
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

INCREMENTAL

REACHABILITY CHECKING

OF KERNELC PROGRAMS

USING MATCHING LOGIC

Relatore: Prof. Carlo Ghezzi

Correlatore: Ing. Domenico Bianculli

Ing. Antonio Filieri

Correlatore ASP: Prof. Marco Torchiano

Tesi di Laurea di:

Alessandro Maria Rizzi, matricola 783504

Anno Accademico 2012-2013

Ai miei genitori

Abstract

Verification is an important activity in the software development process.

Although testing can help in finding errors in programs, formal software

verification techniques have proved to assure the development of applica-

tions that dependably satisfy their requirements. Nevertheless, these formal

verification techniques are often characterized by high performance require-

ments, which negatively impact on the application of these techniques in the

context of software that is continuously subjected to changes.

In this scenario, the possibility to reuse—when verifying a new version

of an already verified program— the intermediate results related to the

unchanged parts in the original program, could save time and resources; in-

cremental verification could contribute to the effectiveness of the application

of formal verification techniques.

In this work we explore the application of incremental verification in

the context of reachability checking of KernelC programs using matching

logic. KernelC is a subset of the C programming language that supports

important features like the heap; matching logic consists of a language-

independent proof system to reason about programs in any language that

has a rewrite-based operational semantics.

We achieve incrementality by using a syntactic-semantic approach: the

reachability checking procedure is encoded as semantic attributes of a gram-

mar in operator-precedence form; this specific class of grammars guarantee

the support for incremental parsing and hence incremental evaluation of

semantic attributes.

I

Estratto (in italiano)

La verifica è una fase importante dello sviluppo del software.

Sebbene il testing possa trovare diversi errori nei programmi, le tecni-

che di verifica formale possono ragionevolmente assicurare che le applica-

zioni sviluppate soddisferanno i requisiti. Tuttavia, queste tecniche sono

spesso caratterizzate dalla richiesta di alte prestazioni, che ne impediscono

l’applicazione su software continuamente soggetto a cambiamenti.

In questo scenario, la possibilità di riutilizzare, nella verifica di una nuova

versione di un programma già verificato, i risultati intermedi della parti

immutate del programma originario, possono risparmiare tempo e risorse;

la verifica incrementale può contribuire all’efficacia di tali tecniche formali.

In questo lavoro tratteremo l’applicazione di verifica incrementale nel

contesto del controllo di raggiungibilità operato su programmi in linguaggio

KernelC attraverso matching logic. KernelC è un sottoinsieme del linguaggio

C che supporta importanti caratteristiche come la gestione della memoria;

matching logic è un sistema di dimostrazione indipendente dal linguaggio che

può trattare programmi scritti in qualunque linguaggio che abbia una seman-

tica operazionale basata su riscritture. L’approccio utilizzato per ottenere

l’incrementalità è di tipo sintattico-semantico: la verifica di raggiungibilità è

espressa attraverso attributi semantici di una grammatica in forma a prece-

denza di operatori; questa particolare classe di grammatiche può operare in

maniera incrementale e quindi consente una valutazione incrementale degli

attributi semantici.

II

Contents

Abstract I

Contents II

List of Figures V

List of Tables VI

Listings VII

Ringraziamenti X

1 Introduction 1

1.1 Motivations . 2

1.2 Contributions . 4

1.3 Thesis organization . 5

2 Background concepts 6

2.1 Hoare logic . 6

2.1.1 Rules . 7

2.2 Matching logic . 8

2.2.1 Definition . 11

2.2.2 Reachability rules . 11

2.2.3 Matching logic proof system 12

2.3 Operator-precedence grammars 14

2.3.1 Context free grammars 14

2.3.2 Operator-precedence grammars 15

2.3.3 Properties of operator-precedence grammars 17

2.4 Attribute grammars . 19

III

3 Related Work 21

3.1 Incrementality from change encapsulation 21

3.2 Incrementality by change anticipation 22

3.3 Syntax-driven incrementality 23

3.4 Incremental model-checking 23

4 Reachability analysis of KernelC programs 25

4.1 Syntactical part . 25

4.2 Configuration term structure 26

4.3 Semantic part . 27

4.4 Attribute evaluation example 43

5 Implementation 45

5.1 Syntactic part . 45

5.1.1 Grammar . 46

5.1.2 Parser . 47

5.1.3 Semantics . 48

5.2 Kernel C semantic . 48

5.3 Solver . 49

5.3.1 Code . 51

5.3.2 Formula . 52

5.3.3 System operation . 53

6 Validation 56

6.1 KernelC specifications compliance 56

6.1.1 Error detection . 57

6.1.2 Correctness of simple programs 58

6.1.3 Heap management . 62

6.1.4 Call stack . 69

6.2 Evaluation of the incremental approach 70

6.2.1 Scenario 1 . 70

6.2.2 Scenario 2 . 74

6.2.3 Scenario 3 . 78

6.2.4 Summing up . 80

7 Conclusions 81

7.1 Future work . 82

Bibliography 83

A KernelC operator-precedence grammar 87

List of Figures

2.1 Example of operator grammar 16

2.2 Example of operator precedence matrix 16

2.3 Example of syntax tree . 17

2.4 Example of attribute grammar 20

4.1 Example of KernelC attribute evaluation 43

5.1 UML Class diagram of grammar package 46

5.2 UML Class diagram of parser package 47

5.3 UML Class diagram of KernelC semantics package 51

5.4 UML Class diagram of solver package 52

5.5 UML Class diagram of config package 53

5.6 UML Class diagram of code package 54

5.7 UML Class diagram of rule package 55

6.1 Detail of KernelC syntax tree 71

6.2 Graphical representation of scenario 1 tests results 73

6.3 Graphical comparison of scenario 1 tests results 75

6.4 Graphical representation of scenario 2 tests results 76

6.5 Graphical representation of scenario 3 tests results 79

VI

List of Tables

6.1 Results of scenario 1 tests (average of ten measures) 72

6.2 Comparison between scenario 1 results 74

6.3 Results of scenario 2 tests (average of ten measures) 77

6.4 Results of scenario 3 tests (average of ten measures) 78

VII

Listings

4.1 code of KernelC attribute evaluation 43

5.1 Example of malloc definition 50

5.2 Example of free definition . 50

6.1 Division by zero . 57

6.2 Uninitialized variable . 57

6.3 Unallocated location . 58

6.4 Uninitialized memory . 58

6.5 Average of three numbers . 59

6.6 Minimum of two numbers . 59

6.7 Maximum of two numbers . 59

6.8 Multiplication performed as a series of additions 60

6.9 Sum of the first n numbers with recursion 61

6.10 Sum of the first n numbers with iteration 61

6.11 Verification of function properties 61

6.12 Retrieve first element of a list 62

6.13 Retrieve the tail of a list . 63

6.14 Addition of a new element at the top of the list 64

6.15 Swapping of two values . 65

6.16 Program which retrieves the length of a list 66

6.17 Program which retrieves the sum of values of a list 68

6.18 f can be called only from g . 69

6.19 f can be called only if h is in the stack 69

VIII

Ringraziamenti

Desidero innanzitutto ringraziare la mia famiglia, che mi è stata vicina du-

rante il percorso universitario. Vorrei ringraziare in particolar modo il mio

relatore, Prof. Carlo Ghezzi, per aver seguito il mio lavoro di tesi con grande

competenza e disponibilità. Ringrazio inoltre l’Ing. Domenico Bianculli e

l’Ing. Antonio Filieri per il supporto offertomi durante questi mesi. Infine,

un grazie speciale ai miei compagni di studi, ai colleghi dell’ASP e agli amici

del POuL per i bei momenti vissuti durante questi anni.

X

Chapter 1

Introduction

“Incipe; dimidium facti est cœpisse. Supersit

Dimidium: rursum hoc incipe, et efficies.”

Decimus Magnus Ausonius

A fundamental phase in software development is the one which deals with

verifying that software behaves correctly. Although accurate testing can dis-

cover many wrong behaviours, formal software verification techniques have

proved to assure the development of applications that dependably satisfy

their requirements.

However, since formal verification techniques are time consuming and

software changes continuously, incremental verification methods, i.e., meth-

ods capable of reusing the previous results when verifying a new version

of a program, are very useful, since they can significantly reduce the time

required to perform the verification.

In this work we explore the application of incremental verification in

the context of reachability checking of KernelC programs using matching

logic. KernelC is a subset of the C programming language that supports

important features like the heap; matching logic consists of a language-

independent proof system to reason about programs in any language that

has a rewrite-based operational semantics.

We achieve incrementality by using a syntactic-semantic approach: the

reachability checking procedure is encoded as semantic attributes of a gram-

mar in operator-precedence form; this specific class of grammars guarantee

the support for incremental parsing and hence incremental evaluation of

semantic attributes.

Based on the results of our evaluation, we can see that:

1. syntactic-semantic techniques are suitable for expressing reachability

checking problems expressed through matching logic.

2. the use of incremental can greatly reduce the verification time.

1.1 Motivations

Software products are extremely subjected to defects. These are the result of

different errors which can affect any phase of software development. First of

all software specification is given in natural language, which is intrinsically

ambiguous, and human errors are possible in requirement analysis. More-

over, errors can also be introduced in the development phase. Therefore it

is very likely that software will not behave as expected.

There are different ways to deal with this. One of them is testing, which

consists in providing a series of different inputs to the program and check

the output with respect to an oracle.

However the limits of this practice lie in the impossibility of verifying

every possible input. To overcome this it is possible to use more powerful

techniques: formal verification methods. In this way the entire domain of

the problem is analyzed guaranteeing that no deviations are present.

A peculiar feature of software is its dynamism. A software product is

subjected to continuous changes. These changes do not only occur in the

development phase, but also in the maintenance one. In fact it is quite com-

mon that software will continue to evolve to meet environmental changes.

Since formal verification methods are expensive from a computational

time perspective and software is characterized by a series of different ver-

sions, an incremental approach can be a way to optimize this process.

Assume we have a program of which we have verified a version P1 and

now we want to verify a new version P2, which will likely be very similar to

P1: we would like to exploit this fact by trying to verify only the part of P2

affected by changes, reusing as much as possible the intermediate verification

results obtained while verifying P1.

In this way we can look at incrementality as a way for improving the

speed of verification.

Verification & validation

In order to guarantee that a program works correctly different procedures

can be used.

The terms “verification and validation” define the process of asserting

that a software product meets its specification and that it performs what

2

it is intended for. These are complementary parts which have different

purposes. According to [5] the former answers the question “Are we building

the product right?” while the latter answers the question “Are we building

the right product?”.

The validation part has the task of asserting if the software require-

ments are correct. It has been defined in the Capability Maturity Model

(CMM v1.1) [2] as “The process of evaluating software during or at the

end of the development process to determine whether it satisfies specified

requirements.”.

The verification part instead deals with assuring that the program be-

haviour follows the requirements. According to CMM v1.1 [2] it is “The pro-

cess of evaluating software to determine whether the products of a given de-

velopment phase satisfy the conditions imposed at the start of that phase.”.

One way in which this process ca be achieved is by means of testing. This

activity has been defined in [28] as “the process of executing a program with

the intent of finding errors”. In practice it consists in trying different inputs

for a given program in order to find a fault, which is an incorrect behaviour

of the program. However it is impossible for this method to guarantee that

the program contains no flaws.

Instead the use of formal verification methods can assure that the soft-

ware will behave correctly for every possible input. The common thing of

this methods is the formalization of the domain of the problem (the pro-

gram), which is translated into an abstract mathematical model and given

the properties of such model it is possible to derive formal proof of the

requirements.

These different verification techniques can be divided in two big cate-

gories: deductive verification and model checking. The former is based on

deriving a proof of correctness from the system specifications, which implies

that the desired properties are satisfied.

The latter involves the complete exploration of the mathematical model.

In practice, the full state space of the domain of the problem is analyzed

in order to find a possible state which violates the properties desired for

the software. This last method is the one adopted in this work: we analyze

the space of the possible internal states of a program and the system of

transitions between them in order to find a path admitted by the program

which brings us in a state where a given property is violated; if we do

not find such a state, it means the program is correct with respect to the

specification.

3

1.2 Contributions

The main contribution of this work is the adaptation of the reachability

checking methods based on matching logic in order to support incremental-

ity. Matching logic is a general framework to perform program verification

of a generic language. It is designed to be extremely flexible (it can easily

support complex structure like an heap) and easily extensible (it is possible

to add new constructs without modifying the existing one) [33]. The key

concept for Matching logic is semantic definition of a programming language:

the definition for each construct of the selected programming language of a

mapping between the program states before that construct and the program

states after it. More precisely they are given as a mapping between different

set of states (or pattern). An actual state is said to match a pattern if it

belongs to the set of states defined by it. The reasons for its choice are its

great potential to manage complex programming languages (which requires

to deal with side effects and manage complex structure like heap).

This work also demonstrates the power of incremental syntactic-semantic

methods in term of performance obtained. In this work we obtain incre-

mentality through the use of formal grammars. The two formalisms are

operator-precedence grammars and attribute grammars. The formers are

used for their peculiar properties (in particular the locality one) which allow

a syntactic incrementality: which is only the changed parts of the program

are re-parsed. The latter instead are responsible for the semantic incremen-

tality: the verification problem is solved through an evaluation of attributes.

Attribute grammars allow to only re-compute those attributes related to the

modified parts of the program. Of course semantic incrementality cannot

be achieved without syntactic incrementality, since syntactical structure of

the input program drives the attribute evaluation. The advantages of this

approach are the fact that it is totally automatic: parsing can be restricted

only to the changed parts.

In this work we support the KernelC language, mostly because there is

a non-incremental version of the reachability checking algorithm, to which

it is possible to compare our implementation.

KernelC is a nontrivial subset of the C language. It has the if-else con-

struct, while loop, memory support, all operators of C. The only type allowed

is the integer one (it is not possible to use floating-point numbers, strings,

enums), but it is possible to define and allocate structs.

However our implementation is quite different from the non-incremental

previous one. This work has been implemented in Java and uses the exter-

nal Satisfiability Modulo Theories (SMT) solver Z3. Instead the available

4

implementation is composed by a parser written in Java that translates the

input program into an intermediate representation, which is passed to the

actual verifier written in Maude [7].

Since the tools we have used are quite different from the ones utilized by

the previous implementation, some changes were required. In particular we

changed the format of annotations, which are the parts of the input which

specify the properties to check.

The syntactic-semantic incrementality is achieved using an S-attributed

grammar built upon an operator-precedence grammar.

We have evaluated our approach on a set of KernelC programs, contained

in the distribution of the match program (cited in [30]). The results show

the feasibility of applying a syntactic-semantic approach, which can reduce

the time required by the verification process.

1.3 Thesis organization

The thesis is organized as follows. In chapter 2 we present the background

concepts regarding formal methods for software verification and formal gram-

mars. In chapter 3 we recall the state of the art on incremental software

verification methods. After that, in chapter 4, it is presented the theoretical

idea behind this work, namely the formal grammars developed. In chapter

5 we explain our actual implementation, while in chapter 6 we present the

results of the evaluation, which compares our implementation with the non-

incremental one. Finally, chapter 7 concludes this document and outline

future research directions.

5

Chapter 2

Background concepts

“A semantic definition of a particular set of command types, then, is a rule

for constructing, for any command of one of these types, a verification con-

dition on the antecedents and consequents.”

Robert Floyd

In this chapter we present the concepts upon which this work is based.

First of all we present the formal systems for reasoning about the correct-

ness of computer programs. We start from the work of C. A. R. Hoare

which, although quite old, contains the foundations of formal verification

of computer programs, and then we move to the one which is specifically

used in this thesis, namely the development of matching logic. Afterwards,

we present the other concepts which allow to develop an incremental ap-

proach: operator-precedence grammars, which have interesting properties

for developing an incremental parser, and attribute grammars, which define

the structure the work should have.

2.1 Hoare logic

Hoare logic is the first attempt to formalize the concept of correctness of a

computer program. It has been presented in 1969 by C. A. R. Hoare in [21].

The main idea in Hoare’s work is the introduction of the Hoare triple, which

describes how an instruction changes the machine state.

{P}C{Q} (2.1)

The three components of the triple are the precondition (P), the code

(C) and the postcondition (Q). The precondition is a first-order-logic (FOL)

predicate which asserts what is guarantee to be true before the instruction;

the code is the actual instruction considered and the postcondition is an-

other FOL predicate which holds all the properties which are valid after the

execution of the instruction.

The triple can be read in this way: if the precondition is true and the

instruction is executed then the postcondition holds.

2.1.1 Rules

In addition to the general framework, Hoare provided also several rules which

describe the behaviour of a simple programming language, by specifying how

its basic blocks behave. The general form of the rule is an implication (as

shown in 2.2). In this case the meaning of the formula is that if A is true

than B holds.

A

B
(2.2)

Assignment rule

{P [E/x]} x = E {P}
(2.3)

This rule specifies the behaviour of an assignment statement where E can

be a given expression. It states that everything that was true for the right

hand side of the assignment is now true also for the left hand side. This

is achieved by specifying the precondition as the substitution of the free

occurrences of x with the expression E.

Skip rule

{P} skip {P}
(2.4)

This rule simply states that after an empty statement nothing changes.

Composition

{P} S {Q} , {Q} T {R}

{P} S;T {R}
(2.5)

This rule simply states that different instructions can be combined together

if the postcondition of the first is equal to the precondition of the second.

