
POLITECNICO DI MILANO
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Sommario

Negli ultimi anni, i continui miglioramenti hardware e software hanno per-

messo la creazione di videogiochi ambientati in mondi sempre più grandi e

dettagliati. Questo ha provocato l’aumento delle aspettative dei giocatori

riguardo alla quantità di contenuti, specialmente nei videogiochi AAA, por-

tando all’aumento della quantità di lavoro richiesta dai designer. In parti-

colare, sono necessari ambienti credibili per rendere i videogiochi attraenti.

Creare simili ambienti in modo completamente manuale richiede però un team

numeroso, e quindi un enorme budget. Di conseguenza, oggi la generazione

procedurale dei contenuti (procedural content generation, PCG) è ampiamente

usata dagli sviluppatori per creare contenuti automaticamente, in modo algo-

ritmico. Le tecniche di PCG permettono la creazione di grandi quantità di

contenuto impiegando meno designer, quindi sono spesso usate nei videogiochi

per la creazione di ambienti esterni e interni.

Il videogioco In Verbis Virtus, che stiamo sviluppando alla Indomitus

Games, è caratterizzato da ambienti interni sotterranei (dungeon) realizzati

con una grafica all’avanguardia. L’introduzione di tecniche di PCG nel pro-

cesso di sviluppo offre l’opportunità di creare livelli di gioco più grandi, man-

tenendo costi accettabili. In questa tesi, faremo una ricerca sugli approcci

esistenti per la generazione di ambienti, per poi creare un algoritmo per

la creazione automatica di mappe per In Verbis Virtus. Analizzeremo poi

questo algoritmo per capire come controllare le mappe prodotte e per trovare

i suoi punti di forza e i suoi limiti. Basandoci su questa analisi, estenderemo

l’algoritmo per ottenere più controllo sul processo di generazione.

Organizzazione della Tesi

Questa tesi è organizzata come segue:



Nel Capitolo 2 discutiamo dell’uso di tecniche di PCG nei videogiochi.

Presentiamo applicazioni rilevanti, dai primi videogiochi a quelli recenti, ev-

idenziando i diversi problemi che la PCG ha aiutato a risolvere. Dopodiché

descriviamo approcci per la generazione di ambienti, concentrandoci in parti-

colare sugli ambienti interni.

Nel Capitolo 3 presentiamo il gioco In Verbis Virtus, su cui è focalizzata

questa tesi, esponendo dettagli sull’ambientazione e il gameplay.

Nel Capitolo 4 descriviamo in dettaglio l’algoritmo che abbiamo creato per

la generazione di dungeon in In Verbis Virtus. Per prima cosa facciamo una

presentazione generale del nostro approccio. Poi descriviamo come abbiamo

modellizzato gli elementi architettonici come stanze e corridoi. Infine mostri-

amo il modo in cui l’algoritmo colloca gli elementi architetturali per creare

mappe.

Nel Capitolo 5 trattiamo la valutazione di mappe. Per prima cosa discu-

tiamo applicazioni rilevanti della valutazione di mappe. Poi descriviamo le

metriche che abbiamo scelto per valutare le mappe generate dal nostro algo-

ritmo. Presentiamo un’analisi dei singoli parametri del nostro algoritmo, e

infine un’analisi di combinazioni di parametri.

Nel Capitolo 6 descriviamo estensioni del nostro algoritmo che abbiamo

introdotto per ottenere più controllo sul processo di generazione. Dopodiché

presentiamo un’analisi di queste estensioni.

Contributi

Questa tesi contiene i seguenti contributi:

• Nel Capitolo 2 forniamo una panoramica sugli approcci per la generazione

di ambienti, con particolare attenzione agli ambienti interni.

• Nel Capitolo 3 presentiamo il videogioco In Verbis Virtus, fornendo det-

tagli relativi all’ambientazione, al gameplay e agli strumenti usati per lo

sviluppo.

• Nel Capitolo 4 descriviamo in dettaglio il nostro algoritmo per la gen-

erazione di dungeon. Mostriamo come l’algoritmo possa creare mappe

iv



utilizzando elementi architetturali definiti dall’utente, evitando compen-

etrazioni tra gli asset.

• Nel Capitolo 5 mostriamo un approccio per la valutazione di mappe, us-

ando metriche relative ai grafi. Forniamo indicazioni su come i parametri

del nostro algoritmo influenzano le mappe generate.

• Nel Capitolo 6 descriviamo estensioni del nostro algoritmo che forniscono

un maggiore controllo sul processo di generazione. Mostriamo come

queste estensioni aiutino a risolvere i problemi di bias dell’algoritmo

originale.
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Chapter 1

Introduction

In recent times, the continuous improvement of hardware and software allowed

the creation of video games featuring increasingly large and detailed worlds.

This have raised the expectations of players about the amount of available

content, especially for AAA games, consequently increasing the amount of work

required by designers. In particular, believable environments are necessary

to make games attractive. Creating such environments completely by hand,

however, requires a huge team and thus a huge budget. Accordingly, nowadays

procedural content generation (PCG) is widely used among developers as the

tool for the automatic creation of content, through algorithmic means. PCG

allows the creation of large amount of content with fewer designers, thus it is

often used in games to generate outdoor and indoor environments.

The game In Verbis Virtus, that we are developing at Indomitus Games,

features dungeon-like indoor environments rendered in high-end graphics. The

introduction of PCG techniques in the development process offers the opportu-

nity to create larger game levels, while keeping costs acceptable. In this thesis,

we will do a research on existing approaches for environment generation, and

then create an algorithm for the automatic creation of maps for In Verbis

Virtus. We will analyze the algorithm to find how to control its output and

understand its strengths and limits. Basing on this analysis, we will then

extend the algorithm to get more control on the generation process.

1.1 Outline

The thesis is organized as follows:



Introduction

In Chapter 2, we discuss the use of PCG in games. We present relevant ap-

plications, from early games to recent ones, highlighting the different problems

that PCG helped to solve. We then describe approaches for the generation of

environments, focusing in particular on indoor environments.

In Chapter 3, we present the game In Verbis Virtus, on which we focus in

this thesis. Several details of the setting and the gameplay are mentioned.

In Chapter 4, we describe in detail the algorithm we created for the gen-

eration of dungeon-like maps in In Verbis Virtus. We first give a general

presentation of our approach. Then we describe how we modeled architectural

elements such as rooms and corridors. Finally we show how the algorithm

places architectural elements to create maps.

In Chapter 5, we deal with the evaluation of maps. We first discuss relevant

applications of map evaluation. Then we describe the metrics we chose to

evaluate maps generated by our algorithm. We present an analysis of single

parameters of the algorithm, and finally an analysis of parameter combinations.

In Chapter 6, we describe extensions of our algorithm that we introduced

to get more control on the generation process. We then present an analysis of

the extensions.

1.2 Contributions

The thesis presents the following contributions:

• In Chapter 2, we give an overview of several approaches for the generation

of environments, with particular attention on indoor environments.

• In Chapter 3, we present the game In Verbis Virtus, giving details about

the setting, the gameplay and the tools used for the development.

• In Chapter 4, we describe in detail our algorithm for the generation of

dungeon-like maps. We show how the algorithm can create maps with

user-defined architectural elements, avoiding compenetrations of assets.

• In Chapter 5, we show an approach for the evaluation of maps, using

graph metrics. We give indications on how the parameters of our algo-

rithm affect generated maps.
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1.2 Contributions

• In Chapter 6, we describe extensions of our algorithm that give more

control on the generation process. We show how the extensions help to

solve bias problems of the original algorithm.
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Chapter 2

Procedural Content Generation

for Environment Creation

In this chapter, we first discuss the use of procedural content generation in

games. We then give an overview of the algorithms for the generation of

indoor and outdoor environments. At the end, we describe techniques for the

generation of outdoor environments and techniques for the generation of indoor

environments.

2.1 Procedural Content Generation

The earliest computer games were severely limited by memory constraints and

had a little space to store content, accordingly large game levels had to be

generated algorithmically on the fly. Procedural content generation (PCG)

was thus introduced as the tool for the automatic creation of content, through

algorithmic means.

Beneath Apple Manor 1, by Don Worth (1978), (Figure 2.1) was one of the

first games to use procedural generation. It was a role-playing game (RPG),

i.e. a genre where players control a character whose skills can be improved by

solving quests and killing enemies. Beneath Apple Manor featured procedu-

rally generated dungeons, i.e. underground environments consisting of rooms

and tunnels. When a new game was started levels were randomly generated,

so levels changed each game, greatly improving the replay value. The most

1http://worth.bol.ucla.edu/
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Figure 2.1: A screenshot of Beneath Apple Manor.

famous clone of Beneath Apple Manor was Rogue2, by A.I. Design (1980),

which originated the term roguelike to indicate this kind of games.

Elite3, by Acornsoft (1984), was a space trading simulation game set in a

universe containing 8 galaxies with 256 planets each. For each planet the posi-

tion, the name, the description and the price of commodities were procedurally

generated on the fly by an algorithm that used fixed parameter values. So,

unlike Beneath Apple Manor, in Elite the game world was persistent among

replays.

Other early games using PCG were The Seven Cities of Gold4 (Ozark

Softscape, 1985) (Figure 2.2), a strategy game in which the world map was

randomly generated, and Rescue on Fractalus! 5 (Lucasfilm Games, 1984) (Fig-

ure 2.3), a sci-fi flight simulator that used fractals to create a mountainous

environment.

Nowadays memory consumption is no longer a central issue. Hardware

2http://en.wikipedia.org/wiki/Rogue_(computer_game)
3http://www.iancgbell.clara.net/elite/
4http://en.wikipedia.org/wiki/The_Seven_Cities_of_Gold_(video_game)
5http://en.wikipedia.org/wiki/Rescue_on_Fractalus!
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Figure 2.2: A screenshot of Rescue on Fractalus!.

Figure 2.3: A screenshot of The Seven Cities of Gold.
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Figure 2.4: The city of Grand Theft Auto IV.

and software improvements, however, have raised the expectations of players

about the amount of available content, especially for AAA games, increasing

the amount of work required by designers. For example games of the Grand

Theft Auto6 series (Rockstar Games, 1996-2013) (Figure 2.4), feature large

cities created by hand by artists, that require a huge team and thus a huge

budget. Accordingly, nowadays PCG is widely used among developers to create

large amount of content with fewer designers.

For instance the RPG Diablo7, by Blizzard Entertainment (1996), has pro-

cedurally generated outdoor maps, dungeons and items, in a roguelike fashion.

These features are also present in its sequels Diablo II (2000) and Diablo III

(2012). Just Cause8 (Avalanche Studios, 2006), an action-adventure game, has

a large and varied group of tropical islands (Figure 2.5) created using procedu-

ral methods. Spore9 (Maxis, 2008), an evolution simulation game, uses PCG

extensively to create landscapes and creatures. Animations of the creatures

are created on the fly according to their shape, and even background music is

procedural. Minecraft10 (Mojang, 2009) is a sandbox game, i.e. large freedom

6www.rockstargames.com/grandtheftauto/
7http://us.blizzard.com/en-us/games/legacy/
8http://www.justcause.com/
9http://www.spore.com/

10https://minecraft.net/
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Figure 2.5: A screenshot of Just Cause.

is left to players and no explicit objective is given. Players can explore, mod-

ify the environment, fight enemies and craft items in a vast world randomly

generated at each new game.

Today several middlewares for procedural generation exist, for instance

CityEngine11, for the generation of urban environments; SpeedTree12, for the

generation of large and detailed forests. SpeedTree is widely used in AAA

games, for instance The Elder Scrolls IV: Oblivion13 (Bethesda Softworks,

2006) (Figure 2.6) and The Witcher 2 14 (CDProjekt, 2011).

2.1.1 Indoor and outdoor environments

PCG algorithms for indoor environments are very different from those for out-

door environments. For this reason we present them in different sections. In-

door environments can be described in terms of walls delimiting viable spaces.

Examples of indoor environments include the abstract maze of Pac-Man15, by

Namco (1980), (Figure 2.7); the natural caves of The Elder Scrolls V: Skyrim16,

11http://www.esri.com/software/cityengine/
12http://www.speedtree.com/
13http://www.elderscrolls.com/oblivion/
14http://www.thewitcher.com/witcher2/
15http://it.wikipedia.org/wiki/Pac-Man
16http://www.elderscrolls.com/skyrim
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Figure 2.6: A forest of The Elder Scrolls IV: Oblivion, created with the SpeedTree

tools.
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Figure 2.7: The maze of Pac-Man.

by Bethesda Softworks (2011), (Figure 2.8); the interior of modern buildings in

the Call of Duty17 series, by Infinity Ward (2003-2013) (Figure 2.9). Outdoor

environments are open and unrestricted spaces. Examples of outdoor environ-

ments include the cities of the Grand Theft Auto series (Figure 2.4), the forests

of The Elder Scrolls IV: Oblivion (Figure 2.6) and the galaxies of Elite.

2.2 Outdoor environments

In this section we discuss briefly relevant techniques for the generation of out-

door environments.

2.2.1 Cities

City generation consists in the creation of an urban area, and it deals mainly

with the generation of a road network and the creation of buildings that can

vary in function and architectural style.

17http://www.callofduty.com/
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Figure 2.8: A cave of The Elder Scrolls V: Skyrim.

