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Sommario

L’obiettivo di questa tesi è di progettare e implementare una protezione
automatizzata e ottimizzata dei cifrari a blocchi contro gli attacchi side-
channel, eseguiti su sistemi embedded. Gli attacchi side-channel mirano a
ottenere informazioni sul valore della chiave segreta raccogliendo dati sul
consumo di potenza dei dispositivi di elaborazione, riconsocendo gli istanti
in cui le istruzioni eseguite utilizzano valori della chiave crittografica. In
particolare, la metodologia proposta analizza il Data Flow Graph (DFG)
dell’algoritmo in esame con lo scopo di identificare come i valori intermedi
calcolati dalle istruzioni dipendono da quelli della chiave segreta.
L’implementazione ha aggiunto nel compilatore LLVM un passo specializ-
zato che lavora a livello di rappresentazione intermedia, permettendo l’analisi
a prescindere dall’architettura su cui dovrà essere eseguito il codice. La vali-
dazione sperimentale ha consentito di applicare con successo una protezione
selettiva ai cifrari a blocchi più comuni, e ha dimostrato un effettivo avanza-
mento dello stato dell’arte rispetto alle soluzioni correntemente adottate per
rendere sicure le implementazioni software delle primitive crittografiche sui
sistemi embedded.
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Abstract

The target of this thesis is to design and implement an automated and
optimized protection of block cipher implementations against side-channel
attacks led on embedded devices. Side channel attacks try to obtain in-
formation about the encryption key through collecting power consumption
(or EM emissions) data of the computing device. This target is reached
through detecting when the executed instructions employ secret key mate-
rial. In particular, the proposed methodology analyzes the Data Flow Graph
(DFG) of the target algorithm with the aim to identify the dependencies of
every instruction from the secret key material. The implemented toolchain
added into the LLVM compiler a specialized pass that works at the interme-
diate representation level, enabling the analysis to be architecture agnostic.
The experimental validation shows how to successfully apply a fine-grained
protection to common block-cipher suites and validated an effective advance-
ment of the state-of-the-art with respect to current solutions adopted to se-
cure the software implementations of cryptographic primitives on embedded
systems.
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Chapter 1

Introduction

Few people remember a great advantage that led the Allies to the victory
against the Axis powers in WorldWar II: the decryption of Enigma-encrypted
messages, thanks to Alan Turing.
Since those days, cryptography acquired an increasing importance, not only
on military environments. Mobile phones using the old GSM standard en-
crypted all the communications, and had a small secure token to identify
users: the SIM card.
This card is not a simple memory containing phone number and phonebook.
It is a fully featured CPU which encrypts data and is designed never to re-
veal its own private key.
Sadly, SIM cards have a history of being cloned by malicious individuals.
There are a lot of examples of other devices using similar technologies: credit
cards, tickets for public transportation, Satellite TV cards and even contact-
less micropayment systems (e.g. coffee machine’s tokens). Their proven
vulnerability is one of the reasons why we should work to improve security
on those devices.
As it has been recently disclosed to public opinion, the privacy of people all
over the world today is significantly compromised by a government agency.
We can assume that they are doing it exclusively for national security pur-
poses, but how can we be sure that their will retain an ethical behavior
forever? What defenses do we have? Strong cryptography, which imple-
mentations are publicly audited regularly by experienced and knowledgeable
people. In other words, strong reliance on open source software.
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Introduction

Modern compilers are extremely large and complex software. They are the
only category of software that can create a better copy of themselves. Think
about this situation: a programmer adds a great optimization to a compiler.
He compiles the compiler, then the new compiler is employed to obtain a
new copy of itself, more performing due to the optimization. Compilers have
already started to autonomously learn how to improve themselves [26].
Compilers usually do more than producing assembly code from the source
code: they check the code for syntax errors, undesired programming prac-
tices (warnings), they can optimize programs for different objectives: typi-
cally performance or small code size, but another goal could also be energy
savings [2].
They also have been proven successful in improving application security:
many security mechanisms have a consistent part of the work done by com-
pilers, for instance the compiler pass (in GCC and LLVM) called Address-
Sanitizer [24] which checks for correctness every single memory access done
by a program, disallowing a wide range of exploits. Most modern compilers
can insert “canaries” or “stack guards” to prevent exploitation of buffer over-
flows in the stack. An example of stack protector is the ProPolice [11] pass
that is part of GCC since version 4.1, released in 2007.
The compiler infrastructure can be also used for developing code completion
engines and code refactoring engines, which greatly improve programmer’s
productivity.
In this work, we are going to use the compiler infrastructure of the LLVM
Framework [16] to analyze the implementations of block ciphers from the
point of view of side channel leakage, and fix them as efficiently as possible
to run the primitives on embedded devices. In practice, we are adding an-
other optimization goal: security. It hinders performance and code size, but
sometimes it can be more important than them. Let’s give system designers
more choice.
What are side-channels? Side channels are means to (voluntarily or not)
send auxiliary informations about the information given through the main
channel.
When you are talking, your blood pressure, pulse, breathing frequency, and
skin conductivity varies greatly during the conversation, mainly in relation
to your emotions. You are giving out an information that you are trying to
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hide: if what you’re consciously saying is a lie or not. This is the principle
behind the polygraph, also called lie detector.
When CPUs, especially small ones, are encrypting, their power consumption,
electromagnetic emissions, response time and reactions to purposely induced
faults significantly varies during the computation of the cryptographic prim-
itive, mainly in relation to the value of the secret key. In other words,the
CPU is giving out information that it is trying to hide in the computed ci-
phertext: i.e. the encryption key. This is the effect that is going to going to
be studied and mitigated with this work.
This is a fairly recent research topic, as first articles on it were published
in late 90’s. As of today, the existing countermeasures are partially effec-
tive and their use significantly impacts performances and code size. In this
work, a new methodology for the assessment of the power-based side-channel
leakage has been developed. The developed tools and the extensive experi-
mental campaign put into effect to demonstrate the effectiveness of the ap-
proach, and enabled to obtain substantial improvements in the engineering
of software-based cryptosystems. The main results have been published in
one major international conference on the topic. [1]

3



Introduction

4



Chapter 2

Technical Background and
State of the Art

This chapter will provide some useful background notions to understand
the rest of the work. This also describes the current state of the art, as
the exploration of side channels is a rather recent topic. The background
notions include some details on the inner structure of compilers and the al-
gorithms and data structures they employ to optimize programs. Moreover
the background on block ciphers as well as a summary of the usual work-
flow employed to led a side-channel attack, is provided. Finally, to build
efficient countermeasures, we should also know what “masking” is and how
it is actually applied.

2.1 Compilers

Definition 2.1.1 (Compiler). A compiler is a program that translates the
source code written in a high level language into a target language, usually
an assembly language tailored to a specific platform.

The compiler is usually organized in three stages: front-end, middle-end
(Optimizer) and back-end, as pictured in Figure 2.1 The front-end recognizes
tokens in the source code, performs syntax checking and builds the Abstract
Syntax Tree.
The Abstract Syntax Tree is a tree representation of the entire program,
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Figure 2.1: Overview of a compiler structure

which is then visited to emit the unoptimized Intermediate Representation
of the program.
The Intermediate Representation (IR) is usually a programming language
similar to assembly but not tied to any specific hardware. Therefore it has
a slightly higher level of abstraction, which allows to optimize code in an
efficient manner. This facilitates the re-use of the optimizer for different
source code languages.
The IR is then optimized in various steps and then translated (by the back-
end) to the target assembly language. Finally, the assembly source code is
assembled into an object file which in turn is linked together into a single
executable.

2.1.1 Data Structures

The most frequently used data structures, needed in the following chap-
ters, are the Control Flow Graph and the Data Flow Graph. These data
structures, which may look similar at a first glance, have an extremely dif-
ferent meaning: The first represents the order in which instructions are ex-
ecuted, and the second represents the data dependencies among them.

Control Flow Graph

The Control Flow Graph is a representation, of the control flow depen-
dencies among the instructions of a subprogram. Each node in the graph
represents an instruction, and each edge outgoing from a node represents a
possible path to be followed diversing the execution.
Those instructions can still be reordered by a subsequent scheduling step,
prior to be linked into one executable. However for instructions with multi-
ple outgoing nodes (f.i. conditional branches) the next instruction that will
be executed is determined at runtime, and possibly based on the evaluation
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of input-data dependent conditions.
At each execution of an instruction with multiple outgoing edges, it’s possi-
ble that the chosen outgoing edge is different.
The instructions represented in the CFG may be machine-level instruc-
tions, Intermediate Representation instructions or high-level programming
language statements, depending on the designer needs.
Usually, CFGs are related either to machine-level instructions or IR instruc-
tions.
In this thesis we’ll assume that everything is related to IR instructions.
Figure 2.2 shows how the reported CFG is linear up to the BGT (Branch if
Greater Than) instruction, which can jump to two different basic blocks. In
this example, after the end of one possible basic block (i.e. the one with the
ADD %R3,10 instruction) the control flow returns to the same basic block
where the other possible choice jumps to.

ADD %R3,%R1,%R2start

CMP %R3,10

BGT label

ADD %R3,10

MUL %R3,2

STORE %R3,ret

ADD %R3,%R1,%R2
CMP %R3,10
BGT l a b e l
ADD %R3,10

l a b e l :
MUL %R3,2
STORE %R3 , r e t

Figure 2.2: Sample CFG with corresponding code snippet. The instruction
executed after BGT label can be an addition or a multiplication, based on
the content of the previous compare. Also, after the (eventual) addition, the
final multiplication gets executed anyways.
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Data Flow Graph

Definition 2.1.2. A Data Flow Graph (DFG) is a graph in which each node
represents an instruction, while the edges represent data dependencies be-
tween the involved instructions.

Definition 2.1.3. A data dependency is the relation between the instruction
that takes as input a certain value and the instruction that defines (i.e. com-
putes) it.

A data dependency between two instructions means that the instruction
that defines the value should be executed before the one that uses it, but
not strictly before. The effective sequence of instructions in the executable is
determined by the scheduling step, considering both the Control Flow Graph
and the Data Flow Graph.

Dataflow Analysis

Definition 2.1.4. A Dataflow Analysis takes as input the DFG and derives
a property of the data dependencies of a program to understand how it ma-
nipulates its input data.

Examples of the common DFAs are the following:

• Reaching definitions analysis: Its purpose is to detect which definitions
of a variable can reach a particular use. This is repeated for every use of
every variable. In simpler words, which instructions could have defined
the values that I’m going to use?

• Constant propagation analysis: It determines if the uses of a variable
(that by definition needs to be read from memory) can be replaced
with a constant. It re-uses the reaching definition analysis.

• Live variables analysis: It determines if a certain variable (or interme-
diate value) is needed in the following computations. This should not
be confused with Garbage Collection, which is a completely different
concept. GC works at runtime, while live variable analysis works at
compile time.

8
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• Available expressions analysis: It determines which expressions were
already evaluated and establish if their value is already available. It
is the helper analysis for the optimization pass denoted as: Common
Subexpression Elimination, which tries to not compute two times the
same subexpression (in case it is pure, i.e. without side-effects)

Static Single Assignment form

Definition 2.1.5. The Static Single Assignment (SSA) form is a normal form
for Intermediate Representation languages, in which each virtual register is
written exactly once.

Each instruction produces exactly one result, and each register (or value)
is written exactly by one instruction, so we can assume a 1-to-1 relation be-
tween instructions and their output registers.
Thanks to this relation, the concepts of instruction and register, despite be-
ing substantially different, can be thought of as a single entity.
Note that, some instructions do not produce data by design, e.g. jump,return
or store instructions.
It is possible to introduce two definitions:

Definition 2.1.6. The definition of a SSA register represents the value re-
turned by the instruction generating it. It represents the unique write of a
value into a specified SSA register.

Definition 2.1.7. Uses of SSA registers are the set of read operations done
on the register. They appear as input arguments of other instructions.

Definition 2.1.8. A basic block is a list of instructions executed strictly in
sequential order.

This 1-to-1 relation fits perfectly for managing a linear CFG, but shows
its limits with programs having a non-linear CFG. For instance, consider the
following high-level code:

A=3∗3;
i f (B>2){
A=2∗2;

9
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}
C=B+A; //Can you guess what i s the c o r r e c t

//SSA form?

This problem can be solved introducing φ−nodes, that are abstract instruc-
tions which return a different value depending on the previously executed
basic block. φ− nodes take as parameters a list of pairs (value,basic block).
Using this abstraction it’s possible to represent all of the usual language
constructs (if , for, while, etc..) by placing a φ− node at the start of each
basic block, for each used value that can be defined by two or more different
basic blocks.
This form is simpler to manage when optimizing code, and makes many data
flow analysis (f.i. reaching definitions and liveness analysis) quite simple and
efficient.
The SSA form assumes that the machine has an unbounded number of reg-
isters. This is not a problem, as it it applied at an IR level and not on
assembly-level language. The back-end of the compiler, which translates the
IR into the actual assembly code has a pass called Register allocation which
determines which SSA registers should be assigned to physical registers, and
manages the insertion of load and store actions to fetch and save the cor-
rect values from the stack, in case the physical registers cannot be reused to
satisfy the data dependency constraints.

2.1.2 Low Level Virtual Machine

This subsection details the inner structure of the LLVM infrastructure,
which is used extensively in this work. The LLVM project [16] started in
2000 at University of Illinois as a research project focused on static and dy-
namic compilation of a variety of languages. Being highly modular, it was
used a lot in industry and academic fields.
In 2005, Apple hired Chris Lattner, one of the designers of LLVM. He was
hired to bring LLVM to production quality for Apple needs. LLVM made
its appearance in mainstream Apple products in 2007, with Mac OS X 10.5
where it powered the JIT compiler of the OpenGL stack. It started to ap-
pear in the toolchain shipped with Xcode starting with version 3.1.
In May 2012 LLVM/Clang 3.1 were released, including AddressSanitizer [24]
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developed by Google. AddressSanitizer is a memory error detector, which
is typically used to find security vulnerabilities in compiled programs in an
automated way. It’s average slowdown compared to a non-instrumented
executable is 2×, which is an order of magnitude faster than competing so-
lutions.
Since 6 November 2012, Clang is the default front-end compiler for FreeBSD
on x86 systems, both for kernel and userspace programs. Also, the NVIDIA
CUDA Compiler is based on LLVM, and thanks to modularity of LLVM,
developers can easily create front-ends for new programming languages tar-
geting NVIDIA’s GPUs.

In the LLVM Framework the compilation is a three-stage procedure:

• Front-end: Language-specific translation of the source programming
language to LLVM IR. The most known front-end to LLVM is clang,
which can compile C, C++ and some of their dialects.

• Optimization: This step is language-independent. The unoptimized
LLVM IR produced by the front-end gets optimized by running it
through a set of passes.

• Back-end: The now-optimized LLVM IR gets translated to the assem-
bly of a specific target.

Most of the work presented in this text takes place in the optimization stage.
It is organized as a sequential run of different passes, with dependency man-
agement provided by the framework.
The set of passes to run is usually decided by the user: for instance the
optimization levels -O1, -O2, -O3, -Os are predefined set of passes to run.
The passes can be divided into two categories:

• Analysis passes: They provide informations about the code to be op-
timized, without modifying it.

• Optimization passes: They modify the code, using informations pro-
vided the by analysis passes.

Each pass should declare its own dependencies and which analysis they pre-
serve in order to schedule passes in the right order. Preserving an analysis
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means that the pass can change the code but asserts that the information
provided by a specific analysis is still valid for the now-modified code.
The LLVM IR is in Static Single Assignment form (see paragraph 2.1.1).
It exists in three different forms, with exactly the same expressivity: textual,
binary (bitcode) and in-memory representation.
The LLVM IR is a strongly typed language, which means that every data
being manipulated has an associated type.
Primitive types are numerical ones (integer of different sizes and floating
point) and they can be composed in arrays, structures or pointers.
In this language is possible to attach (one or more) metadata nodes to each
instruction. Those nodes may have a name and usually contain one or more
typed values (strings are allowed).
Metadata is preserved across all three representations of IR and is used for
“Type Based Alias Analysis”, loop description or variable value constraints.
A developer can create new metadata nodes to represent customized infor-
mations.
Here you can find a quick reference of most frequently used LLVM IR in-
structions:

• Basic block terminator instructions

– ret: return from the current function. Its argument is employed
as the return value.

– br: Either an unconditional branch (with one argument and a
single destination label) or a conditional one. The conditional
form takes three arguments, an i1 typed value (integer of size 1,
semantically equivalent to a boolean) and two labels.

• Binary Operations (the f prefix is intended for floating point values).

– {f,}add: Takes two arguments and returns their sum.

– {f,}sub: Takes two arguments and returns their difference.

– {f,}mul: Takes two arguments and returns their product.

– [usf]div: Unsigned or Signed division operator.

• Bitwise Binary Operations
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– shl: Shift left.

– lshr: Logical shift right.

– ashr: Arithmetic shift right: Operates a correct sign extension
when shifting signed values

– and, or and xor: Well-known bitwise binary operators.

• Memory Access and Addressing Operations

– alloca: Reserves the requested amount of space in the stack for
a local variable.

– load: Reads from memory. Takes a pointer as a parameter, and
the size is implicitly given by the size of the type. Returns the
read value.

– store: Writes to memory. Takes a pointer and a value of the
corresponding type as parameters. Does not return a value.

– getelementptr: Operates pointer arithmetic using type informa-
tions to obtain pointers to particular elements in arrays or in
structures, even if deeply nested.

• Conversion Operations

– trunc .. to: Returns the value passed as first parameter trun-
cated to the (smaller) type specified as second parameter.

– [sz]ext .. to: Returns the value passed as first parameter
extended (with Zero or proper Sign) to the (larger) type specified
as second parameter.

– bitcast .. to: Returns the value (or pointer) passed as first
parameter but with type specified in the second parameter. The
type should have the same size.

• Other Operations

– {f,i}cmp: compares two Integers or Floating point numbers and
returns an i1 with the boolean result of the comparison.

– phi: creates a φ− node (see paragraph 2.1.1)
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– select: Takes three parameters: an i1 and two other values. Re-
turn one of the two values depending on the boolean value.Frequently
used after {f,i}cmp.

– call: Calls a function and returns it return value.

