugilsberg/mhdorientation

cd mhdorientation/

mkdir lib/build

make dynamiclib

The library is divided in two parts: a C++ version and a Python version (realized

interfacing C++ code with Python).

B.2.1 C++ version

This part of the library is implemented using the factory paradigm. The classes

used to implement the structure of the factory are:

• MhdOrientation:

– AIL;
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Mhd::MhdOrientation

Mhd::AIL Mhd::ASL Mhd::LAS Mhd::RAI

Figure B.4: Relationship between the base class and its derived classes.

– ASL;

– LAS;

– RAI;

• MhdFactory;

• MhdProxy.

MhdOrientation and its Derived Classes

The class MhdOrientation is used to manage the image orientation and execute,

with its derived classes, the conversion from a generic anatomical orientation to

a RAS coordinate system. The relationship between these classes is described

in Figure [B.4]. The parameters read from the header file and the Euler angles

related to the rotation matrix are defined as protected members:

protected:

vector<float> TransformMatrix;

vector<float> Offset;

vector<float> CenterOfRotation;

string AnatomicalOrientation;

.
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.

.

.

pair< vector<float>, vector<float> > Angles;

The methods used to read and write the header file, the virtual conversion method

and the virtual constructor are public members of the class.

The virtual methods are:

virtual void ConvertToRas(size_t i=1)=0;

virtual MhdOrientation * Create() const =0;

These methods are implemented in the derived classes. See Doxygen generated

documentation in doc/ for further details.

MhdFactory

This class is implemented as a singleton declaring as private members the con-

structors and the assignment operator, and delegating the construction of the

class to the public method Instance:

MhdFactory & MhdFactory::Instance() {

static MhdFactory theFactory;

return theFactory;

}
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The two following typedefs are used to ease syntax:

typedef std::unique_ptr<MhdOrientation > (* MhdBuilder)();

typedef map<string,MhdBuilder> Collector;

A std::unique_ptr is used to avoid memory leaks. Collector is the map used

to store the orientation rules builder.

The method Register:

void Register(string const & Name, MhdBuilder const & Func) ←↩

throw(invalid_argument);

is used to add new orientations to the factory, while the method Get:

unique_ptr<MhdOrientation> Get(string const & Name) const;

is used to extract an object MhdOrientation from the factory. For details see the

documentation.

MhdProxy

This class is used to allow new orientation’s automatic registration in the factory.

Here the constructor and the Build method are reported:

template<typename T>

unique_ptr<MhdOrientation> MhdProxy<T>::Build() {
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return unique_ptr<MhdOrientation>(new T);

}

template<typename T>

MhdProxy<T>::MhdProxy(char const * const & Name) {

MhdFactory & factory(MhdFactory::Instance());

factory.Register(string(Name),MhdProxy<T>::Build);

}

It is important to notice the use of a template parameter to choose the orientation

added.

The orientations already implemented are registered in order to be used when the

factory is loaded dynamically:

namespace

{

using namespace Mhd;

//Registration of the orientation type

MhdProxy<AIL> OA("AIL");

MhdProxy<ASL> OB("ASL");

MhdProxy<RAI> OC("RAI");

MhdProxy<LAS> OD("LAS");

}

Using the method Get described before is possible to extract one of them from

the factory. See the documentation for details.
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B.2.2 Python Interface

The interface is implemented using the class MhdOrientationPython. This class

is similar to MhdOrientation but has a more primitive structure. Since it is a

concrete object no virtual methods are declared and all the steps to perform the

conversion are public members of the class and are directly implemented. The

parameters and the Euler angles are private members. For implementation de-

tails see the documentation.

We define in an extern "C’" enviroment a list of functions that re–implement

the methods and the constructor of the class MhdPythonOrientation:

#include "MhdPythonOrientation.hxx"

extern "C" {

Mhd::MhdPythonOrientation *MhdOrientation_Python(){return new ←↩

Mhd::MhdPythonOrientation();}

void MhdOrientation_OrientationReader(Mhd::MhdPythonOrientation* ←↩

mo, char* InputFile) {mo->OrientationReader(InputFile);}

void MhdOrientation_OrientationWriter(Mhd::MhdPythonOrientation* ←↩

mo, char* OutputFile) {mo->OrientationWriter(OutputFile);}

void MhdOrientation_ConvertToRas(Mhd::MhdPythonOrientation* ←↩

mo,size_t i) {mo->ConvertToRas(i);}
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void MhdOrientation_ComputeAngles(Mhd::MhdPythonOrientation* mo) ←↩

{mo->ComputeAngles();}

void MhdOrientation_ComputeRotation(Mhd::MhdPythonOrientation* mo, ←↩

float* angles){mo->ComputeRotation(angles);}

void MhdOrientation_R(Mhd::MhdPythonOrientation* mo,size_t i,size_t ←↩

j){mo->R(i,j);}

void MhdOrientation_O(Mhd::MhdPythonOrientation* mo,size_t ←↩

i){mo->O(i);}

void MhdOrientation_C(Mhd::MhdPythonOrientation* mo,size_t ←↩

i){mo->C(i);}

void MhdOrientation_AO(Mhd::MhdPythonOrientation* mo){mo->AO();}

}

Now is possible to export them in Python, loading the library with ctypes, and

use this functions to create a Python class as follows:

#Module mhd.py

import ctypes

lib = ctypes.CDLL(’./libMhdOrientation.so’,mode=ctypes.RTLD_GLOBAL)
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class MhdOrientation(object):

def __init__(self):

self.obj = lib.MhdOrientation_Python()

def OrientationReader(self,InputFile):

lib.MhdOrientation_OrientationReader(self.obj,InputFile)

def OrientationWriter(self,OutputFile):

lib.MhdOrientation_OrientationWriter(self.obj,OutputFile)

def ConvertToRas(self,i=1):

lib.MhdOrientation_ConvertToRas(self.obj,i)

def ComputeAngles(self):

lib.MhdOrientation_ComputeAngles(self.obj)

def ComputeRotation(self,angles):

lib.MhdOrientation_ComputeRotation(self.obj,angles)
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def R(self,i,j):

lib.MhdOrientation_R(self.obj,i,j)

def O(self,i):

lib.MhdOrientation_O(self.obj,i)

def C(self,i):

lib.MhdOrientation_C(self.obj,i)

def AO(self):

lib.MhdOrientation_AO(self.obj)

The module mhd can be imported in Python and allows to use the library in a

more user friendly way, making its interaction with other software (e.g. vmtk),

easier. For a complete description of the library see the documentation.
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