Figure 2.9: The interior of a building of Call of Duty: Modern Warfare 3.
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Figure 2.10: An example of city generated with CityEngine

CityEngine

CityEngine, described by Parish and Müller [12], is a system that generates a

complete city starting from sociostatistical and geographical information. An

example city is shown in Figure 2.10.

Most of the input data is provided to the system as bidimensional image

maps, which can be drawn by hand or obtained by maps of existing urban

areas. The input data can be categorized in two classes: geographical maps

and sociostatistical maps. Geographical maps describe the elevation of the

terrain and the distribution of water and vegetation. Sociostatistical maps

contain information about population density, distribution of residential and

commercial zones, street patterns and maximal height of the buildings. Using

the input data, especially population density and road patterns, the system

builds the road network, composed by highways and streets. After the creation

of roads the city area results subdivided into small areas, called blocks. Each

block is in turn subdivided into lots, and in each lot a building is created. The

geometry of buildings is generated starting from an arbitrary ground plan and

applying transformations including extrusion, scale, move and branching.

2.2.2 Forests

Forest generation mainly deals with the problems of creating plant models

and placing them. Here we focus on this second problem. West [15] describes

methods to arrange plants through random scattering, with the constraint that

13
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there must be a minimum distance between plants. While these methods are

effective in particular contexts, they tend to produce a uniform distribution

that may look unnatural. Lane and Prusinkiewicz [8], on the other hand,

present two approaches able to create clustering in the distribution: local-to-

global and global-to-local.

Local-to-global

The first approach, named local-to-global, uses a set of rules to represent the

interactions between plants. Plants of different species are initially scattered

over the forest area. Then the simulation is started where the rules are applied.

Plants grow and can spread seeds around themselves, they can die if overshad-

owed by other plants or when they are too old. Each species have different

characteristics, such as growth speed and shade tolerance. Figure 2.11 shows

three stages of this algorithm.

Global-to-local

The second approach, named global-to-local, places the plants on the surface

according to a probability distribution. This distribution is initially uniform,

and it is modified each time a new plant is added. Each plant, according to

its species, deforms the probability distribution in a small surrounding area,

thus affecting the next placements.

2.2.3 Terrain

Terrains are often represented through height-maps, i.e. bidimensional grids of

elevation values. The following are methods for the generation of height-maps.

Mid-point displacement

This method, described by Miller [11], subdivides iteratively a randomly gen-

erated coarse height-map. The elevation of a new point is set to the average of

its neighbor points, plus a random offset. The range of the offset is decreased

at each iteration, according to a parameter that controls the roughness of the

resulting terrain.

14
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Figure 2.11: Three stages of the local-to-global forest generation algorithm, with

two species of plants.
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Figure 2.12: Seven octaves (noise functions) and the resulting Perlin noise.

Perlin noise

Perlin noise, originally described by Perlin [13], is a fractal noise generator.

It generates noise by summing a succession of noise functions with different

frequencies. An height map can be obtained using two-dimensional noise func-

tions. Each of these noise functions is called octave. This is because each

function have a frequency which is double the frequency of the previous one,

a property that also have octaves in music. Each noise function has a weight,

for terrain generation usually the higher the frequency, the less the weight.

The number of octaves used depends on the resolution needed for the result.

Figure 2.12 shows a set of octaves and the resulting Perlin noise.

Bitmap

This approach, proposed by Martin [9], takes as input a greyscale bitmap

image. This image represents a rough height-map that describes the desired

general features. The given height-map is smoothed using convolution18, Gaus-

18http://en.wikipedia.org/wiki/Convolution
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sian filtering19 or B-splines20, and the result is then converted to 3D terrain.

2.3 Indoor environments

We describe here algorithms for the generation of indoor environments,

grouped according to the approach they adopt. We focus on bidimensional

maps, but the same algorithms can be extended to generate tridimensional

maps. The groups of algorithms we present are: subdivision-based generators,

that partition a surface into distinct areas; graph-based generators, that repre-

sent maps using graphs; digger generators, that mimic the behavior of a digger

creating tunnels and rooms; uniform generators, that first create rooms and

then connect them with corridors; tile-based generators, that cover a surface

with tiles containing parts of the map; cellular automaton generators, that

create floor and walls from the cells of a cellular automaton; maze generators.

2.3.1 Subdivision-based generators

The techniques using a subdivision-based approach take as input a constrained

surface and return the same surface partitioned into distinct areas. The game

Frozen Synapse21, by Mode 7 Games (2011), uses an algorithm of this type to

generate levels.

Map generation in Frozen Synapse

Frozen Synapse is a turn-based strategy game, in which each player controls a

small team and has to eliminate all enemies. Maps are procedurally generated

to resemble floors of modern buildings. A screenshot of the game is show in

Figure 2.13. The generating algorithm22 subdivides the 2D floor area into

rooms whose width and height is in a predefined range. The subdivision is

rectilinear, that is all lines are perpendicular or parallel to each other. The

fact that all the walls are placed in a orthogonal way, however, is not a big

limitation for this game, being perfectly conceivable for modern buildings. The

19http://en.wikipedia.org/wiki/Gaussian_filter
20https://en.wikipedia.org/wiki/B-spline
21http://www.frozensynapse.com/
22http://www.desura.com/games/frozen-synapse/news/

frozen-synapse-procedural-level-generation

17



Procedural Content Generation for Environment Creation

Figure 2.13: A screenshot of Frozen Synapse.

(a) (b) (c) (d)

Figure 2.14: Steps for the generation of rooms in Frozen Synapse.

18
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(a) (b) (c) (d)

Figure 2.15: Steps for the placement of doors, windows and objects in Frozen

Synapse.

algorithm performs the following steps:

1. Starting from a rectangular area of the desired size, a random corner is

selected (Figure 2.14a).

2. A randomly sized room-shaped block is created from that corner (Fig-

ure 2.14b).

3. The rest of the area is partitioned into two rectangles (the cyan and blue

in Figure 2.14c).

4. The process is repeated recursively from step 1 for each rectangle ob-

tained in step 3, if it is large enough to contain new rooms ( Figure 2.14d).

5. The process stops when there are no more rectangles large enough.

After these steps are completed the resulting map consists of groups of

rooms adjacent to each other. A possible arrangement of rooms can be seen in

Figure 2.15a. The algorithm then adds doors, so that each room is accessible

from every point in the map, windows, through which units can see and fire,

and boxes, for cover. These are added performing the following steps:

1. For each group of rooms, starting from its top left room, a doorway is

created to each adjacent room. The process is repeated recursively for

each of these adjacent rooms, creating doorways to the rooms adjacent

to them, and so on. For each group of rooms at least one doorway to the

outside is also created. (Figure 2.15b)

2. More doors and windows are randomly added (Figure 2.15c).

19
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Figure 2.16: Example of production rules of a graph grammar for level generation.

3. Boxes for cover are randomly added. At this point the map is finished

(Figure 2.15d).

2.3.2 Graph-based generators

Indoor maps can be described using graphs, with nodes representing different

areas and edges representing the connections between them. However a major

problem of this approach is the physical placement of nodes inside a constrained

bidimensional area satisfying the connections defined by the graph.

The Dungeon Generation System

The Dungeon Generation System, described by Adams et al. [1], is an algo-

rithm for the generation of dungeons using graphs. The graph is generated by

applying graph grammar production rules [2]. An example of grammar graph

production rules is shown in Figure 2.16. Each node represents a room: the

Start node represents the room where the player spawns, while the End node

represents the goal room that the player has to reach to finish the level. Each

edge represents a doorway between the rooms it connects. The production rule

R1 creates a basic structure for the level from a Level node, with three rooms

in a row between the Start and End rooms. The rule R2 adds a new node

between two existing nodes, so it prolongs an existing branch of the graph.

The rule R3 adds a new node connected to a single existing node, so it can

create a new branch.

The graph generation process starts with a Level node and, at each step,

applies one of the production rules, thus modifying the graph. Examples of

steps is shown in Figure 2.17. The algorithm, at each step, evaluates the graph

with respect to several metrics. The considered metrics are the size of the level,

the difficulty and the fun-value. For each metric the desired range is given as

20
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Figure 2.17: Example of derivation of a graph using the production rules of Fig-

ure 2.16

an input parameter. The algorithm is based on one known as hill climbing23,

which is a heuristic approach to explore a state space. The algorithm chooses

the production rules to obtain a graph that satisfies the desired ranges. It is

not guaranteed to succeed, and a maximum number of attempts is specified.

After the graph is created, the algorithm places gameplay objects in the

pointless areas of the map. These are defined as areas that the player does not

have to visit to complete the level. A pointless area is made useful by placing

in its furthest away node a sufficient reward or a key. In the latter case the

related door must be placed in an obligatory passage towards the exit of the

level. Finally the algorithm adds more gameplay objects, taking into account

the desired difficulty and fun-value. The Dungeon Generation System does

not include methods to create a geometric description of the levels from the

graphs, which remains a major challenge for graph-based algorithms.

2.3.3 Digger generators

These algorithms mimic the behaviour of a digger that creates a system of

interconnected tunnels and rooms, starting from an area filled with solid ma-

terial. This method24 is used in the roguelike game Tyrant25, by Mike An-

23http://en.wikipedia.org/wiki/Hill_climbing
24http://www.roguebasin.roguelikedevelopment.org/index.php?title=

Dungeon-Building_Algorithm
25http://games.hughesclan.com/tyrant/#
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Figure 2.18: Example of a dungeon map from Shadow Island, generated using the

digger generator algorithm.

derson (2007). Figure 2.18 shows a map generated with this algorithm. The

algorithm works on a discrete representation of the map: the available area

is subdivided into square cells, called positions. Positions can contain floor,

which is walkable, or solid material, which cannot be traversed.

In the algorithm the term feature indicates a component of the map, e.g.

large room, small room, corridor, etc. A set of features must be passed as

input to the algorithm. Examples of features are shown in Figure 2.19. The

algorithm generates the map executing the following steps:

1. All the positions are filled with solid material.

2. A room, chosen from the defined features, is created in the center of the

map (Figure 2.20a).

3. A random wall is chosen randomly from the map. A wall is a solid

position adjacent to a floor position (not diagonally).
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(a) Small room (b) Corridor (c) Large room (d) Diamond room

Figure 2.19: Examples of features of the digger generator algorithm. Dark positions

represent solid material, while light positions represent walkable floor.

4. A new feature is chosen randomly from those given as input. Starting

from the wall position previously selected, the neighboring positions are

tested to check if the new feature can be placed without neither over-

lapping an already placed feature, nor exiting the border of the map

(Figure 2.20b). The checked area is one position bigger on every side

with respect to the new feature. This is because there must always be

at least one solid position between the features, to separate them.

5. If there is enough space for the new feature, it is placed in the map. The

previously selected wall is replaced by a door (Figure 2.20c).

6. The steps are repeated from 3, in order to add more features. The process

is stopped when a predefined end condition is met, e.g. when there is

no more space for new features, or a certain number of rooms has been

placed.

Features are always added linking them to a single floor position of maps.

For this reason the maps cannot have loops, so only tree-like maps can be

generated by this algorithm.

2.3.4 Uniform generators

These algorithms work in two phases: first, they place rooms; then they create

corridors to connect the rooms. This approach is mainly adopted for dungeons

in rougelike games, using a discrete representation of the map.

The rooms that can be placed are passed as input, like in the digger gen-

erator. The algorithm chooses one of them randomly and puts it in the map
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(a) The first room is placed. (b) The red area is scanned

to check if a corridor can be

placed.

(c) The corridor is added.

(d) The red area is scanned to

check if a small room can be

placed.

(e) The small room is added.

Figure 2.20: Steps of the digger generator algorithm. Red positions are tested to

check if the new feature can be added without overlapping other features, yellow

positions represent doorways.
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Figure 2.21: A screenshot of Rogue. Rooms are placed using a grid layout.

so that it does not overlap any other room; it keeps doing this until a certain

number has been placed, or there is not enough space for more rooms. Four

algorithms of this kind are described below.

Grid-based algorithm

The original Rogue used this algorithm26, an example of map is shown in

Figure 2.21. The positions of the map are partitioned in a grid layout, each

position of the grid is thus a square area composed of positions of the map.

Rooms are added inside empty positions of the grid. By doing this no overlap

check is needed, however the resulting arrangement is strongly affected by the

grid layout. Some of the grid positions may be left empty.

The corridors are made between rooms lying in neighboring positions of the

grid. At least enough corridors to connect all rooms are created. The corridors

are created with a Z shape, as can be seen in Figure 2.21, which can become

an L or I shape in particular conditions.

26http://roguebasin.roguelikedevelopment.org/index.php?title=Simple_Rogue_

levels
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Figure 2.22: A screenshot of Angband.

Random placement algorithm

This algorithm is used by the roguelike game Angband27 (1990). A screenshot

of the game is shown in Figure 2.22. When placing a new room a location

on the map is randomly selected. It is checked whether the room can be put

there, so that it does not cause any overlap. If there is enough space, the room

is placed, otherwise other attempts are made until a suitable position is found.

For each corridor that has to be created, a path is generated from the

origin room to the destination one. This is done through a random walk with

an higher probability to move towards the destination room, with respect to

other directions. The corridor is then built following this path. If two corridors

overlap at some point, they are merged at that point. The corridors obtained

can be winding, going in and out the same room multiple times and bend back

to themselves.
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(a) (b) (c) (d)

Figure 2.23: Examples of steps of the BSP-based dungeon generation process.