LLVM also includes some special functions (to be invoked with the call

instruction) denoted as intrinsics. These intrinsics represent operations that
might be done in a particularly efficient way in some processors, while re-
quiring library functions in others.
Some intrinsics are mathematics functions (sqrt, sin, cos, pow, exp, log10,
log2, fma) or bitwise operations (calculate Hamming weight, count leading/-
trailing zeroes).
They can also be used to mark breakpoints to request the debugger atten-
tion or mark the lifetime of memory objects to help a garbage collector to
perform its task.
The translation to native code of those intrinsic functions is highly target-
dependent.

Code organization

LLVM is developed in C++, using a mostly-flat namespace. It uses a
customized form of RunTime Type Information (RTTI), for performance
reasons. So usual C++ casting operators are unavailable, but equivalent
ones (isa<>, cast<>, dyn_cast<>) are provided. It uses C++ STL but
also provides some customized containers. Usually each class provides either
standard iterators for each of its members or logically linked items, like:

• llvm::Module::begin() returns an iterator for functions contained in
the module.

• llvm::Function::begin() returns an iterator for basic blocks.

• llvm::BasicBlock::begin() returns an iterator for instructions.

• llvm::User::op_begin() returns an iterator for operands of an in-
struction. Note that User is a superclass of Instruction, so this
iterator is present on them as well.
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Figure 2.3: UML Representation of some frequently-used classes in LLVM
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• llvm::Value::use_begin() returns an iterator for all known uses of
a value. Note that Value is a superclass of User, which is a superclass
of Instruction, so this iterator is present on them as well.

2.2 Cryptographic Primitives

This section will contain a detailed description of block ciphers, that
will be the subject of this study. Cryptography is a really large science,
which includes many other topics, like asymmetric ciphers, stream ciphers
and hash functions. Asymmetric ciphers use two different keys, a public
one and a private one. They allow everyone to encrypt data which can
be deciphered only by the intended recipient and allow cryptographically-
strong digital signatures. Those algorithms are usually based on arithmetic
operations, and have strong control flow dependencies, which makes them
ideal targets for Simple Power Analysis (SPA). Stream ciphers are symmetric
ciphers exactly like block ciphers, but they solve the problem in a different
way: they produce a random stream that depends only on the key. In an ideal
scenario, from this stream it should not be possible to recover the key. This
stream is then ⊕-ed (XOR-ed) with the data that needs to be encrypted, on
a principle similar to One Time Pad. Hash functions are structurally similar
to block ciphers, but they allow to obtain a fixed-size tamper-proof checksum
of data. Some hash algorithms are used as “keyed hashes”, in which a private
value is involved. They allow to authenticate a chunk of data, using a key
that should be shared between the prover and the verifier, unlike the much
slower asymmetric algorithms. Due to the structural similarity, in future
this work could be extended to analyze also hash function implementations.

2.2.1 Block Ciphers

Block ciphers are algorithms that process a fixed-size quantity of bits (a
block) with a reversible transformation characterized by a parameter called:
cipher key.
This transformation should be reversible only by knowing the same key that
was used to encrypt the data, provided that the algorithm is correctly de-
signed. The key management in a system where only block ciphers are
analyzed, is simpler however the recipient needs to receive the key though a
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Figure 2.4: Block diagram of a Feistel cipher.

pre-existing secure channel.
The main advantage of block ciphers against asymmetric ciphers is the speed,
as they are roughly 3 orders of magnitude faster. When the user encrypts
data with a program that uses asymmetric keys, like GnuPG, it usually
encrypts the user data with a symmetric block cipher, using a randomly-
generated session key. This (much smaller) session key is then encrypted
with the asymmetric algorithm requested by the user.
Most block ciphers design structures fall into two categories:

• Substitution Permutation Network (SPN)

• Feistel network

The Substitution Permutation Network represents a cipher, composed by
multiple identical passes called rounds, where each one has three mandatory
components:

• S-Box: Substitution boxes, which are nonlinear functions, whose effect
is to introduce confusion into the cipher, so allow one-bit change in
input to change a lot of bits in its output.

• P-Box: Permutation boxes, introduce diffusion into the cipher, scram-
bling the order of the bits into the block.

• Key addition: adds key dependency between each round. Usually it’s
a ⊕.;

The Feistel network structure, represented in Figure 2.4, is known since
1973. The designer of the algorithm has to define only the F function, usually
identical for each round.
A Feistel network starts by splitting the input in two halves, applying the
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customized function to one half and bitwise adding via xor the output with
the other half. Then the two halves are switched and the next (identical)
round starts.
The main benefits of a Feistel network are:

• Simple decryption algorithm: It’s enough to invert the key schedule
and swap the two halves of the ciphertext block before feeding in into
the same cipher.

• The F-function does not need to be invertible.

Some of the most known Feistel-based ciphers are:

• DES and its derivatives (3DES, DES-X) (National Security Agency
preferred block cipher from 1979 to 1999, and standardized by NIST)

• GOST 28147-89 (Russian government standard block cipher)

• Camellia (Japanese government standard block cipher)

• Blowfish/Twofish

• CAST family.

Advanced Encryption Standard

In 1997 the National Institute of Standards and Technology of the United
States (NIST) realized that the DES, with its 56-bit key, was becoming
practically vulnerable to bruteforce attacks.
They started an open process to choose “an unclassified, publicly disclosed
encryption algorithm capable of protecting sensitive government information
well into the next century”1 The technical requirements were:

• It has to be a symmetric block cipher

• Its key length can be extended in an easy way

• It should be easy to implement in both hardware and software.

1Source: http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt
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There were 15 proposed algorithms from all over the world.
On 2 October 2000 the NIST announced that the winning algorithm was
Rijndael, developed by Belgian cryptographers Vincent Rijmen and Joan
Daemen.
The algorithm itself is a Substitution-Permutation-Network, works on 128-
bit sized blocks and is standardized for key lengths 128,192 and 256.
It has a different number of rounds depending on the key length:

• 10 rounds for 128 bit key length

• 12 rounds for 192 bit key length

• 14 rounds for 256 bit key length

Its key scheduler sets the user key as the first bits of the subkey material
and iteratively produces new subkey material until the needed quantity is
reached using the previous subkey material as input. The subkey chunk
size in the key scheduler is different from the subkey size used in the core
algorithm itself (fixed to 128 bits).
The new subkey material is created from the previous one using combinations
of rotations, XORs, Substitution boxes and exponentiations in a finite field.
The initial content of the state of the algorithm (represented as a 4x4 matrix
of bytes) is the plaintext, while the final content is the ciphertext.
The algorithm is composed of a variable number of round, and in each one:

• SubBytes: Each individual byte is replaced with the 8-bit non-linear
SBox. The Rijndael SBox (differently from other encryption algo-
rithms,such as DES ) has a precise mathematical structure, and is
defined as the multiplicative inverse of the 8-bit value over F28 using
the polynomial x8 + x4 + x3 + x+ 1.
In most implementations the SBox is stored as a table to improve per-
formance. The non-linear mixing provided by the SBOX provides the
confusion effect as defined by Shannon [25].

• ShiftRows: The cells are shifted in the same row by a quantity equal
to the index of the row. This is important to have linearly independent
columns.
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• MixColumns: It provides a ⊕-linear intra-column diffusion: each col-
umn of the state is multiplied by a constant matrix (with the rules of a
proper algebraic structure) Every column I is considered as coefficients
of a polynomial over the ring (F28 [X],+, ·),
i.e : I(X) = i0X

0 + i1X
1 + i2X

2 + i3X
3 mod (X4 + 1). Every coefficient

ii lies on (F28 ,⊕,�), and is expressed as a byte. I is multiplied by a
fixed polynomial C(X) = 0x02X0 + 0x01X1 + 0x01X2 + 0x03X3.

• AddRoundKey: The current subkey (size fixed to 128 bit, equal to the
state size) is combined bitwise using XOR with the state.
This step adds dependencies from the key.

There is also a round 0 that consists only of the AddRoundKey, while the
last round skips the MixColumns step.

Serpent

The Serpent block cipher [3] works on four 32 bit words (for a total
block size of 128 bits) and is based on a substitution-permutation network
employing 32 rounds plus an initial and final permutation. It was a finalist
of the Advanced Encryption Standard contest, where the current AES was
preferred for its relative computation speed on small blocks. The round
function of Serpent is constituted of a nonlinear step, in the form of 4-to-4
bit tabulated nonlinear functions, and a linear diffusion layer realized with
bitwise rotations, shifts, and xor operations. Algorithm A.0.1 shows the
structure of the algorithm.

Camellia

The Camellia algorithm (see A.0.4 at page 102)is a 128-bit block cipher
developed by Japanese researchers of Mitsubishi and NTT. The algorithm,
in case of a 128-bit secret key, employs a mixed round strategy, encompass-
ing 18 Feistel rounds, a nonlinear bitwise transformation, denominated FL
transformation in the standard and its inverse. More in detail, the algorithm
performs a pre-whitening of the cipher state through adding via xor a por-
tion of key material, subsequently it computes 6 Feistel rounds on the state.
Following those, the cipher state is subject to the FL transformation, and

20



Cryptographic Primitives

the output is processed via 6 further Feistel rounds. Finally, the output of
the second batch of Feistel rounds is mapped through an inverse FL transfor-
mation and further processed by 6 Feistel rounds and an output whitening
via bitwise xor.

DES, 3DES and DES-X

The Data Encryption Standard (DES) cipher is a symmetric block cipher
with a 64-bit block and a 56-bit key [20]. It was chosen as US federal
standard by NIST in 1977, when a key space of 256 items was considered
to be a good choice to render any brute-force attack unfeasible. The DES

encryption/decryption algorithm is an iterated block cipher consisting of 16
rounds, each designed with a Feistel structure, which processes the left half
of the block with through a nonlinear function, the so-called Feistel function,
and combines the result via xor with the right half of the block. This result
is employed as the right half of the input to the next round, while the old
value of the right half is used as the left half of the block input to the next
round [20]. The Feistel function, performs an initial expansion on the 32-bit
value obtained in input, resulting in a 48 bit value, to which 48 bits of the
secret key are added via xor. The result is split into 8 portions, each of them
6 bit wide, to which a 6-to-4 bit nonlinear function is applied. The 48-bit
round keys are obtained via a key schedule algorithm which at first permutes
the key bits (Permuted Choice 1, PC-1), discards the eight parity bits and
divides the key material into two 28-bit halves; each half is thereafter treated
separately. In successive rounds, both halves are rotated left by one or two
bits (depending on the round), and then 48 subkey bits are selected through a
second fixed permutation (Permuted Choice 2, PC-2). A different set of key
bits is used in each subkey (one for each round of the encryption/description
algorithm) in such a way that each bit is used in 14 out of the 16 subkeys.

The cipher starts processing the 64-bit plaintext via an initial bitwise
permutation (IP) of its bits, the output of which is divided into two 32-bit
blocks in order to serve as input of the first round. Following this 16 rounds
are computed as described before, and the left and right halves of the results
are swapped after the end of the computation. The result is thus subject to a
final bitwise permutation (IP−1) to generate the 64-bit ciphertext. A peculiar
property of the DES cipher is that the decryption algorithm is identical to the
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encryption one, except for the fact that the round keys should be employed
in reverse order.

From a software execution point of view, the DES block cipher is char-
acterized by a large number of bitwise operations, which have intentionally
been designed to be hard to execute on software platforms.

DES-X and Triple DES are both derivatives of DES designed with the
aim of increasing the key length over the original 56 bits of DES, while
taking advantage of the existing DES implementations (in particular, of the
existing hardware implementations, as both DES-X and Triple DES perform
only simple operations beside the DES). Triple DES applies DES three times
(the second time using the decryption round key order) using three 56-bit
keys K1, K2 and K3. When K1 = K2 = K3 (keying option 3) Triple DES
behaves exactly as DES, otherwise the effective key size is increased to 112
or 168 bits, depending on whether K1 = K3 (keying option 2) or not (keying
option 1). DES-X augments DES with two additional 64-bit keysK1 andK2,
which are xor-ed to the DES plaintext and ciphertext respectively to obtain
the DES-X ciphertext. Note that the effective security margin provided by
DES-X against brute force attacks against is actually only marginally better
than Triple DES under keying option 2 as a meet-in-the-middle attack is
particularly efficient on it.

GOST 28147-89

The GOST 28147-89 standard [27] defines a 32-round Feistel network
block cipher used in the Russian Federation and in other countries of the
former Soviet Union. The cipher, depicted in Figure A.0.3 at page 102
processes a 64 bit plaintext block employing a 256 bit fixed length key, which
is mixed, in 32-bit-wide portions, adding one of them modulo 232 as the first
operation of the the Feistel function. Subsequently the 32-bit half of the
state is passed through eight 4-to-4 bit S-boxes, and left rotated bitwise by
11 bits.

CAST5

CAST5 is a block cipher used by the Canadian government and is the de-
fault choice of symmetric cipher in the GnuPG cipher suite. Algorithm A.0.2
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shows the structure of the cipher, which is a Feistel network with 16 rounds
using a 64-bit block size and up to 128-bit key size. The algorithm works on
32-bit words, and employs arithmetic operations in addition to substitution
maps and bitwise rotate operations in the Feistel network.

2.3 Side Channel Attacks

This section will contain a description of side-channel vulnerabilities, i.e.
techniques to get (part of) the key used to encrypt or decrypt data using
informations not present in the ciphertext. Most of those attacks must be
conducted in physical proximity of a device doing encryption operations,
however they should not be underestimated. Did you know that the electri-
cal power company can know which movie are you seeing at home? [12]
Attacking a cipher through via side-channel attacks means recovering a con-
cealed information (usually the key) using an information source other than
the ciphertext. Typically those informations are gathered while the block is
being encrypted through:

• Power consumption of the CPU

• EM emissions from the CPU

• Timing anomalies

• Optical emission from the die of the CPU

• Results from purposely faulty encryptions.

The side channel attack techniques are traditionally split in two categories:
Passive (carried through observation without interfering with the chip func-
tionality) or active (inducing faults).

2.3.1 Passive Attacks

Common passive side channel attacks are:

• SPA (Simple Power Analysis): The key is extracted by exploiting vari-
ations in the power consumption caused by key-dependent control
flow. Most block ciphers don’t have a key-dependent control flow, so
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this attack is mostly useful against asymmetric ciphers.

• DPA (Differential Power Analysis): The key is extracted by exploiting
variations in the power consumption caused by the key-dependent part
of the data flow.

• Timing attacks: The key is extracted by recognizing key-dependent
performance changes. As said before, most block ciphers don’t have a
key-dependent control flow, so this attack is not considered.

Power measurements are usually done by placing a shunt resistor in series
to the power pins of the CPU, to measure the current absorbed in each time
instant.
The key idea behind DPA is to guess (by brute force) small parts of the
key and match each part independently from the others to the consumption
measured from the device. This decreases the complexity to guess a key from
2Lkey to Nparts · 2Lpart . Take a 128-bit key as an example: the brute force
approach must try about 3.4 · 1038 possible key values, while bytewise SCA
tackles a 16 · 28 computational effort.
By having the power consumption measures available, the total number of
possible key part values that should be tried is about 1, 7 · 1010. That is a
28 orders of magnitude improvement, meaning that those calculations can
be done in reasonable time on a modern mobile phone.
Matching a (partial) key hypothesis with a trace from the oscilloscope in-
volves the creation of a model of the power consumption while encrypting
with that key and then matching that model to the traces. A simple but ef-
fective power consumption model is the Hamming weight of a specific partial
value depending on both the key and the known value (plaintext or cipher-
text).
As an example, consider an attack to the AES cipher, given the cipher-
text. The most vulnerable point would be the last AddRoundKey operation,
in which we know the resulting output and we can guess the subkey (and
consequently the last state of the cipher). This can be done with an 8-bit
granularity, if the key addition is done at each cell of the matrix represent-
ing the state. If the key addition is done in a single instruction for an entire
column, we would need to consider 32 bits. The model can be fitted to real
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values using a simple difference of means test or using Pearson’s linear cor-
relation coefficient.
This requires perfect knowledge of the timing of the interesting operation in
the trace, but can be worked around by repeating calculations for each time
instant and considering the highest correlation coefficient in any time point
as the right one.
In order to reduce the noise, usually the output from the oscilloscope is fil-
tered with a band-pass filter to keep (almost) only the interesting signal,
which is synchronized to the device clock.

Measurement of the Consumption

The first step to mount the attack is to gather measurements of the
actual power consumption of the device while computing a cipher. The
power consumption can be either obtained by a power estimation tool such
as the ones in common EDA tools, or recorded by means of a digital sampling
oscilloscope.

The power consumption relative to an execution i is stored as a power
trace ti, which can be viewed as a vector of M power samples, as shown in
Equation 2.1.

ti = [ti,1, ti,2, . . . , ti,M ] (2.1)

Each power sample ti,j of a power trace ti is the sum of different contri-
butions, namely:

ti,j = tOp
i,j + tData

i,j + tNoise
i,j + tStat

i,j (2.2)

where tOp
i,j is the power consumption due to the specific operation executed,

tData
i,j is the power consumption due to the data values being processed, tNoise

i,j

is the contribute coming from of environmental noise and tStat
i,j is the static

power consumption of the device. While tStat
i,j is irrelevant to the purposes

of power analysis (as it is constant and does not depend from what the
platform is doing), what really matters in order to achieve good performance
in the results is to minimize tNoise

i,j . tNoise
i,j can be modeled as a random

variable following a normal distribution N (0, σ), as it is not affected by the
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ongoing operations. The other three contributions, for a fixed input and a
fixed implementation platform, are constant. ti,j will thus follow a normal
distribution N (µi,j , σ), and it is thus possible to reduce the contribution of
tNoise
i,j through averaging a reasonable amount of measurements of the same
encryption. Clearly, if the power consumption of the device is predicted by
an EDA tool the noise term is absent, as the tool is not able to predict the
effective thermal and environmental noise which will affect the measurement
setup.

Simple Power Analysis (SPA)

The most straightforward attack technique relying on the power con-
sumption of a device is the Simple Power Analysis (SPA). SPA exploits the
fact that, if at a specific point the control flow of a cryptosystem depends on
the key, then the measurement of the dynamic power consumption of the cir-
cuit can leak the key. The most simple case is when an instruction is executed
depending on a specific value of the secret key, as it happens in key dependent
branches which can be found in the implementation of the straightforward
square and multiply (or double and add) exponentiation (multiplication) al-
gorithm. If the multiplication operation has a different power consumption
from the squaring, it is possible for an attacker to distinguish them simply
by looking at the recorded power trace of an exponentiation operation.

