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Abstract

This thesis studies the problem of an uncontrolled reentry of a space debris

and its possible impact on air traffic.

Whilst a controlled reentry occurs over the ocean or an uninhabited region

where a no-fly zone can be timely issued, the precise time when an uncon-

trolled reentry occurs is hardly predictable in advance, and the debris may

fall over a populated area with high air traffic density and cause fatalities on

the ground as well as in the air. Interestingly, notwithstanding the fact that

aircraft vulnerability is higher compared to that of people on the ground

(even fragments weighting 300 grams only can cause a catastrophic event!),

the aviation risk has started being considered only lately, being the risk for

the population on the ground the main concern.

In order to limit service disruption and avoid fatalities in the air, it would be

very useful to introduce automatic tools that, as soon as a debris enters the

atmosphere, provide an estimate of the airspace area that will be occupied

by the reentering debris (debris footprint) as well as of the actual risk to

aviation. Air traffic controllers, who are in charge of monitoring air traffic

and ensuring a safe flight, could then use these pieces of information to

decide the best action in terms of aircraft re-routing and prioritization of

the aircraft involved.

This work can be seen as a first step to achieve such an objective.

Inspired by some papers that have appeared recently in the literature, we

adopt a probabilistic framework and describe the debris dynamics as well

as air traffic through stochastic models. Given that the uncontrolled reentry

of a spatial debris is affected by various sources of uncertainty (e.g., ini-

tial velocity, drag coefficient, wind), we formulate the problem of computing

its 4-dimensional (space cross time) footprint as a chance-constrained opti-

mization problem, where we minimize the size of the set that contains all the

trajectories of the reentering debris, except for a fraction of predefined prob-
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ability ε. This chance-constrained optimization problem is hard to solve, and

here we head for a randomized solution based on constraint sampling, which

is suboptimal but still guaranteed to be feasible with high probability. The

proposed randomized method is shown to outperform a state-of-the-art ap-

proach resting on the linearization of the debris dynamics around a nominal

trajectory.

We then investigate to what extent the availability of measurements of the

debris position can decrease the size of the footprint, through the use of

nonlinear filtering techniques and, in particular, of the Unscented Kalman

Filter. A further improvement of the footprint is obtained by exploiting the

radar measurements of the aircraft positions and applying Particle Filter-

ing techniques to reduce the uncertainty on the wind affecting the debris

trajectory.

Simulations are presented throughout the thesis to assess the performance of

the proposed approaches. A concluding section suggests possible directions

of future work.
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Sommario

Questa tesi riguarda il problema del rientro non controllato di detriti spaziali

ed il loro possibile impatto sul traffico aereo.

A differenza dei rientri controllati, che avvengono sopra l’oceano o sopra aree

disabitate e che comportano una temporanea interdizione dello spazio aereo

programmata con un certo anticipo, la finestra temporale in cui si verifica un

rientro non controllato è difficilmente predicibile ed esso può interessare zone

densamente abitate e caratterizzate da un’elevata densità del traffico aereo,

ponendo a serio rischio sia le persone che sono a terra, sia quelle che sono in

volo. Nonostante la vulnerabilità degli aerei sia maggiore rispetto a quella

della popolazione al suolo (frammenti di appena 300 grammi possono causare

delle catastrofi in quota), il problema del rischio per l’aviazione dovuto ad

un rientro non controllato di un detrito spaziale è stato considerato solo in

tempi recenti e comunque non studiato ancora a fondo come quello per la

popolazione a terra.

Per evitare interruzioni protratte nel tempo del servizio aereo e soprattutto

vittime, sarebbe molto utile avere a disposizione sistemi automatici che,

a fronte del verificarsi del rientro di un detrito, stimano la regione dello

spazio aereo coinvolta dal rientro (il cosiddetto footprint) ed il rischio a cui

è sottoposto il traffico aereo. I controllori di volo, incaricati di monitorare

il traffico e garantirne la sicurezza, potrebbero usare queste informazioni

per decidere quale sia l’azione migliore da intraprendere per riorganizzare il

traffico aereo nei settori coinvolti, suggerendo agli aerei variazioni opportune

di rotta. Questo lavoro di tesi può essere considerato come un primo passo

per raggiungere tale obiettivo.

Traendo ispirazione da alcuni articoli che sono apparsi di recente in letter-

atura, abbiamo adottato un approccio probabilistico per affrontare il prob-

lema, in cui le dinamiche di detrito e aerei sono descritte tramite opportuni

modelli stocastici. Dato che un rientro non controllato è soggetto a varie fonti
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di incertezza (ad esempio sulla velocità iniziale, la resistenza aerodinamica,

ed il vento), abbiamo proposto di formulare il problema del calcolo del foot-

print come un problema di ottimizzazione soggetto a vincoli in probabilità

(problema chance-constrained), dove si determina il footprint come l’insieme

che contiene tutte le traiettorie del detrito ad eccezione di una frazione ε

predefinita e piccola a piacere. I problemi di tipo chance-constrained sono

particolarmente difficili da risolvere e qui abbiamo optato per un approccio

randomizzato basato sul campionamento dei vincoli, il quale fornisce una

soluzione sub-ottima (footprint non con volume minimo) che soddisfa il vin-

colo in probabilità del problema chance constrained originario. Il metodo

proposto è stato confrontato con un approccio presentato in letteratura di

recente e si è dimostrato ad esso superiore.

Successivamente abbiamo valutato come misure della posizione del detrito

possano essere utilizzate per ridurre il volume del footprint, tramite tec-

niche di filtraggio non lineare (più precisamente l’Unscented Kalman Filter).

Un’ulteriore riduzione di volume può essere ottenuta sfruttando le misure

radar delle posizioni degli aerei e applicando il Particle Filter per ridurre

l’incertezza riguardo l’effetto del vento sulla traiettoria del detrito. Viene

inoltre proposto un metodo per stimare, seppure in modo conservativo, la

probabilità che il detrito entri nella zona di sicurezza attorno ad un velivolo.

La tesi si sviluppa nel modo seguente.

Nel primo capitolo viene descritto il problema del rientro non controllato di

detriti spaziali, sottolineando come esso sia stato affrontato solo di recente

nell’ottica di valutare il rischio a cui è sottoposto il traffico aereo.

Nel secondo capitolo viene presentato in maniera accurata il problema della

predizione della traiettoria di rientro dei detriti spaziali e le varie tecniche ad

oggi utilizzate a tale scopo. In seguito viene introdotto e discusso il modello

di caduta del detrito che verrà poi utilizzato in tutta la trattazione. Vengono

inoltre evidenziate tutte le fonti di incertezza parametrica ed i diversi dis-

turbi che possono influenzare la dinamica del rientro. Nella seconda sezione

del capitolo si affronta il calcolo del footprint. Si mostra come sia possibile ri-

formulare tale problema come un problema di ottimizzazione vincolata, con

vincoli di natura probabilistica, che può essere risolto mediante l’impiego

di tecniche randomizzate basate sulla simulazione. Il metodo proposto per

il calcolo del footprint viene poi confrontato con un metodo recentemente
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sviluppato in letteratura, rispetto al quale mostra prestazioni decisamente

migliori. Nella parte conclusiva del capitolo si spiega come il footprint possa

essere utilizzato per la stima del rischio per un aereo che si trova nello spazio

coinvolto dal rientro non controllato.

La tesi prosegue con il capitolo 3, nel quale per prima cosa viene presentato

il modello stocastico per la descrizione del traffico aereo. Vengono introdotte

le equazioni che descrivono la dinamica del singolo velivolo, il flight man-

agement system ed il modello utilizzato per l’evoluzione della componente

stocastica del vento. Vengono poi illustrate le possibilità offerte dall’avere

a disposizione delle misure del detrito e degli aerei che si trovano nell’area

interessata dal rientro. Vengono descritti gli algoritmi utilizzati per il filtrag-

gio delle misure radar degli aerei (Sequential Conditioning Particle Filter –

SCPF) e di quelle del detrito (Unscented Kalman Filtering – UKF). Suc-

cessivamente viene introdotto un algoritmo che integra SCPF e UKF per il

calcolo del footprint. Sulla base del footprint calcolato possono essere definite

le regioni dello spazio aereo da interdire al traffico in opportune finestre tem-

porali. Il capitolo 3 si conclude con esempi numerici che mostrano l’efficacia

dell’approccio proposto. Nell’ultimo capitolo, infine, vengono tratte le con-

clusioni e suggerite alcune direzioni future di ricerca.
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Chapter 1

Introduction

1.1 Context

Since the beginning of the space era the number of satellites grew signif-

icantly and so did the number of them which ceased their operations and

now are orbiting around Earth without the possibility to be controlled from

ground stations. Together with upper stage rocket bodies, and fragments

generated by collisions with meteoroids or other artificial satellites, they

constitute the so-called space debris population. When a debris orbit de-

cays, mainly due to atmospheric friction, it can enter the atmosphere and

pose risk to public safety, striking people and properties at ground. For this

reason institutions like the Federal Aviation Administration (FAA) have de-

fined standards for the calculation of the overall risk of a space mission and

maximum admissible values for such a risk, see e.g. [42] and [3].

During a controlled reentry, the spatial debris is maneuvered so as to make

it reenter the Earth’s atmosphere avoiding high density fly zones and strike

the ground in the ocean or over an uninhabited area. We instead have an

uncontrolled reentry when the debris falls into the Earth’s atmosphere and

cannot be maneuvered so as to make it strike the ground in a desired point

of the planetary surface. From the decay of the Sputnik 1 launch vehicle

core stage on 1 December 1957 until 3 April 2013, 22142 catalogued orbiting

objects have reentered the Earth’s atmosphere. Currently, approximately

70% of the reentries of intact orbital objects are uncontrolled, corresponding

to about 100 metric tons per year, and on average there is one spacecraft or

rocket body uncontrolled reentry every week, with an average mass around

2000 kg [33].

1



Studies in the literature on uncontrolled reentries has ben focusing almost

exclusively on the risk that the debris can cause to the population on the

ground, [33, 7, 31, 16, 45], and only recently attention has been drawn on the

impact on air traffic, [34, 5]. Fragments generated in the reentry process have

a mass ranging from one gram to some thousand kilograms [3], and, while

for the risk to the population on the ground only objects with high kinetic

energy can cause damage, in the case of aircraft flying at speeds around 700

kilometers per hour, even an impact with a small debris, hypothetically at

rest in the air, can cause severe damage to the aircraft and to passengers on

board, [33].

In this work, we shall focus on the problem of uncontrolled reentry and its

possible impact on air traffic. Since air traffic is experiencing an incredible

growth and is forecasted to double in the next few decades, [4], this problem

is becoming more and more significant.

In the current Air Traffic Management (ATM) system, coordination of air

traffic is operated on two different time scales by the traffic flow management

function and Air Traffic Controllers (ATCs). The traffic flow management

function operates on a long term horizon by defining the flow patterns one-

day ahead so as to ensure a smooth and efficient organization of the overall

air traffic. ATCs operate on a short/mid term horizon of 10-20 minutes with

the goal of maintaining the appropriate separation between aircraft and

make them avoid forbidden regions, which may include special usage areas

and bad weather zones, as well as the area occupied by a debris during its

(uncontrolled) reentry. Indeed, expected reentry position and time can only

be predicted quite approximatively. As a matter of fact todays prediction

capability leave us with uncertainties in the order of ±55 minutes from data

available 6 hours before actual reentry event, moreover there is an inevitable

delay (up to a few hours) between the obtained prediction and the public

distribution of the results [31].

Hence coordination to avoid risk cannot be performed at the traffic flow

management level, but only at the ATCs operation time scale.

It would then be useful to introduce some tool to support ATCs in perform-

ing their tasks when an uncontrolled space debris reentry occurs. Our thesis

can be seen as a preliminary step in this direction.
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1.2 Objectives

This work pursues the goal of constructing hazard airspace areas of a reen-

tering debris at different altitudes and their time duration, so as to support

air traffic controllers in their task of guiding safely aircraft from their origin

to their destination. In particular, given the various sources of uncertainty

affecting the debris reentry, we aim at characterizing the reentry process

probabilistically, determining the 4-D (space cross time) confidence region

that will be occupied by the debris during its reentry. The risk of an air-

craft getting too close to a reentering debris can be estimated based on this

probabilistic footprint, and aircraft can be ranked based on the estimated

risk. Air traffic controllers could then exploit these pieces of information for

taking appropriate actions so as to make the aircraft avoid the 4-D confi-

dence regions occupied by the falling debris, while assigning to the aircraft

priorities according to their rank. Choice of the level of confidence will allow

to modulate the size of the confidence regions.

1.3 Contribution and structure

A novel contribution of this thesis is the reformulation of the problem of

determining the debris footprint as a chance-constrained optimization pro-

gram, where one looks for the minimum size region that contains all debris

trajectory except for a fraction of predefined probability ε, and the intro-

duction of a simulation-based approach for its solution. This approach rests

on the so-called scenario approach, [14], for (approximately) solving chance-

constrained optimization programs through randomization of the probabilis-

tic constraint.

The resulting randomized algorithm for footprint calculation is shown to

outperform a state-of-the-art approach named covariance propagation, and

to be of more general applicability.

When radar measurements of the aircraft and debris are available, nonlin-

ear filtering techniques can be adopted to reduce the uncertainty affecting

the debris reentry and, hence, the size of the probabilistic footprint. More

precisely, we investigate the combination of the Unscented Kalman Filter

(UKF, [24]) and the Sequential Conditioning Particle Filter (SCPF, [26]),

respectively using the debris measurements to reduce the parametric un-

certainty and the aircraft measurements to reduce the uncertainty on the
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stochastic wind disturbance.

In Chapter 2 we present a brief overview of current challenges and solutions

to the problem of debris trajectory modeling during reentry, and describe the

model adopted in our work, listing the sources of uncertainties that affect it.

Then, we introduce a novel simulation-based method for the debris footprint

characterization, and show that it outperforms a method recently proposed

in the literature. At the end of the chapter we discuss how the footprint can

be used to obtain an upper bound for the aircraft risk.