7

Conditional

{B ∧ P} S {Q} , {¬B ∧ P} T {Q}

{P} if(B){ S }else{ T } {Q}
(2.6)

This rule describes the behaviour of a conditional construct. It has the effects

of splitting the machine state in two parts: one in which the condition is

true and so the then branch is taken and another one in which the condition

is false and the else branch is followed instead.

Loop

{I ∧B} S {I}

{I} while(B){ S } {¬B ∧ I}
(2.7)

The loop is a tricky construct, because it can theoretically be taken an

infinite number of times. So to be treated it requires the definition of a

special first-order-logic predicate: the invariant. This formula embodies

what remains true after every iteration of the loop, allowing to summarize

the whole loop behaviour in a single iteration. It is important to emphasize

that this system is only able to give partial correctness verification, which is

it cannot guarantee the termination of the program. A more sophisticated

rule can guarantee also the total correctness which is the fact that the code

will always terminate.

Weakening

R⇒ P, {P} S {Q}

{R} S {Q}
(2.8)

{P} S {Q} , Q⇒ R

{P} S {R}
(2.9)

These rules adapt another rule to a stronger precondition or to a weaker

postcondition.

2.2 Matching logic

Hoare logic, although providing a general system for correctness verifica-

tion, has several drawbacks. One of them is being excessively abstract, i.e.,

it does not consider how the computations are actually performed, only fo-

cusing on high-level aspects of the language. Indeed it assumes that the

formalization of programming language constructs is provided. This fact

can be problematic if the formalization is not explicitly defined, because the

meaning of language constructs can be not so clear and ambiguous situations

8

are possible. For example in C language an expression like this “i-i++”,

where ‘i’ is an integer variable, is problematic: according to C language

specifications, although it is a legal C expression, its result is undefined. To

avoid such problems a formal semantics of the language is needed. Starting

from these criticisms G. Roşu and others develop a formal, syntax-oriented

compositional proof system: Matching logic ([33],[30],[31],[32]).

In order to introduce Matching logic, we present a general way of mod-

eling computer programs known as Kripke structure.

A Kripke structure is a tuple K = 〈S, I, δ, AP, L〉 where:

• S is a finite set of states.

• I ⊆ S is set of initial states.

• δ : S → S is a transition relation.

• AP is a set of atomic propositions.

• L : S → 2AP is a labeling function, which maps each state in S to a

set of atomic propositions.

We can define a set of terminal states T = {s ∈ S|∄s′ ∈ S : (s, s′) ∈ δ}

Moreover we can evaluate a FOL formula f in a state s ∈ S if APf ⊆ AP

where APf is the set of the atomic propositions in f .

Given that for each a ∈ AP and s ∈ S s |= a iff a ∈ L(s) and s |= ¬a iff

a /∈ L(s).

Having a truth value for each atomic proposition in f in state s we can

apply the FOL logic rules to give a truth value to f in s.

We can think of a computer program as a finite set of states S which

represent each possible machine configuration and each instruction performs

a transition from one state to another. Every state has some properties

associated to it, represented by the elements of AP . We can identify a subset

I of these states which are the possible initial configurations, or the possible

machine configuration present when the program starts and, on the other

hand, a set of states T which represent all the possible final configurations,

or all the machine configurations where the program can end.

In this structure Hoare logic can be expressed as follows: if we have a

precondition P and a postcondition Q such that all the atomic propositions

of P and Q are contained in AP , we consider the set R = {s ∈ S | s |= P}

and a set U = {s ∈ S | s |= Q}. Stating I ⊆ R defines a precondition,

whereas T ⊆ U is defines to a postcondition.

Matching logic is just a particular case of this general model. The state

(called configuration) defines a sort of first order logic with equality terms.

9

Moreover this sort is formed by a set of FOL with equality terms of different

sorts which can have this form again. This general form can be adapted

to different programming languages. In facts the subdivisions of the con-

figuration in sub-terms make it compositional: in the sense that they are

not atomic but constituted by different sub-configurations. This fact allows

to easily extend the composition of the configurations with the addition of

other symbols to extend the given language if some additive axioms to de-

scribe their behaviour are provided. For example in the language IMP (also

shown in [33]) the configuration term is a set of two structures: one named

k which contains the list of instructions to be executed and another one

named env which is a map from a string to an integer which represents the

defined variables with the value they carry. An example of configuration is

shown in formula 2.10 which means that the instruction to be executed is

an assignment of the value 2 to x and x has actually a value of three.

〈〈x:=2〉k 〈x 7→ 3〉env〉 (2.10)

In Matching logic the program instructions to be executed are part of

the configuration so we define a language-dependent (partial) function which

maps a configuration to another; moreover there is not in principle any

distinction between the program instruction part of the configuration and

the rest.

In order to easily encode all possible transitions, they are defined for a

set of configurations called configuration pattern. This is achieved by using

first order logic with equality formulae that can contain free and bound

variables.

An example of a pattern which is matched by the above configuration is

the following:

∃a, ρ((� = 〈〈x:=2〉k 〈x 7→ a, ρ〉env〉) ∧ a ≥ 0) (2.11)

In this configuration pattern we have a which is a generic integer, x

which expresses the variable name, � is a special term which defines the

considered configuration and ρ which represent the rest of the content of

env, i.e., other variable maps.

This configuration pattern matches every configuration which have k

corresponding to the statement “x:=2” and env which contains, besides

(eventually) other variables, a variable named x with associated an integer

non negative value.

10

2.2.1 Definition

We summarize here the formal definition of Matching logic present in [33].

We want to define a matching logic proof system for the generic language

L. First of all we define the first order logic with equality specification

of our language as L = (SL,ΣL,FL) where SL is the set of the sorts of

the language, ΣL is the set of operations of the language over the sort in

SL (which describe the syntactical features of the language) and FL is a

set of formulae which describes the semantic features of the language along

with the useful properties of our operations. Let us consider a given model

TL of L. We consider a particolar sort in SL which is Cfg and holds the

configurations. We denote with Var a sortwise infinite set of variables and

� a variable of sort Cfg such that � /∈ Var .

Definition 1 Configuration patterns (or patterns) are FOL with equality

formulae over ΣL which have the form: ∃X.((� = c) ∧ ϕ.

• X ⊂ Var are the (pattern) bound variables; the remaining ones are

the (pattern) free variables; � appears exactly once per pattern.

• c is the pattern structure; a term of sort Cfg.

• ϕ is the (pattern) constraint, a generic FOL with equality formula.

Definition 2 A valuation (γ, τ) : Var ∪�→ TL is a function where γ is a

configuration which corresponds to � and τ maps Var to TL.

Definition 3 Configuration γ matches pattern Φ = ∃X.((� = c) ∧ ϕ iff

exists a τ : Var → TL such that (γ, τ) |= Φ that is |= Φ(γ, τ).

Definition 4 A pattern Φ is weakly well-defined iff for any τ : Var → TL

there is some configuration γ ∈ Cfg such that (γ, τ) |= Φ; iff γ is unique it

is well-defined.

2.2.2 Reachability rules

In this section we formally define the reachability concept in Matching logic

as stated in [30].

Definition 5 A reachability rule is a pair of patterns ϕ⇒ ϕ′.

Definition 6 A reachability system S is a set of reachability rules.

11

Definition 7 A transition system (TL,⇒
TL

S
) is inducted by S on TL. γ ⇒

TL

S

γ′ for γ, γ′ ∈ Cfg iff exists a reachability rule ϕ ⇒ ϕ′ in S and a function

τ : Var → TL such that (γ, τ) |= ϕ and (γ′, τ) |= ϕ′ .

Definition 8 A configuration γ ∈ Cfg is said to terminate in (TL,⇒
TL

S
) iff

in the transition system there is not an infinite sequence starting with γ.

Definition 9 A reachability rule ϕ⇒ ϕ′ is (weakly) well-defined iff ϕ′ are

(weakly) well-defined.

Definition 10 A reachability system S is (weakly) well-defined iff each rule

is (weakly) well-defined.

Definition 11 S |= ϕ ⇒ ϕ′ where S is a reachability system and ϕ ⇒ ϕ′ a

reachability rule iff for all γ ∈ Cfg such that γ terminates in (TL,⇒
TL

S
) and

for all function τ : Var → TL such that (γ, τ) |= ϕ there is some γ′ such

that (γ′, τ) |= ϕ′

2.2.3 Matching logic proof system

The matching logic proof system (as presented in [30]) is composed by eight

general proof rules which, together with the language-specific ones, form the

proof system. The general form of the derivation is shown in 2.12, where A

and C are two sets of rules.

A ⊢C ϕ⇒ ϕ′ (2.12)

The form 2.13 means that the set C is empty.

A ⊢ ϕ⇒ ϕ′ (2.13)

At the beginning the set A contains all the language-specific rules, i.e., the

operational semantics of the language, while the set C is empty. A has the

role of containing all the sound derivations while C (called circularity set)

contains some derivations which are not proven yet. This is useful while

verifying situations like a loop through invariant or a recursive function call.

For example in order to verify the correctness of a recursive function we

must follow the first call and then assume that the function itself would

be correct and substitute the subsequent call with what we want to prove:

otherwise we undergo into an infinite recursion process.

This proof system is sound and relative complete for any weakly well-

defined reachability system S [30]. The completeness is relative to an “ora-

cle” to check first order logic validity of configuration model.

12

Axiom

ϕ⇒ ϕ′ ∈ A

A ⊢C ϕ⇒ ϕ′
(2.14)

This rule means that if a rule is contained in the set A is derived by the

system.

Reflexivity

.

A ⊢ ϕ⇒ ϕ
(2.15)

This rule add the reflexivity property to rules in A. It is important to

underline that C must be empty in this case.

Transitivity

A ⊢C ϕ1 ⇒
+ ϕ2 , A ∪ C ⊢ ϕ2 ⇒ ϕ3

A ⊢C ϕ1 ⇒ ϕ3

(2.16)

This rule applies transitivity to configurations. The symbol⇒+ means that

at least one step has to be provided. This fact, together with the reflexive

rule, has the task to make sure that the first step in derivation is sound.

Logic framing

A ⊢C ϕ⇒ ϕ′ , ψ

A ⊢C ϕ ∧ ψ ⇒ ϕ′ ∧ ψ
(2.17)

This rule, where φ is a patternless first order logic with equality formula,

guarantees that more logical constraints can be added if they are not struc-

tural (patternless).

Consequence

|= ϕ1 → ϕ′
1 , A ⊢C ϕ

′
1 ⇒ ϕ′

2 , |= ϕ′
2 → ϕ2

A ⊢C ϕ1 ⇒ ϕ2

(2.18)

This rule is analogous to the Hoare’s weaking rule.

Case analysis

A ⊢C ϕ1 ⇒ ϕ , A ⊢C ϕ2 ⇒ ϕ

A ⊢C ϕ1 ∨ ϕ2 ⇒ ϕ
(2.19)

Also this rule is equivalent to Hoare’s one: the conditional rule.

13

Abstraction

A ⊢C ϕ⇒ ϕ′ , X ∩ FreeV ars(ϕ′) = Ø

A ⊢C ∃Xϕ⇒ ϕ′
(2.20)

This rule is also present in Hoare logic but, while being derivable in Hoare

logic, in Matching logic has to be added as axioms.

Circularity

A ⊢C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A ⊢C ϕ⇒ ϕ′
(2.21)

This rule has the role of adding a claim relative to a circular behaviour. The

other rules guarantee that that claim has to be used after one sound step.

2.3 Operator-precedence grammars

2.3.1 Context free grammars

In this section we summarize context free grammars providing definition for

productions, immediate derivation, derivation language and empty string

which will be used in the presentation of Operator-precedence grammars.

Definition 1 A context-free grammar (CFG) is a tuple G = 〈V,Σ, P, S〉

where:

• V is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols such that V ∩ Σ = Ø.

• P : V → (V ∪ Σ)∗ (where ∗ is the Kleene star operator) is a finite

relation whose member are called productions.

• S ∈ V is the start symbol (or axiom).

Definition 2 A production (or rule) is a pair (α, β) ∈ P where α ∈ V and

β ∈ (V ∪ Σ)∗.

Definition 3 u ⇒ v is an immediate derivation where u, v ∈ (V ∪ Σ)∗ iff

exists (α, β) ∈ P and u1, u2 ∈ (V ∪Σ)∗ such that u = u1αu2 and v = u1βu2

We can define an immediate derivation relation R : (V ∪ Σ)∗ → (V ∪ Σ)∗

where (u, v) ∈ R iff u⇒ v.

Definition 4 u⇒∗ v is a derivation iff (u, v) ∈ R∗ where R∗ is the reflexive

transitive closure of R.

14

Definition 5 The language of a grammar G = 〈V,Σ, P, S〉 is the set L(G) =

{u ∈ (V ∪ Σ)∗|S ⇒∗ u}.

Definition 6 ε is the empty string, which is the string that does not contain

any symbol.

Definition 7 A derivation tree (or parse tree) of a string w ∈ Σ∗ generated

by a context-free grammar G = 〈V,Σ, P, S〉 is a tree T where:

• each node of T is labeled by a symbol a ∈ V ∪ Σ ∪ ε.

• the label of the root is S.

• if a node labeled by a has the children labeled by a1, ..., an then (a, a1, ..., an) ∈

P .

• w is equal to the labels of the leaves of T concatenated from left to

right.

2.3.2 Operator-precedence grammars

In this section we formally define operator-precedence grammars.

Definition 8 A rule (α, β) ∈ P is in operator form iff there are not u, v ∈

(V ∪ Σ)∗, A,B ∈ V such that β = uABv (that is the right hand side of the

rule does not contain two adjacent non-terminals).

Definition 9 A grammar G is an operator grammar (OG) if it is composed

only by rules in operator form.

Definition 10 The left terminal set of a non-terminal A of an operator

grammar G is: LG(A) = {a ∈ Σ|A ⇒∗ Bau} where B ∈ V ∪ {ε} and

u ∈ (V ∪ Σ)∗.

Definition 11 The right terminal set of a non-terminal A of an operator

grammar G is: RG(A) = {a ∈ Σ|A ⇒∗ uaB} where B ∈ V ∪ {ε} and

u ∈ (V ∪ Σ)∗.

Definition 12 Given an operator grammar G = 〈V,Σ, P, S〉, a, b ∈ Σ,

u, v ∈ (V ∪ Σ)∗ we say that:

• a and b have equal precedence (a
.
= b) iff exists A such that (A, uaBbv) ∈

P where B ∈ V ∪ {ε}.

15

Figure 2.1: Example of operator grammar

〈S〉 ::= 〈A〉 | 〈B〉

〈A〉 ::= 〈A〉 ‘+’ 〈B〉 | 〈B〉 ‘+’ 〈B〉

〈B〉 ::= 〈B〉 ‘*’ ‘n’ | ‘n’

Figure 2.2: Example of operator precedence matrix

‘n’ ‘*’ ‘+’

‘n’ ⋗ ⋗

‘*’
.
=

‘+’ ⋖ ⋖ ⋗

• a takes precedence over b (a⋗ b) iff exists A such that (A, uDbv) ∈ P

and a ∈ RG(D) where D ∈ V.

• a yields precedence to b (a ⋖ b) iff exists A such that (A, uaDv) ∈ P

and b ∈ LG(D) where D ∈ V.

Definition 13 An operator precedence matrix (OPM) M of a grammar G

(M = OPM(G)) is a relation Σ× Σ→ {
.
=,⋗,⋖} which associates to each

pair (a,b) with a, b ∈ Σ the set ma,b of their operator precedence relations.

Definition 14 An operator grammar G is an operator-precedence grammar

iff its OPM is conflict-free, that is for each pair (a, b) with a, b ∈ Σ, |ma,b| ≤

1.

An example of operator precedence grammar is shown in Figure 2.1,

which defines expression composed of summations and products of natural

numbers. Its non-terminals are 〈A〉,〈B〉 and 〈S〉; 〈S〉 is the axiom. Its

terminals are ‘*’,‘+’ and ‘n’ which denotes any natural number. Its operator

precedence matrix is shown in Figure 2.2.

The following definition is not specific to operator-precedence grammars.

It is presented here because it has been applied to operator-precedence gram-

mars in this work in order to simplify the parser construction.

Definition 15 A grammar G = 〈V,Σ, P, S〉 is in Fisher normal form iff all

the following statements hold:

• for all A,B ∈ V if (A, u) ∈ P and (B, u) ∈ P where u ∈ (V∪Σ)∗ then

A = B.

16

Figure 2.3: Example of syntax tree

〈S〉

〈B〉

1+

〈A〉

〈B〉

2*

〈B〉

3+

〈B〉

5*

〈B〉

6

• for all A ∈ V if (A,D) ∈ P and D ∈ V then A = S.

• for all A ∈ V if (A, ε) ∈ P then A = S.

2.3.3 Properties of operator-precedence grammars

In this section we present the important properties which characterize operator-

precedence grammars; many of them are described in [11].

The first feature deals with how the parsing is conducted. Assume the

input string being implicit delimited by a new terminal symbol ‘$’ such

that for all a ∈ Σ m$,a = {⋖} and ma,$ = {⋗} first. Then let us extend

the input string by inserting between every pair of terminals their operator

precedence. In such string, every sequence of terminals enclosed by a ⋖ and

a ⋗ uniquely determines a right hand side to be substituted. This fact is

also valid if some reductions have been performed on the input string: it

is sufficient to ignore the non-terminals inside the string and compute the

precedence between terminals as usual: again the sub-string enclosed by a ⋖

and a ⋗ (eventually extended with surrounding non-terminals) determines

the right hand side to be applied.

An example related to the grammar presented in 2.1 is shown in 2.3.