Differential Power Analysis (DPA)

Differential power analysis is a statistical power analysis technique, first
introduced by P. Kocher et al. [15], that relying on the difference of means
(DOM) statistical test to find the secret key stored in a device.

The fundamental difference between SPA and DPA attacks is that, SPA
attacks exploit the difference in power consumption due to different key-
dependent operations being executed while DPA attacks exploit the differ-
ence in power consumption due to the use of key-dependent data.

The main idea of DPA is to make predict the portion of the power con-
sumption which depends on the key, for a small amount of key values, and
employ the actual measurements to distinguish which one of these predic-
tions is correct. To this end, a statistical test is employed to match the
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measurements and the predictions: once the correct prediction is found, the
value for a portion of the key is retrieved. Depending on the particular
statistical test used to verify the hypotheses, DPA attacks take a different
denomination in the literature.

Difference of Means - Common DPA Attack The first proposed
method to validate the consumption prediction relies on a difference of means
test. To employ this statistical tool, the attacker needs to classify the traces
into two sets S0, S1, building them in such a way that the sample-wise mean
consumption of the two sets differs significantly for some time instant j. To
this end, the attacker follows the following procedure:

1. The attacker chooses a so-called selection function, that is a crite-
rion to decide to which set a trace ti belongs, relying on the value of
the predicted power consumption pi,l = fs(vi,l) = fs(f(di, kl)) with
1<i<N, 1 <l<|K| previously computed with the data input di corre-
sponding to the trace ti and the key hypothesis kl. A possible form of
a selection function is the following

fs(pi,j) =

{
1 if pi,j) > 4

0 if pi,l < 4
(2.3)

2. The attacker employs the selection function to split the traces into two
sets S0,l, S1,l according to the value taken by it. This phase is repeated
for every possible key hypothesis kl, as they will generate different
partitions of the traces.

3. For each of the possible partitions, the attacker computes the sample-
wise mean m0,l of all the traces belonging to S0,l, and the sample-wise
mean m1,l of the ones belonging to S1,l.

4. The attacker computes the sample wise differences δl = m0,l −m1,l

for all possible key hypothesis kl. If the key hypothesis is correct, the
value of δl is expected to be significantly large for some time instant i,
since the selection function has operated a correct partitioning of the
traces into two sets where the mean consumption of the operation fits
the predictions. If the key hypothesis is wrong, the selection function
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simply operates a random partitioning of the traces into two sets, which
are thus expected to have the same mean consumption.

Following this workflow, the attacker retrieves a part of the correct key
and repeats the attack until the whole key is found, or the security margin
(number of unknown bits) is low enough to be overcome by brute force. We
note that there is no need to repeat the measurements (i.e. acquire a new set
of traces T) to do so: the same measurements can be employed successfully
for the whole attack.

Pearson’s Correlation Coefficient - Correlation Power Analysis (CPA)
Correlation power analysis uses Pearson’s (linear) correlation coefficient as
a statistical test to distinguish the correct key hypothesis. Pearson’s lin-
ear correlation coefficient describes how much two random variables can be
expressed as one being in a linear relation with another. Pearson’s linear
correlation coefficient is obtained as dividing the value of the covariance
between the two random variables under exam by the product of their vari-
ances, giving a result in the interval [−1, 1]. High values (regardless of the
sign) of the correlation coefficient express a high correlation between the two
variables, while a value close to zero indicates that they are not linearly cor-
related. Pearson’s correlation coefficient between two random variables X
and Y (commonly denoted as ρX,Y )is defined as

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

In order to employ Pearson’s correlation coefficient as a test for the
correctness of a power consumption prediction, we will consider the mea-
sured power consumption in a precise time instant for all the traces tj =

[t1,j , t2,j , . . . , ti,j , . . . , tN,j ] and its prediction for a fixed key hypothesis hy-
pothesis pl = [p1,l, p2,l, . . . , pi,l, . . . , pN,l] to be modeled by two random vari-
ables, of which the attacker needs to know if they are correlated. As the
attacker does not know the theoretical distribution of these, but he only
has samples from them available, he will need to employ the sample Pear-
son correlation coefficient as an estimator of the correct value of ρtj ,pl

. We
recall that the sample Pearson correlation coefficient between the samples
contained in pl and tj (commonly noted as rtj ,pl

) can be computed as
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rtj ,pl
=

∑
i

(ti,j − tj)(pi,l − pl)√∑
i

(ti,j − tj)2
∑
i

(pi,l − pl)2
(2.4)

where tj and pl are the sample means over tj and pl respectively.

To check which key hypothesis is the correct one, the attacker computes
the value of rtj ,pl

for all the time instants j and the key hypotheses kl and
checks which key hypothesis yields the highest peak correlation coefficient
over the whole encryption.

The Pearson’s correlation coefficient is typically considered an improve-
ment over the distance of means that leads to more reliable and comparable
results due to the use of a normalized covariance.

2.3.2 Active Attacks

Active attacks are based on the fact that a pair healthy-faulty of cipher-
texts obtained from the same pair plaintext/key, leaks some information
about the key itself. Faults are induced into circuits by:

• Power supply glitches

• EM pulses close to the circuit

• Clock signal glitches

• Ionizing Radiations

The techniques used to generate those faults are not always 100% reliable,
so the fault might not be exactly in the intended point of the encryption.
There are some low cost fault injection methods (less than $3000) [6]. For
instance, it’s possible to run the chip with a depleted power supply, the
attacker is able to insert transient faults starting from single bit errors and
becoming more invasive as the supply voltage gets lower. Since this technique
does not require precise timing, the faults tend to occur uniformly throughout
the computation, thus requiring the attacker to be able to discard results that
are not fit to lead an attack.
One refinement of the aforementioned technique is the injection of well-timed
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power spikes or temporary brown-outs into the supply line of the circuit.
Using this technique, it is possible to skip the execution of a single instruction
in a software implementation of the cipher by reducing the feeding voltage
for the duration of a single clock cycle. In order to inject a timed voltage
lapse the attacker needs a custom circuit capable of dropping the feeding
voltage synchronized with the circuit clock.
The temporal precision of the fault injection is directly dependent on the
accuracy of the voltage drop both in terms of duration and synchronization
with the target device.
Another viable option for an attacker is to tamper with the clock signal. For
example, it is possible to shorten the length of a single cycle through forcing
a premature toggling of the clock signal. Such shortening causes multiple
errors corrupting a stored byte or multiple bytes. These errors are transient
and thus it is possible to induce such faults without leaving any tamper
evidence. To alter the length of the clock cycle, the attacker needs to have
direct control over the clock line, which is the typical case when smart cards
are targeted.
Another possibility for an attacker is to alter the environmental conditions,
for instance, by causing the temperature to rise. A temperature rise has
been reported to cause multiple multi-bit errors in DRAM memories.
There is a report of a thermal fault injection attack against the DRAM chips
of a common desktop computer through the use of a 50W light bulb and a
thermometer. Drawbacks of this technique are the invasive faults and the
potential permanent damage of the device.
A practical way to induce faults is to cause strong EM disturbances near it.
The currents induced in the circuit by strong EM pulses cause temporary
alterations of the level of a signal, which may be recorded by a latch. The
spark generator can be a simple piezoelectric gas lighter. All the parts of the
circuit which do not need to be disturbed should be shielded.
Assuming the attacker is able to successfully decapsulate a chip, he can
perform fault injection attacks by illuminating the die with a high energy
light source such as an UV lamp or a camera flash. The strong radiation
directed at the silicon surface can cause the blanking of erasable EPROM
and FLASH memory cells where constants needed for an algorithm execution
are kept.
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A class of threats which cannot be ignored if the attackers have access to a
larger budget includes fault injection techniques that rely on having a direct
access to the silicon die.
One of these techniques is based on the use of a strong and precisely focused
light beam to induce alterations in the behavior of one or more logic gates of
a circuit. A strong radiation of a transistor may form a temporary conductive
channel in the dielectric, which, in turn, may cause the logic circuit to switch
state in a precise and controlled manner (provided that the used etching
technology is not too small).
In order to obtain a sufficiently focused light beam from a camera flash, a
precision microscope must be used. The main limitation of this technique
is the non-polarized nature of the white light emitted by the camera flash
resulting in scattering of the light when focused through non-perfect lenses.
The most straightforward refinement of the previous technique is to employ
a laser beam instead of a camera flash. The injected fault model is similar
to that obtained when using a concentrated light beam.
Those techniques include focused light beams or laser beams which can create
a temporary conductive channel in the dielectric, bypassing the hardwired
logic. The most accurate and powerful fault injection technique uses Focused
Ion Beam stations (FIB) that enable an attacker to arbitrarily modify the
structure of a circuit, reconstruct missing buses, cut existing wires, mill
through layers and rebuild them.
Active attacks are not handled in this work, but it is possible to expand this
work to deal with them.

Active attacks are described with less details than passive attacks, as
they are out of scope for this work.

2.4 Software Protection from Side Channel Attacks

The basic idea behind countermeasures is to break the dependency be-
tween the computation of a cryptographic algorithm and the information
leaked by the side-channels. There are basically two kind of countermeasures
that are called hiding and masking. The former tries to hide the information
leaked without altering the computation, while the latter tries to mask the
computation without altering the side-channels.
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Countermeasures can be implemented at different levels of abstraction. At
very low level, countermeasures are implemented by using protected logic
styles that try to hide the normal power consumption. At the architectural
level, the order of instruction can be randomized or dummy instruction can
be inserted randomly in order to obtain power traces that are not directly
comparable. Finally, at algorithm level, the cryptographic algorithm can be
altered in such a way that the information leaked is not correlated with the
expected intermediate results of a normal computation [17].
In order to achieve an higher the level of security the countermeasures can
be also mixed and integrated for instance by implementing hiding counter-
measures after that masking countermeasures have taken place. A common
drawback in countermeasures is that they typically come at the price of a
speed loss, higher chip area or higher power consumption that make coun-
termeasures hard to implement in the practice.
The first work tackling the problem of automatically protect software imple-
mentations of cryptographic algorithm from power analysis attacks is pre-
sented by Bayrak et al. in [7]. The authors identify the instructions which
are most vulnerable to power analysis running their target implementation
and profiling the power consumption of the underlying platform.
In this way, they identify the most vulnerable clock cycles of the program
execution and associate to each of them the corresponding assembly instruc-
tion together with a sensitivity value.
Instructions, whose sensitivity is greater than a chosen threshold are replaced
by an appropriate code snippet, which realizes a random pre-charging of ei-
ther the registers or the memory cells.
Note that even if the proposed workflow is general enough, the implemented
code transformation step is specific for devices whose power consumption is
proportional to the Hamming Distance between two consecutive execution
cycles.
Moreover, the proposed approach needs a prototype device to be profiled for
leakage.

2.4.1 Hiding

The basic idea of hiding is to remove the dependency of the computation
from the power consumption by altering the power consumption of the de-
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vice. This is can be realized for instance by making the power consumption
either constant or random.
The hiding techniques affect either the time or the amplitude dimension [17].
In the former case, the operations of the algorithm are executed at different
moments of time for each different execution, while in the latter case the
power consumption of each operation is altered randomly.
To the class of countermeasures that affect the time dimension it does belongs
the countermeasures which randomly insert or shuffle the order of operations
every execution. To the class of countermeasures that affect the amplitude
dimension it does belongs the countermeasures which introduce noise in the
form of switching activity in the normal cryptographic computation in order
to reduce the information leaked about the computation.
The shuffling technique involves computing the required values at different,
randomized, times in each encryption, in order to reduce the correlation co-
efficient.
Inserting dummy instructions into the compiled code helps to create confu-
sion in power profiles between the real instructions and the power consump-
tion caused by the dummy, randomized, ones.

2.4.2 Masking

A very common countermeasure to protect cipher implementations against
SCA is to randomize the way sensitive variables are computed through mask-
ing techniques [13, 17]. The principle is to add one or more random values
(masks) to every sensitive intermediate variable occurring during the com-
putation. In a masked implementation, each sensitive intermediate value is
represented as split in a number of shares (containing both the randomized
sensitive value and the masks employed), which are then separately pro-
cessed. To this end, the target algorithm is modified to process each share
and recombine them at the end of the computation. This technique effec-
tively hinders the attacker from formulating a correct power consumption
model, as the instantaneous power consumption is independent from the
processed value. Typically, masking techniques are categorized by the num-
ber of masks d employed for each sensitive value, which is known as order
of the masking. A d-th-order masking can always be theoretically broken by
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a (d+ 1)-th-order attack, i.e. an attack exploiting the combination of d+ 1

measurements of different instructions, during an execution, to build a mask-
independent prediction [17,22,23]. In practice, the difficulty of carrying out
a d-th-order attack increases exponentially with d, due to the difficulty of
guessing which time instant is the one when the sensitive computations hap-
pen [8]. Even though a high order masking is crucial to ensure good security
margins, only a few d >1 order masking schemes exist. Moreover, masking
schemes are developed for specific ciphers, leading to the hand-crafting of
a whole suite of protected ciphers. The current state-of-the-art methodol-
ogy to develop power analysis-resistant encryption primitives is to manually
implement masking schemes in assembly code, applying them to all the in-
structions. This is usually performed tackling the issue of adding masking
scheme to each cipher with ad-hoc, per cipher, techniques. [13, 17,22,23].

2.4.3 Automated Protection

Currently, one of the efforts towards an automation is provided by Moss
et al. [18] proposed a first attempt at automating the process of inserting
a 1st order masking scheme in the code of AES using an ad-hoc transla-
tor. Their scheme relies primarily on type inference, a kind of static analysis
which is strongly dependent on the source language. To this end, the au-
thors of [18] designed their own Domain Specific Language (DSL) with a
specialized type system, which allows type inference. In practice the DSL
source code must contain an explicit annotation for variables to be protected
(depending on the programmer choices), as there is no automatic evaluation
of the security margin bound to each instruction of the program to be ex-
ecuted. In addition, from a practical point of view, it is worth noting that
most encryption primitives, especially for application in embedded systems,
are not developed with a DSL, being instead available primarily in C.

34



Chapter 3

Side-Channel Vulnerability
Analysis and Countermeasures
Application

This chapter contains a description of the Security-oriented Data Flow
Analysis (SDFA), a specifically designed data flow analysis but has the ob-
jective of analyzing data dependencies with respect to an encryption key.
Then it explains how this algorithm can be used to determine the exact at-
tack surface of a block cipher, through automatically recognizing the user
key, the key material produced by the key scheduler and the order in which
this key material is used. Subsequently the SDFA is used to gain knowl-
edge about propagation of this key material, and this information is further
condensed into an instruction resistance value, considering the best options
available to an attacker. This instruction resistance value is then used to
apply selective masking, by adding a pass to the LLVM framework.

3.1 Security Oriented Flow Analysis

The source-language code is extended with custom attributes to allow
the developer to provide information to the compiler about the variables
containing the key material and the plaintext data (f.i., the GNU extension
mechanism for the C language). The decorated source program is parsed
by the Front-End to produce the IR, which is optimized using standard
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optimization passes (f.i., the -O2 option of either clang or gcc compiler).
The optimized IR is analyzed by a new Security-oriented Data-Flow Analysis
(SDFA) pass, which adds metadata to each defined variable to identify its
level of vulnerability. The SDFA can also identify control flow issues that
would prevent a precise analysis and protection of the code, which actually
needs to be fixed by the programmer. The vulnerability information is then
used by theMasking Application pass, which modifies the normalized IR code
through applying masking countermeasures where appropriate. The output
IR is then translated to the target assembly by the standard Back-End pass.

3.1.1 Forward

To define a security-oriented data-flow analysis, aimed at detecting the
amount of key material involved in the computation of an intermediate value,
a CFG built from an IR in SSA form will be considered. The goal of this
analysis is to identify a set of nodes of the CFG representing the portions
of the program amenable to passive side-channel attacks. The choice of
building a single-instruction-per-node CFG is justified by the fact that the
application of countermeasures implies a significant performance penalty and
should be done sparingly. An instruction is deemed to be vulnerable if com-
puting a model of its behavior for each possible value of the key bits from
which its output value depends is computationally feasible. Computing the
aforementioned model is the ground on which passive side-channel attacks
are built, as its predictions are matched against the measured behavior of
the considered device. DFA aims at gathering information about the possi-
ble set of values calculated at each statement of a program, employing the
CFG to determine the propagation paths of each computed value [14,19]. In
our case, the information to be traced is the data-dependence between any
bit computed by a program instruction and every bit of the cryptographic
key. Such a choice is mandated by the need to consider possible side-channel
attack models predicting the behavior of the computation of a single bit
within a w-wide value [15]. The aforementioned relation is modeled through
an n-bit Boolean lattice (BVn,t,u), where the elements of the support set

BVn = {v0, . . . , v2n−1} = {〈00 . . . 0〉, . . . , 〈11 . . . 1〉}
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represent all the possible combinations of key bits from which a bit of an
intermediate result depends on, thus n equals the key size of the cipher under
exam. The bottom of the lattice ⊥ is represented by the element 〈0 . . . 0〉,
which indicates that no key bits are involved, while the top > element is
〈1 . . . 1〉, denoting that all the key bits are involved. The characteristic partial
order relations � and � over the lattice elements are defined as follows:

v � v′ ⇔ ∃ v′′ | v′ t v′′ = v

v � v′ ⇔ ∃ v′′ | v′ u v′′ = v
v, v′, v′′ ∈ BVn

with the t operation being defined as the common bitwise inclusive-or, and
the u operator being the bitwise and.

Our SDFA computes how many key bits are involved in the computa-
tion of each intermediate value, i.e., due to the SSA nature of the IR from
which the graph is obtained, how many bits are involved in the output of
each bit composing the outcome of any instruction I of the program. To
this end, the key propagation is computed for every bit of any size(I)-bit
wide intermediate result through associating a leakage vector VI=(vsize(I)−1,

. . . , vt, . . . , v0) of size(I) elements vt∈BVn to each node of the CFG, which
represents a single SSA instruction. Each vt represents the key bits involved
in the computation of the t-th bit of the corresponding intermediate value
output by I. with t ranging from 0 to size(I), i.e. from the least to the most
significant bit of the instruction outcome.

The meet and join operations on the leakage vectors (denoted as ∨ and
∧, respectively) are defined as the extensions of the aforementioned t and u.
Given two leakage vectors VI=(vs−1, . . . , v0) and VJ=(v′s−1, . . . , v

′
0) of equal

size s=size(I)=size(J), the meet composition law between VI, VJ∈(BVn)s is
defined as VI ∨ VJ=(vs−1 t v′s−1, . . . , v0 t v′0). Dually,the join composition
law is defined as: VI ∧ VJ=(vs−1 u v′s−1, . . . , v0 u v′0).