BSP-based algorithm

This method28 uses binary space partitioning (BSP)29 to recursively subdivide

the map area into rectangles. Starting from the whole map area it performs

a split choosing randomly the direction (horizontal or vertical) and the posi-

tion. By doing this two rectangular areas are obtained, called sub-dungeons.

For each of them a new random split is made and the process goes on re-

cursively, thus creating a BSP tree in which each node is a rectangular area

(Figure 2.23a). The process stops when all the rectangles corresponding to

the leaves of the tree have approximately the size of the given rooms. At this

point a room is placed inside each of these areas (Figure 2.23b). Due to the

partitioning of the map no overlap check is needed.

To build corridors the algorithm loops through all the leaves of the tree,

connecting each one to its sister (Figure 2.23c). If two rooms have face-to-face

walls an I shaped corridor is used, otherwise a Z shaped corridor is used. The

algorithm then goes up one level in the tree and repeats the process for the

parent sub-dungeons. This is repeated until the first two sub-dungeons are

connected (Figure 2.23d). Since connections are made following the BSP tree,

there cannot be loops in the map.

27http://rephial.org/
28http://doryen.eptalys.net/articles/bsp-dungeon-generation/
29http://en.wikipedia.org/w/index.php?title=Binary_space_

partitioning&oldid=542008108
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Figure 2.24: A map generated by the algorithm used in Tiny Keep. Rooms have red

positions, corridors have blue and white positions.

Separation steering behaviour

This algorithm30 is used by the 3D roguelike game Tiny Keep31 by Phigames

(2013). A map generated with this method is shown in Figure 2.24. It places

many rectangles of different size randomly in a small area, without caring

if they overlap. Then these rectangles are moved using a separation steering

behaviour [14] so that at the end of the process none of them overlaps anymore.

The gaps that remain between the rectangles are filled putting a 1x1 new

rectangle on each of the uncovered positions. Then the rectangles with width

and height above a specified threshold are marked as rooms, the other are used

later to build corridors.

To decide how to make connections a graph of all rooms’ center points is

30http://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dungeon_

generation_algorithm_explained/
31http://tinykeep.com/
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2.3 Indoor environments

Figure 2.25: Tiles used by the Inkwell Ideas Random Dungeon Generator34.

created using Delaunay triangulation32, then the minimum spanning tree33 of

the graph is calculated. Then all the edges of the minimum spanning tree are

selected, plus a certain percentage of the other edges, randomly chosen. For

each of the selected edges a straight or L shaped path is generated between

the two related rectangles. Any of the non-room rectangles that intersects the

paths is marked as corridor, the remaining unused rectangles are discarded.

By doing this the corridors obtained have twisty and uneven edges.

2.3.5 Tile-based approach

This approach uses Wang tiles theory, described by Cohen et al. [5], to compose

predefined fragments of map. Wang tiles can be modeled by equal-sized squares

with a color on each edge. These tiles can be arranged side by side on a regular

square grid so that abutting edges of adjacent tiles have the same color. For

map generation, such tiles can be defined as square areas containing a portion

of a map, e.g. a room. The edge constraints, instead of being about colors, are

about the map features that touch an edge. Each edge must match with an

edge of the same type. It is necessary to meet these constraints while arranging

the tiles to avoid discontinuities in the map. Figure 2.25 shows tiles that can

be used to generate dungeons. There are two kinds of edges: those with a

single corridor and those with two corridors.

32http://en.wikipedia.org/wiki/Delaunay_triangulation
33http://en.wikipedia.org/wiki/Minimum_spanning_tree
34http://www.inkwellideas.com/roleplaying_tools/random_dungeon/
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Figure 2.26: A set of tiles used in Diablo 3.

Figure 2.27: Possible instances of the same dungeon in Diablo 3.

Map generation in Diablo 3

The RPG game Diablo 3 uses a tile-based approach for the generation of maps,

which are dynamically built each time a new game is started. Not all the areas

of the game, however, are completely procedural: many of them mix static and

procedural content. Generally, statically defined areas are those important for

the plot, containing scripted events or ingame cinematics. Figure 2.26 displays

one of the sets of tiles used in the game. Figure 2.27 shows different generated

instances of the same dungeon; it can be noted that the map size can vary in

a rather wide range. Figure 2.28 shows an area of the game which is statically

defined, apart from the highlighted parts which are procedurally filled with

tiles.

Herringbone Tiles

When generating maps with Wang tiles an artifact can arise from the grid

layout. Edges are adjacent to each other in a straight line so, if they have

particular features, that straight line may be visible when zoomed out. To

solve this problem Barrett [3] proposes an approach which he calls herringbone

tiles. Herringbone tiles use rectangles with a horizontal-to-vertical ratio of 1:2

and 2:1. Figure 2.29 shows the herringbone pattern.
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2.3 Indoor environments

Figure 2.28: A map of an area of Diablo 3. Blue regions are procedurally filled using

tiles, while the rest is static.

Figure 2.29: The herringbone tile pattern.
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An advantage of herringbone tiling over square tiling is that, since the tile

edges are broken up by the herringbone pattern, the occurrence of artifacts

due to the alignment of edges is limited. Another possible solution to the

problem is to use hexagonal tiles. However herringbone tiling is more suited,

for example, for the generation of cities, where a rectangular layout is more

appropriate.

2.3.6 Cellular Automata

A cellular automaton35 consists of a regular grid of cells, each in one of a finite

number of states, such as on and off. At each iteration a fixed rule is applied,

determining the new state of each cell in terms of its current state and of the

current state of its neighbor cells. An application of cellular automata is to

generate cave-like structures. In the following we present an algorithm suited

to this purpose, described by Johnson et al. [7].

A cell-based representation of the map is used, each square cell can con-

tain either floor or rock. Starting from a grid full of floor cells, the 50% of

them, randomly selected, is filled with rock. The adopted rule is that, at each

iteration of the algorithm, a cell becomes rock if at least 5 of its 8 neighbors

are rock, otherwise the cell becomes floor. Intuitively, the rule is designed to

prune the sparse areas of the grid, that are those with isolated rock cells, and

to fill in the dense areas by patching up holes. The number of iterations has an

impact on the average width of the caves generated; on average, the higher the

number the wider the cave. Figure 2.30 shows the state of a grid after some

iterations of the algorithm. The resulting map can be conceived as a system

of caves.

One of the problems36 of this approach is that it is prone to generate

disconnected maps, i.e. maps with disconnected floor regions. One way to

deal with this problem is to tweak the initial percentage of rock, the rule

and the number of steps so that the size and amount of regions isolated from

the biggest floor region is statistically low. These isolated areas can then be

35http://en.wikipedia.org/wiki/Cellular_automaton
36http://roguebasin.roguelikedevelopment.org/index.php?title=Cellular_

Automata_Method_for_Generating_Random_Cave-Like_Levels
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(a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4

Figure 2.30: The state of a cellular automaton after n iterations. Rock cells are

white, while each isolated floor region has a different color. Wall cells, which are

rock cells with at least one floor neighbor, are red.

discarded. Another solution is to create floor paths to connect the disjoint

regions, even though this may lead to unnaturally looking corridors.

2.3.7 Mazes

A maze is a tour puzzle in the form of a complex branching passage through

which the solver must find a route. Mazes are a classic feature of roguelike and

adventure games. Since the player can remember their solution, by generating

them randomly at each new game the replay value is greatly improved.

To represent mazes it is often used a particular discrete representation, in

which the inside of positions is always walkable floor and walls are put on

the edges of the positions. Most maze generation algorithms produce perfect

mazes, i.e. mazes which have one and only one path from any point in the

maze to any other point. Therefore perfect mazes have no inaccessible sections,

no circular paths, no open areas. Figure 2.31 shows a perfect maze and a not-

perfect maze. A perfect maze can be made not-perfect by removing walls.

Growing tree algorithm

The growing tree algorithm is one of the most popular for perfect maze gen-

eration. It performs the following steps:

1. Initially a wall is put on every edge of the positions.

2. Let C be a list of positions, initially empty. A position is chosen at

random and it is added to C.
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(a) A perfect maze. (b) A not-perfect maze.

Figure 2.31: Two kinds of maze.

3. A position is chosen from C. One of the walls that are between the

position and an unvisited neighbor of that position is removed, and that

neighbor is added to C as well. If there are no unvisited neighbors, the

position is removed from C.

4. Step 3 is repeated until C is empty.

Figure 2.32 shows examples of steps of the algorithm. Results vary depending

on which policy is used to choose the position at step 2. If it is chosen the

most recently added position, the algorithm behaves similarly to the recursive

backtracking maze generation algorithm37. Instead, if the position is randomly

chosen, the algorithm becomes similar to Prim’s maze generation algorithm37.

2.4 Summary

In this chapter we have dealt with procedural content generation in games,

discussing how it have been used in past and how is used today. We have

made a distinction between indoor and outdoor environments and we have

described approaches for the generation of both.

37http://en.wikipedia.org/wiki/Maze_generation_algorithm
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(a) A random position is

added to C.

(b) An unvisited neighbor of

position 1 is added to C, the

adjacent wall is removed.

(c) An unvisited neighbor of

position 2 is added to C, the

adjacent wall is removed.

(d) After 6 iterations. (e) Position 9 has no unvis-

ited neighbors, it is removed

from C.

(f) An unvisited neighbor of

position 2 is added to C, the

adjacent wall is removed.

Figure 2.32: Examples of steps of the growing tree maze generation algorithm. C

is the list used internally by the algorithm. The most recently added policy is used

when choosing a position from C.
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Chapter 3

In Verbis Virtus

In this chapter, we describe In Verbis Virtus, a fantasy game in which players

cast spells using their actual voice. We give details about the plot and the

gameplay, discussing in particular spells, puzzles and monsters that are in the

game.

3.1 The game

In Verbis Virtus1 (IVV) is a first person game with a fantasy setting in which

players impersonate a wizard. The game uses a speech recognition system that

allows players to cast spells by pronouncing magic words with their own voice.

We started the project during the Videogame Design and Programming course

at the Politecnico di Milano and we are currently developing it at Indomitus

Games. In IVV players must make their way through a misterious temple,

from which they learn inceasingly powerful spells as they advance. The game

includes puzzle and combat situations: the temple hides many obtacles and

dangers, so players must use the spells to solve puzzles, overcome traps and

defeat enemies. IVV is developed with the Unreal Development Kit2 (UDK)

by Epic Games, a version of the Unreal Engine 3 made for indie game devel-

opment.

1http://www.inverbisvirtus.com/
2http://www.udk.com/
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Figure 3.1: The entrance of the temple of IVV.

3.2 Plot

IVV is set in a fantasy world. The protagonist of the game, Adam, is an arche-

ologist conducting researches on buildings and artifacts left by an misterious

ancient civilization. He has partecipated in many excavations, together with

his lover, Leif. Magic is unknown in the world Adam lives in, however his

studies lead him to think that the creators of those objects possessed super-

natural powers. A newly discovered archeological site reveals a huge amount

of objects and inscriptions, like Adam has never seen before. There is so much

material that he even finds clues about the location of a temple, which appears

to be the source of the extraordinary powers. Both him and Leif are overjoyed

for the discovery, which can lead to the solution of the mysteries about the

ancient civilization. However, after a short time, Leif dies for no apparent

reasons. Adam is shocked and, since he can’t find any other explanation, he is

convinced that the newly discovered artifacts are involved with Leif’s death.

In confusion and dispair, he hastily goes on the road to the temple, hoping to

find answers. His travel is extremely difficult, but in the end, in the midst of

a desert, he reaches his destination (Figure 3.1).

In the temple, Adam finds inscriptions that teach him the mystic knowledge

of its ancient constructors. He also comes in contact with Veritas (Figure 3.2),

a supernatural entity that guides the visitors of the temple. Thanks to Veritas
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Figure 3.2: A screenshot of Veritas, the supernatural entity that guides the visitors

of the temple.

and his studies as an archeologist, he understands very easily the language of

the constructors, and masters very quickly the arcane arts. Adam soon finds

that the temple also hides many obstacles and dangers, and he has to use his

new powers at his best to overcome them. Learning more and more powerful

spells, he makes his way into the depths, at the price of facing increasingly

dreadful difficulties. This, however, does not affect his resolution to uncover

the innermost secrets of the temple.

3.3 Gameplay

IVV takes place mainly in dungeon-like indoor environments. The protagonist

is controlled with mouse and keyboard, plus a microphone for speech recogni-

tion. Gameplay is based on the use of magic abilities: almost all interactions

with the environment are carried out using spells that the player must cast

with his own voice. Players acquire new spells as they progress in the game.

Challenges include puzzles and combats against monsters that try to kill the

protagonist. In each situation, players have to use the spells they learned up

to that point to get to a solution, or to defeat the enemies.
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3.4 Spells

As the title suggests (”in verbis virtus” is the latin for ”power is in words”),

the game’s main focus is on casting spells with voice. Speech recognition is

achieved with the CMU Sphinx 3 open source toolkit. Spells are cast pronounc-

ing magic formulas, which are revealed throughout the game. Players can

choose between different languages for the magic formulas, including english

and a fantasy language created specifically for the game. Spells have a formula

to cast them, and can have additional formulas that trigger secondary effects.