If we consider the sub-string ‘3*2’ we find that it is derived from a non-

terminal 〈B〉, we can note that m+,3 = {⋖} and m2,+ = {⋗}. Again if we

consider the sub-string ‘6*5+3*2’, derived from non-terminal 〈A〉, we find

m$,+ = {⋖} and m+,+ = {⋗}, since we have to consider the next derivation

and ignoring the non-terminal 〈B〉.

Another important property in the scope of this work is the locality

property, which is the base of the syntactic incrementality and the reason

for which we have chosen this formalism to build this work upon. The

locality property states the following:

17

Proposition 1 Given A ∈ V, a, b ∈ Σ and u, v, w ∈ Σ∗ if aAb⇒∗ awb then

S ⇒∗ uawbv iff S ⇒∗ uaAbv ⇒∗ uawbv.

The above two properties allows to easily develop an incremental parser.

Suppose we have parsed a string s = uawbv and then we have to parse a

string s′ = uaw′bv. We start to parse the minimum context (a sequence of

terminals enclosed by a ⋖ and a ⋗) which contains all the symbols changed.

We proceed to parse that string extending it until we find a derivation

aAb ⇒∗ aw′b. For the Proposition 1 we can stop the parsing process; we

say that a matching-condition with the previous derivation aAb ⇒∗ awb is

satisfied. Now it is sufficient to substitute the derivation A ⇒∗ w with the

new one A ⇒∗ w′. This fact guarantees a syntactic incrementality: only a

small part of the input has to be reparsed after an edit.

For example if we replace ‘3*2’ by ‘4’ in the example in Figure 2.3, we

only have to parse ‘4’ since m+,4 = {⋖}, m4,+ = {⋗} and the matching

condition is satisfied, because the non-terminal 〈B〉 generates both ‘4’ and

‘3*2’.

18

2.4 Attribute grammars

Attribute grammars are a formalism first presented by Knuth in [24] to

assign a “meaning” to a string recognised by a Context Free Grammar.

They extend context-free grammars by adding attributes to symbols and

semantic functions to productions.

Definition 1 An attribute grammar (AG) is a tuple AG = 〈G,A,R〉 where:

• G is a context-free grammar.

• A is a finite set of attributes.

• R is a finite set of semantic rules.

A finite set of attributes A(k) is associated to every symbol of the gram-

mar k ∈ Σ∪V. A(k) is partitioned into two subsets: the inherited attributes

I(k) and the synthesized attributes S(k) such that I(k) ∪ S(k) = Ø.

A =
⋃

k∈Σ∪V

A(k) (2.22)

A production (k0, k1...kn) ∈ P has an attribute occurrence ki.a if a ∈

A(ki), where ki ∈ Σ ∪ V, 1 ≤ i ≤ n.

Every production p ∈ P has a set of rules Rp.

For every attribute occurrence k0.a such that a ∈ S(k0) there is one and

only rule r of the form k0.a = f(h1, ..., hj) with k ≥ 0 such that r ∈ Rp.

For every attribute occurrence ki.a such that a ∈ S(ki) and 1 ≤ i ≤ n

there is one and only rule r of the form ki.a = f(h1, ..., hj) with k ≥ 0 such

that r ∈ Rp.

Every hl with 1 ≤ l ≤ j is an attribute occurrence in p.

f is a semantic function which maps the value of an attribute occurrence

to the value of its arguments.

R =
⋃

k∈Σ∪V

R(k) (2.23)

Definition 2 An attribute tree for a string w ∈ Σ∗ is a derivation tree of

w where each node n labeled by b ∈ Σ∪V has an attribute instance for every

attribute a ∈ A(b).

Definition 3 Attribute evaluation of a string w ∈ Σ∗ is the process of com-

puting the values of attribute instances of an attribute tree T of w according

to the semantic rules R.

19

Figure 2.4: Example of attribute grammar

〈S〉 ::= 〈A〉 { value(〈S〉) = value(〈A〉) }

〈S〉 ::= 〈B〉 { value(〈S〉) = value(〈B〉) }

〈A0〉 ::= 〈A1〉 ‘+’ 〈B〉 { value(〈A0〉) = value(〈A1〉) + value(〈B〉) }

〈A〉 ::= 〈B1〉 ‘+’ 〈B2〉 { value(〈A〉) = value(〈B1〉) + value(〈B2〉) }

〈B0〉 ::= 〈B1〉 ‘*’ ‘n’ { value(〈B0〉) = value(〈B1〉) ∗ eval(‘n’) }

〈B〉 ::= ‘n’ { value(〈B〉) = eval(‘n’) }

Even if it is possible to characterize different types of attribute grammars

for this work we just need the definition of the S-attributed ones.

Definition 4 An attribute grammar is S-attributed if it has only synthe-

sized attributes.

While being quite primitive, this kind of attribute grammars is enough

powerful to express any attribute calculation, as stated in [24].

The first advantage of using an S-attributed grammar is that if used with

a bottom-up parser allows to evaluate all the attributes of the tree with just

one traversal.

Another advantage can be observed from an incremental prospective.

Assume we have evaluated an attribute tree T corresponding to a certain

input and then we want to evaluate an attribute tree T ′ which is derived

from a modified input. We should have an efficient way of recomputing the

attributes of the new tree, i.e., re-evaluating only the ones which are changed.

An S-attributed grammar guarantees that the change on an attribute of a

node n will reflect only to the (grand)parents of n.

As seen in the previous section, after a change in the input we obtain

a new subtree which substitutes a node in the old tree. From a semantic

point of view is sufficient to compute the attributes of the root of the new

subtree and to propagate them in the old tree toward the root.

An example of attribute grammar is shown in Figure 2.4. This grammar

calculates the algebraic value of an expression belonging to the grammar in

2.1. The only attribute of the grammar is value which contains the numeric

value of that node. The function eval returns the numeric value of the

terminal. In each node of the tree the value of the expression is computed

from the values of its children.

20

Chapter 3

Related Work

“A problem never exists in isolation; it is surrounded by other problems in

space and time. The more of the context of a problem that a scientist can

comprehend, the greater are his chances of finding a truly adequate solu-

tion.”

Russell L. Ackoff

In the field of incremental verification, many different approaches have been

proposed in the past. They can be characterized in three different categories

depending the way the incrementality is obtained: from change encapsula-

tion, from change anticipation and with a syntax driven approach ([17]).

The latter is the most important for our purpose, since it is the one adopted

in this work.

In this section first we review these three approaches. Then we present

other work in the field of model-checking.

3.1 Incrementality from change encapsulation

This approach deals with a complex system by considering the whole system

as composed by different modules with an approach called assume-guarantee

[23]. According to this approach each module has to guarantee that a given

property, or its contract toward the other modules, holds.

The idea is that a certain module can guarantee its property assuming

that another module would deliver another property. In this way a compo-

sition claim, which is the union of the property guaranteed by the modules,

can be given by valuating every single module alone.

This approach works in an incremental way if the changes are local (or

encapsulated) in a module: which is in spite of the change the module

continues to guarantee its contract. Otherwise the whole system has to be

verified again and the composition claim does not hold.

Moreover, in order to use this technique, the system has to be divided

properly into modules: a wrong partitioning would cause poor performance

in the incremental verification. Nevertheless since the module itself encap-

sulates high-level concepts, the low level properties are ignored.

An example of work based on this approach is [8], which applies a compo-

sitional approach to the general framework for incremental model-checking.

In [25] the compositional verification is applied to probabilistic and non-

deterministic systems, while in [16] it has been used to perform a model-

checking of a multithreaded software system.

3.2 Incrementality by change anticipation

This approach is based on a program optimization technique called partial

evaluation.

This technique consists in generating from a program P a new program

P ′ which has the same behaviour of P but runs faster. The reason for this

lies in the fact that some input values are known at compile time.

We can think of a program P as a mapping from input data I to out-

put data O (P : I → O). I can be subdivided in two partitions: Istatic,

which contains the input data known at compile-time, and Idynamic, which

is composed by run-time input data. The new program P ′ (or residual

program) is obtained by precomputing the inputs which belong to Istatic
(P : Idynamic → O).

This procedure can be exploited in verification methods which are based

on parameters, like probabilistic verification, in a method called parametric

analysis. The result is computed in a parametric formulae. As soon as

values for the parameters are available, they are substituted in the formula

to obtain the final value. If the values change the precomputed formulae

can be reused.

A work which exploits this approach is [15], which uses the paramet-

ric approach of model-checking of probabilistic computational tree logic

(PCTL) over discrete-time Markov chain (presented in [12]) to develop an

incremental probabilistic model-checking.

22

3.3 Syntax-driven incrementality

This approach relies on the formal grammar which describes the syntactical

structure of the verification target. If such grammar is built in a certain way

it can be used as a frame for the analysis.

This technique derives from the studies for an incremental compilation

from both syntactical and semantic point of view. An example of the former

is [19]), whereas the latter is discussed in, e.g., [22].

In fact this approach is very general: any problem that can be expressed

through the evaluation of an attribute grammar can exploit it.

Its two main advantages are the total automation of the process, and

its general nature. The former is due to the way in which the semantic

evaluation is performed: the parser can automatically recognize the part of

the input to be reparsed and according the the generated tree only the useful

semantic rules are triggered. The latter means that there are no limitations

in the kind and the broadness of the changes.

A workflow verification through an attribute grammar is performed in

[14]; however, it is not incremental. More important for the sake of this work

is instead [4], where the framework SiDECAR, which is the one used in the

developing of this work, is presented. SiDECAR is a general framework

for the evaluation of S-attributed grammars built upon operator-precedence

grammars in an incremental way. In the article it is applied to probabilistic

verification and reachability analysis. The latter is the basis for this work

which, in a certain way, extends it.

3.4 Incremental model-checking

Related to this aspect, the main idea is to reuse as much as possible the

representation explored during verification, and to reanalyze only the new

parts of the space state. This technique is followed by [34], which performs

model checking in the mu-calculus by analyzing the changes to be applied

to the labeled transition system verified.

In [20], instead, it is applied the lazy-abstraction algorithm which builds

the abstract reachability tree, a representation of the region of the abstract

space tree reachable of the program. The incrementality is given by the

computation of the difference in the abstract reachability tree and analyzing

only the parts that differ.

Reference [26] provides an incremental explicit space-state model-checking

procedure. It performs a graph search from the initial state, trying to reach

states that violates the given properties avoiding to visit the same state

23

many times. The incrementality is obtained by analyzing the difference in

the state-space graph to find what explorations have to be performed. A

similar work is [35], which can perform the new analysis skipping the parts

of the state-space which will not change behaviour after the changes.

Finally in [10] the analysis is recorded in a “derivation graph”. After a

change, it is altered by adding the new derivations and removing the ones

no more present in the program. All these techniques reported have the

disadvantages of being bound to the model used to represent the state-space,

and thus are difficult to adapt for a different one.

24

Chapter 4

Reachability analysis of

KernelC programs with

matching logic

“The final test of a theory is its capacity to solve the problems which origi-

nated it.”

George Dantzig

This chapter describes our approach for incremental reachability checking

using matching logic. We designed a matching logic-like reachability system

for KernelC using an S-attributed grammar over an operator-precedence

grammar; the attributes compute the matching logic reachability rules which

describe the behaviour of the program.

In addition to achieve incrementality, we also want to merge the reach-

ability rules as much as possible: we combine a sequence of rules which can

be applied one after the other, into a single one which summarizes the entire

combination. The reason for this is to reducing the computation time by

decreasing the length of the paths in the transition system.

4.1 Syntactical part

In this section we present the grammar of KernelC that will be used in the

work.

This grammar is based on the one provided with the original Matching

logic KernelC verifier [1]. It has been modified in order to be transformed

in a operator-precedence grammar.

During this transformation a problem arose related to the tokens ‘+’, ‘-’,

‘*’, ‘\&’: they appears as operators with different arity (unary and binary).

Indeed in the different cases the operators have different precedence. In

order to manage this a preprocessor phase has been introduced to distinguish

between the two versions of each token. However this addition stage does

not affect incrementality since it can be done incrementally too.

The resulting grammar is almost the same as the original. There are

only minor changes, of which the most import one is the absence of the

single statement blocks in while loops or if else conditionals.

This has been done to keep the grammar compact due to the limit of op-

erators grammar, since it is not possible to use two adjacent non-terminals.

The complete grammar is presented in Appendix A.

4.2 Configuration term structure

Here we describe the matching logic configuration term chosen in order to

represent the state of a KernelC program.

The configuration is subdivided into the following terms:

c represent the code of our programs. It is a list of these types:

• A code token, which is a representation of a token in the input

string.

• A value (optionally with a type).

In KernelC the only data type is integer. So value is always an integer.

However, in order to use the structures, it is important to maintain

a type for some values. A type is divided into two parts. The first

represents the name of the type and can be any structure defined in

the code plus int or void, which are the built-in types. The second

is an integer which represents the level of indirection, which is the

number of indirections to be performed in order to reach the value.

env represents the environment. It is a map from variable names to a value

possible with its type.

mem represents the heap. It is a map between a memory location and its

content.

fstack represents the stack. It is a list containing the previous code and

environment prior the the last function call.

26

fun represents the function. It is a map between a function name and the

list of types of its parameters and the actual function code.

size is a map between a struct name and its size.

struct is a map between a struct field and its relative position inside the

struct.

We present the rules which map a pattern configuration to another in

the next section also providing an S-attributed grammar to compute them.

4.3 Semantic part

First of all we describe the attribute structure of our grammar.

The two main attributes of our grammar are C and R.

C describes the code related the symbol to which it belongs, which is if it

belongs to a node n it describes the code of the subtree which has n as root.

Its structure is the same as the one of c presented in the previous section. R

instead is the set of reachability rules generated. In this grammar we focus

only on the rules which are directly generated from code and not from the

ones obtained by merging different ones together.

Other attributes are used to carry a specific information through the

tree. N contains a variable identifier.

L,D, OC and FC are used in managing the function call part. L contains a

list of identifiers with their types while D is a list of code structures which

represent a list of expressions. OC and FC represent (like C) a part of the

code and share the same structure.

A type is carried in TYPE and PTR attributes. TYPE carries the name of

the type. PTR carries the number of indirection.

Finally, in order to generate the struct related rules, the following at-

tributes are used:

• SIZE contains a list of elements whose sizes must be known.

• STRUCT contains the list of parameters which a structure contains.

• SIZE’ contain the list of the sizes of the computed structs.

The reachability rules are written in the attribute grammar in the follow-

ing form ϕ ⇒ ϕ′ where ϕ and ϕ′ are configuration patterns. Each pattern

contains only the relevant sub-terms. The c term represents only the rele-

vant part, i.e., it does not consider the remaining part of c which does not

change.

27

One important thing on how the reachability rules work is related to

the different components of c: code token and value. Code tokens represent

the actual input program, and contain information which are available at

compile time. Values are instead a way or representing information only

available at run-time. This fact is the key of our reachability system, because

many rules expect to “receive” the result of other rule computations. In this

way is possible to decouple the effect of the different rules on the different

parts of the program.

We now present the rules and provide a brief explanation.

〈program〉0 ::= 〈programChoice〉1 FinalAnnotation2? 〈moreAnnotation〉3?

{

C0 = C1

R0 = R1

}

This rule has only the purpose of reporting the computed attribute to the

root node (〈program〉).

〈global declaration〉0 ::= ‘struct’1 IDENTIFIER2 ‘{’3 〈declaration〉4 ‘}’5
〈global declaration1 〉6? {

C0 = C1 ◦ C2 ◦ C3 ◦ C4 ◦ C5 ◦ C6

R0 = R6 ∪ 〈c, struct, size〉 ⇒ 〈c
′, struct′, size′〉

where:

c = C1 ◦ C2 ◦ C3 ◦ C4 ◦ C5

c′ = Ø

size = value2.SIZE4 ∪ 〈D4(0)→ i0, ..., D4(n− 1)→ in−1〉

struct′ = value2.STRUCT 4∪struct∪〈value2.D4(0)→ k0, ..., value2.D4(n− 1)→ kn−1〉

k0 = 0

kj = kj−1 + ij−1

size′ = value2.SIZE
′
4 ∪ size ∪ 〈value2 → kn〉

}

| (〈function declaration〉|〈parameter〉)1 ‘;’2 〈programChoice〉3 {

C0 = C1 ◦ C2 ◦ C3

R0 = R1 ∪R3

}

〈global declaration1 〉0 ::= ‘;’1 〈programChoice〉2 {

C0 = C1 ◦ C2

R0 = R2

}

28

These rules compute the attributes of the different declarations of the lan-

guage. The first is related to the computation of a struct reachability rule.

This rule is characterized by having in the size term of the first configura-

tion pattern the sizes of all types used in the structure, while adding in the

size term of the second configuration pattern, the ones related to the new

defined types (if any), while in the struct term of the second pattern the

relative position of the struct elements are added. To do this the attribute

rule uses the data produced in the 〈declaration〉 node.

〈parameter〉0 ::= 〈type〉1 IDENTIFIER2 {

C0 = c

R0 = 〈c, e〉 ⇒ 〈c
′, e′〉

L0 = 〈TY PE1, PTR1, N2〉

where:

c = C1 ◦ C2

c′ = Ø

e′ = e ∪ 〈N2 7→ (TY PE1, PTR1)undef〉

}

| (〈type〉|〈ptr type〉)1 ‘*’2 〈id〉3 {

C0 = c

R0 = 〈c, e〉 ⇒ 〈c
′, e′〉

L0 = 〈TY PE1, PTR1 + 1, N3〉

where:

c = C1 ◦ C2 ◦ C3

c′ = Ø

e′ = e ∪ 〈N3 7→ (TY PE1, PTR1 + 1)undef〉

}

These rules handle the variable declaration. The reachability rule added

states that there is a new variable in the environment which has the unde-

fined value. In addition it also writes the type information in the proper

attribute. The decision whether to use the reachability rule or the parame-

ter information is taken by another node which will have more information

regarding the position of the statement.