Using the information provided by the leakage vector, it’s possible to
introduce a definition of instruction resistance. Given an instruction, its
resistance to passive SCA is formally defined as follows:

Definition 3.1.1 (Instruction Resistance). Consider an IR instruction I with

37



Side-Channel Vulnerability Analysis and Countermeasures Application

a size(I )-bit output value, and the associated leakage vector

VI = (vsize(I )−1, . . . , vt, . . . , v0) ∈ (BVn)size(I )

Denoting the Hamming weight of a bit-vector vt∈VI as HW(vt), the instruc-
tion resistance is defined as:

min
vt∈VI :vt 6=⊥

{HW(vt),+∞}

that is, the minimum number of key bits influencing a bit of the output
value of a sensitive I . An instruction that does not depend on any key bit
is conventionally associated to a resistance value equal to ∞.

To automatically evaluate the resistance of an instruction I, it is neces-
sary to consider the leakage vector associated to each instruction preceding
it and take into account which definitions are used by it. This information
is captured by the notion of In-Set of the instruction. The propagation of
resistance information through the specific transformation operated by I is
captured by the notion of Out-Set of the instruction.

Definition 3.1.2 (In-Set). Given an instruction I , the input set in(I ) is
defined as the set of the leakage vectors associated to all the immediate
predecessors of I on the CFG G(B, E):

in(I )
def
=
{
VJ | J ∈ B, J ∈ pred(I ), VJ ∈ (BVn)size(J )

}
Definition 3.1.3 (Out-Set). Given an instruction I , the output set out(I )
is defined as the set of the leakage vectors associated to every immediate
predecessor of I on the CFG G(B, E) plus the one of I , VI ∈ (BVn)size(I ):

out(I )
def
= {VI } ∪

{
VJ | J ∈ B, J ∈ pred(I ), VJ ∈ (BVn)size(J )

}
3.1.2 Local Security-Oriented DFA

Definition 3.1.4 (Local Security-oriented DFA).
Each instruction I within a basic block is characterized by an opcode, op(I ),
an In-set: in(I ), and an Out-Set: out(I ). The effect of the execution of I
is modeled through a transformation function Fop(I )(·) taking as input its
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In-set. Therefore, for any instruction I the following equations can be stated:

in(I ) =

 ∅, if pred(I )=∅
out(J ), if pred(I )={J }

out(I ) = Fop(I )(in(I ))

The SDFA solves the set of simultaneous equations derived from the
instructions in the basic block through subsequent approximations until a
fixed-point is reached. In the particular case of the local SDFA, the con-
vergence is achieved in a single step. The behavior of the transformation
function depends on the opcode of the instruction, as the propagation of the
key dependencies depends on its nature. Note that, the semantics of each
instruction determine also the bit-size (size(I)) of its output value. Thus, to
compute the corresponding Out-Set it may be necessary to produce a prop-
erly sized leakage vector. We denote as resizeI(VJ) the adaptation of the
leakage vector VJ to the same size of the instruction I as follows:

resizeI(VJ) =


(vsize(I)−1, . . . , vt, . . . , v0),

vt ∈ VJ, if size(I) ≤ size(J);

(⊥size(I)−size(J)−1, . . . ,⊥size(J), . . . , vt, . . .),

vt ∈ VJ, if size(I) > size(J)

Let operands(I) be the set variables used by I as operands. As the IR is
in SSA form, each variable is defined only once, so, with a small notation
abuse, the form J ∈ operands(I) will be used to denote that instruction J

defines one of the operands of I. For each instruction class of the IR, our
analysis assumes the transformation function to be defined as:

out(I) = Fop(I)(in(I))
def
= in(I) ∪ {VI}

where the leakage vector of the current instruction VI is computed according
the formulae presented hereafter.

Arithmetic, Bitwise-logic and cmp instructions
These instructions can be partitioned in two sets depending on the compu-
tation of their leakage vectors.

The first set includes all instructions with an opcode, op(I), specifying
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a bitwise operation (f.i., not, and, or, xor), an add or sub operation, with
the exception of the and and or with an immediate operand, as well as
shift, zero- and sign-extension. The evaluation of the leakage vector
bound either to an add or to a sub operation is done through considering
them as a xor operation. This assumption neglects the influence of the
carry/borrow propagation in the computation of the result. This is justified
by the fact that the most favorable situation for an attacker is when there
is no carry propagation (i.e., when the influence of the key bits on each bit
of the final outcome is minimized). The computation of the leakage vector
of any of the aforementioned instructions is the composition of the leakage
vectors in their In-Sets, so that the output bit dependencies (from the key
bits) are the ones of the corresponding bits of the input operands added
together: VI=

∨
J∈operands(I) resizeI(VJ). The second set of instructions

includes mul, div, mod, and cmp operations. Multiplication, division and
modulo operations diffuse the information contained in the operand bits,
so that every bit of the output depends on every bit of the inputs. Let I

be any of these instructions, and let J∈operands(I) be the instructions
computing the operand values of I, with VJ=(vsize(J)−1, . . . , vt, . . . , v0) being
the corresponding leakage vectors. The leakage vector of the instruction
result is computed so that, for each of its bits, the dependencies (from the key
bits) of all operands bits are added together: VI=

∨
J∈operands(I) resizeI(V̂J),

where V̂J = (v̂size(J)−1, . . . , v̂t, . . . , v̂0), ∀ t | v̂t =
⊔

0≤t<size(J) vt. Note that,
when considering a cmp instruction the outcome computed by the instruction
is reduced to a single bit.

Bitwise and and or instructions with an immediate operand
Denoting as immi the i-th bit (0≤ i<size(imm)) of the immediate operand,
define a support leakage vector Vimm as:

Vimm =


(. . . , 〈 immi, . . . , immi〉, . . .),

with 0 ≤ i < size(imm), if op(I) = and

(. . . , 〈¬immi, . . . ,¬immi〉, . . .),
with 0 ≤ i < size(imm), if op(I) = or

to model the dependency-cancelling effect of the absorbing elements of bit-
wise or and and operations (1 and 0, respectively) on the input leakage vector

40



Security Oriented Flow Analysis

VJ. The output leakage vector VI is thus obtained removing the cancelled
dependencies from the input ones as follows:

VI = resizeI(Vimm) ∧
∨

J∈operands(I)

resizeI(VJ)

shift instructions with an immediate operand
Let J∈operands(I) be the instruction producing the non-immediate operand
of I, and VJ=(vsize(J)−1, . . . , v0) the corresponding leakage vector. The leak-
age vector associated to I is VI=resizeI(V̂ ):

V̂ =


(vsize(J)−1−imm, . . . , v0,⊥imm, . . . ,⊥0),

if op(I) = shl, ashl

(⊥size(J)−1, . . . ,⊥size(J)−1−imm, vsize(J)−1, . . . , vimm),

if op(I) = shr, ashr

The computation of V̂ takes into account the fact that the bits of the output
are a permutation of the input ones, possibly discarding some.

Data-dependent shift instructions
In this case the non-immediate operands simply considering the outcome of
the instruction as an unpredictable result. The corresponding leakage vector
is conservatively estimated through removing every dependence from the key
bits: VI=(⊥size(I)−1, . . . ,⊥0).

store instruction
store operations do not produce any new value. Thus, the following equa-
tion applies: out(I) = in(I) as there is no leakage vector.

load instruction
The operands of the load instruction can compute an address value that
possibly depends on the key bits. Thus, every output bit is considered as
dependent on every bit of the address.

Given J ∈ operands(load), with VJ = (vsize(J)−1, . . . , v0), the informa-
tion leakage is:

Vload =
∨

J∈operands(load)

resizeI(V̂J)

41



Side-Channel Vulnerability Analysis and Countermeasures Application

where
V̂J = (v̂size(J)−1, . . . , v̂t, . . . , v̂0), ∀ t | v̂t =

⊔
0≤t<size(J)

vt

If the address depends on the key and the loaded value also contain some key
material the above leakage vector is used as a conservative approximation of
the actual one.

zero- and sign-extension instructions
These two instructions are usually employed in an IR when a change of data
type occurs. In this respect, each of them can be managed as an instruc-
tion, I, with a non-immediate operand that must be extended up to known
size. Let J∈operands(I) be the instruction producing the non-immediate
operand of I, and VJ=(vsize(J)−1, . . . , v0) the corresponding leakage vector.
The data associated to the instruction are simply computed as:

VI =



(⊥size(I)−1, . . . ,⊥size(J), vsize(J)−1, . . . , v0),

if op(I) = zero-extension

(vsize(I)−1, . . . , vt, . . . , vsize(J), vsize(J)−1, . . . , v0),

with vt = vsize(J)−1, where size(J) ≤ t < size(I),

if op(I) = sign-extension

3.1.3 Global Security-Oriented DFA and Control Flow Nor-
malization

Given the local SDFA, it is possible to construct a global SDFA through
extending the data-flow equations to cover the case where an instruction I

has multiple immediate predecessors (i.e., |pred(I)|>1). These instructions
can be easily identified since the SSA IR marks the confluence points by a
φ-function, i.e. a marker pointing out which are the actual output values of
the predecessors of the instruction which should be used. To this end, the
relation between the In-set in(I) of each instruction with multiple predeces-
sors and its Out-set, combining the contribution of the pred(I) is defined
through the so-called confluence operator. In data-flow analysis techniques,
the confluence operator is employed to obtain a conservative information re-
garding the data-flow, as it is not possible to fully predict which value among
the ones present in the out-sets of pred(I) will be employed by I. This is ob-
tained through preserving only the data-flow information common to all the
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incoming execution paths, that is, applying a so-called meet-over-all-paths
policy. In our context, it’s possible to derive the information associated to
the output of an instruction with multiple predecessors through combining
them with the meet operation on the leakage vectors. More formally our
global SDFA is defined as follows.

Definition 3.1.5 (Global Security-oriented DFA).
Let G(B, E) be a control-flow graph and let I∈B be an instruction with
|pred(I )|≥1, then the equations defining its In-set and Out-set are given as
follows:

in(I ) =


∅, if pred(I )=∅

⋃
H∈B

 ∧
VH∈out(J ), J∈pred(I )

VH

 , otherwise

out(I ) = Fop(I )(in(I ))

The global SDFA defined above, while theoretically correct, is not of
practical use “as is”: the goal is to have an accurate assessment of the vul-
nerability, as well as to provide low overhead countermeasures. the issue lies
in the fact that, whenever a confluence is computed where information would
be lost due to a loop edge (i.e., for some φ-function instruction that follows
a confluence between with a back-edge in the CFG), we have that:

∃ J ∈ operands(I) s.t. VJ 6=
∧

H∈operands(I)

resizeI(VH)

which may underestimate the effective amount key bits influencing the result,
leading to a sub-optimal analysis in terms of precision. To prevent this, the
SDFA is interrupted, and the Control Flow Normalization pass is invoked to
perform a loop peeling [5] action, extracting one iteration from the loop, thus
delaying the confluence to the next iteration, and the SDFA is restarted. At
the end of this process, there are two possible situations: a fully unrolled
loop, or a condition where all the definitions used in the φ instruction carry
the same information – and, if the encryption algorithm is correctly designed,
the dependency from all the key bit pertains to a large amount of live vari-
ables. By contrast, if there are some key bits, which are never involved in
data dependencies with the live variables, the encryption algorithm does not
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fully employ the key to protect the plaintext. After performing the global
SDFA, it’s possible to identify with precision the amount of key bits influenc-
ing the computation of each intermediate value of the algorithm, thus in turn
it’s possible to decide which ones should be the target of the countermea-
sure application. Another concern for the precision of the proposed SDFA
is represented by conditional statements, for instance, consider the following
conditional expression in C language: res=(r<0) ? r^c : r;. Denoting as
%r and %c the virtual registers for the variable r and c, the previous C state-
ment is translated in SSA IR form as shown in the left-pane of the following
code snippets:

%1=icmp slt i8 %r,0

%2=xor i8 %r,i8 %c

%res=select i1 %1,i8

%2,i8 %r

%1=ashr i8 %r,7

%2=xor i8 %r,i8 %c

%res=xor i8

%res,%r

The IR on the left, is transformed by an if-conversion pass in the one on
the right, which contains an equivalent sequence of instructions. Note that
the comparison with the zero value (checking if %r is negative) is substituted
with the arithmetic right shift to recover the sign bit of the variable r.

As examined block ciphers have a really simple control flow, the global
SDFA and control flow normalization pass were not automated in this imple-
mentation and their effects were obtained by manually unrolling loops with
the preprocessor.

3.1.4 Backward Security-Oriented DFA

As it is typical to attack cryptographic algorithms through predicting
an intermediate value of the computation preceding the output (the known
ciphertext), here will be described the Backward SDFA algorithm to identify
the resistance of instructions in this case.

Backward DFAs are constructed similarly to the forward ones, through
reversing the relation between In-set and Out-set. However, our SDFA is
tailored to the approach used by the attacker to find out portions of the
cryptographic key. In the general case, the backward DFA combines the
information from the In-sets of the successor of an instruction to compute its
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Out-set, while the In-set of the instruction is obtained by applying an Fop(I)

function to the Out-set. However, when the key is directly combined with
the state of the algorithm, it adds its protection to the other inputs of the
combining instruction. This is taken into account by having Fop(I) functions
that combine not only the Out-set, but also the information coming from
the instructions that define the values used by the instruction. The general
form of the Backward SDFA equations is as follows:

out(I) =


∅, if succ(I )=∅

⋃
H∈B

 ∧
VH∈in(J), J∈succ(I)

VH

 , otherwise

in(I) = Rop(I)(out(I))

For the arithmetic-logic instructions, the definition of the transformation
function Rop(I) is given by: in(I)=Rop(I)(out(I))

def
= out(I) ∪ {VI}, where

VI=
∨

J∈use(I) resizeI(VJ). The main difference from the forward SDFA is
the case where one of the operands of I contains some key material. Accord-
ingly, the transformation function is modified as follows:

in(I) = Rop(I)(out(I))
def
= out(I) ∪ {VI ∨ resizeI(VK)}

where VK=(vsize(K)−1, . . . , vt, . . . , v0) is the contribution of each bit of the key
(vt denotes a bit vector that has a single bit set at position t from the least to
the most significant). This modification takes into account the fact that an
attacker will need to make an hypothesis on the whole key material involved
either directly (i.e. as an operand) or indirectly (i.e. in the computation
of values depending on the result) with the instruction under exam. Thus,
the Backward SDFA has one forward path (the one regarding the use of the
key), an uncommon, but not unheard of case for DFA [14]. As the Backward
SDFA aims at finding the dependence relations considering the point of view
of an attacker in possess of the outputs of the algorithm, the relations among
the key bits imposed by the key schedule should be considered in reverse
order. To this end, the analysis considers the last values produced by the
key schedule as the actual initial key and derives the relations with the
rest of the key material backwards. The key schedule is identified as the
set of instructions that employ, directly or indirectly, only key material and
no plaintext. After identifying such values, a visit of the whole cipher CFG,
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starting from the instructions computing the output, is performed to identify
instructions that use the key schedule values. The first key schedule values
to be found are marked as the initial key. The amount of these values which
should be considered as initial, lest the whole key schedule be marked, is
bound by their total size being at least the size of the user key, and by
them being dependent on all the user key bits. This last condition can be
easily checked as a full key schedule forward DFA has been performed at the
beginning of this initial key identification step. After these initial key values
are identified, the Backward SDFA computes the dependence from them as
imposed by the data-flow equations.

3.2 Automated Vulnerability Analysis

The algorithm described in this section aims at determining the effective
attack surface of a block cipher in terms of vulnerable operations and the
corresponding effort needed to lead a side channel attack.

To this end, it is important to understand which parts of the code are
sensitive to the attack. The sensitive instructions are those that mix plain-
text material and key material, i.e. those intermediate values that can be
predicted based on knowing the plaintext and guessing the involved part of
the key material. The complexity of the side channel attack rises exponen-
tially in the number of bits to be guessed when computing the hypothetical
values of the side channel.

In order to ease the reader’s understanding of this argument, let’s de-
scribe a toy cipher that will be used to describe examples alongside the
description in the next section. The toy cipher is a four round block cipher
with a 32 bit state and a 64 bit key. The round function is a simple left
bitwise rotation of the 32 bit state and the addition via exclusive or of a
word of the key material produced by the key schedule.

The key schedule takes as input the 64-bit encryption key and yields four
32-bit words of key material. The first two words are obtained as the first
and second half of the encryption key, whereas the third one is obtained
as the exclusive or of the first two words, and the last word is obtained by
applying a shift and a xor mask to the second word.

The code reported in Figure 3.1 includes the attributes plain and key
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attached respectively to the plaintext and user key and employed by our
framework to keep track of those values in the IR.

Clang translates the aforementioned C code to IR code as reported in
Figure 3.2. Figure 3.2 shows the IR code corresponding to each source code
statement from line 12 to line 27 — the remaining lines, which compose
the epilogue and prologue of the cipher function are omitted for the sake of
clarity. The IR code defines the Data Dependency Graph (DDG) reported
in Figure 3.3. Since the source code is fully unrolled and has no control flow,
the DDG is semantically equivalent to the IR code, save for the opcodes
which are omitted in the figure for the sake of readability.

It is worth noting that the IR code follows the SSA form, thus each virtual
register is defined only once. The names of the virtual registers have been
modified for the sake of readability, by using meaningful names (the compiler
would just employ a progressive numbering). In particular, virtual registers
defined in the round function are named by the operator that produces them
and the round index, while the virtual registers corresponding to the key
schedule are named as %ski, where i is the index of the key schedule word.

The key material itself is obtained from the original encryption key
through applying a key schedule procedure which expands the encryption
key into a fixed number of round keys, each used in a different iteration of
the round function of the cipher.

It is important to distinguish instructions that operate directly on a
round key (or part of it) from those that operate on intermediate values
computed by previous instructions as a combination of key material and
plaintext. The first step to mount a side channel attack is to select which
intermediate values resulting from the computation of the plaintext and key
material values should be predicted.

Definition 3.2.1 (Directly employed key material). Directly employed key
material is defined as the value of a round key or part of it used as input to
an instruction that has another input, which is either an intermediate value
or (part of) the plaintext.