When spells are acquired, their descriptions are noted on character’s journal.

The journal also allows players to hear the right pronunciations of formulas.

The game features several spells such as:

• The light spell creates a light sphere that illuminate the nearby area.

• The light beam spell produces a ray of white light that can be filtered

through crystals to obtain different light colors (Figure 3.3). Light beams

are used to activate special objects, called light beam receptors.

• The command spell activates objects marked with special runes, called

marks of command.

• The telekinesis spell moves objects and can be used in combat to push

enemies.

• The teleport spell takes the character instantly to the location he is aim-

ing at.

• The mark of fire spell places fire runes on surfaces and monsters. An

additional formula makes fire runes explode.

• The shield spell creates a barrier around the character that blocks incom-

ing projectiles. An additional formula throws back blocked projectiles.

3.5 Puzzles

Puzzles in IVV are mainly situations where an obstacle, e.g. a closed door,

prevents players from advancing in the level. Players have to figure out how

3http://cmusphinx.sourceforge.net/
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Figure 3.3: The ray of the light beam spell, deflected by a crystal.

to use their spells to remove or bypass the obstacle. Very simple puzzles are

placed immediately after locations where new spells are acquired. Such puzzles

have the purpose to let players practice with the abilities they just learned.

For instance, near the location where the telekinesis spell is obtained, there is

a passage blocked by collapsed pillars; players have to use the telekinesis to

remove the pillars before they can go through it.

More difficult puzzles require more complex actions and the use of multiple

spells. For example, one of the featured puzzles requires to hit a light beam

receptor with a red beam to open a door; schemes of the puzzle are shown in

Figure 3.4. In this situation, there are three white crystals, which can be

moved with the command spell, and a red crystal, which is fixed. Players have

to position white crystals correctly so that, when they hit the red crystal with

the light beam spell, the resulting red beam is deflected toward the receptor,

opening the exit door. This puzzle tests thinking abilities of players, because

they have to figure out how to open the door. Once open, the door starts to

close slowly and players have to run to reach it before it closes completely.

While running, players have to quickly move the white crystal obstructing the

path to the door (Figure 3.4b) with the command spell, so spell casting skills

of players are also tested.
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(a) Initial situation (b) Correct positions of the crystals

Figure 3.4: Schemes of a puzzle. Figure (a) shows the initial situation. Figure (b)

shows the correct positions of white crystals to take a red beam to the receptor,

thus opening the exit door. White crystals are placed on statues bearing marks

of command, which can be moved along the shown trajectories with the command

spell.

Figure 3.5: Ingame screenshot of the situation shown in Figure 3.4b. White crystals

are in the correct position and the red light beam reaches the receptor.

42



3.6 Monsters

3.6 Monsters

The game includes several monsters, such as:

• The savage (Figure 3.6) is a small monster that uses as weapons wrist

blades and tentacles that are on its back. It is weak when alone, so it is

often found in groups.

• The beast (Figure 3.7) is a huge monster capable of deadly charges against

the player. It very strong and hard to kill.

• The winged glory is a statue animated by magic that flies thanks to

mechanical wings. It attacks throwing projectiles at the player.

• The ignis fatuum is a small ghost which resembles a ball of fire. It

can pass through walls and cannot be damaged. When it approaches,

players have to stand still and interrupt all spells, otherwise it deals

magic attacks.

For the navigation of monsters that move on the ground we use the navigation

mesh4 system included in UDK, which automatically generates representa-

tions of levels that are used for pathfinding. This system can only manage

planar representations of maps, so for the navigation of flying monsters we use

manually placed waypoints5.

3.7 Summary

We have described In Verbis Virtus, a fantasy game that uses a speech recog-

nition system to let players cast spells with their voice. We have described

the plot of the game and we have given details about the gameplay. Then,

we have described spells included in the game and we have given examples of

how they are used to solve puzzles. Finally, we have described monsters that

players have to face in the game.

4http://udn.epicgames.com/Three/NavigationMeshReference.html
5http://udn.epicgames.com/Three/UsingWaypoints.html
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Figure 3.6: A savage, a small monster that attacks the player with blades and

tentacles.

Figure 3.7: A beast, a huge monster capable of deadly charges against the player.
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Chapter 4

Floor plan generation

In this chapter, we describe our algorithm for the generation of dungeons floor

plans in In Verbis Virtus, that are subsequently used to create the actual in-

game maps. First, we outline our approach and describe its major features.

Then we describe our algorithm in detail discussing its four main phases.

4.1 Our approach

Our algorithm generates dungeons for In Verbis Virtus. It combines the digger

approach with the uniform approach and uses predefined architectural elements

to generate a map. In particular, it extends the digger and uniform approaches

into a continuous representation of the map. Our algorithm starts with one or

more architectural elements given as input. Similarly to the digger approach,

it repeatedly adds architectural elements making the map grow in a tree-

like fashion. Then, similarly to the uniform approach, it adds corridors to

transform the tree-like map into a more general topology.

4.2 Architectural element properties

Our algorithm employs several architectural elements to generate dungeon

maps. Figure 4.1 shows three basic architectural elements (a room and two

corridors) and highlights their properties. Each element is defined by the

following properties:



Floor plan generation

(a) Rectangular room (b) Linear corridor (c) Curved corridor

Figure 4.1: Basic architectural elements. Floor perimeter is black, shell perimeter

is orange, connectors of the same group have the same color.

The floor is a polygon that defines the walkable area of the architectural ele-

ment. Walls and doors of the architectural element are placed on the perimeter

of the floor. In Figure 4.1 floors are shown as black polygons.

The shell is a polygon that delimits the area covered by the assets of an ar-

chitectural element. The shell is bigger than the floor and covers it completely.

The assets are placed after the creation of the floor plan, but the area they

occupy must be known when defining the shell. The assets can be partially

or completely outside the floor area. The shell takes this into account and it

is used by the algorithm to avoid that the assets of an element compenetrate

another element. We do not calculate the shell so that it covers exactly the

area taken by the assets, it is enough an approximation that covers at least

that area. In Figure 4.1 shells are shown as orange polygons. The shell is

calculated by applying a polygon offset operation1 on the floor polygon.

Connectors are objects located on the perimeter of the floor where another

architectural element can be attached. Connectors have several properties,

shown in Table 4.1. The base property indicates the architectural element

the connector belongs to. The location property indicates the position of

the connector on the floor perimeter. The linkedTo property indicates the

connector this connector is linked to. It is set to None when the connector

is ”unused”, i.e. it is not linked to any connector. When two connectors are

1http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Straight_

skeleton_2/Chapter_main.html
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4.2 Architectural element properties

Property Type Description

base architectural element The architectural element the connector be-

longs to.

location 2D vector The position of the connector, must lie on the

perimeter of its base.

linkedTo connector or None The connector this connector is linked to, or

None if it is not linked.

requiredOffset float The distance by which the assets of the base

protrude beyond the side of the floor the con-

nector lies on.

normal 2D vector The outward normal vector of the floor perime-

ter in the location of the connector.

Table 4.1: Connector properties.

linked together their linkedTo properties are set accordingly; the two connec-

tors are thus ”used”. In the 3D map used connectors become doorways, while

unused connectors are ignored and walls replace them. All the doorways have

the same width. In Figure 4.1 connectors are represented as segments placed

on the perimeter. When a connector is used, no asset is placed in front of

it. The requiredOffset property must be set to the maximum distance by

which the assets protrude beyond the side of the floor the connector lies on, as

shown in Figure 4.2. requiredOffset is thus the minimum distance at which

another architectural element can be placed to avoid compenetrations of the

assets. It is usually set equal to the distance between the connector and the

perimeter of the shell. Even if the floor of an architectural element can be a

concave polygon, the connectors must be on the sides of the floor that lie on its

convex hull. This is to simplify the overlap checks needed when the algorithm

connects two architectural elements.

Groups of connectors form a partition of the set of connectors. Connectors

are grouped depending on their position on the perimeter of the floor, i.e.

connectors with similar positions are grouped together. In these architectural

elements connectors that lie on the same side of the floor are in the same group.

When the algorithm has to randomly choose a connector to attach a new

architectural element, it chooses a group first, and then one of its connectors.

This allows a more homogeneous selection of the connector than choosing
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Figure 4.2: A used connector of a rectangular room decorated with rock assets. The

double arrow indicates the requiredOffset distance of the connector.

uniformly between all connectors. If the random selection was made uniformly

among connectors, for instance for the linear corridor (Figure 4.1b) it would

be more likely to choose a lateral connector than a connector on one end.

4.2.1 Architectural element classes

We do not define architectural elements with entirely fixed characteristics;

instead, we define generators of architectural elements. Each generator creates

architectural elements of a class. Basic architectural element classes are:

The rectangular room is a room with rectangular shape, which has a

connector on each side (Figure 4.1a). Width and height of the rectangle, and

positions of the connectors on the sides are randomly chosen. It has four groups

of connectors, one for each connector. All connectors have a requiredOffset

equal to the distance between their location and the perimeter of the shell.

The linear corridor is a straight corridor, with a connector on each end and

a row of connectors on each lateral wall (Figure 4.1b). The length is randomly

determined. The lateral connectors have a requiredOffset equal to the distance

between their location and the perimeter of the shell. Instead, the connectors

on the two ends have a requiredOffset equal to zero, indicating that, if the

connector is used, the assets of the architectural element are guaranteed not

to protrude beyond the two ends of the floor. This fact proves useful when
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the algorithm connects architectural elements together. The shell, however,

goes beyond the two ends, because if an ending connector is not used a wall

is created over it, with its assets protruding beyond the floor perimeter. The

linear corridor has four groups of connectors, one for each side of the floor.

The curved corridor is an arc-shaped corridor with a connector on each

end (Figure 4.1c). Angle and radius of the arc are randomly determined. The

curved corridor has two groups of connectors, one for each connector. All

connectors have a requiredOffset equal to the distance between their location

and the perimeter of the shell.

4.3 Generating the plan

The algorithm starts with a set of architectural elements given as input and

generates the plan in four phases: (i) in the digging phase it adds architectural

elements in a way similar to the digger generator; (ii) in the additional connec-

tion creation phase it adds corridors to create more connections between the

elements; (iii) in the dead end pruning phase it eliminates a portion of dead

end corridors; (iv) in the isolated parts pruning phase it eliminates isolated

parts of the map. The parameters that the algorithm takes as input are shown

in Table 4.2.

4.3.1 Digging phase

The architectural elements in the initialElements parameter are placed in the

map. Even if externally defined as parameters, these architectural elements

must follow compenetrations and connections constraints. In this phase the

algorithm repeatedly adds architectural elements to the map. For this purpose,

it chooses a class from the probclasses parameter and generates an architectural

element of that class. Then it chooses an unused connector of an architectural

element of the map and finally tries to connect the new architectural element

to this unused connector. The connection process can fail, which happens

when the new architectural element, if placed, would overlap some element.

For this reason a backtracking approach is used to find a suitable way to add

architectural elements.
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Name Type Description

initialElements set of architectural

elements

As first operation, the algorithm puts these ar-

chitectural elements in the map. Cannot be

empty.

probclasses dictionary

(architectural

element class,

float)

Architectural element classes associated to

probability values.

probdegrees dictionary

(integer, float)

Degree values associated to probability values.

The degree of an element is the number of its

used connectors.

maxRooms integer Maximum number of rooms in the map.

boundary polygon Constrained area in which the map is built.

connWndstart float Between 0 and 1.

connWndend float Between 0 and 1.

connWnduse float Between 0 and 1.

connMaxDist float Maximum length of additional connections.

deadEnds% float Fraction of dead end corridors kept in the plan.

Table 4.2: Parameters of the plan generation algorithm.

Backtracking

The backtracking2 methodology gets to a candidate solution of a problem

through a sequence of choices. If the candidate solution is valid, then the

problem is solved, otherwise the solution is discarded and for each choice all

the other options are subsequently considered, from the last to the first choice.

Even a partial solution is discarded if it cannot lead to a valid complete solu-

tion.

In our case a candidate solution is composed by a new architectural ele-

ment and a connector to connect it to. The candidate solution is valid if the

new architectural element can be successfully connected. Otherwise, if the

connection process fails, the algorithm backtracks and tries other options of

the choices it made, thus obtaining new candidate solutions. Our algorithm

adopts the first valid solution it finds.

2http://en.wikipedia.org/wiki/Backtracking
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Choices of our algorithm

The choices our algorithm makes to determine how to connect the new archi-

tectural element are the following:

1. The class of the new architectural element, randomly chosen according

to the probclasses parameter, which is a dictionary that maps classes to

probability values.

2. A degree D (the degree of an architectural element is the number of

its used connectors). D is randomly chosen according to the probdegrees

parameter, which is a dictionary that maps degree values (integer type)

to probability values.

3. An architectural element E, randomly chosen among those that have

degree D. Some elements can have a degree that does not appear in

probdegrees, in that case they are considered as if they have the nearest

degree present in probdegrees. The algorithm backtracks if there are not

element with degree D.

4. A group of connectors, randomly chosen from the groups of connectors

of E. Only the groups without any used connector are considered in

this choice, the algorithm backtracks if the selected element has no such

groups.

5. A connector CE, randomly chosen from the selected group of connectors.

A new architectural element F of the selected class is generated. At this

point all the choices are made, so the algorithm tries to connect F to CE.