〈parameter list〉0 ::= 〈parameter〉1 ‘,’2 (〈parameter list〉|〈parameter〉)3 {

c = C1 ◦ C2 ◦ C3

L0 = L1 ◦ L3

}

These rules just define a list of parameters.

29

〈function definition〉0 ::= 〈type〉1 IDENTIFIER2 〈function definition2 〉3 {

C0 = c

R0 = R3 ∪ 〈c, ..., fun〉 ⇒ 〈c
′, ..., fun′〉

where:

c = C1 ◦ C2 ◦ C3

c′ = OC3

fun′ = fun ∪ 〈N2 7→ 〈〈(TY PE1, PTR1), L3〉 , FC3〉〉

}

| (〈type〉|〈ptr type〉)1 ‘*’2 〈function definition1 〉3 {

C0 = c

R0 = R3 ∪ 〈c, ..., fun〉 ⇒ 〈c
′, ..., fun′〉

where:

c = C1 ◦ C2 ◦ C3

c′ = OC3

fun′ = fun ∪ 〈N3 7→ 〈〈(TY PE1, PTR1 + 1), L3〉 , FC3〉〉

}

〈function definition1 〉0 ::= IDENTIFIER1 〈function definition2 〉2 {

C0 = C1 ◦ C2

R0 = R2

FC0 = FC2

L0 = L2

OC0 = OC2

N0 = value1

}

〈function definition2 〉0 ::= ‘(’1 〈parameterChoice〉2? ‘)’3 Annotation4?

‘{’5 〈functionChoice〉6? ‘}’7 〈programChoice〉8? {

C0 = C1 ◦ C2 ◦ C3 ◦ C4 ◦ C5 ◦ C6 ◦ C7 ◦ C8

R0 = R6 ∪R8

FC0 = C6

L0 = L2

OC0 = C8

}

These rules define a new function. The important ones are related to

〈function definition〉 non-terminal, since 〈function definition1 〉 and 〈function definition2 〉

just pass the data to it. The reachability rule added states that the piece of

code of the function define a new function in the fun term, which associates

the function name to all data related to the function (return type, input

30

parameter and function code).

〈compound declaration〉0 ::= (〈function declaration〉|〈parameter〉)1 ‘;’2 〈functionChoice〉3
{

C0 = C1 ∪ C3

R0 = R1 ∪R3

}

〈compound declaration1 〉0 ::= ‘;’1 〈compound declaration〉2 {

C0 = C2

R0 = R2

}

〈separator〉0 ::= ‘;’1 {

C0 = C1

R0 = Ø

}

〈separator1 〉0 ::= ‘;’1 〈compoundStatementChoice〉2 {

C0 = C2

R0 = R2

}

These rules have only the purpose of passing attributes inside the tree.

〈compound statement〉0 ::= ‘return’1 〈expressionChoice〉2? ‘;’3 〈compoundStatementChoice〉4
{

C0 = C2 ◦ C3 ◦ C4

R0 = R2 ∪R4 ∪ 〈c, e, fstack〉 ⇒ 〈c
′′, e′, fstack′〉

where:

c = i ◦ C3

c′′ = i ◦ c′

fstack′ = 〈e′, c′〉 ← fstack.pop

}

| ‘if’1 ‘(’2 〈expressionChoice〉3 ‘)’4 ‘{’5 〈statementChoice〉6 ‘}’7
(‘else’8 ‘{’9 〈statementChoice〉10 ‘}’11)? 〈compoundStatementChoice〉12
{

C0 = C3 ◦ C5 ◦ C6 ◦ C7 ◦ C9 ◦ C10 ◦ C11 ◦ C12

R0 = R3 ∪ R6 ∪ R10 ∪ R12∪ 〈c, env〉 ⇒ 〈c
′, env〉 if i 6= 0∪ 〈c, env〉 ⇒

〈c′′, env〉 if i = 0

where:

c = i ◦ C5 ◦ C6 ◦ C7 ◦ C9 ◦ C10 ◦ C11

c′ = C6

31

c′′ = C10

}

| 〈expressionChoice〉1 ‘;’2 〈compoundStatementChoice〉3 {

C0 = C1 ◦ C2 ◦ C3

R0 = R1 ∪R3∪ 〈c, env〉 ⇒ 〈c
′, env〉

where:

c = i ◦ C2

c′ = Ø

}

| Annotation1? ‘while’2 ‘(’3 〈expressionChoice〉4 ‘)’5
‘{’6 〈statementChoice〉7 ‘}’8 〈compoundStatementChoice〉9 {

C0 = C4 ◦ C6 ◦ C7 ◦ C8 ◦ C9

R0 = R4 ∪ R7 ∪ R9∪ 〈c, env〉 ⇒ 〈c
′, env〉 if i 6= 0∪ 〈c, env〉 ⇒ 〈c′′, env〉

if i = 0

where:

c = i ◦ C6 ◦ C7 ◦ C8

c′ = C3 ◦ C4 ◦ C6 ◦ C7 ◦ C8

c′′ = Ø

}

| ‘{’1 〈compound declaration〉2 ‘}’3 〈compoundStatementChoice〉4 {

C0 = C2 ◦ C4

R0 = R2 ∪R4

}

〈statement〉0 ::= ‘return’1 〈expressionChoice〉2? ‘;’3 {

C0 = C2 ◦ C3

R0 = R2 ∪ 〈c, e, fstack〉 ⇒ 〈c
′′, e′, fstack′〉

where:

c = i ◦ C3

c′′ = i ◦ c′

fstack′ = 〈e′, c′〉 ← fstack.pop

}

| 〈expressionChoice〉1 ‘;’2 {

C0 = C1 ◦ C2

R0 = R1∪ 〈c, env〉 ⇒ 〈c
′, env〉

where:

c = i ◦ C2

c′ = Ø

}

| ‘if’1 ‘(’2 〈expressionChoice〉3 ‘)’4 ‘{’5 〈statementChoice〉6 ‘}’7

32

(‘else’8 ‘{’9 〈statementChoice〉10 ‘}’11)? {

C0 = C3 ◦ C5 ◦ C6 ◦ C7 ◦ C9 ◦ C10

R0 = R3 ∪R6 ∪R10∪ 〈c, env〉 ⇒ 〈c
′, env〉 if i 6= 0∪ 〈c, env〉 ⇒ 〈c′′, env〉

if i = 0

where:

c = i ◦ C5 ◦ C6 ◦ C7 ◦ C9 ◦ C10

c′ = C6

c′′ = C10

}

| Annotation1? ‘while’2 ‘(’3 〈expressionChoice〉4 ‘)’5
‘{’6 〈statementChoice〉7 ‘}’8 {

C0 = C4 ◦ C6 ◦ C7 ◦ C8

R0 = R4 ∪ R7∪ 〈c, env〉 ⇒ 〈c
′, env〉 if i 6= 0∪ 〈c, env〉 ⇒ 〈c′′, env〉 if

i = 0

where:

c = i ◦ C6 ◦ C7 ◦ C8

c′ = C3 ◦ C4 ◦ C6 ◦ C7 ◦ C8

c′′ = Ø

}

These rules manage the behaviour of the various constructs of the language.

The return construct is managed by a reachability rule which restores the

environment and the code prior the function call. The if−else construct is

managed by providing two reachability rules: one for each possible branch.

The while construct is handled by one reachability rule which will unroll

it if the condition is satisfied and by another rule which will skip it if the

condition is not satisfied.

〈declaration〉0 ::= (〈function declaration〉|〈parameter〉)1 ‘;’2 〈declaration〉3?

{

C0 = C1 ◦ C2 ◦ C3

L0 = L1 ◦ L3

SIZE0 = SIZE3 ∪ L1

STRUCT0 = L1 ∪ STRUCT3
SIZE′

0 = SIZE′
3

}

| ‘struct’1 IDENTIFIER2 ‘{’3 〈declaration〉4 ‘}’5 (〈declaration1 〉|〈separator〉)6
{

C0 = C1 ◦ C2 ◦ C3 ◦ C4 ◦ C5 ◦ C6

L0 = 〈value2, 0, value2〉 ∪ L6

SIZE0 = SIZE6 \ (value2.SIZE
′
4 ∪ value2 → kn) ∪ value2.SIZE4 ∪

33

L4(0)→ i0, ..., L4(n− 1)→ in−1

STRUCT0 = STRUCT6∪value2.STRUCT 4∪value2.L4(0)→ k0, ..., value2.L4(n−

1)→ kn−1

SIZE′
0 = SIZE′

6 ∪ value2.SIZE
′
4 ∪ value2 → kn

where:

k0 = 0

kj = kj−1 + ij−1

}

〈declaration1 〉0 ::= ‘;’1 〈declaration〉2 {

C0 = C1 ◦ C2

L0 = L2

SIZE0 = SIZE2

STRUCT0 = STRUCT2
SIZE′

0 = SIZE′
2

}

These rules synthesize struct related attributes. These attributes will be

used in the 〈global declaration〉 node to compute the reachability rule of

the struct.

〈type〉0 ::= ‘struct’1 IDENTIFIER2{

C0 = C1 ◦ C2

TY PE0 = value1
PTR0 = 0

}

| ‘void’1 {

C0 = C1

TY PE0 = void

PTR0 = 0

}

| ‘int’1 {

C0 = C1

TY PE0 = int

PTR0 = 0

}

〈type2 〉0 ::= ‘(’1 (〈type〉|〈ptr type〉)2 ‘)’3 {

C0 = C2

TY PE0 = TY PE2

PTR0 = PTR2

}

34

〈ptr type〉0 ::= (〈type〉|〈ptr type〉)1 ‘*’2 {

C0 = C1

TY PE0 = TY PE1

PTR0 = PTR1 + 1

}

These rules just calculate the attributes related to data type.

〈empty fcall〉0 ::= IDENTIFIER1 〈empty expression〉2 {

R0 = 〈c, env, ..., fun, fstack〉 ⇒ 〈c
′, env′, fun, fstack′〉

C0 = c

where:

c = C1

〈value1 7→ 〈l, c
′〉〉 ∈ fun

fstack′ = fstack ◦ 〈env, code \ c〉

env′ = env

}

This rule handles a function call with no argument. The reachability rules

manage the call by saving environment and code in fstack and setting the

function code.

〈id〉0 ::= IDENTIFIER1 {

R0 = 〈c, env〉 ⇒ 〈h, env〉

C0 = c

N0 = value1
where:

c = C1

〈value1 7→ h〉 ∈ env

}

This rule just handles the use of variables. It produces a reachability rule

which substitutes a code token representing a variable identifier with the

according value taken from the environment.

〈argument expression list〉0 ::= 〈expressionChoice〉1 ‘,’2 〈expressionChoice〉3
{

R0 = R1 ∪R3

D0 = C1 ◦ C3

}

| 〈expressionChoice〉1 ‘,’2 〈argument expression list〉3 {

R0 = R1 ∪R3

D0 = C1 ◦D3

}

35

These rules just calculate the attributes related to an expression list, by

creating a list.

〈unary expression〉0 ::= ‘sizeof’1 (〈unaryChoice〉|〈type2 〉)2 {

R0 = R2 ∪ 〈c, size〉 ⇒ 〈j, size〉

C0 = C2 ◦ C1

N0 = N2

where:

c = i ◦ C1

j = size(i.type)

}

| (‘~’|‘!’|‘+1’|‘-1’)1 〈postfixChoice〉2 {

R0 = R2 ∪ 〈c〉 ⇒ 〈j〉

C0 = C2 ◦ C1

N0 = N2

where:

c = i ◦ C1

j = op1i

}

| ‘&1’1 〈postfixChoice〉2{

R0 = R2 ∪ 〈c,mem〉 ⇒ 〈j,mem〉

C0 = C2 ◦ C1

N0 = N2

where:

c = i ◦ C1

〈j 7→ i〉 ∈ mem

}

| ‘*1’1 〈postfixChoice〉2{

R0 = R2 ∪ 〈c,mem〉 ⇒ 〈j,mem〉

C0 = C2 ◦ C1

N0 = N2

where:

c = i ◦ C1

〈i 7→ j〉 ∈ mem

}

| (‘++’|‘--’)1 〈unaryChoice〉2 {

R0 = R2 ∪ 〈c〉 ⇒ 〈j〉

C0 = C2 ◦ C1

N0 = N2

1This are the unary versions of the tokens.

36

where:

c = i ◦ C1

j = op1i

}

〈assignment expression〉0 ::= 〈unaryChoice〉1 ‘=’2 〈expressionChoice〉3 {

R0 = R3 ∪ 〈c, env〉 ⇒ 〈i, env
′〉

C0 = C3 ◦ C2 ◦ C1

where:

c = i ◦ C2 ◦ C1

env′ = env ◦ 〈N1 7→ i〉

}

| 〈unaryChoice〉1 (‘+=’|‘-=’|‘*=’|‘/=’|‘%=’)2 〈expressionChoice〉3 {

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env′〉 ⇒ 〈k, env′′〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = i op2 j

env′′ = env′ ◦ 〈N1 7→ i op2 j〉

}

| 〈unaryChoice〉1 (‘^=’|‘|=’|‘&=’|‘<<=’|‘>>=’)2 〈expressionChoice〉3 {

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env′〉 ⇒ 〈k, env′′〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = i op2 j

env′′ = env′ ◦ 〈N1 7→ i op2 j〉

}

〈conditional expression〉0 ::= 〈logicalOrChoice〉1 ‘?’2 〈expressionChoice〉3 ‘:’4
〈conditionalChoice〉5 {

R0 = R1 ∪R3 ∪R5 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 if i 6= 0 ∪ 〈c, env〉 ⇒ 〈c′′, env〉

if i = 0

C0 = C1 ◦ C2 ◦ C3 ◦ C4 ◦ C5

where:

c = i ◦ C2 ◦ C3 ◦ C4 ◦ C5

37

c′ = C3

c′′ = C5

}

〈logical or expression〉0 ::= 〈logicalOrChoice〉1 ‘||’2 〈logicalAndChoice〉3 {

R0 = R1∪R3∪〈c, env〉 ⇒ 〈1, env〉 if i 6= 0∪〈c, env〉 ⇒ 〈c′, env〉 if i = 0

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3

}

〈logical and expression〉0 ::= 〈logicalAndChoice〉1 ‘&&’2 〈inclusiveOrChoice〉3
{

R0 = R1∪R3∪〈c, env〉 ⇒ 〈c
′, env〉 if i 6= 0∪〈c, env〉 ⇒ 〈0, env〉 if i = 0

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3

}

〈inclusive or expression〉0 ::= 〈inclusiveOrChoice〉1 ‘|’2 〈exclusiveOrChoice〉3
{

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env〉 ⇒ 〈k, env〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = iop2j

}

〈exclusive or expression〉0 ::= 〈exclusiveOrChoice〉1 ‘^’2 〈andChoice〉3 {

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env〉 ⇒ 〈k, env〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = iop2j

}

38

〈and expression〉0 ::= 〈andChoice〉1 ‘&’2 〈equalityChoice〉3 {

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env〉 ⇒ 〈k, env〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = iop2j

}

〈equality expression〉0 ::= 〈equalityChoice〉1 (‘==’|‘!=’)2 〈relationalChoice〉3
{

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env〉 ⇒ 〈k, env〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = iop2j

}

〈relational expression〉0 ::= 〈relationalChoice〉1 (‘>’|‘<’|‘>=’|‘<=’)2 〈shiftChoice〉3
{

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env〉 ⇒ 〈k, env〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = iop2j

}

〈shift expression〉0 ::= 〈shiftChoice〉1 (‘>>’|‘<<’)2 〈additiveChoice〉3 {

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env〉 ⇒ 〈k, env〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = iop2j

}

39

〈additive expression〉0 ::= 〈additiveChoice〉1 (‘+’|‘-’)2 〈multiplicativeChoice〉3
{

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env〉 ⇒ 〈k, env〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = iop2j

}

〈multiplicative expression〉0 = 〈multiplicativeChoice〉1 (‘*’|‘/’|‘%’)2 〈postfixChoice〉3
{

R0 = R1 ∪R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env〉 ⇒ 〈k, env〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C2 ◦ C3

c′ = C3 ◦ C2 ◦ i

c′′ = j ◦ C2 ◦ i

k = iop2j

}

〈cast expression〉0 ::= ‘(’1 (〈type〉|〈ptr type〉)2 ‘)’3 〈postfixChoice〉4 {

R0 = R3 ∪ 〈c, env〉 ⇒ 〈c
′, env〉

C0 = C4 ◦ C2

N0 = N3

where:

c = i ◦ C2

c′ = (TY PE2, PTR2)i

}

〈nested expression〉0 ::= ‘(’1 〈expressionChoice〉2 ‘)’3 {

R0 = R2

C0 = C2

}

These rules define the behaviour of the various operators of the language.

They work by adding reachability rules which receive a value and produce

a new one. Since the value will be known only at runtime, it is handled by

a value item in the code part of the rule. In order to work, the reachability

rules produced expect that other rules have done their job by converting a

40

part of the code expressed as tokens into its value. If the operator is unary

the only thing to do is to add the code in postfix form and add a reachability

rule which will modify the value received according to the operator nature.