In the toy cipher example, the %sk0, %sk1, %sk2 %sk3 nodes output the
directly employed key material. It is also necessary to define the amount
of key material that the attacker needs to recover in order to break the
encryption.
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1 #define ATTR(x) __attribute__((metamark(#x)))
2
3 void
4 toyCrypt (const uint32_t *_key,
5 const uint32_t *_input,
6 uint32_t *output) {
7
8 const uint32_t ATTR(key) *key = _key;
9 const uint32_t ATTR(plain) *input = _input;

10
11 const uint32_t subkeys[] = {
12 key[0],
13 key[1],
14 key[0] ^ key[1],
15 key[1] << 10 ^ 0xFCEF };
16
17 #define rotl(a,b) \
18 ((a) << (b)) | \
19 ((a) >> ((sizeof(a) << 3) - (b)))
20 #define iter(n) rotl(state ^ subkeys[n], n+2)
21
22 uint32_t state = *input;
23 state = iter(0);
24 state = iter(1);
25 state = iter(2);
26 state = iter(3);
27 *output = state;
28 }

Figure 3.1: C code of the toyCipher
...
%sk0 = load i32* %key ; line 12

%ptr = getelementptr i32* %key, i64 1 ; line 13
%sk1 = load i32* %ptr

%sk2 = xor i32 %sk1, %sk0 ; line 14

%tmp = shl i32 %sk1, 10 ; line 15
%sk3 = xor i32 %tmp, 64751

%state= load i32* %input ; line 22

%xor0 = xor i32 %state, %sk0 ; line 23
%shl0 = shl i32 %xor0, 2
%shr0 = lshr i32 %xor0, 30
%or0 = or i32 %shl0, %shr0

%xor1 = xor i32 %or0, %sk1 ; line 24
%shl1 = shl i32 %xor1, 3
%shr1 = lshr i32 %xor1, 29
%or1 = or i32 %shl1, %shr1

%xor2 = xor i32 %sk2, %or1 ; line 25
%shl2 = shl i32 %xor2, 4
%shr2 = lshr i32 %xor2, 28
%or2 = or i32 %shl2, %shr2

%xor3 = xor i32 %sk3, %or2 ; line 26
%shl3 = shl i32 %xor3, 5
%shr3 = lshr i32 %xor3, 27
%or3 = or i32 %shl3, %shr3

store i32 %or3, i32* %output ; line 27
...

Figure 3.2: LLVM IR code: virtual registers
in black, operations in blue, operand size in
green

%xor0

%shl0 %shr0

%or0

%xor1

%shl1 %shr1

%or1

%xor2

%shl2 %shr2

%or2

%xor3

%shl3 %shr3

%or3

%state

store

%sk0

%sk1

%tmp

%sk3

%sk2

%ptr

%input %key

%output

Figure 3.3: IR Data Dependency
Graph.
Nodes belonging to the key-
schedule are shown in gray

Definition 3.2.2 (Target key material). The target key material is a subset of
the directly employed key material sufficiently large as to allow the attacker
to reconstruct the encryption key.

In the most conservative scenario, the minimum amount of key schedule
material necessary to reconstruct the encryption key is obtained when the
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key schedule procedure is invertible. In this case, the target key material
has the same bit size as the encryption key. The worst case scenario for the
attacker is when needs to recover the entire key material.

Example 3.2.1. In the example in Section 3.2, the {%sk0,%sk1} {%sk0,%sk2}
values are a valid choice for the target key material.

The most efficient choice for the attacker is thus to pick the values de-
pending directly on a known value and a portion of the key material, possibly
through a bitwise combination. In fact such a scenario allows a retrieval of
the key material with a computational complexity which grows linearly with
the number of key bits. The only way for an attacker to predict the result
of an operation the inputs of which depend both on a known value and the
key material is to consider all the possible values of the key bits involved
in both values, thus increasing the difficulty of the attack. For instance,
trying to make an hypothesis on the toy cipher state after a round has al-
ready been run (e.g. predict the value of %xor1) requires the attacker to
make hypotheses on both the values of %sk0 and %sk1. The attacker will
therefore attempt to compute an optimal choice of the target key material,
i.e. a sufficiently large set of key material bits which can be recovered with
the minimum computational effort. In the example, the {%sk0, %sk1} is an
optimal choice of target key materials, while {%sk0,%sk2} is not, as in this
second choice the number of key bits that must be hypothesized to recover
the value of %sk2 is higher than the one for %sk1.

It is important to note that an alternate strategy for an attacker is avail-
able: instead of predicting the result of an operation combining the key with
known inputs, it is possible for him to target in an attack the input of an op-
eration involving the key, of which the output is known. The optimal choice
of the target key material in this case will be different, as the attacker will
analyze the cipher moving from the results back into the computation, but
the same definitions and properties mentioned before can be re-stated in a
straightforward manner.

Since the key material generated by the key schedule depends with some
redundancy on the original encryption key, the attacker may be able to
optimize the key retrieval simply hypothesizing the value of the (fewer) key
bits on which the involved key material portion depends, further speeding
up the attack.
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3.2.1 Attack Surface Quantification Algorithm

This section describes the algorithm that uses the SDFA defined in 3.1
and in [1]. to detect the best intermediate value that can become the target
of the hypothesis made by the attacker, among all of the possible ones. To
the end of quantifying the attack surface, we now define the instruction
resistance as:

Definition 3.2.3 (instruction resistance). The instruction resistance value
represents the number of bits to be guessed with the attack choice most
favorable to the attacker.

This is needed because the attacker might not choose to make hypothe-
sis about the user key, because the key-scheduler mixed it in a very efficient
way (e.g. in Serpent) and the hypothesis size might become too big to be
computed. Another efficient way for the attacker is to make an hypothesis
about the key material directly employed by the cipher, also called subkeys
or output of the key scheduler. When the attacker has correctly guessed
subkeys for at least the same amount of information contained in the user
key, he has what he needs to invert the key scheduler and reconstruct the
user key. If the key scheduler is not correctly designed, and does not mix
every part of the key as soon as possible that operation is not possible, as
the attacker would get a system of equations with redundant ones.The most
intuitive case is the concatenation of multiple runs of the same algorithm,
e.g. in Triple DES. From a designers’ point of view, the risk is to over-protect
the part of the key mixed sooner and leave unprotected the part of the key
mixed later. This problem was dealt with through keeping track of every
user key bit in the entire directly employed key material and choosing the
vulnerable parts accordingly.
The operative subkey selection, shown in Algorithm 3.2.1, operates as fol-
lows: as a first operation, it performs a forward SDFA to compute the de-
pendencies M (key) of all the CFG nodes from the encryption key values (line
1). Subsequently it computes the subset C of nodes of the CFG which de-
pend on the cipher input, i.e. the plaintext (lines 2–3). This set is the core
of the cipher, and is the part potentially vulnerable to Differential Power
Analysis attacks. This computation is performed initializing C to the nodes
which define the plaintext, and iteratively adding to the set all the nodes
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Algorithm 3.2.1: Cipher Attack Surface Quantification
Input: G=(V, E): IR data flow graph,

key: user encryption-key value,
P: set of plaintext nodes (P ⊂ V),
Kkey: sequence of nodes that load the user cipher-key (Kkey ∈ V)

Output: C ⊂ V: the set of nodes depending on the plaintext decorated with their
resistance to power-based side-channel analysis

1 M(key) � Forward-SDFA(G,Kkey)

2 Cprev � ∅, C � P
3 while Cprev 6= C do Cprev ← C, C ← C ∪ {v ∈ V s.t. ∃c ∈ Cprev, (c, v) ∈ E}
4 Kprev � ∅, K � Kkey

5 while Kprev 6= K do Kprev ← K,
K ← K ∪ {v ∈ V s.t. ∀(v′, v) ∈ E , v′ ∈ Kprev, v /∈ C}

6 SFwd � DetectSubkeysBits(G,M(key),P,K, C, Fwd)
7 SBwd � DetectSubkeysBits(G,M(key),P,K, C, Bwd)

8 M(subkey-Fwd) � Forward-SDFA(G, SFwd)

9 M(subkey-Bwd) � Backward-SDFA(G, SBwd)

10 foreach c∈C do

11 mc � M(key)(c), mc � M(subkey-Fwd)(c), m̂c � M(subkey-Bwd)(c)
// mc is bitsize(c)×|Kkey|
// mc is bitsize(c)×(

∑
sbitsize(s),s∈SFwd ),m̂c is

bitsize(c)×(
∑

sbitsize(s),s∈SBwd )

12 min � +∞ // bitlen(key) is also a correct initialization value

13 for idx � 0 to bitlen(c)−1 do

14 if min > HW(mc[idx, :]) and HW(mc[idx, :]) > 0 then
min � HW(mc[idx, :])

15 cnt � 0, vect_Fwd � (0, . . . , 0) // length(vect_Fwd)=bitsize(key)
16 for j � 0 to |SFwd|−1 do
17 f � SFwd[j], mf � M(key)(f)
18 for h � 0 to bitsize(f)−1 do
19 if mc[idx, cnt]= 1 then vect_Fwd � vect_Fwd ∨mf [cnt, :]
20 cnt � cnt+ 1

21 if min > HW(vect_Fwd) and HW(vect_Fwd) > 0 then
min � HW(vect_Fwd)

22 if min > HW(mc[idx, :]) and HW(mc[idx, :]) > 0 then
min � HW(mc[idx, :])

23 cnt � 0, vect_Bwd � (0, . . . , 0) // length(vect_Bwd)=bitsize(key)
24 for j � 0 to |SBwd|−1 do
25 b � SBwd[j], mb � M(key)(b)
26 for h � 0 to bitsize(b)−1 do
27 if m̂c[idx, cnt]= 1 then vect_Bwd � vect_Bwd ∨mb[cnt, :]
28 cnt � cnt+ 1

29 if min > HW(vect_Bwd) and HW(vect_Bwd) > 0 then
min � HW(vect_Bwd)

30 if min > HW(m̂c[idx, :]) and HW(m̂c[idx, :]) > 0 then
min � HW(m̂c[idx, :])

31 c.resistance � min

32 return C
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which follow them in the CFG, until the set C is stable. Once C has been
computed, it is possible to derive which nodes of the CFG are computing
values dependent only on the encryption key. The set of these nodes, K,
is computed at lines (line 4–5), through initializing it with the definition
nodes of the encryption key Kkey, and adding iteratively the nodes having
all the ancestors already in K. Those nodes should not be present in C as
otherwise they would depend also on the plaintext. The set K represents
the portion of the algorithm computing the key schedule of the block ci-
pher. After computing C and K the algorithm proceeds to compute which
nodes of the directly employed key material nodes, and, consequently, the
optimal target key material. This computation, performed by the Detect-

SubkeysBits primitive described in the next section, is carried out taking
into account both the attacks which can be led knowing the input to the
algorithm, and guessing values derived from it by the computation, and the
ones lead knowing the output of the algorithm and inferring intermediate
values generating it. The first analysis is called forward optimal target key
material search and the latter is the backward one (as denoted in lines 6–
7). The computed sets denoted respectively as SFwd and SBwd contain the
smallest set (respectively, at the top or at the bottom of the block cipher)
of target key material nodes that depend from the entire encryption key.
Once these two analysis steps have been completed, the algorithm performs
a forward SDFA computing the data dependenciesMsubkey-Fwd of the output
values from the forward optimal target key material SFwd (line 8) and, acts
similarly performing a backward SDFA for the backward optimal target key
material SBwd. Once the dependencies from the encryption key, forward and
backward optimal target key materials have been computed, the algorithm
proceeds to quantify the resistance level of each instruction (line 10). For
each instruction c ∈ C of the cipher, the algorithm works as follows. As a
first step, the algorithm stores the dependencies of the current instruction c
from the encryption key, forward and backward optimal target key materials
respectively into the leakage vectors mc,mc and m̂c (line 11). The tempo-
rary variable min stores the candidate value for the instruction resistance
of c and it is initialized to +∞ (or equivalently to bitlen(key)) (line 12).
Since the analysis is done separately for each bit of each instruction, they
are computed separately. So for each output bit of each visited node (line
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13-30), there are three SDFA results available:

1. The dependencies from the user encryption key: represented by
the column of the matrixmc containing the dependencies of the current
bit from the user key material as determined by Forward SDFA. (line
14)

2. The dependencies from the most vulnerable set of subkeys
from the top of the algorithm, determined by Forward SDFA and
stored in the column of matrix mc representing this bit. (line 22)

3. The dependencies from the most vulnerable set of subkeys
from the bottom of the algorithm, determined by Backward SDFA
and stored in the column of matrix m̂c representing this bit. (line 30)

If some group of instructions in sets SFwd or SBwd depends on less user key
bits than their own size, the attacker can try to make hypothesis on this
smaller subset of userkey bits and reconduct the attack as it was a normal
attack using SFwd or SBwd as keys. To consider this possibility, the dependen-
cies from the directly employed key material are expressed as dependencies
from the userkey (lines 18-21 and 26-29) and this generates other two attack
possibilities. The instruction resistance value represents the number of bits
to be guessed with the attack choice most favorable to the attacker (line 31).
To compute the instruction resistance value, the first step is to obtain the
instruction resistance value for each of the five attack possibilities. They are
obtained by computing the Hamming Weights (HW) for each row of the cor-
responding matrix and picking the lowest one, save from the cases when it’s
zero. Computing the minimum among those five values, yields the effective
instruction resistance.

Example 3.2.2 (Running example). Starting from the node %_input, the
procedure marks the portion of the DFG depending on the at least a node
depending on the plaintext as part of set C (lines 2–3 of Algorithm 3.2.1). In
Figure 3.3, these nodes are reported as ovals with white background. Then,
starting from the node %_key, the procedure mark the nodes of the DFG
depending on the key and not on the plaintext as part of set K (lines 4–5).
In Figure 3.3, these nodes are reported as ovals with a shaded background.
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%sk3=xor i32 %tmp, 64751

(line 15 in Fig. 3.2)
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%or2=or i32 %shl2, %shr2

(line 25 in Fig. 3.2)
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%xor3=xor i32 %sk3, %or2

(line 26 in Fig. 3.2)
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∎

∎

∎

∎

Table 3.1: Leakage vectors for the toyCipher example, instruction %xor24

and key material nodes.

Using procedure DetectSubkeyBits, the algorithm obtains the opti-
mal target key material nodes for both the forward and the backward attack,
and computes the corresponding leakage vectors by propagating their effects
using the SDFA (lines 6–9).

In Figure 3.3, the optimal target key material nodes are SFwd = {%sk0,%sk1}
and SBwd = {%sk2,%sk1,%sk3}.

Then the algorithm considers each node in C to compute its resistance.
Considering as an example the instruction %xor24, Table 3.1 reports the
leakage vectors computed for it and corresponding to the four possible at-
tacks: optimal target key material forward (M(subkey-Fwd)) and backward
(M(subkey-Bwd)), and encryption key forward (vect_Fwd) and backward (vect_Bwd).
Also reported is the leakage vector M(key) obtained at line 1 from the initial
forward SDFA on the encryption key, which is used to perform the reverse
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lookup on the original key- subkey bit dependencies for all the instruction
and find the actual resistance. The matrices represented in table 3.1 are the
ones obtained at the end of the algorithm, have the key bits on the X axis
and the data bits of the corresponding SSA register on the Y axis. Having
a black dot at the intersection, means that the data bit depends on the cor-
responding key bit, according to the respective data flow analysis.
The resistance of %xor24 is then easily obtained by taking the minimum
Hamming Weight for the four leakage vectors. The inspection of vect_Bwd
makes it easy to understand that the instruction resistance of %xor24 is 1,
as all rows of the leakage vector have the same, unitary, Hamming Weight.

3.2.2 Optimal Target Key Material Search

We now detail how the DetectSubkeysBits finds which are the opti-
mal target key materials employed in our analysis. The algorithm is applied
two times during an analysis of a block cipher, as this analysis can be per-
formed in two directions. We will now provide a high level description of the
algorithm, for clarity’s sake, followed by a detailed analysis of the steps.
A forward analysis detects the directly employed key material which is used
as input of a CFG node as soon as possible, while a backward one will
target the directly employed key material used as late as possible. The al-
gorithm operates on a sorted (by distance from plaintext or ciphertext) list
of potentially vulnerable instructions. It keeps track of user key bits already
covered by selected instructions, and each instruction can cover (or it can
give to an attacker informations about ) a number of bits at maximum equal
to the size in bits of its SSA register. By iterating on the list, the algo-
rithm selects instructions that cover at least one bit and adds them to the
list of effectively vulnerable ones, until the entire user key is covered by the
smallest possible set of instructions. The algorithm encounters situations
where an instruction depends on more user key bits (still not covered) than
its size and has to make a choice. Those choices are done greedily, and
added to a decision list which is re-examined (backtracking) at each new
instruction, until the doubt is not relevant anymore. This guarantees an
optimal result. The problem is further complicated by the fact that two or
more instructions that have the same distance (measured in hops of defi-
nition/uses) from the plaintext are equally interesting for an attacker and
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should be considered equally dangerous. This is worked out by grouping the
sorted list for equal values of distances, counting uncovered bits appropri-
ately and deciding which instructions are dangerous considering this fact.
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Algorithm 3.2.2: Detection of Subkeys
Input: G=(V, E): IR data flow graph

P: set of plaintext nodes (P ⊂ V),
K: set of nodes which define key material,
C: set of nodes depending on the ones in P,
M(key): Map of user key dependencies for every element of V,
dir ∈ {Fwd, Bwd}: parameter denoting the direction of the analysis

Output: S

Data: D: Set of doubts in subkey bit choices
1 Kout � {k∈K s.t. ∃ c∈C, (k, c)∈E}
2 Cout � {c∈C s.t. @ d∈C, (c, d)∈E}
3 foreach k∈Kout do
4 Uk � {c∈C s.t. (k, c)∈E}
5 if dir = Fwd then k.dist � |shortestPath(P,Uk)|
6 else k.dist � |shortestPath(Uk, Cout)|
7 cov_uk � (0, . . . , 0) /* |cov_uk| = |key|; tracks the user key

bits on which the subset of chosen subkey bits depend */

8 D � ∅, S � ∅
9 for i � 1 to max({k.dist|k ∈ Kout}) do

10 L � {k ∈ Kout|k.dist = i}
11 cov_L � (0, . . . , 0) /* |cov_L| = |key| */
12 foreach l ∈ L do
13 ml � M(key)[l], uk_deps � (0, . . . , 0) /* |uk_deps| = |key| */
14 for bit � 0 to size(l)− 1 do uk_deps � uk_deps ∨ml[bit, :]

15 cov_l � uk_deps ∧ (¬cov_uk)
16 D � D \ {d ∈ D|HW(d.left ∧ cov_uk ∧ cov_L) = 0}
17 (mand, cov_uk,D) �CheckForMandatories(cov_uk, l,D, uk_deps, cov_l)

18 cov_l � cov_l ∨ mand /* |cov_l| = |key| */
19 if HW(cov_l) > 0 then
20 cov_l � cov_l ∧ (¬cov_L)
21 (cov_l,D) �LimitTakenBits(size(l), cov_l, mand,D)
22 cov_L � cov_L ∨ cov_l
23 S � S ∪ {l}
24 cov_uk � cov_uk ∨ cov_L
25 if cov_uk = (1, . . . , 1) then break

26 return S
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Here follows a detailed description of Algorithm 3.2.2: As a first action,
the algorithm identifies the directly employed key material Kout, through
finding the nodes in the set of key schedule nodes K which have an outgoing
edge in the set of cipher nodes C (line 1). This is followed by the identification
of the nodes of the output values of the cipher (set Cout), as the nodes in
C which have no outgoing edges (line 2). Once these two sets have been
obtained, the algorithm computes for each directly employed key material
value k the set of nodes Uk representing an use of k, and the minimum
distance between any node in Uk and either the plaintext or the output
values, depending on the analysis direction set by the parameter dir (lines
3–6).

