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Abstract

It is well known that the gravimetric inverse problem, namely the reconstruction
of the Earth mass density distribution from the observation of the gravitational field,
is generally ill-posed. For this reason its solution requires some restrictive hypotheses
and strong numerical regularization. These constrains rarely take into account the
specific local characteristics of the area under study, thus leading to solutions that
are theoretically and physically admissible but that could be far from the actual
mass density distribution. To mitigate this problem, the inversion method could be
driven by some qualitative geological information that is usually available.

In this work, a Bayesian approach to estimate a mass density distribution from
gravity data coupled with geological information is presented. It requires to model
the masses in voxels, each of them characterized by two random variables: one is a
discrete label defining the type of material, the other is a continuous variable defining
the mass density. The a-priori geological information can be easily translated in
terms of this model, providing for each class of material the mean density and
the corresponding variability and for each voxel the a-priori most probable label.
Basically the method consists of a simulated annealing aided by a Gibbs sampler to
update the labels of the a-priori model in order to maximize the posterior probability,
introducing some proximity constrains between labels of adjacent voxels.

The proposed Bayesian method is here tested on simulated scenarios, comparing
it with classical solutions based on a regularized least-squares adjustment and show-
ing its capability of correcting possible inconsistencies between the a-priori geological
model and the gravity observations.
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Riassunto esteso

Sommario

È ben noto che il problema gravimetrico inverso, cioè la ricostruzione della di-
stribuzione della massa all’interno della Terra partendo dall’osservazione del campo
gravitazionale, è generalmente mal condizionato. Per questo motivo la sua soluzio-
ne richiede alcune ipotesi restrittive ed una forte regolarizzazione numerica. Questi
vincoli, raramente, tengono conto delle caratteristiche specifiche della zona in esame,
determinando in tal modo soluzioni che sono teoricamente e fisicamente ammissibili,
ma che potrebbero essere molto lontane dall’effettiva distribuzione di densità del-
la massa. Per attenuare questo problema, il metodo di inversione dovrebbe essere
guidato da informazioni geologiche, di natura qualitativa.

In questo lavoro, viene presentato un approccio Bayesiano per stimare la distri-
buzione di densità a partire da osservazioni di gravità accoppiate con informazioni
geologiche. La massa dell’area di studio viene modellizata con l’utilizzo di voxel,
ognuno caratterizzato da due variabili casuali: la prima è un’etichetta discreta che
caratterizza il tipo di materiale, l’altra una variabile continua che definisce la den-
sità. L’informazione geologica nota a priori può essere facilmente tradotta in questi
termini, fornendo per ciascuna classe di materiale litologico la densità media e la
relativa variabilità, oltre all’etichetta più probabile per ciascun voxel desumibile dal-
la conoscenza a priori. Fondamentalmente, il metodo consiste nell’applicazione di
un simulated annealing affiancato dal Gibbs sampler per aggiornare le etichette del
modello a priori la probabilità a posteriori, con l’introduzione di alcuni vincoli di
prossimità tra le etichette di voxel adiacenti.

Il metodo Bayesiano proposto viene testato su scenari simulati, confrontato con
soluzioni classiche basate su compensazione ai minimi quadrati regolarizzata e mo-
stra la sua capacità di correggere eventuali incoerenze tra il modello geologico a
priori e le osservazioni di gravità.

Introduzione

L’Interpretazione di una serie di osservazioni del campo di gravità sulla superfi-
cie terrestre in termini di anomalie di densità è un problema scientificamente molto
interessante e particolarmente rilevante nell’ambito delle prospezioni geofisiche, ma
presenta il grande problema dell’indeterminatezza nella soluzione. Quindi, qualun-
que tecnica di interpretazione gravimetrica deve essere necessariamente combinata
con informazioni note a priori, come quelle derivanti da vincoli puramente geofisici
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o matematici oppure da indagini svolte con altri metodi di prospezione geofisica.
Nel primo caso, ad esempio, può essere adottato un modello a due strati (Sampietro
and Sansó, 2012) oppure si può fissare il contrasto di densità tra i corpi geologici
(Dumrongchai, 2007), mentre nel secondo, ad esempio, si possono dedurre dei vincoli
da prospezioni magnetiche, si veda Abt et al. (2012), o sismiche, come descritto da
Barzaghi and Sansò (1998) o Darbyshire et al. (2000).

Qualunque sia il metodo usato, le applicazioni pratiche sfruttano sempre un
modello geologico del sottosuolo e spesso soluzioni semplici del tipo trial and error
vengono implementate manualmente da un esperto del settore, con l’obiettivo di non
modificare troppo il punto di partenza e cercando di rendere il più simile possibile
l’anomalia di gravità modellizzata a quella osservata.

La presente tesi si pone lo scopo di formalizzare le operazioni iterative appena de-
scritte mediante l’utilizzo di un approccio statistico Bayesiano. L’uso della statistica
Bayesiana ha una lunga storia di applicazione nelle prospezioni geofisiche; si vedano
per esempio Tarantola and Valette (1982), Bosch (1999), Tarantola (2002) o Mose-
gaard and Tarantola (2002), solo per citarne alcuni. Il punto fondamentale risiede
nella scelta delle variabili specifiche del problema e nella formalizzazione della loro
distribuzione di probabilità a priori. Durante il processo di stima del MAP (Mas-
simo a Posteriori) delle distribuzioni di probabilità a posteriori si devono trattare
variabili in parte discrete ed in parte continue. La soluzione ricorre all’applicazione
di un Gibbs sampler combinato con un simulated annealing (Sansò et al., 2011),
come descritto ampiamente in letteratura; è opportuno citare il lavoro di Geman
and Geman (1984), dove l’approccio Bayesiano è applicato al campo dell’analisi di
immagine.

Tuttavia, è necessario sottolineare che, mentre l’analisi delle immagini si occupa
solo di osservazioni “locali”, cioè dipendenti unicamente dal pixel da aggiornare, al
contrario, in questo caso, una variazione di densità in qualsiasi punto dello volume
preso in esame influenzerà ogni osservazione dell’anomalia gravitazionali, indipen-
dentemente dalla sua posizione. Questo comporta piccole variazioni alle tecniche
fin’ora menzionate.

Formalizzazione del problema

Alla base del metodo di soluzione vi è il teorema di Bayes, di seguito espresso
nella sua forma consueta (Bayes, 1984; Box and Tiao, 2011):

P (x|y) ∝ L (y|x)P (x) (1)

dove y è un vettore di osservabili, mentre x è un vettore di parametri del corpo
geologico. Il corpo B è diviso in voxel Vi, con indice i = 1, 2, ..., N ; ad ogni voxel sono
associati due parametri (ρi, Li) dove ρi rappresenta la densità di massa considerata
costante nel voxel e Li è un’etichetta che descrive il tipo litologico, quale acqua,
sedimenti, sale, roccia di un dato tipo, ecc, presente all’interno dello spazio delimitato
da Vi. L’insieme dei materiali geologici viene assegnato a priori da un archivio, sulla
base delle caratteristiche specifiche del luogo in esame. Concludendo, ρi risulta essere
una variabile continua e Li discreta. Infatti può assumere solo uno degli M interi
che indicano i vari materiali selezionati.

12
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È fondamentale il modo in cui viene descritta l’informazione a priori, cioè la
forma della distribuzione di probabilità P (x) = P (L1, ρ1;L2, ρ2; ...;LN , ρN). Si
assume che:

P (x) =
∏
i

P (ρi|Li) · P (L1, L2, ..., LN) (2)

e successivamente che una volta che un’etichetta Li = ` è stata scelta per Vi, la
corrispondente densità segue la legge P (ρi|Li), che nel caso in esame è semplicemente
una distribuzione di probabilità normale:

P (ρi|Li) ∼ N
(
ρ`, σ

2
`

)
(3)

con la media ρ` e la varianza σ2
` fornite da tabelle geologiche. A questo riguardo,

una corposa raccolta di dati relativi alle proprietà delle rocce può essere trovata
per esempio in Christensen and Mooney (1995). Per la distribuzione di probabilità
a priori P (L) ≡ P (L1, L2, ..., LN) si assume di avere una distribuzione di Gibbs
(Azencott, 1988):

P (L) = e−E(L), (4)

dove l’energia E (L) dipende solamente dai valori `oi di Li forniti con il modello a
priori, cos̀ı come dalle cliques di ordine due, che rappresentano il fatto che l’etichetta
Li sia probabilmente simile a quella dei voxel vicini, secondo la seguente regola:

P (Li = `|L∆i) ∝ e−γs
2(Li,`

o
i )−λ

∑
j∈∆i

q2(Li,Lj) (5)

dove γ, λ sono parametri da regolare, e

s2 (Li, `
o
i ) =

{
0 if Li = `oi
αk if Li = k 6= `oi

(6)

q2 (Li, Lj) =

{
a if Li = Lj
aj if Li 6= Lj

, (7)

con Vj ∈ ∆i essendo ∆i un intorno del voxel Vi.

Si noti che tarando αk e a, aj si può creare una gerarchia di valori più probabili
per Li, cos̀ı da ottenere una tabella di prossimità tra unità geologiche note a priori.
Per esempio, supponendo di avere tre litotipi differenti, ` = {1, 2, 3}, ed una tabella
di prossimità tipo quella rappresentata in figura 1, ne deriva la seguente definizione:

s2 =


0 if Li = `oi
α if Li is a 1st neighbour of `oi
β if Li is a 2nd neighbour of `oi

, (8)

q2
j =


a if Li = Lj
b if Li is a 1st neighbour of Lj
c if Li is a 2nd neighbour of Lj

(9)

dove β > α > 0 e c > b > a.
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Figura 1: Esempio di tabella di prossimità. La classe geologica 1 può essere vicino a 2, ma non
alla 3

Due osservazioni importanti sono, in ordine: la prima che L, con una distribuzio-
ne a priori P (L), è rappresentata da un Markov random field (MRF, cfr. Rozanov
1982), mentre la seconda è che il risultato finale dell’ottimizzazione dipende forte-
mente dai valori scelti per le varie costanti, che nel caso specifico necessitano di
essere tarate a mano dall’operatore.

Come sempre per un MRF, le caratteristiche, cioè le distribuzioni di probabilità
condizionate (5), definiscono una distribuzione P (L) del tipo:

logP (L) ∝ −γ
∑
i

s2 (Li, `oi)− λ
∑
i

∑
j∈∆i

q2 (Li, Lj). (10)

Concludendo il logaritmo della distribuzione di probabilità a posteriori (1) può
essere scritto come:

L (x) = L (ρ, L ) = logP (x|y) = −1

2
(∆g − Aρ)T C−1

∆g (∆g − Aρ) +

−1

2
(ρ− ρ)T C−1

ρ (ρ− ρ)− 1

2
γ
∑
i

s2 (`i, `
o
i )− λ

∑
i

∑
j∈∆i

q2 (`i, `j)
(11)

dove si ricorda che ∆g è il vettore delle anomalie di gravità osservate, C∆g la
matrice di covarianza del loro errore che si assume essere diagonale, A è l’operatore
che definisce il forward per passare dalle densità alle anomalie di gravità, ρ and ρ i
vettori composti da ρi e ρi = ρ (`i), Cρ la corrispondente matrice di covarianza e s2,
q2 dati dalle equazioni 6 e 7. Questa è la funzione obiettivo da massimizzare rispetto
a ρi e Li.

Algoritmo di ottimizzazione

Il fatto che la metà delle variabili siano discrete rende difficile la massimizzazio-
ne dell’equazione 11, come noto da altri problemi importanti trattati in geodesia,
come il fissaggio dell’ambiguità di fase iniziale nel GNSS (De Lacy et al., 2002).
L’idea mutuata dalle tecniche di analisi di immagine è di applicare il Gibbs sam-
pler, concatenato con il simulated annealing. Per far si che questa tecnica possa
essere applicata ad entrambe le variabili (ρi, Li), funzioni del voxel Vi, si è deciso di
semplificare il problema, considerando discreta anche ρi. In pratica la distribuzione
normale di probabilità (equazione 3) viene sostituita da una distribuzione discreta
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II. RIASSUNTO ESTESO

di cinque valori presi rispettivamente in corrispondenza della media ρ, e di ρ ± σρ,
ρ ± 2σρ. Chiaramente, ad ogni valore deve essere assegnata un opportuno valore
di probabilità, secondo la distribuzione normale. Quindi, si può applicare il Gibbs
sampler campionando una coppia (ρi, Li) alla volta, mantenendo fissati tutti gli al-
tri valori e seguendo un semplice algoritmo di aggiornamento. La probabilità del
campionamento può essere calcolata dall’equazione 11 facendo assumere a ρi i suoi
cinque valori e scegliendo `i tra i valori 1, 2, ...,M definiti per il volume oggetto di
studio; in questo modo si può costruire una tabella di 5M nodi, associati alla pro-
pria probabilità. Una volta che un’iterazione con il Gibbs sampler è stata eseguita
sull’insieme dei voxel, la probabilità di x viene cambiata introducendo un parametro
T , chiamato, in analogia con l’applicazione meccanica, “temperatura”:

PT (x) ∝ e
1
T

logP (x) (12)

dove T viene lentamente ridotto del 5% ad ogni passo. Infine, partendo da una
temperatura T molto elevata si ottiene una sequenza di campionamenti convergenti
al punto x dove logP (x) raggiunge il suo massimo (Azencott, 1988). È opportuno
notare che durante il processo la probabilità condizionata di una coppia (ρi, Li)
campionata può essere calcolata, cosicché lungo la sequenza iterativa, questa tenda
a stabilizzarsi sul valore più alto possibile nella maggior parte dei voxel.

Test numerici

Per poter accertare l’effettiva funzionalità dell’approccio Bayesiano trattato, in
grado di integrare anche le informazioni geologiche del tutto qualitative, sono stati
effettuati una serie di esperimenti. I test consistono nella stima della distribuzione
di densità di due modelli sintetici tridimensionali a partire dal campo gravitazionale
da essi generato. In particolare il primo simula la stima della batimetria, mentre
il secondo consiste nel ricavare la forma di un duomo salino. Nel primo esempio
vengono considerate solo due etichette: acqua e roccia, definite rispettivamente da
ρw = 1000 kgm−3, σw = 30 kgm−3 e ρb = 2900 kgm−3, σb = 80 kgm−3. Invece,
nel secondo test, relativo al duomo salino, si sono considerate tre unità geologiche:
sedimenti (ρs = 2200 kgm−3, σs = 40 kgm−3), sale (ρd = 2000 kgm−3, σd = 20
kgm−3) e roccia (ρb = 2900 kgm−3, σb = 80 kgm−3).

