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Abstract
In recent years, the peculiar phenomena of dense gas dynamics have raised
great interest since they could be exploited to improve the performances
and efficiency of some aerodynamic devices that work in transonic or super-
sonic regime. Bethe–Zel’dovich–Thompson (BZT) fluids exhibit non classical
behaviors such as expansion shocks or compressive fans when their thermo-
dynamic state is near the critical point. These unusual waves have been
numerically investigated by means of complicated and computationally ex-
pensive models such as Euler or Navier–Stokes equations.

In the present work a simplified model to study these fluids is proposed
and implemented. The formulation is based on an independent two field
full potential approach that uses as unknowns the density and the velocity
potential. The problem is solved using a cell-centered finite volume (FV)
discretization in space and explicit time stepping integration schemes. These
decisions were taken in order to accelerate the execution using GPUs pro-
grammed with the OpenCL language. General purpose GPU computing
(GPGPU) allows in fact remarkable speed-ups in simulations, as presented
as a result of this work. The developed software is furthermore capable to
simulate unsteady flows around moving bodies using an arbitrary Lagrangian
Eulerian (ALE) formulation. Some validation results in ideal gas and dense
gas regime are presented in order to show the validity of such formulation.

Keywords: CFD, potential flows, dense gas dynamics, BZT fluids, OpenCL,
ALE formulation



Sommario
Negli ultimi anni, i fenomeni tipici della gasdinamica dei gas densi hanno
suscitato un notevole interesse dato che potrebbero essere sfruttati in cer-
ti componenti aerodinamici al fine di ottenere un notevole miglioramento
delle loro prestazioni e della loro efficienza. I fluidi di Bethe–Zel’dovich–
Thompson (BZT) esibiscono comportamenti non classici come urti di espan-
sione o ventagli di compressione quando il loro stato termodinamico è vicino
alle condizioni critiche. Queste onde insolite sono state studiate numerica-
mente attraverso l’uso di complicati modelli matematici come le equazioni di
Eulero o di Navier–Stokes che richiedono notevoli oneri computazionali per
poter ottenere una soluzione.

Nel presente lavoro viene analizzato ed implementato un modello sem-
plificato per studiare tali fluidi. La formulazione utilizzata si basa su un
approccio a potenziale a due campi, che usa come incognite la densità e
il potenziale cinetico. Il problema è risolto tramite una discretizzazione in
spazio a volumi finiti (FV) a celle centrate e con l’utilizzo di schemi espliciti
per l’avanzamento in tempo. Tale decisione è stata presa al fine di poter
accelerare la simulazione utilizzando la potenza computazionale fornita dalle
moderne schede video (GPU) che sono state programmate con il linguag-
gio OpenCL. L’utilizzo di schede video permette infatti di ottenere notevoli
riduzioni nei tempi di calcolo, come presentato nei risultati di questo lavoro.
Il solutore sviluppato è inoltre in grado di simulare correnti instazionarie
attorno a corpi che si muovono nel fluido attraverso l’utilizzo di una for-
mulazione arbitrariamente lagrangiana euleriana (ALE). Alcuni risultati di
validazione sono presentati per i casi di gas ideale e gas denso.

Parole Chiave: CFD, correnti a potenziale, gas densi, fluidi BZT, OpenCL,
formulazione ALE



Chapter 1

Introduction

Now more then ever, the CFD scientific community attention is focused on
high accuracy models, such as the Euler and the Full Navier Stokes equa-
tions. This trend is supported by the ever increasing computational power
of modern computers and supercomputers. However a direct numerical sim-
ulation of viscous flows at an engineering relevant Reynolds number is not
still possible. Turbulence modeling (RANS, LES, DES etc) is thus a cumber-
some necessity that requires a lot of calibration to obtain acceptable results,
making experimental studies performed in wind tunnels still a necessary and
an essential step in the design of a well-performing aerodynamic component.
However, when no fluid separation are expected, less complicated models can
be used, such as the Euler equations or the full-potential formulation. In view
of a primary engineering evaluation of fluid behavior, these formulations can
give very satisfactory results with a much lower computational effort.

The use of the full potential model to solve transonic flows around lifting
bodies was firstly pursued at the beginning of the 1970s by Murman and
Cole [1]. They solved the Transonic Small Disturbance (TSD) equation with
centered finite differences in subsonic regions and backward differences in
supersonic regions in order to ensure numerical stability. In 1975, to better
satisfy jump conditions, Jameson introduced in [2] a conservative scheme
applying some numerical viscosity in supersonic regions and together with
Caughley [3] performed the first full potential computations through the use
of the finite volume method in 1977. However it was only in 1997 that Neel
[4] claimed the first application of the finite volume method to unstructured
meshes, adopting a cell centered scheme. The state of the art of full potential
flow solutions is represented by the work of Parrinello [5], that introduced in
a conservative finite volume method the transport of entropy in thin layers
surrounding bodies. This allows to capture shocks positions at the same
location as the Euler equations do.
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Low cost simulations are recently coming back on the scene due to mod-
ern optimization design techniques (such as neural or genetic algorithms)
that require many evaluations of the solution in slightly different configu-
rations. Although it is possible to perform some of these simulations with
accurate and expensive models, it is absolutely unconceivable to start the
optimization with such a method. In the first phases of these processes it
is in fact necessary to reduce as son as possible the region in the parameter
space where the optimization takes place. Therefore the use of a low cost
model is mandatory, leaving high accuracy methods for the last optimization
iterations only. Hence, the use of full potential flow solvers has been recently
reevaluated since it allows to compute subsonic and transonic solutions with
an acceptable quality and with much lower computational requirements than
those of an Euler model.

The necessity to perform many computation in a reasonable simulation
time, brought the use of parallel computing to be a standard approach in
the last decades. Generally, parallel softwares run on CPU clusters where
the workload is distributed among different processors. These machines offer
a great improvement in performances with respect to a personal computer
but are very expensive to buy and to operate. In the last years the parallel
computing community focused his attention on a device that is specifically de-
signed to accelerate graphic computations in computer gaming: the Graphic
Process Unit (GPU). This hardware component, being made of many cores,
is in fact capable to perform the same operation on a great amount of data, as
requested in graphic elaborations. This feature is essentially what is needed
in many algorithms, and can be efficiently exploited to perform numerical
computations that exhibit high data parallelism. GPU programming has
rapidly evolved from its primordial state, but it still requires some low level
considerations to write a program that runs on a graphic card. Therefore,
solution algorithms must be explicitly designed to be executable on a GPU
and to take advantage of its features. The benefits to use a GPU to perform
data parallel computations relies in the fact that a single graphic card has
generally a greater computing power than a CPU of the same price level.
Moreover GPUs generally show a higher performance per Watt ratio than
CPUs, leading to lower operational costs and heat generation.

Earlier GPGPU approaches were born in the first years after 2000 driven
by the boost of performance in numerical simulation provided by GPU,
thanks to its highly parallelized hardware architecture. Despite the actual
programming models in GPU computing, the initial GPGPU techniques were
based on mapping the numerical problem to graphical transformation of pix-
els and vertexes, as Hagen et al. [6]. These, however, were cumbersome
strategies. Later, in 2007, NVIDIA released the CUDA SDK (Software De-
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velopment Kit), bringing the GPU programming to a more accessible level.
Later, after its formation in 2008, the Khronos Group released the OpenCL
1.0 specification based on which some vendors such as AMD and NVIDIA
released their own implementation of this standard. Nowadays software ac-
celerated by GPUs are mostly written with OpenCL and CUDA. The first
attempts to use GPGPU in inviscid CFD were made with structured grids
since they offer a more efficient access to the GPU memory as shown by
Elsen et al. [7] and by Brandvik and Pullan [8]. Successively Corrigan et
al. [9] tried an efficient implementation of inviscid and viscid solver on gen-
eral unstructured grids facing a loss of performance due to a non-consecutive
memory access pattern.

In the last years, a new research field caught the attention of a part of
the fluid dynamics researchers. This discipline investigates particular phe-
nomena that take place in a gas flow when its thermodynamic conditions
are very close to the liquid-vapor critical point and it is therefore called
dense gas dynamics. In this regime, molecularly complex fluids called Bethe-
Zel’dovich-Thompson (BZT) fluids, exhibit non classical behaviors such as
expansion shocks, mixed shock-fan waves and compression fans. Researchers
are trying to exploit these peculiarities to improve performances in some
turbomachinery applications, where the design of fundamental components
such as turbine blades or nozzles cannot prescind from a gas model that
takes into account these effects. To determine the optimal geometry of these
components, the use of optimization algorithms is increasingly being pursued
and a low cost method could then be a great advantage to speed up the first
phases. This is a fundamental aspect during the development of Organic
Rankine Cycle (ORC) engines where heavy fluids are used to generate power
exploiting the typical effects of BZT gases to improve efficiency as shown by
Guardone et al. [10] or Colonna et al. [11].

In this work an Explicit full Potential Real gas Solver (ExPReS) has been
written from scratch to run on GPUs with the use of the OpenCL program-
ming language. This choice was adopted to make the solver executable on a
wider selection of GPU models than that offered by the CUDA programming
model. The use of full potential models to predict the stationary behavior
of BZT gases was pursued in 1991 by Cramer and Tarketon [12] using the
small–disturbance equation. In this thesis the use of the potential model
in dense gas flows is extended to the completely unsteady and non linear
problem by means of a finite volume discretization. ExPReS is meant to be
a proof of concept to show that the full potential approach can be used not
only in ideal gas regimes but even with more complicated gas models, with a
significant reduction of simulation times with respect to high fidelity models
such as Euler equations solvers, thanks also to the GPU acceleration.

11
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1.1 Thesis overview

In chapter 2 after the presentation of the assumptions underlying the ana-
lyzed potential approach, the mass conservation equation and the Bernoulli
theorem are introduced and the full potential formulation is obtained. The
properties of the chosen gas model are considered in the formulation through
the enthalpy function that appears in the Bernoulli equation. The Kutta con-
dition is then discussed in order to fix the indetermination of the circulation
around lifting bodies, typical of potential flows. Successively two different
ways to solve the problem are presented: the 1-field approach, where the only
unknown is the kinetic potential, and the more versatile 2–fields approach
where the size of the problem is duplicated due to the addition of the density
as second unknown. These two strategies are then compared to highlight the
advantages and disadvantages of both of them.

In chapter 3 thermodynamics aspects needed in this work are presented.
A general introduction to the axiomatic approach is given where the prin-
cipal thermodynamic quantities are obtained. They are then specialized to
the Polytropic Ideal Gas (PIG) and the polytropic van der Waals gas mod-
els during an isentropic transformation. The fundamental derivative of gas
dynamics is then introduced. This allows to explain the typical phenomena
that distinguish dense gas flows from the more common ideal gas flows.

Chapter 4 is devoted to parallel computing. The OpenMP approach
to parallelize the solver is described since it was used in the multithreaded
CPU version of ExPReS. General Purpose Graphic Processing Unit (GPGPU)
computing is then introduced with its features and limitations. Finally the
main concepts of the OpenCL programming language are described, focusing
on those that are strictly related to the implementation of ExPReS.

Numerical discretization techniques used to approximate the 2–fields full
potential formulation are outlined in chapter 5. After a general introduc-
tion to the Finite Volume Method (FVM) a comparison between the node-
centered and cell-centered formulation is performed with a particular atten-
tion to the implementation aspects related to the GPGPU. The final choice of
the cell-centered approach is justified with the use of two example algorithm.
The space discretization is then analyzed and the cell-centered gradient re-
construction problem is investigated with different schemes. Numerical time
integration schemes complete the final discretized form of the full potential
problem. A von Neumann stability analysis is then performed in order to
find the stability boundaries of such schemes. Boundary conditions are finally
discussed.

In chapter 6, after an introduction on the structure of the source code of
ExPReS, some subsonic and transonic ideal gas flows are presented to validate

12
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the solver. Then the capabilities of the full potential formulation to simulate
dense gas flows is tested. Comparisons are made with another potential
solver and with results available so far in literature. Some unsteady solutions
are then computed in order to test the accuracy of time transient solutions
around oscillating bodies. The speedups achieved by using the multithreaded
ad the GPU versions of ExPReS are finally presented and some comparisons
with speedups obtained by other commercial softwares are made.

In appendix A after a disquisition on the Lagrangian and Eulerian points
of view, the Arbitrary Lagrangian Eulerian (ALE) formulation is deduced
for the 2–fields full potential problem.

In appendix B the complete expression of the fundamental derivate of gas
dynamics is obtained for the two gas models considered in this work.

1.2 Free software
An important aspect of this work is that it is entirely done only with software
that is freely available on the Internet. This document is written with LATEX.
The operating system used is Ubuntu 13.04 64-bit which comes with all
the software packages needed for this work. The compiler used for the C
source codes is GCC[13], that provides an OpenMP[14] implementation and
has autovectorization capabilities. GPU programming in this work is based
on the OpenCL API and OpenCL C language[15] provided by the NVIDIA
SDK which is distributed with Ubuntu as an optional package. Debugging
and profiling of the C/C++ code written for this work are accomplished
using software such as GDB [16], GNU gprof [17], Valgrind [17] and for the
GPU code gDEBugger [18]. The adopted program for the visualization of
the results is ParaView [19]. All the graphics that appear on this document
are created with Veusz [20]. Meshes are generated with gmsh [21].

These are only few examples of the free software used in this work. It
is truly amazing how all these tools can be easily accessed with a Linux
operating system.

13
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Chapter 2

Potential CFD

Many models can be used to study the behavior of an aerodynamic flow.
The earliest steps in Computational Fluid Dynamics (CFD) were made in
the 1970s considering inviscid flows only. This was due to the extremely
limited computational power available in those years. The first methods to
compute the aerodynamic flows around lifting bodies were based on integral
formulations discretized through the use of panel methods. The introduction
of more complex models went hand in hand with the growth of computer
performances, leading to the diffusion of finite volume and finite element
methods to solve inviscid streams and low Reynolds viscous flows. Nowa-
days many sophisticated and computationally expensive models are in use to
simulate the aerodynamics around arbitrary complicated bodies, but there’s
still a long way to go before obtaining solutions that faithfully reproduce the
physics of highly detached flows. The computing of those solutions could in
principle be faced through a Direct Numerical Simulation (DNS), but up to
now the capabilities of the modern clusters still don’t allow such computa-
tions for engineering interesting cases.

When considering attached flows around aerodynamic bodies as planes,
wings or airfoils, viscosity effects can be neglected. This is especially true
whenever the aim is to estimate structural loads in the preliminary project.
During these first phases it is necessary to have some low cost methods to
span all the parameters space where optimizations take place. To perform
these preliminary computations it is therefore advantageous the use of a series
of simplified models to simulate streams with a much lower computational
effort than those for viscous flows. The simplest inviscid simulation can be
performed with a panel method. This is a quite computationally cheap ap-
proach, but it is suitable only for subsonic or highly supersonic flows. To the
present day, almost every commercial aircraft flies in the transonic regime, for
which these methods are not accurate enough. A relatively efficient method
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that allows transonic calculations is the full potential CFD, that still deals
with inviscid flows, but can take into account compressibility effects up to
weak shocks. This simpler approach generally allows a quite accurate calcu-
lation of lifting loads, while only some of the contributes to the drag force
can be obtained. These contributes can be for example the induced or the
wake drag. Obviously viscous effects are completely lost and it is therefore
not possible to estimate viscous drag.

In this chapter general full potential flows are firstly introduced with all
their funding hypothesis. Then two two possible formulations are presented.
The first one is based only on the velocity potential; the second one uses also
the fluid density as unknown. Finally the two approaches are compared and
their pros and cons are discussed.

2.1 Full potential flows
A possible way to reduce the complexity of the model is to use the full
potential formulation. Some simplifying hypothesis must be introduce. The
first one is to consider the entropy uniform and constant all over the flow
field.

s (r, t) = s∞. (2.1)

This assumption is completely valid if no shock waves are present, but
it is no more satisfied in the transonic and supersonic regime, where there
is a finite jump of all thermodynamic variables (included entropy) across
shocks. It should be noticed that in the transonic regime shocks are weak and
therefore hypothesis (2.1) is still adoptable being the entropy jump negligible.
As demonstrated by Landau and Lifshitz in [22] the variation of entropy
across a weak shock is proportional to the cube of the jump in pressure

s2 − s1 ≈
1

12T1

(
∂2v

∂P 2

)
s

∣∣∣∣
1

(P2 − P1)
3 , (2.2)

where the subscript 1 and 2 indicates respectively the upstream and the
downstream thermodynamic states.

The second funding assumption of the full potential model is that the
flow is irrotational, and thus the velocity u can be expressed as the gradient
of the velocity potential φ

u =∇φ. (2.3)

It is immediately highlighted that this relation gives an indetermination
of any addictive constant on the velocity potential. In fact, the governing
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equations of the full potential problem include only the derivatives of φ and
therefore, if φ̃ is a solution, then φ̃ + C with C constant is a solution too.
This offset is not a problem because only the derivatives of the velocity
potential are necessary to compute the aerodynamic field. However this is
not the only indetermination. In fact, in multiply connected domains, there
is an indetermination on the circulation around every body. This problem is
solved imposing the well known Kutta condition explained in section §2.1.1.
On the contrary of (2.1), assumption (2.3) is not a problem in transonic
flows where shocks are mainly normal to the streamlines. Consider in fact
the Crocco’s theorem, valid only in the stationary case, (2.4)

∇ht + ω × u = T ∇s, (2.4)

where T is the fluid temperature, ω = ∇×u is the vorticity and ht is the total
enthalpy. Since the entropy jump is uniform across a normal shock, it follows
that ∇s = 0. Moreover being the asymptotic free stream omototalenthalpic,
even ∇ht = 0. Therefore, in case of normal shock, ω × u = 0. In the 2D
case this means that no vorticity is generated i.e. ω = 0, while in the 3D
case that product could annihilate also if ω//u. It is therefore possible to
have isentropic vortexes that travel along their axes.

To obtain the full potential problem it is necessary to introduce the mass
and the momentum conservation equations. Adopting an Eulerian formula-
tion, the unknown of the problem are the mass density ρ = ρ (r, t) and the
velocity potential φ = φ (r, t).

The mass conservation principle states that the mass in a fixed control
volume can vary only because there is a mass flux through its boundary

d

dt

ˆ
V

ρ = −
˛
∂V

ρu · n̂, (2.5)

where the infinitesimal elements dV and dS are not written because their
presence is deducible from the domain of integration 1.

Being the control volume fixed, the time derivative can be moved under
the integral sign, and applying the divergence theorem to the right hand side
of equation (2.5), the differential form of the mass conservation equation can
be obtained

∂ρ

∂t
+∇ · (ρu) = 0. (2.6)

1This is only a notational simplification and the reader should always keep in mind
that those elements are present due to dimensional reasons, even if they are not explicitly
written
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The governing equation for the second unknown φ, can be deduced from
the momentum conservation principle. In Eulerian formulation, the momen-
tum in a fixed control volume can vary only due to momentum flux through
the boundary of the volume and to the stress acting on it

d

dt

ˆ
V

ρu = −
˛
∂V

ρu (u · n̂) +

˛
∂V

t, (2.7)

where t is the total stress on the boundary of the volume. In the hypothesis of
inviscid flow, stresses are generated only by pressure actions, i.e. t = −P n̂.
Applying again the divergence theorem and substituting equation (2.6), the
differential form of the momentum conservation equation is obtained

∂u

∂t
+ (u · ∇)u +

∇P
ρ

= 0. (2.8)

By applying the identity

(u · ∇)u =
1

2
∇ (u · u) + ω × u (2.9)

to equation (2.8) and recalling that the velocity field is irrotational, we have

∂u

∂t
+

1

2
∇ (u · u) = −∇P

ρ
. (2.10)

Equation (2.10) can be rewritten in term of velocity potential as

∂∇φ
∂t

+
1

2
∇ (∇φ · ∇φ) = −∇P

ρ
(2.11)

or

∇
(
∂φ

∂t
+

1

2
∇φ · ∇φ

)
= −∇P

ρ
. (2.12)

The right hand side of equation (2.12), can be expressed as the gradient
of enthalpy h. In fact

h = e+ P υ, (2.13)

where e is the internal specific energy, and υ is the specific volume.
Applying the gradient operator to both sides of equation (2.13), gives

∇h =∇e+ P ∇υ + υ∇P. (2.14)
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The gradient of energy is computed from e (s, v), where the two inde-
pendent variables s and v are expressed in an Eulerian point of view as
s = s (r, t) and v = v (r, t)

∇e =

(
∂e

∂s

)
v

∇s+

(
∂e

∂v

)
s

∇v = T ∇s− P ∇v. (2.15)

Substituting equation (2.15) in equation (2.14), the gradient of enthalpy
results

∇h = T ∇s+ υ∇P. (2.16)

In the isentropic, ∇s = 0 and therefore

∇his = υ∇Pis (2.17)

or

∇his =
∇Pis
ρ

. (2.18)

where the subscript is has been introduced in order to highlight that Pis is
obtained through an isentropic transformation.

Substituting equation (2.18) in equation (2.12), it is possible to obtain

∇
(
∂φ

∂t
+

1

2
∇φ · ∇φ+ his

)
= 0, (2.19)

that integrated along a streamline departing from the asymptotic flow, gives
the well known Bernoulli theorem

∂φ

∂t
+

1

2
∇φ · ∇φ+ his =

1

2
V 2
∞ + h∞. (2.20)

Since the asymptotic state is uniform, this relation can be extended be-
tween two generic points A and B of the domain as follows


∂φA
∂t

+
1

2
∇φA · ∇φA + hisA =

1

2
V 2
∞ + h∞

∂φB
∂t

+
1

2
∇φB · ∇φB + hisB =

1

2
V 2
∞ + h∞

(2.21)

⇓
∂φA
∂t

+
1

2
∇φA · ∇φA + hisA =

∂φB
∂t

+
1

2
∇φB · ∇φB + hisB. (2.22)
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It will be further shown in chapter 3, that his can be expressed as a
function of the density only, obtaining thus the closed problem (2.23)

∂ρ

∂t
+∇ · (ρ∇φ) = 0

∂φ

∂t
+

1

2
∇φ · ∇φ+ his (ρ) =

1

2
V 2
∞ + h∞

(2.23)

This formulation is valid for every gas model and not only for the poly-
tropic ideal gas, as long as it is possible to express the enthalpy as a function
of the density alone.

2.1.1 Kutta condition

To solve the indetermination of the circulation around lifting bodies it is
necessary to cut the domain with a wake and to impose the Kutta condition
across it. This requirement is needed only in case of lifting flows and it forces
the flow to detach from the trailing edge and not from a point on the airfoil
upper surface.

In the stationary case the wake is just a generic mathematical way to
obtain a simply connected domain, while in the unsteady case the wake be-
comes a thin whirling layer along which vorticity is advected. In case of
viscous flows the wake is not necessary because this thin whirling layer natu-
rally detaches from the sharp trailing edge due to the effect of viscosity. On
the other side, the solution of the Euler equations around lifting bodies de-
serves some special considerations. In fact in this model viscosity is neglected
and it should not be possible to find the correct value of circulation. However
due to numerical stabilization, some numerical viscosity is introduced, thus
forcing the rear stagnation point to be located at the geometrical trailing
edge.

One possible way to impose the Kutta condition in the non stationary
case is to enforce the pressure continuity across the wake

∆P = Pup − Plow = 0, (2.24)

with the obvious meaning of symbols.
In the isentropic case, all thermodynamic variables can be written as

functions of the single variable ρ. Therefore it is possible to express the
pressure as

P = P (s̄, ρ) = Pis (ρ) . (2.25)
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As it will be better specified in chapter 3, this function is monotone,
because (

∂P

∂ρ

)
s

=
dPis
dρ

= c2 > 0, (2.26)

where c is the speed of sound. Thus condition (2.24) ensures that even density
is continuous across the wake.

It follows that enthalpy his is continuous too and therefore it is possible
to obtain the wake equation from the Bernoulli theorem

∂φup
∂t

+
1

2
∇φup · ∇φup =

∂φlow
∂t

+
1

2
∇φlow · ∇φlow. (2.27)

Introducing the velocity potential jump across the wake ∆φ = φup−φlow,
and expressing

1

2
∇φup · ∇φup =

1

2
∇φup · ∇ (∆φ+ φlow) (2.28a)

1

2
∇φlow · ∇φlow =

1

2
∇φlow · ∇ (φup −∆φ) (2.28b)

it is possible to obtain

∂∆φ

∂t
+

1

2
(∇φup +∇φlow) · ∇∆φ = 0, (2.29)

that is a standard advection equation for the quantity ∆φ, that is conveyed
along the wake with the mean speed between the upper and the lower sides
of the wake.

By a momentum conservation across the wake it is possible to demon-
strate that the normal velocity must be the same on the upper and the lower
sides of the wake. Therefore the following condition on the velocity potential
must hold

∇φup · n̂wake =∇φlow · n̂wake , (2.30)

where n̂wake is the normal to the wake. This is a condition only on the
derivatives of φ and it is important to keep in mind that the value velocity
potential is generally discontinuous across the wake, with the jump value
established by the Kutta condition. In the unsteady case it could happen
that the tangential component of the velocity to the wake is discontinuous,
making the wake a thin whirling layer. By the Kelvin theorem, when the
circulation (i.e. lift) on the airfoil increases, it is necessary that some negative
circulation is released in the wake, since that is the only place where vorticity
can be confined being the remainder of the domain irrotational.
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2.2 1–field full potential formulation
The one field formulation of the full potential problem can be derived ex-
pressing the density as a function of the velocity potential by means of the
Bernoulli theorem. To do that a model for the gas has to be introduced in
order to specify the function his (ρ). In this paragraph the gas that will be
considered is the Polytropic Ideal Gas (PIG). The thermodynamic properties
of this model of gas will be better described in chapter 3, but up to now,
the only necessary function is the enthalpy that, in the case of isentropic
transformation can be expressed as

h
PIG

is (ρ) =
γ

γ − 1

P∞
ργ∞

ργ−1. (2.31)

Introducing equation (2.31) in equation (2.20), it is possible to specialize
the Bernoulli theorem to the particular case of polytropic ideal gas as

∂φ

∂t
+

1

2
∇φ · ∇φ+

γ

γ − 1

P

ρ
=

1

2
V 2
∞ +

γ

γ − 1

P∞
ρ∞

. (2.32)

Noting that for the PIG model the speed of sound c can be expressed as

c2 (P, ρ) =
γ P

ρ
(2.33)

and that for an isentropic transformation the pressure can be obtained from

P

ργ
=
P∞
ργ∞

, (2.34)

it is possible to solve equation (2.32) for ρ

ρ = ρ∞

[
1− γ − 1

c2
∞

(
∂φ

∂t
+

1

2
∇φ · ∇φ− 1

2
V 2
∞

)] 1
γ−1

. (2.35)

Equation (2.35) is then substituted in the integral form of the mass con-
servation equation to obtain a formulation suitable to be discretized using
the finite volume method that is

ˆ
V

∂

∂t
ρ∞

[
1− γ − 1

c2
∞

(
∂φ

∂t
+

1

2
∇φ · ∇φ− 1

2
V 2
∞

)] 1
γ−1

+

˛
∂V

ρ∞

[
1− γ − 1

c2
∞

(
∂φ

∂t
+

1

2
∇φ · ∇φ− 1

2
V 2
∞

)] 1
γ−1

∇φ · n̂ = 0.

(2.36)
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Computing the time derivative in the first term it is possible to obtain
the final equation of the 1–field formulation.

−
ˆ
V

ρ∞
c2
∞

[
1− γ − 1

c2
∞

(
∂φ

∂t
+

1

2
∇φ · ∇φ− 1

2
V 2
∞

)] 2−γ
γ−1
[
∂2φ

∂ t2
+∇φ · ∇

(
∂φ

∂t

)]
+

˛
∂V

ρ∞

[
1− γ − 1

c2
∞

(
∂φ

∂t
+

1

2
∇φ · ∇φ− 1

2
V 2
∞

)] 1
γ−1

∇φ · n̂ = 0.

(2.37)

This expression can be written as

M
(
φ, φ̇

)
φ̈+ C

(
φ, φ̇

)
φ̇+K (φ) φ = 0, (2.38)

where, using for example a node centered finite volume formulation and ap-
proximating the solution as

φ (r, t) =
Nv∑
k=1

Nk (r) Φk (t) (2.39)

the mass, dumping and stiffness matrices are given by

Mik

(
φ, φ̇

)
= −
ˆ
Vi

ρ∞
c2
∞

[
1− γ − 1

c2
∞

f(φ, φ̇, V∞)

] 2−γ
γ−1

Nk (r) , (2.40)

Cik

(
φ, φ̇

)
= −
ˆ
Vi

ρ∞
c2
∞

[
1− γ − 1

c2
∞

f(φ, φ̇, V∞)

] 2−γ
γ−1

∇φ · ∇Nk (r) , (2.41)

Kik

(
φ, φ̇

)
=

˛
∂Vi

ρ∞

[
1− γ − 1

c2
∞

f(φ, φ̇, V∞)

] 1
γ−1

∇Nk (r) · n̂, (2.42)

where f(φ, φ̇, V∞) =
∂φ

∂t
+

1

2
∇φ · ∇φ − 1

2
V 2
∞, i is the index of the finite

volume and Nv is the number of finite volumes.