Having obtained a distance value for all the nodes representing the result
of an use of the directly employed key material, the algorithm starts building
the set of nodes containing the optimal target key material S, keeping track
of the encryption key bits which can be recovered from the current S in
cov_uk (lines 7–8). The binary vector cov_uk has one bit for each bit of the
encryption key. Each bit of cov_uk indicates whether the corresponding bit
of the encryption key contributes to the computation of an output value in S.
To this end we require that the nodes in S depend on at least as many directly
employed key material bits as the ones of the encryption key, and that all the
encryption key bits are represented, i.e., the binary vector cov_uk is filled
with ones. As this procedure is completed in a single sweep over the nodes in
Kout, it is possible that, upon the need of choosing which encryption key bits
are represented by the outputs of k ∈ Kout, some degree of freedom is allowed
in the choice. This is a consequence of the output bits of k depending on more
encryption key bits than their effective number. We record as an element
of the decisions set D which encryption key bits could have been considered
covered by an instruction k ∈ Kout, and were not due to the lack of output
material. The set of decisions D is used to perform optimal backtracking
of the choices in the CheckForMandatories function, should the need
arise.

After having initialized the set of decisions to the empty set, the algo-
rithm starts iterating over the nodes of Kout, dividing them in layers accord-
ing to their distance value (lines 9–11). In particular, the current layer is
stored in the set L, and an auxiliary variable tracking the encryption key bits
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covered by the nodes picked in the layer cov_L is initialized. For each node
l of the layer L, an auxiliary variable tracking its dependencies from the en-
cryption key bits uk_deps is initialized, and the matrix ml of all its bitwise
dependencies from them is extracted. (lines 12–13). The dependencies in ml

are accumulated via bitwise or into uk_deps (line 14). The cov_l variable,
indicating which encryption key bits are represented by the current node l,
is initialized to the ones in uk_deps minus the ones which are already repre-
sented by variables in previous layers. The already represented bits are held
in cov_uk (line 15). The choice of encryption key bits may be suboptimal,
if performed on the basis of local information. In particular, it is possible
for a encryption key bit to be represented only by a single directly employed
key material bit in the algorithm. Consequentially, a choice based on a local
criterion may exclude it in a situation where not enough output bits are
available, resulting in a potentially incomplete optimal target key material
selection. To prevent this from happening, the algorithm employs a call to
the CheckForMandatories function, which detects such cases through
picking the optimal choice of key bits employing the information contained
in the decision set D to perform eventual backtracking. To this end, first step
is to perform basic housekeeping on the D set, removing all the leftover deci-
sions involving key bits which have been covered in the current layer covl, or
by the currently selected portion of the optimal target key material cov_uk
(line 16). Subsequently, the CheckForMandatories routine is invoked,
and it returns the set of the encryption key bits which are mandatory to be
represented by the current instruction mand, together with an updated set
of decisions D and a possibly updated value for cov_uk. The bits in mand

are mandatory because they were considered as covered before, and the en-
hancement of the previous decision requires those to be still covered as soon
as possible.
The set of encryption key bits which must be represented by the output of
the current instruction are added to the selection covl (line 18), and it is
checked whether the current value of covl includes at least a bit (i.e. its
Hamming Weight is greater than zero) (line 19). If this is the case, the
output of the current instruction is considered tentatively as a part of the
optimal target key material, and thus it is evaluated which encryption key
bits are represented by it. To this end, the encryption key bits already cov-
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ered by other instructions in the same layer are removed (line 20), and the
function LimitTakenBits checks that there is enough output material in
the instruction l to represent all the key bits. If this is not the case, it se-
lects a subset of them, adding a new element to the decision set D, to track
the ones left out. Note that the LimitTakenBits function takes as input
the mandatory encryption key bits to be covered by the current instruction
and aborts the algorithm execution in case it is not possible for the current
instruction to cover them. After the number of encryption key bits covered
by l is properly limited, they are added to the ones covered by the current
layer (line 22), and the instruction is added to the set S (line 24). Each time
an entire layer is processed, the algorithm merges the bits covered by the
layer with the ones in cov_uk updating the current encryption key coverage
of the optimal target key material, halting as soon as the entire encryption
key is fully covered (line 25). In case the algorithm terminates without hav-
ing reached this condition, the encryption key bits are not fully employed
in the algorithm, pointing to a significant cipher flaw. It is possible for the
designer to inspect the results to the end of correcting the cipher flaw, as
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the algorithm provides precisely which encryption key bit are neglected.

Algorithm 3.2.3: CheckForMandatories
Input: cov_uk: bits covered in previous layers
l: the current instruction l

D: Set of decisions made in subkey bit choices: models the set of choices made
with a limited forward knowledge of the DFG
Each d ∈ D is d = (taken, left)

Output: mand: bits which must be covered by instruction l
cov_uk: updated bits covered in previous layers
D: Set of updated doubts in subkey bit choices

1 mand � (0, . . . , 0)

2 foreach d ∈ D do
/* If d has previously left bits which l cannot cover */

3 if HW(d.left ∧ (¬cov_l)) > 0 then
/* And some which were covered can be covered by l */

4 adoptable � d.taken ∧ uk_deps

5 if HW(adoptable) > 0 then
6 quantity_to_swap � size(l)−HW(mand)

7 mand_new �GetFirstNBits(adoptable, quantity_to_swap)

8 mand � mand ∨ mand_new

9 d.taken � d.taken ∧ (¬mand_new)

10 cov_uk � cov_uk ∧ (¬mand_new)

11 sent_back �GetFirstNBits((d.left ∧ (¬cov_l)),HW(mand_new))

12 d.left � d.left ∧ (¬sent_back)

13 d.taken � d.taken ∨ sent_back

14 cov_uk � cov_uk ∨ sent_back

15 if HW(mand) = size(l) then break
return 〈mand, cov_uk,D〉
We now detail the behavior of the CheckForMandatories function,

employed by the DetectSubkeysBits as reported in Algorithm 3.2.3. The
algorithm iterates over all the decisions d in the decision set D (line 2) and
checks whether a previous decision could have been taken in such a way
that its discarded bits can be represented by l, and the ones which l is not
able to represent can be in turn covered revising the previous decision (lines
3–5). If this choice is viable, the decision is revised so that the previously
discarded bits are effectively mandated to be covered by l, while in turn
they are removed from the ones being in need to be covered. Note that there
is no effective need to change the previous bit assignments as the whole
instruction output is marked to be part of the optimal target key material,
as an attacker gaining information on a subset of its output bits is able to
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obtain it on all of them, since the measurements he has acquired contains
all the informations.

3.3 Automated Masking Against Passive SCA

This section describes the masking technique used in this work and how
it was automatically applied to the relevant portions of the block ciphers.
Masking aims at invalidating the link between the predicted power con-
sumption, associated to an intermediate operation, and the corresponding
power measurement. In a masked implementation, each sensitive intermedi-
ate value is concealed through splitting it in a number d+1 of shares, which
are separately processed [13,17]. The unprotected computation is substituted
by three phases: an initial share-splitting, a transformation of the original
computation into one processing all the d+1 shares and a final recombina-
tion, which must yield the same result as the unprotected computation. A
number of masking schemes have been proposed in the literature. In this
work we will employ the one by Ishai et al. [13].
Table 3.2 shows the computational costs to mask bitwise operations as a
function of the scheme order d. The computational costs to perform a d-th
order masked bitwise operation are explicited in the following paragraph. A
masked xor operation is computed through 2d(d+1) xor operations, while
the not operation has the same cost of an unprotected one. A masked and

operation takes 2d2+d+1 xor and d2+d+2 and operations to be computed.
It is possible to express an or operation through converting it in ANF as
a∨b = a⊕b⊕ab. As ciphers often involve the computation of multi-bit non-
linear Boolean functions, these can either be expressed in Algebraic Normal
Form (ANF) and explicitly computed, or be available as a lookup table. In
the case of tabulated nonlinear functions, masked table lookup operations
on a l-element lookup table costs 2ld xor operations, ld store operations,
and ld+1 load operations. For multi-bit arithmetic operations it is possi-
ble to perform conversions between Boolean masked values and arithmetic
masked ones and vice versa [10]. The masking scheme employed in this work
for generic Boolean functions is proven to be secure up to a d-th order at-
tack [13] for any choice of d≥1. In case the Boolean function is available
in the form of a lookup table, the masking of the looked-up values is safe
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Table 3.2: Complexity of bitwise masked operations as a function of the
masking order d and lookup table size l

Operation Complexity of masked operation Ref.

xor 3(d+1) xor [13, 22]
not 1 not [13]
and 2d(d+1) xor +(d+1)2 and [13]

or 2d(d+1) xor +(d+1)2 and +3 not
a ∨ b =
¬((¬a) ∧ (¬b))

table lookup 2ld xor +ld store +(ld+ 1) load [23]

up to the 2nd order according to [9]. The key idea is that, whenever two
share-split operands are combined together, fresh random values should be
inserted in the computation of the resulting output shares. As the masking
countermeasure is particularly computationally demanding (see Table 3.2)
applying it as sparingly as possible, without lowering the security margin of
the cipher, is paramount.

3.3.1 Automated Masking Application

The mask application compiler pass uses the previous masking schemes,
employing the information provided by the Attack Surface Quantification
Algorithm 3.2.1 to select which instructions should be protected. The mask-
ing application pass visits the CFG in order, and, for each instruction, acts
as follows. In case the instruction output needs to be protected, it checks
whether the instruction operands are available in masked form or not. In
the former case, it simply emits the masked operation corresponding to the
unprotected one under exam. In the latter case, it first emits the code re-
quired to split the instruction operands into d+1 shares, followed by the
masked operation code. In case the output of the instruction being visited
does not need to be protected, the compiler pass checks whether its operands
are masked or not. In case the operands are masked, the pass inserts the
share recombination step to obtain an unmasked value. Subsequently, all the
uses of the output of the instruction under exam are updated so that they
employ the result of the share recombination. In case the operands of the
instruction are already unprotected, the pass continues the visit of the CFG.
Throughout this procedure, the only operations being computed in masked
form are the ones in need to be protected, and the mask insertion and re-
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moval phases are automatically applied right before and after the protected
computation. After the protected operations have been added to the CFG,
their unprotected correspondents are evicted, checking, as a safety measure,
that no data dependencies have been broken in the process. Performing the
mask application pass could benefit from a customized Boolean optimization
pass which transforms the Boolean expressions of the cipher in ANF.

3.3.2 Masking Application to Single Instructions

Masked values

The share-splitting phase of a d+1-shares s0 . . . sd masked algorithm (also
known as a d-th order masked implementation) splits an input value i into
d+1 shares employing d randomly chosen values r0 . . . rd−1 through comput-
ing s0=((i⊕ r0)⊕ r1)⊕ . . .)⊕ rd−1, and si=ri−1 for i∈{1, . . . , d}. Note that,
for the security of the scheme to hold, two random values must never be
combined directly through a single operation. The final share recombina-
tion phase will exploit the property of the share splitting scheme to obtain
the unmasked output value o as recombining its shares oj as

⊕d
j=0 oj . A

masked-xor operation is thus computed through 2d(d+1) xor operations. To
transform a typical block cipher into its version computing on d+1 shares,
its primitives are classified in linear (over (Z2,⊕,∧)) and nonlinear ones.

Linear operations

All linear primitives can be decomposed in a sequence of xor and not

operations (also denoted as ⊕ and ¬, respectively), which act on the shares.
The not operation acting securely on the d+1 shares is simply defined as
(¬s0)s1 . . . sd (as its computation does not yield any side channel informa-
tion). Consequently, a masked-not operation has the same computational
cost of an unmasked one. The ⊕ operation combining two values u0 . . . ud
and v0 . . . vd into o0 . . . od needs to employ a set of d fresh random values
{r0, . . . , rd−1} in order for the security of the scheme to hold, and computes
the values oi=ũi ⊕ ṽi, where ũi=ui

⊕d−1
j=0 rj and ṽi=vi

⊕d−1
j=0 rj .
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Non linear functions

The nonlinear primitives may either be implemented as their straightfor-
ward computation [13], or stored as a lookup table [23]. In case the nonlin-
ear primitives are explicitly computed, the current state-of-the-art provably-
secure masking scheme defines how to tackle the problem of computing a
masked bitwise ∧ operation. As every Boolean function can be expressed as
a sequence of and (∧) and not operations, there are no restrictions on the
form of the nonlinear function. Synthetically, the algorithm is: To compute

Input: 〈a1, a2, . . . , an〉: n shares representing the first operand (a)
〈b1, b2, . . . , bn〉: n shares representing the second operand (b)

Output: 〈c1, c2, . . . , cn〉: n shares representing the result of the
computation a ∧ b

1 begin
2 for i← 1 to n do
3 for j ← 1 to n do
4 if i < j then
5 z[i][j] � Random()
6 else if i > j then
7 x � z[j][i]⊕ (aj ∧ bi)
8 z[i][j] � x⊕ (ai ∧ bj)
9 for k ← 1 to n do

10 t � 0
11 for l← 1 to n do
12 if k! = l then
13 t � t⊕ z[k][l]

14 ck � (ai ∧ bi)⊕ t

15 return 〈c1, c2, . . . , cn〉

u0 . . . ud ∧ v0 . . . vd, the first step is to obtain d(d+1)
2 fresh random values and

assign them to zi,j for i, j∈{0, . . . , d}, with i<j. Subsequently, the interme-
diate values zj,i are computed as zj,i=(ui ∧ vj)⊕zi,j⊕(uj ∧ vi). Finally, the
output values o0 . . . od are obtained as oi=(ai ∧ bi)

⊕
i 6=j zi,j . Note that the

final sum yielding oi must be computed taking care of not composing two
values of zi,j directly among them. On the overall, a masked ∧ operation
takes 2d2+d+1 xor and d2+d+2 and operations to be computed.
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S-BOXes

In case the nonlinear primitive is available as a lookup table Sbox[·], the
masked computation of it exploits directly the definition of masking scheme
as share splitting, and involves recomputing the entire lookup table, taking
into account the effect of the random values. To this end a fresh set of d ran-
dom values {r′0, . . . , r′d−1} is extracted and, for all the possible input values i
of Sbox[·], the value Sboxmasked[i

⊕d
j=1 sj ]=Sbox[i]

⊕d−1
j=0 r

′
j is computed. Af-

ter the computation of Sboxmasked[·], the output of the secure computation
of Sbox[·] is defined as: o0=Sboxmasked[s0], and for all i∈{1, . . . , d}, oi=r′i−1.
The total cost of performing a masked table lookup operation on a l-element
lookup table is of 2ld xor operations, ld store operations, and ld+1 load

operations.
The fully computational scheme is proven to be secure up to a d-th order

attack [13], while the lookup table re-computation technique is safe only up
to the 2nd order as noted in [23]. Note that, if there is the need to per-
form xor operations while computing the nonlinear primitives of the cipher,
it is possible to avoid to expand the xor into its and/not representation,
employing the same masking technique used for masking of linear opera-
tions. Note that, although the fully computational method is able to mask
any Boolean function, in case of ciphers with multi-bit arithmetic operations
it is possible to employ more efficient arithmetic-masking techniques, or to
perform conversions between Boolean masked values and arithmetic masked
ones [23].

3.4 Implementation Techniques

The first step needed to be able to implement those algorithms in the
LLVM framework, is to have a way to mark the key and the plaintext in the
source code of the cipher. For this reason, the clang front-end was expanded
to recognize a custom attribute to local variables declaration. This attribute
is called metamark, and accepts a string parameter which is not checked by
the compiler but only by further stages. A decorated source code looks like:

The front-end will produce regular alloca instructions, with LLVM IR
Metadata of type MetaMark carrying the string as a parameter. Instead of
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void block_cipher ( uint8_t∗ _key , uint8_t∗ _plaintext ,
uint8_t∗ c i ph e r t ex t ){

uint8_t∗ key __attribute__ ( (metamark ( " ch iave " ) ) ) = _key ;
uint8_t∗ p l a i n t e x t __attribute__ ( (metamark ( " p l a i n " ) ) )

= _pla intext ;
// Regular un ro l l e d code o f the b l o c k c ipher
// us ing key and p l a i n t e x t v a r i a b l e s .

}

Figure 3.4: Example of decorated source code

fine tuning the pipeline scheduler of LLVM for our needs, for development
purposed the passes were executed in the required order using consecutive
calls to the opt tool, which executed one or more steps on an input IR and
outputs the optimized IR.
For analysis purposes, the entire program should be in SSA form, without
load/store IR instructions, except for the ones at the beginning and at
the end of the algorithm concerning input/output. However, as the mark
produced by the front-end is applied only to the alloca instructions, an
optimization pass was implemented to recursively copy the MetaMark at-
tributes on every uses of memory allocated by marked alloca instruction.
Being recursive means that every use of those uses is also marked, until the
use set to mark becomes empty. This is the first pass applied to the IR code
produced by the front-end.