If the operator is binary this part is trickier. The reason is the fact that only

the first operand can be computed by the other rules, while the second one

will remain in the form of the program token. So the first reachability rule

added just invert the code so that the second operand in program tokens

form is now at the beginning of the code (and so can match other reachability

rules) while in the second part there is the first operand in the form of value.

Then the other rule will actually encode the computation of the operation,

by substituting the two values separated by the operator token with the

operation value.

〈postfix expression〉0 ::= Constant1 〈postfix expression1 〉2? {

R0 = R2 ∪ 〈c, env〉 ⇒ 〈i, env〉

C0 = C1 ◦ C2

N0 = undefined

where:

c = C1

i = value1
}

| IDENTIFIER1 (〈nested expression〉|〈postfix expression1 〉|〈postfix expression2 〉)2
{

R0 = R2 ∪ 〈c, env0, ..., fun, fstack〉 ⇒ 〈c
′, env′, fun, fstack′〉

if 〈D2(0), env0〉 ⇒ 〈i0, env1〉 , ..., 〈D2(n− 1), envn−1〉 ⇒ 〈in−1, envn〉

C0 = c

where:

c = C1 ◦ C2

〈value1 7→ 〈l, c
′〉〉 ∈ fun

fstack′ = fstack ◦ 〈envn, code \ c〉

env′ = envn ◦ subst(l, i0, ..., in−1)

}

〈postfix expression1 〉0 ::= ‘[’1 〈expressionChoice〉2 ‘]’3 〈postfix expression1 〉4?

{

R0 = R2∪R4∪ 〈c, env〉 ⇒ 〈c
′, env〉 ∪ 〈c′′, env′,mem, size〉 ⇒ 〈k, env′,mem, size〉

C0 = C1 ◦ C2 ◦ C4

where:

c = i ◦ C1 ◦ C2

c′ = C2 ◦ C1 ◦ i

c′′ = j ◦ C1 ◦ i

41

〈i→ s〉 ∈ size

〈i+ s ∗ j → k〉 ∈ mem

}

| (‘.’|‘->’)1 IDENTIFIER2 〈postfix expression1 〉3? {

R0 = R3∪ 〈c, env,mem, size〉 ⇒ 〈k, env,mem, size〉

C0 = C1 ◦ C2 ◦ C3

where:

c = i ◦ C1 ◦ C2

〈i.value2 → j〉 ∈ struct

〈i+Int j → k〉 ∈ mem

}

| (‘++’|‘--’)1 〈postfix expression1 〉2?{

C0 = C1 ◦ C2

R0 = R2 ∪ 〈c, env〉 ⇒ 〈i, env
′〉

where:

c = i ◦ C1

env′ = env ◦ 〈N1 7→ op1i〉

}

〈postfix expression2 〉0 ::= ‘(’1 〈expressionChoice〉2? ‘)’3 〈postfix expression1 〉4{

C0 = c

R0 = R2 ∪R4

D0 = D2

where:

c = C1 ◦ C2 ◦ C3 ◦ C4

}

| ‘(’1 〈argument expression list〉2 ‘)’3 〈postfix expression1 〉4?{

C0 = c

R0 = R2 ∪R4

D0 = D2

where:

c = C1 ◦ C2 ◦ C3 ◦ C4

}

These rules define the behaviour of a postfix expression. In the case of a

constant they simply substitute the code token with the value of the con-

stant. In the case of a function call, the call is performed by setting as code

the code of the function and saving the environment and the code in fstack.

In the case of a postfix operator the same considerations of unary operators

have to be done.

42

4.4 Attribute evaluation example

In this section we show an example of attribute evaluation on the abstract

syntax tree depicted in Figure 4.1, corresponding to the input program

shown in Listing 4.1; we assume each terminal is identified by a token ti.

Listing 4.1: code of KernelC attribute evaluation

1 int main()

2 {

3 int x;

4 x = 2;

5 return x;

6 }

Figure 4.1: Example of KernelC attribute evaluation

〈program〉0

〈function definition2〉3

}9〈compound declaration〉8

〈compound statement〉12

〈statement〉17

;24〈id〉23

x27

return22

;16〈assignment expression〉15

〈postfix expression〉21

226

=20〈id〉19

x25

;11〈parameter〉10

x14〈type〉13

int18

{7)6(5

main2〈type〉1

int4

C1 = {t4}

TY PE1 = int

PTR1 = 0

C13 = {t18}

TY PE13 = int

PTR13 = 0

C10 = {t18, t14}

R10 = 〈{t18, t14}, e〉 ⇒ 〈Ø, e ∪ 〈x 7→ (int, 0)undef〉〉

L10 = 〈int, 0, x〉

R19 = 〈{t25}, env〉 ⇒ 〈h, env〉 with 〈x 7→ h〉 ∈ env

C19 = {t25}

N19 = x

43

R21 = 〈{t26}, env〉 ⇒ 〈2 , env〉

C21 = {t26}

N21 = undefined

R15 = R21 ∪ 〈{i, t26, t20}, env〉 ⇒ 〈i, env ◦ 〈x 7→ i〉〉

C15 = C21 ◦ {t26, t20}

R23 = 〈{t27}, env〉 ⇒ 〈h, env〉 with 〈x 7→ h〉 ∈ env

C23 = {t27}

N23 = x

C17 = C23 ◦ {t24}

R17 = R23 ∪ 〈{i, t24}, e, fstack〉 ⇒ 〈i ◦ c
′, e′, fstack′〉

where:

fstack′ = 〈e′, c′〉 ← fstack.pop

C12 = C15 ◦ {t16} ◦ C17

R12 = R15 ∪R17∪ 〈{i, t16}, env〉 ⇒ 〈Ø, env〉

C8 = C10 ∪ C12

R8 = R10 ∪R12

C3 = {t5, t6, t7} ◦ C8 ◦ {t9}

R3 = R8

FC3 = C8

L3 = Ø

OC3 = Ø

C0 = {t4, t2} ◦ C3

R0 = R3 ∪ 〈{t4, t2} ◦ C3, ..., fun〉 ⇒ 〈Ø, ..., fun
′〉

where:

fun′ = fun ∪ 〈main 7→ 〈〈(int, 0),Ø〉 , C8〉〉

44

Chapter 5

Implementation

“In theory, theory and practice are the same. In practice, they are not.”

Jan L. A. van de Snepscheut

In this chapter we present the implementation of the tool accompanying this

work.

The implementation is totally different from the original work on Ker-

nelC [1]. The original KernelC verifier has been mainly implemented in

Maude [7], which is a logic programming language based on term rewriting

[27]. It is constituted of two parts. One part is a simple parser written in

Java and based on ANTLR. It reads the KernelC program and translates it

into a Maude input. The second one is the actual verifier, it is written in

Maude and it is based on the language definition of KernelC.

Our implementation follows an Object-oriented paradigm and is written

in Java. It is composed of different packages and is divided in two groups.

The first one, the syntactical one, implements the parsing of the input pro-

gram and drives the attribute evaluation. It is independent from the pro-

gramming language used. The second group of packages is language-specific;

the central part is the implementation of attribute grammar evaluation.

The two groups of packages are ”linked” by the concept of attribute

grammar: in the first group it is represented by the abstract class Seman-

ticVisitor ; in the second one, there is the actual implementation.

5.1 Syntactic part

This part is composed by the following packages:

• grammar : it defines an input operator-precedence grammar and gen-

erates its operator precedence matrix (see Figure 5.1).

• parser : it contains the operators grammar parsers (see Figure 5.2).

• semantics: it contains the template of an attribute grammar.

Figure 5.1: UML Class diagram of grammar package

5.1.1 Grammar

This package can be divided in two parts: one composed by the primitive

elements which forms a grammar, and one that contains the actual grammar

elements.

The first part is composed by the class Symbol, Terminal, NonTerminal

and ConcreteInput. Symbol is the abstract element that represents a generic

symbol of the grammar. It is implemented by the two classes Terminal

and NonTerminal which represents the elements of the grammars. The

last class ConcreteInput represents the actual terminals of a grammar. It

is different from the Terminal one because, while Terminal represents a

generic terminal of the grammar, ConcreteInput represents an instance of

it. This does not happen with non-terminals since they can be considered

equals while different terminals can have different representations.

46

Figure 5.2: UML Class diagram of parser package

The second part is composed byOperatorGrammar andGrammarBuilder-

Helper. The important one is the former, since the latter is just a factory

class for it. The most important method of OperatorsGrammar is gener-

atePrecedenceTable which constructs the operator precedence matrix of the

grammar.

5.1.2 Parser

This package can be divided in three parts. The first part contains the

basic elements of the parsing process which are the classes ASTNode and

InputManager.

The former, as the name suggests, contains a node of the abstract syn-

tax tree. The latter instead maintains the input to be processed for a

reason which will be explained later. The second one is formed by the

actual parsers: it is composed by AbstractParser, SequentialParser and In-

crementalParser. While the first is just a generic class which defines a basic

parser structure, the others are implementation operator-precedence gram-

mars parsers.

47

The difference between the two is the fact that the former reads always

the whole input, while the latter tries to analyze the smallest part of the

input, if it derives from the previous parsed input with some changes.

The main method that realizes this is edit, which receives a change as

the starting position from the beginning of previous input, the number of

tokens to be deleted from that position, and a list of tokens to be inserted

after the deletion. It returns an ASTNode which contains the root of the

syntax tree.

Also the SequentialParser class implementation can provide a (partial)

incremental parsing: although it has to analyze the whole input, it is able

to recognize if a certain reduction has been computed before and thus reuse

it. So, while lacking syntactical incrementality, it is suitable for semantic

incrementality.

The last part is composed of PreprocessorInterface and DefaultPreproces-

sor. This works with InputManager to form a preprocessor, which performs

small changes to the input tokens. This component has been introduced to

deal with the problem of two versions of some tokens with different arity

and precedence. In this way a single token is threaded in the grammar as

different ones while this part dealt with fictional tokens used in the produc-

tions.

PreprocessorInterface is an interface that specifies which methods must

be defined by a preprocessor; DefaultPreprocessor a class which implements

a preprocessor which does nothing, i.e., maps each token to itself.

5.1.3 Semantics

This package defines the structure of attribute grammars using the abstract

class SemanticVisitor, based on the visitor design pattern.

An attribute grammar is defined as a class which extends SemanticVisi-

tor. For each attribute we define an attribute class and a visitor class which

extends SemanticVisitor.

The visitor class must define the method visit which computes the at-

tribute. It is possible to retrieve an attribute value associated to a node

with the method getValue and add an attribute value for a node with the

method insertValue.

5.2 Kernel C semantic

The Kernel C semantic part is divided as follows:

48

• syntax : a package which contains the Kernel C grammar definition

and its preprocessor.

• semantics: a package which performs the attribute evaluation.

• solver : this part actually performs program verification.

The first two parts contains a grammar definition and concrete class imple-

menting (extending) PreprocessorInterface and SemanticVisitor. The last

one contains the detailed program analysis and is analyzed in the next sec-

tion. An overview of the class structure of these part is shown in Figure 5.3,

5.4, 5.5, 5.6, 5.7.

5.3 Solver

This is the main component of our tool. Before illustrating it, we explain

how the approach presented in the previous chapter has been casted into

an object-oriented implementation that relies on an SMT solver (namely,

Z3 [13]). First of all the configuration structure has been slightly modified.

Each configuration is now composed by three parts: the first represents the

code, the second is a first order logic formula which describes the properties

of the configuration and the third one is composed by the real configu-

ration and represents the configuration structure. The code part, which

corresponds to the configuration sub-term c, has been separated from the

configuration since the code structure drives the attribute evaluation. The

logic formula is the way in which most of the properties of the configuration

are encoded. It is used to translate the verification problem in a format

understandable by the SMT solver. The “structural” part is instead the

one which resembles the matching logic configuration. Its main task is to

perform configuration mapping but it can also maintain some properties.

The number of different configurations has also been reduced. There are

only the env and the heap.

The env has been enriched with fstack since they are used together and

this determines a simpler structure of the configuration rules.

The heap configuration has the only purpose of mapping between differ-

ent configurations, while all its properties are managed in the FOL-formula.

In particular, it is managed with one integer and three maps from integers

to integers: the integer contains the position reached in memory allocation.

The arrays are maps from a memory cell to a certain information. One con-

tains if a certain cell is allocated (and if so the pointer of the first cell in the

49

allocation). The second if the cell is initialized or not. The third contains

the memory content of the cell.

Memory management is used by the built-in functions: sbrk and brk.

There are two versions of sbrk : one has no input parameters and returns the

position of the next cell. The second accepts two parameters: an index and a

cell. If the owner of the cell at the position of index is the owner passed to the

function it frees that cell and returns 1; otherwise returns 0. brk allocate the

next cell receiving a parameter which contains the cell owner. With these

functions is possible to implement malloc (shown in Listing 5.1) and free

(Listing 5.2), which are the memory management functions provided by the

standard C library.

Listing 5.1: Example of malloc definition

1 void∗ malloc(int size){

2 int c;

3 void∗ ptr;

4 if(size<1){

5 return 0;

6 }

7 ptr = sbrk();

8 c=0;

9 while(c<size){

10 brk(ptr);

11 c=c−1;

12 }

13 return ptr;

14 }

Listing 5.2: Example of free definition

1 void∗ free(void∗ base){

2 void∗ ptr;

3 ptr=base;

4 while(sbrk(ptr,base)){

5 ptr=ptr+1;

6 }

7 }

The code instead has been enriched to substitute the structures size,

struct, fun. A configuration is represented by the class Configuration and

is composed by the three parts presented before. A rule, represented by

Rule, identifies a transition between a set configuration to another set of

configuration. This element can be labeled by an instance ofMetadata which

carries additional information of the rule, which are used in the verification

process.

50

Figure 5.3: UML Class diagram of KernelC semantics package

5.3.1 Code

The main class Code contains a list of basic code elements, represented by

the abstract class CodeElement.

The class Token represents the actual code from the program.

Instead the class CodeValue represents a variable with a certain type.

Value and type of the variable can be determined only at run-time, so each

variable is represented with a unique string which identifies an integer vari-

able in the formula.

The class VariableCode deals with functions and structs. It is composed

by a string which is the actual value of an input token. The difference w.r.t.

Token is that in the latter the value of the token is not important since it

is used only locally to refer to that particular token.

Finally there is the SpecialToken which are new token which have special

meaning. Some of them are used in the management of function calls. Dur-

ing function call the code is simply appended at the top of the code. The

problem of this is dealing with the return statement: if there is one in the

middle of a function all the subsequent code must be dropped away. This is

done by the SpecialTokens returnToken, endOfFunction and globalMatch.

When a return is found a returnToken is placed. There are then two

general rules, one that deletes the following CodeElement after returnTo-

ken and one that performs the exit from the call if the sequence returnTo-

kenendOfFunction is found. To achieve this the token endOfFunction is put

at the end of each function and globalMatch has the property of matching

almost all CodeElements but endOfFunction.

The matching between code part is done by a comparison one by one of

the first CodeElements in the code.

The comparison depends on the type, for example two Tokens are equal

51

Figure 5.4: UML Class diagram of solver package

if they refers to the same terminal, two CodeValue are always equal and two

VariableCode are equal if their values are.

5.3.2 Formula

The management of the FOL-formula that contains all the constraints of

the configuration is performed by the class FormulaList.

It allows the introduction of new constraints and interfacing with the

external SMT solver.

New constraints are added either by providing methods for adding a

specific constraint of by unifying constraints from different configurations.

The interface with the SMT solver is provided through the method check

which returns if the current formula is satisfiable or not. Since all verification

issues can be reduced to a satisfiability problem this is enough for this work.

52

Figure 5.5: UML Class diagram of config package

In addition FormulaList encapsulates the SMT solver used (Z3 in our

case). So in the event of substituting the external solver, only this class has

to be changed.

One issue is due to the fact that in a rule a single formula is used to

contain both preconditions and postconditions. The problem that would

arise is that if we have a rule R which has a precondition p and maps the

set of configurations S to S′, the effect of applying that rule would be to

map T ⊆ S to T ′ ⊆ S′ where T |= p. In that way it is possible to “lose” a

subset of configurations which are not allowed by the program.

To overcome this we introduce for each precondition a complementary

rule which maps the configuration which does not hold the precondition

to an “error configuration”. From this configuration, represented by the

SpecialToken stuck, it is impossible to move and of course it is neither a

final one. So the verification would fail as expected.

We made this implementation decision to reduce the number of satisfia-

bility checks, which are computationally intensive. In fact these checks are

not performed for every new configuration reached, except for final ones and

before rules which can trigger an infinite path, namely loops and function

calls.

5.3.3 System operation

The system can perform two types of operations: it can start from a set of

configuration and check if all the possible path satisfies a certain property

53

Figure 5.6: UML Class diagram of code package

or produce new rules from the existing ones.

The first task is performed by the class SolverEngine and is the general

operating mode and is mainly conducted in the method solve.

This method starts from the current set of states and continues to apply

rule until it is possible. A set of state cannot be processed anymore either if

no rule can match it or it is a final one, i.e., matches the target configuration.

The final sets of configurations are divided in two groups if the constraints

in the formula are satisfiable or not.

In order to verify if a given postcondition hold is sufficient to use as final

configuration set one as follows: the code part should be empty, since all

the code must have been executed; the structure part should contain all the

variable needed and the formula should be the negation of the postcondition

In this way it is sufficient to verify that every path reaches the final

configuration without satisfying it. In this way we only need to know if a

given formula is satisfiable or not.