Wake In the 1–field formulation, since the single variable is the velocity
potential φ, the only way to impose the Kutta conditions is to use equa-
tion (2.27).

Many numerical methods relies on the enforcing of conservation equations
over control volumes. If an implicit time discretization has been adopted, it
is generally needed to solve a linear system. To impose the Kutta condition
it is therefore necessary to free some lines in the system where the discretized
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Vup

Vlow
wakeairfoil

Figure 2.1: Wake

counterpart of equation (2.27) will be overwritten. To free these lines it is
possible to perform a linear combination of the two equations that discretize
the mass conservation above and below the wake. This procedure is equiva-
lent to enforce the mass conservation across the wake.

To clarify ideas, referring to figure 2.1, the system of equations
d

dt

ˆ
Vup

ρup +

˛
∂Vup

ρup∇φup · n̂ = 0

d

dt

ˆ
Vlow

ρlow +

˛
∂Vlow

ρlow∇φlow · n̂ = 0

(2.43)

is transformed into the system


d

dt

ˆ
Vup∪Vlow

ρ+

˛
∂Vup∪∂Vlow

ρ∇φ · n̂ = 0

∂φup
∂t

+
1

2
∇φup · ∇φup =

∂φlow
∂t

+
1

2
∇φlow · ∇φlow

(2.44)

2.3 2–fields full potential formulation
In the 2–fields formulation, system (2.23) is directly used, without the neces-
sity to reduce the system to a single equation of 1 unknown only. It will be
shown in section §2.4 that this formulation, despite dealing with two variables
instead of one, presents many advantages over the 1–field formulation.

Wake The Kutta condition can be here imposed in many different ways de-
pending on the adopted numerical discretization technique. The form (2.24)
and the form (2.27) are completely equivalent. The first one, as stated in
section §2.1.1, implies that

ρup = ρlow, (2.45)
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and it is therefore a linear constraint in one of the two unknowns. It is thus
preferable to the version (2.27).

In an implicit time discretization technique, it is necessary to perform the
same linear combinations on the equations of the solving system as in the
1–field implicit case.

2.3.1 ALE Formulation

A possible way to obtain the solution around a moving or deforming body is
to formulate the problem in the Arbitrary Lagrangian Eulerian (ALE) form.
Another possible approach is to use the transpiration boundary conditions
(see section §5.5.2), although this strategy is suitable for small displacements
only.

The ALE formulation is deepened in appendix A. The ALE form of the
2–fields full potential problem is given by



ˆ
V (t)

Dvmρ

Dt
+

˛
∂V (t)

ρ (∇φ− vm (r, t)) · n̂ = 0

Dvmφ

Dt
− vm · ∇φ+

1

2
∇φ · ∇φ+ his (ρ) =

1

2
V 2
∞ + h∞

(2.46)

where the volume V (t) is a time dependent control volume connected to the
mesh that moves through the fluid with the assigned velocity vm (r, t), with
the subscript m denoting that it is the mesh speed. This formulation is valid
only if the geometric conservation property

∇ · vm = 0 (2.47)

is satisfied. This is always true for rototranslations.

2.4 1–field vs. 2–fields
The two different formulations (2.23) and (2.37) are now analyzed and their
pros and cons are discussed.

2.4.1 Number of unknowns

The first and probably only obvious advantage of the 1–field formulation is
that it involves half of the unknowns with respect to the 2–fields formulation.
This could be a remarkable aspect in an implicit time stepping method.
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In fact it requires the solution of many linear systems whose factorization
cost increases as a power of the size of the matrix2. Moreover, the less the
unknowns, the less the memory required to hold the factorized matrices.

This aspect leads to the possibility to solve problems with more control
volumes than those that could be solved with the 2–fields formulation using
the same memory amount. Despite this advantage, it should be noticed
that the 1–field formulation (2.37) is a strongly non linear equation. Hence
the computations required to assemble the 1–field equations are much heavier
than those of the 2–fields, blurring partially away the time that can be earned
earned solving a smaller system.

2.4.2 Time discretization

Moreover, looking at the time discretization problem, the 2–fields formulation
is a system of first order explicit partial differential equations, i.e., once the
system (2.23) has been discretized in space, it can be generally expressed as

ẋ = f (x) , (2.48)

with x = (ρ, φ)T . On the contrary, the 1–field equation (2.37) is implicit
in the second order time derivative, leading to a system of equations of the
form

g
(
φ, φ̇, φ̈

)
= 0. (2.49)

Explicit time scheme This aspect leads to a great difference if an explicit
time stepping technique is used, because in the case of equation (2.48) it is
possible to obtain the solution without solving a nonlinear problem. Using
for example a forward Euler scheme the solution at the time step tn+1 is
obtained as

xn+1 = xn + ∆t f (xn) (2.50)

and the nonlinearity of the system affects only the computing of the resudual
f (xn).

On the contrary, in the case of equation (2.49), introducing the explicit

2The cost of a basic LU factorization is proportional to n3, but depending on the
sparsity of the matrix that exponent can slightly decrease.
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Euler method (2.51)

φ̇n =
φn+1 − φn

∆t
(2.51a)

φ̈n =
φ̇n+1 − φ̇n

∆t
, (2.51b)

the system (2.49), collocated at the time instant tn, becomes

g
(
φn, φ̇n, φ̈n

)
= 0 (2.52)

g

(
φn, φ̇n,

φ̇n+1 − φ̇n
∆t

)
= 0, (2.53)

that is a nonlinear system in the unknown φ̇n+1 that can be for example
solved with the Newton–Raphson agorithm

while |δφ̇ k| < toll

φ̇n+1
0 = φ̇n (2.54a)

[
∂g

∂φ̇n+1

]
k

{
δφ̇ k

}
= −

{
g

(
φn, φ̇n,

φ̇n+1
k − φ̇n

∆t

)}
(2.54b)

φ̇n+1
k+1 = φ̇n+1

k + δφ̇ k (2.54c)

end while

where n is the temporal index (as usual) and k is the Newton–Raphson
iteration index. It should be noted that despite the time stepping scheme
is explicit, equation (2.54b) requires the solution of many linear systems at
each time step. Here the non linearity affects the computing of the residual

(right hand side of equation (2.54b)) and also the Jacobian matrix
[

∂g

∂φ̇n+1

]
of the system . Using a space discretization technique based on local support
basis functions, this matrix is highly sparse, but, if a direct linear system
solver is used, it needs to be factorized3 in order to solve system (2.54b),

3If a non–exact Newton–Raphson algorithm is used it could be possible to avoid the
matrix re–factorization for many steps
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thus requiring a much greater usage of memory resources than the explicit
2–fields formulation.

Implicit time scheme If an implicit time discretization is used it is nec-
essary to solve a set of non–linear equations in both the 1–field and 2–fields
cases. This is generally done with a Newton–Raphson algorithm that requires
the computing of the jacobian matrix. For 2–fields system, this Jacobian is
relatively much simpler than the 1–field case, requiring to compute the func-
tional variation of system (2.23) instead of equation (2.37). The resulting
formulas are much more complex in the 1–field case, reducing the benefits
given by the halved number of unknowns. These formulas are not presented
here because they are beyond the scope of the present work and strongly
depend on the time discretization scheme adopted.

2.4.3 Real gases

One of the main objectives of this work is to investigate the possibility to
include a real gas model in the full potential formulation. The van der
Walls model is the simplest way to represent real gas effects and it will be
formally introduced in chapter 3. When this particular gas is subjected to
an isentropic transformation its enthalpy his changes according to

h
vdW

is (ρ) =
(
P∞ + a ρ2

∞
)( ρ

ρ∞

1− ρ∞ b
1− ρ b

)γ
γ − ρ b

(γ − 1) ρ
− 2 a ρ, (2.55)

where ρ is the gas density and a, b and γ are gas specific constants that
will be better explained in chapter 3. Relation (2.55) corresponds exactly
to equation (2.31) for the polytropic ideal gas, but it cannot be analytically
solved for the variable ρ. This fact prevents to reverse the Bernoulli the-
orem to obtain an expression that relates the fluid density to the velocity
potential, as it was done in the case of polytropic ideal gas equation (2.35).
This obstacle makes the 1–field approach unfeasible when real gas effects are
sought for.

2.4.4 Transonic flows

As it will be better explained in section §5.3.2, for numerical stability reasons
it is generally needed to use an upwinding technique on the value of density
where the flow is supersonic. This allows to restore the spacial causality when
computing the mass flux through a surface of a control volume. In fact, where
the fluid speed is greater than the speed of sound, the flow particles cannot

28



2.4. 1–FIELD VS. 2–FIELDS

A

Bn̂
∇φ

Figure 2.2: Mass flux

“feel” what’s happening downstream of their position. It is thus necessary
to use an upstream value of density, that can be computed using a linear
approximation of the density field around the point where the flux has to be
computed. This means that the flux is computed with a value of density ρ̃
defined as

ρ̃ = ρ+∇ρ · ∆l, (2.56)

where ∆l is a vector in the streamline direction pointing countercurrent. The
length of this vector can be changed, allowing a calibration of the numerical
dissipation needed to stabilize the numerical integration. It should be noted
that equation (2.56), requires the gradient of the density field. In the 2–fields
formulation this is accomplished computing the first order spatial derivatives
of one of the the unknowns, while in the 1–field formulation it must be
computed as

∇ρ = ρ∞∇
[
1− γ − 1

c2
∞

(
∂φ

∂t
+

1

2
∇φ · ∇φ− 1

2
V 2
∞

)] 1
γ−1

. (2.57)

Equation (2.57) requires the computing of second order spatial derivatives
of the velocity potential. If the solution is approximated by means of a Ritz
series expansion, this requirement would mean to use a set of basis functions
that are at least of class C1, i.e. whose first order derivatives are continu-
ous and therefore their second order derivatives are integrable. The use of
such a basis introduces a lot of technical difficulties in the implementation
of a solver, discouraging the use of this upwinding approach for transonic
solutions in the 1–field formulation.

A simpler technique to stabilize the numerical integration is to compute
the mass flux using the value of density in the upstream control volume,
instead of reconstructing ρ̃ by a linear interpolation. With reference to fig-
ure 2.2, the mass flux is therefore computed with a value of density ρ̃ given
by
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ρ̃ =


ρA if ∇φ · n̂ > 0

ρB if ∇φ · n̂ < 0

(2.58)

This strategy can be applicable in the 1–field formulation too but it does
not allow any control of the numerical dissipation.

2.4.5 ALE formulation

The Arbitrary Lagrangian Eulerian (ALE) formulation is a suitable approach
when the boundaries of the domain are not fixed in space but they need to
move with an assigned trajectory. This technique can be used for example
to solve aeroelastic problems where a flexible structure must be left free to
deform in the flow field.

A detailed presentation of the theory on which this formulation relies is
given in appendix A, but some elements must be introduced here in order to
highlight the differences between the 1–field and the 2–fields approaches.

In order to obtain the ALE formulation it is necessary to relate the time
derivatives of the variables connected to the grid with the time derivative of

the Eulerian field. To do that it is necessary to introduce the symbol
Dvm

D t
,

that represents the time derivative with respect to an observer connected to
the mesh nodes. In this notation vm = vm (r, t) and am = am (r, t) indicates
respectively the mesh velocity and acceleration expressed in Eulerian form.
The subscript vm is used here to distinguish that symbol from the material
time derivative. These relations are

Dvmρ

D t
=∇ρ · vm +

∂ρ

∂t
(2.59)

and

D2
vmφ

D t2
= [∇ (∇φ) · vm] · vm + 2

∂∇φ
∂ t
· vm +∇φ · am +

∂2φ

∂ t2
(2.60a)

=∇ (∇φ) : (vm ⊗ vm) + 2
∂∇φ
∂ t
· vm +∇φ · am +

∂2φ

∂ t2
(2.60b)

= φ/ij v
m
i vmj + 2 φ̇/i v

m
i + φ/i a

m
i + φ̈ (2.60c)

that solved for the partial time derivatives give

∂ρ

∂t
=
Dvmρ

D t
−∇ρ · vm (2.61)
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and

∂2φ

∂ t2
=
D2

vmφ

D t2
+∇ (∇φ) : (vm ⊗ vm)− 2

Dvm∇φ
D t

· vm −∇φ ·
∂vm
∂t

.

(2.62)

At the right hand side there are now quantities that are all computable on

a moving mesh, being all the time derivatives of the kind
Dvm

Dt
. Substituting

these relations in the Eulerian full potential problem, it is possible to obtain
its ALE counterpart.

It must be underlined that the 2–fields formulation is first order in time
and therefore only equation (2.61) is needed. In the 1–field approach, that is
second order in time, also equation (2.62) is necessary. This relation however
introduces second order derivatives in space. This in turn requires C1 shape
functions.
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Chapter 3

Thermodynamics

As shown in chapter 2 the full potential formulation requires some knowledge
of the gas thermodynamic behavior. This is required since it is necessary
to know the enthalpy function that connects the mass conservation equa-
tion to the Bernoulli theorem. Thermodynamics allows to take into account
compressibility effects that are not negligible in many modern aerodynamic
applications such as transonic flight or turbine expanders. Neglecting or
excessively approximating those effects can lead to a poor design of lifting
surfaces and profiles with a great loss in working efficiency and a consequently
rising in operational costs of the final product.

In this chapter after a general introduction to thermodynamics, the case
of polytropic ideal gas and van der Waals gas are examined. The latter allows
the study of some peculiar phenomena typical of the dense gas regime such
as expansion shocks and mixed waves. These topics, detailed in section §3.4,
are currently of great interest among the scientific community because it
has been recently shown in literature that some of these phenomena could
be exploited to improve the efficiency in some turbomachinery applications
[23],[24] as Organic Rankine Cycle (ORC) engines. In section §3.5 it is shown
a useful strategy to extend the possibility to use ExPReS with general gas
models that better describe the dense gas region.

3.1 The axiomatic approach to thermodynam-
ics

The brief introduction to thermodynamics of gases here proposed is based
on the paper [25] by L. Galgani and A. Scotti and taken up by Callen in [26].
In the present work the axiomatic approach to thermodynamics is presented
following appendix D of [27] and the emphasis is given to the fundamental
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thermodynamic quantity that is the entropy.
The adjective axiomatic comes from the three axioms that the funda-

mental quantity must comply with in order to represent the thermodynamic
properties of a physical system. One of these hypothesis, the superaddi-
tivity, brings in the mathematical function entropy the second principle of
thermodynamics that represents the irreversibility of every physical process.

In this formulation not only the entropy, but also the internal energy
can be taken as the primary quantity from which all other thermodynamic
variables can be derived, leading to the so called energetic representation.
This approach is completely equivalent to the entropic one since both can be
deduced from the other.

One of the main advantages of the axiomatic formulation is that all other
derived quantities, such as pressure and temperature, can be obtained differ-
entiating these primary functions.

For the purpose of this work only simple thermodynamic systems are
considered. Such a system is composed by a single chemical component
in isotropic fluid state (liquid or gaseous) and in absence of any chemical
reaction. Moreover no liquid–vapor phase transition are here considered.

In a simple closed thermodynamic system all the equilibrium states are
completely identified by its internal energy E, volume V, and mass M through
the entropy function

S = S (E, V, M) . (3.1)

On the contrary a simple equation of state is not enough to fully represent
the thermodynamic state of a fluid. For example, as it will be shown in
section §3.2, from the well known equation of state of an ideal gas PV = RT
it is not possible to reconstruct the fundamental relation while the reverse
path is always possible. This is due to the fact that the equation of state
is obtained by a differentiation process carried out on relation (3.1) with a
consequent loss of information.

The aforementioned three properties that the entropy function (3.1) must
satisfy are:

• First order homogeneity

S (λE, λV, λM) = λS (E, V, M) λ > 0; (3.2)

• Monotony with respect to the variable E

S (E ′, V, M) ≥ S (E ′′, V, M) ⇐⇒ E ′ ≥ E ′′; (3.3)
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• Superadditivity

S (E1 + E2, V1 + V2, M1 +M2) ≥ S (E1, V1, M1) + S (E2, V2, M2) ;
(3.4)

The property of the entropy superadditivity is a way to express the well
known second principle of thermodynamics and plays the role of irreversibil-
ity in the mathematical description of thermodynamic transformations.

To obtain the energetic representation, the second property plays an im-
portant role since it allows to solve the entropy function for the variable
E

E = E (S, V, M) (3.5)

and since the inverse of a monotonic function is still monotonic, even the
internal energy E is invertible too. This alternation highlights the equivalence
of the energetic and entropic representations.

To complete the thermodynamic theory it is necessary to add to the three
axioms the Nernst’s postulate(

∂E

∂S

)
V,M

→ 0 =⇒ S → 0, (3.6)

where the derivative (∂E/∂S)V,M will be shown in section §3.1.1 to be the
definition of the temperature.

Exploiting the homogeneity property of the entropy it is possible to in-
troduce the specific version of the fundamental relation (3.1)

s (e, v) ,
1

M
S (E, V, M) = S

(
E

M
,
V

M
, 1

)
= S (e, v, 1) , (3.7)

where the specific energy e and volume v have been defined as

e ,
E

M
(3.8)

and
v ,

V

M
. (3.9)

Similarly, it is possible to introduce the specific version of the fundamental
relation (3.5)

e (s, v) ,
1

M
E (S, V, M) = E

(
S

M
,
V

M
, 1

)
= E (s, v, 1) . (3.10)
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3.1.1 First law of thermodynamics

The first law of thermodynamics states that the total energy of an isolated
system is constant. It can be inferred from differentiating the function e =
e (s, v)

de =

(
∂e

∂s

)
v

ds+

(
∂e

∂v

)
s

dv. (3.11)

By definition the two derivative that appear in relation 3.11 are respec-
tively the temperature and the pressure

T = T (s, v) ,

(
∂e

∂s

)
v

(3.12a)

P = P (s, v) , −
(
∂e

∂v

)
s

(3.12b)

and hence the first law can be rewritten as

de = T ds− P dv, (3.13)
which is also known as

de = Qδ +Wδ, (3.14)
where the infinitesimal amount of heat Qδ and of work have been defined as

Qδ , T ds (3.15)
Wδ , −P dv. (3.16)

The particular notation (.)δ is taken from [27] to highlight the fact that
those quantities are not two exact differentials because they depend from
the transformation path. Since they are not state variables, any variation of
them, even infinitesimal, is meaningless.

The two relations (3.12) are the so called equations of state that are both
necessary to fully represent the thermodynamic system. However they are
not independent because they are obtained differentiating the same primary
function. In fact, using the Schwarz theorem, it is possible to show the
connection between the two equations of state(

∂T

∂v

)
s

=
∂2e

∂v ∂s
=

∂2e

∂s ∂v
= −

(
∂P

∂s

)
v

, (3.17)

that is one of the compatibility conditions between the two functions T (s, v)
and P (s, v).
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3.1.2 Enthalpy

As shown in chapter 2 the 2–fields formulation (2.23) requires the knowledge
of the thermodynamic potential enthalpy. It can be obtained applying the
Legendre transformation to the internal energy substituting the specific vol-
ume v with the pressure P . The Legendre transformation is necessary since
the pressure is a derivative of the internal energy and thus, as demonstrated
in [27], a direct change of the independent variable from the specific volume
to the pressure, would imply a loss of information. However this transforma-
tion leads to the introduction of a new function that guarantees that all the
informative content will be preserved.

To define the Legendre transformation, consider the general function
f (x, y) and its partial derivative

z =
∂f (x, y)

∂y
= Z (x, y) , (3.18)

which can be inverted with respect to the variable y = Z−1 (x, z) = Y (x, z).
If it is necessary to change the independent variable of the function from

x to z without any loss of information, it is necessary to define a new function
g (z, y) as

g = f − z y, (3.19)
g (x, z) = f (x, Y (x, z))− z Y (x, z) , (3.20)

where the new function g does no more depend on the variable y.
Applying the Legendre transformation to the internal energy substituting

the variable v with P , the enthalpy function is obtained

P = − ∂e (s, v)

∂v
= P (s, v) , (3.21)

which can be inverted with respect to the variable v = P−1 (s, P ) = V (s, P ).
The enthalpy is therefore defined as

h = e+ Pv (3.22)
h (s, P ) = e (s, V (s, P )) + P V (s, P ) . (3.23)

3.1.3 Specific heats

In order to better understand some peculiarities of dense gas behavior, it is
necessary to introduce the constant volume and constant pressure specific
heats
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cv , T

(
∂s

∂T

)
v

, (3.24)

cP , T

(
∂s

∂T

)
P

. (3.25)

These two quantities represent the infinitesimal amount of heat that a
unitary mass must be given to increase its temperature of one unit in a
process carried out respectively at constant volume or at constant pressure.

From the first law of thermodynamics T ds = de + P dv it is immediate
to find out that

cv =

(
∂e

∂T

)
v

, (3.26)

cP =

(
∂e

∂T

)
P

+ P

(
∂v

∂T

)
P

=

(
∂h

∂T

)
P

. (3.27)

3.1.4 Polytropic assumption

To clarify what the adjective polytropic means, consider the function e =
e (s, v) and perform the variable substitution (with a certain notational
abuse, since e (T, v) and e (s, v) are two different mathematical functions)

e (T, v) = e (S (T, v) , v) . (3.28)
This variable substitution would lead to a loss of information as stated

in section §3.1.2, and therefore the Legendre transformation is carried out,
defining the Helmholtz thermodynamic potential f

f (T, v) = e (S (T, v) , v)− T S (T, v) (3.29a)
f (T, v) = e (T, v)− T S (T, v) , (3.29b)

where s = S (T, v) is obtained solving the function T = T (s, v) = (∂e/∂s)v
for the variable s.

In the following steps, it will be necessary to differentiate equations (3.29)
with respect to their two variables. Consider first the variable v and let’s
differentiate equation (3.29a) with respect to it

(
∂f

∂v

)
T

=

(
∂e

∂s

)
v

∣∣∣∣
s=S(T, v)

(
∂S
∂v

)
T

+

(
∂e

∂v

)
s

∣∣∣∣
s=S(T, v)

− T
(
∂S
∂v

)
T

.

(3.30)
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Recalling definitions (3.12), leads to(
∂f

∂v

)
T

= −P (T, v) . (3.31)

Let’s differentiate now equation (3.29b)(
∂f

∂v

)
T

=

(
∂e

∂v

)
T

− T
(
∂S
∂v

)
T

. (3.32)

Comparing equation (3.31) and equation (3.32), the following relation is
obtained (

∂e

∂v

)
T

= T

(
∂S
∂v

)
T

− P (T, v) . (3.33)

Consider now the derivative of relation (3.29b) with respect to the variable
T (

∂f

∂T

)
v

=

(
∂e

∂T

)
v

− S (T, v)− T
(
∂S
∂T

)
v

(3.34)

and recalling the definition of the constant volume specific heat (3.24) and
(3.26), it is possible to obtain(

∂f

∂T

)
v

= −S (T, v) . (3.35)

Considering the cross second order derivatives of the Helmholtz potential,
and applying the Schwartz theorem(

∂S
∂v

)
T

= − ∂2f

∂v ∂T
= − ∂2f

∂T ∂v
=

(
∂P

∂T

)
v

, (3.36)

it is possible to rewrite equation (3.33) as(
∂e

∂v

)
T

= T

(
∂P

∂T

)
v

− P (T, v) . (3.37)

Integrating equation (3.37) in the variable v, the energy function e (T, v)
can be obtained

e = φ (T ) +

ˆ v

v0

[
T

(
∂P

∂T

)
v

− P (T, v)

]
dv, (3.38)

where the function φ (T ) is necessary since the integration is carried out on
the variable v only. Its derivative is indicated as
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c0
v (T ) =

dφ

dT
(3.39)

and represent the ideal gas contribution to the total value of cv (T, v). The
full expression of the constant volume specific heat is then

cv (T, v) =
dφ

dT
+

ˆ v

v0

T

(
∂2P

∂T 2

)
v

dv

= c0
v (T ) +

ˆ v

v0

T

(
∂2P

∂T 2

)
v

dv. (3.40)

The hypothesis of polytropic gas implies that c0
v does not depend from

temperature and is therefore constant.
As it will be shown in section §3.2 and §3.3, for the two particular models

of polytropic ideal gas and polytropic van der Waals gas, the value of cv (and
not only c0

v) is constant since the integrand function annihilates.

3.1.5 Speed of sound

In gas dynamics a relevant quantity is the speed of sound that is the speed
that appears in the acoustic equation1 and with which weak perturbations
propagate in the fluid. It is defined as

c2 (s, ρ) =

(
∂P

∂ρ

)
s

, (3.41)

that is always greater than zero for thermodynamic stability reasons ([26]).

3.2 Polytropic ideal gas model
The fundamental entropic relation that defines the polytropic ideal gas (PIG)
is

s (e, v) = s0 +R ln

[(
e

e0

) 1
γ−1 v

v0

]
, (3.42)

where γ is a gas dependent constant andR = R/MM , withR = 8.314 J K−1 mol−1

that is the universal gas constant and MM the molar mass of the considered
gas.

From the kinetic theory it is possible to show that γ depends from the
complexity of the gas molecule only2 and its value is

1The acoustic equation is a linearization of the full potential problem
2This approximation is valid under the hypothesis that no vibrational degrees of free-

dom are active in the molecule
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γ =


5
3

monoatomic gas
7
5

linear molecule
4
3

nonlinear molecule

that is valid if all an only the rigid degrees of freedom of the molecule are
active.

Solving equation (3.42) for e it is possible to obtain the fundamental
relation in its energetic representation

e (s, v) = e0

(v0

v

)γ−1

exp

[
(γ − 1)

s− s0

R

]
. (3.43)

Differentiating this relation, recalling definitions (3.12), the two equations
of state for the PIG gas can be obtained

P (s, v) = (γ − 1)
e0

v0

(v0

v

)γ
exp

[
(γ − 1)

s− s0

R

]
(3.44a)

T (s, v) = e0

(v0

v

)γ−1 γ − 1

R
exp

[
(γ − 1)

s− s0

R

]
, (3.44b)

where the function (3.43) can be highlighted giving

P (e, ρ) = (γ − 1) ρ e (3.45a)

T (e) =
γ − 1

R
e. (3.45b)

Combining equations (3.45) it is possible to obtain the well known PIG
equation of state

P = ρRT, (3.46)

that by itself does not represent all the thermodynamic characteristics of the
gas.

3.2.1 Isentropic transformations

In an isentropic transformation, since entropy remains constant, the variation
of pressure can be obtained evaluating equation (3.44a) for s = s0

Pis (v) = P (s0, v) = (γ − 1)
e0

v0

(v0

v

)γ
. (3.47)
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Evaluating now equation (3.44a) in the reference gas state, the reference
value for pressure can be obtained

P0 = (γ − 1)
e0

v0

. (3.48)

Dividing equation (3.47) by equation (3.48), the isentropic relation be-
tween P and v is obtained

Pis
P0

=
(v0

v

)γ
, (3.49)

that, changing the variable v to ρ, can be rewritten as

Pis (ρ) =
P0

ργ0
ργ, (3.50)

that can be re–expressed as the well known

P

ργ
= const. (3.51)

3.2.2 Enthalpy

To solve the 2–fields full potential problem (2.23) it is necessary to compute
the enthalpy function his (ρ) for an isentropic transformation. Given that

h = e+ Pv, (3.52)

substituting in equation (3.52), equation (3.45a) solved for e becomes

e (P, ρ) =
P

(γ − 1) ρ
, (3.53)

it is thus possible to obtain

h (P, ρ) =
γ

γ − 1

P

ρ
. (3.54)

If the pressure is now expressed in term of isentropic transformation, the
final function hvdWis (ρ) can be deduced

h
PIG

is (ρ) = h (Pis (ρ) , ρ) =
γ

γ − 1

P0

ργ0
ργ−1. (3.55)
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3.2.3 Speed of sound

Recalling definition (3.41), and substituting v = 1/ρ

c2 (s, ρ) =

(
∂P

∂ρ

)
s

= −v2

(
∂P

∂v

)
s

= v2

(
∂2e

∂v2

)
s

. (3.56)

Performing all the needed differentiations and with the use of equa-
tion (3.53), it can be demonstrated that the speed o sound is expressible
as

c2 (P, ρ) = γ
P

ρ
, (3.57)

that, using the equation of state (3.46), can be reformulated as the well
known

c2 (T ) = γ RT. (3.58)

3.3 Polytropic van der Waals gas model

The fundamental entropic relation that defines the polytropic van der Waals
(PvdW) model is

s (e, v) = s0 +R ln

( e+ a
v

e0 + a
v0

) 1
δ
v − b
v0 − b

 , (3.59)

where δ, a and b are gas dependent constant. It is noted that this equation
turns in the PIG fundamental relation with a = 0, b = 0 and δ = γ − 1.
By assumption, the quantity δ is constant and therefore γ is constant too.
However in this case γ does not represent the specific heats ratio as it is for
the PIG model. In fact in the PvdW model, the value of cp is not constant
even under the polytropic assumption. The meaning of constants a and b are
respectively the attraction between gas particles (called van der Waals force)
and the average volume excluded from v by the presence of gas molecules.