In Chapter 3, we recall a recently proposed model for the air traffic, which in-

cludes a description of the uncertainty affecting the aircraft dynamics caused

by the random nature of the wind speed. We then present the SCPF and the

UKF algorithms separately, and show how they can be used jointly, so as to

reduce the debris dispersion and determine an improved debris footprint. At

the end of the chapter, we illustrate some simulation results obtained by the

proposed approach, which integrates nonlinear filtering within the chance

constrained program for the footprint calculation.

Finally, in Chapter 4, we draw some conclusions and suggest some directions

for future research studies.
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Chapter 2

Space debris and footprint

characterization

2.1 Introduction

In this chapter we describe the uncontrolled space debris reentry phenomenon,

and briefly illustrate modeling challenges and approaches proposed in the

literature. We then focus on a model for trajectory prediction after the

break-up instant, and illustrate the various sources of uncertainty affecting

the debris trajectory. Based on this model, we characterize the debris disper-

sion probabilistically, by constructing the 4-D (space cross time) confidence

region that will be occupied by the debris during its reentry. Knowledge of

debris hazard regions and their time duration would simplify the air traffic

controllers task of guiding the aircraft away from the hazard area before the

debris would reach the altitude at which aircraft are flying. Additionally, the

probabilistic footprint could be used to provide an estimate of the risk posed

to air traffic by the debris reentry, and to assign a ranking to the aircraft

based on the estimated individual risk.

The main novel contribution of this chapter consists in the introduction of

a simulation-based approach to the construction of the debris probabilistic

footprint. The approach rests on recent results on the randomized solution

to chance constrained optimization problems, and shows better performance

when compared with a state-of-the-art method.
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2.2 Reentry of a space debris: modeling

2.2.1 Modeling challenges and state of the art

Up today, accurate and reliable models to describe space debris reentry are

not available yet, and many researchers are actively working on this problem.

The motivation is that reentry dynamics is a very complex phenomenon.

A manmade satellite that has been sent into orbit, once its mission is com-

pleted, can perform two different kinds of reentry: a targeted or controlled

reentry, or a random or uncontrolled reentry. While in the first case the

object has been explicitly designed to survive the reentry phase, and its

trajectory has been planned so as to make it fall into the ocean or in an un-

populated land, in case of an uncontrolled reentry, an object orbiting around

the Earth with an inclination i with respect to the equatorial plane, can fall

anywhere in a latitude range ±i, [31, 34], posing at risk both people on the

ground and aircraft in flight.

Though it is difficult to predict when and where a reentering satellite will

strike the ground, we do have instruments to observe and track orbiting ob-

ject [31]. Data about space debris population are issued through the TLEs

(Two-Line Elements) database, which contains mainly orbital parameters:

orbital inclination with respect to the equatorial plane, the right ascension

of the ascending node and the argument of perigee uniquely defining the

orbit, the mean anomaly specifying the position along the orbit, and the

mean motion specifying the mean angular speed. Monitoring these informa-

tion is important, because they can be used to properly initialize an orbit

propagator model and predict the trajectory of the reentering body. Unfor-

tunately, these models depend on the Earth gravitational field and on the

exosphere density, which are affected by approximation errors, and TLEs

data are often sparse and poorly accurate. Recent works, like [21], propose

new techniques to constantly monitor space debris population, at least for

LEO (Low-Earth Orbit) objects, and we believe that new technologies will

make us able to raise the accuracy of the available measurements. Other

works, also with different aims, like [40], show how orbital propagators can

be improved considering more accurate models.

When a satellite ceases its operations typically continue to orbit around the

Earth until atmospheric drag reduce its speed making it lower its semi-major

axis. At this time the object is already in a decaying orbit, but the reentry
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phase begins when the body intersect the entry interface, that is the top

of sensible atmosphere (i.e. at an altitude of 120 km). This instant if often

referred as reentry epoch and is often taken as the reference time for de-

bris trajectories [5]. Typical speed of an orbiting satellite is about 7 km/s

and, as it passes the reentry interface, it encounters a steadily increasing

atmospheric density and it begins to heat due to aerodynamic drag. Since

each material has its own melting point, as temperature increase, we have

a sequence of failure at different points, each time the object release one or

more parts and each of these fragments falls independently on its own tra-

jectory. Moreover we can have other mechanical failures due to increasing

aerodynamic loads that can reach seven or more times the acceleration of

gravity [5]. Since each fragment has its own mechanical and thermal proper-

ties, it can generate other fragments or it can ablate, partially or completely.

Of course completely ablated fragments do not contribute to risk evaluation,

but all other fragments will affect the projected range of hazardous areas. All

fragments evolve with a ballistic trajectory, only subject to gravity and aero-

dynamic forces [45, 16]. Though this fragmentation is far from instantaneous

we refer to it as breakup instant, meaning the instant when the reentering

body experiences a major breakup (i.e. the first massive breakup) after it

has passed the reentry interface. Currently, there are two strategies to pre-

dict this breakup instant of a reentering satellite: a deterministic approach

and a probabilistic one.

In [46] the authors summarize all current tools1 and methods to predict

breakup instant, while proposing their own tool. These softwares can be clas-

sified as object-oriented or spacecraft-oriented. In the first case the software

can simulate a three degrees of freedom ballistic model, attitude equations

are typically predefined based on the chosen shape for the object and so

are not directly integrated, aerodynamic load and heating are integrated in

all the three regimes (free molecular flow, continuum flow and transitional

regime) and ablation analysis can be carried out both using a lumped-mass

or a distributed approach. Since the structural analysis is omitted, because

the software deals with single objects only, breakup event cannot be pre-

dicted and it is assumed to occur at a given altitude, typically 78 km. A

spacecraft-oriented code is instead much more complex, the entire structure

of the satellite is reproduced as realistically as possible. Starting from a few

1Most of them are proprietary and so they cannot be used in this study.
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elementary components (the primitives) composing the spacecraft and or-

ganizing all subsystems hierarchically, a full six degrees of freedom model

is used to perform numerical integration for both position and attitude, a

two-dimensional heat conduction approach is used for ablation analysis and,

finally, aerodynamic forces and torques are integrated over all surfaces. Most

fragile parts are monitored for both melting and mechanical overload, in or-

der to be able to determine what kind of fragment is generated and when.

A totally different approach is the one carried out in [45, 16] where, instead

of a very complex and purely deterministic model, a very simple model is

used and probabilistic distribution are defined to account for the lack of

knowledge about model coefficients and for the stochastic nature of the dis-

turbances affecting the reentry process. Basically, a two-degrees of freedom

kinematic model describing the debris motion along with a lumped-mass

model describing the heating process are used to simulate different scenar-

ios corresponding to sampled values of the uncertain parameters, and the

probability of breakup of each fragment is then obtained. Breakup criteria

cover only thermal melting and not mechanical stress.

2.2.2 Adopted model

Following [5], which suggests that the spread of debris footprint caused by

breakup altitude uncertainty can be reduced if the object is observed during

the major breakup, we focus only on fragment dispersion after the breakup

phase, and adopt the three-degrees of freedom model of a falling object over

a rotating planet recently proposed in [39] to this purpose. Thermal analy-

sis for breakup prediction is not considered here, though the lumped-mass

model describing the heating process in [45, 16] could be easily integrated

in the adopted kinematic model.

Now we describe the model, drawing equations and presenting underlying

hypothesis and limitations. Later on in this section we show what kinds of

uncertainties affect the considered model.

Let x = [x, y, z]
T
represent the position of the falling fragment with respect

to a topocentric horizon coordinate system at the breakup instant. The

frame, from now on called ENZ (East-North-Zenith), is centered at (ϑ0, ϕ0)

on the Earth’s surface (initial longitude: ϑ0; initial latitude: ϕ0), the xy

plane is the local horizon (i.e. the plane tangent to Earth at the origin),

the x-axis points eastward, the y-axis points northward and the z-axis is
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directed towards the zenith. In this way, fragment reentry after breakup

has x0 = [0, 0, z0]
T
as initial position, with z0 representing the altitude of

breakup.

With reference to the ENZ frame just outlined, the equations of motion

describing the debris trajectory are given by, [39]:

ẋ = v (2.2.1a)

v̇ = −ad − ge3 − 2ω × v − ω × [ω × (x+Ree3)] + ξ (2.2.1b)

where v = [vx, vy, vz]
T
is the velocity, ad is the atmospheric drag deceleration,

ω = [0, ωe cos (ϕ0) , ωe sin (ϕ0)]
T
is the angular velocity vector of the ENZ

frame (Earth’s rotation rate: ωe = 7.2921 × 10−5 rad/s) and e3 = [0, 0, 1]
T
.

Constant Re is the Earth’s mean radius (Re = 6.3728 × 106 m), whereas if

we assume an inverse square gravity model, the gravitational acceleration is

given by

g = gg

(
Re

Re + z

)2

,

where gg = 9.81 m/s2 is the gravitational acceleration on the ground. Note

that in this model gravity acceleration vector is assumed to be directed along

the z-axis, and this could be a strong assumption if the reentering object

has a long ground track. Let the ballistic coefficient β be given by

β =
m

CdA
, (2.2.2)

where m is the mass of the debris, A its cross-sectional area, and Cd the

aerodynamics coefficient. Then, the atmospheric drag deceleration ad acting

on the fragment can be expressed as

ad =
1

2

ρ (z)

β
vrvr, (2.2.3)

where ρ (z) is the atmosphere density as a function of the altitude, vr = v−w

is the debris speed relative to the wind velocity w, and vr = ‖vr‖ is the

magnitude of vr.

Finally, ξ is a random acceleration vector that accounts for modeling un-

certainties and disturbances. In [39], ξ is first assumed to have a Gaussian

distribution, and then neglected in the study carried out by the authors.
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2.2.3 Uncertainties affecting the reentry trajectory

Observations have shown that the major breakup event happens at an al-

titude of about 78 km [5] with an uncertainty range from ±10 to ±20 km

[45, 16, 31]. So, fragments generated from this first breakup are distributed

over a range of altitudes, thus increasing the spread of debris footprint along

the direction of motion. This kind of uncertainty, as we said earlier, can be

reduced if the object is observed during the major breakup [5].

Besides the complex nature of the breakup process, even post-breakup tra-

jectories of various fragments are subject to strong uncertainties. In equation

(2.2.3) we can see that the expression of the aerodynamic drag depends on

a few parameters that are mostly unknown. The first thing to notice is the

dependence of this expression from the atmospheric density, which is a func-

tion of altitude. Although several models have been employed [40], studies

show that results are quite sensitive to the model chosen to describe the

atmosphere, thus making atmosphere mismodeling an important source of

uncertainty [33].

Moreover, since we are dealing with post-breakup fragments, we do not know

exactly the mass, the cross-section nor the aerodynamic coefficient, which

all enter the ballistic coefficient through equation (2.2.2). Just to give an

example of the extent of the uncertainty that affects β, consider the three

campaigns of reentry prediction that were carried out recently, one for each

of the three massive spacecraft, UARS, ROSAT and Fobos-Grunt. These

campaigns offered the opportunity to determine the evolution of the ballistic

coefficient of spacecraft characterized by quite different configurations and

shapes. Results of these campaigns are mentioned in [7, 32], where it is

shown that the variability of β even prior to th breakup event can be up

to 20%. This variability of β is likely to affect the time available to issue

a warning to the aircraft for their safety, [5]. All this motivates the choice

in e.g. [45, 16] to adopt a probabilistic approach and assume some sensible

probability distribution for β.

Also the local wind, that depends on where and when the reentry takes

place, is pointed out as a source of uncertainty, [3, 5], due to its effect on

debris trajectories after the breakup process, when the debris enters the

low atmosphere. The horizontal component of the velocity vector is in fact

typically dominated by the wind that can cause a cross-track dispersion of

the debris, [5]. The effects of this stochastic disturbance are more visible on
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those fragments that has a lower ballistic coefficient, [3].

It is worth noticing that uncertainties affecting the ballistic coefficient as well

as the position and velocity at the breakup instant and the wind disturbance

can be easily incorporated in the adopted model (2.2.1).

Other sources of uncertainty that affects the atmospheric model (and, hence,

the debris dynamics), such as geomagnetic activity, luny-solar perturbations,

and solar radiation are not considered in this work, but are discussed in

[7, 32, 31].

2.3 Probabilistic footprint

We next present a probabilistic approach to determine the footprint of a de-

bris fragment, which allows to account for the various sources of uncertainty

affecting the reentry trajectory.

Our goal is to determine the minimum size 4D region of the airspace where

all trajectories except a set of predefined probability ε are confined. This can

be formulated as a chance-constrained optimization problem and we propose

here to solve it through a randomized method. The resulting approach to

determine the 4D footprint rests on running multiple realizations of the

reentry trajectory and imposing that they belong to the footprint. For this

reason, we call it simulation-based method.

We compare the proposed simulation-based method with the analytic co-

variance propagation method recently proposed in [39]. The two approaches

are described in Sections 2.3.1 and 2.3.2, and then compared in Section 2.3.3.

Finally, in Section 2.3.4, we illustrate the possibility of using the probabilistic

footprint for estimating the risk caused to air traffic by an uncontrolled

debris reentry.

2.3.1 A novel simulation-based method

In this section, we describe the proposed simulation-based approach to de-

termine the debris footprint. We shall first start from the problem of char-

acterizing the debris dispersion at a certain time instant (3D footprint), and

then generalize the approach to 4D (space cross time).

11



3D debris footprint

We adopt an ellipsoid to describe the debris dispersion at a certain time

instant t and look for the ellipsoid

Eε = {x ∈ �3 : (x− c)
T
A (x− c) ≤ 1}

with the minimum volume that contains all possible debris trajectories ex-

cept for a set of probability at most ε.