Linking connectors

We now describe the process to link two connectors, used to join a new ar-

chitectural element. To link a given connector CA to a connector CB, let A

and B be the bases respectively of CA and CB, A is placed in the map so that

CA overlaps CB and with a rotation such that the normals of CA and CB face

themselves, as shown in Figure 4.3. Then the following conditions are checked:

• The shell of A is completely inside the polygon specified by the boundary

parameter.
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Figure 4.3: A linear corridor linked to a curved corridor. Only used connectors are

shown.

• The shell of A does not overlap any other shell, apart from B’s shell.

If both conditions are met the linking process succeeds and CA and CB are set

as linked to each other. Otherwise the linking process fails and A is removed

from the plan.

To link a given connector CA to a connector CB ignoring the architectural

element Z, the same linking process just explained is used, except that in the

overlap check, beside B’s shell, Z’s shell is ignored as well.

Connecting the new architectural element

The algorithm tries to connect a connector CF of the new architectural element

F to the selected connector CE. If F is a corridor, CF is randomly chosen

among its ending connectors; otherwise it is randomly chosen among all the

connectors of the architectural element. If at least one of the requiredOffsets

of CE and CF is zero, then the algorithm tries to link CE and CF . If the

linking process succeeds, F becomes an element of the plan. Instead, if both

CE and CF have a non zero requiredOffset, they cannot be linked directly,

because compenetrations may arise. A linear corridor L, with length equal to

the sum of the two requiredOffsets, is created and one of its ending connectors

is linked to CE. CF is then linked to the other ending connector of L. By doing

this E and F are placed far enough from each other to avoid compenetrations

(Figure 4.4). If both linking processes succeed, L and F become elements of

the plan. Otherwise, if L fails to link, F is not placed; while if F fails to link, L

is removed from the plan as well. If F is not added to the plan, the algorithm

backtracks, changing the choices it made, until a new architectural element

is successfully connected. The digging phase adds new architectural elements

until at least one of the following conditions is met:
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4.3 Generating the plan

Figure 4.4: The result of connecting two rooms together: a linear corridor is placed

between them to avoid compenetrations of the assets. Only used connectors are

shown.

• The plan have a number of rooms equal to the maxRooms parameter.

• The backtracking process tries all options, but a new architectural ele-

ment cannot not be added.

The latter condition is usually met when there is no more space in the boundary

to add a new architectural element.

4.3.2 Additional connections creation phase

The digging phase adds architectural elements and connect them to a sin-

gle element. For this reason, digging cannot create loops. Moreover if

initialElements contains disconnected architectural elements, the digging

phase cannot connect them. Unlike the digging phase, the additional con-

nection creation phase adds corridors connecting two elements.

The additional connection creation phase first creates a list of all the un-

ordered pairs of unused connectors of the elements. Then the list is sorted with

respect to the shortest path distance between the connectors of each pair. For

this purpose the algorithm builds a graph of the connectors (see Table 4.3),

then calculates the shortest path distances using Dijkstra’s algorithm3. A win-

dow of the ordered list (i.e. a contiguous portion of the list) is then selected

3http://en.wikipedia.org/wiki/Dijkstra’s_algorithm

53



Floor plan generation

The graph of connectors Gconn of a map M is created performing the following

steps:

1. Let Gconn be an empty graph.

2. For each architectural element E of M :

(a) For each used connector C of E a node NC is added to Gconn.

Edges are created so that all these nodes are connected to each

other. Each edge (NA, NB) is set a weight equal to the euclidean

distance between connectors A and B.

3. For each pair (A,B) of linked connectors of M , an edge (NA, NB) with

null weight is added to Gconn.

Table 4.3: Procedure to create the graph of connectors.

and some of the pairs in the window are randomly chosen. The parameters

connWndstart and connWndend indicate the start and the end of the window,

with respect to the length of the list. The parameter connWnduse indicates

the fraction of the pairs in the window to randomly choose. For each of the

chosen pairs, if the euclidean distance between the two connectors is lower

or equal than connMaxDist, then the algorithm tries to create a connection

between them. The following steps are performed to join the two connectors

(see Figure 4.5):

1. Let C1 and C2 be two connectors and F1 and F2 their bases.

2. If C1 has a non zero requiredOffset, a linear corridor with length equal

to the requiredOffset is linked to it, as shown in Figure 4.5b. In that

case, let C ′1 be the unused ending connector of the new linear corridor,

otherwise let C ′1 be equal to C1. If the linking fails, the new corridor is

removed and the process is aborted.

3. The same operations done for C1 in the previous step are done for C2,

thus C ′2 is defined similarly to C ′1.

4. Two curved corridors are linked respectively to C ′1 and C ′2, ignoring re-

spectively L1 and L2. The arrangement of these two corridors is shown

in Figure 4.5c. These two curved corridors have minimum radius and

angle such that their unused connectors have normals that lie on the
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same line, but have opposite verse. If the linking fails, the process is

aborted and the corridors linked in the previous steps are removed from

the plan. The process is aborted even if the angle of at least one of the

two corridors is grater than 90 degrees. This is to simplify the checks

needed to avoid overlap between architectural elements. Let C ′′1 and C ′′2

be the two unused connectors of the new curved corridors.

5. A linear corridor is linked to C ′′1 and C ′′2 , as shown in Figure 4.5d. If

the linking fails the process is aborted and the corridors linked in the

previous steps are removed from the plan.

If the procedure terminates without a failure, the result is a sequence of corri-

dors connecting C1 to C2 (Figure 4.5d).

4.3.3 Dead end pruning phase

This phase removes a portion of dead ends from the plan, i.e. corridors with

degree 1, by performing the following steps:

1. Given the number of dead ends ND, we compute the number of dead

ends to keep as NK = deadEnds% ×ND.

2. A set K is created randomly choosing NK dead ends.

3. Dead ends that are not in K are removed from the plan.

4. Corridors that were linked to the removed dead ends may have become

dead ends. Step 3 is repeated until there are no dead ends to remove.

After the execution, only the dead ends in K are still in the plan. An example

of the process is show in Figure 4.6.

4.3.4 Isolated parts pruning phase

If the plan has disconnected parts, the algorithm keeps the biggest part (i.e.

the one with the greatest area, calculated summing the areas of the floors of

its elements) and removes the other parts.
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(a) A and B are the two connectors to be

joined.

(b) A linear corridor is linked to A,

which have a non zero requiredOffset.

It is not needed for B, which have a

requiredOffset equal to zero.

(c) Two curved corridor are linked to B

and C so that their unused connectors are

facing each other.

(d) A linear corridor is connected to D

and E.

Figure 4.5: Steps of the creation of an additional connection.
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4.3 Generating the plan

(a) Initial plan. (b) After the first dead end removal.

(c) After the second dead end removal. (d) After the fourth dead end removal, there

are no more dead ends to prune.

Figure 4.6: Steps of the dead end pruning phase. Dead ends to keep are yellow, dead

ends to remove are red.
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4.4 Summary

In this chapter, we have described our algorithm for the generation of dun-

geons floor plans in In Verbis Virtus. First we have outlined our approach,

which combines the digger approach with the uniform approach and uses a

continuous representation of the map. Then we have presented architectural

elements, which are used by the algorithm to generate the map. Finally we

have described our algorithm in detail discussing its four main phases.
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Chapter 5

Evaluation of floor plans

In this chapter, we briefly discuss relevant applications of map evaluation.

Then, we introduce the metrics we used to analyze the floor plans generated

by our algorithm. Finally, we describe the evaluation procedure we applied to

the generated maps, and we show the results.

5.1 Map evaluation

To evaluate maps with respect to desired features, it is crucial to choose

suitable measures. McGuinness [10] defined several metrics to analyze maps

created by different generators. He showed that representation choice in au-

tomatic map creation influences the features of generated maps. To compare

algorithms using different representations, he collected data from generated

maps, including the number of rooms, the average size of rooms, the number

of dead ends, the average length of dead ends. He discovered that different

representations are good for creating maps with specific characteristics.

Apart from McGuinness [10], another method to evaluate maps are heat

maps1, which are spatial visualizations of measures often used to represent

player behaviour in maps. A common way to create heat maps is to subdivide

the map space in a grid and to keep track of the value of the desired feature

in each cell, cells are then colored depending on these values. Heat maps

are widely used to design maps for multiplayer first person shooter games.

Commonly used features include the number of kills and deaths (Figure 5.1),

1http://blog.gameanalytics.com/blog/heatmapping.html
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Figure 5.1: Heat map of a multiplayer map of Halo 3 by Bungie Studios (2007),

representing player death events. Red indicates a high death frequency, blue a small

frequency.

players passage frequency, weapon usage. Heat maps are used to check if maps

are played as intended by design, allowing to identify, for instance, bottlenecks

and unused areas.

Güttler and Johansson [6] examined maps for first person team-based mul-

tiplayer games, proposing guidelines for the creation of maps that are enter-

taining and fair for all players. They focused on the paths available to reach

objectives, which determine collision points, i.e. points in the map where teams

are most likely to clash. The placement of collision points greatly influences

tactical choices of players and the fairness of maps.
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5.2 Floor plan graph

The complete graph GC of a map M is created performing the following steps:

1. Let GC be an empty graph.

2. For each architectural element E in M , a node NE is added to GC .

3. For each architectural element E in M :

(a) For each used connector C of E:

i. Let F be the architectural element linked to C. An edge

from NE to NF is added to GC , if not already present. The

weight of the edge is set to the euclidean distance between

the centers of the floors of E and F .

Table 5.1: Complete graph creation process.

5.2 Floor plan graph

To analyze the dungeon floor plans generated by our algorithm, we trans-

form plans into graphs. Nodes correspond to architectural elements of the

map, edges correspond to connections between architectural elements and edge

weights correspond to distances between the centers of the architectural ele-

ments. Figure 5.2a shows a map and its complete graph, while Table 5.1

describes the creation of complete graphs.

From the complete graph we also generate a simplified graph by merging

neighboring nodes with degree 1 and 2 into one node, plus setting all edge

weights to 1. Thus, in the simplified graph a node can correspond to more

elements. Figure 5.2b shows a map and its simplified graph, while Table 5.2

describes the creation of simplified graphs.

To evaluate the floor plans we generate, we tested several metrics, the

most informative ones turned out to be: (i) degree, (ii) radius, (iii) closeness

centrality, (iv) current flow closeness centrality, (v) random walk closeness

centrality, (vi) betweenness centrality. The degree of a node is the number

of its incident edges (i.e. the number of used connectors of the architectural

element). The radius of a graph is calculated as the minimum eccentricity2

of the nodes of the graph (the eccentricity of a node i is the greatest distance

between i and any other node). The closeness centrality3 (CC) of a node

2http://mathworld.wolfram.com/GraphEccentricity.html
3http://en.wikipedia.org/wiki/Centrality#Closeness_centrality

61



Evaluation of floor plans

The simplified graph GS is created from the complete graph GC , performing

the following steps:

1. GC is copied to GS .

2. If GS has a pair of neighboring nodes NI and NI with degree 1 or 2, the

next step is executed; otherwise the process is terminated.

3. Let NX and NY be the other neighbors respectively of NI and NJ . NI

and NJ are removed from GS .

4. A node NK is added to GS . Two edges (NX , NK) and (NK , NY ) are

also added, with their weights both equal to 1.

5. The process is repeated from Step 2.

Table 5.2: Simplified graph creation process.

(a) Complete graph (b) Simplified graph

Figure 5.2: The complete graph and the simplified graph of a map. Solid dots

are nodes corresponding to a single architectural element, hollow dots are nodes

corresponding to more than one architectural element.
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5.2 Floor plan graph

(a) complete graph (b) simplified graph

Figure 5.3: A map with colors representing the CC metric.

(a) complete graph (b) simplified graph

Figure 5.4: A map with colors representing the CFCC metric.

(a) simplified graph

Figure 5.5: A map with colors representing the RWCC metric.
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(a) complete graph (b) simplified graph

Figure 5.6: A map with colors representing the BC metric.

i indicates how fast, on the average, a player in i can reach other nodes,

assuming that the player always selects shortest paths when navigating from i

to any other node. Figure 5.3 shows a map with colors representing CC. The

CC of a node i in a graph G is the reciprocal of the average distance from all

other nodes:

CC(i) =
size(G)− 1∑

j∈G d(i, j)

where size(G) is the number of nodes in G, and d(i, j) is the distance between

node i and node j (calculated as the shortest path distance). Current flow

closeness centrality [4] (CFCC) is a variant of CC that considers nodes easier

to reach if there are more paths to them. CFCC models the graph as an

electrical network in which edges have a resistance equal to their weights.

Figure 5.4 shows a map with colors representing CFCC. The CFCC of a node

i is:

CFCC(i) =
size(G)− 1∑

j∈G r(i, j)

where r(i, j) is the effective resistance between node i and node j. Another

variant of CC is random walk closeness centrality4 (RWCC), that assumes that

the player moves randomly when trying to reach a node. RWCC describes the

average speed with which randomly walking processes reach a node from other

nodes of the graph. Random walk processes start from a node and move from

node to node along edges, choosing them randomly. We consider RWCC only

for simplified graphs. Figure 5.5 shows a map with colors representing RWCC.