Solving equation (3.59) for e it is possible to obtain the fundamental
relation in its energetic representation

e (s, v) = −a
v

+

(
e0 +

a

v0

)(
v0 − b
v − b

)δ
exp

[
δ
s− s0

R

]
. (3.60)
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With a similar procedure as the one performed for the PIG model, the
equations of state for the PvdW gas can be obtained

P (s, υ) = − a

v2
+ δ

(
e0 +

a

v0

)(
v0 − b
v − b

)δ
1

v − b exp

(
δ
s− s0

R

)
(3.61a)

T (s, v) =
δ

R

(
e0 +

a

v0

)(
v0 − b
v − b

)δ
exp

(
δ
s− s0

R

)
, (3.61b)

Equations (3.61), combined together, give the well known equation of
state for the van der Waals gas(

P + a ρ2
)

(1− b ρ) = ρRT, (3.62)

that by itself, however, does not represent all the gas thermodynamic char-
acteristics.

3.3.1 Isentropic transformations

In an isentropic transformation, since entropy remains constant, the variation
of pressure can be obtained evaluating equation (3.61a) for s = s0

Pis (v) = P (s0, v) = − a

v2
+ δ

(
e0 +

a

v0

)(
v0 − b
v − b

)δ
1

v − b. (3.63)

Evaluating now equation (3.61a) in the reference gas state, the reference
value for pressure can be obtained

P0 = − a

v2
0

+ δ

(
e0 +

a

v0

)
1

v0 − b
. (3.64)

Dividing equation (3.63) by equation (3.64), the isentropic relation be-
tween P and v is obtained(

Pis +
a

v2

)
(v − b)γ =

(
P0 +

a

v2
0

)
(v0 − b)γ . (3.65)

By changing the variable v to ρ, equation (3.65) can be rewritten as

Pis (ρ) =
(
P0 + a ρ2

0

)( ρ

ρ0

1− b ρ0

1− b ρ

)γ
− a ρ2. (3.66)
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3.3.2 Enthalpy

To solve the 2–fields full potential problem (2.23) it is necessary to compute
the enthalpy function his (ρ) for an isentropic transformation. Given that

his (ρ) = eis (ρ) +
Pis (ρ)

ρ
, (3.67)

computing eis from equation (3.60) and imposing s = s0, the final expression
for hvdWis (ρ) results

h
PvdW

is (ρ) =
(
P0 + a ρ2

0

)( ρ

ρ0

1− ρ0 b

1− ρ b

)γ
γ − ρ b

(γ − 1) ρ
− 2 a ρ. (3.68)

3.3.3 Speed of sound

The speed o sound for the polytropic van der Waals gas model is given by

c2 (P, ρ) =
γ (P + a ρ2)

ρ (1− ρ b) − 2 a ρ. (3.69)

3.4 Dense gas dynamics

In 1971 Thompson introduced the fundamental derivative of gas dynamics
[28] defined as

Γ (s, v) ,
v3

2 c2 (s, v)

(
∂2P

∂v2

)
s

, (3.70)

whose sign is univocally determined by the sign of the second derivative
(∂2P/∂v2)s, that is the concavity of isentropes in the P–v plane.

Simply changing the variable v to ρ in equation (3.70), it can be shown
that

Γ (s, ρ) = 1 +
ρ

c (s, ρ)

(
∂c

∂ρ

)
s

, (3.71)

and a simple application of the chain rule with ρ = 1/v leads to the third
form of the function Γ

Γ (s, v) = 1− v

c

(
∂c

∂v

)
s

. (3.72)

Basing on this function, three different fluid families can be defined de-
pending on the value assumed by Γ in different thermodynamic regions:
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RAREFIED GAS
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Figure 3.1: P–v diagram near dense gas region

• Γ > 1 everywhere: Low Molecular Complexity (LMC) fluid

• Γ > 0 and there exist a thermodynamic region where 0 < Γ < 1: High
Molecular Complexity (HMC) fluid

• Γ < 0 in some thermodynamic region: Bethe–Zel’dovich–Thompson
(BZT) fluid

As it is clear from the expression (3.72), in HMC and BZT fluids, it could
happen to have (∂c/∂v)s positive, that means that in an isentropic expansion
the speed of sound would increase, possibly leading to a reduction in the Mach
number. In the test case in section §6.3.1 such a case is presented.

Modeling a gas with the simple mathematical model of the polytropic
ideal gas is a good strategy if the gas flow is always in a rarefied regime.
However, when dense gas effects must be investigated this model becomes
completely unappropriated. For example the value of Γ for the polytropic
ideal gas model is always equivalent to (γ + 1) /2 (see appendix B) that is
constant and greater than 1. This would lead to a wrong estimate of the
rate of change of the speed of sound with density in isentropic perturbations,
making this model incorrect to be used with HMC or BZT fluids.

46



3.4. DENSE GAS DYNAMICS

Inversion region and BZT gases The region where the fundamental
derivative Γ goes below zeros is commonly called inversion zone and the
curve on the P–v diagram where Γ = 0 is called transition line. They are
both sketched in figure 3.1.

The simplest thermodynamic model that allows the existence of such a
region is the van der Waals gas. This model overestimates the extension of
that region but it is well capable to represent all the BZT fluid qualitative
behaviors. It is possible to show that with this model, the inversion region
exists if

1 < γ ≤ 1.06 . (3.73)

Such a value for the constant γ can be obtained using very heavy and
molecularly complex fluids. This aspect can be better understood computing
the value of cv for the van der Waals fluid. Recalling equation (3.26), the
easiest way to compute it, is to differentiate the function e = e (T, v). This
function can be obtained from equation (3.61b) recognizing in it the energy
function

T (e, v) =
δ

R

(
e+

a

v

)
, (3.74)

that solved for e gives

e (T, v) =
RT

δ
− a

v
, (3.75)

and therefore
cv = c0

v =
R

δ
=

R

γ − 1
, (3.76)

that is constant as expected since the model is polytropic. Solving equa-
tion (3.76) for γ gives

γ =
R

cv
+ 1, (3.77)

and therefore to obtain a value for γ that tends to 1 it is necessary to use a
fluid with a high value of constant volume specific heat, given generally by
complex molecule fluids as said before.

As show in [22], the approximated entropy jump across a shock given by

∆s = −
(
∂2P

∂v2

)
s

(∆v)3

12T
+O

(
(∆v)4) =

c2

6 v3 T
Γ (∆v)3 +O

(
(∆v)4) . (3.78)

Therefore, across a shock near the transition line (where Γ ≈ 0), as proved
in [29], the first term is comparable to O

(
(∆v)4), i.e smaller than the PIG
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case, leading to a better efficiency of ORC engines. Furthermore, this aspect
plays in advantage of the isentropic full potential formulation when capturing
shocks near the transition line.

Still referring to equation (3.78), as stated in [30], it is possible to see
that where Γ < 0, given the convexity of the entropy function (that implies
∆s > 0), compression shocks cannot exist and necessarily split into fans.
Conversely expansion shock are physically admissible, and such an example
is presented in the case of section §6.3.2.

Another interesting phenomenon is the existence of mixed shock–fan
waves. Since the inversion zone has a relatively limited extension, it is highly
possible that, during a transformation, a particle of fluid enters or exits it.
In this case it is possible to observe a compression or an expansion through
a 2–component wave (a fan adjacent to a shock) or a three component wave
(fan–shock–fan or shock–fan–shock).

3.5 Other gas models
In litterature there exist many more complicated models such as the Martin–
Hou, the Soave–Redlich–Kwong or the multi parametric ones. A possible ef-
ficient strategy to implement those models in the 2–fields full potential solver
is to generate a precomputed thermodynamic table that gives the isentropic
enthalpy in function of the fluid density. In problem (2.23), the function
his (ρ) is then substituted by the function h̄is that is a piecewise linear inter-
polation of this table. To post process the data it could be necessary to have
even other tabulated thermodynamic functions such as the pressure or the
speed of sound. In figure 3.2 it is shown the error in function of the number
of interpolating points.

The convergence is second order since the interpolation is piecewise linear,
but the meaning of these graphics is to show that with a relatively small
number of interpolating points, the relative error measured in L2 norm is
small enough to give acceptable solutions. When this strategy was adopted
in the numerical simulations of this work, 5000 interpolating points were
used, that is both cases of PIG or PvdW gas give an error of the order of
10−6.

This approach, besides allowing the usage of every thermodynamic model,
speeds up the program execution because instead of many heavy nonlin-
ear computations such as exponentiations, it requires only the computing of
products and sums to carry out the linear interpolation. For example, on
a mesh with 34 662 elements the speed up (on CPU) obtained using the
tabulated functions instead of the exact ones was 2.8x.
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Figure 3.2: Thermodynamic functions interpolating errors. The PIG case is
computed in rarefied gas conditions while the PvdW case is computed near
the critical point.
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Chapter 4

Parallel computing

Nowadays, thanks to the Internet, it is possible to find a lot of tutorials and
articles that deal with parallel computing. It is even possible to find some
guides that explain how to build a little cheap computer cluster connecting
together some normal computers in a LAN network. What follows, is mainly
taken from [31].

One of the main targets of this work is the parallelization of the aerody-
namic solver ExPReS and the analysis of the speedup of the parallel version
compared to the serial version.

Nowadays parallel computing represents a fundamental aspect in numer-
ous research fields: physics, engineering, biology, economy, medicine. In these
sectors many problems are intrinsically parallelizable: numerical example
are vector sum and matrix multiplication. However, the growing interest in
parallel computing in recent decades, both on software and hardware sides,
has been particularly affected by the reaching of technological limits of se-
rial architectures: after the race to the GHz of the CPUs in the 2000s, the
technological and economical focus has moved to the multi–core processors
approach. The technological limitations associated with serial processors are
mainly concerned with the fact that the information in the CPU propagates
at a speed of the order of light speed. It is therefore necessary to reduce the
distance between its elements to increase the CPU performances . However
there are physical and technological limits to the miniaturization of the el-
ements inside the CPU. These limits are such that it is more economically
advantageous to increase computing performance by focusing on parallel ar-
chitectures.

There are several advantages in using parallel computers:

• time saving: first of all, throwing more resources at a task will shorten
its time to completion, with potential cost savings;
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• problem dimension: many problems are too large for their resolution
with a single serial computer;

• concurrency capabilities: with a parallel architecture it is possible to
do multiple things at the same time;

• distributed resources: in a parallel architecture it is possible to dis-
tribute tasks to resources that are not physically close.

Today, parallel architectures are practically everywhere, from supercomput-
ers to small clusters, from personal computers to smart–phones.

4.1 Parallel architectures

4.1.1 Classification

One classification used in parallel computing is the Flynn’s taxonomy [32]. In
the Flynn’s taxonomy parallel architectures are classified on the basis of their
capabilities to manage instructions and data streams. Thus, there are two
possible states for each type of stream: single or multiple. Four combinations
are possible in this taxonomy: SISD (Single Instruction Single Data), SIMD
(Single Instruction Multiple Data), MISD (Multiple Instruction Single Data),
MIMD (Multiple Instruction Multiple Data).

SIS This is basically the simple serial architecture. In this architecture
there is a single instruction stream and a single data stream. The serial ver-
sion of ExPReS is based on this architecture. The execution is deterministic.
Figure 4.1 shows the SISD approach: data A and B are loaded from memory,
then C is computed and stored back.

Figure 4.1: SISD approach [31].

SIMD In this parallel architecture there is a single instruction stream but
there are multiple data streams. This means that it is possible to process
multiple data at the same time but only with the same operation: each com-
putational unit applies that operation on its data stream. Implementations
of this type of parallel architecture inside modern CPUs are for example the
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SSE (Streaming SIMD Extensions) and the AVX (Advanced Vector eXten-
sions) instruction sets extensions for CPUs. Even the architecture of the GPU
can be seen as an example of SIMD. Figure 4.2 shows the SIMD approach:
the same instruction stream (load, multiplication and store) is performed on
different data sets (A(i), B(i), C(i) with i = 1 ... n).

Figure 4.2: SIMD approach [31].

MISD In this parallel architecture there is a single data stream and mul-
tiple instruction streams: each processing unit operate with its instruction
stream on data shared all the processing units. This means that each process-
ing unit can generate different results from the shared data stream. This kind
of parallel architecture is rarely used. Figure 4.3 shows the MISD approach:
on the same data A(1) different multiplications are performed.

Figure 4.3: MISD approach [31].

MIMD This is the most popular parallel architecture: there are multiple
data streams and multiple instruction streams. This means that different
processing units can operate simultaneously with different instructions on
their own data. The execution in this case can be non–deterministic: the
order in which the different processing units finish their work is not defined.
Examples of this architecture are multi–core CPUs where while a core is car-
rying out an operation on its data, another core can simultaneously perform
a different operation on different data. Modern supercomputers and clusters
use this architecture. Figure 4.4 shows the MIMD approach: completely
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different instructions streams are performed in n different threads P1, P2 ...
Pn.

The MIMD architecture can be further divided in SPMD(Single Program
Multiple Data) and MPMD (Multiple Program Multiple Data).

Figure 4.4: MIMD approach [31].

SPMD In this architecture different processors executes the same program
on different data but, unlike the SIMD architecture, different processors may
be in different points of the program at the same time, performing different
instructions. When programming with OpenCL and GPUs, the architecture
incorporates features from SIMD and SPMD. In this case NVIDIA called
it SIMT (Single Instruction Multiple Thread) [33]. What happens is that
GPU’s threads are grouped together (in warps, explained in section §4.4) in
order to execute the same instruction of a given program (kernel), similarly to
what happens with the SIMD approach. However, the SIMT approach makes
programming easier than the SIMD approach, avoiding the programmer to
explicitly introduce some measure to execute the program properly.

MPMD In this architecture different processors executes differents pro-
grams on different data at the same time.

4.1.2 Parallel performances assessment

Parallel programs are more complex than serial programs because the pro-
grammer must deal with multiple data and multiple instruction streams.
Mainly two performance indicators are used to assess benefits of parallel
computing: Speed up measurement and scalability capabilities. It should be
kept in mind that both of them depend on the software–hardware combina-
tion and not only on the program itself.

Speed up The primary goal of parallel computing is the reduction of
the simulation time but this may lead to additional resources requirements.
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In fact, in parallel applications, some hardware and software resources are
needed to organize and distribute work between processors and in order to
allow communications between them.

One of the most important concept in parallel computing is the Amdahl’s
law [34]. It states that, given the parallel fraction of the code P , given the
serial fraction of the code S, and given the number of processors N , the
potential program speedup of the parallel version in respect to the serial
version is:

speedup =
1

P

N
+ S

This means that, for example, if only 50% (P = 0.5) of the code can be
parallelized it is impossible to obtain speedups greater than 2, not even with
an infinite number of processors. Figure 4.5 shows the speed–up trend with
different serial and parallel fractions.

Scalability Scalability is the ability of a problem and its solution algorithm
to handle a growing amount of work efficiently. There are two types of scaling
related to the solution time. In the strong scaling the total problem size is
fixed as more processors are added: this means that it is possible to reduce
the solution time by increasing the number of available processors. In the
weak scaling the problem size per processors stays fixed that means that
it is not possible to reduce the solution time but in the same time it is
possible to solve more cases or a bigger problem by increasing the number of
available processors. The type of scaling depends on both the hardware and
the software used in the simulation.

4.1.3 Portability

Thanks to standardization in several API (Application Programming Inter-
face), such as MPI, Posix Threads, OpenMP and OpenCL, nowadays porta-
bility issues with parallel programs are not as serious as in the past years.
However, despite the existence of standards for APIs, implementations may
be different. In some cases the differences in implementations require changes
in the code to ensure portability. Portability can also be affected by hardware
architectures.
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Figure 4.5: Speed–up trend.

4.1.4 SIMD instructions

Nowadays CPUs, even low–budget ones, have multiple cores that allow the
processing of various data with different instructions at the same time: this is
an example of MIMD approach. Moreover, each core is also able to perform
the same operation on multiple data simultaneously using a set of SIMD
instructions. That means, for example, that if the programmer writes a
code that is capable to take advantage of SIMD instructions, it is possible
to sum two vectors of 4 floats (i.e. single precision floating point numbers
in C notation) with a single instruction using a single core. Actually there
are many available SIMD instruction sets in modern CPUs, such as MMX,
3DNow!, SSE, SSE2, SSE3, SSE4, AVX, AVX2 and many others.

With the first version of the SSE the programmer can operate on four 32-
bit single–precision floating point numbers simultaneously. With the second
version, SSE2, the capabilities of the original SSE were extended introducing,
for example, the possibility to operate on two double–precision floating point
numbers simultaneously. Figure 4.6 shows the usage of the SSE to perform
the same operation on multiple data at once.

When programming with SSE there are two choices. One choice is to
explicitly tell the compiler how to use the SSE instructions. This strategy
allows the programmer to have a low–level control of the use of the SIMD
units in the CPU but it implies a greater effort to obtain an efficient imple-
mentation. The other choice is to leave to the compiler the task of generating
the code needed to take advantage of SSE instructions. This approach is of-
ten called auto–vectorization and it is implemented in the GCC compiler
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Figure 4.6: Using SSE to multiply four single–precision floating point num-
bers at once [35].

where this feature can be activated by the following compiler flags:

-O2 -msse -msse2 -ftree-vectorize

In this work it was decided to activate the auto–vectorization flags of GCC
and leave the compiler the task of vectorizing for loops wherever possible.

4.1.5 Shared memory systems and multithreading

Shared memory parallel computers processors have the ability to access all
memory as a global address space. In this architecture, processors can per-
form different tasks but share the same memory resources. This means that if
one processor modifies a variable in the shared memory, the change is visible
to all the other processors. There are two important type of shared memory
systems: UMA (Uniform Memory Acess) and NUMA (Non Uniform Memory
Access).

UMA The UMA shared memory systems are often called SMP (Symmetric
Multiprocessor). In this architecture all processors have equal access prior-
ities and access time to the shared memory. When processors use cache
memory, a memory coherence problem arises. In fact if a processors up-
dates a shared variable that is temporary stored in its cache memory, that
change will be only visible to that processors, but the same variable stored
in the shared memory will remain outdated. This problem is solved by the
CC-UMA (Cache Coherent UMA). Cache Coherent systems use an hardware
mechanism to ensure that all processors will see the updated variable. Exam-
ples of this architecture are the earlier dual–core dual–processors computers.
Figure 4.7 shows the topology of a UMA system.
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During this work some dual–core and quad–core single–processor com-
puters that follows the SMP architecture were used. In fact each core of
the single CPU shares the system RAM with a SMP approach. This is the
architecture used for the execution of the multithreaded version of ExPReS.

Figure 4.7: UMA system [31].

NUMA The NUMA architecture is made by phisically linking more SMPs.
Each SMP in this topology has a local memory that can be accessed quickly.
However each SMP can access to the local memory owned by other SMPs
using an interconnect bus, but access times to other local memory becomes
longer. The name NUMA arises because of these differences in access times.
Examples of this architecture are the modern multiprocessor desktops where
each multi–core processors is associated with some RAM banks but can access
other banks using high–speed serial bus such as Intel QPI or HyperTransport.
In CC-NUMA systems the cache coherency is maintained. In figure 4.8 it is
shown the topology of a typical NUMA system.

The main advantages of the shared memory systems are the fast data
sharing between different tasks and a user–friendly perspective to the mem-
ory given by the global address space. One of the main disadvantages of this
architecture are the lack of scalability between CPUs and memory: adding
mode CPUs increases traffic on shared memory–CPU path and the solutions
of this problem can be too expensive. Another disadvantage of this architec-
ture is that the programmer has the responsibility to guarantee the correct
access to the shared memory from different tasks.
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Figure 4.8: NUMA system [31].

Multithreading From the programming point of view it is possible to take
advantage of the shared memory system architecture by using multithreaded
programming model.

A thread is the smallest sequence of programmed instructions that can
be managed independently by an operating system scheduler. A thread can
be seen as a light–weight process: a single heavy–weight process can be
subdivided in numerous threads that can be executed independently. Each
thread of a process, for example, can be executed by each core in a multi–core
CPU simultaneously. Each thread in a process has its own private memory
but, following the shared memory architecture, every thread of the same
process shares the process resources. Thus, different threads of the same
process can communicate using the global shared memory. However, threads
of different processes don’t share resources and can’t communicate directly
through the shared memory. In this case different processes can communicate
by using a message passing mechanism, such as MPI, typical of distributed
memory systems. One of the advantages of the multithread approach over
the multiprocess approach is that creating and managing threads in a process
has a very low cost compared, for example, to the fork of a process typical
of the multiprocess approach. That is because when a new thread is created
the process shares with it the shared memory, but when a process is forked it
is necessary to duplicate the entire memory allocated by the original process.

The two most important implementation that give the programmer the
ability to parallelize the code with the multithreading approach are POSIX
Threads (or pthreads) and OpenMP.

POSIX Threads POSIX Threads provide a library with a set of C types
and procedure calls. With pthreads the programmer can create and ter-
minate threads in a process by calling specific routines. The programmer,
for example, can write a function in the program and then create a thread
that execute that function. Pthreads gives the programmer a low–level man-
agement of threads, such as function to synchronize threads, mutexes and
condition variables.
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OpenMP OpenMP is an API that comprises three components: compiler
directives, runtime library routines, environment variables. While pthreads
uses a library–based approach to multithread parallelism, OpenMP uses a
compiler directive–based approach. That means that the programmer has
to tell the compiler how to parallelize the code mainly by using compiler
directives instead of calling functions and creating objects. One of the main
advantages of OpenMP API is that it is very easy to use: the programmer can
incrementally parallelize its serial program by adding few compiler directives
and leaving to the compiler the task to create the code that distributes
the work among different threads. However the programmer must explicitly
instruct the compiler how to behave when different tasks have to write to a
shared resource, for example by using a critical region. The programmer can
also synchronize threads by using barriers.

In listing 4.1 and 4.2 it is shown an example that explains how easy it is
to parallelize a for loop in C using OpenMP:

Listing 4.1: serial for

for(int i = 0; i < size; i++)
{

c[i] = a[i] + b[i];
}

Listing 4.2: OpenMP parallel for

#pragma omp parallel for
for(int i = 0; i < size; i++)
{

c[i] = a[i] + b[i];
}

What happens during the execution of a program written with OpenMP
directives is that when the program arrives to the parallel part of the code, the
process is subdivided in two or more threads and the total work is subdivided
and assigned to different threads. Figure 4.9 exemplifies the OpenMP model
of parallel execution.

In the particular case shown in listing 4.2 when the process reaches the
parallel region, it creates some new threads that share vectors a, b and c.
The variable i, the index of the loop, is private to each thread and its value
differs from thread to thread. That means that each thread works on different
elements of the vectors a, b and c. Hence there is no possibility for one thread
to write to the same memory position where another thread is reading. In
more complex situations, such as when multiple threads need to write to the
same location in the shared memory, it is needed a mechanism that allows
only one thread to write at once to avoid unexpected behaviors. For this
purpose OpenMP gives the programmer the possibility to explicitly indicate
that a set of instructions in the code has to be executed by only one thread
at once. This is done using the #pragma omp critical directive.

One important thing is that the OpenMP approach for executing for loops
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Figure 4.9: The fork–join model of OpenMP [31].

in parallel can be combined with the use of SIMD instruction (such as SSE),
eventually by using the compiler autovectorization, to further accelerate the
execution.

The first parallel version of ExPReS, the CPU multithreaded version is
heavily based on OpenMP. Since the aerodynamic solver uses an explicit time
advancing scheme where the update of the solution on one cell needs only to
know the solution at the previous time step, it is natural to subdivide the
updating task between threads. This means that at every time step a loop
similar to the one shown in listing 4.2 is executed, but instead of adding two
vectors the solvers updates the solution on each cell of the domain.

For a deepening of the OpenMP specification the reader is referred to
[14].

4.1.6 Distributed memory systems and message passing

In this parallel architecture there is not any global shared memory and each
processor can access directly only its local memory. This means that any
change to the local memory of a processor is not visible by another proces-
sor. Thus in this architecture the concept of cache coherence is meaningless.
However different processors can communicate to each other using a commu-
nication network to connect inter–processor memory. Usually communication
networks used in distributed memory supercomputers and smaller clusters
are based on technologies such as optical fiber, Infiniband or even the simple
Ethernet. One important aspect in this architecture is that the program-
mer must explicitly define how and when processes executed on different
processors can communicate to each other. This is done typically using a
message passing mechanism such as MPI. Figure 4.10 shows schematically
the distributed memory architecture.

There are some advantages and disadvantages in using a distributed mem-
ory architecture. The most important advantage is the scalability of the sys-
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tem with respect to the distributed memory approach: it is possible to easily
increase the number of total processors and the total memory by connecting
new nodes to the network. Another advantage is that when different nodes
don’t need to communicate to each others they only need to access to their
own local memory, thus avoiding any cache coherence problem.

There are two important disadvantages of this architecture in respect
to the shared memory one. The first one is that the programmer must
explicitly take care of communications between processes and the second is
that communications between processors through the network slow down the
entire execution.

Figure 4.10: Topology of a distributed memory system [31].

MPI MPI (Message Passing Interface) is the “de facto” standard for mes-
sage passing. There exist various implementations, such as OpenMPI and
MPICH. MPI implementations provide types and a library of functions to
the programmer. These functions allow to initialize and terminate the MPI
environment and to manage the message passing between processes. However
care must be taken only on the definition of how and when a communication
between different processes is needed. The effective communication between
processes on different processors, or even between different hardware archi-
tectures, is entirely managed by the implementation. For example some
implementations such as OpenMPI use the SSH protocol to connect different
node of the network. Since MPI is usually used in a distributed memory
system, the parallel application has to support parallelism through a multi-
process approach instead of a multithread approach. This means that when
the application is launched and the MPI environment is initialized the main
process is forked in multiple processes which are distributed among different
processors (or at least among different cores of the same CPU). Since every
process generated from the master one has an uniquely identifier inside the
program, each process can execute different operations on different data by
going through different branches (MIMD).
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Figure 4.11: Programming with hybrid architecture [36].

4.1.7 Hybrid architecture

This architecture is based on the fusion of the distributed and the shared
memory architecture. The main idea is to have multiple shared memory
systems connected to each other through a network that follows the dis-
tributed memory topology, allowing the communications between different
shared memory systems. This idea is used to exploit the advantages of both
distributed and shared memory architectures. Nowadays small clusters and
the fastest supercomputers are built with this scheme. The actual trend is
to use both CPUs and GPUs in each shared memory system that compose
the network to improve the performances of applications that can take ad-
vantage from the GPU computing. Figure 4.12 sketches the typical topology
of a hybrid architecture.

From the programming point of view one of the best way to exploit the
advantages of this architecture is to combine the use of MPI, OpenMP and
even SIMD instructions as shown in figure 4.11.

The idea is to distribute tasks between each node in the distributed mem-
ory system network by using MPI and exploit the shared memory system
advantages inside each node by using OpenMP. Moreover each core of each
CPU inside a node can take advantage of the SIMD instruction parallelism.
Each node can have one or more GPUs.
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Figure 4.12: Hybrid architecture [31].

4.2 GPGPU computing

GPGPU (General Purpose Graphic Processing Units) indicates the ability
of the modern GPUs to perform computations that are not strictly related
to graphical rendering. In the last decade the two most important GPUs
vendors, AMD and NVIDIA, spent a lot of money and time to develop prod-
ucts dedicated to heavy scientific computations. It is now possible to buy
some GPU models that are specifically designed to perform general purpose
computation, such as NVIDIA Tesla and AMD FireStream.

Nowadays almost every new GPU model, even a cheap one, has the ability
to perform general purpose computations. However one of principal limita-
tion of this technology is often the lack of software that can take advantage
of the GPU computing. Even the fastest supercomputers in the world use
a hybrid architecture that combine CPUs and GPUs. This approach allows
great speedups using GPUs when the particular problem that must be solved
allows that. However to exploit the highly parallel architecture of the GPUs
the programmer must explicitly write a code that can be compiled and exe-
cuted on those particular devices.