This can be formalized in terms of the following chance-constrained opti-

mization problem:

min
A,c

√
detA−1 (2.3.1)

subject to: A = AT � 0

P {δ ∈ Δ : (xδ(t)− c)
T
A (xδ(t)− c) ≤ 1

} ≥ 1− ε,

where x(t) denotes the position of the debris at time t, whereas the opti-

mization variables c and A respectively represent the center of the ellipsoid

and the positive definite symmetric matrix defining its shape.

Position x(t) is affected by various sources of uncertainty and here we make

it explicit by using the notation xδ(t), where δ is the uncertainty vector tak-

ing values in the uncertainty set Δ according to the probability distribution

P. Vector δ allows to account for parametric uncertainties and disturbances

affecting the reentry trajectory, that is, initial velocity, ballistic coefficient,

breakup altitude, and the wind disturbance, as described in Section 2.2, as

long as they are characterized through some probability distribution func-

tion.

If we let (A�, c�) be the solution to (2.3.1), then

E�
ε = {x ∈ �3 : (x− c�)

T
A� (x− c�) ≤ 1}

is the minimum volume ellipsoid that represents the 3D footprint associated

with the violation parameter ε.

Chance-constrained optimization problems are known to be difficult to solve

[36, 37], except for specific cases like when the involved probability distribu-

tion is Gaussian. We next show how to approximately solve problem (2.3.1)

via a randomized method, called the scenario approach, [9, 10, 13, 11, 14],
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which reduces the chance-constrained optimization problem to an optimiza-

tion problem with standard (i.e., non probabilistic) constraints, while provid-

ing guarantees on the chance-constrained feasibility of the obtained solution.

To this purpose we need first to reformulate problem (2.3.1) so that the

cost function to be minimized is convex with respect to the optimization

variables. Convexity of both the cost and of the set appearing under the

probability P in the chance-constraint is in fact needed for providing theo-

retical guarantees on the quality of the scenario solution.

Problem (2.3.1) can be rewritten as follow:

min
A,c

log detA−1 (2.3.2)

subject to: A = AT � 0

P {δ ∈ Δ : (xδ(t)− c)
T
A (xδ(t)− c) ≤ 1

} ≥ 1− ε,

where, indeed, the cost log detA−1 is convex as a function of A, [8].

The main concept of the scenario approach is that solvability of the opti-

mization problem (2.3.2) can be achieved by extracting a finite number N

of realizations of the uncertainty parameter δ and replacing the constraint

in probability with the N constraints associated with the extracted δ’s un-

certainty instances.

This leads to the following convex optimization problem with a finite number

of constraints:

min
A,c

log detA−1 (2.3.3)

subject to: A = AT � 0

(xδ(i)(t)− c)
T
A (xδ(i)(t)− c) ≤ 1, i = 1, 2, . . . , N,

where δ(i), i = 1, . . . , N are extracted independently from Δ according to

the distribution P.

As opposed to (2.3.2), (2.3.3) is a convex optimization problem with a finite

number of constraints and can be addressed via available solvers provided

that N is not too big.

The resolution of (2.3.3) is not straightforward [43] due to the log function

appearing in the cost. Here, we adopt a solution where first the convex hull

of all data points xt (δ
(i)) is computed, and then Khachiyan’s algorithm is

applied, [44, 43].
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The fact that the scenario solution is feasible also for the original problem

is guaranteed by the following theorem, whose proof is given in [13].

Theorem 1. Select a “violation parameter” ε ∈ (0, 1) and a “confi-

dence parameter” η ∈ (0, 1). If N is such that

d∑
i=0

(
N

i

)
εi (1− ε)

N−i ≤ η (2.3.4)

where d denotes the number of optimization variables in (2.3.3), then,

with probability no smaller than 1 − η, the solution (A�
N , c

�
N) to the

scenario optimization problem (2.3.3) satisfies

P {δ ∈ Δ : (xδ(t)− c�
N)

T
A�

N (xδ(t)− c�
N) ≤ 1

} ≥ 1− ε.

Remark 1. Note that, with respect to the original bound in [13], (2.3.4)

presents d+1 in place of d. This is because the bound in [13] refers to

a chance-constrained optimization problem with a cost function that

is linear in the optimization variables. To reduce our setting to that

in [13], we should then add an additional optimization variable h and

adopt the following reformulation of (2.3.3):

min
A,c,h

h

subject to: A = AT � 0 (2.3.5)

(xδ(i)(t)− c)
T
A (xδ(i)(t)− c) ≤ 1, ∀i = 1, 2, . . . , N,

log detA−1 ≤ h.

A similar consideration holds for the bound in Theorem 2.

Note that the results on the feasibility of the scenario solution holds with a

certain confidence 1−η. This is because the scenario solution depends on the

extracted uncertainty instances and it may then happen that a bad multi-

sample (e.g., all δ(i)’s equal) is extracted and the feasibility property does

not hold. However, this becomes more and more unlikely ass N increases

and the probability η of this unfortunate event can be set as small as 10−10

(i.e., zero in practice) without growing too much the sample size N . Indeed,
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the explicit bound for N satisfying (2.3.4)

N ≥ d+ 1 + ln(1/η) +
√

2(d+ 1) ln(1/η)

ε

derived in [6] shows that the dependence on η is logarithmic.

Note that though extremely powerful, this randomized approach may lead to

conservative results, i.e., to a solution with an actual violation that is much

smaller than ε. This is quite intuitive: it is possible that a few “outliers”

causing a significant increment of the cost function are extracted among

the δ’s uncertainty instances. The same issue arises in the 4D footprint

calculation as illustrated graphically in Figure 2.3.

To avoid this problem, it would be useful to have a simple procedure for

discarding such extractions without affecting the guarantees provided by

Theorem 1. In [14], a variant of the scenario method that includes constraint

removal is proposed and feasibility of the obtained solution is proven. The

associated scenario program is as follows

min
A,c

log detA−1 (2.3.6)

subject to: A = AT � 0

(xδ(i)(t)− c)
T
A (xδ(i)(t)− c) ≤ 1, i ∈ {1, 2, . . . , N} \ {i1, . . . , ik},

where {i1, . . . , ik} ⊂ {1, 2, . . . , N} are the indices of the uncertainty instances

that are removed so as to improve the cost (i.e. reduce the volume of the

ellipsoid).

Theorem 2. Select a “violation parameter” ε ∈ (0, 1), a “confidence

parameter9’ η ∈ (0, 1) and an “empirical violation parameter” α ∈
[0, ε). If N is such that

(�αN�+ d

�αN�
) �αN�+d∑

i=0

(
N

i

)
εi (1− ε)

N−i ≤ η, (2.3.7)

where d denotes the number of optimization variables in (2.3.3), then,

if we set k = �αN�, the solution (A�
N,k, c

�
N,k) to the scenario optimiza-
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tion problem with constraint removal (2.3.6) satisfies

P
{
δ ∈ Δ :

(
xδ(t)− c�

N,k

)T
A�

N,k

(
xδ(t)− c�

N,k

) ≤ 1
}
≥ 1− ε,

with probability no smaller than 1− η.

Remark 2 (Choice of the empirical probability of violation α). The em-

pirical probability of violation α is an user-chosen parameter through

which the level of approximation of the randomized solution can be

tuned. If one chooses α = 0, then, no constraints are removed and

the problem reduces to finding a solution to a single constrained op-

timization problem. This is computationally attractive, but the ac-

tual violation of the obtained randomized solution is typically much

smaller than the desired ε and the ellipsoid much larger than needed.

As a matter of fact, though the feasibility of the randomized solution

is guaranteed for every α ∈ [0, ε), it is intuitively clear that the closer

α to the desired violation probability ε the better the randomized

solution approximates the actual solution to the chance-constrained

problem. At the same time, however, N grows to infinity as O( 1

ε−α
)

when α→ ε, [14].

The optimal removal procedure is computationally impracticable, but since

Theorem 2 holds irrespectively of the algorithm used to remove the con-

straints, one can head for suboptimal approaches like removing one by one

the constraint that leads to the largest improvement in the cost (greedy re-

moval) or subsequently removing the whole set of active constraints (block

removal). Algorithm 1 implements this latter removal rule for 3D footprint

calculation. The shorthand x(i)
t is adopted for xδ(i)(t) for ease of notation.

Note that in step 6.5 of Algorithm 1, the number of constraints that are

violated by the current solution is evaluated. Indeed, discarded constraints

may become active at some subsequent removal step and for the result in

Theorem 2 to hold, exactly k constraints have to be violated by the solution

(A�
N,k, c

�
N,k).
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Algorithm 1 3D randomized footprint

1: INPUT ε AND α AND η

2: SET N AND k according to Theorem 2

3: FOR i := 1 TO N

4: SET δ(i) := random extraction from Δ according to P
5: SET x(i)

t := solution to (2.2.1) at time t when the uncertain elements

are equal to δ(i)

END FOR

6: SET {A�, c�} := argmin log detA−1

subject to: A = AT � 0,(
x(i)

t − c
)T
A
(
x(i)

t − c
) ≤ 1, i = 1, . . . , N ;

7: SET V := ∅ AND p := 0;

% V is the set of indexes of constraints violated by {A�, c�}
% p is the cardinality of V

8: WHILE p < k

9: SET {i1, i2, . . . , im} :=
{
i :
(
x(i)

t − c�
)T
A�
(
x(i)

t − c�
)
= 1
}
;

% {i1, i2, . . . , im} are the indexes of active constraints

10: IF m > k − p

11: SET {j1, j2, . . . , jk−p} := k − p random integers extracted from

{1, 2, . . . ,m} without repetition

12: SET R := {ij1 , ij2 , . . . , ijk−p
} ⊂ {i1, i2, . . . , im}

13: ELSE

14: SET R := {i1, i2, . . . , im}
END IF

% R is the set of indexes of constraints to be removed

15: SET {A�, c�} := argmin log detA−1

subject to: A = AT � 0,(
x(i)

t − c
)T
A
(
x(i)

t − c
) ≤ 1, i ∈ {1, 2, . . . , N} \ (R ∪ V );

16: SET V :=
{
i :
(
x(i)

t − c�
)T
A�
(
x(i)

t − c�
)
> 1
}
AND p := |V |;

% V is the set of indexes of constraints violated by {A�, c�}
% p is the cardinality of V

END WHILE

17: RETURN {A�, c�}.
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4D debris footprint

In order to extend the characterization of the debris dispersion to 4D, we

need to account also for time. This would naturally lead to the following

chance-constrained optimization:

min
(At,ct),t∈[ti,tf ]

∫ tf

ti

log detA−1
t dt (2.3.8)

subject to: At = AT
t � 0, t ∈ [ti, tf ]

P
{
δ ∈ Δ : max

t∈[ti,tf ]
(xδ(t)− ct)

T
At (xδ(t)− ct) ≤ 1

}
≥ 1− ε,

where [ti, tf ] is the reference time horizon when the debris is falling, and to

the 4D footprint description as

E�
ε (t) = {x ∈ �3 : (x− c�

t )
T
A�

t (x− c�
t ) ≤ 1}, t ∈ [ti, tf ],

with (A�
t , c

�
t ), t ∈ [ti, tf ], denoting the solution to (2.3.8).

Unfortunately, the 4D chance-constrained problem (2.3.8) is even more chal-

lenging to solve than its 3D counterpart (2.3.2), given that the optimization

variables (At, ct) are functions of time t ∈ [ti, tf ] and, hence, infinite dimen-

sional. A possible solution to reduce the optimization variables to a finite

number is to finitely parameterized At and ct as a function of time. Alterna-

tively, one can discretize time and associate to each sample time instant an

ellipsoid. The sum of the volumes of all ellipsoids is then minimized subject

to the constraint that a fraction of probability at least 1 − ε of the debris

trajectories belongs to the ellipsoids. We opt for this latter option.

Let tj, j = 1, . . . , ns, be the sampled time instants along the reference time

horizon [ti, tf ], and Aj and cj the parameters of the ellipsoid associated with

time tj. Then, we have:

min
(Aj,cj),j=1,...,ns

ns∑
k=1

log detA−1
j (2.3.9)

subject to: Aj = AT
j � 0, j = 1, . . . , ns

P
{
δ ∈ Δ : max

j=1,...,ns

(xδ(tj)− cj)
T
Aj (xδ(tj)− cj) ≤ 1

}
≥ 1− ε,

a chance-constrained optimization problem which can be solved via scenario

approach with constraint removal. The resulting algorithm is described next.
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Algorithm 2 4D randomized footprint

1: INPUT ε AND α AND η AND {tj}j=1,...,ns

2: SET N AND k according to Theorem 2

3: FOR i := 1 TO N

4: SET δ(i) := random extraction from Δ according to P
5: SET x(i)

tj
:= solution to (2.2.1) at time tj when the uncertain elements

are equal to δ(i), with j = 1, . . . , ns

END FOR

6: SET {A�
j , c

�
j}j=1,...,ns := argmin

ns∑
k=1

log detA−1
j

subject to: Aj = AT
j � 0, j = 1, . . . , ns;

max
j=1,...,ns

(x(i)
tj

− cj)
TAj(x

(i)
tj

− cj) ≤ 1, i = 1, . . . , N ;

7: SET V := ∅ AND p := 0;

% V is the set of indexes of constraints violated by {A�
j , c

�
j}j=1,...,ns

% p is the cardinality of V

8: WHILE p < k

9: SET {i1, i2, . . . , im} :=
{
i : max

j=1,...,ns

(x(i)
tj

− c�
j)

TA�
j(x

(i)
tj

− c�
j) = 1

}
;

% {i1, i2, . . . , im} are the indexes of active constraints

10: IF m > k − p

11: SET {j1, j2, . . . , jk−p} := k − p random integers extracted

from {1, 2, . . . ,m} without repetition

12: SET R := {ij1 , ij2 , . . . , ijk−p
} ⊂ {i1, i2, . . . , im}

13: ELSE

14: SET R := {i1, i2, . . . , im}
END IF

% R is the set of indexes of constraints to be removed

15: SET {A�
j , c

�
j}j=1,...,ns := argmin

ns∑
k=1

log detA−1
j

subject to: Aj = AT
j � 0, j = 1, . . . , ns;

max
j=1,...,ns

(x(i)
tj

− cj)
TAj(x

(i)
tj

− cj) ≤ 1, i ∈ {1, 2, . . . , N} \ (R ∪ V );

16: SET V :=
{
i : max

j=1,...,ns

(x(i)
tj

− c�
j)

TA�
j(x

(i)
tj

− c�
j) > 1

}
AND p := |V |;

% V is the set of indexes of constraints violated by {A�
j , c

�
j}j=1,...,ns

% p is the cardinality of V

END WHILE

17: RETURN {A�
j , c

�
j}j=1,...,ns .
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It is worth noticing that the optimization problems at steps 4 and 6.4 can

actually be decoupled in ns optimization problems, and, hence, the ns min-

imum volume ellipsoids associated with the time instants tj, j = 1, . . . , ns,

can be determined separately, according to the same procedure described in

the 3D footprint section. The coupling element in the overall optimization

procedure is in fact the constraint removal.