In entrambi i casi l’area di interesse è un quadrato di lato 30 km e la profon-
dità di investigazione di 5 km. Inoltre il modello sintetico è considerato costante
lungo una direzione planimetrica. Una sezione verticale significativa dei modelli è
rappresentata nelle figure 2(a) and 3(a). Il volume è modellato con l’utilizzo di 1200
prismi rettangolari, ciascuno di dimensioni 1.5 km (x) × 5.0 km (y) × 0.5 km (z).
A partire da questi modelli il relativo campo gravitazionale viene calcolato. In par-
ticolare si usa l’equazione di Nagy per il prisma (Nagy, 1966; Nagy et al., 2000) in
uno scenario privo di noise. Le osservazione sono generate su di una griglia regolare
ad una quota di 500 m e con risoluzione spaziale di 5 km, cos̀ı da simulare un volo
aerogravimetrico.

Il modello geologico è simulato introducendo piccole modifiche in quello di riferi-
mento, come mostrato nelle figure 2(b) and 3(b). I due parametri λ e γ dell’equazione
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11 sono stati rispettivamente impostati empiricamente ai valori di 0.833 e 0.733. In-
fine, i valori iniziali delle etichette sono inizializzati in maniera casuale, estraendo
da una distribuzione uniforme (i.e. campionamento con la temperatura impostata
ad infinito nel simulated annealing).

(a) (b)

Figura 2: Sezione verticale del modello di batimetria vero (a) e geologico (b), dove in blu è
rappresentata l’acqua ed in rosso la roccia

(a) (b)

Figura 3: Sezione verticale del modello di batimetria vero (a) e geologico (b), dove in blu sono
rappresentati i sedimenti, in verde il sale ed in rosso la roccia

La soluzione finale è ricavata in circa 5000 iterazioni e 4 ore di calcolo utilizzando
un comune personal computer. Una sezione del modello risultante è visibile in figura
4 e chiaramente mostra come l’errore nel modello geologico a priori sia propriamen-
te corretto nel caso della batimetria (86% delle etichette e densità sbagliate sono
correttamente stimate), ma solo parzialmente nel caso del duomo salino (70% delle
etichette e densità sbagliate sono correttamente stimate).

Infine, è interessante comparare i risultati ottenuti con quelli di una soluzione ai
minimi quadrati, dove la regolarizzazione è fatta sulla base del modello geologico.
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Figura 4: Risultato dell’inversione Bayesiana derivata dalle osservazioni simulate (sezione verticale
a y = 10 km )

Come si vede dalla figura 5 non si è in grado di modificare le etichette dei voxel, ma
la compensazione ai minimi quadrati si limita solamente a interpolare le osservazioni,
cambiando le densità sulla base delle ipotesi a priori ed evidentemente la soluzione
non è in grado di identificare possibili errori nel modello a priori.

Figura 5: Stima delle densità tramite inversione ai minimi quadrati regolarizzata

Conclusioni e sviluppi futuri

Nell’elaborato di tesi viene presentato un approccio Bayesiano all’inversione di
dati gravimetrici accoppiati con un modello geologico noto. Il metodo funziona cor-
rettamente nei semplici esempi trattati, migliorando la qualità della soluzione se
comparata con quella ottenuta attraverso tecniche di inversione tradizionale. Allo
stato attuale i maggiori due fattori limitanti sono il tempo necessario per il calcolo
e la scelta di parametri e costanti nella formulazione della distribuzione di proba-
bilità a priori. Inoltre nella soluzione giocano un elevato numero di incognite, che
determinano un’alta variabilità ed instabilità della soluzione.

In futuro l’algoritmo necessiterà un’ottimizzazione in modo da poter aumentare
la risoluzione del modello cos̀ı da diventare utile per trattare casi reali. Questo passo
però, implica un enorme incremento del numero di variabili, che passano da qualche
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migliaia a qualche milione, provocando effetti deleteri sul tempo di calcolo. Inoltre,
un’ulteriore sviluppo necessario nell’implementazione dell’invertitore gravimetrico
Bayesiano è quello di rendere semi-automatica la definizione di pesi e parametri,
cos̀ı da limitare al massimo le decisione dell’utente nel processo risolutivo.
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Chapter 1

Gravity surveying

The measurement of gravitational field of the Earth is a very interesting scientific
matter, especially for its implications in geophysical exploration. In fact, gravity
surveying is widely used in Earth’s science for regional geological studies, as well
as for oil and hydrocarbon research, because of its accuracy, spatial resolution and
costs - benefits ratio.

The fundamental idea of gravity field interpretation is to detect variations of
density in the subsurface from the so-called gravity anomalies, i.e. the difference
between the observed gravity and the one generated by a proper reference “normal”
model. This problem is usually called inverse gravimetric problem.

In the current chapter it is provided a basic description of theoretical aspects of
the Terrestrial gravity field, the measurement equipment that can be used and the
preprocessing of data to isolate the gravity anomalies. For further details on these
topics the reader can refer to Heiskanen and Moritz (1967), Hofmann-Wellenhof and
Moritz (2006), Fedi and Rapolla (1993), or Blackely (1996).

1.1 Gravity constituent

The gravimetric signal of a mass is described by Newton’s law of universal grav-
itation, which states that the force of attraction between two generic point masses
mP and mQ can be describe as follows:

FQP = −GmPmQ
rQP
|rQP |3

(1.1)

where rQP is the vector between point P and Q (see figure 1.1) and G is the Grav-
itational Constant equal to 6.67384 · 10−11m3kg−1s−2. The acceleration exerted by
the Gravitational force FQP on the mass mP can be derived introducing Newton’s
Second Law of motion. Equation 1.1 becomes:

FQP = mP g (P ) = mP

[
−GmQ

rQP
|rQP |3

]
(1.2)

Dividing by mP it is possible to obtain the acceleration gP, called gravity acceler-
ation. This is a vectorial conservative field and its name is gravitational vectorial
field.
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In order to study the Terrestrial gravity field some approximations must be re-
moved. Mass P cannot be considered a point mass. Density ρ (rQ) and volume vQ
of the attractive body must be introduced. The total mass is the integral all over
the volume of the density (see figure 1.2) and equation 1.2 turns in equation 1.3.

gP (rP ) = −G
∫
vQ

ρ (rQ)
(rP − rQ)

| (rP − rQ) |3
dvQ (1.3)

where rQ ∈ vQ and rP is the position of the point where the field is observed, outside
the volume of the body. The consequence of this result is that every point of the
body affects the gravity observed in every generic point P .

Figure 1.1: Gravitational attraction
between two point masses (Fedi and
Rapolla, 1993)

Figure 1.2: Gravitational field due to
a generic mass distribution (Fedi and
Rapolla, 1993)

In the International System of Units gravity field should be measured in ms−2,
but nowadays the c.g.s. system is still used in gravity practice. So the basic units
is cms−2, called Gal, in honour of the Italian scientist Galileo who makes the first
measurement of the Earth’s gravity acceleration. Often the sub-multiples mGal and
µGal are used based on the application (gravimetry or microgravimetry).

One fundamental concept, in the theory of gravitation, is the gravitational po-
tential V (P ); this is by definition a scalar function such that (Todhunter, 1873;
Heiskanen and Moritz, 1967)

g (P ) = ∇V (P ) (1.4)

where ∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
is the gradient operator represented in Cartesian

coordinates; ex, ey, ez are unit vectors parallels to x, y and z axes respectively. Since
for a generic point mass M holds

g (P ) = −GM rQP
|rQP |3

= ∇P

(
GM

|rQP |

)
(1.5)
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it is always possible to describe the gravitational field in terms of its potential, as it
can be directly verified. By using 1.5 in 1.3 and by given suitable regularity condition
on ρ (e.g. it has to be measurable and bounded) and on the domain vQ (e.g. the
volume of Q must be finite) it’s possible to write

gP = G

∫
vQ

(
∇P

1

|rQP |

)
ρ (Q) dvQ = ∇P

(
G

∫
vQ

ρ (Q)

|rQP |

)
dvQ (1.6)

In order to study the Earth’s gravitational acceleration its motion should be prop-
erly considered. In fact the Earth has a rotational motion around the Sun and a
revolution motion around its axis. Recalling Coriolis theorem as in equation 1.7
the gravity attraction measured from a point integral with the Earth can be fully
explained (Sansò and Sideris, 2012).

a′ = a + ω × (ω × r) + 2ω × v (1.7)

where ω and a′ are respectively the angular velocity of the Earth and the acceleration
of the point in an inertial reference frame from which the Earth’s one is observed,
while a, v, and r are respectively the acceleration, the velocity and the position of
the point in the Terrestrial frame. Since the point of measurement has no velocity
with respect to the Earth, i.e. v = 0, the last term of equation 1.7 is null. Thus the
gravity field observed from a generic point on the Earth’s surface become:

g = g′ − ω × (ω × r) (1.8)

where g′ is the gravity acceleration and could be computed introducing the volume
and the density of the Earth in equation 1.3. Furthermore, it’s important to remem-
ber that there are also other small factor that affect the gravity field, like lunar and
solar attraction, that should be properly modelled and removed.

As a first approximation the Earth can be considered an oblate ellipsoid of rev-
olution. In the same way a first approximation of the Earth gravity field can be
considered as the sum of the known centrifugal field and of gravitational field that
has the reference ellipsoid as equipotential surface and that is generated by a mass
equal to the one of the Earth (Moritz, 1990). The modulus of this theoretical field
gT vary with the latitude and its general formulation is expressed in equation 1.9,
derived with the integration and development of equation 1.8. The final expression
contains also a term related to the height above the reference ellipsoid h (Hofmann-
Wellenhof and Moritz, 2006). In this way the computation of free-air correction is
already included as will be explained in paragraph 1.3.

gT (P ) = g0

(
1 + α1 sin2 ϕP + α2 sin2 2ϕP

)
−
(
β0 − β1 sin2 ϕP

)
hP + c0h

2
P (1.9)

where gT (P ) is expressed in Gal and h must be inserted in km. The values of the
others parameters in the formula using the Internetional ellipsoid are (Hofmann-
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Wellenhof and Moritz, 2006):

g0 = 978.0490

α1 = 0.0052884

α2 = 0.0000059

β1 = 0.30877

β2 = 0.00045

c0 = 0.000072

An anomalous mass body generate a deviation of the measured gravity from this
theoretical value, that can be computed simply by equation 1.10:

∆go = go (P )− gT (P ) (1.10)

1.2 Data preprocessing

Section 1.1 give a generic description of the measured gravity signal, but in order
to obtain a useful observable some other phenomena must be considered. It should
be noted that the reduction for the normal field is a fundamental task in gravity
interpretation. In fact, as shown in figure 1.3 the signal of interest for geophysical

Figure 1.3: Main constituent of terrestrial gravity field (ESA)

studies is in general more than 4 order of magnitude smaller than the total observed
gravity field.
The gravity signal can be thought as the sum of the following effects:

- attraction of the reference ellipsoid;

- effect of elevation above sea level (free-air);

- effect of normal masses above sea level (Bouger and terrain);

- time-dependent variation (tidal);

- effect of masses that support topographic load (isostatic);

- effect of crust and upper mantle density variation (“geology”).

The last point of the list is what gravity prospecting is interest in. Therefore, to
isolate that portion of the signal, called gravity anomaly, all the other listed ef-
fects must be removed, during the signal preprocessing. Conventionally, the average
crustal density is assumed to be 2670 kgm−3, so the exploration look for density
contrast respect to this value. The basic concept of the standard preprocessing pro-
cedure is shown in figure 1.5. The main steps of the preprocessing can be summarized
in the following steps:
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1. remove normal gravity, i.e. the gravity generated from the reference ellipsoid,
from the observed gravity signal, using the first terms of equation 1.9; i.e.:

∆goN = go − gN = go − gT (P ) = go − g0

(
1 + α1 sin2 ϕP + α2 sin2 2ϕP

)

Figure 1.4: Gravity anomalies isolation

2. apply the so called free-air correction. It is necessary in order to consider the
elevation of the point respect to the geoid. The classical formulation of the
free-air correction is F.A. = 0.3086H (Hofmann-Wellenhof and Moritz, 2006).
This term is already considered in equation 1.9 thus the so-called free-air gravity
anomaly can be expressed as:

∆goFA = ∆goN + F.A. = ∆goN + 0.3086H

or, including the free-air correction in the normal gravity and recalling equation
1.9:

∆goFA = go − gT

3. remove the effect of the topographic masses applying the terrain correction and
thus generating the Bouger gravity anomaly ∆go that is suitable for the interpre-
tation. The most simple way to carry out this operation is to remove a Bouger
plate with standard density ρ = 2667kgm−3 from the observation. Hence the
final formulation of the correction become AB = 0.1119H [mGal]. The masses
surplus of this rough topography approximation is removed trough the Terrain
correction or residual terrain correction.

The final expression of the Bouger gravity anomaly is derived as follows:

∆goB = go (P )− gN (P ) + F.A. (P )− T.C. (P ) (1.11)
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(a) First step: measured gravity goz (b) Second step: remove the effect of the ref-
erence ellipsoid using equation 1.9

(c) Third step: apply the so-called free air
correction

(d) Fourth step: apply the terrain correction
to obtain the Bouger gravity-anomaly ∆goB

Figure 1.5: Example of gravity data preprocessing (Blackely, 1996)

1.3 Measurement principles and instruments

Since gravity is an acceleration, its measurement should simply involve deter-
minations of length and time. However, such apparently simple task is not easily
achievable at the precision and accuracy required in gravity surveying. Gravity in-
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fluences a lot of physical phenomena. The instruments to measure gravity, called
gravimeters or gravity meters, trade on one of those phenomena. In practical appli-
cation the most widely method used are (Fedi and Rapolla, 1993):

1. static method, built with dynamometer principle (Hook’s law):

mg = kz (1.12)

where m is the proof mass, k is the spring elastic constant and z is the spring
extension;

2. dynamic method, that rely on the measures of pendulum oscillations:

T = 2π

√
L

g
(1.13)

where T is the oscillation period and L is the pendulum length. Another dynamic
methods are those based on the law of falling bodies:

s =
1

2
gt2 (1.14)

where s is the length of the path and t is the time elapsed.