54

Figure 5.7: UML Class diagram of rule package

The other operating mode tries to deduce new rules in order to speed

up the process. This is carried by the class RuleUnifier which tries to unify

different rules according a code pattern. The decision whether perform a

certain unification or not is done by a subclass of Strategy according to the

additional information in Metadata. The rationale for this is that a certain

unification can continue endlessly, are expensive to perform. This behaviour

is typical of loops and functional call, whose unification is problematic.

The basic behaviour is to avoid unification. First of all we recall that

the purpose of this task is to save verification time. Rule unification is

performed in a local context with limited knowledge of the whole program.

So it is possible that a loop which would perform fixed number of iterations

in the global program would loop forever in the fragment considered.

Another issue of unification is the possibility of a performance loss. This

can happen if too many rules are generated (so it takes longer to scan them)

and if there are many rules which match the same configuration set not

managed in a proper way, since an exponential number of new configuration

sets can be generated.

55

Chapter 6

Validation

“It is a capital mistake to theorize before you have all the evidence. It biases

the judgment.”

Sir Arthur Ignatius Conan Doyle

In this chapter we report on the experimental evaluation of the tool. In

Section 6.1, the tool is validated against a broad set of test cases from the

official test suite of KernelC. The purpose of the tests is twofold: on one

hand we test the compliance of our tool to the KernelC language, on the

other we prove the correctness of its results by comparing with the original,

non incremental, implementation. In Section 6.2, we instead focus on the

performance of our tool and the impact of incrementality. To this purpose,

we created several versions of the KernelC testsuite and used them as a

benchmark to assess the impact of incrementality.

6.1 KernelC specifications compliance

The programs presented here have the purpose of verifying the compliance

of our implementation of a KernelC reachability checking is with respect

to the language specifications. We selected some examples from the ones

provided with the official matching logic tool, MatchC, [1]; we present them

in the next four subsections. The first group includes short code snippets

using only the basic features of the language, whose purpose is to show

how error detection works in KernelC. We then focus on more complex test

cases aiming at stressing the capabilities of KernelC in proving program

correctness. The second section contains simple programs with loops or

recursive function calls. In the third section, programs contains also heap

management statements. Finally in the last section we show how checking

properties involving the call stack state can be performed by our tool.

6.1.1 Error detection

We present this first four programs with the purpose of showing that our

system is capable of recognizing various kinds of error.

The first one (shown in Listing 6.1) is contains a division by zero, which

would lead to an undefined behavior. This kind of error is managed in

our tool by adding special configurations which represent an error state.

These configurations behave like a sink state: once they are reached it is not

possible to move from them and reaching a final configuration. In this way

the system can detect this sort of errors.

Listing 6.1: Division by zero

1 int main()

2 {

3 int x;

4 x = 0;

5 return 3/x;

6 }

The second one (shown in Listing 6.2) shows how the system checks that

every variable used is initialized. According to the C language specification

this is a legal program which would lead to an undefined behavior. However

this behaviour is not allowed by KernelC.

This error is detected by the env part of configuration. When a variable

is declared, it is marked as uninitialized. In this state it is not possible to

retrieve the value of such variable. The verification fails since it is impossible

to reach a final configuration, because the program flows is halted before the

value of x is obtained.

Listing 6.2: Uninitialized variable

1 int main()

2 {

3 int x;

4 return x;

5 }

The third one (shown in Listing 6.3) contains an access to a memory

address not allocated. A similar C program would crash after the derefer-

entiation of x. This error is recognized by the heap manager. The program

flows is stuck in an error state configuration caused by the attempt of ac-

cessing an unallocated location.

57

Listing 6.3: Unallocated location

1 int main()

2 {

3 int ∗x;

4 x = (int ∗) 1000;

5 return ∗x;

6 }

The last one (shown in 6.4) shows what happens if an undefined memory

location is read. The way in which this error is detected is similar to the

previous one. The difference is that the error state is caused by the fact that

the requested memory location is not initialized.

Listing 6.4: Uninitialized memory

1 struct listNode {

2 int val;

3 struct listNode ∗next;

4 };

5

6 int main()

7 {

8 struct listNode ∗x;

9 x = (struct listNode∗) malloc(sizeof(struct listNode));

10 return x−>next;

11 }

12

13 void∗ malloc(int size){

14 int c;

15 void∗ ptr;

16 if(size<1){

17 return 0;

18 }

19 ptr = sbrk();

20 c=0;

21 while(c<size){

22 brk(ptr);

23 c=c+1;

24 }

25 return ptr;

26 }

6.1.2 Correctness of simple programs

In this section we consider some simple programs, which also contain recur-

sive functions and loops. When compared to the examples in the original

MatchC distribution, these programs are different in the format of the an-

58

notations used to express the properties to check. We changed the format

to adapt the annotations so that they could be used in conjunction with an

SMT solver; the original one were meant to be used with Maude.

Our tool supports two types of annotation: one related to functions and

one for defining a loop invariant; since the next examples deal with simple

function verification, we explain first function annotations.

The purpose of a function annotation is to specify what that function

is expected to do, i.e., what the verifier has to check about that function.

This kind of annotation is divided in different parts. The first one declares

which variables are used in subsequent parts. The first variable reported has

a special meaning, since it identifies the return value of the function. The

others have to match the parameters of the function. Then it is possible to

have another part regarding heap, which we analyze later. Next there is the

core of the annotation. There are two parts which represent respectively the

precondition and postcondition. These are formed by two SMTLIB2 ([9])

strings enclosed between square brackets. The first states what is required

to hold when the function is called. The second states what must hold when

the function returns.

The first examples are simple programs that compute, respectively, the

average of three numbers (Listing 6.5), the minimum (Listing 6.6) and the

maximum (Listing 6.7) of two numbers.

Listing 6.5: Average of three numbers

1 int average(int x, int y, int z)

2 //@ <ret;x,y,z> [] [(assert (= ret (div (+ x y z) 3)))]

3 {

4 int sum;

5 sum = x + y + z;

6 return sum / 3;

7 }

Listing 6.6: Minimum of two numbers

1 int minimum(int x, int y)

2 //@ <ret;x,y> [] [(assert (and (<= ret x) (<= ret y)))]

3 {

4 if (x < y) return x;

5 return y;

6 }

Listing 6.7: Maximum of two numbers

1 int maximum(int x, int y)

2 //@ <ret;x,y> [] [(assert (and (>= ret x) (>= ret y)))]

59

3 {

4 if (x < y) return y;

5 return x;

6 }

We now move to case of recursive functions. Recursive functions are

harder to handle since it is not possible to unroll the unlimited sequence

of recursive calls. So the trick used is the one presented in Section 2.2.3,

regarding the matching logic proof system: we perform only the first call of a

recursive function. Then we substitute to the subsequent calls the definition

of the function which is provided by the annotation.

This technique is very powerful but has one drawback: it provides only

partial correctness proofs. So each proof of this kind only guarantees that

if the function returns the postcondition is satisfied. It does not guarantee

function call termination.

Listing 6.8 and 6.9 show program with recursive function. The former

is a simple function which computes a multiplication between two numbers

which is performed as a sequence of summations. The latter instead com-

putes the summation of the first n numbers.

Listing 6.8: Multiplication performed as a series of additions

1 int multiplication by addition(int x, int y)

2 //@ <ret;x,y> [] [(assert (= ret (∗ x y)))]

3 {

4 if (x == 0) return 0;

5 if (x < 0) return −multiplication by addition(−x,y);

6 return y + multiplication by addition(x − 1, y);

7 }

60

Listing 6.9: Sum of the first n numbers with recursion

1 int sum recursive(int n)

2 //@ <ret;n> [(assert (>= n 0))] [(assert (= ret (div (∗ n (+ n 1)) 2)))]

3 {

4 if (n <= 0) return 0;

5 return n + sum recursive(n−1);

6 }

Starting from the last example provided, we can rewrite it in an iterative

way (Listing 6.10). In order to present this new program, we introduce a loop

invariant. A loop invariant is the same concept introduced while presenting

Hoare logic in Section 2.1.1: we have to define what always holds after each

iteration of the loop. We do this using a specific kind of annotations. The

format of these annotations is similar to those related to functions. The

first part is devoted to variable declarations. The first one has no special

meaning since there is no return value. Then we have two parts enclosed

within square brackets. The first is an SMT string and declares the invariant.

The second is a list of variables. These one are the variables which do not

change during loop iterations.

Listing 6.10: Sum of the first n numbers with iteration

1 int sum iterative(int n)

2 //@ <ret;n> [(assert (>= n 0))] [(assert (= ret (div (∗ n (+ n 1)) 2)))]

3 {

4 int s;

5 int i;

6

7 s = 0;

8 i = n;

9

10 /∗@ <i,n,s>

11 [(assert (and (= s (div (∗ (− i n) (+ i n 1)) 2)) (>= n 0) (>= i n)))]

12 [i] ∗/

13 while (n > 0) {

14 s += n;

15 n −= 1;

16 }

17

18 return s;

19 }

We end this section by showing an unannotated function (Listing 6.11).

Its properties (in this case the fact of being associative and commutative)

have to be extracted by the SMT solver from how the return value is formed.

Listing 6.11: Verification of function properties

61

1 int f(int x, int y)

2 {

3 return x + y + x∗y;

4 }

5

6 int comm assoc(int x, int y, int z)

7 //@ <ret> [] [(assert (= ret 1))]

8 {

9 return f(x,y) == f(y,x) && f(x,f(y,z)) == f(f(x,y),z);

10 }

6.1.3 Heap management

Now we want use our system to verify programs which use the heap. As

we can immediately notice, the annotations used are much more complex.

However the only change in their structure is the presence of the variables

which specify the heap. This new part of the annotation is composed by

eight variables. The first four variables identify the heap at the beginning

of the function while the other four identify the heap at the end. We recall

that heap is characterized by four variables of which the first three are array

of integers and the fourth is an integer variable. The first is the heap and

contains the actual heap data mapped to a certain position. The second

is the memory map which contains a value different from zero for the cells

allocated. The third is the declaration map and contains a value different

from zero for the cells whose data are initialized. The fourth contains the

position which will be the next allocated in memory.

To verify programs based on lists we declare the FOL function isList

which represents a function starting from the position given as argument.

Then we give some properties of lists regarding the structure of the memory.

In particular we state that a list pointer must be non-negative and if it is

strictly positive, then the node of the list is correctly allocated in memory

and defined. Moreover all these properties are valid for the next node, if the

list pointer is strictly positive. However the function given is a particular

case of general list properties, since the heap variables are not parameters

of the FOL function, but are hard-coded in its definition. The reason for

this is that Z3 has some limitations in managing quantifiers.

In the first program (Listing 6.12), we analyze a function which returns

the first element of a list. We declare that the passed parameter is a list and

the value returned must satisfy the definition of the function. In addition

the heap must not change.

62

Listing 6.12: Retrieve first element of a list

1 struct listNode {

2 int val;

3 struct listNode ∗next;

4 };

5

6

7 int head(struct listNode ∗x)

8 /∗@ <ret;x> <heap,mm,dec,pos,heap1,mm1,dec1,pos1> [

9 (declare−fun isList(Int) Bool)

10 (assert (and

11 (forall ((i Int)) (=> (and (isList i) (> i 0))

12 (isList (select heap (+ i 1)))))

13 (forall ((i Int)) (=> (and (isList i) (> i 0))

14 (> pos (+ i 1))))

15 (forall ((i Int)) (=> (and (isList i) (> i 0))

16 (and (= 1 (select dec i)) (= 1 (select dec (+ i 1))))))

17 (forall ((i Int)) (=> (and (isList i) (> i 0))

18 (and (> 0 (select mm i)) (> 0 (select mm (+ i 1))))))

19 (forall ((i Int)) (=> (isList i) (>= i 0)))

20 (and (isList x) (> x 0))

21))]

22 [

23 (declare−fun isList(Int) Bool)

24 (assert (and

25 (= ret (select heap x))

26 (= heap heap1)

27 (= mm mm1)

28 (= dec dec1)

29 (= pos pos1)

30))] ∗/

31 {

32 return x−>val;

33 }

The next program (shown in Listing 6.13) is very similar to the previous

one. The only difference is that this one returns the rest of the list instead

of the first element. The annotation is very similar the the previous one,

the only change is due to the different definition of the function.

Listing 6.13: Retrieve the tail of a list

1 struct listNode {

2 int val;

3 struct listNode ∗next;

4 };

5

6

7 struct listNode∗ tail(struct listNode ∗x)

63

8 /∗@ <ret;x> <heap,mm,dec,pos,heap1,mm1,dec1,pos1> [

9 (declare−fun isList(Int) Bool)

10 (assert (and

11 (forall ((i Int)) (=> (and (isList i) (> i 0))

12 (isList (select heap (+ i 1)))))

13 (forall ((i Int)) (=> (and (isList i) (> i 0))

14 (> pos (+ i 1))))

15 (forall ((i Int)) (=> (and (isList i) (> i 0))

16 (and (= 1 (select dec i)) (= 1 (select dec (+ i 1))))))

17 (forall ((i Int)) (=> (and (isList i) (> i 0))

18 (and (> 0 (select mm i)) (> 0 (select mm (+ i 1))))))

19 (forall ((i Int)) (=> (isList i) (>= i 0)))

20 (and (isList x) (> x 0))

21))]

22 [

23 (declare−fun isList(Int) Bool)

24 (assert (and

25 (= ret (select heap (+ x 1)))

26 (= heap heap1)

27 (= mm mm1)

28 (= dec dec1)

29 (= pos pos1)

30))] ∗/

31 {

32 return x−>next;

33 }

The next example (shown in Listing 6.14) is more interesting, because

the heap is also modified. It performs the addition of a new element which is

added at top of the list. Indeed the new element is allocated and initialized.

In order to capture this the annotation has been slightly modified by allowing

only the allocation of the new element. In addition the isList FOL function

has been removed since not used in this scenario. A peculiar condition

is the fact that the position of the heap must be strictly positive, since

zero is regarded as an always unallocated cell. Although this condition is

automatically added at the entry point of the program, this must be specified

as precondition in function proofs.

Listing 6.14: Addition of a new element at the top of the list

1 struct listNode {

2 int val;

3 struct listNode ∗next;

4 };

5

6

7 struct listNode∗ add(int v, struct listNode∗ x)

8 /∗@ <ret;x,v> <heap,mm,dec,pos,heap1,mm1,dec1,pos1> [

64

9 (assert (and

10 (> pos 0)))]

11 [

12 (assert (and

13 (= pos1 (+ pos 2))

14 (= ret pos)

15 (forall ((i Int)) (=> (and (> i 0) (< i pos)) (= (select mm i) (select mm1 i))))

16 (forall ((i Int)) (=> (and (> i 0) (< i pos)) (= (select dec i) (select dec1 i))))

17 (forall ((i Int)) (=> (and (> i 0) (< i pos)) (= (select heap i) (select heap1 i))))

18 (= x (select heap1 (+ ret 1)))

19 (= v (select heap1 ret))

20))] ∗/

21 {

22 struct listNode∗ y;

23

24 y = (struct listNode∗) malloc (sizeof(struct listNode));

25 y−>val = v;

26 y−>next = x;

27

28 return y;

29 }

30

31 void∗ malloc(int size){

32 int c;

33 void∗ ptr;

34 if(size<1){

35 return 0;

36 }

37 ptr = sbrk();

38 c=0;

39 while(c<size){

40 brk(ptr);

41 c=c+1;

42 }

43 return ptr;

44 }

In the next example we verify the swapping between the first two values

in a list.

Listing 6.15: Swapping of two values

1 struct nodeList {

2 int val;

3 struct nodeList ∗next;

4 };

5

6

7 struct nodeList∗ swap(struct nodeList∗ x)

8 /∗@ <ret;x> <heap,mm,dec,pos,heap1,mm1,dec1,pos1> [

65

9 (declare−fun isList(Int) Bool)

10 (assert (and

11 (> (select heap (+ 1 x)) 0)

12 (forall ((i Int)) (=> (and (isList i) (> i 0)) (isList (select heap (+ i 1)))))

13 (forall ((i Int)) (=> (and (isList i) (> i 0)) (> pos (+ i 1))))

14 (forall ((i Int)) (=> (and (isList i) (> i 0))

15 (and (= 1 (select dec i)) (= 1 (select dec (+ i 1))))))

16 (forall ((i Int)) (=> (and (isList i) (> i 0))

17 (and (> 0 (select mm i)) (> 0 (select mm (+ i 1))))))

18 (forall ((i Int)) (=> (isList i) (>= i 0)))

19 (isList x)

20 (> x 0)))]

21 [

22 (assert (and

23 (= ret (select heap (+ x 1)))

24 (= x (select heap1 (+ ret 1)))

25 (= pos1 pos)

26 (forall ((i Int)) (=> (and (> i 0) (< i pos)) (= (select mm i) (select mm1 i))))

27 (forall ((i Int)) (=> (and (> i 0) (< i pos)) (= (select dec i) (select dec1 i))))

28 (forall ((i Int)) (=> (and (> i 0) (< i pos) (not (= i (+ x 1))) (not (= i (+ ret 1)

))) (= (select heap i) (select heap1 i))))

29))] ∗/

30 {

31 struct nodeList∗ p;

32

33 p = x;

34 x = x−>next;

35 p−>next = x−>next;

36 x−>next = p;

37

38 return x;

39 }

The last two programs are more complex. We want to verify a program

(shown in Listing 6.16) which returns the length of a list and another one

(shown in Listing 6.17) which returns the sum of all the values in a list.