2.3.2 Covariance propagation method

In this section we briefly recall the covariance propagation method proposed

in [39] for determining the 4D footprint. This approach rests on the lin-

earization of the debris equations (2.2.1) around the nominal trajectory and

on the description of the resulting perturbation as a Gauss-Markov process.

Dispersion around the nominal trajectory can then be quantified through the

ellipsoids representing the level curves of the Gaussian probability density

function characterizing the Gauss-Markov process.

Set s = [xT ,vT ]T . Then, equations (2.2.1) can be rewritten in the compact

form

ṡ = f (s) +Bξ,

where B = [03×3 I3×3]
T .

Now, define the perturbation vector z as

z = s− sn,

where sn is the nominal trajectory obtained by neglecting ξ and the other

sources of uncertainty affecting the system evolution. If we assume that the

wind velocity vector w entering the equations (2.2.1) through the atmo-

spheric drag deceleration (2.2.3) depends on the position only (i.e., w =

w (x)), then, the linearized equations governing z are given by

ż = A (t) z +Bξ, (2.3.10)

with

A (t) =
∂f

∂s

∣∣∣∣
sn(t)

=

[
03×3 I3×3

F (sn) + Fe G (sn) +Ge

]
,
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where

Fe =

⎡
⎢⎣
ω2

e 0 0

0 ω2
e sin

2 ϕ0 −ω2
e sinϕ0 cosϕ0

0 −ω2
e sinϕ0 cosϕ0 ω2

e cos
2 ϕ0

⎤
⎥⎦ ,

Ge =

⎡
⎢⎣

0 2ωe sinϕ0 −2ωe cosϕ0

−2ωe sinϕ0 0 0

2ωe cosϕ0 0 0

⎤
⎥⎦ ,

and F (·) and G (·) are 3× 3 matrix whose elements (i, j) are given by

Fi,j (s) =
1

2β

[
ρ

(
vri
vr

vT
r

∂w

∂xj

+ vr
∂wi

∂xj

)
− ∂ρ

∂xj

vrvri

]
,

Gi,j (s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− ρ

2β

[
vrivrj + v2

r

vr

]
, if i = j

− ρ

2β

[
vrivrj
vr

]
, if i �= j.

Suppose that the disturbance vector ξ is a white Gaussian noise with mean

and covariance

E [ξ (t)] = ξ (t) and E
[(
ξ (t)− ξ (t)

) (
ξ (t)− ξ (t)

)T]
= Ξ (t) ,

and it is independent of the initial condition z(0). If z(0) is Gaussian z(0) ∼
N (z0, Z0), then, equation (2.3.10) describes a continuous time Gauss-Markov

process with mean z (t) = E [z (t)] and covariance matrix

Z (t) = E
[
(z (t)− z (t)) (z (t)− z (t))

T
]
satisfying the following equations:

ż = A (t) z +Bξ (t)

(2.3.11)
Ż = A (t)Z + ZA (t) +BΞ (t)BT

initialized with z (0) = z0 and Z (0) = Z0.

The debris position at time t can then be described as a Gaussian random
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variable with mean and covariance matrix

x (t) = C(z (t) + sn (t))

X (t) = CZ (t)CT

where C = [I3×3 03×3].

As a consequence, the 3D ellipsoid containing a fraction 1− ε of the debris

trajectories at time t can be determined as an appropriate level set of the

Gaussian distribution of x (t), i.e.,

Eε(t) := {x ∈ �3 : [x− x (t)]
T
X−1(t) [x− x (t)] ≤ r2ε}, (2.3.12)

where rε is the Mahalanobis distance between x and x and can be computed

as the 1− ε quantile of the χ2 distribution with 3 degrees of freedom:

P (V ≤ r2ε) = 1− ε with V ∼ χ2 (3) .

The 4D footprint can then be obtained by varying t within the reference

time horizon [ti, tf ] and considering the corresponding ellipsoidal set Eε(t),

t ∈ [ti, tf ]. Note that here ti = 0.

Remark 3 (approximation errors in the covariance propagation method). It

is worth noticing that there are two sources of approximation in the evalua-

tion of the 4D footprint according to the outlined procedure: 1) the footprint

is constructed based on a linearized model of the system and 2), even if the

linearized model were the actual system, there is no guarantee that a frac-

tion of probability 1− ε of the trajectories passes through all the ellipsoidal

sets E(t), t ∈ [ti, tf ].

2.3.3 Comparative analysis

In order to compare the Simulation-Based (SB) method in Section 2.3.1 with

the Covariance Propagation (CP) method in Section 2.3.2, we suppose that

the only source of uncertainty is the initial state s(0) and consider the distur-

bance vector ξ (t) in (2.2.1) negligible, as in the simulation results presented

in [39]. Differently from the simulation setting in [39], we used HWM93

instead of HWM07 as nominal local wind model [18] and we adopted the

U.S. Standard Atmosphere [1, 2] instead of the MSISE-00 model to obtain

atmospheric density in the range 0 to 120 km.
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Results reported in this section refer to the case when the initial state s(0)

is given by

s(0) = sn(0) + z(0),

where the nominal initial state is sn(0) = [xn(0)
T ,vn(0)

T ]
T
, with xn(0) =

[0, 0, 7.8·104]
T
m and vn(0) = [7.0989·103, 0,−123.9]

T
m/s and the pertur-

bation to the nominal initial state z(0) is Gaussian with mean z0 = 0 and

covariance matrix

Z0 =

[
03×3 03×3

03×3 V0

]
.

where

V0 =

⎡
⎢⎣
σ2

vx
0 0

0 σ2
vy

0

0 0 σ2
vz

⎤
⎥⎦ , (2.3.13)

where σ2
vx

= σ2
vy

= 2500 m2/s2 and σ2
vz

= 5300 m2/s2.

Thus, the initial position x(0) of the reentering object is assumed to be

known, whereas the initial velocity v(0) is uncertain.

Computation of the 4D footprint according to the simulation-based method

implemented in Algorithm 2 involves integrating N times the debris dynam-

ics in (2.2.1) starting from N sampled values for s(0) extracted from the

Gaussian distribution with mean sn(0) and variance Z0.

The time instants {tj}j=1,...,ns for the 4D footprint calculation are determined

by considering ns = 10 equally spaced samples of the nominal trajectory

along the the z axis (i.e. the altitude in the ENZ reference frame). The

ellipsoids associated to {tj}j=1,...,ns are then computed based on the positions

of the debris along the N simulated trajectories at the corresponding time

instant.

Different values for the violation parameter ε and for the empirical violation

α (chosen so as to assure a reasonable computational burden, see Remark 2)

are considered, whereas the confidence parameter η is set equal to η = 10−5

in all runs of Algorithm 2. The value for N satisfying the bound in Theorem

2 depend on the considered (ε, α, η), the maximal N being N = 10780.

Computation of the 4D footprint according to the covariance propagation

method rests on determining the 3D ellipsoidal sets in (2.3.12) at the sample

times {tj}j=1,...,10 through the solution to (2.3.11).

Table 2.1 summarizes the results obtained with the SB method and the CP
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method for a set of values of ε. The value for α used in the SB method is

specified in the second column. In all runs of Algorithm 2 we maintain fixed

N = 10780 and remove k = �αN� constraints.

The comparison between the SB method and CP method is in terms of

i) volume of the corresponding 4D footprints (reported in km3 in the last

two columns of Table 2.1) and ii) actual violation ε̂ computed via Monte

Carlo simulation by generating a further set of N simulated trajectories and

evaluating the fraction of them that exits the 4D footprint.

ε α ε̂SB
N ε̂CP

N V SB V CP

0.500 0.350 0.3505 0.5933 452.47 235.10
0.400 0.260 0.2602 0.5083 625.91 326.69
0.300 0.170 0.1705 0.4261 907.73 453.24
0.200 0.100 0.1003 0.3366 1304.18 646.03
0.100 0.035 0.0353 0.2370 2208.56 1009.74
0.050 0.010 0.0103 0.1724 3552.52 1411.29
0.025 0.002 0.0020 0.1328 5494.42 1846.50
0.020 0.001 0.0012 0.1224 6845.50 1993.27
0.015 0 < 5 · 10−5 0.1109 9182.69 2187.03

Table 2.1: Comparative analysis of the two methods.

Note that if we look at each single row of Table 2.1, the 4D footprint volume

V SB obtained with the SB method is larger than volume V CP obtained with

the CP method (see also Figure 2.1 corresponding to ε = 0.30 for a pictorial

view). However, the violation ε̂CP of the CP method always exceeds the

desired ε value (possibly due to the approximations errors involved in the

method, see Remark 3), whereas the violation ε̂SB of the SB method is always

smaller, so that if we compare the volume of the 4D footprints having the

same violation (i.e., ε̂CP � ε̂SB), the SB method outperforms the CP one.

For instance, if we consider the third and sixth rows, ε̂SB = 0.1705 and

V SB = 907.73 (third row) and ε̂CP = 0.1724 � ε̂SB and V CP = 1411.29 �
V SB (sixth row). The corresponding footprints are shown in Figure 2.2.

As for the SB method, it is worth noticing that actual violation ε̂SB
N is very

close to the chosen empirical violation α, which affects the size of the 4D

footprint. This is better pointed out in Figure 2.3, whose plots refer to

the same ε = 0.1 but different α’s: α = 0 for the plot on the left and

α = 0.035 for the plot on the right. The debris nominal trajectory is depicted

in blue with a solid line, whereas the other simulated trajectories used for
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Figure 2.1: 4D footprint: SB method (left) and CP method (right) with
ε = 0.30

the footprint constructions are dotted, reporting their samples at the time

instants {tj}j=1,...,ns . In the plot on the left, corresponding to no constraint

removal (α = 0), all simulated trajectories belong to the 4D footprint and

are represented through cyan dots; in the plot on the right, some of the

simulated trajectories do not belong to the 4D footprint and are represented

through red dots. These red dotted trajectories actually correspond to those

constraints that have been removed and are violated by the solution to

Algorithm 2 with α = 0.035. Clearly, considering all simulated trajectories

leads to an overestimation of the 4D footprint corresponding to ε = 0.1.

Besides its improved performance with respect to the CP method, the SB

method is also applicable to a more general setting, where other sources of

uncertainties are present besides that on the initial velocity. As a matter of

0
100

200
300

400
−10

0

1010

20

30

40

50

60

70

x2 (N) [km]

x1 (E) [km]

x3
 (

Z
) 

[k
m

]

0
100

200
300

400
−10

0

1010

20

30

40

50

60

70

x2 (N) [km]

x1 (E) [km]

x3
 (

Z
) 

[k
m

]

Figure 2.2: 4D footprint: SB method (left) with ε = 0.30 and CP method
(right) with ε = 0.05
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Figure 2.3: 4D footprint: simulation-based approach with ε = 0.1. Plot on
the left: α = 0. Plot on the right: α = 0.035

fact, the approach in [39] is not applicable to the case when other sources

of uncertainty (like that on the ballistic coefficient or the local wind) are

present, and the authors mention this limit in their final remarks.

Table 2.2 reports the results obtained with the SB method, when a random

wind field generated according to [38, 26] (see Section 3.2.3 for more details)

is added to the forecasted HWM93 wind at altitudes in the range of 10 to

12 kilometers. In particular, the volumes of the 3D footprint at altitude 10

km obtained with and without the stochastic wind are compared, showing

(not surprisingly) a significant increase in the former case.

ε V HWM93
10km V stochastic

10km Δ%

0.500 5.9016 8.6171 +46.01%
0.400 8.7010 11.9532 +33.24%
0.300 13.1650 16.8500 +27.99%
0.200 20.8521 24.8829 +19.33%
0.100 38.9874 43.7979 +12.34%
0.050 63.5528 80.0239 +25.92%
0.025 115.7958 166.2697 +43.59%
0.020 132.8127 176.6225 +32.99%
0.015 201.3618 238.5551 +18.47%

Table 2.2: SB method: effect on the 3D footprint volume of the stochastic
wind introduction.
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2.3.4 Risk estimate based on the probabilistic footprint

In this section, we show how the probabilistic footprint can be used to pro-

vide a (conservative) estimate of the probability that the debris will enter

some protection zone surrounding an aircraft during its reentry in the time

interval T = [ti, tf ]. For ease of reference, we shall refer to this event as a

conflict and use the shorthand notation C.
Given ε ∈ (0, 1), let Eε : T → 2R

3
denote the set-valued map that provides for

each time t ∈ T the corresponding 3D footprint of the debris with violation

ε, i.e., the region Eε(t) ⊂ R
3 occupied by the debris with probability larger

than or equal to 1 − ε. The probability Pc of a conflict between aircraft i

and the space debris in the time horizon T can then be expressed as:

Pc = P (C ∧ x(t) ∈ Eε(t) ∀t ∈ T ) + P (C ∧ x(t) /∈ Eε(t) for some t ∈ T )

where x(t) denotes the debris position at time t ∈ T .