Basically there are two kind of gravity measurement: absolute or relative. The
former observes the absolute value of the gravity in a chosen place, as its name
suggests. It requires long period observation, and usually absolute gravimeters are
bulky and very expensive. The second method considers only differences in gravity
acceleration between two or more points on the Earth surface. This technique is
faster and the instruments are lighter and cheaper than absolute gravimeter. More-
over, in gravity anomaly interpretation there is no need to know the absolute value
of gravity. Anyway thanks to network of gravity stations extended all over the word
it’s possible to estimate the absolute gravity trough relative measurement. The most
import station’s network is called International Gravity Standardisation Net (IGSN
71) and provides for each of the station the value of the absolute value.

1.3.1 Gravimeters

In order to reach the accuracy of µGal relative gravimeters are built with a proof
mass suspended with an elastic system (e.g. a spring). The variation of the gravity
generate a motion of the elastic system, thus measuring the change in position of
the elastic system the acceleration variation is retrieved. In order to observe the
vertical component of the gravity field the proof mass motion has only a degree of
freedom. As consequence it can do a translation or a rotation. Based on the kind of
movement allowed, the instrument are classified in static or stable in the first case,
while unstable or astatic in the second one.

Stable or static gravimeters are basically spring balances carrying a constant
mass. Variations in the weight of the proof mass linked to the variations in gravity
cause the length of the spring to vary. The extension of the spring is proportional
to the applied force, thus the gravity variation can be retrieved. In figure 1.6(a)
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a spring of initial length s has been stretched by an amount δs as a result of an
increase in gravity δg increasing the weight of the suspended mass m. The extension
of the spring is proportional to the extending force, and recalling equation 1.12:

m δg = k δs

δs =
m

k
δg (1.15)

The elongation must be measured to a precision of 10−8m in instruments suitable for
gravity surveying on land. Although a large mass and a weak spring would increase
the ratio m/k and, hence, the sensitivity of the instrument, in practice this would
make the system liable to collapse. Consequently, some form of optical, mechanical
or electronic amplification of the extension is required in practice. The necessity for
the spring to serve a dual function, namely to support the mass and to act as the
measuring device, severely restricted the sensitivity of this kind of gravimeters.

(a) Static gravimeter principle (b) Astatic gravimeter principle

Figure 1.6: Principle of measurements of the various kind of gravimeters used (Kearey et al.,
2009)

The problem is overcome in modern unstable or astatic instruments which employ
an additional force that acts in the same sense as the extension (or contraction) of
the spring and consequently amplifies the movement directly. An example of an
unstable instrument is the LaCoste and Romberg gravimeter (see figure 1.7). The
meter consists of a hinged beam, carrying a mass, supported by a spring attached
immediately above the hinge, as depicted in figure 1.6(b). The magnitude of the
moment exerted by the spring on the beam is dependent upon the extension of the
spring and the sine of the angle θ. If gravity increases, the beam is depressed and
the spring further extended. Although the restoring force of the spring is increased,
the angle θ is decreased to θ′. By suitable design of the spring and beam geometry
the magnitude of the increase of restoring moment with increasing gravity can be
made as small as desired. With ordinary springs the working range of such an
instrument would be very small. However, by making use of a “zero-length” spring
which is pretensioned during manufacture so that the restoring force is proportional
to the physical length of the spring rather than its extension, instruments can be
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fashioned with a very sensitive response over a wide range. The instrument is read by
restoring the beam to the horizontal by altering the vertical location of the spring
attachment with a micrometer screw. Thermal effects are removed by a battery-
powered thermostatting system. The range of the instrument is 5000 mGal.

Figure 1.7: Lacoste-Romberg gravimeter,also available with µGal precision

The other unstable instrument in common use is the Worden-type gravimeter.
The necessary instability is provided by a similar mechanical arrangement, but in
this case the beam is supported by two springs.The first of these springs acts as
the measuring device, while the second alters the level of the 2000 mGal reading
range of the instrument. In certain specialized forms of this instrument the second
spring is also calibrated, so that the overall reading range is similar to that of the
LaCoste and Romberg gravimeter. Thermal effects are normally minimized by the
use of quartz components and a bimetallic beam which compensates automatically
for temperature changes. Consequently, no thermostatting is required and it is
simply necessary to house the instrument in an evacuated flask. The restricted range
of normal forms of the instrument, however, makes it unsuitable for intercontinental
gravity ties or surveys in areas where gravity variation is extreme.

1.3.2 Field techniques

During the field surveys the gravimeters are subjected to instrumental drift, due
to thermal variation or to instrumental or spring hysteresis. The total effect can be
of few mGal per hour. The detection and correction of instrumental drift is based on
repeated readings at a base station at recorded times throughout the day. The meter
reading is plotted against time (figure 1.8) and drift is assumed to be linear between
consecutive base readings. For each field measurement at a given time the drift
correction value is subtracted from the observed value. To obtain a good correction
interval of repetition of the observations on the base station must be between 1 and
2 hours. Measured drift can contain also moon and sun tidal effect. This effect can
be removed in the same way of instrumental drift, otherwise a separately correction
based on tables or software algorithms can be applied. The other big issue in the
survey technique is the spacing of gravity stations that is critical to the subsequent
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Figure 1.8: Graph of the effects of Earth tides and instrumental drift on the acceleration due to
gravity (Reynolds, 1997)

interpretation of the data and depend on the final application of the survey. In
fact in regional surveys only 2-3 station per km2 are enough. The density of sta-
tions increases by reducing the dimensions of the investigated area. Typical value
of spacing are 8-10 stations per km2 in hydrocarbon exploration, 5-50 m when high
resolution of shallow features is required, and less than 0.5 m in microgravimetry
applications. To achieve the required accuracy (usually up to ±0.1 mGal) a good
quality in the point position is required. The most important coordinate is the ele-
vation, where typically ±10 mm is required. Historically this is a problematic task,
because it implies long levelling network. Nowadays the problem is solved thanks to
the diffusion and the precision improvement of GNSS. Differential positioning can
achieve more than 1 cm accuracy in position determination (Leick, 1995). Other
important challenges reached after the introduction of GNSS instrumentation are
the airborne, better described in next paragraph, and the satellite gravimetry e.g.
GOCE, CHAMP, GRACE). This technique allows costs reduction and increasing
resolution in gravity surveying.

1.3.3 Airborne gravimetry

In the current paragraph the topic of airborne gravimetry is treated. It is of
particular interest, because of its good benefits-costs ratio, velocity in surveying
execution, final observation spatially defined on a regular grid. This last point is
very useful for the inversion method treated in this thesis work, that is mainly
developed to be used with airborne surveyed gravity data. Now on a brief history
and basics principle are shown. For more details see e.g. Schwarz and Li (1997).

Airborne gravimetry is not a new topic in geodesy. Proposals to implement such
a technique go back to the late fifties, for instance Thompson (1959), and first flight
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experiments were done in the early sixties, Thompson and LaCoste (1960), Nettleton
et al. (1960). The major obstacle to a successful implementation of such systems
at that time was the inaccuracy of the navigational data, especially velocity and
acceleration, which are needed to obtain the desired precision.

Although there were severe doubts at that time of ever achieving useful results
with this method, see Hammer (1983), efforts to implement airborne gravimetry
have continued, because airborne gravimetry at the appropriate level of accuracy is
vastly superior in economy and efficiency to point-wise terrestrial methods. Geo-
magnetics is often quoted as an example. It was a marginal technique in geophysical
exploration as long as it was ground-based. It developed into a major tool when
is became airborne. As in gravimetry, it is not only the increased efficiency that
brought this change about, but also the capability to survey remote areas, not easily
accessible by land. In addition, airborne gravimetry is a technique which lends itself
to spectral analysis because it is essentially based on the difference of two time series
of measurements. By defining the spectral band of interest in advance, it is possible
to develop operational procedures which will optimally resolve this band. This is
important because the spectral band required in geodesy and geotectonics on the
one hand, and in geophysical exploration on the other, is quite different, see Schwarz
et al. (1992). By tuning operational procedures to the spectral band of interest, the
estimated gravity profile will be of uniform accuracy and therefore well suited to be
combined with gravity information from dedicated gravity satellite missions. They
resolve the long wavelength features of the gravity field much better than terres-
trial methods. This is especially important for many of the geodetic applications.
When using terrestrial point gravity measurements, the resulting gravity field ap-
proximation will be non-uniform in accuracy, i.e. it will be extremely accurate at
the measurement points and show interpolation errors which are a hundred times
larger between the data points. To replace such a technique by one that has uniform
accuracy over the whole range of interest, has numerous advantages.

Renewed interest in airborne gravimetry in the mid-eighties, led to improvements
in scalar gravity system design, use of radar altimeters for vertical acceleration de-
termination, and the selection of stable carriers to optimize operational conditions,
see for instance LaCoste et al. (1982), Hammer (1983), Brozena (1984), LaCoste
(1988). The system concept used in this development stage was that of a precise
accelerometer stabilized in vertical direction by a damped platform system. This
concept will be called scalar gravimetry in the following because only the magnitude
of the gravity disturbance vector is determined in this case. Systems of this type
produced the first useful results, although the accuracy of the navigational data
remained a concern.

In the late eighties and early nineties advances in GPS technology opened new
ways to resolve the navigational problems, see for instance Schwarz et al. (1989),
Brozena et al. (1989), Kleusberg et al. (1990), Wei et al. (1992). The impact of this
new technology led to two important developments. The first one was the perfection
of existing scalar gravimeters to operational airborne gravity systems which could
be used, on the one hand, for exploratory geophysical prospecting and, on the other
hand, for large regional gravity surveys as required by geodesy and geotectonics.
The second one was the development of new system concepts which made use of the
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full potential of existing inertial measuring units (IMU) for sensor stabilization and
gravity vector determination.

The use of INS in airborne gravimetry and the development of new system con-
cepts was pioneered at the University of Calgary and at the Inertial Technology
Centre (ITC) in Moscow. The concept of a gravity vector system was developed
at the University of Calgary, see Knickmeyer (1990) and Schwarz et al. (1992), and
was implemented as a stable platform system in cooperation with Sander Geophysics
Ltd. At the same time, the ITC equipped an existing Russian platform with a highly
sensitive vertical accelerometer and tested it for both scalar and vector gravimetry.
Airborne tests with this system were done in Canada in cooperation between the
ITC, the University of Calgary, and Canagrav Research Ltd. Results have been re-
ported in Salychev et al. (1994) and Salychev (1995). The use of a strapdown INS for
vector gravimetry was jointly explored by the University of Calgary and Canagrav
Research Ltd. Its actual implementation was done by the University of Calgary and
first results have been reported in Wei and Schwarz and Li (1996). Finally, the idea
of a rotation invariant scalar gravimeter (RISC) which computes the magnitude of
the gravity disturbance vector as the norm of its three vector components was de-
veloped in the early nineties and first published by Czompo in 1994. Results can be
found in Czompo (1994) and Wei and Schwarz (1998). As is apparent from this brief
overview, airborne gravimetry is a rapidly developing field and much of the develop-
ment is rather recent. Although scalar gravimetry can be considered as a production
technique, efforts are being made to improve its accuracy and wavelength resolution
from current RMS values of 2−6 mGal and half wavelengths of 5−10 km, to values
of 1−2 mGal and 3−4 km. Once these accuracies can be reliably achieved for large
regional surveys, many tasks in geodesy and geotectonics can be solved efficiently
and with homogeneous accuracy. Conceptually, gravity sensors used on the surface
of the Earth or in its vicinity are highly sensitive accelerometers. In principle, as
shown in paragraph 1.3.1, an accelerometer consists of a proof mass, a weightless
elastic suspension, a case and a scale attached to the housing, see figure 1.9 for a
simplified diagram of a possible realization. The proof mass m, considered as a point
mass, is held in elastic suspension within the case. Assume that this can be done
with three degrees of freedom, so that motion of the proof mass can be modelled in
three-dimensional space. In an inertial frame of reference, the equation of motion
for m can then be written as

m
d2ri
dt2

= mr̈i = Fi +m G (ri) (1.16)

where r is the position vector from the origin of the inertial reference frame (i) to
the centre of the proof mass m; r is thus the acceleration of the proof mass with
respect to an inertial frame of reference and is often called absolute acceleration;
F is the force causing the elastic deformation of the suspension; G (r) is the sum
of the Newtonian attraction on m due to all bodies in the universe. Note that
the assumption of an inertial reference frame considerably simplifies the formulas
because inertial forces, due to frame rotation, are not considered. For an observer in
the measurement frame of the accelerometer case, only the elastic deformation force
is observable and can be measured on the internal scale. By dividing equation 1.16
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by m, one obtains

r̈i =
Fi

m
+ G (ri) (1.17)

Setting

fi =
Fi

m
(1.18)

and rearranging this formula with respect to f , results

fi = r̈−G (ri) (1.19)

where f , often called specific force, is the output of the spatial accelerometer. It has
the unit of an acceleration because f is expressed as force per unit mass. The term
on the left-hand side can be interpreted as representing the contact force exerted on
the accelerometer by its support structure. The term on the right-hand side shows
that f is the difference between absolute acceleration (i-frame) and net gravitational
acceleration at m. Thus, a separation of r and G(r) appears not to be possible on the
basis of measurements f . However, experience shows that an accelerometer can be
used as a relative gravimeter on the surface of the Earth. When it is set up at a point
and aligned by levelling to the gravity vector at the point of support, the change of
gravity relative to another point can be measured. This apparent discrepancy can
be explained can be given in terms of Newton’s third law. By putting the support
structure of the sensor on the surface of the Earth, gravity becomes a reaction force,
counteracting the pull of the gravity field on the case.

Figure 1.9: Principle of a linear mass-spring system (Schwarz and Li, 1997)

Thus, gravitational attraction and centrifugal force work as reaction forces and,
thus, gravity is measured. Note, that this requires r to be known which is the case
for a gravimeter stationary on the surface of the Earth if the rotation rate with
respect to the i-frame is known. In a similar way, when such sensors are mounted in
an aircraft the force needed to counteract the pull of the gravity field on the aircaft
and thus on the support structure of the accelerometer is measured, together with
aircraft motion and other inertial forces. For the following conceptual discussion,
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the important point is that accelerometers, mounted in an aircraft are sensitive to
gravity in the specific sense discussed above. It should also be noted that for any
type of free-fall motion, the output of an accelerometer will always be zero, even if
it occurs in a gravity field, see Jekeli (1992). In general, accelerometers are sensors
which are only sensitive along one axis. One simple realization, the linear mass-
spring system will be briefly discussed as an example. Its principle is shown in
figure 1.9. Typically, three such sensors would be mounted in an orthogonal triad to
measure the specific force vector. Coupling this system with a GPS antennas, the
vector r̈ can be derived and thus the gravity value deduced. An example is shown
in the graphs of figure 1.10.