Before the birth of the actual GPU programming languages such as
CUDA C and OpenCL C, it was still possible, by using OpenGL for ex-
ample, to program a graphic card to perform computations that are not
strictly related to visual rendering. However the direct use of OpenGL led to
very complex codes. In fact the idea behind the first approaches to GPGPU,
was to map the parallel computations needed for the problem to the paral-
lel computations related to the visual elaboration of pixels and vertexes [6].
Now two of the most important GPGPU API and programming languages,
CUDA and OpenCL, facilitate the writing of code by using syntaxes that
are very similar to the other classical programming languages for CPUs such
as C, Python and Fortran. OpenCL C, for example, is based on the C99
standard. However it must be underlined that to exploit the real potential of
the GPGPU, the programmer that uses OpenCL and CUDA must have some
knowledge of the typical GPU architecture. Recently a new programming
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language for GPGPU called OpenACC has appeared: the main advantage of
this programming language is that its syntax is very similar to the OpenMP
one. This means that any programmer with a little knowledge of the GPUs
architecture and memory model can easily adapt its code to be executed on
the GPU with the simple addition of preprocessor’s directives. Currently
there are few compilers that supports OpenACC.

Using a GPU instead of a CPU for scientific computations can reduce of
the execution time even by some order of magnitude. However the speedup
that can be achieved with GPUs strongly depends on the nature and on the
dimension of the problem to be solved. The causes of this behavior are strictly
related to the differences between the CPU and the GPU architecture. GPUs
in fact are composed by hundreds or thousands little cores that make them
specially suitable for problems with very high data parallelism. There are
many numerical problems that exhibit this type of parallelism and that can
take advantage of the typical GPUs architecture. Vector sum and matrix
multiplication, applied for example to aerodynamic and structural solvers
are only few examples. On the contrary, when a problem exhibits mainly a
task parallel type of work subdivision, the best way to improve performance
is usually the execution on multiple CPUs.

4.3 OpenCL

OpenCL (Open Computing Language) is a framework to write programs
that execute across heterogeneous platforms consisting of CPUs, GPUs, and
other accelerators. This standard was originally proposed by Apple, and
is now maintained by the Khronos Group consortium, supported by many
important companies such as Intel, AMD and NVIDIA. Both CUDA and
OpenCL provide the programmer an API (OpenCL API and CUDA API)
and a programming language for the device (OpenCL C and CUDA C).
They are very similar but the most important difference between the two
APIs and languages is that while CUDA is compatible only with NVIDIA
GPUs, OpenCL is an open standard implemented by many vendors. This
means that a program written with OpenCL can run not only on GPUs
but also on CPUs and accelerators with a proper OpenCL implementation.
Thanks to the better compatibility of OpenCL, in this work it was decided
to use this language to implement a GPU version of the solver ExPReS. For a
more accurate comparison between OpenCL and CUDA APIs and languages
see [37].
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4.3.1 Host code and Device code, compilation and run-
time

In the OpenCL and CUDA jargon the CPU is called host while the GPU is
called device. The program executed on the device is composed by one or
more kernels. To make a comparison with the C language, a kernel is a sort of
function that is executed on the device exclusively. When programming with
the OpenCL API and OpenCL C the programmer writes two codes. One is
for the host and the other one, that contains the kernels, is for the device.
The host program is written in normal C/C++, it includes the OpenCL
header file (usually cl.h) and calls functions provided by the OpenCL API.
The program for the device is written in the OpenCL C language, a language
derived from the C99 standard with some restrictions. For example the
standard input/output implementation (printf) lacks and consequently there
is no possibility to print data on the standard output during the execution
of the kernel. However the fact that OpenCL is based on C99 means that
a programmer with experience in C can easily write code in the OpenCL C
language.

Once the source code for the host and for the device have been written
the next steps are the compilation and linking. The compilation of the host
code is done in the same way as usual and can be easily performed with
GCC. During the linking of the compiled objects, it is necessary to tell the
compiler to link the OpenCL library. Since now the source code written for
the device has not yet been compiled. In fact its compilation takes place at
runtime. When the compiled and linked host program is executed, it calls
the OpenCL just–in–time compiler that compiles the device code allowing
its execution on the device.

The host and the device are usually physically separated on the moth-
erboard and connected with the PCI–Express bus. Thus also the device
memory and the host memory are physically separated. This means that
when the host submits commands like the execution of a kernel on the de-
vice, the host and the device have to communicate to each other. Then, once
the kernel and its arguments are loaded from the host memory to the device
memory, the kernel can execute its instructions and access its own memory
without interactions with the host. Data transfers between the host and the
device are accomplished through the PCI–Express bus that is much slower
if compared to the link between the host and its memory or between the
device and its memory. When programming with OpenCL, it is thus impor-
tant to minimize the communications between the host and the device. In
fact the order of magnitude of the transfer speeds are: ∼ 10Gbit/s for the
PCI–Express bus, ∼ 100Gbit/s for the link between the GPU and the device
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memory. The simplest strategy is to structure the host code in three steps:

1. transfer all the input data from the host to the device

2. launch all the kernels needed for the simulation minimizing communi-
cations between the host and the device, i.e. try to reduce the read
back of intermediate results

3. read back the final results from the device to the host when the execu-
tion on the device is completed

4.3.2 Parallel approach

Thanks to the many–cores GPUs architecture it is possible to execute the
same kernel for hundreds or thousands threads concurrently. Since each
thread has an unique ID, the idea is to use this identifier to allow different
threads to read from different data location, execute different instructions
and write to different locations. With this model the job of the programmer
is simplified because he can work as if he was programming one thread. This
idea is better explained in listing 4.3, where it is shown the implementation
of the vector sum already discussed in section §4.1.5.

Listing 4.3: OpenCL vector sum

__kernel void vecAdd(__global float *a,
__global float *b,
__gloabl float *c)

{
/* Firstly the global ID of the thread is obtained */

int i = get_global_id (0);

/* The programmer can think as he is programming one
thread , so there are no for loops: each thread
works on its elements of the three vectors */

c[i] = a[i] + b[i];

/* The problem of the vector ’s dimension is solved by
launching the kernel with a total number of

threads equal to the vector ’s dimension */

}
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In OpenCL terminology threads are called work–items and are grouped in
work–groups organized in NDRanges. In CUDA these concepts correspond
to threads, thread blocks and grids. Each work–item in a NDRange has its
unique global ID but it has also a work–group ID inside its work–group.
Work–items of different work–groups in the same NDRange can have the
same work–group ID but their global IDs are different.

4.3.3 Memory model

The host memory is the memory associated with the CPU (i.e. RAM mem-
ory). The device memory associated with the GPU in the OpenCL terminol-
ogy can be subdivided in private memory, local memory, global memory and
constant memory. Each work–item has a private memory accessible only by
it and thus invisible by other work–items. Work–items in the same work–
group shares a memory that is called local memory (or shared memory in
the CUDA terminology). Since the local memory is only accessible by work–
items in the same work–group, work–items of different work–groups cannot
share data through the local memory. However work–items from every work
group and from every kernel shares a memory that is called global memory
(both in the OpenCL and CUDA terminology). Constant memory is imple-
mented in the global memory, and it is used for a faster access to constant
variables shared between all the work–items in a NDRange. However con-
stant memory is associated to a particular kernel and thus a work–item from
a kernel cannot access to the constant memory of another kernel. As ex-
plained previously, before a kernel can execute its instructions on data, the
input data must move from the host to the device through the PCI–Express
bus. Data transfer between host and device is strictly related to the concept
of buffer (see section §4.3.5). Figure 4.13 shows the device memory topology
with OpenCL terminology.

4.3.4 Restrictions

There are some important properties of the GPU memory hierarchy that
must be kept in mind. First, the global memory is slower than the local and
the private memory even by orders of magnitude. However not all of the
algorithms in numerical simulations can be written to take advantage of the
local memory. When data are transferred from the host to the device, it can
be stored in the global memory only. The local and private memory can be
filled with data only by the device as specified in the kernel’s instructions.
The same occurs when reading back results from the device to the host. It
is only possible to transfer data stored in the global memory.
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Figure 4.13: OpenCL memory model

Another problem is the memory consistency between the global and the
local memory. OpenCL defines a relaxed consistency model. For the local
memory, the value seen by work–items inside a work–group is guaranteed to
be consistent only at work–group synchronization points. This means that
when a work–item inside a work–group writes on a local memory location
and then another work–item inside the same work group wants to read from
the same location after the write operation, in order to ensure the correct
order of the write and read operations, a work–group barrier inside the kernel
is needed. The same problem arises with the global memory. A work group
barrier is necessary inside a kernel to ensure the correct use of the global
memory from different work–items inside the same work–group when load
and store operations are performed. In both cases the problem is solved with
the use of a synchronization barrier inside the kernel. However this problem
can’t be solved this way when it interests work–items from different work–
groups that try to read and write in the same global memory location. In this
case, in order to ensure memory consistency of the device global memory, it
is necessary to terminate the kernel. This operation guarantees that all loads
and stores from the global memory are completed before moving on with the
next kernel (which could be the same as the previous).

Another synchronization problem concerns the communications between
the host and the device. Most of the routines in OpenCL are non–blocking.
This means, for example, that when the host calls the routine that launches
the execution of a kernel on the device, that routine can return before the
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device finishes the execution of the kernel. Thus, if the host tries to read the
results of the kernel before the kernel end, it may read data that is not yet
updated. To avoid this behavior a synchronization point, such as a barrier,
is needed inside the host code to ensure that the kernel finishes its execution
on the device before the host tries to read back the results.

Another problem with the use of OpenCL on the GPU device that may
lead to poor performance is the thread divergence. The explanation of this
problem is postponed to section §4.4 because some other important concepts
must be introduced in order to better understand this phenomenon.

4.3.5 OpenCL concepts

When programming with OpenCL it is needed to deal with concepts such
as platform, context, devices, queue, kernel, buffers etc. These concepts are
needed because OpenCL creates an abstracted hardware model that frees the
programmer from thinking about the detailed hardware architecture of the
target device where the code will execute.

OpenCL platform For an intuitive explanation of what a platform is in
OpenCL, it is possible to describe it as a vendor–specific implementations of
the OpenCL API. The devices that a platform can target are thus limited
to those with which a vendor knows how to interact. In the platform model
there is a single host that coordinates the execution of kernels on one or more
devices.

OpenCL device A device represents the hardware where the kernels ex-
ecutes. It is possible to have one or more device in the same platform, but,
different devices can be included in the same platform only if they are all
similar form the OpenCL API implementation point of view. This means for
example that if a desktop computer has 2 AMD GPUs, the AMD OpenCL
API implementation will see 2 devices in the same platform. On the con-
trary if inside the system 1 NVIDIA GPU and 1 AMD GPU are installed, two
OpenCL API implementations are needed and thus two platforms formed by
one device each are seen by the host.

OpenCL context A context defines the environment in which kernels are
defined and executed. A context consists of:

• The collection of the OpenCL devices available for the host. These can
be CPUs, GPUs or accelerators. Accelerators are hardware specifically
designed to perform some computation faster than CPUs.
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• A list of kernels that execute on the available devices. It is possible,
for example, to run different kernels on different devices concurrently.

• Program objects: device program source code and executables that im-
plement the kernels. Program objects are built from the device source
code at runtime within the host program, by calling the OpenCL com-
piler.

• Memory objects: objects in the device memory only visible and acces-
sible within a kernel that executes on the device. These are explicitly
defined on the host and explicitly moved between the host and the
OpenCL devices. Memory objects are needed for compatibility reasons
because different devices may have different memory architectures.

While different devices from the same platform can stay in the same context,
different devices from different platforms cannot stay in the same context.
Thus if communications between devices from different platforms are needed,
it is necessary to pass through the host.

Platforms, devices and contexts are managed by the host program using
functions from the OpenCL API.

OpenCL queue Host and device are connected thanks to a bus such as
PCI–Express. Communications with a device occur by submitting commands
to a command queue. At least one command queue is necessary for the
communication between the host and the device, but multiple command
queues for the same device are allowed. A command queue can be in–order or
out–of–order. In an in–order command queue, commands are executed by the
device in the exact order as they are submitted to the queue. On the contrary,
with an out–of–order command queue it is possible for two commands to
be executed not int the order they were enqueued. This strategy is useful
because it allow the OpenCL implementation to search for commands that
can possibly be rearranged and executed more efficiently. The programmer
can always force an order between specific commands using the so–called
events.

OpenCL kernel As previously anticipated, kernels represent a sort of
functions that execute on the device. Kernels are written in OpenCL C,
a language derived from the C99 standard with some restrictions such as the
lack of recursive functions, pointers to functions, standard libraries. Ker-
nels can call other kernels or functions during their execution on the device.
OpenCL C language provides many built–in functions and vector data types
that can take advantage of the SIMD architecture.
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OpenCL buffer As previously explained, for compatibility reasons, data
transfers between the host and the device are achieved through the use of
memory object. Memory objects are visible from all the devices in the same
context. Communications between devices from different contexts must be
managed more explicitly by the host. The most important type of memory
objects are buffers and images. During this work only buffers were used.
A buffer is a contiguous block of memory made available to the kernels.
When an array assembled on the host has to be moved to the device, the
programmer has to create a buffer and copy the content of the array from the
host to the global memory of the device. After the buffer has been changed
by the kernel, the host submits a request to read back the results.

For a deepening of the OpenCL API and OpenCL C specifications the
reader is referred to [38], [33], [39], [15], [40], [41], [42].

4.4 Hardware architecture of a GPU

GPUs technology evolves very quickly and even the same vendor introduces
numerous changes and improvements between successive architectures. How-
ever every GPU architecture has in common a basic structure: they contain
hundreds, even thousands, cores and a hierarchy of memory. Thanks to their
enormous number of cores, GPUs can be orders of magnitude faster than
CPUs when the problem exhibit high data parallelism. Figure 4.14 better
explain the gap between GPUs and CPUs floating point performance.

All tests with OpenCL in this work were conducted on the hardware
available: NVIDIA GPUs based on the Fermi architecture. Here follows a
brief description of the GPUs hardware architecture and focus is given on
the Fermi one. Figure 4.15 shows the architecture of a Fermi GPU.
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Figure 4.14: trending of CPUs and GPUs performance in GFLOPS

Figure 4.15: Fermi GPU. Fermi’s 16 SM are positioned around a common L2
cache. Each SM is vertical rectangular strip that contain an orange portion
(scheduler and dispatch), a green portion (execute units), and a light blue
portions (register file and L1 cache).

In the Fermi architecture GPU cores, also called CUDA cores in CUDA
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Figure 4.16: Detail of Fermi SM and CUDA core

terminology or Processing Element (PE) in OpenCL terminology, are or-
ganized in Streaming Multiprocessors (SM) of 32 core each. In OpenCL
terminology, each SM represents a Compute Unit (CU). The host interface
connects the host and the device via PCI–Express. GigaThread is the sched-
uler that distribute thread blocks to each SM scheduler.

Figure 4.16 shows the architecture of a Stream Multiprocessor in detail.
Each SM features:

• 32 CUDA cores (or PE), one PE execute one thread. Each CUDA core
has a fully pipelined integer arithmetic logic unit (ALU) and a floating
point unit (FPU);

• 16 Load/Store units (LD/ST) for the calculation of the source and
destination addresses in cache or DRAM;

• 4 Special Function Units (SFU) that execute transcendental instruc-
tions such as square root;

• Capability of computing 16 double–precision operations per clock;

• Two warp scheduler and two instruction dispatch units allowing two
warp to be issued and executed concurrently: instructions of one warp
are issued to a group of 16 CUDA cores, 16 LD/ST units or 4 SFU.
Warps are defined later in section §4.4.1;
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• 64 KB configurable shared memory (local memory in OpenCL termi-
nology) and L1 cache. This memory can be used as local memory or
L1 cache depending on the requests of the kernel in execution. This is
an important aspect when a kernel doesn’t use local memory. In this
case in fact the configurable memory can be set as 48 KB of L1 cache
and 16 KB of local memory;

• Registers for the private memory of PEs.

Fermi also featured 768 KB of L2 cache that is accessible from all SMs and
that services load and store requests.

The GPU architecture is highly scalable. Since work–groups are dis-
tributed among the Streaming Multiprocessors, it is possible to reduce the
execution time of a kernel by increasing the number of available SMs on the
device. It is thus possible to span a wide market and performance range
with the same architecture by simply increasing the number of SMs and the
amount of device memory as depicted in figure 4.17.

Figure 4.17: GPUs architecture scalability. A multithreaded device program
is partitioned into blocks of threads that execute independently from each
other, so that a GPU with more cores will automatically execute the program
in less time than a GPU with fewer cores.
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Figure 4.18: Branch divergence.

Fermi revision It must be noted that the GPUs used in this work are
based on a revision of the Fermi architecture that introduce some improve-
ment over the original Fermi architecture, such as the increase of the number
of CUDA cores in each SM up to 48, as stated in [43]. However, since OpenCL
creates an abstraction of the hardware, these differences between hardware
architectures are not so critical.

For a deepening of the NVIDIA Fermi Architecture and the newer Kepler
architecture the reader is referred to [44], [45], [33]

4.4.1 Branch divergence

When the kernel doesn’t contain any conditional statement, each work–item
executes the same instructions on a different data thanks to the global ID.
This behavior is typical of the SIMD parallel approach. However when dif-
ferent work–items inside a kernel follow different branches they can execute
different operations, but all of them are executing the same “program” (i.e.
the same kernel). This leads to a SPMD (Single Program Multiple Data)
parallel approach. NVIDIA called this SIMD/SPMD approach SIMT (Sin-
gle Instruction Multiple Threads). When a SM is given a thread block to
execute, since the number of thread in a thread block can be bigger than
the number of cores in a SM (32 in the original Fermi architecture), thread
blocks are subdivided in group of 32 threads called warps that execute con-
currently. A warp execute one common instruction at time, so full efficiency
is achieved when all 32 threads in a warp follow the same execution path. If
threads of a warp diverge due to a conditional branch the warp serially exe-
cutes each branch path taken, disabling all the threads that are not on that
path. When all the paths are completed, all the threads converge back to the
same execution path. This serialization of the execution is the cause of the
thread divergence performance reduction. It is therefore very important to
avoid that different work–items behave differently depending on their global
id.
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Numerical discretization

In this chapter the numerical discretization of the 2–fields full potential flow
governing equations is introduced.

The general finite volume method is first presented and applied to this
particular problem. After this brief introduction, the cell–centered and the
node centered formulations are exposed and the implemented choice is dis-
cussed in view of the GPU architecture peculiarities. Subsequently some
schemes for the reconstruction of gradients are presented and briefly ana-
lyzed. The spatial stabilization problem is finally dealt, by presenting some
possible upwinding strategies.

Once the problem has been approximated in the space domain, some time
discretization schemes are presented. The attention is focused on explicit
time stepping schemes to obtain an efficient GPU solver. The integration
schemes stability is then investigated by a von Neumann analysis. Those
schemes are very suitable for the computing of transient solution, while they
result quietly inefficient when the steady state is sought for. Therefore two
different strategies to accelerate the computing of stationary solution are
presented.

Finally a procedure to impose boundary conditions is described.

5.1 The finite volume discretization

In order to solve the system (2.23) (rewritten here for clarity)
∂ρ

∂t
+∇ · (ρ∇φ) = 0

∂φ

∂t
+

1

2
∇φ · ∇φ+ his (ρ) =

1

2
V 2
∞ + h∞
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In the case of aerodynamic flows with shock waves, the most suitable
numerical solution technique is the finite volume (FV) approach. In fact,
this technique, on the contrary of the finite element method (FEM), allows
to easily deal with discontinuous solutions.

5.1.1 Mass conservation approximation

The first step required to obtain the finite volume formulation, is to con-
vert the differential form of the mass conservation equation to it’s integral
counterpart. To do that let’s integrate it over a fixed control volume V

ˆ
V

∂ρ

∂t
+

ˆ
V

∇ · (ρ∇φ) = 0. (5.1)

It is underlined that the integral form is valid even in case of discontinu-
ous solution (shocks) while the differential one exists only for differentiable
solutions.

Being the control volume not dependent from time, it is possible to pull
the time derivative out of the volume integral

d
dt

ˆ
V

ρ+

ˆ
V

∇ · (ρ∇φ) = 0. (5.2)

Note that the time derivative is now an ordinary and no more a partial
derivative because, having integrated ρ (r, t) over the volume V , the quantity´
V
ρ does no more depend on the space coordinate r.
The divergence theorem is then applied to the second term in order to

find the final form of the integral mass conservation law

d
dt

ˆ
V

ρ+

˛
∂V

ρ∇φ · n̂ = 0. (5.3)

To compute an approximation of the scalar field ρ (r, t) it is necessary to
solve this equation on a set of small control volumes obtained by a decom-
posing the whole domain. This decomposition can be obtained tessellating
the domain as in figure 5.1 (a more precise definition of the control volumes
is given in section §5.2). Meshes used in this work are all Delaunay triangu-
lations obtained with the software Gmsh.

Once the domain has been split, equation (5.3) is locally solved over each
control volumes, obtaining a discretized approximation of the solution. To do
that, the finite volume method approximates the field ρ (ri, t) (with ri ∈ Vi)
with the piecewise constant function Ri (t) defined as follows:

Ri (t) =
1

|Vi|

ˆ
Vi

ρ (r, t) . (5.4)
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∂Ω

Vi
Vj

Figure 5.1: Domain Tessellation.

It is highlighted that Ri converges to ρ (if ρ is regular enough) in the
limit of the primal elements size approaching 0.

It is therefore possible to write the approximated mass conservation law
as

dRi

dt
= − 1

Vi

˛
∂Vi

ρ∇φ · n̂. (5.5)

5.1.2 Bernoulli theorem approximation

With regard to the Bernoulli theorem, there is no necessity to integrate it
on a control volume because it is a local relation and an integration process
will not reduce the order of its derivatives. Exactly as in the case of density,
the velocity potential is approximated by a piecewise constant function

φ (r, t) ≈
Nv∑
i

Φi (t) Ii (r) , (5.6)

where Nv is the number of control volumes and Ii (r) is a function defined
as follows

Ii (r) =


1 if r ∈ Vi

0 elsewhere
(5.7)

Introducing this approximation in the Bernoulli theorem a first spatial
semi–discretized form is obtained

dΦi

dt
+

1

2
∇φ |

Vi
· ∇φ |

Vi
+ his (Ri) =

1

2
V 2
∞ + h∞, (5.8)

where it is evidenced that this is a mixed numerical–analytical expression
because of the presence of the term ∇φ |

Vi
that will be approximated in
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Figure 5.2: Cell-Centered and Node-Centered.

section §5.3.1.

5.2 Cell–Centered vs. Node–Centered formula-
tions

One aspect that must be clarified is the definition of the control volume.
Two different discretization methodologies are known in the literature. The
Cell–Centered (CC) and the Node–Centered (NC).

With reference to figure 5.2, these two schemes differ from how the control
volumes are defined. The Cell–Centered method adopts directly the primary
elements of the grid (triangles in figure 5.2 left), while the Node–Centered
scheme uses a geometric construction based on triangles medians to build
the control volumes (see figure 5.2 right).

This last strategy could seem to be unnecessary over–complicated, but as
proved in [46], it allows to use many of the finite element techniques in the
world of the finite volumes. In fact, in the NC formulation, the unknowns are
defined on the triangles nodes. It is thus absolutely natural to interpolate the
solution with the same shape functions used in the finite element method.
This allows to compute easily all the necessary derivatives at the cell inter-
faces. Using this shrewdness it is possible to assemble all the residuals and
matrices (if present) exactly with the same procedure as it would be done
using the finite element method (FEM).

An aspect against the CC formulation is that, as stated in [47], for an
arrangement of the cells sketched in figure 5.3, an interface averaging does
not provide the correct value at the midpoint of a face even for a linearly
varying function. The consequence is that on a grid with slope discontinuity
the discretization error will not be reduced even when the grid is infinitely
refined. Such zero–order errors manifest themselves as oscillations or kinks
in isolines, whereas a node–centered scheme experiences no problems in the
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Figure 5.3: Grid with slope discontinuity.

same situation.

GPGPU computing All the aspects illustrated above seem to be in favor
of the Node–Centered formulation, but some big disadvantages arise when
the solver is going to be implemented on a GPU. Two possible algorithms to
solve the 2–fields full potential flow problem in the NC formulation are here
presented. They are outlined in figure 5.4 and 5.5 and they are going to be
explained in this paragraph later on. These two procedures are presented for
the 2D case, since all the peculiar aspects related to GPGPU computing are
not different for the 3D case.

Consider the algorithm outlined in figure 5.4. In this procedure two ker-
nels are subsequently enqueued to compute fluxes and to update the solution
of the mass conservation equation. The first one is a 1D kernel of dimension
equal to the number of triangles. It computes all fluxes on the three inter-
faces of every triangle. For example, work–item 1, that works on triangle
E, computes the fluxes through the tree interfaces E −M1,5, E −M1,6 and
E −M5,6, where with Mx,y is intended the mean point of the x− y side.

Successively, a second kernel is launched in order to update the solution.
It is a 1D kernel with the same dimension of the number of triangles. It
updates the value of density on the three nodes of the triangle it’s working
on summing to them their fluxes. For example, work–item 1, that works on
triangle E, updates the value of density on the nodes 1, 5 and 6. Work–item
2, that works on triangle A, updates the value of density on nodes 1, 2 and 6.
To do that, work–item 1 must write to the memory positions rho[1], rho[5]
and rho[6] and work–item 2 must write to the memory positions rho[1],
rho[2] and rho[6]. It must be noticed that in this example, more work–
items write in the same memory location. Because of the relaxed memory
consistency model (explained in section §4.3.3 and in section §4.3.4), this
will result in wrong values of density on the nodes at the end of this kernel,
making this algorithm not suitable for an implementation on a GPU.
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Figure 5.4: Algorithm 1: memory consistency problem.
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kernel to compute fluxes

A
B

C

D

E

work-item 1
- computes flux E15
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work-item 2
- computes flux A12
- computes flux A16
- computes flux A26

1

4

3

2

6

5

kernel to update the solution

work-item 1
- updates ρ1 with flux A
- updates ρ1 with flux B
- updates ρ1 with flux C
- updates ρ1 with flux D
- updates ρ1 with flux E

work-item 2
- updates ρ2 with flux A
- updates ρ2 with flux B
- updates ρ2 with flux F
- updates ρ2 with flux G
- updates ρ2 with flux H
- updates ρ2 with flux I
- updates ρ2 with flux L

1

4

3

2

6

5

7

8

9

10

AB

C

D

E

F

G

H
I

L

5
operations

7
operations

Figure 5.5: Algorithm 2: branch divergence.
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Consider now a second algorithm, sketched in figure 5.5, and used in [48].
As for the above procedure, two kernels are subsequently enqueued to com-
pute fluxes and to update the solution of the mass conservation equation.
The first kernel is identical to the first kernel of algorithm 1. On the con-
trary, the second kernel works now on the nodes and no more on the mesh
triangles. Every work–item updates the value of its node, therefore avoiding
problems with memory consistency. In the example of figure 5.5, work–item
1 updates the value of rho[1] and work–item 2 updates the value of rho[2].
The problem now is that, to perform this task, work–item 1 executes five op-
erations while work–item 2 executes seven operations. This difference comes
from the fact that, given a general unstructured mesh, the number of nodes
connected to one node is not equal all over the grid. For example, referring
to figure 5.5, the node number 1 is connected to 5 nodes and node number 2
is connected to 7 nodes. This implies that, in the NC formulation, every con-
trol volume could have a different number of interfaces, leading to a different
behavior of different work–items performing the same task. This aspect is
called branch divergence and it is not a problem when parallelizing a code on
a CPU, but in GPU programming (see section §4.4.1) it can seriously affects
the computing performances, making this algorithm not recommended.

These two algorithms are only two of the many possible implementations
of a NC finite volume scheme, but, to the best knowledge of the authors, all
other possible strategies lead to the same kind of problems.

Finally, in figure 5.6, a Cell–Centered algorithm is outlined. It consists
of two subsequent kernels. The first ones is a 1D kernel of dimension equal
to the number of interfaces (internal interfaces only because boundaries are
handled separately) and it computes fluxes through them. The second kernel
then updates the value of density. It is a 1D kernel of dimension equal to the
number of cells and every work–item operates on one cell only. In the example
in figure 5.6, work–item 1 updates rho[E] and work–item 2 updates rho[A].
This algorithm does not suffer from memory consistency issues because every
work–item writes only in one memory location. Moreover all of them perform
the same number of operations, avoiding any problem of branch divergence.

These two fundamental aspects brought to the choice of the cell–centered
scheme. It should be noticed that this approach is quite different from the
standard methods adopted to parallelize CFD codes on CPU clusters. In fact
the classical way relies on a domain decomposition where the entire volume
is split in relatively few sub–domains. These are composed of many cells and
they are assigned to different processors. In the GPU approach used in this
work, on the contrary, the domain decomposition is much finer, assigning
every elementary cell to a single thread.
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Figure 5.6: Cell-Centered algorithm
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5.3 Spatial discretization

To compute the right hand side of equation (5.5)

˛
∂V

ρ∇φ · n̂, (5.9)

it is necessary to introduce a numerical scheme that reconstructs the interface
fluid velocity (∇φ).

Moreover, the term of the Bernoulli theorem

1

2
∇φ · ∇φ (5.10)

must be computed on cells and not on interfaces. Therefore, a numerical
procedure to obtain the gradient of the velocity potential over every cell of
the computational domain must be introduced.