By the definition of Eε, the second term in the right-end-side can be upper

bounded as follows:

P (C ∧ x(t) /∈ Eε(t) for some t ∈ T ) ≤ P (x(t) /∈ Eε(t) for some t ∈ T ) ≤ ε

The first term in the right-end-side can be upper bounded as follows:

P (C ∧ x(t) ∈ Eε(t) ∀t ∈ T )

= P (C ∧ xi(t) ∈ Eε(t) for some t ∈ T ∧ x(t) ∈ Eε(t) ∀t ∈ T )

≤ P (xi(t) ∈ Eε(t) for some t ∈ T ∧ x(t) ∈ Eε(t) ∀t ∈ T )

≤ min {P (xi(t) ∈ Eε(t) for some t ∈ T ) ,P (x(t) ∈ Eε(t) ∀t ∈ T )}
≤ min {P (xi(t) ∈ Eε(t) for some t ∈ T ) , 1− ε} ,

where xi denotes the position of aircraft i.

As a result:

Pc ≤ ε+min {P (xi(t) ∈ Eε(t) for some t ∈ T ) , 1− ε} (2.3.14)

The problem is then estimating the probability that aircraft i will enter Eε

within T :

P (xi(t) ∈ Eε(t) for some t ∈ T ) ,
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which can be done via Monte Carlo simulations.

The level of conservativeness of the obtained upper bound (2.3.14) obviously

depends on the volume of the footprint. In the next chapter, we shall present

an approach to reduce the footprint size by exploiting the measurements of

the aircraft and debris positions. This is achieved by combining the proposed

simulation-based approach with nonlinear filtering techniques.

A bound similar to (2.3.14) can be easily derived for the probability of

conflict between the debris and at least one of the aircraft flying in the

airspace region involved in the debris reentry.
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Chapter 3

Prediction of no-fly zones for

air traffic

3.1 Introduction

In this chapter, we address the problem of using available measurements on

debris and aircraft positions so as to reduce the uncertainty affecting the

reentering debris dispersion and improve its probabilistic footprint estima-

tion. This should result in the identification of smaller no-fly zones for the

aircraft, and, hence, facilitate the air traffic controllers’ task of making the

aircraft avoid hazard areas and safely arrive at their destination.

The proposed approach involves the adoption of nonlinear filtering tech-

niques and their integration in the footprint calculation. The idea is to use

the Particle Filter so as to gather information from the aircraft radar mea-

surements on the actual wind field (i.e. reduce wind forecast errors), and

to run simultaneously the Unscented Kalman Filter so as to determine the

a-posteriori probability of the debris state given also the measurements of

its position.

We shall first introduce air traffic modeling, presenting single aircraft dy-

namics, the flight management system, and a model for characterizing wind

forecasts errors. We adopt a stochastic linear system to emulate wind evo-

lution in the region of interest of the airspace, as suggested in [26]. After

that, we deploy the most famous implementation of the Bayesian recursive

estimation, the Particle Filter, and basically use aircraft as sensors to reduce

the uncertainty on the actual wind.
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Then, later on in the chapter, we show how the Unscented Kalman Filter, an

extension of the regular Kalman filter to address nonlinear estimation, can

be used to filter the debris observations in order to reduce the uncertainty

on its dispersion and improve the footprint estimation.

Unfortunately the Particle Filter cannot be applied to both the debris and

aircraft radar measurements because of a phenomenon called “sample im-

poverishment” [41] that occurs when only a few of the particles that jointly

represent the a-posteriori probability of the state given the measurements

are compatible with the available measurements. Indeed, [41] reports an

example in which the Unscented Kalman Filter performs better than the

Particle Filter in estimating altitude, velocity, and ballistic coefficient of an

object falling on Earth. A similar example is discussed in [24]. Sample im-

poverishment is instead avoided when applying the Particle Filter to the

aircraft measurements because of the ad-hoc implementation described in

[26], exploiting the linear dynamics governing the stochastic wind.

In the final part of the chapter we report the results obtained in a simulation

example, and compare the footprint estimation method based on joint use

of the Unscented Kalman Filtering and Particle Filtering with alternative

approaches, namely, the worst-case and best-case ones. The worst-case ap-

proach uses only the debris measurements and the Unscented Kalman Filter,

whereas the best-case approach is just introduced for comparative purposes

and exploits the perfect knowledge of the debris state and the wind field for

determining the footprint.

3.2 Air traffic: modeling

In this section we describe the aircraft model that we shall use to carry

out wind estimation for footprint reduction. The model was developed in

[26, 27, 28] and comprises three main components: the continuous dynamics

regarding the physical motion of the aircraft in the airspace, the discrete

dynamics determining the Flight Management System (FMS) action, and

the stochastic wind component affecting the aircraft motion. As such it is a

stochastic hybrid system.
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3.2.1 Aircraft continuous model

A point mass model is adopted for an aircraft flying in a 3D airspace. Al-

though it disregards a lot of complicated aspects about flight dynamics this

is a good approximation considering the point of view of an air traffic con-

troller.

The model comprises the following variables: X, Y and Z (representing the

position of the aircraft based on an inertial reference Xr, Yr, Zr with origin

fixed on a point on Earth’s surface i.e. the radar position), the bank angle

(ϕ), the flight path angle (γ), the heading angle (ψ), the True AirSpeed (V )

and the mass (m). All these quantities are drawn in Figure 3.1.

α

L
T

D

mg

γ

V

L

mg

φ β

T

D

ψ

V

Figure 3.1: Aircraft Dynamics

Regarding the forces acting on the aircraft they are the lift (L) and the

drag (D), which depend on the angle of attack (α) and the side slip angle

(β). Then we have the engine thrust (T ) and the weight (mg). Thrust T

affects mass variation through η that represents the fuel consumption. In

the equations of motion we must consider also the effect of the wind, acting

on the airplane as a disturbance, and entering the aircraft dynamics through

its speed W = (wx, wy, wz) ∈ R
3. The continuous state is composed by X,
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Y , Z, V , ψ, m and is governed by the following equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẋ

Ẏ

Ż

V̇

ψ̇

ṁ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V cos(ψ)cos(γ) + wx

V sin(ψ)cos(γ) + wy

V sin(γ) + wz

T −D −mgsin(γ)

m
−Wagfcos(γ)V sin(γ)

1

m

Lsin(ϕ)

V cos(γ)
−Wcgf tan(γ)

−ηT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2.1)

where

Wagf =
∂wx

∂Z
cos(ψ) +

∂wy

∂Z
sin(ψ)

Wcgf =
∂wx

∂Z
sin(ψ) +

∂wy

∂Z
cos(ψ)

are the along-track and cross-track wind gradient factors.

Finally considering the system structure and the behaviour of a real aircraft,

by ignoring fast dynamics, we can consider T , γ and ϕ as inputs (i.e. com-

mand from pilot for directing the aircraft). Obviously there could be some

constraints on the parameters entering the dynamics, which depend on the

type of aircraft considered. These kinds of limitations can be retrieved from

BADA documents [15].

3.2.2 Flight Management System

The discrete part of the model is related to the Flight Management System

(FMS). The aim of the FMS is to collect incoming data from sensors and

flight plans (defined through consecutive 3D, or 4D in the latest few years,

waypoints) and to set some discrete variables in order to mak ethe aircraft

tracking a provided flight plan. The variables used by the FMS are:

• WayPoint index (WP): the index of the waypoint the aircraft is head-

ing towards;

• Acceleration Mode (AM): indicates if the airplane is accelerating, de-

celerating or cruising;

• Flight Level (FL): the altitude at which the aircraft is flying;

• Climb Mode (CM): indicates if the aircraft is climbing, descending or
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flying level;

• Speed Hold Mode (SHM): indicates if the aircraft is holding constant

Calibrated AirSpeed (CAS under International Standard Atmosphere

conditions is equal to True AirSpeed (TAS)) or constant Mach.

• Flight Phase (FP): distinguishes between Lower Descent, Upper De-

scent, Approach, Landing;

• Reduced Power Mode (RPM): allows to climb without using all the

thrust;

• Troposhpere Mode (TrP): indicates if the aircraft is flying above or be-

low the tropopause (the edge between troposphere and stratosphere).

3.2.3 Wind model

The last component of the aircraft model is the stochastic one and concerns

the model of the wind acting on the aircraft. The wind is the most signifi-

cant source of uncertainty for aircraft dynamics. Here we assume the wind

field described as composed by two contributions: the weather forecast (the

nominal part) and the forecast error (the stochastic part). For the nominal

part we refer to the HWM93 wind model described in [18], through which,

given the geodetic coordinates (latitude, longitude and altitude) of a point

in the Earth’s atmosphere (in the altitude range 0-120 km), we can retrieve

mean local value of wind speed along the eastward and northward directions.

It should be noted that this model do not describe the intensity along the

altitude direction.

The stochastic wind field satisfies the following assumptions:

• vertical component of the wind is supposed to be zero (in agreement

with the HWM93 wind model);

• since forecasts obtained from HWM93 are considered as mean values,

wind stochastic component is represented as a random Gaussian vari-

able w(t, p) ∼ N (0, R(t, p, t′, p′));

• wind components in the X (eastward) and Y (northward) directions

are independent, so R is diagonal;

33



• wind field is isotropic (invariant under rotations) so that the diagonal

entries of R(t, p, t′, p′) are identical and equal to r(t, p, t′, p′);

• wind variance is constant for all altitudes.

Given these assumptions the covariance matrix R simplifies to

R(t, p, t′, p′) = E [w(t, p)wT (t′, p′)] =

[
r(t, p, t′, p′) 0

0 r(t, p, t′, p′)

]
(3.2.2)

where E [·] is the expected value, p, p′ ∈ R
3 and t, t′ ∈ R. Moreover, we have

that

r(t, p, t′, p′) = σ(Z)σ(Z ′)rt(|t− t′|)rXY

(∥∥∥∥∥X −X ′

Y − Y ′

∥∥∥∥∥
)
rZ (|AP (Z)−AP (Z ′)|)

where AP (Z) is the atmospheric pressure determined using the HWM93

model and σ(Z) is the standard deviation of the wind at altitude Z. Quan-

tities σ(Z), rt, rXY and rZ are defined (and parameters are set) according

to [38]:

rXY (s) = cxy + (1− cxy)e
− s

Gxy

rZ(s) = cz + (1− cz)e
− s

Gz

rt(s) = ct + (1− ct − dt)e
− s

Gt + dtcos

(
2π
s− et
Gt

)

It is easy to understand that correlation decays exponentially with the dis-

tance in the horizontal plane, with the pressure difference in the vertical

direction and with time separation. Values for the parameters are derived

based on [38] and result in a strong time-correlation, a significant but smaller

horizontal correlation, and a very weak altitude correlation.

In order to generate wind realizations consistent with the above described

structure we discretize the airspace in Nx, Ny and Nz cells (each cell is

dx× dy× dz corresponding to 60 km × 60 km × 1 km) and also in Nt time-

steps (dt indicates the time interval). Each point of the grid has associated

a 2D vector that represents the wind forecast error along the X and Y

directions. Let assume i ∈ {1 . . . Nx}, j ∈ {1 . . . Ny}, h ∈ {1 . . . Nz} and

k ∈ {0 . . . Nt}. Thanks to this notation we can express the wind at the time
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step t = kdt and grid point p = (idx, jdy, hdz) as a vector:

w

⎡
⎢⎣kdt,

⎛
⎜⎝
idx

jdy

hdz

⎞
⎟⎠
⎤
⎥⎦ =

[
wx(k, i, j, h)

wy(k, i, j, h)

]

and then lexicographically order it so as to define two vectors

Wx(k) =

⎡
⎢⎢⎣

wx(k, 1, 1, 1)
...

wx(k,Nx, Ny, Nz)

⎤
⎥⎥⎦ ∈ R

NxNyNz

Wy(k) =

⎡
⎢⎢⎣

wy(k, 1, 1, 1)
...

wy(k,Nx, Ny, Nz)

⎤
⎥⎥⎦ ∈ R

NxNyNz

Naming R̂ ∈ R
NxNyNz×NxNyNz the covariance matrix of both Wx and Wy

(due to the isotropicity), wind realizations are generated according to the

following linear equations:

{
Wx(k + 1) = aWx(k) +Qvx(k + 1)

Wy(k + 1) = aWy(k) +Qvy(k + 1)
with

{
Wx(0) = Q̂vx(0)

Wy(0) = Q̂vy(0)
(3.2.3)

where vx(k), vy(k) ∈ R
NxNyNz are standard independent Gaussian random

variables, and matrices Q and Q̂ are derived by using the Cholesky decom-

position of R̂ according to

Q̂Q̂T = R̂ and QQT = (1− a2)R̂ with a = e
− s

Gt .

3.2.4 Radar model

Another source of uncertainty is due to the radar measurement instruments.

Obviously, radars can only measure a part of the state of all aircraft flying

in the airspace that is, for each aircraft, the position (X,Y, Z). So we create

a vector y(k) that comprises all the measurements about aircraft position
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currently flying in the considered airspace.

y(k) = [y(k, 1) . . . y(k,M(k))]T

y(k, �) =

⎡
⎢⎣
X(k, �)

Y (k, �)

Z(k, �)

⎤
⎥⎦

where M(k) is the number of aircrafts flying in the airspace at time istant

k. Then, the measurement noise can be een as an additive contribution

to aircraft coordinates and modeled as an independent Gaussian random

variables with zero mean and variance

σr =

{
40m d ≤ 60 km

1.35 · 10−3d d > 60 km

where d is the distance of the aircraft from the radar.