Figure 1.10: Principle of a linear mass-spring system (Schwarz and Li, 1997)

To give a conceptual framework to the following discussion, figure 1.11 will be
used. It shows the different approaches to airborne gravimetry that have either been
implemented or proposed. They fall into three major groups:

- Scalar gravimetry

- Vector gravimetry

- Gravity Gradiometry

In the rest of this paragraph, each of these implementations will be briefly described.
In scalar gravimetry the magnitude of the anomalous gravity vector is deter-

mined. The basic idea can be implemented in either one of three ways. First, a
precise vertical accelerometer can be mounted on a stabilized platform. Changes
in the accelerometer readings, corrected for vertical aircraft acceleration, are then
the desired gravity changes. The orientation problem is solved by platform stabi-
lization, the separation problem by differencing two acceleration measurements, of
which one is sensitive to gravity and the other is not. Second, a strapdown system
can be used where the equivalent of a platform stabilization is done by computing
the rotation matrix between the body frame of the vertical, accelerometer and the
local-level frame. In this case no separate accelerometer is used as gravity sensor,
but the vertical accelerometer of the system is employed for this purpose. Again,
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Figure 1.11: Approaches to airborne graviemty (Schwarz and Li, 1997)

its output has to be corrected for vertical aircraft acceleration. Finally, a triad of
three orthogonal accelerometers can be used to obtain changes in the magnitude
of gravity from changes in the difference between the specific force vector and the
aircraft acceleration vector. In this case, the orientation problem is eliminated in
theory and all three acceleration sensors contribute directly to the determination of
gravity. The main difference between the three methods is the way in which the
orientation of the accelerometers with respect to the local vertical is established. In
principle, alternatives such as a GPS multi-antenna system or a star tracker, could
also be applied. Furthermore, the absolute orientation problem can be replaced by
a relative orientation problem. Instead of knowing the vertical orientation of one
accelerometer in space, one has to know the relative orientation of two acceleration
frames, namely that of the IMU local-level frame and the GPS local-level frame.
Because no absolute orientation is needed in this case, the system has been called
“Rotation Invariant Scalar Gravimeter (RISG)”.

In vector gravimetry, the magnitude and direction of the anomalous gravity vec-
tor is determined. This can either be done by using a stable platform or a strapdown
inertial system. In the first case, the accelerometers are essentially isolated from
rotational motion and high resolution acceleration sensors with a relatively small
measuring range can be used. Platform drifts are, however, a real problem because
they affect the horizontal components directly and thus and quasi-systematic errors
to the deflections of the vertical. Because the system works as a feedback mecha-
nism, it is difficult to isolate these errors in post mission. In the second case, the
accelerometer triad experiences full rotational motion and the error model becomes
therefore much more complex. This is partially compensated for by the fact that
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a high-rate digital output is available and that it is therefore possible to carefully
analyze data post mission. The orientation and separation problems are solved in
essentially the same way as in scalar gravimetry.

In airborne gravity gradiometry, the second-order gradients of the anomalous
gravity potential are determined along the flight trajectory. By integrating them us-
ing GPS velocity, first-order gradients and thus the anomalous gravity vector can be
obtained. Conceptually, these systems can be viewed as an assembly of two carefully
aligned accelerometer triads on a common stable platform. Thus, the orientation
problem is again solved by platform stabilization, while the separation problem is
solved by differencing sensor outputs on a common base. Although gravity gra-
diometers require a much higher relative sensor accuracy than the systems discussed
above, they are currently the only systems that offer the promise of resolving the
high-frequency gravity spectrum with high accuracy because they do not require
independent kinematic acceleration measurements.

In addition to the fundamental design problems of airborne gravimetry, major
design changes are necessary when going from a stationary mode of operation to
a dynamic one. The high accuracy of stationary gravimeters is due to the stable
environment and the small measurement range. The first allows the averaging of
measurements over time and thus results in improved accuracy. The second gives
improved resolution. Airborne gravity meters have not only to function in high
vibrational noise, which typically is a thousand times larger than the signal to be
measured, but are also designed for operation under accelerations of 50 to 100 ms−2.
This severely limits the use of averaging techniques. Thus, resolution suffers and ac-
curacy is affected. Measurement accuracies of better than 0.01 mGal, which are
typically achieved with stationary field instruments, cannot be expected from sys-
tems working under these dynamic conditions. The current resolution to reliably
achieve measurement accuracies of 1.5 mGal at 5 km resolution is nowadays avail-
able.
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Chapter 2

Gravity interpretation

The aim of the interpretation of gravimetric data is to determine the true model
of the subsurface geology trough the determination of mass density distribution of
anomalies and their geometrical shape. This is the most difficult step along the
whole interpretation process. In fact, as already explained in chapter 1, the gravity
signal has the property to relate the observation carried out in each point with the
mass distribution and geometry of the whole investigate body, thus each observation
depend from all the problem unknowns. In other word a change in a single parameter
of the subsurface model influences the entire set of observation.

In some ideal cases there is an exact theory (Herglotz, 1907) that explain how
the data should be treated in order to replicate the correct model. This schemes are
valid only for few examples of limited applicability, because they are developed in
ideal cases. Moreover, this technique may be often very unstable. The last issue is
that in many inverse problems the model that one aims to determine is a continuous
function of the space variables. This means that the model has infinite degrees
of freedom but, in a realistic experiment, the amount of data that can be used is
obviously finite: a simple count of variables shows that data cannot carry sufficient
information to determine the model uniquely and so there are many models that
explain the data equally well. A classical example is the interpretation of gravity
field measurements around a planet; in fact given the distribution of masses inside
the planet, it is simple to predict uniquely the values of the gravity field around the
planet (forward problem), but there are different distributions of masses inside the
planet that give exactly the same gravity field in the space. The stability and the
uniqueness are the most tricky problem to be faced in the inverse solution.

In the current chapter the gravity interpretation techniques, classified as direct
or indirect, will be discussed. The division is based on how observed data play their
role in the recovering process: direct methods use the data to estimate the model
parameters trough the inversion of observation equations. That’s why they are often
called inverse methods. On the contrary, indirect solutions don’t rely on the obser-
vation, which aren’t used in the parameters determination. The common approach
used is a trial and error one, where forward model with parameters determined on
geological information and site conformation is recurrently computed and compared
with the set of observations.

37



Bayesian interpretation of gravity data with geological prior information

2.1 Forward model

The forward model is the mathematical relationship between the observable
quantities and the model parameters. In case of gravimetric interpretation observ-
able are the gravity anomalies, while the parameters to be estimated are the mass
density distribution and the geometry of the investigated body. The fundamental
equation of the model is derived from 1.3. In particular, the most used is the radial
or plumb line component of the field gZ . It can be computed trough the gravitational
potential and its expression in a local cartesian coordinates system (Blackely, 1996)
for a generic point P of coordinates x, y, z is given in equation 2.1.

gZ (P ) =
∂V (P )

∂z
= −G

∫
x′

∫
y′

∫
z′
ρ (x′, y′, z′)

(z − z′)
(r)3 dx′dy′dz′ (2.1)

where r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2

Equation 2.1 can be reformulated with the following general expression:

gZ (P ) =

∫
x′

∫
y′

∫
z′
ρ (x′, y′, z′)ψ (x− x′, y − y′, z − z′) dx′dy′dz′ (2.2)

The integral expressed in equation 2.2 is a convolution integral, but its computation
is not a simple task for real complex geological bodies. In fact, an analytical solution
exists only for very simple geometric shapes like point masses, spheres, slabs, prisms,
etc. Hence, if the investigated body cannot be described by one of those simple
models usually its volume is divided into compartment built with a series of this
simple geometries. Now, the total signal of a body can be derived with the recurs to

Figure 2.1: Example of subdivision of a body in compartments using regular prisms. The point
P (x, y, z) is the computational point (Blackely, 1996)

the effects superposition principle and the integral expressed in equation 2.2 become
a simple summation of the signal generated by each one of the single ith constant
density compartments composing the body. The general expression of the whole
signal assume the form showed in equation 2.3.

gZ (P ) =
N∑
i=1

ρiψPi (2.3)
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The function ψPi describes the geometry of the model and depends from the basic
chosen shape to built the whole geology. The density ρi is considered constant in
every compartment. It is equivalent to samples the density distribution function
with a step with the dimension of a single simple component. Clearly, the resolution
of the density function is strongly related to the approximation chosen. It’s evident
that in the final formulation there is a linearly dependency of the gravity signal from
the density contrast of the subsurface, but non linear respect the geometry, that is
function of the operator ψ.

Next sections describes the vertical component of the gravity signal generated by
a series of simple three-dimensional geometric shapes. They are the most widely used
in subsurface modelling: the point mass, the rectangular prism, and the tesseroid.
Those approximation are good both for very localized and small investigation areas
and for regional extension gravity field description.

2.1.1 Point mass

The point mass approximation is the simplest way to describe a compartment of
the modelled geological structure. In fact it places the whole mass of the cell in a
point, usually its barycentre. The expression of the generated signal is very simple
and is derived directly from Newton’s law of universal gravitation, stated in equation
1.2: the acceleration is projected on the requested direction, in the most of gravity
surveying case this is direction of the plumb line. In a generic point P the signal
generated from a generic mass m positioned in the origin of a cartesian reference
system can be expressed as:

gZ (P ) = Gm
rP

|rP|3
· k = Gm

1

r2
P

cosψ (2.4)

where k is the versor pointing in the z axis direction and ψ is the angle between the
position vector rP of P and the z axis as presented in figure 2.2.

Figure 2.2: Geometry of a point mass positioned in the origin of a cartesian reference frame
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2.1.2 Rectangular prism

The prisms is an important geometric shape because it can approximate any
density distribution with the desired resolution. On the other hand it is reliable
only in planar approximation, thus becoming applicable only for small areas (Nagy,
1966). In order to retrieve the gravitational signal of the prism it’s useful to move

Figure 2.3: Prism geometry (Nagy et al., 2000)

the origin in the computation point P , thus the coordinates of the prism corner
become as shown in figure 2.3:

x1 = X1 −XP

x2 = X2 −XP

y1 = Y1 − YP
y2 = Y2 − YP
z1 = Z1 − ZP
z2 = Z2 − ZP

this simplification can be done without any loss of generality. The gravitational
potential is generally expressed as:

U (P ) = u (P ) G ρ (2.5)

where the therm u (P ) come from the volume integral depicted in equation 2.6.

u (P ) =

∫ x2

x1

∫ y2

y1

∫ z2

z1

dxdydz

r
(2.6)

The solution of this triple integral over the prism volume can be given in the form
of equation 2.7. The result is a continuous function in the whole R3 as its first order
derivatives. The derivation of the formula is not subject of the current discussion.

40



CHAPTER 2. GRAVITY INTERPRETATION

The interested readers can find a detailed explanation in Bessel (1813) or Haáz
(1953).

u (P ) =

∣∣∣∣∣∣∣∣∣∣∣∣xy ln (z + r) + yz ln (x+ r) + zx ln (y + r)

−x
2

2
arctan

yz

xr
− y2

2
arctan

zx

yr
− z2

2
arctan

xy

zr

∣∣∣∣x2

x1

∣∣∣∣∣
y2

y1

∣∣∣∣∣∣
z2

z1

(2.7)

The vertical component of the gravity field of the rectangular prism can be obtained
differentiating the potential u expressed in equation 2.7 respect the z coordinate,
thus obtaining:

gZ (P ) =
∂u (P )

∂z
=

∣∣∣∣∣
∣∣∣∣∣∣∣x ln (y + r) + y ln (x+ r)− z arctan

xy

zr

∣∣∣x2

x1

∣∣∣∣y2

y1

∣∣∣∣∣
z2

z1

(2.8)

The same result can be derived starting from vertical gravity component formulation
depicted in equation 2.2 considering ρ constant in the prism.

Due to its numerical form, equation 2.8 cannot be calculated all over the space.
The corners of the prisms suffers of this indeterminacy, but zero limits for the critical
terms in the equation exist at this place. Consequently gZ can be extended in R3

continuously. If P is located in a corner of the prism, for example point D in figure
2.3, where gZ is not defined equation 2.8 become:

gZ (P ) = lim
(ε1,ε2,ε3)→(0,0,0)

∣∣∣∣∣
∣∣∣∣∣∣∣x ln (y + r) + y ln (x+ r)− z arctan

xy

zr

∣∣∣x2+ε1

ε1

∣∣∣∣y2+ε2

ε2

∣∣∣∣∣
z2+ε3

ε3

=

= x2 ln (y2 + r (x2, y2, z2))− x2 ln (y2 + r (x2, y2, 0))− x2 ln (r (x2, 0, z2)) +

+ x2 ln (r (x2, 0, 0)) + y2 ln (y2 + r (x2, y2, z2))− y2 ln (y2 + r (x2, y2, 0)) +

− y2 ln (y2 + r (0, y2, z2)) + y2 ln (y2 + r (0, y2, 0))− z2 arctan
x2y2

z2r (x2, y2, z2)
(2.9)

To extend the usage of prisms also to large areas, the gravity attraction can be
expressed in a geographic coordinates system, that is the vertical direction becomes
the radial one. This can be done using the well known geodetic relationship exist-
ing between a local cartesian coordinates system and the geographical coordinates
system.

2.1.3 Tesseroid

The tesseroid or spherical prism is an elementary body useful to describe the
subsurface in ellipsoidal or spherical approximation. It become essential when the
dimensions of the modelled area don’t allow the planar approximation and so prism
cannot be used. In practice it is a segment of a sphere delimited by two meridians
with longitude λ1 and λ2, two parallels with latitude φ1 and φ2, and two spheres
whit radius r1 and r2, or considering R the radius of the reference sphere or ellipsoid
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R+h1 and R+h2. The figure 2.4 depict the boundary and the shape of the tesseroid
just explained.

Figure 2.4: Tesseroid boundaries in spherical reference frame (Uieda, 2013)

The computation of the tesseroid gravitational potential and its gravitational
attraction in usually performed in a global geocentric coordinate system (X, Y , Z)
or local east, north, up coordinate system (x, y, z) in a generic point P of coordinates
ϕ, λ, r, as shown in figure 2.5.
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Figure 2.5: View of a tesseroid, the running integration point Q(ϕ′, λ′, r′), the computational
point P (ϕ, λ, r), and the global and local coordinates system. (Uieda, 2013)

The gravitational potential of the tesseroid can be calculated with equation 2.10,
derived from the newtonian potential expressed in spherical coordinates for the vol-
ume of a generic tesseroid, that is delimited by ϕ1, ϕ2, λ1, λ2, r1, and r2 (Heck and
Seitz, 2007; Grombein et al., 2013).