5.3.1 Gradient reconstruction

Independently from the equation to be resolved, the finite volume discretiza-
tion schemes usually require to compute the gradient of the numerical solu-
tion.

As stated in [49], the choice of the method used to compute the gradients
depends at least on two factors. The first is whether the discretization is a
Node–Centered or Cell–Centered type. Secondly different algorithms have to
be used if the gradient is to be evaluated on the cell centers or on an interface
between two cells. Consider a Node–Centered discretization in which an
interface gradient reconstruction is needed: the most natural technique is
to interpolate the numerical solution using the same basis functions that
are used in finite elements method and to differentiate this interpolation to
obtain the gradient. This approach cannot however be used to compute the
derivatives on the grid nodes because the interpolated solution is not, in
general, C1 between adjacent elements.

As it was discussed in section §5.2, the formulation adopted in this work is
the Cell–Centered. Therefore some commonly used gradient reconstruction
algorithms are here described and briefly analyzed.

The full potential problem strongly relies on the accuracy of the gradient
reconstruction schemes, much more than what is needed in viscous fluxes
computing. In fact in a full potential simulation a poor accuracy can easily
destabilize the numerical integration, while in viscous fluxes it would imply
an error only in the viscous term without deeply affecting the stability.
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Cell gradient (C–Gradient) The first method is a direct application of
the Green–Gauss theorem

ˆ
Ω

∇u =

˛
∂Ω

u n̂ (5.11)

that, with reference to figure 5.7, can be used to compute the mean of the
gradient of the generic function u over the volume Vi as follows:

mean (∇u)|
Vi

=
1

|Vi|

˛
∂Vi

u n̂. (5.12)

The circuitation integral is computed summing up the product of the
out–warding unit vector multiplied by the interface value of u and by the
size of the interface. The first problem is how to compute the value of u over
the interface and it can be solved taking the linear interpolation between the
two cell centers. In the 2D case where cells are build from a triangulation
of the domain, as in figure 5.7, this discretization results in the following
reconstructed cell gradient GC

u

∇u |
Vi
≈ GCi

u =
1

|Vi|

Nf∑
j=1

Ūi, j n̂i, j ∆Li, j , (5.13)

where Nf is the number of faces of a cell, Ūi, j is the linear interpolation of
u along the line connecting the two cell centers straddling interface j, n̂i, j is
the out–warding unit vector and ∆Li, j is the size of the interface.

A difficulty arises when a face of the cell lies on a boundary. In that case
the flux is not known from the solution alone. A possibility is to consider an
extern ghost cell with a zero order extrapolation value for the quantity u or
to use, if known, the boundary conditions. However, in the implementation
relative to this work, this scheme did not prove to have the necessary accuracy
to obtain a stable numerical scheme.

The second method examined is a Least Square interpolation of the solu-
tion over the cell. Usually a polynomial fit is computed on a stencil of points
surrounding the cell. Using a linear interpolation a first order convergence
scheme is obtained but, depending on the least square method used, differ-
ent levels of accuracy can be achieved. In fact using a weighted least square
(WLSQ) procedure gives a smaller error than using a simple unweighted
least square (ULSQ) approach. However the choice of the weighing factors
is not straightforward and in order to obtain an improvement in accuracy
those parameters are strongly dependent from grid characteristics such as
the triangles aspect ratio.
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Figure 5.7: Cell-Centered C-Gradient Green Gauss theorem

Two example stencils are shown in figure 5.8. To compute the linear
interpolation, the simple stencil uses all the cells sharing a face with the
primary cell, while the augmented stencil uses all the cells that share with
it at least one node. Obviously it is possible to adopt every intermediate
approach between the two that have been presented here, but it is necessary
to define an appropriate criterion to chose the interpolating points.

Moreover, the choice of the stencil should rely not only on the desired
degree of accuracy, but even on algorithm constraints. In fact it should be
noticed that the augmented stencil implies that there is not a fixed number of
points to deal with. This aspect causes a different behavior of the function
that computes the gradients depending on the nodes connectivity, leading
straightforwardly to the branch divergence phenomenon when the solver is
implemented on a GPU. Instead, the simple stencil is not affected by this
problem. For this reason the simple stencil is the one adopted in this work.

The last technicality is how to proceed if a cell has a face on the boundary.
In this case it is possible to use an outside ghost cell with a zero order
extrapolation of the solution or to simply reduce the stencil to tree points
instead of four. In this last case there is no more the necessity to solve a
problem in the least square sense, because the linear interpolating function is
strictly determined knowing its value in three different points. For a deeper
explanation on gradient reconstruction stencils the reader is redirected to
[50].

The last numerical scheme presented here is the node averaging (NA)
technique. It is based on a reconstruction of the solution at the nodes from
the local neighboring cells by a weighted mean procedure. The simplest
node average is performed by an area weighted mean, but in literature many
other more accurate schemes exist as the one presented in [51, 52] that is
based on an averaging procedure subjected to some laplacian optimization
constraints. It must be pointed out, however, that, as proved in [53], this
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simple stencil augmented stencil

Figure 5.8: Least Square C-Gradient stencils

NA technique is not different from a Least Square one. Once the node av-
eraging has been performed, the usual node centered techniques can be used
to compute gradients.

This last technique was not even taken into consideration because the
node mean depends on how many elements are connected to the master
node on which the mean is going to be computed. Being this number not
equal on every grid node in the case of unstructured meshes, this approach
would cause the very undesired branch divergence phenomenon in the kernel
that computes gradients.

Face gradient (F–Gradient) The simplest way to evaluate the gradient
of a variable on an interface is to take the mean of the C–Gradients on the two
neighboring cells. In order to obtain a higher accuracy on stretched grids, it
should not be used the arithmetic mean, but a weighted one computed using
as weights the distances of the cells centroids from the interface.

Other algorithms directly compute the gradient over the cell face solving
a small system in the least square sense. In this case the problem is split
in two phases. The first one approximates the directional derivative of the
solution along two (in the 2D case) linearly independent directions. Referring
to figure 5.9, these two directions are:

• ∇u · êAB : directional derivative along the line connecting the two
centroids of the cell A and B;

• ∇u · ê12 : directional derivative along the interface between cell A
and B.

In a second phase, system (5.14) is solved in the least square sense in order to
obtain the reconstruction of the gradient on the face GF

u =
(
GF
u x, G

F
u y

)T ≈
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Figure 5.9: F-Gradient reconstruction

(
∂u

∂x
,
∂u

∂y

)T

GF
u x eAB x +GF

u y eAB y =∇u · êAB

GF
u x e12x +GF

u y e12 y =∇u · ê12

(5.14)

Every cell centered method uses a simple centered difference formula to
reconstruct the derivative across the face (∇u · êAB)

∇u · êAB =
UA − UB
|~rA − ~rB|

. (5.15)

On the contrary, many methods are available to compute the derivative
along the face. They are all based on a polynomial least square approximation
of the solution. Once it has been computed, it’s gradient is multiplied by the
unit vector in the face direction so as to obtain the term ∇u · ê12.

Different interpolation techniques can be used. They differ from each
other for the choice of the computational stencil that goes from a set of nodes
comprising all the cell centroids represented in figure 5.9 (a), to a reduced
stencil of just four points composed of the two cells sharing the interface and
other two cells sharing with them a node but not an interface, as shown in
figure 5.9 (b).

It’s moreover possible to opt for a weighted or unweighted least square
approximation. In the first case a natural choice for the weighing factors is to
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take the inverse of the distance between the cell barycenters and the center
of the interface.

In the implementation of ExPReS the right balance between computa-
tional efficiency and accuracy was achieved using the simple stencil for C–
Gradient reconstruction and averaging those value to obtain the gradient
approximation on interfaces. In fact, since the gradients over the cell are
anyway required by the Bernoulli theorem, the face mass flux was computed
using the average method, that proved to be accurate enough and computa-
tionally efficient.

5.3.2 Spatial stabilization: upwind

In order to guarantee the stability of the numerical scheme, as will be further
demonstrated in section §5.4.4, it is necessary to introduce some dissipation
in the integration method. This can be done by upwinding the flux at the
cell interface, taking a value for the density that is not its exact value on the
interface, but its value in a point slightly upstream in the wind direction.
This strategy can be seen just as a way to ensure the numerical stability, but
it’s not all that. In fact it has a physical meaning, that is the representation
of the spatial causality in advection dominated flows. Physically speaking,
in potential flows the upwinding should be necessary only in supersonic re-
gions, where a point can be affected only from its upstream region inside its
Mach cone. However, if an explicit time stepping technique is adopted, it’s
anyway necessary to upwind the interface density value in order to obtain a
numerically stable algorithm.

There are many ways to upwind the value of a variable in a point and
here some different methods are presented. The first one is the simplest and
consists of taking the density value of the upstream cell of the interface.
Referring to figure 5.10, it means to use ρA to compute the flux through the
interface in both cases (a) and (b).

This algorithm could be implemented as described below;

• compute ∇φ · n̂;

• enter in the function of figure 5.11 (a) to obtain the value of the up-
winded density ρ̄.

It easy to understand that this strategy works greatly for the case of fig-
ure 5.10 (a), but it doesn’t in the case (b).

This first algorithm can then be improved using one of the functions of
figure 5.11 (b) to compute the flux density value. It could be useful to have
a function that can change it’s slope in function of a parameter, in order to
adjust the dissipation as needed.
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Figure 5.10: Upwinding. First technique
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Figure 5.11: Upwinding function

A more sophisticated upwinding technique was presented for example in
[5], and consists of taking as density value the quantity

ρ̄ = ρ+ ∆ρ, (5.16)

where

∆ρ =∇ρ · l (5.17)

and l lies in the wind direction and its modulus is a mix of a user adjustable
parameter ε and of the size of the local cell hi

|l| = ε hi . (5.18)
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In an implicit scheme, where no dissipation is needed in subsonic regions,
this approach allows to upwind the solution only where needed

l =


0 if M < 1

ε hi if M > 1

(5.19)

This technique is less dissipative than the ones presented above, due to
the fact that it dissipates flow perturbations only in the streamline direction
and not in the transverse wind direction. Therefore it is more convenient
to use this approach when computing transient solutions when high time
accuracy is desired, while it could be better to use the first technique when
the stationary solution is desired.

5.3.3 Numerical flux

Once the gradient and the upwinded density have been computed, it is possi-
ble to proceed with the approximation of the right hand side of equation (5.5)

˛
∂Vi

ρ∇φ · n̂ ≈
Nf∑
j=1

Fi, j =

Nf∑
j=1

ρ̄i, j G
Fi, j
Φ · n̂i, j ∆Li, j , (5.20)

where the numerical flux Fi, j through interface Fj has been introduced

Fi, j = ρ̄i, j G
Fi, j
Φ · n̂i, j ∆Li, j . (5.21)

The space discretized form of the mass conservation equation is thus
obtained

dRi

dt
= − 1

Vi

Nf∑
j=1

ρ̄i, j G
Fi, j
Φ · n̂i, j ∆Li, j . (5.22)

5.3.4 Space discretized 2–fields potential flow problem

It is now possible to give a full meaning to equation (5.8), having now better
specified the term ∇φ |

Vi
.

The space–discretized Bernoulli theorem finally results

dΦi

dt
+

1

2
GCi

Φ · G
Ci
Φ + his (Ri) =

1

2
V 2
∞ + h∞. (5.23)

Thus the space discretized 2–fields potential flow problem is
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dRi

dt
= − 1

Vi

Nf∑
j=1

ρ̄i, j G
Fi, j
Φ · n̂i, j ∆Li, j

dΦi

dt
+

1

2
GCi

Φ · G
Ci
Φ + his (Ri) =

1

2
V 2
∞ + h∞

(5.24)

This is a system of two equations in two unknowns. To obtain a full
solvable problem, boundary and initial conditions must be specified. They
will be discussed in section §5.5.

5.4 Time discretization
To discretize the problem in the time domain it is possible to choose among
various methods. Some time stepping schemes are briefly presented with an
outlook on their efficiency, their stability properties and the possibility to
efficiently parallelize the solution algorithm.

Consider the generic implicit initial value problem (5.25){
ẋ = f (x, ẋ, t)

x (t0) = x0

(5.25)

In order to integrate it in the time domain, two main time stepping meth-
ods are available:

• explicit time stepping, that can be written as

xk+1 =

p∑
j=0

xk−j + ∆t g (xk, xk−1, . . .) , (5.26)

where g is a method–dependent function.
examples: Linear Multi Step (LMS) methods of the Adams–Bashforth
family or the explicit Runge–Kutta methods;

• implicit time stepping, that can be written as

xk+1 =

p∑
j=0

xk−j + ∆t h (xk+1, xk, . . .) , (5.27)

where h is a method–dependent function.
examples: the LMS method of Adams–Moulton family, the BDF
methods or the scheme presented in [54].
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Implicit methods have generally a bigger stability region than explicit ones
and if the method is A–Stable any value of the time step ensures that the
time integration will not diverge due to numerical instability. However this
advantage is payed in therms of computational effort. In fact implicit schemes
require the solution of a linear system (if f is linear) or many systems (if f
is not linear) at every time step.

On the contrary explicit time schemes do not require the solution of any
system, but are limited in the time step amplitude for stability reasons.
In the case of the 2–fields full potential formulation, the mass conservation
equation has a hyperbolic nature and is subjected to the Courant–Friedrichs–
Lewy (CFL) stability condition

∆t < min
i

(
hi
ci

)
, (5.28)

where hi is the cell j dimension and ci is the speed of sound in the cell i.
This restriction is very limiting when the stationary solution is sough for,

because in this case there is no reason to require a high time accuracy but
the CFL condition forces anyway explicit methods to proceed with very little
time steps. On the other side, the implicit schemes can reach the stationary
solution in few iterations of the Newton–Raphson algorithm.

When computing transient solution this disadvantage is no more a prob-
lem, because even implicit schemes are forced to use a relatively small time
step to achieve the desired accuracy.

The last advantage of adopting an explicit scheme is the easiness and ef-
ficiency of parallelization. These methods in fact do not require the solution
of a system, but only the computing of residuals. On the contrary, using an
implicit method, it would be necessary to parallelize the assembly and the
solution of large sparse systems of equations. The best way to do that could
be the use of an iterative method such as GMRES or the conjugate gradient
algorithm (CG), that require an efficient preconditioner to converge in an
acceptable number of iterations. This could certainly be a future develop-
ment, but up to now it is beyond the scope of the present work. Moreover
the implicit formulation is much more memory consuming than the explicit
one due to the matrix factorization.

5.4.1 Explicit Euler time integration

The first possible choice to integrate the system (5.24), is to use the explicit
Euler method as follows
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Rn+1
i −Rn

i

∆t
= − 1

Vi

Nf∑
j=1

ρ̄ n
i, j G

Fi, j
Φn · n̂i, j ∆Li, j

Φn+1
i − Φn

i

∆t
=

1

2
V 2
∞ −

1

2
GCi

Φn · G
Ci
Φn + h∞ − his (Rn

i )

(5.29)

where the apex n indicates the time instant.
This system is then solved for the two unknowns Rn+1

i and Φn+1
i


Rn+1
i = Rn

i −
∆t

Vi

Nf∑
j=1

ρ̄ n
i, j G

Fi, j
Φn · n̂i, j ∆Li, j

Φn+1
i = Φn

i + ∆t

(
1

2
V 2
∞ −

1

2
GCi

Φn · G
Ci
Φn + h∞ − his (Rn

i )

) (5.30)

This solution, as shown in section §5.4.4, has a very small stability region,
making this approach unfeasible.

5.4.2 Staggered time integration

The first idea to stabilize the numerical discretization is to use a staggered
integration, that is to integrate the first equation in a first step and to use
the obtained result to integrate the second one. This idea originated from
the semi implicit (or symplectic) Euler method, that integrates the generic
system (5.31) 

dυ
dt

= f (t, x)

dx
dt

= g (t, υ)

(5.31)

with the numerical scheme
υn+1 = υn + ∆t f (tn, x

n)

xn+1 = xn + ∆t g (tn, υ
n+1)

(5.32)
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This scheme is still a first order integrator, but it is symplectic, i.e. it
conserves energy1 (if ∆t is constant). This feature gives the semi implicit
method better stability and accuracy properties.

In the 2–fields full potential case, the system is not of the same type as
that of system (5.31), but it is slightly more complex:

dR
dt

= f (R, Φ)

dΦ

dt
= g (Φ, R)

(5.33)

To solve this system with the staggered integrator, the first equation that
has to be resolved is the mass conservation equation

Rn+1
i = Rn

i −
∆t

Vi

Nf∑
j=1

ρ̄ n
i, j G

Fi, j
Φn · n̂i, j ∆Li, j (5.34)

and the second one is the Bernoulli theorem,

Φn+1
i = Φn

i + ∆t

(
1

2
V 2
∞ −

1

2
GCi

Φn · G
Ci
Φn + h∞ − his

(
Rn+1
i

))
, (5.35)

where the value of enthalpy at the right hand side is computed using the new
value of density.

This method, provided with some spatial dissipation, results to be stable
and therefore is the one implemented in the solver ExPReS.

5.4.3 Convergence acceleration techniques

As already mentioned in section §5.4, obtaining the steady state solution
with an explicit method is a time consuming activity. In literature many
methods exist to accelerate this process at the expense of the accuracy of the
initial transitory. In this work two strategies have been tested to speed up
the convergence.

Local time stepping As suggested in [47], the first strategy implemented
is the local time stepping technique. It consists in using the largest possible
time step allowed by the local stability constraint on every cell. As reported
in [55], this trick should assure that disturbances are propagated at the far
field boundary of the domain in a number of time steps of the same order as
the number of elements in the radial direction of the mesh.

1Symplecticness is a very important aspect, for example, in long time orbit calculations
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Relaxation method A simple way to improve convergence is to compute
a new solution at every time step based on the predicted solution and on the
solution at the previous time step.

This new solution is computed according to the following algorithm



R̃n+1
i = Rn

i −
∆t

Vi

Nf∑
j=1

ρ̄ n
i, j G

Fi, j
Φn · n̂i, j ∆Li, j

Φ̃n+1
i = Φn

i + ∆t

(
1

2
V 2
∞ −

1

2
GCi

Φn · G
Ci
Φn + h∞ − his

(
R̃n+1
i

))

Rn+1
i = β R̃n+1

i + (1− β) Rn
i

Φ̃n+1
i = β Φ̃n+1

i + (1− β) Φn
i

(5.36)

where β is the relaxation factor:

• β < 1 leads to under–relaxations;

• β > 1 leads to over–relaxation.

In figure 5.12 the effect of this scheme on a general oscillating damped signal
is presented.

It is possible to see that under–relaxation dumps down oscillations in the
solution while over–relaxation accentuates them. In testing, it was found that
β > 1 generally speeds up the convergence to the steady state in detriment
of stability while β < 1 allows to use higher CFL numbers but the steady
state is obtained with a greater number of iterations.

A more rigorous stability analysis for this scheme will be carried out in
section §5.4.4.

5.4.4 Stability analysis

The stability properties of those scheme are analyzed performing a von Neu-
mann analysis (as in [56]) on the 1D linearized problem for the PIG gas. In
order to obtain results that do not depend on the asymptotic condition, a
dimensionless formulation is used.
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Figure 5.12: Relaxation Method


∂ρ

∂t
+

∂

∂x

[(
ρ− ε h ∂ρ

∂x

)
∂φ

∂x

]
= 0

∂φ

∂t
+

1

2

(
∂φ

∂x

)2

+ his (ρ) =
1

2
V 2
∞ + h∞

(5.37)

where h is the space discretization length and ε is the upwind parameter.
Expressing the two unknowns as

ρ = ρ∞ + δρ (5.38a)
φ = V∞ x+ δφ (5.38b)

and substituting equations (5.38) in system 5.37, and neglecting the second
order terms, the dimensional linearized formulation is obtained

∂ δρ

∂t
+ ρ∞

∂2 δφ

∂x2
+ V∞

∂ δρ

∂x
− ε h V∞

∂2 δρ

∂x2
= 0

∂ δφ

∂t
+ V∞

∂ δφ

∂x
+ γ

P∞
ρ2
∞
δρ = 0

(5.39)
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To convert this system in the dimensionless form the following quantities
are introduced

ρ̃ =
ρ

ρ∞
, (5.40a)

φ̃ =
φ

V∞L
, (5.40b)

x̃ =
x

L
, (5.40c)

t̃ =
V∞t

L
, (5.40d)

where L is a characteristic length of the domain.
A direct application of the chain rule gives

∂

∂t
=

dt̃
dt

∂

∂t̃
=
V∞
L

∂

∂t̃
, (5.41a)

∂

∂x
=

dx̃
dx

∂

∂x̃
=

1

L

∂

∂x̃
. (5.41b)

Substituting relations (5.40) and applying the transformations (5.41), the
linearized dimensionless formulation is finally obtained


∂ δρ̃

∂t̃
+
∂2 δφ̃

∂x̃2
+
∂ δρ̃

∂x̃
− ε h̃ ∂

2 δρ̃

∂x̃2
= 0

∂ δφ̃

∂t̃
+
∂ δφ̃

∂x̃
+

1

M2
∞
δρ̃ = 0

(5.42)

where h̃ = h
L

. For the sake of simplicity the symbols δ and ˜will not be
reported from now on.

This problem is then numerically discretized using centered second or-
der finite differences for the two cases of explicit Euler time stepping and
staggered time stepping.

• Explicit Euler

100



5.4. TIME DISCRETIZATION



Rn+1
i = Rn

i −
∆t

h

[
Rn
i+1 −Rn

i−1

2
− ε

(
Rn
i+1 − 2Rn

i +Rn
i−1

)
+

1

h

(
Φn
i+1 − 2 Φn

i + Φn
i−1

)]

Φn+1
i = Φn

i −
∆t

h

[
Φn
i+1 − Φn

i−1

2
+ hM−2

∞ Rn
i

]
(5.43)

• Staggered



Rn+1
i = Rn

i −
∆t

h

[
Rn
i+1 −Rn

i−1

2
− ε

(
Rn
i+1 − 2Rn

i +Rn
i−1

)
+

1

h

(
Φn
i+1 − 2 Φn

i + Φn
i−1

)]

Φn+1
i = Φn

i −
∆t

h

[
Φn
i+1 − Φn

i−1

2
+ hM−2

∞ Rn+1
i

]
(5.44)

To perform the von Neumann analysis the generic solution u (assumed peri-
odic) is expanded in the Fourier series

uni =
+∞∑

ω=−∞

αωejωih (γω)n , (5.45)

where γω is the amplification factor and j the imaginary unit.
A numerical method results stable if

|γω| < 1 ∀ω. (5.46)

Explicit Euler stability Substituting (5.45) in the system (5.43), given
that the relation (5.46) must hold for every ω, the following relation is ob-
tained for the first time step.{

R1
i

Φ1
i

}
= [A (ω)]

{
R0
i

Φ0
i

}
, (5.47)

where
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A (ω) =

 1− ∆t

h
[f (ω h) + 2 ε g (ω h)] 2

∆t

h2
g (ω h)

−∆tM−2
∞ 1− ∆t

h
f (ω h)

 , (5.48)

with f (ω h) = j sin (ω h) and g (ω h) = (1− cos (ω h)).
Applying relation (5.47) recursively, the solution at the generic time tn is{

Rn
i

Φn
i

}
= [A (ω)]n

{
R0
i

Φ0
i

}
. (5.49)

Therefore the numerical method is stable if the modulus of each eigenvalue
of A (ω) is less than 1.

Staggered time integration stability Repeating the same analysis for
the staggered time integration the following relations are obtained.[

1 0
∆tM−2

∞ 1

]{
R1
i

Φ1
i

}
= [B (ω)]

{
R0
i

Φ0
i

}
, (5.50)

where

B (ω) =

 1− ∆t

h
[f (ω h) + 2 ε g (ω h)] 2

∆t

h2
g (ω h)

0 1− ∆t

h
f (ω h)

 . (5.51)

In order to have a stable scheme it necessary that all the eigenvalues of
matrix (5.52)

C (ω) =

[
1 0

∆tM−2
∞ 1

]−1

B (ω) (5.52)

have their modulus inferior to 1.

Stability regions In figure 5.13 the stability regions for the forward Euler
scheme and for the staggered scheme are presented

It is evident that the staggered method presents advantages both in terms
of minimum needed dissipation and maximum allowed CFL.

102



5.4. TIME DISCRETIZATION
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Figure 5.13: Stability regions for forward Euler and staggered methods. For-
ward Euler: Dashed line with circle markers; Staggered method: Continuous
line with triangle markers.

Relaxation method The stability properties of the relaxation method
presented in section §5.4.3 are now analyzed. Doing the same steps of the
previous paragraphs, the solution at time instant t1 is obtained from the
initial condition as

{
R1
i

Φ1
i

}
=

[
1− β 0 β 0

0 1− β 0 β

]
R0
i

Φ0
i

R̃1
i

Φ̃0
i


=

[
1− β 0 β 0

0 1− β 0 β

] 1 0
0 1

[C (ω)]

{ R0
i

Φ0
i

}
, (5.53)

where C (ω) has been defined in equation (5.52).
As before, to obtain a stable integration, relation (5.54) must hold

∣∣∣∣∣∣spec
[ 1− β 0 β 0

0 1− β 0 β

] 1 0
0 1

[C (ω)]

∣∣∣∣∣∣ < 1 ∀ω, (5.54)
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Figure 5.14: Relaxation method. Stability regions

where spec indicates the spectrum of the matrix.
In figure 5.14, different stability regions for different values of the relax-

ation factor are shown.
It is therefore possible to use a higher CFL number with β < 1 for the

first time instants, when the initial strong oscillations must be damped and
gradually increase the relaxation factor (and consequently decrease the CFL)
as the simulation proceeds so as to speed up the convergence.

5.5 Boundary and initial conditions
In order to solve the problem (2.23) it is necessary to specify initial and
boundary conditions.

Initial conditions In the case of aerodynamic external flows, the initial
conditions on the velocity potential is simply

φ (r, t = 0) = φ0 (r) = V ∞ · r (5.55)

and the initial discretized velocity potential is obtained sampling equation (5.55)
in the centroids of every cell.

This initial condition is not compatible with the non penetrability condi-
tion. However this is not a problem because the flow is compressible.
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The same sampling procedure is carried out to obtain the initial dis-
cretized density from its initial free stream value

ρ (r, t = 0) = ρ0 (r) = ρ∞. (5.56)

Boundary conditions The standard method to impose boundary condi-
tions in finite volume approximation is to split the circuitation integral of
equation (5.3) in the sum of two parts. The first one is the union of the con-
trol volume faces that lie in the internal part of the domain and the second
one is the set of faces that lie on the considered boundary

˛
∂V

ρ∇φ · n̂ =

ˆ
∂Vinternal

ρ∇φ · n̂ +

ˆ
∂Vboundary

ρ∇φ · n̂. (5.57)

To impose boundary conditions it is necessary to compute the flux given
by the value of the solution on the boundary. In this work three kind of
boundaries have been considered:

• far field boundary, where asymptotic flow conditions are imposed;

• wall boundary;

• wake, for lifting bodies only.

5.5.1 Far field boundary

Using the particular scheme adopted in this work, i.e. 2–fields potential flow
with explicit staggered time stepping and Cell–Centered finite volumes, exter-
nal boundary conditions must be imposed to the mass conservation equation
only2. This is done by adding to the value of density inside every cell that
has an interface lying on the external boundary the mass flux through that
interface given by asymptotic conditions. In doing that, it must be taken
into consideration that the mass conservation equation has a hyperbolic na-
ture and the imposition of boundary conditions in this kind of equations is
not trivial. In fact, it is necessary to distinguish between inflow and out-
flow boundaries. Where the flow is entering the domain, external boundary
conditions can be used to compute the boundary flux, and where the flow is
exiting the domain internal conditions must be used.

For example, with reference to figure 5.15, the flux through the interface
1–2 (that is an inflow interface) of cell A is computed as

2Using a 1–field formulation other types of boundary conditions must be imposed on
the velocity potential
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Figure 5.15: Far Field Boundary Conditions

˛
∂Vinflow

ρ∇φ · n̂ ≈ F1,2 = ρ∞ V ∞ · n̂1−2 ∆L1−2 , (5.58)

while the flux through interface 3–4 (that is an outflow interface) of cell B is
computed as

F3,4 = ρB V ∞ · n̂3−4 ∆L3−4 . (5.59)

For what concerns the Bernoulli theorem, being it a local and not an
integral relation, no boundary conditions must be imposed.

5.5.2 Wall boundary

Through walls there is no mass flux
˛
∂Vwall

ρ∇φ · n̂ = 0 (5.60)

and therefore, in the case of fixed wall, there is no necessity to compute any
flux.