The additional complexity lies in the recursive nature of the functions.

To catch these behaviours the FOL functions length and sum are defined

such that the former is equal to the length of the list and the latter is equal

to the sum of all the values of the list.

Listing 6.16: Program which retrieves the length of a list

1 struct listNode {

2 int val;

3 struct listNode ∗next;

4 };

5

6

66

7 int length recursive(struct listNode∗ x)

8 /∗@ <ret;x> <heap,mm,dec,pos,heap1,mm1,dec1,pos1> [

9 (declare−fun isList(Int) Bool)

10 (assert (and

11 (forall ((i Int)) (=> (and (isList i) (> i 0)) (isList (select heap (+ i 1)))))

12 (forall ((i Int)) (=> (and (isList i) (> i 0)) (> pos (+ i 1))))

13 (forall ((i Int)) (=> (and (isList i) (> i 0))

14 (and (= 1 (select dec i)) (= 1 (select dec (+ i 1))))))

15 (forall ((i Int)) (=> (and (isList i) (> i 0))

16 (and (> 0 (select mm i)) (> 0 (select mm (+ i 1))))))

17 (forall ((i Int)) (=> (isList i) (>= i 0)))

18 (isList x)

19))]

20 [

21 (declare−fun length(Int) Int)

22 (assert

23 (=> (and

24 (forall ((i Int)) (=> (= i 0) (= (length i) 0)))

25 (forall ((i Int)) (=> (> i 0)

26 (= (length i) (+ (length (select heap (+ i 1))) 1))))

27) (and

28 (= heap1 heap)

29 (= mm1 mm)

30 (= dec1 dec)

31 (= pos1 pos)

32 (= ret (length x))

33))

34)] ∗/

35 {

36 if (x == 0)

37 return 0;

38

39 return 1 + length recursive(x−>next);

40 }

67

Listing 6.17: Program which retrieves the sum of values of a list

1 struct listNode {

2 int val;

3 struct listNode ∗next;

4 };

5

6

7 int sum recursive(struct listNode∗ x)

8 /∗@ <ret;x> <heap,mm,dec,pos,heap1,mm1,dec1,pos1> [

9 (declare−fun isList(Int) Bool)

10 (assert (and

11 (forall ((i Int)) (=> (and (isList i) (> i 0))

12 (isList (select heap (+ i 1)))))

13 (forall ((i Int)) (=> (and (isList i) (> i 0))

14 (> pos (+ i 1))))

15 (forall ((i Int)) (=> (and (isList i) (> i 0))

16 (and (= 1 (select dec i)) (= 1 (select dec (+ i 1))))))

17 (forall ((i Int)) (=> (and (isList i) (> i 0))

18 (and (> 0 (select mm i)) (> 0 (select mm (+ i 1))))))

19 (forall ((i Int)) (=> (isList i) (>= i 0)))

20 (isList x)

21))]

22 [

23 (declare−fun sum(Int) Int)

24 (assert

25 (=> (and

26 (forall ((i Int)) (=> (= i 0) (= (sum i) 0)))

27 (forall ((i Int)) (=> (> i 0)

28 (= (sum i) (+ (sum (select heap (+ i 1))) (select heap i)))))

29) (and

30 (= heap1 heap)

31 (= mm1 mm)

32 (= dec1 dec)

33 (= pos1 pos)

34 (= ret (sum x))

35))

36)] ∗/

37 {

38 if (x == NULL)

39 return 0;

40

41 return x−>val + sum recursive(x−>next);

42 }

68

6.1.4 Call stack

These two programs show the feature of checking the call stack of a function.

In the first one (shown in Listing 6.18) the function f can only be called by

g, while in the second one (shown in Listing 6.19) at the moment of the call

to f, h must be in the stack.

To specify this kind of properties the function annotation has been ex-

tended with an additional field. This new field specifies a list of admissible

stack records. The exclamation mark means that one of these records must

be found considering only the last one, thus it means that such function

must be called only from the functions provided. In all previous cases, our

tool was able to process the input program and successfully perform the

verification.

Listing 6.18: f can be called only from g

1 void f()

2 //@<ret> [(assert true)] [(assert true)] !<g>

3 {

4 }

5 void g(){

6 f();

7 }

8 void h(){

9 g();

10 g();

11 }

12 int main(){

13 h();

14 }

Listing 6.19: f can be called only if h is in the stack

1 void f()

2 //@<ret> [(assert true)] [(assert true)] <h>

3 {

4 }

5 void g(){

6 f();

7 }

8 void h(){

9 g();

10 }

11 int main(){

12 h();

13 h();

14 }

69

6.2 Evaluation of the incremental approach

Until now we have shown that we can verify the correct behavior of a pro-

gram according to the language specification. We now evaluate the benefits

provided by our incremental approach with respect to the non-incremental

case.

We selected different programs from the ones we have analyzed so far.

Starting from a very simple program composed only by the list definition

and the malloc function, we add these programs one by one and perform

the verification with our tool, simulating the possible evolution of a program

to which new function definitions are added over time. For each program,

we performed verification both incrementally and non-incrementally.

The programs we selected are:

• The functions maximum, minimum, average, sumIterative, sumRecursive,

multiplicationByAddition from the basic examples.

• The functions head, tail, lengthRecursive, sumRecursive, add from

the heap ones.

• The program hInStackWhenF from the call stack ones.

Since performances in a syntax driven incrementality approach vary de-

pending on how the input is arranged we perform tests under different con-

ditions:

1. each new function is added at the end of the previous program.

2. each new function is added before the previous ones (but after the list

definition).

3. each new function is added at the beginning of the previous program.

6.2.1 Scenario 1

This is the worst-case from an incremental point of view, due to the bottom-

up parser used: for every new function added all the previous function def-

inition nodes has to be revisited in the attribute grammar tree. To better

explain this fact we show the KernelC syntax tree in Figure 6.1. Each

〈function definition〉 non-terminal represents a certain function where the

majority of the verification is performed. The problem is that 〈function definition2 〉

which contains the body of the function has as a child a 〈function definition〉

70

Figure 6.1: Detail of KernelC syntax tree. The chain of function definitions begins at

the top-left of the figure and end at the bottom-right

...

〈function definition〉

〈function definition2 〉

〈function definition〉

〈function definition2 〉

〈function definition〉

...

...

...

...

...

...

non-terminal. This forms a long chain which connects all the function defi-

nitions of KernelC language. If we add a new node at the end of the chain,

all the previous one have to be recomputed. Then, since the computations

performed in 〈function definition〉 nodes are quite expensive, this impact

negatively on the performance of the incremental method.

However in order to reduce this penalty, an optimization has been in-

serted. The computation of the attributes at 〈function definition〉 nodes

is split in two parts. In the first one function is checked by only using the

information available from the body of the function. In the second stage the

information coming from the other children of the node is used. In the case

that the changes are only outside the function, the first step is re-used.

For these reasons we expect that the duration of the non-incremental ver-

ification will constantly increase, since we are adding more entities to com-

pute every time. On the other hand the incremental ones will show different

times which will depend on the complexity of the verification. So we expect

that the performance of the checks related to maximum, minimum and average

will be low, while sumIterative, sumRecursive and multiplicationByAddition

a little higher and the ones regarding the heap will be more expensive in

terms of time.

In addition we have to consider the positions of the list and malloc

function definitions. This has a big impact on the heap examples. If we

refer again to Figure 6.1, we must imagine these definitions are placed above

all other nodes. To complete the verifications which involve the use of that

71

Table 6.1: Results of scenario 1 tests (average of ten measures)

Non-incremental Incremental

average 81ms 38ms

+sumIterative 155ms 87ms

+sumRecursive 188ms 97ms

+multiplicationByAddition 283ms 117ms

+hInStackWhenF 302ms 92ms

+maximum 316ms 64ms

+minimum 341ms 73ms

+head 384ms 108ms

+tail 513ms 137ms

+add 767ms 442ms

+listLengthRecursive 1084ms 557ms

+listSumRecursive 1242ms 684ms

structure or malloc function, it will be necessary to reach the root node.

Therefore we expect that from the addition of head on, also the time of

incremental executions will grow continuously.

Table 6.1 shows the results of this test. We can notice that both incre-

mental and non-incremental tests behave as predicted. In particular we can

observe for the incremental ones that the timings reflect more or less the

complexity of the property to check.

From the head function on, the predicted increase in incremental dura-

tion is observable. This result shows that the incremental method used is

always more efficient than the non-incremental one. Figure 6.2 gives a better

comparison between the incremental and non-incremental performances.

We notice that the speed gain obtained through incrementality is quite

consistent. The speedup obtained by incrementality ranges from 174% ob-

tained when adding add to 494% obtained after adding maximum, with an

average of 227%.

For the sake of comparison we provide in Table 6.2 the result of the

same scenario performed without the optimization of the two steps function

evaluation, which has been introduced to overcome the problem related to

the peculiar structure of KernelC operator-precedence grammar.

In Figure 6.3, we compare the three different executions (non-incremental,

non-optimized incremental, optimized incremental). The results are pretty

interesting, showing an averaged speedup of 150% obtained through opti-

mization.

72

Figure 6.2: Graphical representation of scenario 1 tests results

0 200 400 600 800 1,000 1,200 1,400 1,600

+listSumRecursive

+listLengthRecursive

+add

+tail

+head

+minimum

+maximum

+hInStackWhenF

+multiplicationByAddition

+sumRecursive

+sumIterative

average

684

557

442

137

108

73

64

92

117

97

87

38

1,242

1,084

767

513

384

341

316

302

283

188

155

81

ms

Tests result

Incremental

Non incremental

73

Table 6.2: Comparison between scenario 1 results (average of ten measures)

From scratch Non-optimized Optimized

average 81ms 41ms 38ms

+sumIterative 155ms 98ms 87ms

+sumRecursive 188ms 96ms 97ms

+multiplicationByAddition 283ms 157ms 117ms

+hInStackWhenF 302ms 153ms 92ms

+maximum 316ms 158ms 64ms

+minimum 341ms 167ms 73ms

+head 384ms 213ms 108ms

+tail 513ms 261ms 137ms

+add 767ms 595ms 442ms

+listLengthRecursive 1084ms 858ms 557ms

+listSumRecursive 1242ms 938ms 684ms

We expect that the results in next section runs should be better than

these ones. However we can say from now that the syntactic-semantic in-

crementality can greatly improve the performance of reachability checking.

6.2.2 Scenario 2

Now we analyze the case in which every new function will be added at the

top of the programs but after the list definition. We can make the same

considerations we have done before: the non-incremental runs will always

increase while the incremental ones will depend on the complexity of the

newly added function. Again we expect that starting from the programs

which make use of the list definition, the incremental times will begin to

continuously increase, since a part of the check for each function has to be

deferred in a higher position in the tree and so will take less advantage of

incrementality. In addition we expect that these results will be much better,

since incremental methods are working in a more favourable condition. We

present the test results in Table 6.3, with another graphical representation

in Figure 6.4.

Again we can observe that our predictions are met: the overall be-

haviour is similar to the previous one, with continuous increasing in non-

incremental runs and from head example of incremental ones. If we com-

pute the speedup, we obtain values between 132% of listSumRecursive

and 1296% of minimum, with an average of 253%. These values are clearly

better than the previous ones, meaning that program structure has surely

74

Figure 6.3: Graphical comparison of scenario 1 tests results

0 500 1,000 1,500 2,000 2,500 3,000

+listSumRecursive

+listLengthRecursive

+add

+tail

+head

+minimum

+maximum

+hInStackWhenF

+multiplicationByAddition

+sumRecursive

+sumIterative

average

684

557

442

137

108

73

64

92

117

97

87

38

938

858

595

261

213

167

158

153

157

96

98

41

1,242

1,084

767

513

384

341

316

302

283

188

155

81

ms

Tests result

With optimization

Without optimization

an effect in the performance of our method.

75

Figure 6.4: Graphical representation of scenario 2 tests results

400 800 1,200 1,600 2,000

+listSumRecursive

+listLengthRecursive

+add

+tail

+head

+minimum

+maximum

+hInStackWhenF

+multiplicationByAddition

+sumRecursive

+sumIterative

average

827

506

334

65

56

27

27

55

101

76

74

40

1,091

1,052

776

508

401

350

334

323

281

185

163

91

ms

Tests result

Incremental

Non incremental

76

Table 6.3: Results of scenario 2 tests (average of ten measures)

Non-incremental Incremental

average 91ms 40ms

+sumIterative 163ms 74ms

+sumRecursive 185ms 76ms

+multiplicationByAddition 281ms 101ms

+hInStackWhenF 323ms 55ms

+maximum 334ms 27ms

+minimum 350ms 27ms

+head 401ms 56ms

+tail 508ms 65ms

+add 776ms 334ms

+listLengthRecursive 1052ms 506ms

+listSumRecursive 1091ms 827ms

77

Table 6.4: Results of scenario 3 tests (average of ten measures)

Non-incremental Incremental

average 100ms 28ms

+sumIterative 151ms 63ms

+sumRecursive 193ms 72ms

+multiplicationByAddition 301ms 95ms

+hInStackWhenF 346ms 55ms

+maximum 349ms 27ms

+minimum 367ms 25ms

+head 387ms 50ms

+tail 477ms 53ms

+add 761ms 344ms

+listLengthRecursive 1086ms 149ms

+listSumRecursive 1454ms 386ms

6.2.3 Scenario 3

In this scenario we try to evaluate the gain in case of adding a new func-

tion above the whole previous program. In this way, referring to Figure

6.1, we can imagine to add a new function at the top-left part of the tree.

So the attributes to be recomputed are very few. For these reason while

expecting the same behaviour for non-incremental executions, which should

monotonically increase, we expect something different for the incremental

ones.

In fact, since all the required information is known when the new func-

tion is visited, we no longer expect to see the accumulation from the heap

examples on. So we imagine that incremental executions will only be char-

acterized by the complexity of each check, from the simplest, like maximum

or minimum, passing through more complex ones, like sumIterative and

multiplicationByAddition to reach the most complex ones, which involve

the heap. Of course we expect to have better results than the previous case

since the number of operations to be performed is the lowest possible.

In Table 6.4 we show the results, also plotted in Figure 6.5.

78

Figure 6.5: Graphical representation of scenario 3 tests results

300 600 900 1,200 1,500 1,800

+listSumRecursive

+listLengthRecursive

+add

+tail

+head

+minimum

+maximum

+hInStackWhenF

+multiplicationByAddition

+sumRecursive

+sumIterative

average

386

149

344

53

50

25

27

55

95

72

63

28

1,454

1,086

761

477

387

367

349

346

301

193

151

100

ms

Tests result

Incremental

Non incremental

79

The resulting speedup is clearly better than before: we obtain a speedup

which ranges from 221% of add to 1468% of minimum with an average of

443%. However this represents the best possible case, where incrementality

can perform at its best.

6.2.4 Summing up

As we have seen, the use of a syntactic-semantic incremental methodology

in reachability checking can have a significant impact on performance. This

gain can be reduced by the way in which the changes to the program are

conducted; the program structure determines how the amount of the re-

usable part of previous verification results. Finally, we have seen that the

complexity of the verification along with the dependency inside the code (in

the form of function calls or structure definitions) can determine the amount

of time required for the incremental verification task.

80

Chapter 7

Conclusions

“One’s destination is never a place, but rather a new way of looking at

things.”

Henry Valentine Miller

In this work we have applied a general syntactic-semantic incremental tech-

nique for performing reachability checking of KernelC programs annotated

with matching logic properties. This technique can efficiently check a new

version of a program by reusing the results of the previous verification

step related to unchanged parts. This approach is based on the syntactic

structure of the target program by exploiting the properties of operator-

precedence grammars, which we have presented in chapter 2. We have de-

veloped our work targeting the language KernelC, a subset of C language,

which supports advanced features like heap.

he core of this work consisted in the adaptation of a general method for

program verification provided by matching logic according to a syntactic-

semantic incremental technique based on attribute grammars. In chapter 4

we have presented the general idea which we followed in the development of

this problem. We have formulated the matching logic reachability system

as an S-attributed grammar.

In chapter 6 we have evaluated our implementation. First of all we have

verified that it is compliant with KernelC specification, by applying some

examples provided by the official implementation of matching logic. Then we

have measured the gain in performance obtained through incrementality. We

found that in every case analyzed with our implementation the incremental

verification is significantly faster than the non-incremental version.

7.1 Future work

As part of future work, we plan to perform some improvements of the sup-

ported language features, for example by adding I/O management in veri-

fication. Other possible improvements are related to: user interaction, by

improving the annotations format in order to be more understandable and

possibly compatible with the original implementation, and providing more

information about the checking which has been performed and the problems

encountered. Furthermore, a more thorough assessment of the benefits de-

rived from incrementality is needed. This task is quite hard because it is

difficult to find situations which represent the typical scenario of software

development. In this work we have analyzed only the addition of different

functions, whereas different situations are possible and incremental perfor-

mance can greatly vary. Moreover the example provided has been quite

simple and cannot represent the behaviour of a complex situation. The ma-

jor issue is that KernelC cannot be use in a real world environment and thus

analyze its performance.

Broader developments regard the generalization of this implementation

in order to create a general framework for incremental verification. The idea

is to provide a way which can automatically generate an incremental verifier

for a certain language from its specifications.

Other progress in this area can affect the context in which incremental

verification techniques can be used. Besides agile software development,

another field which can greatly benefit of such verification technique is “open

world software” [3],[6]. In this paradigm a program is composed by different

independent pieces outside of it and out of its control. These components can

change over time. In order to permit this, continuous software verification

is required. In addition, since this software can run on limited-power device,

the verification method to be used must have low execution times. Therefore

incremental verification could have an important role in the development of

this kind of software.