V (r, φ, λ) = Gρ

∫ λ2

λ1

∫ φ2

φ1

∫ r2

r1

r′2 cosϕ′

`
dr′dφ′dλ′ (2.10)

where ` =
√
r′2 + r2 − 2r′r cosψ denotes the Euclidean distance between the com-

putation point P (ϕ, λ, r) and the running integration point P (ϕ′, λ′, r′), and ψ is the
angle between the position vector of P and Q, respectivelyrP and rQ, computed as
cosψ = sinϕ sinϕ′ + cosϕ cosϕ′ cos (λ′ − λ).

From the potential depicted in equation 2.10 the radial gravitational attraction,
that is the vertical attraction in a local reference system, can be derived as follows:

gz(r, φ, λ) = −∂V (r, φ, λ)

∂r
= Gρ

∫ λ2

λ1

∫ φ2

φ1

∫ r2

r1

r − r′ cosψ

`3
r′2 cosϕ′ dr′dφ′dλ′ (2.11)

This integral cannot be solved analytically but need to be evaluated numerically. As
an alternative, the gravitational effect of distant tesseroids can be calculated using
a Taylor expansion of the integral kernel of the equation 2.11 at P0(ϕ0, λ0, r0)

L (r′, ϕ′, λ′) =
r′2 (r − r′ cosψ) cosϕ′

`3
=

=
∑
i,j,k

Lijk (r′ − r0)
i
(ϕ′ − ϕ0)

j
(λ′ − λ0)

k
(2.12)

where

Lijk =
1

(i+ j + k)!

∂i+j+kL (r′, ϕ′, λ′)

∂r′i∂ϕ′j∂λ′k

∣∣∣∣ r′=r0
ϕ′=ϕ0

λ′=λ0

The specific choice of the point P0 allows only the terms with even power remain in
the Taylor series expansion, thus combining the result obtained in equation 2.12 and
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equation 2.11 the radial gravity attraction of the tesseroid can be finally expressed
as:

gz(r, ϕ, λ) = Gρ∆r∆ϕ∆λ

[
L000 +

1

24

(
L200∆r2+

+L020∆ϕ2 + L002∆λ2
)

+ O
(
∆4
)]

(2.13)

2.1.4 Remarks

The presented simple geometrical shapes can be used to compose complicated
geological situation thus modelling the subsurface. The final quality depends mainly
from the dimension of each elementary cell, that is the discretization step. But, also
the geometric cell shape play its fundamental role. In fact each of the presented
elementary body presents some limitation. The three main issue in the choice of
the basic shape of the model are the required computational time, the achievable
precision and the approximation errors.

In order to compare the different shape an equality criterion is needed. Hence,
the dimensions of the “equivalent” prism are computed from the dimensions of the
tesseroid and the basic assumptions are that the mass of the two different shapes
are equal at the first-order and they have the same density. Ignoring the terms of
order O (∆2) the approximation error induced depends on the size of tesseroid (Heck
and Seitz, 2007). The prisms formulas presented in paragraph 2.1.2 are analytical
solutions, but in spherical reference frame the dimension of the prisms must be
calculated directly from the tesseroid extension since usually the terrain data are
given in geodetic coordinates. That’s why usually the tessereoid is used.

Furthermore, tesseroid signal computation is faster than prisms up to ten time
faster. This remarkable difference is caused by time consuming of the log and arctan
function calls in the analytical solution of the prism. The point mass are faster,
but less accurate in the signal reproduction, thus they may be used to compute the
far zone contribution. Computational time for the three models are shown in in
figure 2.6 where a test done by Heck and Seitz (2007) using the JGP95 global DTM
(Lemoine et al.) is summarized.

Figure 2.6: Comparison of the computational time using tesseroid, prism or point mass to com-
pute potential and gravitational attraction (Heck and Seitz, 2007)
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The outcome is that in ellipsoidal or spherical coordinates system tesseroid dis-
cretization of the subsurface is widely preferred due to its low time-consuming during
computation and to its implicit description of the spherical geometric, at the price
of approximation due to Taylor series expansion. On the other hand prisms, if used
in spherical coordinates, suffers of approximation due to the shape, that more or
less are comparable with those introduced with tesseroid. In planar approximation
prisms are the better solution tanks to the existence of an analytical solution and
the particular geometry that they represent very well; in fact in a local cartesian
system there are no empty space between prisms, like if their are used in spherical
or ellipsoidal reference frame.

Finally, point mass seems better respect all the other in term of computational
time. This is true only if they are used with the same resolution of prisms or
tesseroids, but to obtain a good results in terms of accuracy of the modelled signal
at a nearest distance they need to be denser and positioned in “strategic” point.
Time consuming increases and there are no other advantages in this choice, except
if they are used for far masses signal.

A detailed comparison of the three method used to describe the subsurface and to
model gravitational attraction and potential can be found in Heck and Seitz (2007).

There are also a series of methods called Fourier methods that are based on the
Fourier transform. In fact Fourier transform is a very fast technique to compute
convolution integrals. Fortunately, all the general formulations of quantity used
in gravity prospecting, like the gravitational attraction expressed in 2.18, are of
this kind. The disadvantage is that it requires only gridded data. For details see
Heiskanen and Moritz (1967), Fedi and Rapolla (1993), Blackely (1996), Hofmann-
Wellenhof and Moritz (2006), or Sansò and Sideris (2012).

2.2 Uniqueness and stability of solution in gravity

interpretation

As already said in the introduction of this chapter there are two trivial issues that
in general may affect all the inversion problems: the uniqueness and the stability of
the solution. The aim of this section is to give a description on the effects of this
issue in the solutions and the possible methods to reduce their influence.

The inversion problem can be formalized with a set of equation that link the
observations to the set of parameters; consider a vector of observation y ∈ Rm, a
vector of unknown parameters x ∈ Rn, the relation between x and y is given by:

y = A (x) (2.14)

where A (x) : Rm 7→ Rn is a known vector function (e.g. equation 2.21 with ψ
given by equation 2.8). Now on, for sake of simplicity A (x) will be consider a
linear relationship. If it isn’t there is always the possibility to linearize the system
around an approximated value. As already seen, the estimation of y trough a known
parameters set x is called forward problem. It usually admits always an unique
solution and often the problem is well-posed, that is a little variation in x causes
only a little variation in y. The aim of an interpretation problem is the opposite:
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estimate x using the observations vector y, that usually is corrupted by additive
noise υ. The general model stated in equation 2.14 become:

y = Ax + υ (2.15)

where, under the linear hypothesis, A is a matrix of dimensions m×n. This kind of
problem may be ill-posed, that is the solution suffers of instability or nonuquiness.
It means the A is ill-conditioning matrix. The instability is a very tricky problem
because of the big and unrealistic variations of the estimated solution x caused by
little variations in the data y. In the language of linear systems analysis, A is a
linear functional of x. If i and j are respectively row and column index of A for
all i 6= j, A is a smoothly varying function. Hence, y is always “smoother” than
x as long as the observation point is outside the source body. Consequently, the
inverse problem of deriving x from equation 2.15 amounts to an “unsmoothing” of y.
That’s why the solution become unstable. There are ways to reduce the instability,
but only at the expense of giving up information about the source. Instead, the
nonuniqueness is a well known problem in gravimetric inversion. From the one hand
it is related to the fact that usually the parameters are function, namely they have
infinite degree of freedom, but the set of observations is finite. On the other hand is
an intrinsic nonuniqueness of problems like determine the density distribution from
gravity observations. In fact it’s well known that for a given potential it’s possible
to determine an infinite series of mass distribution, as Gauss theorem states (Fedi
and Rapolla, 1993).

Hansen (1998) categorized the ill-posed into two classes, respect the nature of
the ill-conditionig of A:

- the problem is rank-deficient if the matrix A has one or more very small singular
values and there is a well-determined jump between large and small singular
values. This indicates that there are columns (or rows) that are nearly linear
combinations of remaining columns (or rows).

- in discrete problems the singular values of A decay gradually to almost zero
without particular jumps in the singular value spectrum.

A measure of the degree of ill-conditioning of the matrix A is described by the
condition number that is the ratio between the relative change in the norm of the
solution vector x to the relative change in the norm of y:

‖∆y‖
‖y‖

= cond (A)
‖∆x‖
‖x‖

cond (A) = ‖A−1‖ · ‖A‖
(2.16)

If ‖·‖ is the Euclidean norm, the condition number is given by the ratio between the
maximum and the minimum singular value of A respectively. In addition, according
to Hadamard (1902) and Hadamard (1923) a problem is ill-posed if a unique solution
does not exist for all y or if the solution does not depend continuously on the data.
If the number of observations m is smaller than the number of parameters n and
the row vectors of A are linearly independent, the condition number cond(A) is
not necessarily large but the problem is ill-posed in the sense of Hadamard, namely
the problem has infinitely many such solutions that are perfectly consistent with
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the data. To solve inverse problem several approaches have been studied, in any
case if the problem is ill-posed additional information about the solution must be
incorporated in order to stabilize the problem. Classical methods to solve inverse
problems are the least squares methods (LS). Consider the problem of finding an
approximate solution x̂ for the set of equations 2.15 where the unknown error term
contains measurement errors and truncation errors in finite precision systems. An
exact solution may not exist if y is not in the image space of the map A. The least
squares solution of the system of equations 2.15 is the minimizer of the norm of the
residual, i.e:

x̂ = min
x
‖y − Ax‖2 (2.17)

If A(x) is non-linear with respect to the parameters x, the solution is sought itera-
tively. If the problem is ill-posed (i.e. cond(A) is very large), an unique solution does
not exist or the solution is unstable. The algorithms that are used to stabilize the
problem are called regularization methods. Examples of regularization methods are
the truncated single value decomposition (Hansen, 1987) and Tikhonov regulariza-
tion proposed by Tikhonov (1963) for stabilizing ill-posed problems arising in solving
Fredholm integral equations of the first kind. A similar approach was independently
proposed by Phillips (1962) and it was later reformulated by Twomey (1963). In the
standard form of Tikhonov regularization the objective is not to find the minimizer
of the norm of the residual but accept small deviation from the minimum to find a
solution with smaller norm.

In some applications it may be appropriate to set certain equality or inequality
constraints for the solution. Constrained LS problems are discussed and algorithms
are given e.g. in Kaipio and Somersalo (2005). Under some restrictive assumptions
is possible to guarantee the uniqueness of the solution at the gravimetric inversion.
In particular, in a two layers model as that depicted in figure 2.7, only three cases
can be distinguished and what one can estimated uniquely is:

- the density of one of the two layers (e.g. ρC(ξ) or ), once geometry (D(ξ)),
topography (H(ξ)), and density of the other one (e.g. ρC(ξ)) were fixed;

- geometry of the surface between the two layers, if density of the two and topog-
raphy are known;

- vertical gradient of density, when geometry of the surface between the layers,
topography and density of the upper level are given.

Figure 2.7: Two layers model of crust and mantle (Sampietro and Sansó, 2012)
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Notice that those restrictive assumption doesn’t remove the instability of solution,
due mainly to the fact observation done on a plane are used to estimate three-
dimensional parameters. As consequence a regularization method must be applied
to the inversion system, but in this way there is the certainty that the true solution
is well approximated. This uniqueness theorems are widely discussed in Sampietro
and Sansó (2012), Biagi and Sansò (2003, 2004a,b), and Biagi (1997).

2.3 Indirect solutions

The main characteristic of indirect solutions is that the final value of the param-
eters is not deduced directly from data. In fact the observations are used only to
test the goodness of the chosen solution, since indirect methods are essentially based
on the trial and error approach.

A trial and error technique consists in the computation of the forward model,
expressed in equation 2.2, of some geological situation a-priori chosen on the base of
external knowledge on the area. Hence, the calculated theoretical signal is compared
with the observed one in order to discover the shape and the density contrast of the
geological anomalies that best describes the observations, on the base of a chosen
best fit rule – e.g. minimum square distance. After that an operator adjusts by hand
the parameters of the source, usually density distribution and geometry, in order to
improve the quality of the solution (see figure 2.8).

Figure 2.8: Forward techniques to interpret potential field data. Measured anomaly is represented
by A, calculated anomaly by A0, and transformed measured anomaly by A′. Parameters p1,p2,...
are attributes of the source, such as depth, thickness or density (Blackely, 1996)

This kind of adjustment procedure is driven mainly by geological intuition and by
the interpreter experience. As a consequence it cannot be automatized. Geological
information is at the base of this process and is needed in order to discriminate
between solutions that are possible, under the formal mathematical point of view,
but improbable with respect to the field characteristics.
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The pros of this classes of solution is the possibility to represent geological struc-
ture that are more complex than in the indirect methods. Obviously the most
complex is the chosen forward model, the most optimization of calculation of the
integral of equation 2.2 is needed in computer algorithms. As already said, it is com-
mon practice to divide the ore body in compartments, thus obtaining a discretized
formulation of the integral that become more suitable for the PCs.

2.4 Direct solutions

Direct solutions use directly the observations during the estimation of the pa-
rameters of the model. Those methods insert the observation term – in this case goZ
– on the left of the forward equation and solves for some parameters of the model.
That’s why this class of solutions is also called inverse problem. The fundamental
equation is the forward model (2.2), expressed in its general formulation as:

gZ (P ) =

∫ ∫ ∫
vQ

ρ (Q)ψ (P,Q) dvQ (2.18)

that in a cartesian reference system, where point P has coordinates x, y, z and the
running point Q x′, y′, z′, become:

gZ (P ) =

∫
x′

∫
y′

∫
z′
ρ (x′, y′, z′)ψ (x− x′, y − y′, z − z′) dx′dy′dz′ (2.19)

The presented formulation of the forward model of gravity anomalies the term
ρ (x′, y′, z′) accounts for the involved physical quantity – i.e. the mass density dis-
tribution – while ψ (x− x′, y − y′, z − z′) describes the geometry of the problem.
Clearly, the aim of the inversion must be the mass or the geometry retrievement.
Thus the solutions can be classified in linear inverse problem or nonlinear inverse
problem on the base of the relationship between the observable and the parame-
ters. Essentially, a linear inverse problem has the aim of mass estimation, while the
nonlinear one is interested in geometry.