3.2.5 Model simplification

We now simplify the aircraft model introduced in the previous section to

alleviate the computational effort in the Particle Filtering calculations. We

consider only aircraft flying at constant altitudes and with constant speeds

(i.e. trimmed flight). Since V and Z are held constant we can drop third

and fourth dynamic equations of (3.2.1). Moreover we define the flight plan

for each aircraft using only the initial and the final waypoint so as to avoid

turns and considering only straight trajectories. Thanks to these hypothesis

we can disregard the discrete part of the model and simplify the continuous

part of the aircraft motion so as to obtain the following system

⎡
⎢⎢⎢⎢⎢⎢⎣

Ẋ

Ẏ

ψ̇

ṁ

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

V cos(ψ)cos(γ) + wx

V sin(ψ)cos(γ) + wy

1

m

Lsin(ϕ)

V cos(γ)
−Wcgf tan(γ)

−ηT

⎤
⎥⎥⎥⎥⎥⎥⎦

where L and D can be expressed as canonic-form aerodynamics forces as

L =
CLSρ(Z)

2
V 2 and D =

CDSρ(Z)

2
V 2
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with S total wings surface, ρ(Z) air density at an altitude of Z and CD and

CL drag and lift coefficients related to the type of aircraft considered [15].

Substituting the expression of these forces we finally obtain the following

dynamics: ⎡
⎢⎢⎢⎢⎢⎣

Ẋ

Ẏ

ψ̇

ṁ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

V cos(ψ)cos(γ) + wx

V sin(ψ)cos(γ) + wy

1

2m
ρ(Z)CLS

sin(ϕ)

cos(γ)
−Wcgf tan(γ)

−ηT

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.2.4)

Another simplification is the one proposed for the time-correlation in order

to ease the implementation of the dynamics:

rt(|t− t′|) ≈ e
− |t−t′|

Gt ,

that is a good approximation considering the time horizon of 30 minutes

hour used in our analysis (for a full explanation refer to [26]).

In order to justify in (3.2.3) the initialization of the wind vector and the

covariance matrix R̂ we can considering

Wx(k) =

⎡
⎢⎢⎣
wx(k, p1)

...

wx(k, pn)

⎤
⎥⎥⎦

if Wx(0) = Q̂vx(0) we could derive the following expression

E [Wx(0)W
T
x (0)] = E

⎡
⎢⎢⎣
w2

x(0, p1) . . . wx(0, p1)wx(0, pn)
. . .

...

w2
x(0, pn)

⎤
⎥⎥⎦ =

=

⎡
⎢⎢⎣
E [w2

x(0, p1)] . . . E [wx(0, p1)wx(0, pn)]
. . .

...

E [w2
x(0, pn)]

⎤
⎥⎥⎦ =

=R̂

so we can say that Q̂Q̂T = R̂.
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Covariance matrix dynamics is governed by (3.2.3) so:

E [Wx (k + 1)W T
x (k + 1)] = a2E [Wx (k)W

T
x (k)] +QQT =

= a2E [Wx (k)W
T
x (k)] + (1− a2) R̂

At the equilibrium we have that

E [Wx (k + 1)W T
x (k + 1)] = E [Wx (k)W

T
x (k)] ⇒ E [Wx (k)W

T
x (k)] = R̂ ∀k

Setting Wx (0) = Q̂vx (0) we initialize the system with the equilibrium value

so, thanks to 0 < a < 1, it will remain in that state absorbing possible

perturbation. Values taken byWx (k) will maintain the correlation structure

previously defined.

All conclusions we have just drawn for Wx are also valid for Wy thanks to

the isotropicity hypotesis.

Finally concerning the radar measurements we choose to consider a “safety

uncertainty” that does not depend on the distance of the aircraft from the

radar using a constant standard deviation

σr = 80 m ∀d

In our work this noise affects only the X and Y measurements, because

the altitude at which the aircraft is flying is supposed to be constant and

perfectly known.

3.3 Particle Filtering of the aircraft measurements

Particle Filtering (PF) is a Bayesian approach to state estimation that has

been developed for nonlinear systems. The goal of PF is to compute the con-

ditional probability distribution of the state of the system given the available

output observations. In the case of a linear system subject to Gaussian noise,

the conditional probability distribution of the state is Gaussian and, hence,

uniquely specified by its mean and covariance. As more observations be-

come available, mean and covariance can be recursively updated through the

Kalman filter equations. If the system is nonlinear (or noise is not Gaussian),

then, the conditional distribution of the state is not Gaussian and cannot

be finitely parameterized through mean and covariance. The idea developed
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in the PF approach to Bayesian estimation is to represent probability dis-

tributions through random samples (particles) extracted from them, and to

reproduce the basic steps involved in the (ideal) optimal Bayesian recur-

sive estimation procedure by repeatedly propagating these particles through

the system dynamics (prediction step) and re-sampling them based on their

likelihood given the observations (conditioning step). This is explained next

with reference to a general stochastic system. An improved version of the

PF exploiting the specific structure of the nonlinear stochastic system under

consideration in the present work is then described. This improved version

was proposed in [26] and named Sequential Conditional Particle Filter.

3.3.1 Bayesian estimator

Consider a discrete time non-linear stochastic system

{
xk+1 = fk(xk, wk)

yk = hk(xk, nk)

with w(·) and n(·) independent stochastic processes with know probabil-

ity distribution function. The aim of the Bayesian estimator is to approxi-

mate the conditional probability distribution of xk given the measurements

y1, . . . , yk, that is p(xk|Yk) where Yk = [y1, . . . , yk]. We look for a recursive

procedure to calculate the conditional distribution p(xk|Yk).

We start from

p(xk|Yk−1) =

∫
Rn

p([xk, xk−1] |Yk−1)dxk−1 =

=

∫
Rn

p(xk| [xk−1, Yk−1])p(xk−1, Yk−1)dxk−1 =

=

∫
Rn

p(xk|xk−1)p(xk−1|Yk−1)dxk−1

whose integrand is known since p(xk−1|Yk−1) is available as a result of com-

putations at the previous k − 1 time instant, whereas p(xk|xk−1) can be

computed based on fk(·, ·) and the probability distribution of w(·).
Since

p(xk) =
p(xk|Yk−1)p(Yk−1)

p(Yk−1|xk)
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we can write

p(xk|Yk) =
p(Yk|xk)p(xk)

p(Yk)
=
p([yk, Yk−1] |xk)

p(yk, Yk−1)

p(xk|Yk−1)p(Yk−1)

p(Yk−1|xk)
=

=
p(Yk−1| [xk, yk])p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)p(Yk−1|xk)
=
p(Yk−1|xk)p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)p(Yk−1|xk)
.

Finally we obtain

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
, (3.3.1)

where p(yk|xk) can be computed based on hk(·, ·) and the probability distri-

bution of the measurement noise n(·), and

p(yk|Yk−1) =

∫
Rn

p(yk|xk)p(xk|Yk−1)dxk.

We can then calculate p(xk|Yk) recursively starting from p(x0|Y0) = p(x0)

3.3.2 Particle Filter

In general it is difficult to compute an analytic expression for the Bayesian

estimate, since it involves representing probability distribution function and

computing various integrals. The idea of PF is to use random samples to

solve the issue of representing probability distributions and computing inte-

grals. This is summarized in the following Algorithm.

1. random generation of N particles x+
0,i based on the initial pdf p(x0);

2. propagation of the particles to the next time step using the process

equation:

x−
k,i = fk−1(x

+
k−1,i, wk−1,i)

where wk−1 is extracted at random;

3. after receiving measurements ỹk we compute the conditional relative

likelihood of each particle

qi = p(ỹk|x−
k )

where p(yk|xk) is known through hk(·, ·) and the probability distribu-

tion of n(·);
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4. normalization the previously obtained relative likelihoods

qi =
qi∑N

j=1
qj

this leads to a discrete probability density function that, as N → ∞,

is a good approximation for p(xk|yk);

5. resampling of N particles x+
k,i using the approximation of p(xk|yk);

6. restart from step 2 with k = k + 1.

The PF algorithm may suffer of a problem known as sample impoverishment,

i.e., it may happen that the a priori particles are distributed according to

p(xk|yk−1) and then when we use p(yk|xk) to re-sample them, just a few par-

ticles will survive and become a posteriori particles. In the worst case all of

the particles will collapse to the same value. There are many solutions devel-

oped to counteract this issue such as Roughening, Prior editing, Regularized

PF, Markov chain Monte Carlo resampling, Auxiliary PF [41].

3.3.3 Sequential Conditional Particle Filter

Instead of using standard PF algorithm we opt for the Sequential Con-

ditional Particle Filter algorithm proposed in [26] to solve the wind state

estimation and trajectory prediction problem. The first novelty of the algo-

rithm in [26] is that, instead of using realizations for the wind field carried

by the particles (as in conventional Particle Filtering) the entire conditional

probability distribution of the wind field is stored and manipulated, since the

wind evolves according to a linear model with Gaussian noise. The aircraft

are treated as flying sensors providing implicitly measurements for the wind

they experience. Since conditionally to the wind field the state variables of

different aircraft are independent of each other, then they are sequentially

processed. This is the second novelty of the algorithm. Every radar measure-

ment contains information about the positions of all aircraft in a region of

the airspace. New measurements are processed one aircraft at the time: the

measurement of the position of aircraft 1 is used first to “filter” all the par-

ticles, updating the estimate of the state of aircraft 1, and the distributions

of the wind field. The updated aircraft state is stored until the k + 1 mea-

surement, while wind distributions are filtered using the measurement of the

position of aircraft 2, then aircraft 3, and so on. It is important to underline
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that the order with which measurements are analyzed is not important [26].

Let x(k) denote the overall state of the system comprising 6 states (X, Y ,

Z, ψ, m and V with Z and V constant and known) for each aircraft flying

in the airspace at the considered time instant and WX(k) and WY (k) denote

the wind vectors. It is possible to compute the state of all aircraft using the

dynamics previously presented in Section 3.2. Values of the wind acting on

each aircraft (wX(t, �) and wY (t, �)) are computed by linear interpolation of

the wind field (WX(k) and WY (k)) as

wX(t, �) = A(X(t, �), Y (t, �), Z(�))WX(k)

wY (t, �) = A(X(t, �), Y (t, �), Z(�))WY (k)

where A can be explicitly computed. The state value at the following time

step is completed with the update of WX and WY according to (3.2.3)

At every time instant the position of all aircraft is measured by a radar that

returns a measurements vector (X, Y and Z). The prediction is executed

at every time instant, or better every time a measurement from the radar is

available. x(k) includes two classes of variables: aircraft state evolving with

non-linear dynamics and wind state evolving according to linear dynamics.

A great advantage of SCPF is that, unlike other PF strategies, it can handle

hundreds of aircraft and 1000 particles, without presenting a too severe

impoverishment of samples [26].
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Algorithm 3 Sequential Conditional Particle Filter

1: INITIALIZATION of aircraft states from measurements;

2: SET k = 0 and GENERATE N particles each comprising:

• an estimate x̂i
a(kdt, �) of the state of each aircraft flying in the

airspace; SET (X i(kdt, �), Y i(kdt, �), Zi(kdt, �)) = ya(k, �) (the mea-

sured position of aircraft � at time kdt);

• an estimate of the mean (μi
X and μi

Y ) and covariance matrix Σi of

the wind states; SET μi
X = 0, μi

Y = 0 and Σi = R̂

3: INCREMENT k

4: UPDATE aircraft list: remove state of aircraft that have left airspace be-

tween (k − 1)dt and kdt and insert (with corresponding initialization)

aircraft that have entered the airspace;

5: FOR aircraft � = 1 . . .M(k) DO

6: EXTRACT wind realization for each of N particles W i
X ∼ N (μi

X ,Σ
i)

and W i
Y ∼ N (μi

Y ,Σ
i)

7: PROPAGATE aircraft dynamics for each of N particles from (k − 1)dt

to kdt using (3.2.4)

8: COMPUTE relative likelihood for each of N particles

qi = p(y(k, �)|x̂i
a(kdt, �)) and NORMALIZE q̃i = qi/

∑N

i=1
qi

9: RESAMPLE N particles with probability of selecting particles j equal

to q̃j

10: CONDITION the wind mean and covariance matrix for each of N

particles according to

μi
X = μi

X +Σi(Ai)T (AiΣi(Ai)T )−1(biX −Aiμi
X)

μi
Y = μi

Y +Σi(Ai)T (AiΣi(Ai)T )−1(biY −Aiμi
Y )

Σi = Σi − Σi(Ai)T (AiΣi(Ai)T )−1AiΣi

(3.3.2)

where Ai = A(x̂i
a(kdt, �)), biX = AiW i

X and biY = AiW i
Y

END FOR

11: EVOLVE wind dynamics for each of N particles according to

μi
X = aμi

X

μi
Y = aμi

Y

Σi = a2Σi + (1− a2)R̂

(3.3.3)

12: RETURN to step 2
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3.4 Unscented Kalman filtering of the debris mea-

surements

In this section we propose too use the unscented Kalman filter to improve

the footprint estimation in the case when some measurements of the debris

position become available after the reentering object has experienced the

major breakup. We start by describing the unscented Kalman filer and then

its application to our context.

Unscented Kalman filter

The Extended Kalman Filter (EKF) is probably the most widely used es-

timation algorithm for nonlinear systems. However, more than 35 years of

experience in the estimation community has shown that is difficult to imple-

ment, difficult to tune and only reliable for systems that are almost linear

on the time scale of the updates. Many of these difficulties arise from its

use of linearization. To overcome this limitation, the unscented transforma-

tion (UT) was developed as a method to propagate mean and covariance

information through nonlinear transformations. It is more accurate, easier

to implement, and uses the same order of calculations as linearization [24].

Suppose to have a description of the current state of a nonlinear system in

terms of its mean value x̄ and its covariance matrix Σx, the basic idea of the

UT is that it is easier to approximate a probability distribution rather than

a nonlinear function. This can be done by suitably choosing a set of sigma

points so that their mean value and covariance matrix are x̄ and Σx. Then

the nonlinear transformation is applied to each sigma point and updated

mean and covariance matrix can be derived from the cloud of transformed

points. To each sigma point is associated a weight and, in order to obtain

an unbiased estimate, the sum of the weight must be equal to one.

Although there are some resemblance with particle filter, the key difference

is that sigma points are not drawn at random but they are chosen to ex-

hibit certain properties (i.e. given mean and covariance), so that information

about the distribution can be captured with a fixed, small number of data

points. Moreover the weights do not have to lie in the range (0, 1).