Oscillating airfoil: transpiration conditions If it is necessary to find
a solution for a body moving through the fluid and if the amplitude of the
movement is small, it is possible to account for the effect of this motion
by imposing the so called transpiration conditions. These conditions realize
the same effect as if the mesh was actually moved but without the necessity
to use an ALE scheme. To do that it is necessary to define a wall speed

106



5.5. BOUNDARY AND INITIAL CONDITIONS

n̂0

n̂

h

a
x

y

θ

Figure 5.16: Transpiration Boundary Conditions

with which to impose a mass flux through the boundary. With reference to
figure 5.16, this velocity is

Vn wall (r) = −V ∞ · (n̂ (r)− n̂0 (r))︸ ︷︷ ︸
geometric effect

+
(
ḣ ŷ − θ̇ ẑ × (r − a x̂)

)
· n̂0︸ ︷︷ ︸

kinematic effect

,

(5.61)
where x̂, ŷ and ẑ are the reference system unit vectors.

To impose the transpiration boundary condition the following wall flux
must be used

Ftranspiration = ρ Vn wall ∆L, (5.62)

where ρ is the value of density inside the boundary cell and ∆L is the length
of the interface.

5.5.3 Wake

The most critical aspect of lifting potential flows is how to impose the correct
value of circulation. As stated in section §2.1.1, it is necessary to impose
that density is continuous through the wake. This is done by imposing the
mass conservation over a control volumes obtained by merging all triangles
that share an interface on the wake. Referring to 5.17, the resulting control
volumes are the ones hatched with the same pattern, in which the value of
density is uniform across the wake.

107



CHAPTER 5. NUMERICAL DISCRETIZATION

wakeairfoil
A

B

0

12

3

Figure 5.17: Wake Boundary Conditions. Control Volumes

It should be underlined that volumes above the wake are not physically
merged to their counterparts below, because when the circulation is not null,
the velocity potential is discontinuous across the wake. Therefore the algo-
rithm to update the solution on the wake is

• update the value of density in cell A

ρA + = − ∆t

VA + VB
(F0−1 + F0−2 + F2−3 + F1−3) , (5.63)

where the symbol + = must be intended in the C syntax meaning, i.e.
“add to ρA”;

• copy the value of ρA in the cell B;

• update the value of the velocity potential via the standard formula
(5.35).
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Chapter 6

Solver and results

In the first part of this chapter the structure of the program ExPReS is
presented.

The second part of the chapter presents some results obtained with Ex-
PReS . Section §6.2 is essentially a validation of the program and presents
some aerodynamic flows around the airfoil NACA0012 at different Mach
numbers and angles of attack compared to the results given by the solver
ST (implicit 2–fields full potential solver, [5]) and by the solver rhoCentral-
Foam (Euler equation solver) distributed with the software openFoam [57].
Section §6.3 presents some results for flows near the critical point, where BZT
peculiar phenomena appear in the flow field, such as expansion shocks and
mixed waves. These results are compared with those available in literature
or computed with the solver ST .

In section §6.5 some results for unsteady flows around moving bodies are
presented. These solutions are computed by the transpiration boundary con-
ditions technique and by ALE simulations. Comparisons are made between
these two approaches and with solutions provided by ST in order to validate
the results.

In section §6.7 the speed up results that where achieved using GPGPU
computing instead of traditional CPU software are outlined and briefly com-
mented. Finally a comparison between the speed–ups obtained with the
solver ExPReS are compared to those declared by other commercial software
developers.

6.1 The aerodynamic solver
The structure of the aerodynamic software is depicted in figure 6.1. The first
argument of the executable must be the mesh in the proprietary format of
ExPReS and the second optional argument is a binary file containing a previ-
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ously computed solution written by ExPReS itself. All the numerical schemes
implemented in the solver can be activated or deactivated by commenting or
uncommenting some preprocessor directives contained in a configuration file
and by recompiling the code. These directives allow to:

• choose different numerical schemes to compute the gradient (Least
Square (LS) or Gauss theorem (see section §5.3.1);

• choose different upwinding techniques (all the ones presented in section
§5.3.2);

• choose different time stepping schemes (constant time step, adaptive
time step limited by a maximum allowed CFL number, local time step-
ping and relaxation method, see section §5.4);

• Activate transpiration boundary conditions (see section §5.5.2) or ALE
formulation (see appendix A).

The first part of the program initializes the OpenCL environment through
the use of the OpenCL API functions to identify the platform, get system
devices (only GPUs are sought for), create the context and initialize the
queue. OpenCL C sources that contain the code that will run on the graphic
card is then read and compiled. The host code reads the mesh file and cre-
ates memory buffers where all the metrics will be stored by the first kernels
that are executed. After setting numerical parameters and the asymptotic
conditions, the unknown fields ρ and φ are initialized and copied to their cor-
responding device buffers. Optionally, these fields can be initialized from a
previously stored solution that the solver writes in a binary format every time
a simulation ends. The time loop then starts and the kernels that compute
the velocity field ∇φ is enqueued. If necessary, depending on the upwind-
ing scheme, the gradient of the density field is computed. Internal domain
mass fluxes are then computed by a kernel that works on all the interfaces.
External boundary fluxes are computed eventually in parallel (in the sense
that these two kernels are executed out of order) with the mass conservation
enforcement across the wake. All the density fluxes are then used to up-
date the density field. Subsequently the velocity potential is updated by the
Bernoulli equation where the enthalpy is computed with the updated value
of density as prescribed by the staggered time integration method (section
§5.4.2). If the current time step corresponds to a write time step, buffers are
read back in the host memory and VTK files containing density ρ, velocity
∇φ, Mach number M , pressure coefficient CP and fundamental derivative Γ
are written on disk. The coefficient of lift, drag and moment are computed
and printed on file. If the time has reached the final time, the time loop ends
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Figure 6.1: Aerodynamic solver scheme.
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and the final solution is written to disk. The distribution of the pressure
coefficient on the surface of the body is computed and written in a data file.
The aforementioned binary file containing the final solution is written and
all buffers and arrays are destructed. VTK files can be easily visualized with
the free program ParaView [19] and the surface pressure coefficient with the
free program gnuplot [58].

6.2 Ideal gas flows
The first test analyses are performed in a ideal gas regime to validate results
provided by ExPReS with those computed with the solver ST and with other
results available in literature.

A polytropic ideal gas model is used with the constant γ = 1.4, that well
represents common aerodynamic flows. Three solutions are computed around
the NACA0012 airfoil in different asymptotic conditions and angles of attack.
The mesh geometry is depicted in figure 6.2 beside an example mesh1. The
used mesh has two regions with different spatial discretization. The internal
zone is much more refined than the external one in order to improve the
accuracy of the solution near the airfoil and to dissipate acoustic waves near
the far field.

All simulations were tested for grid convergence.

wakeV∞ R1

R2

ρ∞ c

far
field

Figure 6.2: Naca 0012 mesh.

6.2.1 Subsonic airfoil

For this simulation the free stream Mach number is M∞ = 0.5 and the
asymptotic density value is ρ∞ = 1.225 kg/m3. With reference to figure 6.2

1This mesh is for presentation purposes only since the actually used meshes are much
larger and finer.
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Figure 6.3: Subsonic NACA0012. Polytropic ideal gas. CP surface distribu-
tion and contour plot.

this computation is carried out on a domain with R1 = 5 c and R2 = 20 c
discretized with a mesh with 77 819 nodes and 154 765 triangles.

The solution for the angle of attack α = 5.71° is depicted in figure 6.3.
The value of the pressure coefficient is shown in figure 6.3 where the solution
computed with ExPReS is compared to the one provided by the solver ST
[5] and by the solver rhoCentralFoam [57]. There is a very good agreement
between these three solutions. The small discrepancy near the leading edge
between the solutions computed with ExPReS and with ST could be due to
a different mesh refinement.

It is underlined that there are no practical differences between the full
potential solutions and the Euler solution. In fact, in the subsonic case, full
potential solvers allow to compute the aerodynamic field very precisely with
a much smaller complexity and computational effort than with Euler solvers.

6.2.2 Transonic airfoil

One of the aims of this work is to develop a solver capable to compute
transonic solutions.

The first test case in this regime is a non lifting flow around a NACA0012
airfoil at Mach number M∞ = 0.85. Since the airfoil is symmetric, to obtain
no lift the angle of attack is α = 0°. The asymptotic density is ρ∞ =
1.225 kg/m3 and the mesh is the same of the case presented in section §6.2.1.
In this regime two identical shock waves form on the upper and lower part of
the airfoil. The contour plot of the pressure coefficient and its distribution on
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Figure 6.4: Transonic non lifting NACA0012. Polytropic ideal gas. CP
surface distribution and contour plot.

the airfoil surface are depicted in figure 6.4. The surface pressure coefficient
distribution is compared to that computed by an Euler equation solver [59].
In this case the two solutions are in good agreement and the shock position
is well captured by the full potential solution.

The second test case in the transonic regime is a lifting flow around a
NACA0012 airfoil at Mach number M∞ = 0.7 and angle of attack α = 4.09°.
The asymptotic density is ρ∞ = 1.225 kg/m3 and the mesh is the same of
section §6.2.1. In this regime a strong compressive shock wave forms on the
upper surface of the airfoil. The solution is compared with the ones provided
by ST and by rhoCentralFoam. In the case of lifting flows, solutions provided
by full potential solvers present generally an error in the shock position.
This error is due to the isentropic assumption that makes jump conditions
not satisfied, making the shock move towards the trailing edge. In the Euler
case the shock is at the 40% of the chord, while it is placed at 0.55 c in the full
potential solutions. This aspect is depicted in figure 6.5, where it is anyway
possible to note that the two full potential solutions provided by ExPReS and
ST agree on the shock position. The value of lift coefficient and aerodynamic
moment coefficient (computed with respect to a point at x/c = 0.25) are

CExPReS
L = 0.975; CExPReS

M = 0.0287;
CEuler
L = 0.731; CEuler

M = −0.004

with a bigger relative error on the moment coefficient due to the fact that
in the Euler case the low pressure area is more advanced than in the full
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Figure 6.5: Transonic lifting NACA0012. Polytropic ideal gas. CP surface
distribution and contour plot.

potential case.
It is finally reported that the shock position can be better captured by

non isentropic full potential solutions as in the original work by Parrinello
[5].

6.3 Dense gas flows

Dense gas flows are computed in order to analyze some of the phenomena
described in section §3.4. Results are compared to some cases available in
literature computed with an Euler solver [59] and with solutions provided by
ST .

The gas model is a polytropic van der Waals gas with γ = 1.0125, there-
fore capable to express BZT fluids behaviors (see section §3.4). All the
thermodynamic variables have been normalized by their corresponding crit-
ical values. For this normalized gas, the van der Waals constant a and the
covolume constant b are respectively

a = 3 (6.1)

and

b = 1/3. (6.2)
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The following solutions are computed around the widely used NACA0012
airfoil on various meshes with the geometry described in figure 6.2.

6.3.1 Subsonic airfoil in dense gas flow

In the dense gas region, it could happen that in an isentropic expansion the
speed of sound increases, leading to a reduction in the Mach number. This
is exactly what happens in this case. For a PIG flow around the NACA0012
airfoil the critical Mach number2 is approximately 0.8 and for angles of attack
different from zero, shock waves appear even at lower Mach numbers. In
this section three different solutions are computed with a free stream Mach
number M∞ = 0.85 and at different angles of attack equal to α = 1°, α = 3°
and α = 5°. In all of them however no shocks are present due to the fact
that the fundamental derivative of gas dynamics Γ becomes negative in the
expansion region after the leading edge as depicted in figures 6.6, 6.7 and
6.8. Thus, as explained in section §3.4, the speed of sound increases even if
the flow is expanding, keeping the stream subsonic.

The asymptotic conditions for this cases are

M∞ = 0.85,
P∞
PC

= 1.07,

ρ∞
ρC

= 0.920,

where the subscript C denotes the critical conditions. This asymptotic state
will be denoted through the text with the initials DG1 (dense gas 1).

The grid on which these computations are made is composed by 154 765
triangles and 77 819 nodes. The obtained solutions are compared to those
obtained by Cinnella [59].

It is possible to observe that in all these three cases there is a very good
matching between solutions computed with the Euler model and those pro-
vided by the the two full potential solvers.

The last of the three cases presented in this section is a limit case for
an inviscid solver. In fact, even if in a normal gas regime no separations
are expected for a NACA0012 airfoil at an angle of attack of 5°, in the case
presented in figure 6.8 there is a very strong adverse pressure gradient that
could lead to the separation of the boundary layer.

2Lower free stream Mach number at which there is a sonic point on the the airfoil at a
null angle of attack.
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Figure 6.6: DG1. Subsonic dense gas, α = 1.
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Figure 6.7: DG1. Subsonic dense gas, α = 3.
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Figure 6.8: DG1. Subsonic dense gas, α = 5.
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Figure 6.9: DG2. Pressure coefficient distribution and contour plot

6.3.2 BZT gas phenomena

A transonic flow in which many BZT gas peculiar phenomena are present
can be obtained from the asymptotic conditions

M∞ = 0.998,
P∞
PC

= 0.944,

ρ∞
ρC

= 0.600,

that give a negative free stream value of the fundamental derivative of gas
dynamics equal to Γ∞ = −0.0447. This case will be denoted through the
text with the initials DG2 (dense gas 2).

The solution for this flow is computed on a mesh with almost 764 052
triangles and 382 379 nodes. Such an high spacial resolution was used to
obtain a high definition of shocks and fans. The solution interval time is t ∈
[0, 93 s]. On the airfoil surface, steady state convergence is rapidly obtained
(in approximately 20 s), but downstream of the trailing edge the convergence
is much slower, since the expansion shock that forms in that regions keeps
moving backward slowly.

In figure 6.9 the pressure coefficient distribution and its contours are
depicted. It is possible to observe a compressive bow shock in front of the
airfoil even though the asymptotic free stream is subsonic. In fact, with
reference to figure 6.12, it is possible to see that the flow becomes supersonic
before reaching the leading edge due to a drop of the speed of sound. Behind
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Figure 6.10: DG2. Fundamental derivative of gas dynamics. Contour plot
for Γ = 0.
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Figure 6.11: DG2. Pressure coefficient along the wall streamline. The airfoil
begins in x/c = 0 and ends in x/c = 1.
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Figure 6.12: DG2. Mach distribution along the wall streamline. The airfoil
begins in x/c = 0 and ends in x/c = 1.

this bow shock the flow becomes subsonic and its Mach number approaches
zero at the stagnation point. The flow then undergoes a rapid expansion
near the 25% of the chord. From figure 6.9 it is possible to notice that this
rapid expansion region merges in an expansion shock above the airfoil. At
the trailing edge a strong compression shock forms where the entropy jump is
not negligible. In that region, the Euler equations require the formation of a
mixed compressive wave composed by a shock followed by a fan, as discussed
in [59]. The full potential solution is not capable to capture this fan probably
due to the isentropic assumption that across such a strong shock is no more
satisfied. Downstream to the trailing edge, the full potential solution is no
more coherent with the Euler one, even if an expansion shock is captured by
both of them.

In figure 6.13 the distribution of the fundamental derivative of gas dynam-
ics is represented along the wall streamline. It is possible to note that before
the bow shock its value decreases to approximatively −0.5. This is precisely
the cause of the increase in the Mach number (depicted in figure 6.12) in this
region that leads to the formation of the bow shock.
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Figure 6.13: DG2. Fundamental derivative along the wall streamline. The
airfoil begins in x/c = 0 and ends in x/c = 1.

6.3.3 Transonic lifting airfoil in dense gas flow

In this section a lifting transonic case in dense gas regime is presented. Re-
sults are compared to those published in [59]. The asymptotic conditions
are

M∞ = 0.85,
P∞
PC

= 1.116,

ρ∞
ρC

= 1.05.

The solution in depicted in figure 6.14. On the upper surface, near the
leading edge it is possible to observe an expansion shock. In that region the
solution of the Euler equations is in good agreement with the one provided
by ExPReS. On the lower side, the flow goes through a rapid expansion region
where it is possible to observe a not negligible discrepancy between the two
solutions.

The two compressive shocks near the trailing edge are captured by the
full potential solution but the pressure recovery across them is smaller than
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Figure 6.14: Transonic lifting NACA0012. Polytropic van der Waals gas. CP
surface distribution and contour plot.
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Figure 6.15: Residual convergence

the one provided by the Euler solution. A possible explanation of this error
could reside in the isentropic assumption (2.1) that across a shock is never
satisfied. The expansion shock on the upper surface of the airfoil is so well
captured by the full potential solution since, as depicted in figure 6.14, the
value of Γ in that region is very close to zero, hence leading to a small jump
of entropy as explained in section §3.4.

It is interesting to note that in this regime shocks form even if the flow field
is everywhere subsonic as depicted in the Mach distribution of figure 6.14.

6.4 Convergence acceleration techniques

The convergence acceleration techniques presented in section §5.4.3 are all
implemented in ExPReS. In figure 6.15 the residual, computed as

Res =

√√√√√∑
i

∆t

Vi

Nf∑
j=1

ρ̄ n
i, j G

Fi, j
Φn · n̂i, j ∆Li, j

2

Vi

√∑
i

R2
i Vi

(6.3)

is depicted. The index i and j are respectively the cell and the interface
index. The numerator is a numerical approximation of the L2 norm of the
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mass conservation equation forcing term. The denominator is a numerical
approximation of the L2 norm of the density field.

The local time stepping did not proved to accelerate the convergence to
the steady state, causing many spurious oscillations in the flow field. The
over–relaxation procedure (β > 1) lead to a faster convergence even if the
CFL number that guarantees the stability is smaller than that of the constant
time stepping scheme. On the contrary, the under–relaxation procedure al-
lows a higher CFL, but it slowed down the convergence, as predicted in
section §5.4.3.

6.5 Unsteady simulations

To investigate unsteady solutions around moving bodies, the ALE formula-
tion and transpiration boundary conditions were implemented in ExPReS .
An essential parameter that characterizes the behavior of unsteady flows is
the reduced frequency, defined as

k =
ω la
V∞

(6.4)

where ω is the structural motion frequency, la is an arbitrary aerodynamic
length and V∞ is the free stream speed. This dimensionless parameter mea-
sures the unsteadiness of the aerodynamic flow field subjected to the forcing
of boundary conditions.

6.5.1 Subsonic oscillating airfoil

The first case presented is a comparison between the solutions computed with
both transpiration boundary conditions and ALE simulation. To validate
these results they are also compared to the solution obtained with the solver
ST . The polytropic ideal gas model is adopted and the asymptotic conditions
are

M∞ = 0.5,

P∞ = 101325,

ρ∞ = 1.225 .

In this simulation only the pitching motion about the 25% of the chord
was activated. The reduced frequency is k = 1 (computed using as aerody-
namic reference length la the airfoil chord c) and the oscillation is
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Figure 6.16: Lift coefficient vs. pitch angle. M∞ = 0.5

θ(t) = 0° + 3° sin (ω t) .

The mesh is rigidly moved, ensuring that the geometric conservation law
(A.33) is satisfied.

The lift coefficient plotted against the pitch angle θ is depicted in fig-
ure 6.16. It is possible to observe a very good correspondence between the
two implemented strategies and with data provided by ST , even if this last
solution was computed deforming the mesh.

6.5.2 Transonic oscillating airfoil

The second investigated case is an oscillating airfoil with shock waves moving
on its surface. The asymptotic conditions are

M∞ = 0.755,

P∞ = 101325,

ρ∞ = 1.225 .

The pitching motion around the 25% of the chord is

θ(t) = 0.02° + 2.51° sin (ω t)
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Figure 6.17: Oscillating transonic airfoil in ideal gas flow

and the reduced frequency is k = 0.1 (computed using as aerodynamic ref-
erence length la the airfoil chord c).

The mesh is rigidly moved. In figure 6.17 the lift and pitching moment
coefficient are plotted against the pitch angle θ. Results are compared with
those computed with the program ST . It possible to observe a good corre-
spondence in the lift coefficient loop, while there is a certain discrepancy in
the moment coefficient. A possible explanation could be found in the fact
that this last result is much more sensible to grid refinement and dissipation
than the lit coefficient. The two solutions are computed on different grids
and the solution provided by ST is obtained deforming the mesh instead of
moving it rigidly.

6.5.3 Transonic oscillating airfoil in dense gas flow

The unsteady behavior of an expansion shock is investigated by means of an
ALE simulation in the dense gas transonic case of section §6.3.3. The airfoil
pitch movement around the 25% of the chord has the sinusoidal shape

θ(t) = 3° sin (ω t)

with a reduced frequency k = 0.5 (computed using as aerodynamic reference
length la the airfoil chord c). The two compressive shocks near the trailing
edge assume an almost fixed position while the two expansion shocks near
the trailing edge continue to form and disappear.

The solution is depicted in figure 6.18, where it is possible to observe the
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Figure 6.18: Oscillating airfoil in dense gas flow

hysteresis on the lift coefficient. In figure 6.18a in fact the solution for θ = 0°
is not symmetric.

6.6 3D flows

The solver ExPReS has been extended to compute 3D flows. Big problems
were faced with gradient reconstruction schemes and they have not been
completely resolved yet. In figure 6.19 a 3D subsonic stationary solution
in ideal gas regime is depicted. It is a lifting flow around the ONERA M6
wing in the free stream conditions M∞ = 0.5 and α = 2. The wing span
is b = 1.196 units and the mesh discretizes a semi-spherical domain with a
radius of 20 units. It is composed by 334 963 tetrahedra and 69 510 nodes.

The pressure coefficient is plotted at three span wise stations, 30% 60%
and 90% of wingspan.

The difficulties faced in the computing of 3D flows could be due to a
programming error or to numerical stability reasons. Some other cell–center
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Figure 6.19: Onera M6 wing in subsonic regime

3D gradient reconstruction algorithms and stabilization techniques should be
analyzed in order to further investigate the causes of these problems.

6.7 Speed up results

6.7.1 Hardware setup

All the benchmark tests that follow were performed with the hardware avail-
able to the authors of this work. Different CPU and GPU models were used
to test the scalability capabilities of ExPReS. This hardware includes desk-
top quad–core CPUs, a notebook dual–core CPU with HyperThreading 3, a
desktop GPU and a notebook GPU.

In computer world, hardware architectures and performances depend sig-
nificantly from the time period they were developed and from their price
category. Since one of the goals of this work is to prove the benefits of
GPGPU in fluid dynamics, a comparison between a low–end CPU and a
high–end GPU would not make sense. Thus, benchmarks were conducted
on GPUs and CPUs of approximately the same time period and price cate-

3HyperThreading (HT) is a technology developed by Intel to optimize the use of CPU
resources. If a CPU supports HT, the operating system will see one more logical core for
each physical core in the CPU. This technology can lead to an increase of performance in
some cases but it can’t double the speed as with another physical core because only few
hardware elements are really duplicated.
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Model Intel i5 760 Intel i5 2410m AMD Phenom II X4 840
Architecture Lynnfield Sandy Bridge Propus
Frequency 2.8 GHz 2.3 GHz 3.2 GHz

Cores 4 2 4
Threads 4 4 (HT) 4
Cache L2 4 x 256 KB 2 x 256 KB 4 x 512 KB
Cache L3 8 MB 3 MB /
TDP 95 W 35 W 95 W

Performance 51 GFLOPS 46 GFLOPS N. A.
Release date JUL 2010 FEB 2011 JAN 2011

Price 205 $ N.A. 110 $

Table 6.1: CPU list

gory. Mid–range desktop hardware launched during 2010–2011 in the price
range from 100 e to 200 e was available. For the notebook, the hardware is
the typical one that can be found in a mid–range notebook (∼ 700 e) sold
during 2011. Table 6.1 and 6.2 report the hardware components available
during the tests. All the CPUs tested were capable to take advantage of the
autovectorization technology provided by the GCC compiler thanks to the
support of SIMD set instructions like SSE and SSE2.

One of the most important advantages of the GPU architecture is its
energy efficiency. For example the Thermal Design Power (TDP) of the i5
760 is 95 W while the TDP of the GTX 460 is almost double, 160 W, but
in single precision the GPU has theoretically almost 20x the performance of
the CPU. This means that if a simulation is well suited to run on a GPU,
there are also important energetic, and consequently economical, savings.
This is a critical aspect, for example, for clusters and supercomputers, where
an important problem is the control of the temperature of the environment
where the hardware is located. A higher GFLOPS/WATTS ratio means less
heat and energy for the same computational power.

6.7.2 Solver setup

Many meshes with different number of elements were used in the follow-
ing tests. This aspect is important because there is always some overhead
when computations are carried out in parallel. For overhead it is intended
any time, software and hardware resources needed for the execution of the
application that are not strictly related to the computations performed to
find the solution. For example in a shared memory system, when using a
multithreaded application such as the multithreaded version of ExPReS, be-
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Model NVIDIA GT 540M NVIDIA GTX 460
Architecture Fermi Fermi

Compute Units (SM) 2 7
Cores 96 (2x48) 336 (7x48)

Global Memory 1 GB DDR3 1 GB GDDR5
Local Memory 16–48 KB 16–48 KB

Cache L2 768 KB 768 KB
OpenCL version 1.1 1.1
CUDA capability 2.1 2.1

TDP 35 W 160 W
Performance (single precision) 258 GFLOPS 907 GFLOPS

Release date JAN 2011 JUL 2010
Price N. A. 229 $

Table 6.2: GPU list

fore any parallel computation, some time is needed for the creation of the
required threads. Some time and hardware resources are also needed during
computations to ensure cache coherence of the shared variables. Overhead
arises also when computations are carried out by a GPU. As explained in
4.3.1, during the execution of a program on a GPU some time and resources
are needed to allow communications between the host and the device. All of
these aspect lead to the fact that if the problem to be solved is too small (i.e.
the mesh is too coarse or few time–steps are computed), the overhead can be
so deleterious that the serial version of the code can be faster than the par-
allel one. Thus, there exists a trade–off point before which the serial version
of the code performs faster than its parallel version. What is expected is an
increase of the benefits of the parallel version of ExPReS when the problem
size increases.

An important aspect related to the solver setup and the GPU speedup
respect to the CPU is the floating point precision chosen in the simulation.
ExPReS is capable to perform simulations using both single or double pre-
cision floating–point numbers. However in order to guarantee a good accu-
racy of the results and to prevent numerical cancellation, double precision
is mandatory. Usually on GPUs data sheets single precision floating point
performance are shown in GFLOPS. A modern mid–range GPU is capable of
1–2 TFLOPS in single precision. High–end GPUs reach over 4 TFLOPS in
single precision. However in double precision computations, performance are
lower, even by an order of magnitude. This is clear in figure 4.14. Another
aspect to keep in mind is that theoretical GFLOPS performances are only
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Case 1 2 3 4
Nodes 352819 67895 18375 3781

Elements 703542 133694 34662 7116
Timesteps 500 3000 10000 50000

Table 6.3: Case list

indicative of the real GPUs speed: in the real case an important contribution
is also given by drivers and other system bottlenecks.

Mesh list for benchmarks The set of meshes and the total number of
time–steps used in benchmarks are shown in table 6.3. All meshes discretize
the same geometry, i.e. the NACA 0012 airfoil.

The biggest mesh has more than 700 000 elements while the smallest is
appriximately 100 times smaller. Benchmarks were conducted with different
number of time–steps on each mesh in order to finish each simulation in
approximately the same time. This helps to figure out how well ExPReS
scales with the problem size.

6.7.3 Results

Multiple cases with different meshes and different hardware were investi-
gated. The results of the obtained speedups are compared in tables 6.4, 6.5,
6.6, 6.7.

Comments One curious aspect outlined by these results is the performance
improvement provided by HyperThreading. In these tests only the i5 2410m
processor can take advantage of this technology. For example in case 3 using
2 threads a speedup of 1.84 was obtained over the serial version of ExPReS
, while using 4 threads with HyperThreading leads to a speedup of 2.58. Of
course this speedup is not the same as the one provided by two additional
physical core as shown for example by the i5 760, but the advantages are
however appreciable. A true quad–core as the i5 760, in fact, provides a
bigger speedup when 4 threads are used. However even in this case the
scaling is not perfectly linear. This behavior is mainly due to the overhead
related to the parallel architecture. For example the i5 760 with 4 threads
provides a speedup of 3.12 over the serial version while theoretically, without
any overhead, a speedup of 4 would be expected. With the same CPU, the use
of 2 threads leads to a speedup of 1.95 which is nearly the value of 2 expected
with a theoretical linear scaling. With the Phenom II X4 840 CPU a linear
scaling is more visible. For example in case 4 a speedup of 1.99 is reached
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with 2 threads and a speedup of 3.58 is reached with 4 threads. However
this CPU has proved to be in general slower than others. This is probably
due to the lack of the L3 cache. In numerical simulations a big cache is very
important because its function is to prevent the CPU access to the RAM
when the same data is required very often, avoiding possibles bottlenecks.
The technology behind the cache memory allows it to run faster than the
RAM but a bigger cache means a higher cost of the CPU. This is why in
table 6.1 it is possible to see that the Phenom CPU was sold at approximately
half the price of the i5 760. In ExPReS a big cache is important because
some vectors, like the ones that contain the mesh topology, are very often
accessed by cores.