2.4.1 Linear inverse problem

Since the mass distribution is a linear function of the gravity signal its estima-
tion is called linear inverse problem. The simplest approach to the problem is the
estimation of a single average density with known geometry. In this case equation
1.1 for a generic point P become:

gZ (P ) = ρ̄ψ (P ) (2.20)

With a series of N measures of gravity anomalies and a simple linear regression the
average density ρ̄ can be determined. A detailed discussion of this solution can be
found in Ishihara (1989) or Plouff (1976).

As already seen in section 1.1, the situation can be complicated and the geological
structure divided into small compartments or cells (see figure 2.9). Hence, equation
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2.18 could be rewritten as the sum of a series of discrete terms.

gZi
(ri) =

n∑
j=1

ρjψij (rj, ri) (2.21)

Of course, geology is never so simple and the results almost certainly will be no
accurate. Now, assembling all the m observations it’s possible to write system:

gZ
[m×1]

= Ψ
[m×n]

ρ
[n×1]

(2.22)

This formulation of the interpretation problem changes the total number of un-
knowns. If they are less than observation, namely m > n, least-square can be used
to carry out a solution. This is not simple as it seems. In fact there are the two well
known problems already described: nonuniqueness and instability of the solution.
The reason for the instability can be seen from simple algebraic considerations. Each

Figure 2.9: Effect of cell j on the observation i

column of matrix Ψ represents the total-field anomaly along a profile over a single
cell, namely, cell j. If cell widths are small relative to depth, then the profile over
single cell j will be very similar to profiles over cell j + 1 or cell j − 1. In other
words, small cell width causes neighbouring columns of matrix ψij to be similar. In
the parlance of matrix algebra, the matrix becomes ill conditioned. To see how this
situation might affect solutions for ρj, consider just two simultaneous equations,{

z1 = a11x+ a12y
z2 = a21x+ a22y

(2.23)

representing some experiment, such as a simple case of equation 4.3; z1 and z2 are
measured quantities, a11, a12, a21, and a22, are calculated quantities, and x and y are
to be determined. As shown in figure 2.10, these two equations define lines in x, y
space, and the solution (x0, y0) of the two equations is given by the intersection of
the two lines. Errors in measurements of z1 or z2 cause parallel displacement of the
lines. If the lines make a large angle with each other, as depicted in figure 2.10(a),
slight displacements will not greatly affect the determination of (x0, y0). However,
if the two lines are nearly parallel (see figure 2.10(b)), slight errors in z1 or z2 will
cause significant errors in the determination of (x0, y0), and the solution is unstable.

The two lines will be nearly parallel if a11/a12 ≈ a21/a22. In terms of the magnetic
layer (Figure 10.1), this kind of situation would occur if the field at point i due to
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(a) The two solid lines make a large an-
gle to each other, small errors in z1 or
z2 will not affect the solution greatly

(b) The two lines are nearly par-
allel, small errors in z1 or z2 will
greatly affect the solution

Figure 2.10: Solution of two simultaneous equations. Equations are represented by solid lines
and solution (x0, y0) is shown by their intersection. Errors in z1 or z2 cause lines to shift up or
down, as shown by dashed-dotted lines (Blackely, 1996)

cell j is similar to the field at point i due to cell j + 1 and if the field at point i due
to cell j is similar to the field at point i+ 1 due to cell j. Equation 10.8 is simply an
N-dimensional extension of these two simultaneous equations. Rows and columns of
Ψ are smoothly varying functions. Hence, the forward calculation of gZi

from ρj is a
smoothing operation, whereas the inverse calculation is an unsmoothing operation.
Moreover, the deeper the layer is relative to cell width, the smoother is the matrix
Ψ. If cell width is too small relative to the depth to the layer, the matrix Ψ becomes
ill-conditioned, and small changes in will cause unrealistic values in the calculated
ρj. To avoid the ill-conditioning there are basically two ways: the first is to reduce
resolution, obviously losing in quality of the interpretation; the second is to apply
one of the technique seen in section 2.2. Further details are reported in Blackely
(1996).

2.4.2 Nonlinear inverse problem

The potential field on the left side of equation 2.2 and 2.18 is a linear functional of
the distribution of mass. In fact, doubling the mass density doubles the amplitude of
the total-field anomaly, whereas tripling the mass density would triple the amplitude
of the anomaly. In general terms, a system is said to be linear if it satisfies the
following test: if f1(P ) is the field caused by source distribution s1(Q), and f2(P )
is the field caused by another distribution f2(Q), then the field caused by as1(Q) +
bs2(Q) is simply af1(P ) + bf2(P ), where a and b are constants.

The same cannot be said for the other parameters that define the source. The
gravity field is not a linear functional of, for example, depth, thickness, or shape
of the source. All these parameters are contained within ψ (P,Q) and in the limits
of integration implied by volume vQ. Inverse methods that attempt to estimate
these nonlinear parameters are called nonlinear methods. It should be noted that
nonlinear methods usually entail simplifying assumptions that in effect linearize the
problem.
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Mainly, what it is possible to study is a characteristic of geometry, under some
fixed hypothesis, in order to remove the ill-conditioning of the resolution system.
Thus it’s possible to estimate parameters such as the shape of the source (Fedi and
Abbas, 2013; Corbató, 1965) or its depth . The other possibility is the use of ideal
body theory (Parker, 1974, 1975).

2.5 Geological information

In the previous sections the need for a-priori information in order to reduce
the solutions domain was highlighted. Sampietro and Sansó (2012) showed that in
order to get unique solution some constrains on density or geometry of the anomaly
source are necessary. A good starting point for the building of those constrains is
the geological information available for the area under investigation.

Figure 2.11: Table of density range for some lithotype

In particular, geological data are often qualitative and based on rock outcrops,
core drilling, on the historical knowledge of the place, or from shallow geophysical
prospection. Clearly at the base of this process there is geologist experience. The
results is a vertical cross-section of the subsurface, where the various geological
materials are depicted. Obviously the border are hypothetical and they may be
large approximation of the reality. An example of cross section is shown in figure
2.12. To give the complete dataset about the place also the average density of each
materials can be found in geological literature. In fact it’s common to find table
like the one represented in figure 2.11 (see Christensen and Mooney 1995), where for
each lithology the range of possible density is represented. Essentially, it is derived
from the collection of results of surveys all along the planet.

Whenever geological information seems imprecise and inadequate it is very useful
to introduce a solid starting point in gravity field interpretations. In fact it introduces
during the inversion process an information that is representative of the investigated
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Figure 2.12: Example of geological section

place and can be helpful to design a blurred and sharpened initial model in a trial-
error solution or to add constrains in inverse problem solution.

In hydrocarbon exploration it’s common to joint seismic with gravity prospec-
tions, especially in case of salt dome. In fact salt dome are one of the most important
geological structure near which oil may remain trapped. It happens especially in the
deeper portion of the dome, but seismic prospection are not able to recover a resolute
and precise image of this portion of the structure, due to salt elastic characteristics.
A typical situation is shown in figure 2.13, where it’s visible that the position of the
oil traps is in the blurred and sharpened zone of the seismic profile.

Figure 2.13: Example of seismic section of a salt dome
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Chapter 3

Bayesian approach to geophysical
inversion problems

The proposed inversion method has the aim to integrate gravity observations
with the geological information. As already seen, the main difficult comes from the
fact that the first is a quantitative data, with its well known problems of instabil-
ity and uniqueness in the solution, while the second is only qualitative information.
The bayesian approach allows to connect the two dataset using statistical inference
(Press, 1968; Wiggins, 1969; Jackson and Matsu’ura, 1985; Mosegaard and Taran-
tola, 1995; Mosegaard et al., 1997; Tarantola, 2002). More in general the media
properties, e.g. elastic or electrical properties or density in gravity case are linked
with the information carried by geology, namely a categorical variable, like the litho-
type, Thus a relation between primary model parameters space and secondary model
space is provided by petrophyisics, geostatistics, or geology correlation (see figure
3.1). The mathematical framework used requires the representation of the informa-
tion by probability density functions (pdf ), defined over the space of model parame-
ters. The final outcome, after the combination of model spaces and data space is the
posterior pdf. In the current chapter the theoretical and mathematical formulation
of the bayesian approach will be illustrated. A detailed discussion the reader can
refer to Bosch (1999) or Geman and Geman (1984).

In principle, the media properties can be represented by continuous field defined
over the investigated volume. Nevertheless, the inference of these function involves
an infinite dimensional problem that is difficult to manage. The common approach
in this cases, as seen in chapter 2, is to discretize this continuous fields, such that
the infinite dimension field inference problem is translated into a finite dimensional
space. The formal description of the properties within the investigated volume Ω
follows the parametric model zi (r,mi) to describe the generic ith properties as
function of a finite set of parameters mi and of the position r ∈ Ω. The field can be
modelled using basically three methods:

1. a set of blocks, where each one as an assigned value to describe the whole field,
thus become a piecewise constant function;

2. a set of point in Ω with assigned value that are combined with an interpolation
rule, in order to recover the information in the whole space;
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3. linear combination of bases function.

Figure 3.1: Parameters spaces and models spaces in the multiple property geophysical problem.
The link between the primary and secondary model space is provided by the petrophysical and
the geostatistical information. The link between the secondary models space and the data space
is established by the forward geophysical calculation. The arrows indicate the forward direction
from the primary model to the data space (Bosch, 1999).

In the general formulation of the problem a series of physical and geological
characteristic of the lithological material is considered. The array z and m become
as many as the number of modelled physical quantity. Hence – calling the model
parameter space Mi the space containing the array of the model parameters mi, and
the property model space Zi the space containing the property of fields calculated
from the parameters – the joint parametrization requires a joint model parameter
space, namely the product space M = M1 ×M2 × · · · ×Mk, and the joint model
space being Z = Z1 × Z2 × · · · × Zk. The distinction is important in this work
because the property field (Z) is directly derived from the a-priori information and
it has to be transformed in prior information on the model parameters, that is
physical characteristics or, in other words, the secondary model space. The joint
spaces M and Z are also indicated with the notation m = {m1,m2, · · · ,mk} for the
joint model parameters array and z (m, r) = {z1 (m1, r) , z2 (m2, r) , · · · , zk (mk, r)}
in case of the joint property model; each individual zi (mi, r) is called a property
model.

The bayesian approach formulates the inversion problem as an inference problem.
It consist of updating the prior knowledge of the models (in this work the lithology

56



CHAPTER 3. BAYESIAN APPROACH TO GEOPHYSICAL INVERSION

and the density), using the results collected with geophysical surveying experience.
In the current work only gravity surveying is used, but for a general formalization
of the problem is better to consider a series of geophysical methods. The inference
problem is formulated in the joint model parameters space M, where the known
information is expressed by a pdf. Thereafter, the initial state of the inference prob-
lem is described by a prior probability density ρ (m1,m2, · · · ,mk) and the updated
state by the posterior probability density σ (m1,m2, · · · ,mk), which is obtained as
(Tarantola, 2002; Tarantola and Valette, 1982):

σ (m1,m2, · · · ,mk) = c ρ (m1,m2, · · · ,mk) L (m1,m2, · · · ,mk) (3.1)

where L (m1,m2, · · · ,mk) is the likelihood function and c a normalization constant.
The likelihood function measures the misfit between the modelled geophysical signal,
in the specific case the chosen forward gravity model, and the observations. In the
next sections it will be discussed the structure of the prior density, likelihood function
and posterior probability.

3.1 The prior probability density

The prior probability density function represents the prior knowledge about
model properties at individual positions, spatial relations of property values, cross-
relation between different properties, and spatial dependence of cross-relations. As
a consequence, it is a complicated function and it is difficult to formulate directly
into the joint model space. The simplest way to deduce it is to decompose the whole
probability density function into two or more convenient factors using the rule of
conditioned probability, derived from the so-called Bayes’ theorem (Bayes, 1984):

ρ (m1, · · · ,mk) = θs|p (m1, · · · ,mk|m1, · · · ,mn) ρp (m1, · · · ,mn) (3.2)

Now on, the considered partition of the model space is the division between primary
and secondary properties. The first is represented by term Mpri = M1 × · · · ×Mn,
while the second by Msec = Mn+1 × · · · ×Mk. Therefore, ρp is the term containing
the information about the primary media properties, namely a marginal density,
and θs|p is a conditional probability distribution that contains knowledge about the
secondary properties and their relation with primary ones. This inference strategy
in the current inversion problem has the following advantages:

1. there are often some privileged properties better related with the structure of the
media and more relevant to the determination of the rest of the properties. Pri-
mary simulation of this property is needed to simulate the rest of them (Deutsch
and Journel, 1992);

2. the conditional probability density is particular convenient to introduce petro-
physical law (empirical or theoretical) relating rock properties together. On the
other hand, the marginal probability density is useful to describe the properties
better constrained by prior knowledge.

These advantages are particular relevant when lithology is used as primary proper-
ties. In fact all the other physical rock properties used in geophysical calculation,
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that is for the current work the mass density, are strongly dependent from it, because
they are macroscopical characteristics related to the structure of the rock, namely
its lithology.

Depending on the properties information available, this principle of decompo-
sition could be applied against at the various subspace. Thus, there is a larger
partition of the model space, and the prior probability density function become sim-
pler to be formalized. The other important assumption usually done is the statistical
homogeneity, namely the fact that the conditional probability density functions do
not change within the space. This hypothesis means that taking, as usual, the lithol-
ogy as primary parameters and considering a class, its relation with its secondary
properties (like the mass density) is the same, independently from its position in the
studied volume Ω.

3.2 The likelihood function

In a general formulation of the problem, consider m different geophysical methods
used to explore the studied region (see figure 3.1) and the data parameters array
d1,d2, · · · ,dm that describes the observation of each used surveying technique. The
joint data parameter space become the product of the spaces of each considered
method, that is D = D1×D2× · · · ×Dm. The information so provided is described
by a joint probability distribution ν (d1, · · ·dm) defined over the joint data space,
with a product structure, on the base of the assumption of observation independence
between different geophysical methods.