After the MetaMark propagation pass is run,the LLVM framework Scalar
Replacement of Aggregates (SROA) pass is run to decompose the single cells
of arrays and matrices allocated on the stack of a function with an alloca
into single SSA registers. After that, it’s still possible to find some uses of
memory operations in the code, which is still not optimized. The -O3 set of
optimizations gets rid of them in order to optimize the code, as optimizations,
especially the most aggressive ones, are easier to write in pure SSA form.
The InstructionCombine pass, contained into the -O3 set, among the other
optimizations, recognizes if a xor could be safely replaced by an or. This is
a recognizable condition, especially when there are fixed ∧ masks on both
operands, and is a useful micro-optimization: in some architectures it’s more
efficient to do a ∨ rather than a ⊕. However the masking of a ∨ instruction is
the least efficient, and the masking of a ⊕ is the most efficient one between all
binary operators. The InstructionCombine pass was patched to eliminate
this counterproductive (for our needs) optimization. So the next step is the
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-O3 optimization set. After that step, many instructions were replaced so
their MetaMark was lost. In order to restore it, another run of the pass
which propagates them is able to fill in the blanks in the use chains of initial
variables. The code is now ready to be analyzed by the proposed algorithm.
For each instruction, the pass keeps a significant amount of data about them,
as listed in Table 3.3.

Table 3.3: List of the most relevant informations kept for each instruction

bool isAKeyOperation; True if the instruction value depends on
the key.

bool isAKeyStart; True if this instruction is the first one that
produces the key value, so reads the key
from memory

bool isVulnerableTopSubKey; True if this instruction is marked as a
value produced by the key scheduler,
within the first ones to include all of the
user key bits

bool isVulnerableBottomSubKey; True if this instruction is marked as a
value produced by the key scheduler,
within the last ones to include all of the
user key bits

bool isSubKey; True if this instruction is represents an
output of the key scheduler.

long PlaintextHeight; If this instruction is in the core of the al-
gorithm, so has met the plaintext, counts
how many hops there are form this to the
plaintext entrance in the cipher.

long CiphertextHeight; If this instruction is in the core of the al-
gorithm, so has met the plaintext, counts
how many hops there are form this to the
ciphertext exit at the end of cipher.

InstructionSource origin; Tracks if this instruction is an instruction
produced by previous passes or is an in-
struction that already does masked com-
putations

bool isSbox; Tracks if this value is the result of a sub-
stitution box
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bool hasToBeProtected_pre; Tracks if this instruction needs to be pro-
tected, as determined by the attack sur-
face quantification algorithm for the part
of the cipher near the plaintext

bool hasToBeProtected_post; Tracks if this instruction needs to be pro-
tected, as determined by the attack sur-
face quantification algorithm for the part
of the cipher near the ciphertext

bool hasMetPlaintext; Tracks if this instruction has the plaintext
as its ancestor in the data flow graph, so
it is not part of the key scheduler

vector<bitset<MAX_KEYBITS» key-
dep;

This is the matrix produced by SDFA
with dependencies from the user key.

bitset<MAX_KEYBITS> keydep_own; This bitset represents the user key depen-
dencies eventually introduced by this in-
struction

vector<bitset<MAX_SUBBITS» pre; This is the matrix produced by SDFA
with dependencies from the topmost part
of the subkeys

vector<bitset<MAX_KEYBITS» pre_-
keydep;

This matrix contains the same informa-
tion as the matrix in the field above, but
expressed as dependency from the user
key instead of the user key

bitset<MAX_SUBBITS> pre_own; This represents the dependencies from the
topmost part of the subkeys directly in-
troduced by this instruction

vector<bitset<MAX_SUBBITS» post; Those three fields have the same
meaning to the above three fields but
with respect to the bottom part of the
algorithm

vector<bitset<MAX_KEYBITS»
post_keydep;
bitset<MAX_SUBBITS> post_own;
StatisticInfo keydep_stats; Minimum, maximum and average

number of dependencies from the three
keys, calculated from the above matrices

StatisticInfo pre_stats;
StatisticInfo post_stats;
bitset<MAX_VALBITS> deadBits; If this instruction represents a value re-

turned by an S-BOX, keep track of even-
tual ”constant bits“.
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Instruction* unmasked_value; If this instruction is an already masked
one, keep the pointer to the original un-
masked one.

vector<Value*> MaskedValues; If this instruction is an unmasked one and
there are already the equivalent masked
ones, keep here pointers to the shares rep-
resenting this value.

Following the previous passes, the constant bit detection pass for SBOXes
checks for bits that never change value for all entries in the substitution box,
being it always 0 or always 1. This is useful to check the correctness of
SBOXes and/or detect if their output are correctly reordered, especially for
smaller 4-to-6 bit boxes like the one of DES. The algorithm, as described
in the first part of this Chapter is then run on the IR. The SDFA algo-
rithm was written using templates, enabling it to run with different keys for
different parts of the attack surface quantification algorithm, reducing code-
duplication. Most functions that operate on sets of instructions and discover
nodes as they run are written as lambda function, passed to an executor
function that runs them in parallel on independent sections of the graph
using C++11 future mechanism, allowing it to take advantage of modern
multi-core processors. The SDFA and masking algorithms were written us-
ing LLVM instruction visitor pattern, for added clarity and extensibility. It
allows to define a default behavior for any type of instruction and override it
only for some opcodes. The masking of tabulated SBOXes is accomplished by
injecting a new function on the module containing the function being masked.
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The algorithm for a 256-item SBOX masked with order 2 is:

void __sbox_masked( uint8_t or ig ina l_sbox [ ] , uint8_t share0 ,
unit8_t share1 , uint8_t share2 , unit8_t ∗new_share0 ,
unit8_t ∗new_share1 , unit8_t ∗new_share2 ){

uint8_t sbox_masked [ 2 5 6 ] ;
∗new_share1 = rand ( ) ;
∗new_share2 = rand ( ) ;
for ( i = 0 ; i <256; i++){

sbox_masked [ i ^share1^share2 ]= \
or ig ina l_sbox [ i ]^(∗ new_share1 )^(∗ new_share2 ) ;

}
∗new_share0= sbox_masked [ share0 ] ;

}

The original accesses to those boxes are written as a GetElementPtr and a
Load. Both of them get replaced with:

• alloca for stack space for the new shares. (reused on subsequent calls)

• call to the __sbox_masked function.

• one load for each new share from the space allocated on the stack to
an SSA register.

There is also a LLVM pass dedicated to producing output informations from
informations contained in table 3.3. It has three different output formats:
GraphViz, CSV and HTML. The Comma Separated Values file contains
most of those informations ready for further automated elaboration and plot
generation. GraphViz is a widely used format for graphs, and represents the
data flow between instructions, classifying them with different colors. It is
used to generate a SVG file with dotty. The HTML output generates a file
for each single IR instruction, containing all the matrices expanded in an
user-friendly way. For space reason, they are written by encoding in base64
the content of their memory, and JavaScript code will read it and plot in in
a HTML5 Canvas. The entire HTML5 application allowing to browse the
Data Flow Graph and examining details of each single instruction by clicking
on it can be seen in figure 3.5

The source code is available on http://github.com/maxximino/llvm

and http://github.com/maxximino/clang public repositories.
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Figure 3.5: Screenshot of the web application created to browse results pro-
duced
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Chapter 4

Experimental results

This chapter will contain data obtained from the automated procedure
described in the previous chapter for the most common block ciphers.
There are plots of the instruction resistance for each block cipher considered,
with data organized by cipher round. For the block ciphers without arith-
metic operations there are also the performance results of the corresponding
protected versions, examined on three different platforms.
These protected cipher implementations are split by the masking order and
the security margin, which is the threshold for the instruction resistance
value under which the masking countermeasure is applied.
A performance limit for the protected versions is given by the throughput
of the random number generator which supplies the masks, so we’ll exam-
ine how their throughput correlates to the cipher ones, highlighting novel
insights on the practical feasibility of state-of-the-art countermeasures.

4.1 Results of Security Analysis

This section contains the detailed analysis of the vulnerability of instruc-
tions on each cipher, showing how fast it can diffuse key material up to the
point of not being vulnerable to side channel attacks anymore. The instruc-
tions in the DFG of each cipher are depicted as a two dimensional colormap,
their round number and the instruction position inside the round. Each in-
struction has a different color depending on its vulnerability.
The distinction in rounds is qualitative as the compiler optimizations may
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move or merge instructions between different rounds.

4.1.1 AES

Figures 4.1, 4.2 and 4.3 report the results of our analysis applied to
the 128-bit, 192-bit and 256-bit key variants of the AES.
The key is fully diffused only at the end of the third round (counting the
initial extra AddRoundKey as round 0): this can be ascribed to the combined
action of the diffusion layer of AES, which spreads the effect of a single bit
change over a quarter of the state at each round, and the bytewise operating
key schedule of the cipher. In particular, should be noted that, since the
round key size of the AES is 128 bit, and the first round key employed is
exactly the user key, both the 192- and the 256- bit variants of the AES take
two full round to add the whole key material to the state and one extra to
complete the diffusion. Note that the bytewise oriented operations of AES,
which represented a winning design choice in terms of efficiency, turn out to
be a factor causing a slow diffusion of the key material over the state, which
is detrimental from the side channel attack point of view. Such an issue can
be compensated through the use of a more aggressive key schedule, instead
of a straightforward copy of the user key bits as the first round keys, in turn
speeding up the diffusion of the whole key material over the state.
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Figure 4.1: Per-instruction vulnerability of AES128
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Figure 4.2: Per-instruction vulnerability of AES192
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Figure 4.3: Per-instruction vulnerability of AES256

4.1.2 SERPENT-128

The strong asset of the Serpent cipher, from a side channel attack resis-
tance point of view, is its key schedule as the computed the round keys are
in such a form that that every bit of each round key depends on 64 bits of
the user key. This property, paired with the efficient diffusion layer results
in a quick convergence of the instruction resistance to the maximum value,
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as shown by the analysis in Figure 4.4. Consequently, only a small subset
of the Serpent cipher instructions need to be protected from side channel
attacks. In a context where such protection is mandatory, it is likely that
the Serpent cipher would outperform the AES once the overhead brought in
by the necessary countermeasures is taken into account.

0 10 20 30 40 50

0

4

8

12

16

20

24

28

32

Instructions

R
o
u
n
d
s

1

32

64

96

128

Figure 4.4: Per-instruction vulnerability of Serpent-128

4.1.3 Camellia

As shown in Figure 4.5, the Camellia algorithm has a good diffusion rate
of key dependencies. However, the key schedule appears to be flawed, as
in several points (the lighter vertical stripes on the right) instructions in all
rounds are vulnerable to side channel attacks. This issue is due to a lack of
key material mixing in some of the subkeys, among which, one is directly con-
stituted of user key material without modifications (the instruction adding
it is highlighted in red). This information is non-trivial, and to the best of
our knowledge it is shown for the first time here, as the manual analysis of
the algorithm did not allow its detection, due to the complex structure of
the key schedule, which prevented easy inspection. This result underlines
the relevance of designing and implementing automated tools for security
analysis, as issues in the structure of a cipher may not be easily detected
otherwise.
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Figure 4.5: Per-instruction vulnerability of Camellia

4.1.4 DES and DES-X

Figures 4.6 and 4.7 report the vulnerability analysis of DES and DES-X.
It can be seen that the key diffusion of DES is faster than the one of the
AES: overall, 73.9% of DES instructions are protected by at least 40 bits
of the key, whereas only 66.2% to 81.4% are protected in this way in AES
(depending on the key size). DES-X has a higher diffusion rate than DES, as
the extra key material with respect to the common DES is applied entirely in
two 32-bit XOR operations, thus benefiting from the good diffusion provided
by the DES.

Note that the fact that DES-X does not achieve an effective key length
equal to the sum of the sizes of the three keys is detected by the analysis,
which shows that the number of key bits protecting each intermediate value
is never higher than 120. This result matches the common notion on DES-X,
regarding the fact that its actual security margin is lower than 184 bits.
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Figure 4.6: Per-instruction vulnerability of DES
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Figure 4.7: Per-instruction vulnerability of DES-X

4.1.5 3DES

Figures 4.10 and 4.11 reports the vulnerability analysis of Triple DES
using keying options 2 (double key) and 1 (triple key), showing pairs of
rounds rather than single rounds on the y axis for the sake of readability.
It can be easily seen that Triple DES spectacularly fails at providing signif-
icant protection against side channel attacks, as it takes about two thirds
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of the rounds to reach the full security margin. This is due to the fact that
cascading multiple applications of the same cipher does impact adversely on
the vulnerability to side channel attacks, as the security margin obtained is
the same as the original cipher. For the same reason, there is no difference
(besides the size of the key) between using Triple DES with keying option 1
or 2, from the point of view of side channel vulnerability, as the vulnerabil-
ity of the first rounds is always the same as a single DES. In conclusion, it
can be seen that, to harden Triple DES implementations against side chan-
nel attacks, it is necessary to apply countermeasures to about two thirds of
the instructions in the cipher, which makes it rather demanding in terms of
resources when compared to other ciphers.
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Figure 4.8: Per-instruction vulnerability analysis of 3DES3 with only forward
analysis applied
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Figure 4.9: Per-instruction vulnerability analysis of 3DES3 with only back-
ward analysis applied

The depiction of the forward analysis of TDES3 (keying option 1, figure
4.8) shows the difference w.r.t. keying option 2, for which the backward
analysis 4.9 does not add any information. The ability to attack the cipher
from the bottom (which is the reason for employing the backward analysis)
prevents the additional independent key K3 from having any beneficial effect
from the point of view of side channel attack resistance.
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Figure 4.10: Per-instruction vulnerability of 3DES with keying option 2
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Figure 4.11: Per-instruction vulnerability of 3DES with keying option 1

4.1.6 GOST 28147-89

The simplicity of the cipher design (no permutations or expansions are
present such as the ones in DES), combined with the absence of a key sched-
ule (the user key is simply replicated to provide enough key material) makes
it very vulnerable to side channel attacks. In particular, the lack of a key
schedule significantly impacts on the key diffusion rate, which is provided
only by the non-linear transforms of the Feistel function. The overall result
is that eight rounds are needed to achieve full diffusion of the user key in the
cipher state, which is coherent with the fact that eight rounds are needed to
add 256 bits of key material in 32 bit chunks.
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Figure 4.12: Per-instruction vulnerability of GOST 28147-89

4.1.7 CAST5

The use of arithmetic operations on which CAST5 relies is a key element
for a fast diffusion of the key bits, and the strong key schedule obtains each
round key bit from contributions from at least 56 bits of the original cipher
key. These two factors make CAST5 one of the best ciphers examined from
the key diffusion standpoint. Further cause of fast diffusion is the use of
substitution maps that take 8 bits as input but produce 32 bits as output,
thus diffusing the key influence on each input bit onto the 32 bits of output.
The overall result is that the CAST5 algorithm is more resistant than any
of the previous ciphers (except Serpent) to side channel attacks, and will
therefore benefit from a reduced overhead when applying countermeasures,
provided that an efficient way to protect arithmetic instructions is used.

82



Results of Security Analysis

0 5 10 15 20 25

0

2

4

6

8

10

12

14

16

Instructions

R
o
u
n
d
s

1

32

64

96

128

Figure 4.13: Per-instruction vulnerability of CAST5

4.1.8 Conclusion
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Figure 4.14, compares the relative code size of the considered block
ciphers and allows to both evaluate their vulnerability and assess the expan-
sion of the code size when applying the countermeasures.
The plot provides also the detail on the entity of the code which actually
needs protection. In particular, the gray part of the bar is the key scheduler,
which is not vulnerable to DPA attacks [17] as it only elaborates secret val-
ues.
The part of the cipher doing the real encryption, i.e. dealing with the plain-
text, is colored differently depending on the vulnerability level. The green
is used for 128+ bit-protection, orange for protection between 127 and 80

bits and red for less than 80 bit protection. It is interesting to note that, a
loop-unrolled version of the 3DES is twice as big as the AES256 and does
not provide a comparable security margin. This diagram shows that most
of the code size 3DES is consumed by the key scheduler. Viceversa, this
chart shows that the cipher with the lowest percentage of code that needs
protection is Serpent, as seen as in Section 4.1.2. The AES cipher, due
to its fast diffusion and small key scheduler, has the highest percentage of
already 128-bit-safe code. The total absence of a key scheduler in the GOST
algorithm has a favourable impact on the code size, albeit at the cost of a
slow diffusion, but the smallest cipher without considering the key scheduler
(as it never gets masked) is CAST5.

4.2 Experimental Workbench

There are three test setups for three different architectures:

The x86_64 tests were executed on a desktop computer with a AMD
Phenom(tm) II X6 1090T processor running at 3.4GHz, with 128 KB L1
cache, 512 KB L2 cache, and 6MB L3 cache shared between cores. There
are 16GB of DDR3 RAM. The storage section is composed by 4 WD Caviar
Black used as two couples of ZFS mirror vdevs. The operating system is
Gentoo Linux with kernel 3.9.4 and GLIBC 2.17 . Every binary was compiled
with options -O3 -march=x86-64 (detailed compilation procedure in listing
A.3 )
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The arm.a9 tests were executed on the Pandaboard ES development plat-
form. The SoC is a Texas Instruments OMAP4460 SoC1, containing a dual
core Cortex A9-MPCore clocked at 1.2 GHz, 1 MiB L2 cache and 1 GiB
DDR2 RAM, running Linaro 12.09 Linux distribution (armv7l target), with
kernel 3.4.0 and EGLIBC 2.15. The system runs on a 4GB SDHC class 6 .
Every binary was compiled with options -O3 -march=arm -mcpu=cortex-a9

(detailed compilation procedure in listing A.3 )

The arm.pogo tests were executed on the PogoPlug v2 pink. The SoC is
a Marvell 88F62812, with one core running at 1.2GHz, 256kB L2 cache and
256MB of DDR2 RAM, running Arch Linux with kernel 3.1.10 and GLIBC
2.17. The system runs on a Corsair 32GB pen drive. [Every binary was
compiled with options -O3 -march=arm -mcpu=arm926ej-s (detailed com-
pilation procedure in listing A.3 )

4.3 Passive SCA Protection

Masking, as a way to protect from passive SCA attacks, is an already es-
tablished technique whose limits where related mainly to huge performance
loss and code size increase. This section describes how this new analysis
method allowed us to improve performance and reduce the increment in
code size of masked algorithms.
The algorithms GOST and CAST5 were not tested, as they contain arith-
metic operations. It is possible to perform conversions between boolean

1Further information about the SoC can be found at http://www.ti.com/litv/pdf/
swps046a

2Further information about the SoC can be found at http://www.marvell.com/
embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf
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masked values and arithmetic masked ones [10], to apply correct and perfor-
mant arithmetic masking. This option is not incompatible with our imple-
mentation but has not been implemented.