Tables 6.4, 6.5, 6.6, 6.7 can be compared to see the scaling capabilities
of ExPReS between meshes of different sizes. From these comparisons it is
possible to see the trend of the speedups given by the GPU over the CPU
between different meshes. During the tests one of the machine was equipped
with the i5 760 CPU and the GTX 460 GPU. These components belongs
to the same time period and price category, so they are well suited for a
comparison. The obtained speedups of the GPU over the CPU with 4 thread
are respectively, from the coarsest mesh to the finest one: 3.36, 4.33, 3.38,
3.23. This means that the trend is not monotone. In fact it seems that
there is a particular mesh dimension capable of maximizing the GPU/CPU
speed ratio. This mesh is the one with approximately 35000 elements. One
probable reason for this behavior could be the combination of the limited
amount of the cache in the GPUs architecture with the overhead related
for example to the host–device communications and kernel managing. This
means that when the mesh is too coarse the cache doesn’t saturate but some
overheads can lead to bottlenecks. Then, when the mesh is too fine, overheads
are negligible, but if the cache is full some data transfer between the slower
global memory and the GPU are needed. An important difference between
the CPU architecture and the GPU architecture is in fact the dimension of
the cache memory, as shown in tables 6.2 and 6.1. The same thing is valid
for the i5 2410m CPU and the GT 540M GPU that ships with the notebook
used for benchmarks. The obtained speedups are: 1.53, 1.76, 1.27, 1.14.
Even in this case it is possible to see that the maximum speedup is obtained
with the mesh of the case 2, the one with approximately 35000 elements.

Another important aspect is the comparison between the GPUs used in
these benchmarks. In fact as it can be seen in table 6.2, there is a consider-
able difference between the computational power of the two GPUs. This is
evident because, from the hardware point of view, both GPUs are based on
the same architecture (a revision of Fermi) but the GTX 460 has 7 Stream
Multiprocessors, 5 more than the GT 540M (or 3.5 times more than the GT
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540M). Moreover the GTX 460 uses the GDDR5 technology for the global
memory while the GT 540M uses the cheaper and slower DDR3 technology.
This is specially important when the cache is full and thus it is needed to
access to the global memory location to recover the requested data. The
declared performances in GFLOPS, provided by table 6.2, highlight that the
GTX 460 is 3–4 times faster that the GT 540M. This is only an indicative in-
dex of performance and is related only to single precision, while during these
benchmarks ExPReS was executed with double precision support. However
tests reveals that the GTX 460 is in effect from 3.43 to 4.01 times faster than
the GT 540M.

The multithreaded version of ExPReS seems to scale very well on a shared
memory system provided by a multi–core CPU. Moreover the tested GPUs
of the same price category and time period of the tested CPUs demonstrated
the tangible benefits of the GPGPU approach.

Figure 6.20 shows the speedups given by the multithreaded and the GPU
version of ExPReS over the serial one for each test case with the i5 760
CPU and the GTX 460 GPU. Figure 6.21 shows the speedups given by the
multithreaded and the GPU version of ExPReS over the serial one for each
case with the i5 2410m CPU and the GT 540M GPU. It is clearly visible
the superiority of the GTX 460 in numerical computations and thus the
advantages of the GPGPU. Of course this is a only a mid–range gaming
graphics card: speedups become more relevant when using a high–end GPU
specifically developed for general purpose computations.

6.7.4 Comparison with other software

In order to investigate the capability of ExPReS to take advantage of multi–
core CPUs and GPUs architecture, it is possible to make a comparison
between the ExPReS benchmarks and those advertised by some companies
about their commercial software when the hardware acceleration provided
by the GPU is active.

It must be noted that usually commercial software benchmarks are strictly
related to an implementation on a cluster or a supercomputer and thus high–
range hardware components are used for tests, such as Intel Xeon, AMD
Opteron, NVIDIA Tesla. These components can easly exceed $ 1000. How-
ever a comparison with speedups obtained with mid–range hardware is still
interesting.

Another important thing is that a direct comparison like this is not
strictly correct because different software can solve different problems or
even the same problem with different solution schemes. Thus the algorithm
implemented in different softwares could have very different scalability capa-

139



CHAPTER 6. SOLVER AND RESULTS

Figure 6.20: Results for the mid–range desktop configuration. Single thread,
multiple threads and GPU executions.
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Figure 6.21: Results for the mid–range notebook configuration. Single
thread, multiple threads and GPU executions.
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Figure 6.22: Speedups for SIMULIA Abacus [60].

bilities. For example a problem whose algorithm can take advantage of the
local memory of the GPU is more likely to obtain a bigger speedup over the
CPU. This means that a problem like a Montecarlo simulation can easily per-
form 100x faster with the GPU in respect to the CPU, while a structural and
an aerodynamic solver generally shows lower speedups. Moreover when two
software solve the same problem differences can arise, for example, between
an implicit and an explicit scheme as stated in 5.4.

Here, some benchmark results provided by NVIDIA from its website [60]
for numerical simulations software are reported for a comparison with ExPReS
scalability capabilities.

Figure 6.22 shows the results advertised for SIMULIA Abacus, a struc-
tural solver. Tests were conduced on an Intel 8–core 2.6 GHz Sandy Bridge
CPU and a NVIDIA Tesla K20X GPU. Viewing the results a maximum
speedup of 2.5 is obtained when a single GPU is compared with a single
multi–core CPU.

Figure 6.23 shows the speedups advertised for ANSYS Mechanical and
ANSYS Fluent. Tests were conducted on various Intel Xeon (Westmere and
Sandy Bridge) CPUs and NVIDIA Tesla GPUs (K20, K20X and C2075).
The most important thing is that in all cases the speedups obtained varies
from 1.9 to 2.4.

Figure 6.24 shows the speedups advertised for MSC Nastran. Tests were
conducted on Intel Xeon (Sandy Bridge) CPUs and NVIDIA Tesla (K20
and K20X) GPUs. In the figure it is possible to see that the GPU solver
is approximately 6x faster than the serial CPU solver and about 2x faster
than the parallel CPU (8–core) version for the static structural solver (SOL
101). For the structural modal solver, SOL 103, the GPU is approximately
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Figure 6.23: Speedups for ANSYS Mechanical and ANSYS Fluent [60].

3x faster than the CPU executing the serial solver and approximately 1.5x
faster than the CPU parallel version.

In MathWorks MATLAB it is possible to analyze the benefits of the
GPGPU launching an integrated benchmarks that compares the GPU and
CPU performance for matrix computations both in single and double preci-
sion. The benchmark is based on how fast the hardware can solve a linear
system (A\b) with different matrix sizes.

It must be noted that at the present time MATLAB only supports NVIDIA
devices with double precision capabilities. The desktop configuration used
for the benchmarks is the same machine used for ExPReS benchmarks: Intel
i5 760 CPU and NVIDIA GTX 460 GPU. Figure 6.25 shows the results of
the speedups of the GPU over the CPU with different matrix sizes. It is
possible to see that the benefits of the GPGPU approach increase with the
problem dimension, due to the relative reduction of overhead in respect to
the effective computation. Figure 6.26 compares the performance of the CPU
and the GPU with single precision matrix computations and with different
matrix sizes. Figure 6.27 compares the performance of the CPU and the
GPU with double precision matrix computations and different matrix sizes.

It is possible to see that a maximum speedup of about 5 with the single
precision and of approximately 2 with the double precision can be achieved
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Figure 6.24: Speedups for MSC Nastran [60].
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Figure 6.25: MathWorks MATLAB, speedups of the GPU over the CPU,
single and double precision.
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Figure 6.26: MathWorks MATLAB, single precision performance, CPU and
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using GPGPU in MATLAB.

Comments Looking at the benchmarks results of commercial software re-
lated to structural and fluid dynamic problems it is possible to see that the
gains achieved with the use of GPUs are such that a speed up of about an or-
der of magnitude can be expected over the CPU. This is in perfect agreement
with the scalability provided by ExPReS.
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Chapter 7

Concluding remarks

In this work the 2–fields full potential formulation was successfully applied
to real gas flows. The use of this particular formulation was justified by
a deep comparison with the more standard 1–field approach. The 2–fields
scheme is more versatile and can easily be used with a general enthalpy
function. With this formulation it is therefore possible and quite simple to
study Bethe–Zel’dovich–Thompson (BZT) fluids and their particular behav-
iors when their thermodynamic state is near the critical point. Two different
gas models were introduced from general thermodynamics principles: the
polytropic ideal gas, that is suitable for common aerodynamic flows, and the
simplest BZT gas model, the polytropic van der Waals gas. The Bernoulli
theorem was written for a general gas and the enthalpy variation through an
isentropic transformation expressed as a function of the density only, thus
closing the 2–fields problem.

This formulation was implemented from scratch in the solver ExPReS, that
is based on a cell–centered finite volume discretization and an explicit time
stepping scheme. The cell–centered approach was chosen since the solver
was written to run on graphic processors. It in fact allows to avoid the
typical problem of the branch divergence that causes a loss of computational
efficiency.

Different numerical schemes to approximate the gradient and some up-
winding techniques were tested. The biggest problem faced during this work
was to find a scheme to reconstruct the gradient accurate and robust enough
to keep the numerical solution procedure stable. In fact, the full potential
problem strongly relies on the accuracy and robustness of the gradient recon-
struction schemes and, even if some of them were successfully applied to the
computing of viscous fluxes, the same schemes did not proved to be stable
when applied to the full potential problem. This is probably the main reason
for the big difficulties faced in the 3D implementation that made it very com-
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plicated to compute a 3D subsonic solution and impossible (up to now) to
find a stationary transonic solution. On the contrary, node–centered schemes
proved to be more accurate and robust. Therefore, the implementation of
a node–centered discretization could be a possible future development. It
could be interesting to evaluate if the advantages provided by the more ro-
bust gradient reconstruction techniques could overcome the loss of efficiency
due to the branch divergence.

Two versions of ExPReS were developed. The first one runs on CPU
and is parallelized with a multithread approach using OpenMP. The second
version was programmed with the OpenCL language to take advantage of
the acceleration provided by GPU devices.

The program was firstly validated solving ideal gas flows and comparing
results with solutions provided by another full potential solver or Euler equa-
tions solvers. Dense gas flows were then computed and compared to those
available in literature and to those computed with the solver ST that imple-
ments a time implicit 2–fields full potential formulation. Results proved the
validity to use a potential flow solver to compute complicate flows with ther-
modynamic conditions near the critical point. Moreover, the cell–centered
approach has proved successful to compute such solutions, even if it is more
complicated and less robust than the node–centered discretization.

Typical BZT gas phenomena were observed with a good correspondence
with solutions obtained solving Euler equations, especially in subsonic flows.
Transonic dense gas flows with weak shocks showed to be quite accurate
while, when strong shock waves forms in the flow field, the isentropic as-
sumption generates big errors. Anyway, these errors could be eliminated
introducing an entropy layer as done in [5]. This technique should however
be tested in dense gas flows.

Two different strategies to simulate the motion of bodies in the field were
implemented. The simplest is the adoption of transpiration boundary condi-
tions that suits only small displacements. On the contrary, a technique that
allows to take into account arbitrary large motions is the ALE formulation.
The used form relies on the assumption that the mesh velocity is solenoidal
(geometric conservation). Since only rigid mesh displacements were consid-
ered, this assumption is always verified. It could be however possible to
adopt an ALE formulation that does not need this property, as explained in
appendix A.

ExPReS was extended to compute 3D flows, but many stability problems
were experienced. They are probably related to the gradient reconstruction
schemes. This consideration relies on the fact that, if the Bernoulli theorem
is deactivated and a transport field is assigned, it is possible to transport
a wavefront in an empty domain without facing any numerical instability.

148



This analysis probably enforces the hypothesis that these instabilities are
related to the gradient reconstruction inaccuracies, rather than the 2–fields
formulation itself, since it has already been successfully applied to the com-
puting of 3D flows using a node centered formulation that generally provides
better accuracy in the approximation of gradients. It is however possible
that all these convergence problems are related to a programming bug. The
only computed solution concerns a subsonic lifting flow around the ONERA
M6 wing. It was possible to compute this solution only by applying a fil-
ter that dissipates perturbations by averaging the solution on a cell with its
neighboring cells that share with it a node.

Benchmarks were performed on different meshes to analyze the speedups
obtained using general purpose GPU computing. The obtained speedups
strongly vary depending on the used hardware. Comparisons were made
between hardware of the same price range and production period. The best
result was the speed up achieved with the graphic card GTX 460 compared
to the processor i5-760. The simulation executed on this GPU was 13.5 times
faster than the one–thread and 4.32 times than the four–threaded simulations
that run on the CPU. To obtain these speedups using a multi-processor
approach would require a much bigger investment than that necessary for
a mid-range graphic card as the one used for these benkmarks. Moreover,
the computational power of GPUs will hopefully increase rapidly in the next
years since the major GPU producers of the world are strongly investing in
this technology. It’s therefore probable that GPGPU computing will offer a
high computational power at lower prices in the future.
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Appendix A

ALE formulation

The Arbitrary Lagrangian Eulerian (ALE) formulation is useful when a fluid
dynamic solution must be computed around a moving and deforming body.
This technique allows to approximate the Eulerian unknowns using a dis-
cretization that is not as usual on a fixed mesh, but on a grid that follows
the body displacements. It is therefore a well suited approach to take into
account fluid-structure interactions and to use modern CFD aerodynamic
models to compute aeroelastic solutions.

In this appendix, after a brief introduction to the Eulerian and the La-
grangian points of view, the fundamental relation that allows to switch be-
tween them is introduced. This relation connects their time derivatives,
allowing the expression of the conservation laws in both of them. In sec-
tion §A.4, conservation laws are expressed on a moving volume, and the ALE
form of a generic conservation law is presented. Finally, in section §A.5, the
ALE formulation is specialized to the mass conservation equation and the
Bernoulli theorem, obtaining the 2–fields ALE full potential problem.

A.1 Eulerian and Lagrangian points of view
These two approaches differ primarily for their typical application field. In
fact, in fluid-dynamics the generally preferred approach is the Eulerian one
because it is more indicated when particles are subjected to big displacements
and the interest is generally focused on a fixed domain through which the fluid
flows. On the contrary, the Lagrangian point of view is commonly adopted
in structural simulations because in that case the focus is on the material
particles displacements that are directly used to compute deformations and
therefore stresses in the structure.

Consider the general physical quantity F , that depends from space and
time (for example the temperature in a room or in a solid). In the Eulerian



APPENDIX A. ALE FORMULATION

approach F is described by the mathematical function

f (r, t) , (A.1)

whose independent variables are the space position r and the time t. The
space position r has nothing to do with a material particle and if it is held
fixed in r = r̄, the function

f̄ (t) = f (r̄, t) = f (r, t)|r=r̄ (A.2)

gives the value of the physical quantity F for all the particles that pass by
the position r̄ at different time instants.

On the contrary, the Lagrangian representation of the quantity F , is given
by the mathematical function

F (X0, t) , (A.3)

whose independent variables are the initial particles positions X0 and the
time t. If we consider the particular initial position X̄0, the function

F̄ (t) = F
(
X̄0, t

)
= F (X0, t)|X0=X̄0

(A.4)

gives the quantity F “felt” by the particle that at the initial time t0 was in
the position X̄0.

To connect the Eulerian and the Lagrangian approaches, it is necessary
to know the trajectory of all material particles, expressed as

R (X0, t) . (A.5)

It should be clear that R (X0, t0) = X0. The function F can then be
obtained evaluating the function f on these trajectories

F (X0, t) = f (R (X0, t) , t) = f (r, t)|r=R(X0, t)
. (A.6)

The inverse operation is always possible too since the function R must
be invertible in order to avoid disappearance or annihilation of material par-
ticles:

f (r, t) = F
(
R−1 (r, t) , t

)
= F (X0, t)|X0=R−1(r, t) , (A.7)

where R−1 (r, t) is the inverse of the function r = R (X0, t) solved for the
first independent variable. This particular function gives the initial position
of the particle that at the time instant t resides at position r.
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A.2 Time derivatives

To connect the time derivatives expressed in the two approaches it is nec-
essary to introduce a preliminary concept. Consider a probe that moves
through the domain. Its measure of the quantity F is given by the function

FP (t) = f (XP (t) , t) = f (r, t)|r=XP (t) , (A.8)

where XP (t) denotes the probe trajectory and is completely not related to
the materials particles motion field.

The time derivative of that measure is then computed applying the chain
rule as it follows

dFP
d t

= ∇f
∣∣∣
r=XP (t)

· dXP

d t
+
∂f

∂t

∣∣∣∣
r=XP (t)

= ∇f
∣∣∣
r=XP (t)

· V P (t) +
∂f

∂t

∣∣∣∣
r=XP (t)

, (A.9)

where V P (t) is the probe velocity.
To express the right hand side of equation (A.9), a more compact way is

to introduce the operator

DV P
f

D t
=∇f · V P (t) +

∂f

∂t
. (A.10)

The derivative
DV P

f

D t
is a function of r and t since f = f (r, t). Equation

(A.9) can then be reformulated as

dFP
d t

=
DV P

f

D t

∣∣∣∣
r=XP (t)

. (A.11)

To obtain the variation rapidity of F not for a single probe that moves
with velocity V P , but on a grid of points (eventually infinite in number) that
at the time instant t moves with the velocity field vg expressed in Eulerian
form as vg = vg (r, t), expression (A.10) is simply extended to

Dvgf

D t
=∇f · vg (r, t) +

∂f

∂t
. (A.12)
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Material Derivative The material derivative is the variation rapidity of
F felt by material particles that at time instant t are in position r and move
with the velocity field u (r, t), that is the speed of the fluid. This is therefore
a simple extension of equation (A.12), that is

Df

D t
=
Du f

D t
=∇f · u (r, t) +

∂f

∂t
. (A.13)

The operator D
Dt

takes as input the Eulerian field f and gives as output
another Eulerian field and not a Lagrangian one. However this operator
is used to connect the two points of view since, if it is evaluated for r =

R (X0, t), it gives the Lagrangian field
∂F

∂t
.

∂F

∂t
=
Df

D t

∣∣∣∣
r=R(X0, t)

. (A.14)

To conclude the correspondences between the Eulerian and the Lagrangian
points of view, the relation between the two velocity fields expressed in both
approaches is

U (X0, t) =
∂R

∂t
= u (r, t)|r=R(X0, t)

. (A.15)

A.3 Second order time derivatives

In section §2.4.5, the ALE form of the second order time derivative has been
introduced. To infer it, it is necessary to compute the second order derivative
of equation (A.8). The derivative of equation (A.9) is

d2 FI
d t2

=
d

dt

[
∇f

∣∣∣
r=XI(t)

]
· V I (t) +∇f

∣∣∣
r=XI(t)

· dV I

d t

+
d

dt

(
∂f

∂t

∣∣∣∣
r=XI(t)

)
. (A.16)

To compute the two ordinary time derivatives of ∇f (r, t)|r=XI(t) and of
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∂f

∂t

∣∣∣∣
r=XI(t)

it is necessary to apply again the chain rule as follows

d

dt

[
∇f

∣∣∣
r=XI(t)

]
= ∇ (∇f)|r=XI(t) · V I (t) +

∂∇f
∂t

∣∣∣∣
r=XI(t)

= ∇ (∇f)|r=XI(t) · V I (t) +

(
∇∂f
∂t

)∣∣∣∣
r=XI(t)

,(A.17a)

d

dt

[
∂f

∂t

∣∣∣∣
r=XI(t)

]
=

(
∇∂f
∂t

)∣∣∣∣
r=XI(t)

· V I (t) +
∂2f

∂t2

∣∣∣∣
r=XI(t)

. (A.17b)

Substituting relations (A.17) in equation (A.16), the following expression
is obtained

d2 FP
d t2

=
[
∇ (∇f)|r=XP (t) · V P (t)

]
· V P (t)

+ 2

(
∇∂f
∂t

)∣∣∣∣
r=XP (t)

· V P (t)

+ ∇f
∣∣∣
r=XP (t)

· dV P

d t
+
∂2f

∂t2

∣∣∣∣
r=XP (t)

. (A.18)

As done in section §A.2, the symbol
D2

V P

D t2
is introduced to indicate the

quantity

D2
V P

f

D t2
= [∇ (∇f) · V P (t)] · V P (t) + 2

(
∇∂f
∂t

)
· V P (t)

+∇f · dV P

d t
+
∂2f

∂t2
(A.19)

that, introducing the probe acceleration AP (t), can be rewritten as

D2
V P

f

D t2
= [∇ (∇f) · V P (t)] · V P (t) + 2

(
∇∂f
∂t

)
· V P (t)

+∇f · AP (t) +
∂2f

∂t2
. (A.20)

Therefore

d2 FP
d t2

=
D2

V P
f

D t2

∣∣∣∣
r=XP (t)

. (A.21)
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To obtain the variation rapidity of F not for a single probe that moves
with velocity V P and acceleration AP , but on a grid of points (eventually
infinite in number) that at the time instant t moves with the velocity and
acceleration fieldsvg and ag, both expressed in Eulerian form as vg = vg (r, t)
and ag = ag (r, t), expression (A.10) is extended to

D2
vg f

D t2
= [∇ (∇f) · vg (r, t)] · vg (r, t) + 2

(
∇∂f
∂t

)
· vg (r, t)

+∇f · ag (r, t) +
∂2f

∂t2
(A.22)

that can be reformulated as

D2
vg f

D t2
=∇ (∇f) : (vg (r, t)⊗ vg (r, t)) + 2

(
∇∂f
∂t

)
· vg (r, t)

+∇f · ag (r, t) +
∂2f

∂t2
, (A.23)

where with a⊗ b is meant the tensor

(a⊗ b)ij = aibj. (A.24)

The quantity ag (r, t) is the grid acceleration expressed in Eulerian form
and computed as

ag (r, t) =
Dvgvg

D t
=∇vg · vg +

∂vg
∂t

(A.25)

A.4 Conservation laws on moving volumes
The conservation of the general Eulerian field f (r, t) written on a moving
control volumes has the form

d

dt

ˆ
V (t)

f = −
˛
∂V (t)

f
(
u− v∂

)
· n̂, (A.26)

where u is the fluid velocity and v∂ is the speed of the boundary of V (t).
Equation (A.26) simply states that the variation of the quantity of F con-
tained in V (t) is equal to the inflow of F through the boundaries of the
control volume.

As demonstrated in chapter 9 of [61], the theorem of time differentiation
of an integral on a moving domain states that
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nk1

nk+1
1

Figure A.1: Deforming mesh. The continuous triangulation is the mesh at
time instant k while the dashed one is the mesh at time instant k + 1

d

dt

ˆ
V (t)

f =

ˆ
V (t)

∂f

∂t
+

˛
∂V (t)

f v∂ · n̂, (A.27)

that applied to equation (A.26) gives
ˆ
V (t)

∂f

∂t
+

˛
∂V (t)

f u · n̂ = 0. (A.28)

When this conservation law has to be numerically solved on a moving
mesh, the time derivative that appears in equation (A.28) must be related to
the time derivative computed with respect to the grid nodes. This derivative
is given by

Dvgf

D t
(A.29)

that, approximated numerically on point 1 with the explicit Euler scheme,
gives

Dvgf

D t

∣∣∣∣
point 1

≈ fk+1
1 − fk1

∆t
, (A.30)

where fk+1
1 is the solution in the position of the point 1 at time instant k+ 1

and fk1 is the solution in the position of the point 1 at time instant k. These
two positions are different as sketched in figure A.1.

Solving relation (A.12) for the partial time derivative gives

∂f

∂t
=
Dvgf

D t
−∇f · vg (A.31)

that, substituted in the conservation law (A.28), gives the first form of the
ALE formulation of a generic conservation law
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ˆ
V (t)

(
Dvgf

D t
−∇f · vg

)
+

˛
∂V (t)

f u · n̂ = 0. (A.32)

Geometric conservation law When speaking about ALE formulation,
a frequent and debated topic is the necessity of the geometric conservation
property that requires that the mesh motion satisfies the divergence free
constraint

∇ · vg = 0. (A.33)

The ALE form (A.32) does not need this hypothesis since in its deduc-
tion it was absolutely not required. On the contrary, hypothesis (A.33) is
necessary to deduce the second ALE form of a conservation law. In fact,
substituting equation (A.33) in the identity

∇ · (f vg) =∇f · vg + f∇ · vg, (A.34)

gives

∇f · vg =∇ · (f vg) (A.35)

that, inserted in the first ALE form (A.32), with the use of the divergence
theorem, gives the second ALE form

ˆ
V (t)

Dvgf

D t
+

˛
∂V (t)

f (u− vg) · n̂ = 0 (A.36)

A.5 2–fields full potential problem
As explained in (A.4), the second ALE form of the mass conservation law is

ˆ
V (t)

Dvgρ

D t
+

˛
∂V (t)

ρ (∇φ− vg) · n̂ = 0, (A.37)

where the fluid velocity has been expressed, as usual, as the gradient of the
kinetic potential.

To obtain the ALE formulation of the Bernoulli theorem, equation (A.31)
is substituted in equation (2.20)

∂φ

∂t
+

1

2
∇φ · ∇φ+ his =

1

2
V 2
∞ + h∞,

Dvgφ

D t
−∇φ · vg +

1

2
∇φ · ∇φ+ his =

1

2
V 2
∞ + h∞. (A.38)
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The final ALE form of the 2–fields full potential flow problem that requires
the conservation property is therefore



ˆ
V (t)

Dvgρ

D t
+

˛
∂V (t)

ρ (∇φ− vg) · n̂ = 0

Dvgφ

D t
−∇φ · vg +

1

2
∇φ · ∇φ+ his =

1

2
V 2
∞ + h∞

(A.39)

Numerical approximation In this work, system (A.39) has been numer-
ically approximated with the same techniques used in chapter 5. The final
discretized form is


Rn+1
i = Rn

i −
∆t

Vi

Nf∑
j=1

ρ̄ n
i, j

(
G
Fi, j
Φn − V n

i, j

)
· n̂n

i, j ∆Lni, j

Φn+1
i = Φn

i + ∆t

(
1

2
V 2
∞ −

1

2
GCi

Φn · G
Ci
Φn + GCi

Φn · V
n
i + h∞ − his

(
Rn+1
i

))
(A.40)

where now the quantities ∆Li, j and n̂i, j depend from the time instant since
they are related to a moving and deforming mesh. On the contrary, the
volume Vi does not change its measure (but could change its shape) given that
problem (A.39) requires the geometric conservation property (A.33). Finally,
the symbol V n

i, j and V n
i denotes1 respectively the numerically reconstructed

mesh velocity on the interface i, j and on the cell i.

1The reader should not get confused by the symbol V i that is a vector and expresses
the velocity of the grid and the symbol Vi that is a scalar and denotes the finite volume
measure
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Appendix B

The fundamental derivative of gas
dynamics

In this brief appendix the expression for the fundamental derivative of gas
dynamics is deduced for the two cases of polytropic ideal gas and polytropic
van der Waals gas.

B.1 Polytropic ideal gas

The expression Γ (s, ρ) is now deduced starting from equation (3.71), rewrit-
ten here for completeness.

Γ (s, ρ) = 1 +
ρ

c (s, ρ)

(
∂c

∂ρ

)
s

.

It is therefore necessary to compute the function c (s, ρ), that is by defi-
nition

c (s, ρ) =

(
∂P

∂ρ

)1/2

s

=

{
∂

∂ρ

[
−
(
∂e

∂v

)
s

∣∣∣∣
v=1/ρ

]}1/2

(B.1)

that, substituting equation (3.43) into B.1, and evaluating it for v = 1/ρ,
leads to

c (s, ρ) =

{
(γ − 1) γ e0

(
ρ

ρ0

)γ−1

exp

[
γ − 1

R
(s− s0)

]}1/2

. (B.2)
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Differentiating this expression gives(
∂c

∂ρ

)
s

=
√
γ (γ − 1) e0

γ − 1

2 ρ0

(
ρ

ρ0

) γ−3
2

exp

[
γ − 1

2R
(s− s0)

]
(B.3)

that, substituted in equation (3.71), gives

Γ
PIG

(s, ρ) = 1 +
γ − 1

2 c (s, ρ)

√
(γ − 1) γ e0

(
ρ

ρ0

) γ−1
2

exp

[
γ − 1

2R
(s− s0)

]
︸ ︷︷ ︸

c(s, ρ)

(B.4)
where equation (B.2) was used to identify the speed of sound. It can thus be
simplified, obtaining the final value of Γ (s, ρ) for the PIG model

Γ
PIG

=
γ + 1

2
(B.5)

that results therefore to be constant.