ν (d1, · · ·dm) =
m∏
i=1

νi (di) (3.3)

Furthermore, the ith geophysical forward problem is assumed to be solved exactly,
that is a forward solution can be computed. It is represented by a function dcali =
gi (m1, · · · ,mk), for the whole set of observation techniques. Each of the method
is defined on the joint space of parameters M, even if each one use only its related
parameter (e.g. gravity use mass density). Finally, the likelihood function become:

L (m1, · · · ,mk) = ν (g1 (m1, · · · ,mk) , · · ·gm (m1, · · · ,mk)) (3.4)

Thanks to the assumption of statistical independence between uncertainness of the
various geophysical methods the joint likelihood is the product of the single likeli-
hood. Hence, equation 3.4 become:

L (m1, · · · ,mk) =
m∏
i=1

ν (gi (m1, · · · ,mk)) =
m∏
i=1

L (m1, · · · ,mk) (3.5)

This hypothesis of independence of the observational uncertainties across the differ-
ent surveying techniques is realistic in most of the cases. In fact sources of errors
affecting the different geophysical data (e.g. instrumental, environment, human,
etc.) are commonly different between all the methods.
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3.3 The posterior probability density

Summarizing the results of previous sections, the posterior probability density
function can be calculated. In particular, combining equations 3.1, 3.2, 3.5 the
posterior pdf is expressed as:

σ (mpri,msec) = θs|p (mpri|msec) ρp (mpri)︸ ︷︷ ︸
ρ(mpri,mpri)

m∏
i=1

Li (mpri,mpri)︸ ︷︷ ︸
L(mpri,mpri)

(3.6)

where mpri denotes the array {m1, · · · ,mn} of primary model parameters and
msec the array {mn+1, · · · ,mk} of secondary model parameters. The likelihood
Li (mpri,msec) function is defined over the joint model space to keep generality, but
in the studied case, as usual, it depends only from secondary parameters, because
primary model parameters are associated to the lithology.

The integration of the joint posterior density over the secondary parameters space
gives the marginal posterior density for primary parameters:

σp (mpri) = c ρp (mpri)

∫
Msec

θs|p (mpri|msec)
m∏
i=1

Li (mpri|msec) dmsec (3.7)

where the integral term is the likelihood function for the primary model parame-
ters. To estimate the final value of the model parameters there are basically two
approaches: the first is to sample the posterior pdf, while the second is to find its max-
imum, for example using a gradient method or another optimization method. This
second approach is accettable only if the posterior pdf is a monomodal, because it
provides an incomplete representation, that may be wrong in case of complex shapes,
being multimodal. In fact, the posterior pdf of multiple-data multiple-parameters
inverse problem results from the combination of several nonlinear geophysical simu-
lations and complicated priors and it is likely to be complicated function. Although
the sampling approach requires larger calculation effort than the optimization ap-
proach, it will be the general method that provides more information about the
posterior knowledge of the studied volume. However, in the current job the chose
approach is the maximum of the posterior. To avoid the problem of a classical max-
imization approach like the gradient one, a simulated annealing aided by the Gibbs
sampler is used (Sansò et al., 2011). In fact it is demonstrated that it provides the
global minimum if the temperature parameters decrease sufficiently slow, thus the
problem of complex shape of multimodal posterior pdfs is solved and, respect to a
sampling solution approach, it requires less time.

3.4 Problem formalization

We shall apply Bayes’ theorem in the usual form (Bayes, 1984; Box and Tiao,
2011):

P (x|y) ∝ L (y|x)P (x) (3.8)
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where y is a vector of observable quantities, while x is a vector of body parameters.
The body B is split into voxels, Vi, with index i = 1, 2, ..., N ; each voxel will carry two
parameters (ρi, Li) where ρi is the mass density in the voxel and Li is a label variable
attributing to Vi the presence of a certain geological unit chosen from an a-priori
archive, e.g. water, sediment, salt, rock of a given type, etc. So ρi is a continuous
variable and Li a discrete one among the M integers denoting the various materials.

Crucial is the way in which the prior information is supplied, namely the shape
of P (x) = P (L1, ρ1;L2, ρ2; ...;LN , ρN). We assume that:

P (x) =
∏
i

P (ρi|Li) · P (L1, L2, ..., LN) (3.9)

meaning that, once a label Li = ` has been chosen for Vi, the corresponding density
will follow the law P (ρi|Li), which in our case is just a normal distribution:

P (ρi|Li) ∼ N
(
ρ`, σ

2
`

)
(3.10)

with the mean ρ` and the variance σ2
` given by geological tables. In this respect a

comprehensive set of rocks properties can be found for instance in Christensen and
Mooney (1995). As for the prior P (L) ≡ P (L1, L2, ..., LN) we assume to have a
Gibbs distribution (Azencott, 1988):

P (L) = e−E(L), (3.11)

where the energy E (L) depends only on values `oi of Li provided by the prior model,
as well as from cliques of order two expressing the fact that the value of Li is more
likely to be equal to the value of the labels of nearest neighbour voxels according to
the following rules:

P (Li = `|L∆i) ∝ e−γs
2(Li,`

o
i )−λ

∑
j∈∆i

q2(Li,Lj) (3.12)

where γ, λ are parameters to be tuned, and

s2 (Li, `
o
i ) =

{
0 if Li = `oi
αk if Li = k 6= `oi

(3.13)

q2 (Li, Lj) =

{
a if Li = Lj
aj if Li 6= Lj

, (3.14)

with Vj ∈ ∆i and ∆i is the neighbourhood of the voxel Vi, depicted in figure 3.2 in
a 3D case.
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Figure 3.2: Definition of the neighbourhood ∆i of the voxel Vi

Note that by tuning αk and a, aj one can create a hierarchy of values most
probable for Li, thus implementing an a-priori table of proximity of geological units.
For example supposing to have three units, ` = {1, 2, 3}, and a proximity table as
the one presented in figure 3.3, this translates into the following definition:

s2 =


0 if Li = `oi
α if Li is a 1st neighbour of `oi
β if Li is a 2nd neighbour of `oi

, (3.15)

q2
j =


a if Li = Lj
b if Li is a 1st neighbour of Lj
c if Li is a 2nd neighbour of Lj

(3.16)

with β > α > 0 and c > b > a.

Figure 3.3: Example of proximity table. The geological unit 1 can be close to unit 2 but not to
unit 3

Two remarks are in order: the first is that L, with prior P (L), is indeed a Markov
random field (MRF, see Rozanov 1982). The second is that the final result of our
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optimization will depend a lot from the chosen values of all the constants, which
have to be tuned on the specific example by hand.

As always for a MRF, the characteristics, that is the conditional distributions
depicted in equation 3.12, determine a joint distribution P (L) such that:

logP (L) ∝ −γ
∑
i

s2 (Li, `oi)− λ
∑
i

∑
j∈∆i

q2 (Li, Lj). (3.17)

Summarizing, the logarithm of the posterior distribution, shown in equation 3.8, will
be written as:

L (x) = L (ρ, L ) = logP (x|y) = −1

2
(∆g − Aρ)T C−1

∆g (∆g − Aρ) +

−1

2
(ρ− ρ)T C−1

ρ (ρ− ρ)− 1

2
γ
∑
i

s2 (`i, `
o
i )− λ

∑
i

∑
j∈∆i

q2 (`i, `j)
(3.18)

where we recall that ∆g is the vector of observed gravity anomalies, C∆g the covari-
ance matrix of their noise assumed here to be diagonal, A is the forward modelling
operator fron densities to gravity anomalies, ρ and ρ the vectors of components ρi
and ρi = ρ (`i), Cρ the corresponding covariance matrix and s2, q2 given by equa-
tions 3.13 and 3.14. This is the target function we want to maximize with respect
to ρi and Li.

62



Chapter 4

Solution strategies

The aim of this work, as already seen, is to integrate geological information with
the gravity observation. To give a weight to the geology the bayesian approach, de-
scribed in the previous chapter, is used. In the current chapter the solution algorithm
will be detailed explained.

To reach the final solution at the inverse gravimetric problem using the bayesian
approach well described in section 3.4 the goal is to maximize the posterior prob-
ability density function, or as shown in equation 3.16 its logarithm. Clearly, the
maximization problem becomes a minimization one if the sign in front of the equa-
tion is changed, thus the problem is translated into the minimization of the opposite
of the logarithm of the posterior density function respect to the parameter vectors
L and ρ. The final formulation of the problem become:

min
L,ρ

{−L (ρ, L )} = min
L,ρ

{
(∆g − Aρ)T C−1

∆g (∆g − Aρ) +

+ (ρ− ρ)T C−1
ρ (ρ− ρ) + γ

∑
i

s2 (`i, `
o
i )− λ

∑
i

∑
j∈∆i

q2 (`i, `j)

}
(4.1)

The big issue is how to deal with this problem, because of, to guarantee a good
result the absolute minimum must be found. The proposed solution is based on the
simulated annealing. Due to the nature of the geometrical relation existing inside the
voxels distribution the investigated volume is well described with a Markov Random
Field (MRF), thus the simulated annealing can be carried out with the aid of a
Gibbs Sampler.

Basically, two different strategies based on the simulated annealing are pursued
during the project development, in order to become able to deal with discrete and
continuous variables like label (L) and density (ρ) involved in the solution:

1. the first approach is to give an iteratively estimation of the density derived from a
least square adjustment constrained with the mean value of the density associated
to the chosen label, and of the labels using the simulated annealing once density
are fixed;

2. discretize the value of density near its average value, in order to give a series of
discrete possible solution, each one with a different a-priori pdf. Now it’s possible
to find the solution only with simulated annealing aided by the Gibbs sampler
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The first strategy had some problems due to the fact that in the mixed approach
to the minimization optimization it is not possible to maintain coherency between
least square and simulated annealing. In fact at each iteration there is a change
of the covariance matrix of densities, used as regularizator in LS. That fact implies
that the objective function in not the same at every iteration, thus the minimum
is impossible to find. Hence, in the follow paragraphs only the second approach
is discussed, after a rough description of Gibbs sampler and simulated annealing
optimization techniques and of the used forward model.

4.1 Geometric model

To apply the algorithm just described the concept of voxel is introduced. It
means that the volume is described by the sum of a discrete number of cells. As
already seen, this is a common method to model the investigated space, often used
in inverse problems. The developed solution is based on a planar approximation.
Each voxel is described by a series of regular rectangular prism. Obviously, this is
not the only solution possible, but is the simpler to implement during the testing
phase of the algorithm, done with simulated data.

The vertical gravity signal of each prism is modelled with the formulation derived
in equation 2.8 (Nagy et al., 2000), here reported:

gZ (P ) = −Gρ

∣∣∣∣∣
∣∣∣∣∣∣∣x ln (y + r) + y ln (x+ r)− z arctan

xy

zr

∣∣∣x2

x1

∣∣∣∣y2

y1

∣∣∣∣∣
z2

z1

recalling that x, y, z are the coordinates difference between the the prism corner
and the computational point P . The sign minus depend only on the chosen vertical
direction. In this case the z coordinate increase with height. Therefore, the gravity
signal of the total studied volume can be obtained simply with the summation of
the contribution due to all the N single compartments. Equation 2.8 become:

gZ (Pj) = −G
N∑
i=1

ρi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣xj ln (yj + rj) + yj ln (xj + rj)− zj arctan

xjyj
zjrj

∣∣∣∣x2i
j

x
1i
j

∣∣∣∣∣∣
y
2i
j

y
1i
j

∣∣∣∣∣∣∣∣
z
2i
j

z
1i
j

(4.2)
where the term xj, yj, zj, rj are the coordinates and the euclidean distance expressed
in the reference frame with origin in the generic computational point Pj, and their
relation with the local coordinate system X, Y , Z used in the plane approximation
is:

xj = X −XPj

yj = Y − YPj

zj = Z − ZPj

rj =

√(
X −XPj

)2
+
(
Y − YPj

)2
+
(
Z − ZPj

)2
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Therefore, the coordinates of the corners of the ith prism referred to the j th com-
putational point are called x1ij

, x2ij
, y1ij

, y2ij
, z1ij

, and z2ij
.

The complete forward model for the chosen geometry is derived combining all
the observation on a regular grid and at a constant height. It can be expressed using
matrix system. Introducing the term

ψji =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣xj ln (yj + rj) + yj ln (xj + rj)− zj arctan

xjyj
zjrj

∣∣∣∣x2i
j

x
1i
j

∣∣∣∣∣∣
y
2i
j

y
1i
j

∣∣∣∣∣∣∣∣
z
2i
j

z
1i
j

to describe the geometric relation between the ith prism and j th computational
point the system become:

gz = Aρ ⇒



gZ (P1)
gZ (P2)

...
gZ (Pj)

...
gZ (PM)


=



ψ11 ψ12 · · · ψ1N

ψ21 ψ22 · · · ψ2N
...

...
. . .

...
ψj1 ψj2 · · · ψjN
...

...
. . .

...
ψM1 ψM2 · · · ψMN




ρ1

ρ2
...
ρN

 (4.3)

Then, the prisms are associated to the two random variables used in the solution:
the label L and the mass density ρ. The probability relation existing between the
two is described by a normal distribution (see equation 3.10). The matrix A, once

Figure 4.1: The volume is discretized in small prisms, each one associated to a label L and a
density ρ

computed is constant during the whole inversion process, because it represent the
relation between gravity observation and the density of the cell. The geometry of
the problem, namely the subsurface layers, is described by the label assigned to the
various voxels, as shown in figure 4.1
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4.2 Simulated annealing and Gibbs sampler

Simulated annealing came from the annealing method in physics. This technique
was used to increase the size and decrease the number of defects in crystals. This was
done by heating and then slowly cooling the crystal. It is an optimization technique
used to find the minimum of functions when there are multiple hills and standard
hill climbing techniques could trap the algorithm into a local (non global) optimum.
Considering a function ε (x) to minimize in x ∈ Q, continuous in Q (a close and
finite square), where the minimum E = ε (x̄) is reached only in a point x̄ ∈ Q the
family of probability density function

f (x, λ) = Aλe
−λε(x) (4.4)

can be written, where the term Aλ is a normalization term

A−1
λ =

∫
Q

e−λε(x) (4.5)

where, according with physical simulation the parameter λ is the inverse of the
temperature T , thus the limit λ → ∞ correspond to T → 0 and λ → 0 correspond
to T → ∞. An intuitive description of the is shown in figure 4.2 where ε (x),
f (x, λ = 0.1), f (x, λ = 10) are represented.

Figure 4.2: Graph of ε (x), f (x, λ = 0.1), f (x, λ = 10) (Sansò et al., 2011)
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Clearly for a small value of λ, namely an higher very value of temperature T , the
distribution become a uniform distribution as shown in the follow equation:

lim
λ→∞

f (x, λ) =
1

µ (Q)
,x ∈ Q (4.6)

When sampling over the space in the early stages in the algorithm, simulated
annealing allows for downhill moves to less optimal values with a certain probability.
This allows for jumping out of local maximums. However, as the algorithm progresses
the probability of making downhill moves decreases. As a result, one is able to
initially sample over a larger space and eventually localize on a maximum, as shown
in figure 4.3.