4http://en.wikipedia.org/wiki/Random_walk_closeness_centrality
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Given a weighted graph, the transition matrix M of a random walk process is

defined. The mij element of M is the probability that the random walk, from

node i, proceedes directly to node j:

mij =
wij∑n
j∈G wij

where wij is the weight of the edge (i, j), if it exists; otherwise it is 0. The

mean first passage time (MFPT) from a node i to a node j is the average

number of steps it takes for a random walk process to reach node j from node

i for the first time:

MFPT (i, j) =
∑
k 6=j

((I −M−j)
−2)ikmkj

where M−j is a transformation of M obtained by deleting its jth row and

column. The RWCC of a node i is the reciprocal of the average mean first

passage time to that node:

RWCC(i, j) =
size(G)∑

j∈GMFPT (i, j)

We consider RWCC only for simplified graphs, since in complete graphs edge

weights represent distances between nodes, which are not related to transition

probabilities. The betweenness centrality5 (BC) of a node indicates how often

a player crosses it while navigating between two other nodes. Similarly to CC,

BC only considers shortest paths. BC is normalized by 2
(size(G)−1)(size(G)−2) .

Figure 5.6 shows a map with colors representing BC. The BC of a node i is:

BC(i) =
∑

j 6=i 6=k∈G

p(j, k|i)
p(j, k)

2

(size(G)− 1)(size(G)− 2)

where p(j, k) is the number of shortest paths from node j to node k, and

p(j, k|i) is the number of these shortest paths that pass through i (without

considering paths having i as an endpoint).

5.3 Evaluation of single parameters

As the very first step, we evaluated how the single parameters of our algorithm

(see Table 4.2) affected the generated maps. For each parameter P under eval-

uation, we select a set of values SV ; then, for each value V in SV , we generate

5http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
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Property Value

initialElements A rectangular room.

probclasses Rectangular room: 25%

Linear corridor: 37.5%

Curved corridor: 37.5%

probdegrees 1: 0.01%

2: 0.99%

3: 99%

maxRooms 10

boundary None

connWndstart 0

connWndend 1

connWnduse 1

maxConnDist 10 times the width of connectors.

deadEnds% 0

Table 5.3: Default values of parameters of our map generation algorithm.

1000 maps setting P to V , while setting other parameters to the default values

shown in Table 5.3. Default values are set as follows: the initialElements pa-

rameter is set to start the generation with a rectangular room; probclasses gives

a 25% probability to rectangular rooms and a 75% probability to corridors;

probdegrees gives a 99% probability to architectural elements with degree 3, a

0.99% probability to degree 2 and a 0.01% probability to degree 1, thus there

is an high chance that new elements are attached to elements with higher

degree; maxRooms is set to 10; boundary in None, i.e. map growth is not

constrained; connWndstart is 0, connWndend is 1 and connWnduse is 1, so the

additional connection creation phase adds the maximum number of connec-

tions; deadEnds% is 0, i.e. all dead ends are removed from maps.

5.3.1 Evaluation of probclasses

The probclasses parameter is a dictionary that associates architectural elements

classes to probabilities. It is used in the digging phase to randomly choose

classes of new architectural elements. To test the influence of probclasses we

considered 5 probclasses values and we generated 5 sets of 1000 maps each.

The first set (Sr10,c90) was generated giving a 10% probability to rooms and

a 90% probability to corridors; probabilities used for each set are shown in
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Set Rectangular

room probability

Linear corridor

probability

Curved corridor

probability

Sr10,c90 10% 45% 45%

Sr25,c75 25% 37.5% 37.5%

Sr50,c50 5% 25% 25%

Sr75,c50 75% 12.5% 12.5%

Sr90,c10 90% 5% 5%

Table 5.4: Architectural element class probabilities used to generate map sets for

the evaluation of probclasses.

Given an ordered set of values x1 ≤ x2 ≤ · · · ≤ xN with respective weights

w1, w2, . . . , wN , the ith weighted quartile qi is equal to the value xj such as

Sj−1 < 0.25 · i · SN ≤ Sj

where Sn =
∑n

k=1 wk

Table 5.5: Definition of weighted quartiles.

Table 5.4. Figure 5.7 shows maps of the generated sets. As the corridor

probability decreases, there are less corridor placed by the digging phase; in

the map from Sr90,c10 are present only corridors needed to separate rooms

and corridors added by the additional connection creation phase. As a result,

smaller corridor probabilities tend to produce smaller maps. Figures from 5.8

to 5.13 show boxplots6 of the considered metrics for complete and simplified

graphs. Boxplots of complete graphs show weighted quartiles (calculated as

shown in Table 5.5), using as weights the floor area of architectural elements,

while boxplots of simplified graphs show non-weighted quartiles.

6http://en.wikipedia.org/wiki/Box_plot
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(a) Sr10,c90 (b) Sr25,c75

(c) Sr50,c50 (d) Sr75,c25

(e) Sr90,c10

Figure 5.7: Maps generated for the evaluation of probclasses without additional con-

nections. Colors indicate CFCC of complete graphs.
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(a) degree, complete graph (b) degree, simplified graph

Figure 5.8: Boxplots of the degree metric for the evaluation of probclasses.

(a) radius, complete graph (b) radius, simplified graph

Figure 5.9: Boxplots of the radius metric for the evaluation of probclasses.

(a) CC, complete graph (b) CC, simplified graph

Figure 5.10: Boxplots of the CC metric for the evaluation of probclasses.
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(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 5.11: Boxplots of the CFCC metric for the evaluation of probclasses.

(a) RWCC, simplified graph

Figure 5.12: Boxplots of the RWCC metric for the evaluation of probclasses.

(a) BC, complete graph (b) BC, simplified graph

Figure 5.13: Boxplots of the BC metric for the evaluation of probclasses.
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As regards the degree metric, it is shown no difference between the sets,

for both complete and simplified graphs. The radius of graphs decreases along

with the corridor probability, since the size of produced maps also decreases.

CC, CFCC and RWCC increase as the map size decreases, because smaller

maps require shorter paths to navigate between architectural elements. Little

difference is shown between Sr50,c50, Sr75,c25 and Sr90,c10 in map plans and

boxplots, so room probabilities above 50% can be avoided for map generation.

5.3.2 Evaluation of probdegrees

The probdegrees parameter is a dictionary that associates degree values to prob-

abilities. It is used in the digging phase to choose randomly the degree (i.e.

the number of used connectors) of the architectural elements to which attach

new architectural elements. To test the influence of probdegrees we considered

5 probdegrees values and generated 5 sets of 1000 maps each. Maps of the first

set (Slow100) were generated giving probabilities with a ratio of 100 to degrees

from 1 to 3: a 99% probability to architectural elements with degree 1, a 0.99%

probability to elements with degree 2 and 0.01% probability to elements with

degree 3. Other sets were generated giving other ratios to these probabilities

(see Table 5.6). Figure 5.14 shows maps of the generated sets. Favoring

low degree values, the generated maps tend to be more linear, while favoring

high degree values maps tend to be more branched. Figures from 5.15 to 5.20

show boxplots related to generated sets. The radius tends to be higher for

Slow100 than other sets, since in linear maps central architectural elements have

high eccentricity. Also BC of complete graphs is higher for Slow100, because

in linear maps there are few possible paths, so architectural elements have

Set Degree 1 probability Degree 2 probability Degree 3 probability

Slow100 99% 0.99% 0.01%

Slow4 76% 19% 5%

Suniform 33% 33% 34%

Shigh4 5% 19% 76%

Shigh100 0.01% 0.99% 99%

Table 5.6: Degree probabilities used to generate map sets for the evaluation of

probdegrees.
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(a) Slow100 (b) Slow4

(c) Suniform (d) Shigh4

(e) Shigh100

Figure 5.14: Maps generated for the evaluation of probdegrees. Colors indicate CFCC

of complete graphs.
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(a) degree, complete graph (b) degree, simplified graph

Figure 5.15: Boxplots of the degree metric for the evaluation of probdegrees.

(a) radius, complete graph (b) radius, simplified graph

Figure 5.16: Boxplots of the radius metric for the evaluation of probdegrees.

many shortest paths crossing them. CC and CFCC increase from Slow100 to

Shigh100, since in branched maps elements are more packed together than in

linear maps, so more additional connections are created, leading to shorter

distances between elements. It can be noted that in the boxplots there is

almost no difference between Suniform, Shigh4 and Shigh100, which means that,

to control our algorithm’s output, it is pointless to consider probability ratios

above that of Suniform.

73



Evaluation of floor plans

(a) CC, complete graph (b) CC, simplified graph

Figure 5.17: Boxplots of the CC metric for the evaluation of probdegrees.

(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 5.18: Boxplots of the CFCC metric for the evaluation of probdegrees.

(a) RWCC, simplified graph

Figure 5.19: Boxplots of the RWCC metric for the evaluation of probdegrees.
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(a) BC, complete graph (b) BC, simplified graph

Figure 5.20: Boxplots of the BC metric for the evaluation of probdegrees.

We also tested the influence of probdegrees in the case that no connec-

tions are added in the additional connection creation phase, thus all gen-

erated maps have a tree-like structure. We considered 5 sets of maps

(Snc
low100, S

nc
low4, S

nc
uniform, S

nc
high4, S

nc
high100) generated using the same parameters

as in the evaluation of probdegrees with default parameters (Table 5.6), except

for the connWnduse parameter, which is set to 0. Figure 5.21 shows maps of

the generated sets. Figures from 5.22 to 5.27 show boxplots related to the

generated sets. Maps in Snc
low100 tend to be linear, so in complete graphs many

nodes have degree 2. For the degree metric of simplified graphs of all sets, the

first and second quartiles are 1; this is because many nodes in the tree-like

complete graphs are merged into a single leaf node. For the radius metric,

complete graphs of Snc
low100 have values higher than other sets, while simplified

graphs of the same set have values lower than other sets. This is because

simplified graphs of linear maps are very small compared to their complete

graphs. For the same reason, CC, CFCC and RWCC metrics of complete

graphs of Snc
low100 have values higher than other sets, while simplified graphs

of the same set have values lower than other sets. The first two quartiles of

BC of simplified graphs are 0 for all sets, because tree-like graphs have many

leaf nodes, which have null BC since they are not crossed by any shortest

path. Instead, non-leaf nodes are crossed by many shortest paths, so the third

quartile of the same metric have high values. Since linear maps have very small

simplified graphs, RWCC is very high for Snc
low100. CFCC of complete graphs

of all groups is lower than the case with additional connections (Figure 5.18a),

75



Evaluation of floor plans

(a) Snc
low100 (b) Snc

low4

(c) Snc
uniform (d) Snc

high4

(e) Snc
high100

Figure 5.21: Maps generated for the evaluation of probdegrees without additional

connections. Colors indicate CFCC of complete graphs.
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(a) degree, complete graph (b) degree, simplified graph

Figure 5.22: Boxplots of the degree metric for the evaluation of probdegrees without

additional connections.

(a) radius, complete graph (b) radius, simplified graph

Figure 5.23: Boxplots of the radius metric for the evaluation of probdegrees without

additional connections.

while CC is lower only for Snc
low100 and Snc

low4. Thus, we suggest that shortest

paths between architectural elements (which determine CC) are shortened by

additional connections only in little branched maps.
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(a) CC, complete graph (b) CC, simplified graph

Figure 5.24: Boxplots of the CC metric for the evaluation of probdegrees without

additional connections.

(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 5.25: Boxplots of the CFCC metric for the evaluation of probdegrees without

additional connections.
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(a) RWCC, simplified graph

Figure 5.26: Boxplots of the RWCC metric for the evaluation of probdegrees without

additional connections.

(a) BC, complete graph (b) BC, simplified graph

Figure 5.27: Boxplots of the BC metric for the evaluation of probdegrees without

additional connections.
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Finally, we tested the influence of probdegrees in the case that the

polygonal room architectural element (see Figure 5.28) is used, in ad-

dition to basic architectural elements. We generated 5 sets of maps

(Sp
low100, S

p
low4, S

p
uniform, S

p
high4, S

p
high100) using the same parameters as in

the evaluation of probdegrees with default parameters (Table 5.6), except for

the probclasses parameter, which includes the polygonal room class (Table 5.7).

Figure 5.29 shows maps of the generated sets. Figures from 5.30 to 5.35 show

boxplots related to the generated sets. With respect to sets generated without

polygonal rooms (Figure 5.20), the quartiles of the degree metric of complete

graphs are higher for all sets apart from Sp
low100. This is due to the presence

of polygonal rooms, which have more connectors than rectangular rooms (on

average) and more area than corridors. This increase of degree values does not

happen for simplified graphs, because the area of architectural elements is not

considered. For other metrics no significant difference is shown with respect

to sets generated without polygonal rooms. Thus, we suggest that the use of

polygonal rooms, while affecting the appearance of the map, does not change

the overall length and number of paths between architectural elements.

Element class Probability

Rectangular room 12.5%

Polygonal room 12.5%

Linear corridor 37.5%

Curved corridor 37.5%

Table 5.7: Classes and probabilities set in the probclasses parameter, used to generate

map sets for the evaluation of probdegrees with polygonal rooms.
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5.3 Evaluation of single parameters

Figure 5.28: Examples of polygonal room architectural elements. Floors are black,

shells are yellow, connectors are blue. Floors and shells of polygonal rooms are

regular polygons, the number of sides is chosen randomly in the range [3, 8]. The

length of the sides is also random. A connector is placed in the middle of each side.
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(a) Sp
low100 (b) Sp

low4

(c) Sp
uniform (d) Sp

high4

(e) Sp
high100

Figure 5.29: Maps generated for the evaluation of probdegrees with polygonal rooms.