Transposing the discussion into equations, suppose to have p sigma points
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x(i) with i = 1, . . . , p and their weights W (i) such that

x̄ =

p∑
i=1

x(i)

Σx =

p∑
i=1

[
x(i) − x̄

] [
x(i) − x̄

]T

1 =

p∑
i=1

W (i),

(3.4.1)

in order to obtain transformed mean and covariance matrix through nonlin-

ear function f (·), we apply the function to each sigma point

y(i) = f
(
x(i)
)
,

and then we perform statistical analysis onto transformed sigma points,

obtaining mean and covariance matrix as

ȳ =

p∑
i=1

W (i)y(i)

Σy =

p∑
i=1

W (i)
[
y(i) − ȳ

] [
y(i) − ȳ

]T
.

(3.4.2)

A typical set of sigma points, presented in [24], is a symmetric set of 2n points

lying on the
√
n

th
contour of the covariance matrix (i.e. Σx in (3.4.1)), where

n is the dimension of the vector x̄. This set can be expressed as

x(i) = x̄+
√
n (QΣx)i

W (i) = 1/2n

x(i+n) = x̄−√
n (QΣx)i

W (i+n) = 1/2n,

(3.4.3)

with i = 1, . . . , n and where (QΣx)i indicates the i
th row of QΣx , that is the

matrix square root (i.e. Cholesky decomposition) of Σx, that means that

Σx = QT
Σx
QΣx . For further insights about how to select, threat and expand

sigma points set, refer to [24].
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UT application to recursive estimation

In order to estimate the state of a stochastic process, whose measurements

are affected by random noise we can use the Unscented Kalman Filter

(UKF): a revision of the popular Kalman Filter (KF), using the UT in order

to improve filter accuracy and reliability, in case of nonlinear estimation.

We next present the UKF implementation for the following nonlinear dy-

namic system, which is affected by additive process and measurement noises

with zero mean and covariance matrices Q and S respectively

{
xk = f (xk−1) + dk

yk = h (xk) + nk

The algorithm is a slightly simplified version of the one presented in [24],

since we introduce the assumption of additive noise.

Algorithm 4 Unscented Kalman Filter

1: SET μ0 = μ (0) AND Σ0 = Σ(0) AND k = 0

% μ (0) and Σ (0) are initial state mean and covariance matrix

2: INCREMENT k

3: DRAW N = 2n sigma points x(i)
k−1, i = 1, . . . , N from μk−1 and Σk−1 as

suggested by equations (3.4.3)

% n is the state space dimension

4: SET x̂(i)
k = f

(
x(i)

k−1

)
, i = 1, . . . , N

5: SET μ̃x =

N∑
i=1

W (i)x̂(i)
k

Σ̃x =

N∑
i=1

W (i)
[
x̂(i)

k − μ̃x

] [
x̂(i)

k − μ̃x

]T
+Q

6: SET ŷ(i)
k = h

(
x(i)

k

)
, i = 1, . . . , N

7: SET μ̃y =

N∑
i=1

W (i)ŷ(i)
k

Σ̃y =

N∑
i=1

W (i)
[
ŷ(i)
k − μ̃y

] [
ŷ(i)
k − μ̃y

]T
+ S
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8: SET Σ̃xy =

N∑
i=1

W (i)
[
x̂(i)

k − μ̃x

] [
ŷ(i)
k − μ̃y

]T
9: SET K = ΣxyΣ

−1
y

μk = μ̃x +K (yk − μ̃y)

Σk = Σx +K (Σxy)

% Classical Kalman Filter update equations

10: ITERATE from step 2 until data are available.

3.5 Improved estimate of the footprint and com-

putation of the no-fly zones

After introducing the Sequential Conditioning Particle Filter (SCPF) for the

wind field prediction, and the Unscented Kalman Filter (UKF) for debris

trajectory estimation, in this section we propose a novel integrated algorithm

that performs both filtering procedures synchronously after the first debris

measurement.

This integrated algorithm returns an estimate of the a-posteriori mean and

covariance of the debris state vector, at the time instant when the last mea-

surement is available, and an estimate of mean and covariance of the wind

field. These two pieces of information are then used to dramatically improve

footprint estimation that can be exploited by air traffic controllers to obtain

risk areas for flight altitudes of interest, by simply intersecting the footprint

with a plane at the desired height.

The integrated algorithm immediately follows.
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Algorithm 5 Sequential Conditional Particle Filter with Unscented
Kalman Filter

1: INITIALIZATION of aircraft states from measurements;

2: SET k = 0 and GENERATE N particles each comprising:

• an estimate x̂i
a(kdt, �) of the state of each aircraft flying in the

airspace; SET (X i(kdt, �), Y i(kdt, �), Zi(kdt, �)) = ya(k, �) (the mea-

sured position of aircraft � at time kdt);

• an estimate of the mean (μi
X and μi

Y ) and covariance matrix Σi of

the wind states; SET μi
X = 0, μi

Y = 0 and Σi = R̂

3: INCREMENT k

4: UPDATE aircraft list: remove state of aircraft that have left airspace be-

tween (k − 1)dt and kdt and insert (with corresponding initialization)

aircraft that have entered the airspace;

5: FOR aircraft � = 1 . . .M(k) DO

6: EXTRACT wind realization for each of N particles

W i
X ∼ N (μi

X ,Σ
i) and W i

Y ∼ N (μi
Y ,Σ

i)

7: PROPAGATE aircraft dynamics for each of N particles from

(k − 1)dt to kdt using 3.2.4

8: COMPUTE relative likelihood for each of N particles

qi = p(y(k, �)|x̂i
a(kdt, �)) and NORMALIZE q̃i = qi/

∑N

i=1
qi

9: RESAMPLE N particles with probability of selecting particles j

equal to q̃j

10: CONDITION the wind means and covariance matrix for each of N

particles according to

μi
X = μi

X +Σi(Ai)T (AiΣi(Ai)T )−1(biX −Aiμi
X)

μi
Y = μi

Y +Σi(Ai)T (AiΣi(Ai)T )−1(biY −Aiμi
Y ) (3.5.1)

Σi = Σi − Σi(Ai)T (AiΣi(Ai)T )−1AiΣi

where Ai = A(x̂i
a(kdt, �)), biX = AiW i

X and biY = AiW i
Y

END FOR

11: UPDATE debris: initialize debris state and covariance matrix with the first

radar observation (if present at kdt) and correspondent uncertainty
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12: PROPAGATE debris mean and covariance matrix, according to the Un-

scented Kalman Filter (Algorithm 4)

13: EVOLVE wind dynamics for each of N particles according to

μi
X = aμi

X

μi
Y = aμi

Y (3.5.2)

Σi = a2Σi + (1− a2)R̂

14: RETURN to step 2

Potentially this algorithm can be run continuously if we consider only the

presence of aircraft, but when the first measurement of a debris object occurs

one air traffic controller must carefully choose the number of iteration to run,

because there is a trade-off between the accuracy of the filtered trajectory

and the time remaining to estimate debris footprint and issue a warning to

those aircraft that are posed at risk by the reentering event.

When the air traffic controller collected enough information, he stops Al-

gorithm 5 and store information about last computed debris mean and co-

variance matrix given by the Unscented Kalman Filter and wind mean and

covariance matrix given by the Particle Filter. Then he run the following

Algorithm 6: a slight modification of Algorithm 2, presented in Section 2.3.1

Algorithm 6 Footprint estimation from UKF and PF outputs

1: INPUT ε AND α AND η AND {tj}j=1,...,ns

2: SET N AND k according to Theorem 2

3: FOR i := 1 TO N

4: SET δ(i) := random extraction of debris initial state x(i)
0 from a Gaus-

sian distribution with mean and covariance matrix obtained from UKF

and random extraction of wind initial state from a Gaussian distribution

with mean and covariance matrix obtained from PF particles

5: SET x(i)
tj

:= solution to (2.2.1) at time tj when the uncertain elements

are equal to δ(i), with j = 1, . . . , ns

END FOR
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6: SET {A�
j , c

�
j}j=1,...,ns := argmin

ns∑
k=1

log detA−1
j

subject to: Aj = AT
j � 0, j = 1, . . . , ns;

max
j=1,...,ns

(x(i)
tj

− cj)
TAj(x

(i)
tj

− cj) ≤ 1, i = 1, . . . , N ;

7: SET V := ∅ AND p := 0;

% V is the set of indexes of constraints violated by {A�
j , c

�
j}j=1,...,ns

% p is the cardinality of V

8: WHILE p < k

9: SET {i1, i2, . . . , im} :=
{
i : max

j=1,...,ns

(x(i)
tj

− c�
j)

TA�
j(x

(i)
tj

− c�
j) = 1

}
;

10: % {i1, i2, . . . , im} are the indexes of active constraints

11: IF m > k − p

12: SET {j1, j2, . . . , jk−p} := k − p random integers extracted

from {1, 2, . . . ,m} without repetition

13: SET R := {ij1 , ij2 , . . . , ijk−p
} ⊂ {i1, i2, . . . , im}

14: ELSE

15: SET R := {i1, i2, . . . , im}
END IF

% R is the set of indexes of constraints to be removed

16: SET {A�
j , c

�
j}j=1,...,ns := argmin

ns∑
k=1

log detA−1
j

subject to: Aj = AT
j � 0, j = 1, . . . , ns;

max
j=1,...,ns

(x(i)
tj

− cj)
TAj(x

(i)
tj

− cj) ≤ 1, i ∈ {1, 2, . . . , N} \ (R ∪ V );

17: SET V :=
{
i : max

j=1,...,ns

(x(i)
tj

− c�
j)

TA�
j(x

(i)
tj

− c�
j) > 1

}
AND p := |V |;

% V is the set of indexes of constraints violated by {A�
j , c

�
j}j=1,...,ns

% p is the cardinality of V

END WHILE

18: RETURN {A�
j , c

�
j}j=1,...,ns .

50



3.6 Simulation results

We consider 6 aircraft flying at constant altitude in a region of the airspace

of 600 km by 600 km in the xy plane.

As shown in Figure 3.2, aircraft are divided into two sets: the first set con-

tains 3 aircraft flying from the lower-left corner of the airspace region to the

upper-right corner, while the other 3 aircraft in the second set fly from the

upper-left to the lower-right corner. Nominal trajectories cross at the center

of the considered airspace region, but aircraft reaching the central point at

the same time are set to fly at different altitudes. More specifically, some

aircraft fly at altitude 10.5 km and the others at altitude 11.5 km.

For simplicity, aircraft are supposed to fly at a nominal airspeed of 214 m/s.

For all aircraft, the parameters of the dynamical model represent a Boeing

737-700, [15].

After 15 minutes of aircraft flight, a debris enters the Earth atmosphere at

the altitude of 78 km with a speed of 7.1 km/s and a path angle of −1◦.

These are the nominal data for the debris initial state.

The aircraft and debris nominal positions at time t = 15 minutes are de-

picted in Figure 3.2, together with their nominal future trajectories.
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Figure 3.2: Air traffic configuration: aircraft flying at the same altitude are
drawn with the same color.
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Figure 3.3: A realization of the aircraft and debris trajectories during the
debris reentry.

Whiles the initial state of the aircraft is assumed to be deterministic, the

initial state (position and velocity) of the debris is described as a Gaussian

random variable with mean given by the nominal initial state, and variance

Z0 equal to

Z0 =

[
S 03×3

03×3 V0

]
,

where S is the covariance matrix of the initial position (set equal to the

radar noise covariance matrix), whereas V0 is the covariance matrix of the

initial velocity (set equal to that in equation (2.3.13)).

Both aircraft and debris are subject to the wind field disturbance. The nom-

inal component of this field represents the forecasted wind and is obtained

from the HWM93 model [18]. The airspace between 10 km and 12 km in al-

titude is also affected by a stochastic wind field component, which represents

the wind forecast error and is described in Section 3.2.3.

Data representing the radar observations of the aircraft and debris positions

are both available every 30 seconds. Aircraft radar measurements are cor-

rupted by some noise, which is described as a zero-mean Gaussian process

with a standard deviation of 80 m (as already discussed in Section 3.2.5).
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For debris measurements, the standard deviation is raised by a factor of 2.

In order to test the performance of the proposed approach to improve the

probabilistic footprint estimation based on available measurements, we can

consider different scenarios corresponding to the same setup but to different

stochastic wind realizations and debris initializations.

For each given scenario, we monitor the aircraft positions for 15 minutes

and use the Sequential Conditional Particle Filter (SCPF) described in Sec-

tion 3.3 to estimate the a-posteriori probability distribution of the stochastic

wind field and aircraft state, given the aircraft radar measurements. Then,

when the debris starts its reentry, we keep applying the SCPF to the air-

craft radar measurements, but we also apply the Unscented Kalman Filter

(UKF) in Section 3.4 to compute an estimate of the a-posteriori probabil-

ity distribution of the debris state, given the debris radar measurements. In

particular, we consider additional 2 minutes, corresponding to 5 radar mea-

surements and 4 filtering steps. The probabilistic footprint is then computed

based on the obtained a-posteriori probability distributions of the wind field

(represented through the particles of the SCPF) and of the debris state (rep-

resented though the mean and variance of the UKF), by projecting into the

future a suitable number N of debris trajectories, depending on the desired

ε violation, but also on the values chosen for α and η (see Theorem 2). Here,

we set ε = 0.02, α = 0, and η = 10−5. The number of particles in the SCPF

implementation is 500.

We next consider two representative scenarios and perform the filtering and

projection procedure just described. For comparison purposes we compute

the footprint also in a best-case and in a worst-case.

In the best-case, we use the actual debris state and the actual wind field

after 17 minutes of aircraft flight to project into the future the N debris

trajectories.

In the worst-case, we neglect the information brought by the aircraft radar

measurements and apply only the UKF to the debris radar measurements.

We then project into the future N debris trajectories using the output of the

UKF to sample the debris state at time t = 17 minutes, while generating the

stochastic wind randomly starting from mean and covariance matrix defined

in Section 3.2.3.