B.2 Polytropic van der Waals gas
In the case of polytropic van der Waals gas, the function c (s, ρ) can be
obtained by substituting equation (3.60) in expression (B.1) (that is general
and valid for every gas model), obtaining thus

c (s, ρ) =

{
(e0 + a ρ0)

(
ρ

ρ0

1− ρ0 b

1− ρ b

)δ
exp

[
δ

R
(s− s0)

]
δ (δ + 1)

(1− ρ b)2 − 2 a ρ

}1/2

(B.6)

The differentiation of equation (B.6) leads to

(
∂c

∂ρ

)
s

=
1

2

{
(e0 + a ρ0)

(
ρ

ρ0

1− ρ0 b

1− ρ b

)δ
exp

[
δ

R
(s− s0)

]
δ (δ + 1)

(1− ρ b)2 − 2 a ρ

}−1/2

{
δ (δ + 1) (δ + 2 ρ b)

ρ (1− ρ b)3 (e0 + a ρ0)

(
ρ

ρ0

1− ρ0 b

1− ρ b

)δ
exp

[
δ

R
(s− s0)

]
− 2 a

}
(B.7)

that substituted in equation (3.71) results in the polytropic van der Waals
fundamental derivative Γ

PvdW
(s, ρ).
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Appendix C

Estratto in lingua italiana

C.1 Introduzione

Attualmente sono presenti solutori fluidodinamici specializzati nella risoluzione
di diversi tipi di problemi di interesse aerodinamico. I casi simulati in ambito
ingegneristico sono spesso caratterizzati da comportamenti fortemente non
lineari che giocano un ruolo centrale nell’evoluzione della corrente. Tali non
linearità riguardano ad esempio onde d’urto e separazioni dello strato limite.
Per poter cogliere questi fenomeni si rende necessaria l’implementazione di
modelli raffinati, quali equazioni di Eulero e di Navier-Stokes (con modelli
di turbolenza). Questi modelli sono tuttavia particolarmente costosi da un
punto di vista computazionale. Nonostante la continua crescita della poten-
za di calcolo offerte dei moderni supercomputer non è ancora possibile com-
pletare in tempi ragionevoli simulazioni DNS nel caso di applicazioni pratiche.
Questo comporta la necessità di modificare la formulazione con l’introduzione
di modelli di turbolenza (RANS, LES) e soprattutto l’inevitabilità di costose
verifiche sperimentali. Grazie alla sempre più crescente necessità di ottimiz-
zazione delle geometrie aerodinamiche e al conseguente elevato numero di
simulazioni richieste nelle prime fasi di progettazione, una formulazione uti-
lizzata in passato ma caratterizzata da un’ elevata efficienza computazionale
è stato recentemente rivalutata: la formulazione a potenziale. Lo schema a
potenziale permette di completare simulazioni su correnti comprimibili in-
viscide in tempi che possono risultare anche di diversi ordini di grandezza
inferiori alle simulazioni con Eulero e Navier-Stokes. Inoltre la soluzione
a potenziale soddisfa il livello di accuratezza necessario nelle prime fasi di
progetto. Difatti tale formulazione è stata recentemente adottata al fine di
valutare la stabilità aeroelastica di velivoli deformabili da Parrinnello [5].

L’elevato numero di simulazioni necessarie nelle prime fasi di progetto ha
lo scopo di ridurre la regione dello spazio dei parametri all’interno della quale
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ricercare la soluzione ottima, per permettere successivamente ai modelli più
precisi di completare l’ottimizzazione. Diventa quindi essenziale la paralleliz-
zazione del solutore a potenziale per supportare più efficientemente il carico
di lavoro richiesto. Recentemente grazie al concetto di General Purpose
Graphic Process Unit (GPGPU) è diventato possibile sfruttare la potenza
di calcolo delle moderne schede video per accelerare la risoluzione di proble-
mi numerici che manifestano una struttura ad elevato parallelismo dati. Se
l’algoritmo in gioco si presta bene all’implementazione su GPU, è possibile
ridurre i tempi di calcolo di decine o centinaia di volte rispetto alle comu-
ni CPU. L’implementazione di un efficiente solutore aerodinamico su GPU
richiede tuttavia l’uso di particolari strumenti di sviluppo e la conoscenza
della struttura di base della sua architettura hardware. I primi approcci al
calcolo su schede video (si veda [6]) si basavano su una mappatura del prob-
lema numerico in trasformazioni grafiche di pixel e vertici. Tale strategia
risultava tuttavia particolarmente scomoda seppur computazionalmente effi-
ciente. Successivamente, con il rilascio di CUDA nel 2007 e di OpenCL nel
2008, sono stati introdotti linguaggi appositamente sviluppati per facilitare
la programmazione su GPU. Grazie a ciò sono stati sviluppati solutori per
diversi tipi di problemi.

L’ottimizzazione delle geometrie aerodinamiche non può prescindere dal-
l’accuratezza del modello di gas utilizzato nelle simulazioni. Il modello di
gas ideale politropico fornisce risultati ottimi nelle comuni applicazioni aero-
dinamiche, come per le correnti attorno ad un ala. Tuttavia esistono casi
in cui le condizioni termodinamiche sono tali da rendere necessario l’utilizzo
di modelli di gas reali. Questo è particolarmente vero quando ci si trova ad
operare in regime di gas denso, ovvero vicino al punto critico del gas. Si
tratta delle condizioni in cui operano tipicamente i generatori di tipo Organ-
ic Rankine Cycle (ORC). In questo tipo di applicazioni, utilizzando gas di
Bethe–Zel’dovich–Thompson (BZT) si rende possibile la presenza di inusuali
fenomeni come urti di espansione e ventagli di compressione, che possono
essere sfruttati per incrementare l’efficienza di tali macchine come ad esem-
pio mostrato in [10]. Operando nella regione dei gas densi è infatti possibile
sfruttare alcune peculiarità dei gas, come la riduzione del salto entropico
attraverso gli urti, per ottenere elevate efficienze energetiche. La grandezza
termodinamica protagonista di questa regione è la derivata fondamentale del-
la gasdinamica Γ, il cui modulo e segno determinano le caratteristiche delle
onde rarefattive e compressive. I già citati gas BZT sono infatti caratterizzati
dall’esistenza di una regione di inversione in cui la Γ diventa minore di zero,
rendendo quindi possibile l’esistenza di queste singolari onde.

Scopo di questo lavoro è lo sviluppo di un solutore esplicito a volumi
finiti a potenziale, ExPReS , parallelizzato sia su CPU (usando OpenMP),
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sia su GPU (usando OpenCL), che implementa sia un modello di gas ideale
politropico, sia un modello di gas reale (van der Waals politropico). Lo scopo
è quello di ottenere un software che sia un proof-of-concept per dimostrare i
vantaggi dell’utilizzo delle GPU per la risoluzione di problemi aerodinamici.
Inoltre un secondo scopo è verificare l’applicabilità di un’efficiente formu-
lazione a potenziale anche in regime di gas denso. Particolare rilevanza viene
data anche all’uso di software libero.

C.2 CFD a potenziale
La formulazione a potenziale utilizzata nel presente lavoro consente la simu-
lazione di correnti aerodinamiche comprimibili, inviscide ed isoentropiche.

L’approccio a potenziale si basa sull’espressione del campo di velocità u
come

u =∇φ, (C.1)

dove φ è il potenziale cinetico.
Ciò porta a due tipi di indeterminazione. Innanzitutto dato che nelle

equazioni il potenziale compare sempre sotto segno di derivata. Dunque se
φ̃ è soluzione, anche φ̃ + C lo, dove C è una costante arbitraria. Dato però
che ciò che importa è la conoscenza del campo di velocità, questa indeter-
minazione non risulta problematica. Si ha inoltre un’indeterminazione sul
valore di circolazione attorno ad ogni corpo portante presente in un dominio
molteplicemente connesso. Questo secondo tipo di indeterminazione è risolta
grazie all’introduzione della scia a valle dei corpi portanti e l’applicazione su
di essa della condizione di Kutta.

L’ipotesi di isoentropicità

s (r, t) = s∞ (C.2)

è a rigore applicabile in assenza di urti. Tuttavia per un’ala o un profilo in
regime transonico, quando gli urti sono deboli, è ancora possibile utilizzare
tale ipotesi in maniera approssimata. Infatti, come dimostrato in [22], in pre-
senza di deboli discontinuità di pressione attraverso un urto, il conseguente
salto di entropia risulta trascurabile.

Le equazioni utilizzate nella formulazione a potenziale sono la conser-
vazione della massa nella forma integrale

d

dt

ˆ
V

ρ = −
˛
∂V

ρ∇φ · n̂, (C.3)

e il teorema di Bernoulli
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∂φ

∂t
+

1

2
∇φ · ∇φ+ his(ρ) =

1

2
V 2
∞ + h∞, (C.4)

ricavato dell’equazione di conservazione della quantità di moto espressa
in forma differenziale.

Il modello termodinamico del gas è tenuto in considerazione attraverso la
funzione entalpia per trasformazioni isoentropiche his(ρ).

In questo lavoro due formulazioni sono state confrontate: la formulazione
bicampo, dove le incognite sono rappresentate dalla densità ρ e dal poten-
ziale φ, e la formulazione monocampo, dove l’unica incognita è rappresenta-
ta dal potenziale φ. La formulazione bicampo fa uso contemporaneamente
delle equazioni di conservazione della massa e del teorema di Bernoulli, men-
tre nella formulazione monocampo il teorema di Bernoulli viene utilizzato
per esprimere la densità in funzione del potenziale in modo da sostiturne
l’espressione nella legge di conservazione della massa

Per risolvere l’indeterminazione sulla circolazione, si applica la condizione
di Kutta imponendo la continuità del campo di densità attraverso la scia, in-
quanto questa non costituisce una superficie di discontinuità per le grandezze
termodinamiche ma solo per il potenziale φ. La condizione di Kutta è inoltre
equivalente all’assenza di salti di velocità normale alla scia.

Al fine di stabilizzare la simulazione, è necessario introdurre della dissi-
pazione numerica. Ciò è fattibile ricorrendo alla tecnica dell’upwinding, nec-
essaria inoltre per tenere in considerazione la causalità spaziale nella corrente,
specialmente nelle regioni supersoniche.

Particolare attenzione è posta sul confronto tra la formulazione monocam-
po e bicampo. Il principale vantaggio della formulazione moncampo consiste
nel dimezzamento del numero di incognite rispetto alla formulazione bicam-
po, caratteristica che lo pone in vantaggio nell’implementazione di un solutore
implicito. Tuttavia la formulazione bicampo risulta migliore sotto moltri al-
tri aspetti, come un minor numero di calcoli non lineari per l’assemblaggio
di matrici e vettori nel caso implicito. Il bicampo consente inoltre una più
agevole formulazione ALE ed infine la possibilità di implementare modelli di
gas diversi dal gas ideale politropico.

In questo lavoro è stato implementato il solutore ExPReS. E’ stato utiliz-
zato uno schema a potenziale bicampo esplicito capace di simulare il movi-
mento di corpi portanti tramite formulazione ALE o condizioni al contorno
di traspirazione.
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C.3 Termodinamica

In questo lavoro è stato utilizzato l’approccio assiomatico alla termodinam-
ica proposto da Galgani e Scotti [25]. La particolarità di questo approccio
consiste nel fatto che la grandezza principale, l’entropia, espressa in funzione
dell’energia interna e volume specifico,

s = s(e, v) (C.5)

deve soddisfare tre assiomi: monotonia rispetto all’energia, omogeneità e
superadditività rispetto ai suoi argomenti.

Come accennato in C.2 nella formulazione a potenziale bicampo il mod-
ello termodinamico di gas è preso in considerazione attraverso l’espressione
dell’entalpia per il caso di trasformazione isoentropica his(ρ), espressa in
funzione della densità. Nota questa funzione per un certo modello di gas,
è possibile implementare tale modello nel solutore. In ExPReS sono attual-
mente presenti i modelli di gas ideale politropico e di van der Waals politrop-
ico. Mentre il primo dei due è particolarmente adatto allo studio dei comuni
problemi di interesse aerodinamico, il secondo permette di cogliere i fenomeni
tipici dei gas densi, quali urti di espansione, onde miste, ventagli compressivi
e urti con un debole salto di entropia. La particolarità del modello di gas di
van der Waal consiste nella sua capacità di modellare le forze di repulsione
a breve distanza e le forze di attrazione a lunga distanza, grazie all’uso dei
coefficienti a e b (

P + a ρ2
)

(1− b ρ) = ρRT (C.6)

Il modello di gas di van der Waals tuttavia sovrastima la dimensione della
regione in cui si manifestano tali fenomeni.

La grandezza termodinamica protagonista del comportamento del gas nel-
la regione dei gas densi è la derivata fondamentale della gasdinamica Γ. Sulla
base del segno e del modulo assunto da tale grandezza si possono distinguere
tre tipologie di gas:

• Γ > 1 ovunque: fluido LMC (Low Molecular Complexity)

• Γ > 0 ed esiste una regione termodinamica dove0 < Γ < 1: fluido HMC
(High Molecular Complexity)

• Γ < 0 in alcune regioni termodinamiche: fluido BZT (Bethe–Zel’dovich–
Thompson)

La derivata fondamentale della gasdinamica è definita come
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Γ (s, v) ,
v3

2 c2 (s, v)

(
∂2P

∂v2

)
s

(C.7)

ciò significa che i fluidi BZT ammetttono una regione termodinamica
dove la curvatura delle isoentropiche nel diagramma P-v cambia segno. Le
conseguenze di questo comportamento diventano evidenti grazie alla formula
che lega la variazione di entropia alla variazione di volume specifico [22]

∆s = −
(
∂2P

∂v2

)
s

[∆v]3

12T
+O

(
[∆v]4

)
(C.8)

Infatti, durante un’espansione si ha ∆v > 0 e quindi per Γ < 0 si ottiene
∆s > 0. Sono quindi ammessi urti di espansione e ventagli di compressione.
Un’altra conseguenza importante è data dal fatto che quando Γ ≈ 0, è pos-
sibile dimostrare [29] che Γ = O

(
[∆v]4

)
. Ciò significa che in questa regione

termodinamica gli urti sono associati a un debole salto di entropia e si può
quindi sfruttare tale aspetto per incrementare l’efficienza energetica dei dis-
positivi che operano in queste condizioni. Dato che il modello di gas ideale
politropico fornisce un valore di Γ costante, questo non è utilizzabile per lo
studio di correnti in condizioni di gas denso. Il modello di van der Waal
politropico fornisce invece una Γ variabile in funzione dello stato termodi-
namico ed è quindi in grado di modellare la regione termodinamica tipica dei
gas BZT. Parte di questa tesi è dedicata proprio all’indagine della regione
dei gas densi.

C.4 Calcolo parallelo

Uno degli obiettivi principali di questo lavoro consiste nel valutare lo speedup
offerto dalle moderne GPU per accelerare le simulazioni aerodinamiche. Il
solutore ExPReS sviluppato in questo lavoro è stato scritto in C/C++ e paral-
lelizzato sia su CPU che su GPU. L’architettura delle moderne GPU prevede
sostanzialmente un processore dotato di centinaia o migliaia di cores in gra-
do sostanzialmente di effettuare la stessa operazione contemporaneamente su
dati diversi. Grazie a questa peculiarità si possono ottenere grandi vantaggi
quando il problema in gioco può essere risolto attraverso un algoritmo che
esibisce un elevato parallelismo dati. Grazie alla sua architettura altamente
parallela, la GPU è in grado di accelerare, a seconda del problema in gioco,
l’esecuzione delle simulazioni anche nell’ordine del centinaia di volte rispetto
ai tempi tipici per una CPU. All’interno di una GPU è presente una ger-
archia di memoria, dove particolare importanza assume la memoria globale,
che deve essere utilizzata per le comunicazioni tra CPU e GPU. CPU e GPU

C-6



C.5. DISCRETIZZAZIONE NUMERICA

sono collegate attraverso il bus PCI-Express. Essendo tale bus molto più
lento della comunicazione tra il processore della GPU e la sua memoria, la
strategia utilizzata quando un problema numerico deve essere risolto su GPU
consiste nel caricare tutti gli input nella memoria globale della GPU, effet-
tuare i calcoli e solo alla fine della simulazione trasferire i risultati dalla GPU
alla CPU. Tale strategia è ovviamente stata seguita anche nello sviluppo della
versione per GPU di ExPReS.

La versione CPU del solutore è stata parallelizzata utilizzando OpenMP
in modo da poter sfruttare l’architettura SMP (Symmetric Multi Processing)
attraverso la tecnica del multithreading, distribuendo il carico di lavoro tra
i diversi core della CPU. La versione GPU del solutore è stata invece svilup-
pata utilizzando OpenCL. Attualmente gli standard più diffusi per il calcolo
su GPU sono rappresentati da CUDA e OpenCL. La scelta di OpenCL è
stata guidata dalla sua compatibilità con un maggiorn numero di dispositivi.
OpenCL mette a disposizione un API (Application Programming Interface)
e un linguaggio di programmazione, OpenCL C. L’API fornisce al program-
matore le funzioni e i tipi di dati necessari per la comunicazione tra CPU e
GPU mentre il linguaggio, un derivato del C99, permette la scrittura delle
funzioni, chiamate kernel, da eseguire sulla GPU. La programmazione del
solutore aerodinamico su GPU richiede la scrittura di due tipi di codici sor-
gente: quelli che verranno compilati ed eseguiti su CPU e quelli che verranno
compilati in runtime ed eseguiti su GPU. Infatti il codice sorgente che con-
tiene i kernel viene compilato durante l’esecuzione del programma su CPU
ed eseguito successivamente su GPU.

Come mostrato in questo lavoro, la programmazione su GPU porta a
notevoli vantaggi in termini di tempi di calcolo, alle spese di una maggiore
difficoltà durante la fase iniziale di scrittura del codice sorgente. Infatti l’ar-
chitettura stessa delle GPU comporta alcune limitazioni e criticità, come
quelle della memory consistency e della branch divergence. Inoltre la pro-
grammazione su scheda video non può prescindere da una conoscenza di base
dell’architettura hardware tipica di un processore grafico.

C.5 Discretizzazione numerica

Il solutore ExPReS sviluppato in questo lavoro implementa la formulazione a
potenziale comprimibile bicampo grazie ad una discretizzazione spaziale a vo-
lumi finiti a celle centrate. L’avanzamento in tempo viene effettuato grazie ad
uno schema esplicito sfalsato. La scelta di questi metodi di discretizzazione
è strettamente legata alla necessità di schemi che possano essere eseguiti in
maniera efficiente su hardware parallelo, in particolar modo su GPU. Innanz-
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itutto la scelta di un metodo esplicito di integrazione permette l’avanzamento
in tempo senza la necessità di risolvere sistemi lineari: ogni cella del dominio
può avanzare indipendentemente dalle altre grazie alla sola conoscenza della
soluzione nel dominio all’istante precedente. Ciò permette di distribuire con
facilità ed efficienza l’aggiornamento delle celle del dominio tra i cores di una
GPU (o di una CPU). Per quanto riguarda la scelta delle celle centrate, ques-
ta è strettamente legata ad alcune limitazioni dell’architettura della GPU che
devono essere rispettate per ottenere un’esecuzione efficiente e corretta del
programma. Sostanzialmente dato che la massima efficienza computazionale
su GPU si ottiene quando tutti i cores svolgono lo stessa serie di istruzioni,
evitando strutture condizionali (rami di if), durante l’accumulo dei flussi su
una cella, la formulazione a nodi centrati si troverebbe in svantaggio rispetto
a quella a celle centrate a causa del numero variabile di interfacce relative
ai diversi nodi. I problemi che si incontrerebbero sono principalmente legati
alla memory consistency e alla branch divergence.

La formulazione a potenziale bicampo discretizzata si presenta nella forma


Rn+1
i −Rn

i

∆t
= − 1

Vi

Nf∑
j=1

ρ̄ n
i, j G

Fi, j
Φn · n̂i, j ∆Li, j

Φn+1
i − Φn

i

∆t
=

1

2
V 2
∞ −

1

2
GCi

Φn · G
Ci
Φn + h∞ − his

(
Rn+1
i

) (C.9)

dove Rn
i è l’approssimazione della densità sulla cella i all’istante n, Vi il

volume della cella i–esima, ρ̄ n
i, j è la densità usata per il calcolo del flusso

(quindi upwindata) sull’interfaccia i− j, n̂i, j è la normale all’interfaccia i− j
e ∆Li, j è la dimensione dell’interfaccia. Il pedice ∞ indica le condizioni
asintotiche. I simboli GCi

Φn e G
Fi, j
Φn indicano la ricostruzione numerica dei

gradienti rispettivamente sulla cella e sull’interfaccia. Per quanto riguarda i
gradienti sulle celle sono stati implementati due metodi. Il primo si basa sul
teorema di Green-Gauss

∇u |
Vi
≈ GCi

u =
1

|Vi|

Nf∑
j=1

Ūi, j n̂i, j ∆Li, j (C.10)

mentre il secondo usa una interpolazione ai minimi quadrati, dove il gradiente
sulla cella viene calcolato facendo uso di uno stencil costituito da alcune celle
adiacenti, come rappresentato in figure C.1. Per quanto riguarda il gradiente
sulle interfacce tra le celle, questo può essere calcolato noti i gradienti di
centro cella delle due celle che competono all’interfaccia.
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simple stencil augmented stencil

Figura C.1: Least Square C-Gradient stencils

Diverse strategie possono essere adottate per calcolare il valore di den-
sità con cui calcolare il flusso di massa. Per ragioni di stabilità numerica e
causalità spaziale in ExPReS sono state implementati schemi di upwinding,
dove il valore di interfaccia viene modificato risalendo nella direzione della
velocità locale. Una tecnica di upwind consiste ad esempio nell’assegnare
all’interfaccia il valore della densità della cella upwind, oppure utilizzare una
funzione che tenga conto in piccola parte anche del valore della cella down-
wind. Un’altra strategia consiste nel calcolare il gradiente di interfaccia come
media pesata tra il valore delle sue celle e poi sottrarre a questo una quantità
in modo da risalire nella direzione del vento locale

ρ̄ = ρ+∇ρ · l (C.11)

Con lo scopo di aumentare la stabilità numerica del metodo, è stato im-
plementato uno schema di avanzamento temporale sfalsato. Ciò significa che
l’equazione di conservazione della massa e il teorema di Bernoulli sono risolti
con un certo ordine, sfruttando una soluzione intermedia. Infatti viene prima
risolta l’equazione di conservazione della massa per calcolare il nuovo valore
di densità. Con questo nuovo valore di densità viene poi risolta l’equazione
di Bernoulli in modo da aggiornare il valore del potenziale

Rn+1
i = Rn

i −
∆t

Vi

Nf∑
j=1

ρ̄ n
i, j G

Fi, j
Φn · n̂i, j ∆Li, j

Φn+1
i = Φn

i + ∆t

(
1

2
V 2
∞ −

1

2
GCi

Φn · G
Ci
Φn + h∞ − his

(
Rn+1
i

))
Questa strategia permette di aumentare la stabilità del metodo rispetto

al semplice schema di Eulero esplicito.
Nel solutore ExPReS sono stati inoltre implementate strategie di acceler-

azione della convergenza. La prima tecnica è quella del local time stepping,
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Figura C.2: Soluzioni in regime di gas denso

grazie al quale ogni cella avanza con il massimo valore di ∆t locale permesso
dal vincolo di stabilità (CFL). La seconda tecnica è quella del rilassamen-
to, dove la soluzione all’istante corrente viene calcolata come media pesata
tra la soluzione all’istante precedente e quella aggiornata con l’integrazione
temporale sfalsata. Anche nel caso dello schema con rilassamento è stata
analizzata la stabilità numerica.

Per quanto riguarda le condizioni al contorno, sul corpo immerso nella
corrente è imposta la condizione di non penetrabilità, mentre agli estremi del
dominio, a grande distanza dal corpo, sono imposte le condizioni asintotiche,
eventualmente upwindate.

In ExPReS inoltre è possibile simulare il movimento dei corpi, in modo da
effettuare simulazioni instazionarie. Questo può essere effettuato grazie alle
condizioni al contorno di traspirazione sul bordo del corpo oppure grazie alla
formulazione ALE, dove la griglia viene deformata sulla base di una legge
temporale con velocità di griglia a divergenza nulla.

C.6 Risultati e conclusioni

Il solutore è stato validato utilizzando risultati reperibili in letteratura per
correnti subsoniche e transoniche attorno al profilo NACA 0012 [59] oppure
utilizzando solutori a potenziale [5] e di equazioni di Eulero [57].

Le prime soluzioni calcolate riguardano regimi di gas ideale in condizioni
subsoniche e transoniche. Dai risultati si nota un buon accordo tra la soluzione
fornita da ExPReS e quella fornita dagli altri solutori nel caso di correnti
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Figura C.3: NACA0012 in condizioni di gas denso

subsoniche e correnti transoniche senza incidenza. Nel caso di correnti tran-
soniche con incidenza il solutore ExPReS è risultato in buon accordo con
l’altro solutore a potenziale ST mentre, come previsto, la posizione dell’urto
identificata dai solutori di Eulero è risultata differente.

Successivamente il solutore è stato testato con il modello di gas reale di
van der Waals politropico utilizzando correnti in cui il gas si trovava nelle
tipiche condizioni termodinamiche dei gas densi. In particolare sono stati
ricostruiti alcuni casi presentati in [59] dove sono state messe in evidenza
fenomeni tipici dei gas densi. È stato possibile verificare come lo stesso
numero di Mach asintotico che in condizioni di gas ideal porta ad una corrente
transonica, in condizioni di gas denso porti invece ad una corrente senza urti.
Successivamente lo studio si è spostato sulla ricerca degli urti di espansione,
oggetto di attuale interesse in ambito di ricerca. Il solutore ExPReS si è
dimostrato in grado di ricostruire l’urto di espansione previsto sul profilo a
incidenza nulla, come mostrato in figure C.3.

Tuttavia alcune discrepanze tra i risultati sono state rilevate dopo il bordo
d’uscita del profilo, probabilmente a causa dell’ipotesi si isentropicità che non
viene più soddisfatta attraverso un forte urto.

Successivamente sono stati condotti test per correnti portanti in con-
dizioni di gas denso in cui è stato riscontrato un discreto accordo con i risultati
calcolati risolvendo le equazioni di Eulero.

Un’altra funzionalità di ExPReS implementata in questo lavoro è la possi-
bilità di simulare correnti instazionarie attorno a profili oscillanti, grazie alle
condizioni al contorno di traspirazione e alla formulazione ALE. I risultati
per il caso di gas ideale politropico sono stati confrontati con quelli forniti
dal software ST .
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Le prestazioni di alcuni metodi di accelerazione della convergenza alla
soluzione stazionaria sono state analizzate mediante uno studio di conver-
genza del residuo. Il metodo di local time stepping non è risultato benefico
nelle prove che sono state effettuate. Il sovrarilassamento invece ha con-
sentito una diminuzione del numero di iterazioni per raggiungere lo stato
stazionario, sebbene sia soggetto ad un limite di stabilità (numero di CFL)
più stringente della tecnica standard di avanzamento in tempo.

Il solutore ExPReS è stato modificato per includere la possibilità di calco-
lare correnti tridimensionali. Sono stati riscontrati tuttavia numerosi proble-
mi di instabilità numerica, probabilmente legati agli schemi di ricostruzione
del gradiente. Questa considerazione nasce dal fatto che, se si assegna un
campo di trasporto (disattivando quindi il teorema di Bernoulli), è possi-
bile simulare senza problemi il trasporto di un fronte d’onda in un dominio
vuoto. Ciò probabilmente rafforza la possibilità che l’instabilità sia legata
alla ricostruzione dei gradienti piuttosto che alla formulazione bicampo, dato
che quest’ultima è già stata ampiamente utilizzata per il calcolo di corren-
ti tridimensionali utilizzando uno schema a nodi centrati che generalmente
garantisce una maggiore precisione nel calcolo dei gradienti.

I benchmark condotti per determinare lo speedup tra CPU e GPU sono
stati effettuati su hardware dello stessa fascia di prezzo (intorno ai 100-200
euro) e dello stesso periodo di produzione (anno 2011). Tale scelta è stata
presa in modo tale da evitare confronti tra CPU di fascia bassa e GPU di
fascia alta o confronti tra architetture troppo diverse, condizioni che fornireb-
bero risultati poco onesti. I benchmark sono stati condotti su alcune griglie
di dimensioni differenti, in modo da valutare l’andamento dello speedup al
crescere della dimensione del problema. È stato analizzato lo speedup su
quattro griglie differenti e con delle configurazioni desktop e notebook di
fascia media. Uno dei risultati è riportato in figure C.4.

Si nota come le prestazioni del solutore scalino all’aumentare del numero
di cores della CPU in maniera quasi lineare grazie alla parallelizzazione con
OpenMP. Soprattutto è evidente il divario prestazionale tra GPU e CPU
nella configurazione desktop. Il fatto che lo speedup vari in funzione della
dimensione della griglia è molto probabilmente associato all’effetto combinato
tra i colli di bottiglia nella comunicazione tra CPU e GPU, particolarmente
importanti quando la mesh ha pochi elementi, e la dimensione della cache
della GPU, che potrebbe venir facilmente saturata con griglie con elevato
numero di celle.
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(a) Desktop (b) Notebook

Figura C.4: GPU speedup. 2011 mid range hardware
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