82

Bibliography

[1] MatchC Verifier.

http://fsl.cs.illinois.edu/index.php/Special:MatchCOnline.

[2] IEEE standard glossary of software engineering terminology. IEEE Std

610.12-1990, pages 1–84, 1990.

[3] Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. Toward open-

world software: Issue and challenges. Computer, 39(10):36–43, 2006.

[4] Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and Dino Mandri-

oli. A syntactic-semantic approach to incremental verification. CoRR,

abs/1304.8034, 2013.

[5] Barry Boehm. Software risk management. Springer, 1989.

[6] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mi-

randola. Self-adaptive software needs quantitative verification at run-

time. Commun. ACM, 55(9):69–77, September 2012.

[7] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-

ciso Martı-Oliet, José Meseguer, and Carolyn Talcott. Maude manual

(version 2.6), 2011.

[8] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S.

Păsăreanu. Learning assumptions for compositional verification. In

Proceedings of the 9th international conference on Tools and algorithms

for the construction and analysis of systems, TACAS’03, pages 331–346,

Berlin, Heidelberg, 2003. Springer-Verlag.

[9] David R. Cok. The smt-libv2 language and tools: A tutorial. Technical

report, Technical report, GrammaTech, Inc, 2011.

[10] Christopher L. Conway, Kedar S. Namjoshi, Dennis Dams, and

Stephen A. Edwards. Incremental algorithms for inter-procedural anal-

83

http://fsl.cs.illinois.edu/index.php/Special:MatchCOnline

ysis of safety properties. In Proceedings of the 17th international confer-

ence on Computer Aided Verification (CAV’05), volume 3576 of LNCS,

pages 449–461. Springer, 2005.

[11] Stefano Crespi Reghizzi and Dino Mandrioli. Operator precedence

and the visibly pushdown property. In Proceedings of the 4th interna-

tional conference on Language and Automata Theory and Applications,

LATA’10, pages 214–226, Berlin, Heidelberg, 2010. Springer-Verlag.

[12] Conrado Daws. Symbolic and parametric model checking of discrete-

time markov chains. In Proceedings of the 1st international conference

on Theoretical Aspects of Computing, ICTAC’04, pages 280–294, Berlin,

Heidelberg, 2005. Springer-Verlag.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver.

In Proceedings of the 14th international conference on Tools and algo-

rithms for the construction and analysis of systems, Theory and practice

of software, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,

2008. Springer-Verlag.

[14] Salvatore Distefano, Antonio Filieri, Carlo Ghezzi, and Raffaela Mi-

randola. A compositional method for reliability analysis of workflows

affected by multiple failure modes. In Proceedings of the 14th interna-

tional ACM Sigsoft symposium on Component based software engineer-

ing, CBSE ’11, pages 149–158, New York, NY, USA, 2011. ACM.

[15] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time

efficient probabilistic model checking. In Proceedings of the 33rd inter-

national conference on Software Engineering, ICSE ’11, pages 341–350,

New York, NY, USA, 2011. ACM.

[16] Cormac Flanagan and Shaz Qadeer. Assume-guarantee model checking.

Technical report, 2003.

[17] Carlo Ghezzi. Evolution, adaptation, and the quest for incrementality.

In Radu Calinescu and David Garlan, editors, Large-Scale Complex

IT Systems. Development, Operation and Management, volume 7539

of Lecture Notes in Computer Science, pages 369–379. Springer Berlin

Heidelberg, 2012.

[18] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandioli. Fundamentals of

software engineering, 2003.

84

[19] Carlo Ghezzi and Dino Mandrioli. Incremental parsing. ACM Trans.

Program. Lang. Syst., 1(1):58–70, January 1979.

[20] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Marco

A. A. Sanvido. Extreme model checking. Verification: Theory and

Practice, pages 180–181, 2004.

[21] Charles A. R. Hoare. An axiomatic basis for computer programming.

Commun. ACM, 12(10):576–580, October 1969.

[22] Fahimeh Jalili. A general incremental evaluator for attribute grammars.

Sci. Comput. Program., 5(1):83–96, February 1985.

[23] Cliff B. Jones. Tentative steps toward a development method for in-

terfering programs. ACM Trans. Program. Lang. Syst., 5(4):596–619,

October 1983.

[24] Donald E. Knuth. Semantics of context-free languages. Mathematical

systems theory, 2(2):127–145, 1968.

[25] Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.

Assume-guarantee verification for probabilistic systems. In J. Esparza

and R. Majumdar, editors, Proceedings of the 16th international con-

ference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’10), volume 6105 of LNCS, pages 23–37. Springer,

2010.

[26] Steven Lauterburg, Ahmed Sobeih, Darko Marinov, and Mahesh

Viswanathan. Incremental state-space exploration for programs with

dynamically allocated data. In Proceedings of the 30th international

conference on Software engineering, ICSE ’08, pages 291–300, New

York, NY, USA, 2008. ACM.

[27] Narciso Martı-Oliet and José Meseguer. Rewriting logic: roadmap and

bibliography. Theoretical Computer Science, 285(2):121–154, 2002.

[28] Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas.

The Art of Software Testing. Wiley, second edition, June 2004.

[29] Jukka Paakki. Attribute grammar paradigms - a high-level methodol-

ogy in language implementation. ACM Comput. Surv., 27(2):196–255,

June 1995.

85

86

[30] Grigore Roşu and Andrei Ştefănescu. Checking reachability using

matching logic. In Proceedings of the 27th conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOP-

SLA’12), pages 555–574. ACM, 2012.

[31] Grigore Roşu and Andrei Ştefănescu. From hoare logic to matching logic

reachability. In Proceedings of the 18th international symposium on

Formal Methods (FM’12), volume 7436 of Lecture Notes in Computer

Science, pages 387–402. Springer, 2012.

[32] Grigore Roşu, Andrei Ştefănescu, Ştefan Ciobâcă, and Brandon M.

Moore. One-path reachability logic. In Proceedings of the 28th sympo-

sium on Logic in Computer Science (LICS’13). IEEE, June 2013.

[33] Grigore Roşu, Chucky Ellison, and Wolfram Schulte. Matching logic:

An alternative to Hoare/Floyd logic. In Michael Johnson and Dusko

Pavlovic, editors, Proceedings of the 13th international conference on

Algebraic Methodology And Software Technology (AMAST ’10), volume

6486 of Lecture Notes in Computer Science, pages 142–162, 2010.

[34] Oleg V. Sokolsky and Scott A. Smolka. Incremental model checking in

the modal mu-calculus. In Proceedings of the 6th international confer-

ence on Computer Aided Verification (CAV’94), volume 818 of LNCS,

pages 351–363. Springer, 1994.

[35] Guowei Yang, Matthew B. Dwyer, and Gregg Rothermel. Regression

model checking. In Proceedings of the 25th IEEE international confer-

ence on Software Maintenance (ICSM’09), pages 115–124. IEEE, 2009.

Appendix A

KernelC operator-precedence

grammar

In this appendix we present the complete KernelC grammar, modified in

order to become an operator-precedence grammar.

The non-terminals ending with ‘Choice’ has been added just to provide

a more clear representation of the grammar 1.

〈programChoice〉 ::= 〈global declaration〉

| 〈function declaration〉

| 〈parameter〉

| 〈function definition〉

〈compoundStatementChoice〉 ::= 〈annot〉

| 〈compound statement〉

| 〈statement〉

| 〈separator〉

| 〈separator1 〉

〈statementChoice〉 ::= 〈compoundStatementChoice〉

| 〈compound declaration〉

〈functionChoice〉 ::= 〈compound declaration〉

| 〈annot〉

| 〈compound statement〉

| 〈statement〉

| 〈separator1 〉

| 〈separator〉

1They are forbidden in Fisher normal form grammars.

88

〈expressionChoice〉 ::= 〈conditionalChoice〉

| 〈assignment expression〉

〈conditionalChoice〉 ::= 〈logicalOrChoice〉

| 〈conditional expression〉

〈logicalOrChoice〉 ::= 〈logicalAndChoice〉

| 〈logical or expression〉

〈logicalAndChoice〉 ::= 〈inclusiveOrChoice〉

| 〈logical and expression〉

〈inclusiveOrChoice〉 ::= 〈exclusiveOrChoice〉

| 〈inclusive or expression〉

〈exclusiveOrChoice〉 ::= 〈andChoice〉

| 〈exclusive or expression〉

〈andChoice〉 ::= 〈equalityChoice〉

| 〈and expression〉

〈equalityChoice〉 ::= 〈relationalChoice〉

| 〈equality expression〉

〈relationalChoice〉 ::= 〈shiftChoice〉

| 〈relational expression〉

〈shiftChoice〉 ::= 〈additiveChoice〉

| 〈shift expression〉

〈additiveChoice〉 ::= 〈multiplicativeChoice〉

| 〈additive expression〉

〈multiplicativeChoice〉 ::= 〈postfixChoice〉

| 〈multiplicative expression〉

〈postfixChoice〉 ::= 〈unaryChoice〉

| 〈cast expression〉

〈unaryChoice〉 ::= 〈empty fcall〉

| 〈id〉

| 〈nested expression〉

| 〈postfix expression〉

| 〈unary expression〉

89

〈parameterChoice〉 ::= 〈parameter list〉

| 〈parameter〉

〈program〉 ::= 〈programChoice〉 FinalAnnotation? 〈moreAnnotation〉?

〈global declaration〉 ::= ‘struct’ IDENTIFIER ‘{’ 〈declaration〉 ‘}’ 〈global declaration1 〉?

| (〈function declaration〉|〈parameter〉) ‘;’ 〈programChoice〉

〈global declaration1 〉 ::= ‘;’ 〈programChoice〉

〈function declaration〉 ::= (〈type〉|〈ptr type〉) ‘*’ (〈function declaration1 〉|〈empty fcall〉)

| 〈type〉 IDENTIFIER 〈function declaration2 〉

〈function declaration1 〉 = IDENTIFIER 〈function declaration2 〉

〈function declaration2 〉 = ‘(’ 〈parameterChoice〉 ‘)’ Annotation?

| ‘(’ ‘)’ Annotation

〈parameter〉 ::= 〈type〉 IDENTIFIER

| (〈type〉|〈ptr type〉) ‘*’ 〈id〉

〈parameter list〉 ::= 〈parameter〉 ‘,’ (〈parameter list〉|〈parameter〉)

〈function definition〉 ::= 〈type〉 IDENTIFIER 〈function definition2 〉

| (〈type〉|〈ptr type〉) ‘*’ 〈function definition1 〉

〈function definition1 〉 ::= IDENTIFIER 〈function definition2 〉

〈function definition2 〉 ::= ‘(’ 〈parameterChoice〉? ‘)’ Annotation?

‘{’ 〈functionChoice〉? ‘}’ 〈programChoice〉?

〈compound declaration〉 ::= (〈function declaration〉|〈parameter〉) ‘;’ 〈functionChoice〉

〈compound declaration1 〉 ::= ‘;’ 〈compound declaration〉

〈compound statement〉 ::= ‘return’ 〈expressionChoice〉? ‘;’ 〈compoundStatementChoice〉

| ‘if’ ‘(’ 〈expressionChoice〉 ‘)’ ‘{’ 〈statementChoice〉 ‘}’

(‘else’ ‘{’ 〈statementChoice〉 ‘}’)? 〈compoundStatementChoice〉

| 〈expressionChoice〉 ‘;’ 〈compoundStatementChoice〉

| Annotation? ‘while’ ‘(’ 〈expressionChoice〉 ‘)’

‘{’ 〈statementChoice〉 ‘}’ 〈compoundStatementChoice〉

| ‘{’ 〈compound declaration〉 ‘}’ 〈compoundStatementChoice〉

90

〈statement〉 ::= ‘return’ 〈expressionChoice〉? ‘;’

| 〈expressionChoice〉 ‘;’

| ‘if’ ‘(’ 〈expressionChoice〉 ‘)’ ‘{’ 〈statementChoice〉 ‘}’

(‘else’ ‘{’ 〈statementChoice〉 ‘}’)?

| Annotation? ‘while’ ‘(’ 〈expressionChoice〉 ‘)’

‘{’ 〈statementChoice〉 ‘}’

〈separator〉 ::= ‘;’

〈separator1 〉 ::= ‘;’ 〈compoundStatementChoice〉

〈declaration〉 ::= (〈function declaration〉|〈parameter〉) ‘;’ 〈declaration〉?

| ‘struct’ IDENTIFIER ‘{’ 〈declaration〉 ‘}’ (〈declaration1 〉|〈separator〉)

〈declaration1 〉 ::= ‘;’ 〈declaration〉

〈type〉 ::= ‘struct’ IDENTIFIER

| ‘void’

| ‘int’

〈type2 〉 ::= ‘(’ (〈type〉|〈ptr type〉) ‘)’

〈ptr type〉 ::= (〈type〉|〈ptr type〉) ‘*’

〈empty fcall〉 ::= IDENTIFIER 〈empty expression〉

〈empty expression〉 ::= ‘(’ ‘)’

〈id〉 ::= IDENTIFIER

〈annot〉 ::= Annotation

〈moreAnnotation〉 ::= FinalAnnotation 〈moreAnnotation〉?

〈argument expression list〉 ::= 〈expressionChoice〉 ‘,’ 〈expressionChoice〉

| 〈expressionChoice〉 ‘,’ 〈argument expression list〉

〈unary expression〉 ::= ‘sizeof’ (〈unaryChoice〉|〈type2 〉)

| (‘~’|‘!’|‘*1’|‘&1’|‘+1’|‘-1’) 〈postfixChoice〉

| (‘++’|‘--’) 〈unaryChoice〉

〈assignment expression〉 ::= 〈unaryChoice〉 ‘=’ 〈expressionChoice〉

| 〈unaryChoice〉 (‘+=’|‘-=’|‘*=’|‘/=’|‘%=’) 〈expressionChoice〉

| 〈unaryChoice〉 (‘^=’|‘|=’|‘&=’|‘<<=’|‘>>=’) 〈expressionChoice〉

1This are the unary versions of the tokens.

91

〈conditional expression〉 ::= 〈logicalOrChoice〉 ‘?’ 〈expressionChoice〉 ‘:’ 〈conditionalChoice〉

〈logical or expression〉 ::= 〈logicalOrChoice〉 ‘||’ 〈logicalAndChoice〉

〈logical and expression〉 ::= 〈logicalAndChoice〉 ‘&&’ 〈inclusiveOrChoice〉

〈inclusive or expression〉 ::= 〈inclusiveOrChoice〉 ‘|’ 〈exclusiveOrChoice〉

〈exclusive or expression〉 ::= 〈exclusiveOrChoice〉 ‘^’ 〈andChoice〉

〈and expression〉 ::= 〈andChoice〉 ‘&’ 〈equalityChoice〉

〈equality expression〉 ::= 〈equalityChoice〉 (‘==’|‘!=’) 〈relationalChoice〉

〈relational expression〉 ::= 〈relationalChoice〉 (‘>’|‘<’|‘>=’|‘<=’) 〈shiftChoice〉

〈shift expression〉 ::= 〈shiftChoice〉 (‘>>’|‘<<’) 〈additiveChoice〉

〈additive expression〉 ::= 〈additiveChoice〉 (‘+’|‘-’) 〈multiplicativeChoice〉

〈multiplicative expression〉 = 〈multiplicativeChoice〉 (‘*’|‘/’|‘%’) 〈postfixChoice〉

〈cast expression〉 ::= ‘(’ (〈type〉|〈ptr type〉) ‘)’ 〈postfixChoice〉

〈nested expression〉 ::= ‘(’ 〈expressionChoice〉 ‘)’

〈postfix expression〉 ::= Constant 〈postfix expression1 〉?

| IDENTIFIER (〈nested expression〉|〈postfix expression1 〉|〈postfix expression2 〉)

〈postfix expression1 〉 ::= ‘[’ 〈expressionChoice〉 ‘]’ 〈postfix expression1 〉?

| (‘.’|‘->’) IDENTIFIER 〈postfix expression1 〉?

| (‘++’|‘--’) 〈postfix expression1 〉?

〈postfix expression2 〉 ::= ‘(’ 〈expressionChoice〉? ‘)’ 〈postfix expression1 〉

| ‘(’ 〈argument expression list〉 ‘)’ 〈postfix expression1 〉?

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Ringraziamenti
	Introduction
	Motivations
	Contributions
	Thesis organization

	Background concepts
	Hoare logic
	Rules

	Matching logic
	Definition
	Reachability rules
	Matching logic proof system

	Operator-precedence grammars
	Context free grammars
	Operator-precedence grammars
	Properties of operator-precedence grammars

	Attribute grammars

	Related Work
	Incrementality from change encapsulation
	Incrementality by change anticipation
	Syntax-driven incrementality
	Incremental model-checking

	Reachability analysis of KernelC programs
	Syntactical part
	Configuration term structure
	Semantic part
	Attribute evaluation example

	Implementation
	Syntactic part
	Grammar
	Parser
	Semantics

	Kernel C semantic
	Solver
	Code
	Formula
	System operation

	Validation
	KernelC specifications compliance
	Error detection
	Correctness of simple programs
	Heap management
	Call stack

	Evaluation of the incremental approach
	Scenario 1
	Scenario 2
	Scenario 3
	Summing up

	Conclusions
	Future work

	Bibliography
	KernelC operator-precedence grammar