Colors indicate CFCC of complete graphs.

82



5.3 Evaluation of single parameters

(a) degree, complete graph (b) degree, simplified graph

Figure 5.30: Boxplots of the degree metric for the evaluation of probdegrees with

polygonal rooms.

(a) radius, complete graph (b) radius, simplified graph

Figure 5.31: Boxplots of the radius metric for the evaluation of probdegrees with

polygonal rooms.
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(a) CC, complete graph (b) CC, simplified graph

Figure 5.32: Boxplots of the CC metric for the evaluation of probdegrees with polyg-

onal rooms.

(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 5.33: Boxplots of the CFCC metric for the evaluation of probdegrees with

polygonal rooms.
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(a) RWCC, simplified graph

Figure 5.34: Boxplots of the RWCC metric for the evaluation of probdegrees with

polygonal rooms.

(a) BC, complete graph (b) BC, simplified graph

Figure 5.35: Boxplots of the BC metric for the evaluation of probdegrees with polyg-

onal rooms.
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5.3.3 Evaluation of connWndstart

To test the influence of connWndstart we created 5 sets of 1000 maps each. The

first set Snear0 was generated setting connWndstart to 1, so no connections are

added in the additional connection creation phase. The second set Snear25

was generated setting connWndstart to 0.75, so the algorithm tries to add the

25% of nearest connections (i.e. it joins only close connectors, so it creates

small loops). Sets Snear50 and Snear75 were generated setting connWndstart

respectively to 0.5 and 0.25, thus trying to create the 50% and 75% of nearest

connections. Set Snear100 was generated setting connWndstart to 0, so the

algorithm tries to create the maximum number of connections. Figure 5.36

shows maps of the generated sets. Maps of Snear0 have no additional connec-

tions, so they have a tree-like structure. Maps of Snear25 have few connections,

created between unused connector that are close in the map. Boxplots of

the considered metrics are shown in figures from 5.37 to 5.42. The first two

quartiles of BC of Snear0 and Snear25 are 0, since their maps of Snear0 are tree-

like and maps of Snear25 only have small loops, so there is a relevant number

of nodes which are not crossed by any path. CC of simplified graphs is greater

for Snear0 than other sets. This is because maps in Snear0 have no additional

connection, so their simplified graphs have fewer nodes than other sets; since

in simplified graphs distances between neighboring nodes are all equal, in small

graphs paths between nodes are shorter than in large graphs, so CC is bigger

for nodes in smaller graphs. Instead, CC of complete graphs is similar for all

sets; we suggest that this is because the creation of additional connections,

while shortening distances between architectural elements, also increase the

size of the map, thus the two effects tend to compensate. CFCC of com-

plete graphs is similar for Snear0 and Snear25, because in Snear25 the additional

connections created between close connectors does not produce new paths be-

tween far architectural elements; Snear50, Snear75 and Snear100 have increasingly

higher values because of the increasing number of additional connections they

create. CFCC of simplified graphs has a similar trend to that of complete

graphs, except for Snear0, which has greater values than Snear25, because Snear0

has smaller simplified graphs. According to the trends of CC and CFCC

we suggest that, for these metrics, simplified graphs reflect the increase of

complexity of the map due to additional connections, without considering the
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(a) Snear0 (b) Snear25

(c) Snear50 (d) Snear75

(e) Snear100

Figure 5.36: Maps generated for the evaluation of connWndstart. Colors indicate

CFCC of complete graphs.
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(a) degree, complete graph (b) degree, simplified graph

Figure 5.37: Boxplots of the degree metric for the evaluation of connWndstart.

(a) radius, complete graph (b) radius, simplified graph

Figure 5.38: Boxplots of the radius metric for the evaluation of connWndstart.

absolute distances between architectural elements. Instead, complete graphs

reflect both complexity and absolute distances (which affect travelling times

of the players).
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(a) CC, complete graph (b) CC, simplified graph

Figure 5.39: Boxplots of the CC metric for the evaluation of connWndstart.

(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 5.40: Boxplots of the CFCC metric for the evaluation of connWndstart.

(a) RWCC, simplified graph

Figure 5.41: Boxplots of the RWCC metric for the evaluation of connWndstart.
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(a) BC, complete graph (b) BC, simplified graph

Figure 5.42: Boxplots of the BC metric for the evaluation of connWndstart.

5.3.4 Evaluation of connWndend

To test the influence of the connWndend parameter we created 5 sets of 1000

maps each. The first set Sfar0 was generated setting connWndend to 0, so that

no connections are added in the additional connection creation phase. The sec-

ond set Sfar25 was generated setting connWndend to 0.25, so the algorithm tries

to add the 25% of farthest connections. Sets Sfar50 and Sfar75 were generated

setting connWndend respectively to 0.5 and 0.75. Sfar100 was generated setting

connWndend to 1, so that the maximum number of connections are created.

Figure 5.43 shows maps of the generated sets. Boxplots of the considered

metrics are shown in figures from 5.44 to 5.49. Similarly to sets generated

for the evaluation of connWndstart, CC of complete graphs very similar for all

sets. CC of simplified graphs decreases progressively when the 50% of connec-

tions and more are added. CFCC of complete graphs increases from Sfar0 to

Sfar75, with the most relevant difference between Sfar0 and Sfar25, while there

is almost no difference between Sfar75 and Sfar100. Therefore, the addition of

the 25% of nearest connections in Sfar100, with respect to Sfar75, has very little

effect on CFCC of complete graphs; similarly, Snear0 and Snear25 have very little

difference for the same metric (Figure 5.40a). The results of the evaluations

of connWndstart and connWndend suggest that the algorithm is effective in

creating additional connections as indicated by these two parameters.
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(a) Sfar0 (b) Sfar25

(c) Sfar50 (d) Sfar75

(e) Sfar100

Figure 5.43: Maps generated for the evaluation of connWndend. Colors indicate

CFCC of complete graphs.
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(a) degree, complete graph (b) degree, simplified graph

Figure 5.44: Boxplots of the degree metric for the evaluation of connWndend.

(a) radius, complete graph (b) radius, simplified graph

Figure 5.45: Boxplots of the radius metric for the evaluation of connWndend.

(a) CC, complete graph (b) CC, simplified graph

Figure 5.46: Boxplots of the CC metric for the evaluation of connWndend.
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(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 5.47: Boxplots of the CFCC metric for the evaluation of connWndend.

(a) RWCC, simplified graph

Figure 5.48: Boxplots of the RWCC metric for the evaluation of connWndend.

(a) BC, complete graph (b) BC, simplified graph

Figure 5.49: Boxplots of the BC metric for the evaluation of connWndend.
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We also tested the influence of connWndend in maps with 20 rooms. We

generated 5 sets of maps (S20r
far0, S

20r
far25, S

20r
far50, S

20r
far75, S

20r
far100) using the same

percentages of farthest connections as in the evaluation of connWndend with

default parameters. The maxRooms parameter was set to 20. Figure 5.50

shows maps of the generated sets. Boxplots of the considered metrics are

shown in figures from 5.51 to 5.56. CC and CFCC of the generated sets have

trends similar to sets generated for the evaluation of connWndend with 10

rooms (figures 5.46 and 5.47); however, maps with 20 rooms have lower values

than maps with 10 rooms because maps with 20 rooms are bigger, so their

architectural elements are generally farther from each other. Sets of maps

with 20 rooms have generally less sparse CC, CFCC, RWCC and BC values

than corresponding sets with 10 rooms (figures from 5.46 to 5.49). For this

reason, we suggest that increasing the number of rooms, and consequently the

size of maps, tends to produce architectural elements with less sparse values

of centrality metrics.
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(a) S20r
far0 (b) S20r

far25

(c) S20r
far50 (d) S20r

far75

(e) S20r
far100

Figure 5.50: Maps generated for the evaluation of connWndend in maps with 20

rooms. Colors indicate CFCC of complete graphs.
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(a) degree, complete graph (b) degree, simplified graph

Figure 5.51: Boxplots of the degree metric for the evaluation of connWndend in

maps with 20 rooms.

(a) radius, complete graph (b) radius, simplified graph

Figure 5.52: Boxplots of the radius metric for the evaluation of connWndend in maps

with 20 rooms.
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(a) CC, complete graph (b) CC, simplified graph

Figure 5.53: Boxplots of the CC metric for the evaluation of connWndend in maps

with 20 rooms.

(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 5.54: Boxplots of the CFCC metric for the evaluation of connWndend in

maps with 20 rooms.
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(a) RWCC, simplified graph

Figure 5.55: Boxplots of the RWCC metric for the evaluation of connWndend in

maps with 20 rooms.

(a) BC, complete graph (b) BC, simplified graph

Figure 5.56: Boxplots of the BC metric for the evaluation of connWndend in maps

with 20 rooms.
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Finally, we tested the influence of connWndend in maps generated us-

ing a rectangular boundary. The rectangular room in initialElements

was placed near the lower left corner of the boundary, so that maps

could only grow upwards and to the right. We generated 5 sets of maps

(Sco
far0, S

co
far25, S

co
far50, S

co
far75, S

co
far100) using the same percentages of farthest con-

nections as in the evaluation of connWndend with default parameters. Fig-

ure 5.57 shows maps of the generated sets. Despite the presence of the

boundary, the maps do not show notable differences in the shape with respect

to maps generated without constraints (Figure 5.43). Boxplots of the con-

sidered metrics are shown in figures from 5.58 to 5.63. The first quartile of

BC of Sco
far25 is not zero, while it is zero for the set Sfar25 generated without

boundary (Figure 5.49). Other metrics in general does not show differences

with respect to sets generated without boundary (figures from 5.44 to 5.48).

These results suggest that placing the initial room in the corner of a rectangular

boundary does not affect significantly the appearance and the metric values of

the generated maps.
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(a) Sco
far0 (b) Sco

far25

(c) Sco
far50 (d) Sco

far75

(e) Sco
far100

Figure 5.57: Maps generated for the evaluation of connWndend in maps with the

initial element in a corner of a rectangular boundary (drawn in red). Colors indicate

CFCC of complete graphs.
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(a) degree, complete graph (b) degree, simplified graph

Figure 5.58: Boxplots of the degree metric for the evaluation of connWndend in

maps with the initial element in a corner of a rectangular boundary.

(a) radius, complete graph (b) radius, simplified graph

Figure 5.59: Boxplots of the radius metric for the evaluation of connWndend in maps

with the initial element in a corner of a rectangular boundary.
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(a) CC, complete graph (b) CC, simplified graph

Figure 5.60: Boxplots of the CC metric for the evaluation of connWndend in maps

with the initial element in a corner of a rectangular boundary.

(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 5.61: Boxplots of the CFCC metric for the evaluation of connWndend in

maps with the initial element in a corner of a rectangular boundary.

102



5.3 Evaluation of single parameters

(a) RWCC, simplified graph

Figure 5.62: Boxplots of the RWCC metric for the evaluation of connWndend in

maps with the initial element in a corner of a rectangular boundary.

(a) BC, complete graph (b) BC, simplified graph

Figure 5.63: Boxplots of the BC metric for the evaluation of connWndend in maps

with the initial element in a corner of a rectangular boundary.
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5.4 Evaluation of parameter combinations

We created configurations of parameters combining different values of

probclasses, connWndstart, connWndend, probdegrees, boundary; other parame-

ters were set to their default value (Table 5.3). The values we used for each

parameter are shown in Table 5.8. We chose 3 values for probclasses: the first

gives a 10% probability to rooms and a 90% probability to corridors, the second

25% and 75%, the third 50% and 50%. For connWndstart and connWndend we

chose 8 pairs of values, which create respectively: no additional connections;

25%, 50%, 75% of farthest connections; all connections; 75%, 50%, 25%

of nearest connections. We chose 3 values for probdegrees: the first gives to

degrees from 3 to 1 probabilities with a ratio of 100, the second probabilities

with a ratio of 4, the third probabilities with a ratio of 1. For boundary we

chose 2 values: the first assigns no boundary, the second assigns a rectangular

boundary that has the initial room placed by the algorithm in its lower left

corner. In total, there are 3× 8× 3× 2 = 144 combinations of parameters; for

each combination, we generated a set of 20 maps. We created scatterplots7

representing metric values of these maps, shown in Figure 5.64. Scatterplots

have on the x axis values related to complete graphs, and on the y axis values

related to simplified graphs (except for the RWCC metric which is shown

together with CFCC). Points correspond to architectural elements, except

for the radius metric, for which points correspond to maps. Colors of points

depend on the combinations of parameters used to generate the related maps

(see Table 5.9). For the degree metric it is shown that most architectural

elements are concentrated at degrees 2 and 3. The majority of architectural

elements have the same degree value for both graphs, which means that they

do not change degree value when transforming complete graphs in simplified

graphs. Instead, most of architectural elements with degree 2 in the complete

graph have degree 1 in the simplified graph. These are architectural elements

in the middle of branches of maps, which become leaf nodes in simplified

graphs. For CC and CFCC, it is shown a linear dependence between values of

complete graphs and values of simplified graphs.