4.3.1 Performances

The throughput is calculated by repeatedly measuring the execution time
of 1.000.000 encryptions of a plaintext block, through employing the test code
shown in listing A.1 (page 103) compiled with instructions at listing A.3
on page 104.
The throughput is defined as

Block size · iterations∑
execution time

number of samples
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1Figure 4.15: Throughput of reference implementations on reference platforms

Figure 4.15 shows the throughput obtained on our reference platforms
by the unprotected versions of the algorithms compared. The AES cipher
implementation chosen, from this chart, does not look optimal as it is even
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slower than Serpent.Usually, fast AES implementations use T-Tables, which
are tables of precomputed values to be reused through the computation.
We chose a direct implementation of the specifications because it allowed us
to fine-tune SDFA with a wider range of operations. The implementation
chosen is optimized for 8-bit microcontrollers, because AES operations are
specified at byte level. It’s possible to notice how the different algorithms
relative throughput stays unchanged among test platforms. The highest
performing one is Camellia, followed by Serpent and the AES family. This
fact is not unexpected, as DES was designed to be extremely efficient when
implemented in hardware then it’s not so fast in software implementations.
Its derivated algorithms obviously inherit this property. As previously said,
our AES implementation is not optimized for performance.
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Platform: x86 64 - Random source: libc - Masking order: 2
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Figure 4.16: Throughput on x86_64 with rand() overhead
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Platform: arm.a9 - Random source: libc - Masking order: 1
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Platform: arm.a9 - Random source: libc - Masking order: 2
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Figure 4.17: Throughput on arm.a9 with rand() overhead

Platform: arm.pogo - Random source: libc - Masking order: 1
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Platform: arm.pogo - Random source: libc - Masking order: 2

0 50 100 150 200 250

0

1

2

3

4

·105

Security margin [bit]

T
h
ro
u
g
h
p
u
t
[b
y
te
s/
se
c]

camellia
serpent
desx
des
3des2
aes128
aes192
aes256
3des3

1(b)

Figure 4.18: Throughput on arm.pogo with rand() overhead

Figures 4.16a, 4.16b, 4.17a, 4.17b, 4.18a and 4.18b depict the perfor-
mance data of all possible combinations of algorithms, platforms and masking
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order.
Moreover, the dotted lines represent the corresponding maximum theoreti-
cal throughput limit, computed from data in section 4.3.2. This maximum
theoretical throughput limit is given by libc’s rand() implementation, and
could be overridden by using a different and more performing random num-
ber generator.
It’s important to note how the throughput of most algorithms drops in clearly
visible steps. Those steps correspond to the crossing of a diffusion opera-
tion, which is expensive (in terms of performance) to mask, and after that
the rest of the round has about the same security level of that operation. So
it’s sensible that the algorithm chooses to mask almost an entire round.
The AES performance is hindered by the non-optimal implementation as the
basic S-BOX version was employed. However the three variants of AES have
really similar throughput.
The most bounded algorithm by the RNG performance, as shown in pre-
vious section, is Serpent, as its throughput is the closest to its maximum
throughput limit. It is interesting to notice in comparing ARM-based plat-
forms to x86_64, one should notice how Camellia performs better compared
to others. This behavior can be explained by the high number of bit-shift
operations in Camellia algorithm and the fact that those operations in ARM
architectures are executed by the barrel-shifter, in the same pipeline as the
next ALU operations, saving a significant amount of processing cycles. [4]
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Figure 4.19: Throughput on x86_64 without rand() overhead
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Figure 4.20: Throughput on arm.a9 without rand() overhead
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Platform: arm.pogo - Random source: constant - Masking order: 1
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Figure 4.21: Throughput on arm.pogo without rand() overhead

When looking at results without rand() overhead, obtained replacing
rand() calls with a constant, the most evident effect is that Serpent through-
put is clearly improved. This is another confirmation of the fact that its
masking needs a rather constraining amount of random values. The reason
behind this fact is that Serpent does not use SBOX for diffusion, but uses a
set of non-linear bitwise functions. Masking for lookup tables uses few ran-
doms repeatedly (and is not secure for use with with masking order greater
than 2) for a lot of computations, while a bitwise function requires some new
random values for each instruction executed.
Slowdown is defined as

Throughput of unmasked algorithm
Throughput of masked algorithm

.
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Figure 4.22: Slowdown on arm.a9 with rand() overhead
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Figure 4.23: Slowdown on arm.pogo with rand() overhead

Figures 4.22a, 4.22b, 4.23a and 4.23b depict the data regarding the
slowdown relative to the unmasked cipher. AES has great slowdown as it is
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an 8-bit optimized implementation, so it’s composed by a large number of
instructions.
In the 3DES family it is possible to notice at which security margin entire
DES algorithms get masked, as there is a steep increase in the overhead.
The algorithm least impacted by masking is Serpent, which, however, is the
most sensitive to an insufficient RNG throughput. The results show that its
throughput is going to scale well with respect to RNG throughput. When
comparing relative slowdowns, there are no significant differences between
the two ARM platforms.

4.3.2 Random Number Generation Issues

This quantity of entropy needed for each algorithm was determined by
counting the calls to the rand() function during the encryption of a single
block.
The entropy need at a masking order and chosen security level is defined as

4(bytes) · number of calls to rand()

algorithm block size

.
In practical terms, this is equal to

RNG throughput
cipher throughput

.
The count of the calls to the rand() function was obtained by using the
LD_PRELOAD mechanism with a library with the code in listing A.2. The
GNU/Linux dynamic linker can load a library (specified in LD_PRELOAD
environment variable) before others, allowing to override symbols from other
libraries.An example of the practical setup to do so is available at page 104,
listing A.2.
A corrective coefficient was applied to AES family, as the analyzed imple-
mentation computes 8-bit values, thus it effectively discards 24 bits provided
by each call to rand().
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Figure 4.24: Entropy needs at masking order 1
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Masking order: 2 Without DES and family
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Figure 4.25: Entropy needs at masking order 2

The ciphers that need the highest quantity of random data are the DES-
like ones, as they contain a huge number of instructions in need of masking
when compared to other cipher designed with software implementations effi-
ciency in mind. Their entropy needs are so large compared to other ciphers,
that Figures 4.24a and 4.25a were replicated in Figures 4.24b and 4.24b
without including them for the sake of clarity. Within the set of ciphers with
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a reasonable need for entropy to be masked, Serpent is the least efficient as
in our examined implementation it does not have tabulated S-BOXes: they
are computed algebraically. This requires changing the random shares at
each of the instructions, while masking a tabulated S-BOX uses the same
random for a large number of different computations, as explained in 15.

Benchmark of libc rand() function

Table 4.1: rand() benchmark

Platform Throughput
x86_64 484.22 MB/s
arm.a9 40.14 MB/s

arm.pogo 24.72 MB/s

From data in this table, it’s evident that desktop platforms have an order
of magnitude of advantage in random number generation through libc with
respect to actual embedded systems. The higher frequency of the PogoPlug
with respect to the PandaBoard, is not enough to compensate for its older
armv5 architecture instead of the newer armv7l. By comparison, Intel’s
RdRand instruction included in recent Ivy Bridge processors can produce
more than 500MB/s of random data. An hobbyst-project employing a cheap
FPGA (http://hackaday.com/2010/02/06/hardware-based-randomness-for-linux/)
can produce up to 1MB/s of true random data, while the RNG embedded in
ST ARM-based STM32F4xx microcontrollers can produce more than 4MB/s
of random data.

Improvements in throughput versus traditional full masking

Table 4.2 shows throughput of fully masked ciphers and in comparison
the optimized version with equivalent security margin, equal to the cipher
key size. The data is presented only for the arm.a9 platform, as the data for
other platforms show a similar behavior. Throughput values (columns Full
[masking] and Optimized [masking] are expressed in kiB/s), and the Relative
column is

Full masking throughput
Optimized throughput

expressed in percent.
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Experimental results
Table 4.2: Throughput improvements vs. traditional full masking on arm.a9
platform

Algorithm Masking order Full Optimized Relative

3des2 1 25.7 34.9 135.6%
2 13.6 18.4 134.7%

aes128 1 34.8 84.5 242.4%
2 26.8 62.2 232.0%

aes192 1 28.9 67.6 233.7%
2 22.1 50.4 228.1%

aes256 1 24.7 67.1 271.7%
2 18.9 49.7 262.8%

camellia 1 44.6 228.0 511.0%
2 36.7 180.1 490.9%

des 1 74.5 309.8 415.7%
2 38.6 164.7 426.4%

desx 1 73.7 248.0 336.6%
2 38.1 131.0 343.4%

serpent 1 69.1 442.0 639.5%
2 32.2 203.1 630.0%

4.3.3 Code Size

Code size is particularly important in embedded environments, because
today’s CPUs should fit in increasingly smaller packages (think about smart
cards, or microSIM) and their price should drop constantly.
Thus there are two pushes to reduce the area of the die, and resizing the
memory is the most straightforward approach to lower die area.
Another reducible part of the die is the CPU cache, which is really important
for performance. A smaller algorithm can fit in a smaller, cheaper cache.
Masking is going to expand code size, as we are not simply computing a
given instruction: for each one we need to store (and execute) a group of
instructions which work on multiple values for each original one and can be
further elaborated or reduced to the originally requested value.
Code size was measured as the size of the .text ELF section of the test
executable compiled with instructions at listing A.3 on page 104 The test
executable code,other than the reference algorithm, is shown in listing A.1
on page 103
Overhead is defined as

.text ELF section size of masked algorithm
.text ELF section size of unmasked algorithm

.
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Figure 4.26: Code size overhead on x86_64
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Figure 4.27: Code size overhead on arm.a9
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Platform: arm.pogo - Masking order: 1
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Figure 4.28: Code size overhead on arm.pogo

In Figures 4.26a, 4.26b, 4.27a, 4.27b, 4.28a and 4.28b, it’s possible
to notice how the proposed approach definitely limits the code size increase
when compared to the usual full algorithm masking.
The most favorable is Serpent: with full masking at masking order 2, its size
increases by a factor 12, while with the proposed algorithm the size increases
by a factor less than 3
When selectively masked at 128-bit security margin (the same as its key
length considered) its size increases by less than a factor 3, yielding a net
3× improvement.
AES has a slightly lower gain, and DES-family has the weakest improvement.
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Chapter 5

Conclusions

This work has proposed an automated technique to perform in-depth
analysis of the characteristics of block ciphers, and provide efficient and
effective countermeasures against side channel attacks. The complete au-
tomation of the procedure provides an effective way to eliminate the risk of
human errors in the otherwise complex and tedious process.
This is a cross-disciplinary work where analysis principles typically employed
to optimize programs in compilers, were applied to produce a new analysis
technique effective in another domain: applied cryptography.
This work has introduced the Security-Oriented Dataflow Analysis [1], which
has been subsequently used in the Attack Surface Quantification Algorithm
to analyze block ciphers. The proposed analysis and countermeasure applica-
tion technique has proven its practical effectiveness through being employed
to screen the instruction level security of six real world ciphers, as well as
apply automatically strong side channel countermeasures with a fine grain.
We obtained notable improvements in performance and code size of masked
ciphers with an designer-tunable loss in security margin, which can be easily
chosen at compile time with no effort from the designer. The finer grain of
countermeasure application allowed by our technique achieves an over 6×
improvement in throughput and a 4.5× reduction in code size, without any
loss on security margin compared to current state of the art cipher protection
techniques.
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Appendix

Algorithm A.0.1: SERPENT-128 Encryption
Input: p, plaintext; k, cipher key
Data: SBOX1..8, 8 substitution boxes
Output: c, ciphertext

1 begin
2 s � p

3 〈SK(0), SK(1), . . . , SK(32)〉 � KeySchedule(k)
4 for i← 0 to 30 do
5 s � SBOXi%8(s⊕ SK(i))
6 s1 � RotateLeft(s1 ⊕RotateLeft(s0, 13)⊕RotateLeft(s2, 3), 1)
7 s3 � RotateLeft(s3 ⊕RotateLeft(s2, 3)⊕ (RotateLeft(s0, 13)�

3), 7)
8 s0 � RotateLeft(RotateLeft(s0, 13)⊕ s1 ⊕ s3, 5)
9 s2 � RotateLeft(RotateLeft(s2, 3)⊕ s3 ⊕ (s1 � 7), 22)

10 s � SBOX7(s⊕ SK(31))

11 c � s⊕ SK(32)

12 return c
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Algorithm A.0.2: CAST-5 Encryption
Input: p, plaintext block as 2-32 bit elements array.; k, cipher key
Data: s1..4, 4 substitution boxes
Output: c, ciphertext block as 2-32 bit elements array

1 begin
2 l � p(0)

3 r � p(1)

4 〈Km(0),Km(1), . . . ,Km(15),Kr(0),Kr(1), . . . ,Kr(15)〉 � KeySchedule(k)
5 for i← 0 to 15 do
6 t = l
7 l = r
8 switch i%3 do
9 case 0

10 〈I(0), I(1), I(2), I(3)〉 � RotateLeft(Km(i) + r,Kr(i))
11 r = t⊕(s1(I(0))⊕s2(I(1))−s3(I(2))+s4(I(3)))
12 case 1
13 〈I(0), I(1), I(2), I(3)〉 � RotateLeft(Km(i) ⊕ r,Kr(i))
14 r = t⊕(s1(I(0))−s2(I(1))+s3(I(2))⊕s4(I(3)))
15 case 2
16 〈I(0), I(1), I(2), I(3)〉 � RotateLeft(Km(i) − r,Kr(i))
17 r = t⊕(s1(I(0))+s2(I(1))⊕s3(I(2))−s4(I(3)))
18 c(0) � r

19 c(1) � l
20 return c

Algorithm A.0.3: GOST 28147-89 Encryption
Input: p, plaintext block as 2-32 bit elements array.; k, cipher key as 8 32-bit

elements array; SBOX, chosen substitution boxes
Output: c, ciphertext block as 2-32 bit elements array

1 begin
2 r � p(0)

3 l � p(1)

4 for i← 0 to 2 do
5 for j ← 0 to 3 do
6 r � r ⊕ RotateLeft(SBOX(l + k(2j)),11)
7 l � l ⊕ RotateLeft(SBOX(r + k(2j+1)),11)
8 for j ← 3 to 0 do
9 r � r ⊕ RotateLeft(SBOX(l + k(2j+1)),11)

10 l � l ⊕ RotateLeft(SBOX(r + k(2j)),11)
11 c(0) � l

12 c(1) � r
13 return c
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Algorithm A.0.4: Camellia Encryption
Input: 〈ptx1, ptx0〉: 128-bit plaintext block as a pair of 64-bit elements.

k: 128-bit cipher key
Data: FL(a, b, c, d): non-linear function
Output: 〈ctx1, ctx0〉: 128-bit ciphertext block as a pair of 64-bit elements

1 begin
2 〈left, right〉 � 〈ptx1, ptx0〉
3 〈k0, k1, . . . , k24〉 � KeySchedule(k) // 24 round keys, with 64-bit size

each
4 left � left⊕ k0 // note that k1 is not used
5 for i← 2 to 23 do
6 if i/∈{8, 9, 16, 17} then
7 tmp �SBOX(left)⊕ki
8 〈tmp1, tmp0〉 � SplitWord(tmp) // split up into two 32-bit

halves
9 tmp0 � tmp0 ⊕ tmp1

10 tmp1 � (tmp1 ≫ 8)⊕ tmp0
11 tmp � 〈tmp1, tmp0〉
12 right � right⊕tmp
13 〈left, right〉 � 〈right, left〉
14 if i=8 then 〈left, right〉 �FL(left, right, k8, k9)
15 if i=16 then 〈left, right〉 �FL(left, right, k16, k17)
16 right � right⊕ k24
17 〈ctx1, ctx0〉 � 〈left, right〉
18 return 〈ctx1, ctx0〉

Listing A.1: Test executable code
#include <s td i o . h>
int main ( int argc , char [ ] argv ) {

unsigned char out [BLOCK_SIZE ] ;
unsigned char key [KEY_SIZE] = {/∗Test key ∗/ } ;
unsigned char c o r r e c t [BLOCK_SIZE] = {/∗Known good c i p h e r t e x t ∗/ } ;
unsigned char p l a in [BLOCK_SIZE] = {/∗Corresponding p l a i n t e x t ∗/ } ;
int i =1000000;
i f ( argc==2) {

i=a t o i ( argv [ 1 ] ) ;
}
for ( ; i >0; i−−) encrypt_block ( key , p la in , out ) ;
i f (memcmp( out , co r r e c t ,8)==0)
{

p r i n t f ( "OK\n" ) ;
return 0

}
else {

p r i n t f ( "ERROR\n" ) ;
return 1 ;

}
}
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Listing A.2: Source code of the library preloaded into the test executable to
measure the number of calls to rand()

#include <s td i o . h>
stat ic unsigned long long counter = 0 ;
int rand ( ) {

counter++;
return 4 ; // chosen by f a i r d i ce r o l l .

// guaranteed to be random enough
// f o r the purpose o f count ing c a l l s .

}
void __attribute__ ( ( de s t ru c t o r ) ) my_fini (void ) {

p r i n t f ( "\nrand ( ) ␣was␣ c a l l e d ␣%l l u ␣ t imes . \ n" , counter ) ;
}

Listing A.3: Building instructions for the test executable
c lang −O0 −emit−l lvm −S −g input . c
opt −propagametadati input . S −S −o with_metadata . s
opt −s roa −O3 −propagametadati with_metadata . S −S −o optimizedIR . s
#the next s t ep i s sk ipped f o r unmasked e x e cu t a b l e s
#and rep l aced by a s imple f i l e copy from optimizedIR . s to maskedIR . s
opt −S −ncfa−i n s t r u c t i on−r ep l a c e optimizedIR . s \
−nocryptofa−s e cu r i t y−margin=$SECMARGIN \
−nocryptofa−mask−everyth ing=$FULLMASK \
−nocryptofa−masking−order=$ORDER > maskedIR . s

l l c −o platform−asm . S maskedIR . s −march=x86−64 #or
l l c −o platform−asm . S maskedIR . s −march=arm −mcpu=arm926ej−s
#or
l l c −o platform−asm . S maskedIR . s −march=arm −mcpu=cortex−a9
gcc −o executab l e platform−asm . S #executed on t a r g e t p la t form
s t r i p executab l e #executed on t a r g e t p la t form
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