Figure 4.3: Random extractions from the distribution of probability of equation 4.4 by decreasing
slowly temperature T (or increasing slowly the parameter λ). The algorithm converge to the global
minimum (or maximum)

The difficult arises when sampling the probability distribution of equation 4.4
in case of large quantity of parameters. That’s why simulated annealing can be
connected to the Gibbs sampling algorithm. In fact Gibbs sampler is particularly
appropriate to the sampling of a distribution like 4.4 because such a method require
only the knowledge of the conditioned probability distribution of each component
xi respect to the others, that for a MRF is very simple. In fact, it implies only the
neighbourhood variables instead of all the variables of x. Hence, once the sequence
to sweep all the space is chosen, starting from one of the values {x0i} = x0 at each
time one component of x sampling from the conditioned distributions, where some
values are already updated, while the others are the same of the previous step (see
figure 4.4). In this way a new vector x1 is generated and iterating the process we
obtain a Markov chain that after a certain time present a probability distribution
that is the one shown in equation 4.4.

As already said, in the presented approach to the gravity inversion the two meth-
ods are combined. This integration was studied first by Geman and Geman (1984)
and consist in the iterative application of Gibbs sampler, in order to pass from xt
to xt+1, and of simulated annealing, meaning that each iteration the parameter λ is
updated in order to pass from λt to λt+1 > λt. The aim is to obtain for t→∞ the
parameter λ → ∞. According to the mechanical similarity the temperature each
iteration is update and decreased in order that for t → ∞, the system is frozen,
namely T → 0.
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Figure 4.4: Principle of Gibbs sampler to draw samples from a joint distribution of a multidi-
mensional random variable given a proper sequence of its conditional distributions. It requires to
order the variables and minimize the function by acting only on a variable at a time.

4.3 Inversion algorithm

The proposed inversion algorithm is developed in its preliminary version using
Matlab (Mathworks) programming language. This choice has been done because
of its simple interface and matrix management. On the other hand there are some
limitations on the quantity of data that is possible to handle. That’s why the tests
performed in support of the present work, shown in the next chapter, are done with
slow resolution.

The final working flux, as shown in figure 4.5, is composed of three main phases:

- An initial phase where data are imported, lithological classes and density inter-
vals are imported and stored. After that it is possible to discretize the density
value and associate to each one its prior probability coming from the normal dis-
tribution. In this phase the linear operator A of the forward model is computed
and stored in order to be used. Furthermore the observation are simulated in
a noiseless scenario. The parameters and the constant can be set by the user
directly in the code.

- The second phase is the initialization of the simulated annealing algorithm, that
is a random initialization of labels. This step correspond to set the temperature
T to infinite. Simulated annealing and Gibbs sampler are initialized by seeking in
order all the voxels and the value of Gibbs probability (equation 4.4) is computed
in each cell for all the possible value of the two variables. A random extraction
is performed in order to sample a value for label and density. Once all the voxels
are skewed the temperature is reduced according to a law.

- Last step is to determine a convergence criteria. In this case there is only a
limitation on the maximum number of iteration and a minimum value of the
temperature is set, in order to avoid numerical problems. At the end of the
process the results are visualized, typically using vertical cross section.

All the constant are set by hand from the user. Moreover it has some computational
time problem. In fact, it needs to be optimized in this respect. In particular,
the more time consuming operation is the computation of the forward model, but
also the weight due to neighbourhood relationships. Moreover, in order to reduce
computational time the other useful improvement to apply is to fix voxels with a
posterior probability greater than a threshold (e.g. 95%). In this way the each time
a voxel is fixed it does not need more computation, thus is skipped by the routine
and finally iteration time decrease rapidly.

However, this is a good starting point to be used in research and development
phase of the presented Bayesian approach. Considering the large amount of data, to
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develop an optimized version of the software it can be useful to write the software
using a low level programming language. Anyway, this is not the aim of the present
work.

Figure 4.5: Solution algorithm diagram
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Chapter 5

Examples

In order to start assessing the effectiveness of the presented Bayesian approach,
which is able to consider also qualitative geological information, some simple experi-
ment is carried out. In fact, to allow the computation using common computers high
resolution volume discretization cannot be used. The tests consist in recovering the
mass density distribution of two 3D synthetic models from their gravitational field.

Moreover, all the observations come from simulated data. In fact, the idea is to
compute gravity observation using the forward model, described in previous chapter,
on a regular grid, while the geological prior information is derived introducing a small
error in the true synthetic model. Finally, the solution can be evaluated on the base
of its attitude to recover the true known geological configuration of the original
model.

Basically, two test are developed: the first model simulates the recovery of the
bathymery, while the second one consists in recovering the shape of a salt dome.
The test consists in recovering the mass density distribution of two 3D synthetic
models from their gravitational field. In particular the first model simulates the
recovery of the bathymery, while the second one consists in recovering the shape of
a salt dome. In the bathymetry model only two labels are considered, water and
bedrock, defined by ρw = 1000 kgm−3, σw = 30 kgm−3 and ρb = 2900 kgm−3,
σb = 80 kgm−3 respectively. In the salt dome model three geological units are
considered: sediments (ρs = 2200 kgm−3, σs = 40 kgm−3), salt dome (ρd = 2000
kgm−3, σd = 20 kgm−3) and the bedrock (ρb = 2900 kgm−3, σb = 80 kgm−3).
In both cases the investigated area is a square of 30 km side and has a depth of
5 km. Furthermore, the models are constant along y direction. This is done in
order to simplify data treatment. A vertical cross-section of the synthetic models is
represented in figures 5.1(a) and 5.2(a). The volume is modelled by means of 1200
rectangular prisms, each one of dimensions 1.5 km (x) × 5.0 km (y) × 0.5 km (z).

Starting from these models the corresponding gravitational observations are gen-
erated by means of Nagy equations (see Nagy 1966) in a noiseless scenario. In
particular these observations are generated on a regular grid at an altitude of 500
m and with a spatial resolution of 5 km, thus simulating the result of an aerogravi-
metric flight. In the follows paragraphs the results of this two simulation are shown
and discussed.
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(a) (b)

Figure 5.1: Vertical cross section of the true (a) and a-priori (b) model where blue is water and
red bedrock

(a) (b)

Figure 5.2: Vertical cross section of the true (a) and a-priori (b) model where blue is the salt
dome, green sediments and red bedrock

5.1 Bathimetry: results

The final solution of the example of bathymetry is performed in about 5000
iterations and about 4 hours on a common personal computer. All the cross section
of the resulting models in y direction can be seen in figure 5.3. Clearly, they show
how the error in the geological model is properly corrected. In fact, 86% of the
uncorrect densities and labels are properly corrected. Moreover, there are also error
correct voxels that in the final solution change label and density. This problem is
emphasized near the edges of studied volume, thus the idea is that it depend mainly
from some kind of border effect. On the other hand, increasing the resolution the
problem can be limited.

The most time-consuming job was to calibrate the two parameters λ and γ, that
are empirically set by end. The presented solution is obtained with their values
equal to 0.833 and 0.733 respectively. The other big issue is the temperature range
and its decreasing law. In fact from this parameter depend the quality of the final
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solution: a fast decreasing law doesn’t allow the system to reach a solution, on the
contrary if the decrease law is too slow the solution is very time-consuming. Since

Figure 5.3: Results of Bayesian inversion of the simulated set of data in case of bathimetry
(vertical cross-sections)

simulated annealing need to start from a theoretical infinite temperature the values
of the labels are random initialized, while this condition represent the sampling from
a uniform probability density function.
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The Bayesian solution is compared with a standard least squares solution, where
the regularization is done on the basis of the geological model and can be seen in
figure 5.4. Not being able to modify the labels of voxels the standard least square
solution can only fit the observations by changing densities according to the a-priori
hypothesis. Clearly the solution is not able to recover possible errors in the a-priori
model.

Figure 5.4: Density estimation from classical regularized least squares gravimetric inversion

5.2 Salt dome: results

The results of three layer salt dome interpretation are only partially corrected.
In fact only 70% of the uncorrect densities and labels are properly corrected, mainly
in the upper part of the subsurface. This is evident in figure 5.5, where one relevant

Figure 5.5: Results of Bayesian inversion of the simulated set of data in case of bathimetry
(vertical cross-section
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section is depicted. The main cause of this problem is the right calibration of all
the parameters that plays in the solution algorithm: λ, γ, temperature and its
decreasing law. In fact they are all very sensitive to the total number of voxels and
their dimensions. In this case probably too high importance is given to geological
prior information where gravity signal is weak, i.e. the bottom part of the salt dome.

However, thanks to the quantity of voxels this test requires less computation
time than the bathimetry, and only about 1800 iterations. In figure 5.6 it is shown
how the residuals between observed and estimated gravity signal converge to a very
low acceptable values during algorithm running. Since increasing of iteration means
decreasing of the temperature it’s clear how at beginning of the process (i.e. high
temperature) all the possible solutions are equiprobable, while once it go on, so the
temperature go down, simulated annealing extract more frequently solution near
the optimum. This means that the right solution become more probable at each
iteration as it should naturally be and that the algorithm is working in a correct
way.

Figure 5.6: Residuals between observation
and estimation of gravity data at each iteration
of the solution algorithm

Figure 5.7: Example of posterior probability
density function sampled for a single voxel

The other output obtained at the end of the iterative solution is the sampling of
posterior probability density function of each voxel. An example is shown in figure
5.7, where the two planar axis are associated to the two used random variable. In
particular for the current case there are three labels, each one with five values of
density, discretized in the interval ρ ± 3σρ. The biggest pick is the most probable
value for the considered voxel, while the smallest one is the second probable solution.
This doesn’t generate problem to the solution algorithm tanks to the characteristic
of simulated annealing to find the global minimum of a solution, thus reaching the
highest pick of pdf for each voxel.
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Chapter 6

Conclusions and future work

In the present work a Bayesian approach to invert gravity data coupled with given
geological prior models have been studied. The method works properly in the simple
test done, improving the quality of solution if compared with traditional inversion
solutions. In fact, the algorithm corrects between the 70% and 90% of the wrong
voxels in geological prior knowledge. Actually, the main limiting factors are the
computational time, the choice of the parameters in the formulation of a-posteriori
probability, and the shape of the a-priory probabilities.

The computational time is very high, because in order to reach the convergence of
the solution thousands of iteration are required. Moreover, in the test the synthetic
models used have very low resolution, of the order of few kilometres. This level
of accuracy in spatial description is useless in real gravity interpretation problems.
In fact the required spatial resolution for practical application – i.e. Earth science,
hydrocarbon exploration, etc. – is of the order of some hundreds of meters. That
fact causes a huge increase of the total number of voxels: from some thousands to
some millions, considering an investigated volume extension similar to that used in
the test (30× 30× 10 km3). Actually, this portion of Earth subsurface is discretized
using cube of dimension 1.5 × 1.5 × 1 km3, thus the total quantity of voxels is
4000. In terms of unknown parameters the numbers is doubled, because of each
voxel is associated to two variables: label and density. The number of unknown
become 8000. If the resolution will be increased, and the volume is discretized using
cube of dimension 100× 100× 100 m3,considered realistic value in case of practical
applications, the total number of voxels become 9 millions, thus the unknowns will
be 18 millions. Clearly, this operation has deleterious effects on the computational
time, that increase exponentially. Since this method is developed in order to invert
airborne graviemtry data it is realistic consider a regular grid of observation of 2
km × 2 km, that cover 10 km apart from the borders of the investigate volume.
The total number of collected observations is 400. This means that the forward
matrix has dimension of 4000 × 9 · 106. Obviously it’s impossible to manage and
store a similar quantity of data common PC. In order to allow the algorithm to run
it’s required the use of cluster computers, joined with strong optimized algorithm.
Nowadays the only possible solution is to generate forward model using Fourier
methods, that enhance appreciably the speed of computation.

As already seen increasing the spatial resolution implies an increase of the un-
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known terms of the problem, thus leaving high variability and instability in the
solution. To contain this two effects the parameters and weights present in the pos-
terior probability density function must be accurately calibrated. In fact, they link
all the terms in the posterior probability, in order to equalize the numerical differ-
ence due to the use of different measurement units and to reduce the dependence of
the solution also from the total number of voxels and their dimensions. Actually,
the user must set all this parameters by hand, thus losing lot of time in the fine
calibration of the system. In the future, the aim is to develop a semi-automatic
system able to determine weights and parameters, in order to limit as far as possible
human decisions, and to speed up this calibration phase.

Furthermore, to stabilize the solution also some changing in the prior probability
density function may be useful. In fact, now all the geological knowledge is consid-
ered given with a uniform and constant probability all over the investigated space.
But, it is not unrealistic to think that this is not true and that some portions of
the volume are known better than other. For example the knowledge derived from
other geophysical inversion, like seismic, electrical, or magnetic prospections, with
lower resolutions could be integrated. The outcome is the feasibility of a joint in-
version Bayesian solution. Anyway, in order to give more information and to reach
the convergence on a more stable solution future research and development must
be oriented in the direction of that possibility of joint inversion, but also to study
the possibility of integrate and use the information added by vector gravimetry or
gravity gradiometry observation in this Bayesian approach.

The last focal point that is not fully treated in the present work is the conver-
gence criteria. In fact, at the present the algorithm stop when an acceptable value
of the residuals is reached, but in order to reduce the computational time a very
useful trick could be to fix the unknowns when their posterior probability become
greater than a fixed threshold (e.g. 95%). Using this kind of criteria every time that
the two variables of a voxel are fixed they don’t play more a role in the solution
algorithm, thus reducing the time required for each iteration of simulated annealing.
The software will be completed by a simple, but functional graphical user interface to
allow data management and importation, parameters definition and results visual-
ization. It will be useful to study which are the standards data format in geophysical
prospecting technique, in order to maintain and implement them into the software.

Finally, the actual solution are done using simulated errorless data. That’s why
the development is in a preliminary phase and obviously it is only an ideal and not
realistic condition. In fact, it should be studied how the observation errors influences
the final results, because as seen in the examples the total signal amplitude is about
10 − 20 mGal, and a realistic accuracy of the gravity observation is about 1 − 3
mGal. This means that the signal has a relative precision about 10− 20% and the
errors can play an important role in the final interpretation. Furthermore, it requires
to be modelled, because specially in aero-gravimetry the noise cannot be considered
white noise. In fact, due to signal preprocessing filtering of the signal the noise in
the final observations is correlated between the various estimation point.
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