In all cases, we integrate debris and wind dynamics (see Sections 2.2.2 and

3.2.5) until the debris reaches a low altitude (10 km).
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Simulations were carried out by first running Algorithm 5. We set the num-

ber of particles equal to 500, the time interval between two subsequent radar

measurement to 30 seconds. We initialize the aircraft state x̂i
a (0, �) in each

particle i with the first radar measurement ya (0, �), ∀� = 1, . . . , Na, where

Na = 6 is the number of aircraft in our setup. Algorithm 5 take also into ac-

count the altitude of each aircraft that, in our case is held constant because

of the level flight assumption. For the initialization of the rest of the state

vector, ψ is initialized so as to make the aircraft heading to the second way

point, while the initial mass is set to m = 46000 kg, according to [15]. As

for the means μi
X and μi

Y of the wind states of each particle i, we set them

to zero, whereas the covariance matrix Σi is set equal to R̂.

At k = 30 (i.e. after kdt = 15 minutes of simulation) we initialize the

Unscented Kalman Filter mean and covariance matrix with the first radar

measurement yde (k) of the debris position and the initial covariance matrix

Z0, respectively.

The process noise matrix Q in Algorithm 4 is set equal to

Q =

[
03×3 03×3

03×3 Ξ

]

where Ξ is the covariance matrix of ξ in (2.2.1) and is set equal to

Ξ =

⎡
⎢⎣
2.4064·10−5 0 0

0 2.4064·10−5 0

0 0 2.4064·10−5

⎤
⎥⎦

as suggested in [24]. The covariance matrix S for the measurement noise is

set equal to

S =

⎡
⎢⎣
160 0 0

0 160 0

0 0 160

⎤
⎥⎦ .

At the end of the iteration k = 34, we collect wind mean and covariance

matrix of all particles along with debris mean and covariance matrix, and

initialize Algorithm 6 with these quantities so as to make it extract real-

izations of the uncertainty affecting the debris according to the a-posteriori

probability distributions estimated through Algorithm 5.

Results achieved in the best-case, worst-case, and with the approach using
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both SCPF and UKF are presented in the following figures. Each figure

refers to one of the two considered scenarios: footprints obtained in best-

case are depicted in red, those obtained in the worst-case are in green, and

those built by applying our approach are in blue. We also plot with a black

solid line the debris trajectory of the considered scenario.

Figure 3.4: Footprint comparison - Scenario 1

In both scenarios, the debris trajectory belongs to the footprint obtained

with the proposed approach. Also, as expected, the volume of the footprint

is lower bounded by that obtained in the best-case and upper-bounded by

that in the worst-case. Table 3.1 quantifies the volume reduction with respect

to the worst-case.

Scenario V worst V PF+UKF Δ%

1 1.9143 km3 0.8868 km3 −53.68%
2 1.4207 km3 0.8224 km3 −42.12%

Table 3.1: Decreasing volume after filtering

This reduction of volume with respect to the worst-case is easily justified if

one considers the performance of the SCPF in reducing the uncertainty on

the wind forecast errors. To this order, in Figure 3.6 we plot the variance of
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Figure 3.5: Footprint comparison - Scenario 2

the wind speed vector associated with the grid points (x, y) at the altitude

of 11 km before and after applying the SCPF. As the reader can see after

only 17 minutes, wind variances have been successfully lowered by almost a

factor of two everywhere in the airspace.
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Figure 3.6: Wind field covariance matrix before and after filtering.
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The region obtained by intersecting the footprint and the horizontal plane

at the altitude where an aircraft is flying can be defined as no-fly region

and used by air traffic controllers to take appropriate actions for conflict

resolution. Figure 3.7 represents the no-fly zones for the aircraft flying at

altitude 11.5 km obtained with our algorithm. The extent of such regions

can be “tuned” by varying ε, at the price of incurring into a higher risk if ε

is increased.
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Figure 3.7: No-fly zone at altitude 11.5 km for scenario 1 (left) and scenario
2 (right).
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Chapter 4

Conclusions and Outlook

4.1 Conclusions

This work has studied the problem of estimating the area of the airspace

posed at risk by a reentering space debris. After a brief overview of the state-

of-the-art of this active research field, we proposed a novel simulation-based

approach, in order to obtain a probabilistic footprint of the 4D hazardous

region, and we compared it with the covariance propagation method recently

proposed in the literature. We showed that our approach outperforms the

covariance propagation method, since it provides a smaller footprint, when

the violation is the same. We also discussed the possibility for our technique

to incorporate various source of uncertainties, and presented an example

where stochastic wind is accounted for.

We then focused on the possible improvement of such footprint, demon-

strating how the availability of measurements of the debris position after its

breakup instant can significantly reduce the estimated spread of the debris

trajectories. The Unscented Kalman Filtering technique serves this purpose.

In our simulations we also experienced that, as stated in the literature, we

cannot use the Particle Filter because of the sample impoverishment issue.

After having introduced the dynamics of the air traffic, comprising a model

for the single aircraft, the Flight Management System and a stochastic wind

model, we exploited a technique presented in the literature that uses a vari-

ant of the Particle Filter in order to estimate the true state of the wind in

a certain volume of the airspace. We used these information, alongside with

the Unscented Kalman Filter, to reduce the effect of wind uncertainty on

debris dynamics and, hence, the overall volume of the footprint.
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Results obtained in our work show that randomized techniques can be quite

effective means for addressing interesting and challenging problems involv-

ing nonlinear complex dynamics. In particular, the scenario approach for

solving chance-constrained optimization problems enabled us to develop the

simulation-based method for the footprint characterization, whereas the se-

quential conditional Particle Filter jointly with the Unscented Kalman Filter

allowed us to reduce the uncertainty affecting the debris, thus reducing the

size of the footprint. Obviously a more in-depth analysis is required to fully

validate the proposed approach, for instance by using extensive simulations

to compare its performance with that of the worst-case and best-case.

4.2 Future Work

Finally, we would like to present some possible extensions of our work and

interesting research directions that, in our opinion, deserve consideration.

Risk assessment

The first extension of our work concerns the implementation of an algorithm

for evaluating the risk of the debris entering the protection zone of an air-

craft. This can be done by Monte Carlo simulation, based on the footprint

as explained in Section 2.3.4, and using the SCPF output to project the

aircraft positions into the future.

Debris footprint

One of the key feature of our work is that the introduced simulation-based

approach to footprint estimation allows to account for various sources of

uncertainty. It would then be interesting to explore the footprint sensitivity

to the different uncertainty sources so as to understand what is the most

critical one.

Another interesting direction of research could be to consider the breakup

event as the starting point for the simulation of a debris cloud. By generating

more fragments all together and computing the overall footprint, one can

characterize the region of the airspace affected by the debris cloud in toto.

A further possible extension comprises the introduction of thermal analysis

in order to estimate demise or survival of a fragment.
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Aircraft model

Regarding aircraft modeling, a natural extension of our work would be the

use of the full six-dimensional model of the aircraft instead of the simplified

four-dimensional one. Variations of altitude and/or speed are of primarily

importance for an air traffic controller while defining flight plans and res-

olution strategies. The complete model will involve accounting also for the

flight management system and, hence, the discrete component of the result-

ing stochastic hybrid model.

Conflict Resolution

All the above mentioned possible extensions of our work aim at achieving

a better estimate of the position of aircraft and debris so as to guarantee

adequately accurate risk figures for the aircraft. An improved knowledge

of the state of the whole system (i.e. aircraft, wind and debris) can help

authorities and air traffic controllers in redefining safe flight plans when an

uncontrolled reentry occurs. This calls for the introduction of appropriate

‘conflict resolution’ algorithms steering the aircraft away from the hazard

debris area while keeping them at a safe distance one from the other.

Final considerations

In conclusion there is a lot of research that can be done in this field, and we

only scratched the surface. We believe that our work is a small step towards

a direction that can offer interesting research hints to the problem of aircraft

risk estimation in case of uncontrolled space debris reentry.

61



62



Bibliography

[1] U.S. Standard Atmosphere 1976. National Oceanic and Atmospheric

Administration (NOAA) and National Aeronautics and Space Admin-

istration (NASA), Washington, DC, USA, 1976.

[2] Handbook of geophysics and the space environment. Air Force Geo-

physics Laboratory, 1985.

[3] Flight safety analysis. Technical Report 1.0, Federal Aviation Admin-

istration (FAA), Washington, DC, USA, 2011.

[4] Challenge of growth 2013. task 4: European air traffic in 2035. Tech-

nical report, European Organisation for the Safety of Air Navigation

(EUROCONTROL), 2013.

[5] William Ailor and Paul Wilde. Requirements for warning aircraft of

reentering debris. Technical report, International Association for the

Advancement of Space Safety, 2008.

[6] T. Alamo, R. Tempo, and A. Luque. On the sample complexity of

randomized approaches to the analysis and design under uncertainty.

pages 4671–4676, Baltimore, MD, USA, June 2010.

[7] Luciano Anselmo and Carmen Pardini. Satellite reentry predictions

for the Italian civil protection authorities. In 63rd International As-

tronautical Congress, Naples, Italy, 2013. International Astronautical

Federation (IAF).

[8] Stephen Boyd. Convex Optimization. Cambridge University Press,

2004.

63



[9] G. Calafiore and M.C. Campi. Uncertain convex programs: randomized

solutions and confidence levels. Mathematical Programming, 102(1):25–

46, 2005.

[10] G. Calafiore and M.C. Campi. The scenario approach to robust control

design. IEEE Transactions on Automatic Control, 51(5):742–753, 2006.

[11] Marco C. Campi, Simone Garatti, and Maria Prandini. The scenario

approach for systems and control design. Annual Reviews in Control,

33(2):149–157, 2009.

[12] M.C. Campi, G. Calafiore, and S. Garatti. Interval predictor models:

identification and reliability. Automatica, 45:382–392, 2009.

[13] M.C. Campi and S. Garatti. The exact feasibility of randomized solu-

tions of robust convex programs. SIAM Journal on Control and Opti-

mization, 19(3):1211–1230, 2008.

[14] M.C. Campi and S. Garatti. A sampling-and-discarding approach to

chance-constrained optimization: feasibility and optimality. Journal of

Optimization Theory and Applications, 148(2):257–280, 2011.

[15] EUROCONTROL. User Manual for the Base of Aircraft Data, 3.10

edition, 2012.

[16] Michael V. Frank, Michael A. Weaver, and Richard L. Baker. A proba-

bilistic paradigm for spacecraft random reentry disassembly. Reliability

Engineering and System Safety, 90(2-3):148–161, 2005.

[17] Michael D. Griffin and James R. French. Space Vehicle Design. AIAA

education series. Americal Institute of Aeronautics and Astronautics,

Inc., Reston, Virginia, USA, 1991.

[18] A.E. Hedin, E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery,

R.R. Clark, S.J. Franke, G.J. Fraser, F. Vial T. Tsuda, and R.A. Vin-

cent. Empirical wind model for the upper, middle and lower atmosphere.

Journal of Atmospheric and Terrestrial Physics, 58(13):1421–1447,

1996.

[19] Haitham Hindi. A tutorial on convex optimization.

64



[20] Jianghai Hu, Maria Prandini, and Shankar Sastry. Optimal coordinated

maneuvers for three-dimensional aircraft conflict resolution. Journal of

Guidance, Control and Dynamics, 25:888–900, 2012.

[21] Jian Huang, Weidong Hu, Qin Xin, and Weiwei Guo. A novel data

association scheme for LEO space debris surveillance based on a double

fence radar systems. Advances in Space Research, 50(11):1451–1461,

2012.

[22] Richard Irvine. The gears conflict resolution algorithm. In AIAA Guid-

ance, navigation and control Conference. American Institute of Aero-

nautics and Astronautics, 1998.

[23] Richard Irvine. Comparison of pair-wise priority-based resolution

schemes through fast-time simulation. In 8th Innovative Research

Workshop and Exhibition. EUROCONTROL Experimental Centre,

2009.

[24] Simon J. Julier and Jeffrey K. Uhlmann. Unscented filtering and non-

linear estimation. In Proceedings of the IEEE, volume 92, 2004.

[25] Kuchar and Yang. A review of conflict detection and resolution model-

ing methods. IEEE Transactions on Intelligent Transportation Systems,

1:179–189, 2000.

[26] Ioannis Lymperopoulos. Sequential Monte Carlo Metohds in Air Traffic

Management. PhD thesis, ETH, Zurich - Department of Information

Technology and Electrical Engineering, 2010.

[27] Ioannis Lymperopoulos and John Lygeros. Adaptive aircraft trajectory

prediction using particle filters. In AIAA Guidance, Navigation and

Control Conference and Exhibit. American Institute of Aeronautics and

Astronautics, 2008.

[28] Ioannis Lymperopoulos and John Lygeros. Sequential monte carlo

methods for multi-aircraft trajectory prediction in air traffic manage-

ment. International Journal of Adaptive Control and Signal Processing,

24:830–849, 2010.

65



[29] Michael McWinnie. Health monitoring of reentry vehicles. Master’s the-

sis, Lulea University of Technology - Department of Computer Science,

Electrical and Space Engineering, 2012.

[30] Kenneth Moe and Mildred M. Moe. Gas-surface interactions and satel-

lite drag coefficients. Planetary and Space Science, 53(8):793–801, 2005.

[31] Carmen Pardini and Luciano Anselmo. Computational methods for

reentry trajectories and risk assessment. Advances in Space Research,

35(7):1343–1352, 2005.

[32] Carmen Pardini and Luciano Anselmo. Reentry predictions of three

massive uncontrolled spacecraft. In NASA/JPL, editor, ISSFD-2012

- 23rd International Symposium on Space Flight Dynamics, Pasadena,

California, USA, 2012.

[33] Carmen Pardini and Luciano Anselmo. Reentry predictions for uncon-

trolled satellites: results and challenges. In 6th IAASS Conference -

Safety is Not an Option, Montréal, Canada, 2013.
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