We also generated scatterplots with colors representing single parameters.

Figure 5.65 shows scatterplots with colors denoting only the probclasses param-

7http://en.wikipedia.org/wiki/Scatter_plot
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Property Vindex Values

probclasses

1 Rectangular room: 10%

Linear corridor: 45%

Curved corridor: 45%

2 Rectangular room: 25%

Linear corridor: 37.5%

Curved corridor: 37.5%

3 Rectangular room: 50%

Linear corridor: 25%

Curved corridor: 25%

connWndstart, connWndend

1 0, 0

2 0, 0.25

3 0, 0.5

4 0, 0.75

5 0, 1

6 0.25, 1

7 0.5, 1

8 0.75, 1

probdegrees

1 1: 0.01%

2: 0.99%

3: 99%

2 1: 5%

2: 19%

3: 76%

3 1: 33%

2: 33%

3: 34%

boundary

1 None

2 Rectangular boundary, the ini-

tial room is placed in the lower

left corner of the boundary

Table 5.8: Parameter values used for the evaluation of parameter combinations.
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(a) (b)

(c) (d)

Figure 5.64: Scatterplots for the evaluation of parameter combinations.
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Given a combination C of the parameter values shown in Table 5.8, the color

of the corresponding points in scatterplots is calculated as follows:

1. Let C(p) be the value of the parameter p in the combination C. Referring

to Table 5.8, let Vindex(v) be the index of the parameter value v; let

VmaxIndex(p) be the maximum index of the values of the parameter p.

2. We define the vindex(p) function to map indices values to the range [0, 1]:

vindex(p) =
Vindex(C(p))− 1

VmaxIndex(p)− 1

3. The RGB components of the color associated to C are

R = vindex((connWndstart, connWndend))

G = 0.4× vindex(probdegrees) + 0.6× vindex(boundary)

B = 0.75× vindex(probclasses)

Table 5.9: Procedure to calculate the colors used in scatterplots for combinations of

parameter values.

eter. For the radius metric colors show that, along the complete graph axis,

the radius increases along with the corridor probability. Instead, along the

simplified graph axis, colors are more sparse. Similarly, the scatterplot of the

median CC value of each map shows that colors are more separated along the

complete graph axis than the simplified graph axis. Instead, for CFCC colors

are equally sparse on both axes. We suggest that radius and CC of complete

graphs depend on corridor probability more strictly than simplified graphs.

Figure 5.66 shows scatterplots with colors denoting only the probdegrees

parameter. For all of the considered metrics colors are evenly distributed on

the same area and no grouping can be observed.

Figure 5.67 shows scatterplots with colors indicating whether maps were

generated without constraints or placing the initial room near the corner of

a rectangular boundary. Also in this case, no color grouping is visible. This

suggests that placing the initial room in the corner of a rectangular boundary

does not affect significantly the metric values, as shown in the evaluation of

connWndend.
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(a) (b)

(c) (d)

Figure 5.65: Scatterplots for the evaluation of parameter combinations. Colors

depend only on the probclasses parameter. The legend indicates the probabilities

given to rooms and corridors (in the order).

(a) (b)

Figure 5.66: Scatterplots for the evaluation of parameter combinations. Colors

depend only on the probdegrees parameter. The legend indicates the probabilities

given to rooms and corridors (in the order).
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(a) (b)

Figure 5.67: Scatterplots for the evaluation of parameter combinations. Colors

depend only on the boundary parameter. In the legend, False indicates that the

map was generated with no boundary, True indicates that the initial room was

placed near the corner of a rectangular boundary.

5.5 Summary

We have briefly discussed works that deal with the evaluation of maps with

respect to particular metrics. Then, we introduced the metrics we used to an-

alyze the maps generated by our algorithm. We have described the procedure

we used for the evaluation of single parameters of our algorithm. For each of

the evaluated parameters, we showed examples of generated maps and boxplots

of the considered metrics, commenting them. Finally, we have described the

evaluation of combinations of parameters, showing and discussing scatterplots

of the considered metrics.
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Chapter 6

Extensions of the algorithm and

analysis

Our algorithm proved to be effective in generating useful maps, however the

analysis showed that most of the parameters give limited control on the map

generation process. Accordingly, we finally explored two extensions of our

original algorithm, which could provide better controls to guide the map gen-

eration.

6.1 Extensions of our algorithm

We introduced two extensions to our algorithm to gain more control on gener-

ated maps: the root eliminating procedure and the grid placement procedure. In

the previous analysis, we provided a rectangular room in the initialElements

parameter, which was used as the root of the tree built in the digging phase.

Root elements are likely to be in the middle of the map and to have many

connections, thus inducing high centrality values for many architectural ele-

ments. To generate a new variety of maps, we extended our original algorithm

introducing the root eliminating procedure, that removes from the map the ini-

tial room. The root eliminating procedure is executed between the additional

connection creation phase and the dead end pruning phase.

The grid placement procedure is capable of occupying the space more uni-

formly than our original algorithm. The grid placement procedure is a grid-

based uniform generator, i.e. it first places rooms in a grid layout and then
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creates corridors to connect them. It takes as input a number of rooms R:

first, it subdivides the plane in a grid layout and places R rectangular rooms

in neighboring cells of the grid; then it executes the additional connection

creation phase of our original algorithm to create the maximum number of

connections; finally, it removes disconnected parts of the map executing the

isolated parts pruning phase of our original algorithm.

6.2 Evaluation of the extensions

We evaluated the extensions using the same procedure as in the previous anal-

ysis. We generated 3 sets of 1000 maps each: the first (Sorig) using our original

algorithm with the parameters shown in Table 5.3, the second (SrootEl) using

the root eliminating procedure with the same parameters, the third (Sgrid) using

the grid placement procedure. All the maps of the three sets have 10 rooms.

Figure 6.1 shows maps of SrootEl, showing also how these maps would be if

the root element was not eliminated. In the first two maps (figures from 6.1a

to 6.1d) the remotion of the root element produces an overall decrease of the

CFCC of the architectural elements. Instead, in the third map (figures 6.1e

and 6.1f) the root element is in a peripheral position, and its remotion produces

an increase of the CFCC of most architectural elements.

Figure 6.2 shows maps generated with the grid placement procedure. It

can be noted that these maps have generally lower CFCC values than maps

generated by our original algorithm, even if in both cases the maximum number

of connections is created. This is due to the more uniform distribution of the

rooms performed by the grid placement procedure. It can also generate maps

with large linear parts, as shown in figures 6.2e and 6.2f.

Figures from 6.3 to 6.8 show boxplots of the three sets of maps. Complete

graphs of Sgrid have all the quartiles of the degree metric at 2. This indicates

that the grid placement procedure is likely to produce linear parts in maps.

The radius metric of complete graphs increases along sets in the order Sorig,

SrootEl, Sgrid, with little difference between SrootEl and Sgrid. The CC metric

of complete graphs decreases along sets in the same order, again with little

difference between SrootEl and Sgrid. For CFCC the trend is similar to CC, but

with greater differences among the sets. Instead, for simplified graphs, Sgrid has

low radius and high CC, CFCC, and RWCC. This is because of the linear parts

112



6.2 Evaluation of the extensions

(a) (b)

(c) (d)

(e) (f)

Figure 6.1: On the left: maps in which the root element was not removed. On

the right: the same maps generated with the root eliminating procedure. Colors

represent CFCC of complete graphs.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Maps generated with the grid placement procedure. Colors represent

CFCC of complete graphs.

114



6.2 Evaluation of the extensions

(a) degree, complete graph (b) degree, simplified graph

Figure 6.3: Boxplots of the degree metric for the evaluation of the extensions of the

map generation algorithm.

(a) radius, complete graph (b) radius, simplified graph

Figure 6.4: Boxplots of the radius metric for the evaluation of the extensions of the

map generation algorithm.

of maps generated by the grid placement procedure, which are transformed into

single nodes in simplified graphs. Thus, these simplified graphs are small, so

their nodes have high CC, CFCC and RWCC values. For the same reason, the

first quartile of the BC metric of Sgrid is 0, since small simplified graphs tend

to have a high percentage of leaf nodes, which are not crossed by any path.
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(a) CC, complete graph (b) CC, simplified graph

Figure 6.5: Boxplots of the CC metric for the evaluation of the extensions of the

map generation algorithm.

(a) CFCC, complete graph (b) CFCC, simplified graph

Figure 6.6: Boxplots of the CFCC metric for the evaluation of the extensions of the

map generation algorithm.

116



6.2 Evaluation of the extensions

(a) RWCC, simplified graph

Figure 6.7: Boxplots of the RWCC metric for the evaluation of the extensions of the

map generation algorithm.

(a) BC, complete graph (b) BC, simplified graph

Figure 6.8: Boxplots of the BC metric for the evaluation of the extensions of the

map generation algorithm.
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Figure 6.9 shows scatterplots of the three sets of maps. Colors of points

indicate the set they are related to. For the radius metric, points of SrootEl

occupy a wider area than points of Sorig. Points of the Sgrid extend to very

low radius values along the simplified graph axis, because the related maps

contain many linear parts. In scatterplots of CC, CFCC, Sorig and SrootEl

occupy areas of similar size and show a linear dependence between values of

complete graphs and values of simplified graphs; points of Sgrid do not show a

linear dependence. In scatterplots of CC, CFCC and RWCC, the area taken

by SrootEl is shifted toward lower values than the area taken by Sorig.

Basing on the results, we suggest that root eliminating procedure and the

grid placement procedure actually introduce two different kinds of variations

with respect the original algorithm. By eliminating the root element, generated

maps tend to have greater and more sparse radius values. The overall CC

and CFCC of the maps are effectively reduced; however, it was shown that

when the root is a peripheral element, its remotion can have the opposite

effect, increasing the CC and CFCC of most the architectural elements of the

map. A more efficient way to reduce CC and CFCC could be to remove the

element with the highest centrality, instead of the root element. The grid

placement procedure, by placing rooms in a grid layout, generates maps with

shape different from maps created from a tree-like structure; moreover, CC and

CFCC tend to be even lower than with the root eliminating procedure. The grid

placement procedure produces both highly connected maps and linear maps; it

would be useful to extend it introducing parameters to control the type of the

generated maps.

6.3 Summary

We have described the root eliminating procedure and the grid placement pro-

cedure, that extend our map generation algorithm giving more control on the

generation process. Then, we have analyzed maps generated by the two ex-

tensions, presenting boxplots and scatterplots of the considered metrics. Our

results showed that the two extensions actually introduce two different kinds

of variations with respect to the original algorithm.
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Figure 6.9: Scatterplots for the evaluation of the extensions of the map generating

algorithm.
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Chapter 7

Conclusions and Future Works

In this thesis, we have dealt with procedural content generation (PCG) in

games. We have discussed its applications, from early games that used PCG

to deal with strict memory constraints, to recent games that use PCG to

reduce costs of creating large amount of content. Then, we have described

techniques for the generation of outdoor environments and, more extensively,

of indoor environments. We have focused on the automatic generation of large

amount of content for an high end game, In Verbis Virtus. In particular, we

have described an algorithm to generate dungeon-like maps. Starting from an

initial architectural element, the algorithm first creates a tree-like map, then

it adds more connections between the architectural elements to obtain a more

general topology. We have presented an extensive analysis of the algorithm

that showed how the parameters affect the generated maps. Then, we have

introduced two extensions of the algorithm to get more control on the gen-

eration process. In particular, we wanted to avoid the bias due to the high

centrality of the initial architectural element. We have presented the results

of the analysis of the two extensions, showing that both help to avoid the bias

and effectively introduce variations with respect to the original algorithm.

We created a graphical interface to easily generate maps with the algorithm

(Figure 7.1); for each parameter, we allow to select values only in the range

that was proved to be useful in the evaluation process. We added new types of

architectural elements: oval rooms and irregular rooms (Figure 7.2). Figure 7.3

shows a floor plan generated with the graphical interface configured as in

Figure 7.1. To test the generated maps in the game, we also created an exporter

that converts the floor plan generated by the algorithm into a 3D map, in the
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Figure 7.1: Graphical interface to control our map generation algorithm.

Figure 7.2: Two examples of irregular rooms. Floors are black, shells are yellow, con-

nectors are blue. Irregular rooms are randomly generated joining regular polygons

modified through translation, rotation and scale operations.
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Figure 7.3: Floor plan generated by our algorithm, containing oval rooms and irreg-

ular rooms.

format used by the Unreal Development Kit. The exporter creates walls, floors

and ceiling using rock assets, so that the map looks like a cave. It also adds light

sources and decorations like columns, statues and plants. Figure 7.4 shows an

ingame view of a map created completely automatically: the floor plan was

generated by our algorithm and the assets were placed by our exporter.

7.1 Future works

We plan to extend this work in two ways.

First, we plan to evolve our map exporter into a full featured asset place-

ment toolkit, that users can configure to control various aspects of map dec-

oration (e.g. lighting and architectural style). Procedural techniques can be

used to automatically combine given assets to obtain new styles of decoration.

In addition, we plan to extend our algorithm to use more complex indica-

tions on how to place architectural elements, in order to guide the genera-

tion with formal grammars. We intend to use sets of rules of L-systems1.

1http://en.wikipedia.org/wiki/L-system
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Figure 7.4: Ingame view of a map generated by our algorithm, with rocks and

decorations automatically placed by our exporter.
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