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Abstract

The purpose of this work is to develop an innovative procedure for com-
puting the pressure field from PIV velocity measurements for unsteady, in-
compressible flows. This new technique aims at solving some of the problems
affecting the methods proposed so far in the literature, such as the use of inac-
curate boundary conditions for the pressure and insufficient robustness with
respect to measurement errors. The method is based on a generalization of
the Glowinski-Pironneau method for the uncoupled pressure-velocity solution
of the incompressible Navier–Stokes equations. A finite element approxima-
tion of the problem is introduced, and a Fortran90 program for the proposed
method has been developed. The method is first applied on an exact solution
of the Navier–Stokes equations, in order to check its convergence properties.
The robustness of the method with respect to the error in the velocity mea-
surements is tested for both stochastic and deterministic perturbations. Then
the proposed technique has been applied to the PIV database of a classical
aeronautical problem: the pitching airfoil for the study of dynamic stall. The
computed pressure is compared with direct pressure measurements, showing
very encouraging results. As a final, challenging application, the pressure
field around a Gurney flap mounted on the trailing edge of a pitching airfoil
has been reconstructed.

Keywords: Pressure computation, Particle Image Velocimetry (PIV),
Uncoupled Navier–Stokes equations, Glowinski–Pironneau method, Finite
Element Method (FEM), Dynamic stall.
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Sommario

Lo scopo di questo lavoro di tesi è lo sviluppo di una procedura in-
novativa per il calcolo del campo di pressione da misure di velocità PIV,
per flussi instazionari ed incomprimibili. Questa nuova tecnica cerca di ri-
solvere alcuni problemi riscontrati nei metodi proposti fino ad oggi, quali
l’uso di condizioni al contorno inaccurate per la pressione o la sensibilità
all’errore di misura della velocità. Il metodo si basa su una generalizzazione
del metodi Glowinski–Pironneau per il disaccoppiamento delle equazioni di
Navier Stokes. Si introduce quindi un’approssimazione ad elementi finiti del
problema, che è stata implementata in un programma Fortran90. Si procede
quindi a provarlo su una soluzione esatta delle equazioni di Navier–Stokes,
mostrando le sue proprietà di convergenza. Successivamente viene testata
la robustezza del metodo agli errori di misura di velocità, con perturbazioni
sia stocastiche che deterministiche. Il metodo è quindi applicato al database
PIV di un problema tipicamente aeronautico: il profilo oscillante per lo stu-
dio dello stallo dinamico. La pressione cos̀ı calcolata viene confrontata con
misure dirette di pressione, mostrando risultati molto incoraggianti. Come
applicazione finale, il metodo è usato per calcolare la distribuzione di pres-
sione attorno a un’aletta Gurney montata sul bordo d’uscita di un profilo
oscillante.

Keywords: Calcolo della pressione, Particle Image Velocimetry (PIV),
Equazioni di Navier–Stokes disaccoppiate, Metodo di Glowinski–Pironneau,
Metodo agli elementi finiti (FEM), Stallo Dinamico.
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Chapter 1

Introduction

In this chapter the challenge of computing pressure from PIV velocity
measurements is introduced. In section 1.1 a brief description of the Particle
Image Velocimetry technique is reported, explaining the working principle
and the major advantages of this technique. Then in section 1.2 the problem
of computing pressure from PIV measurements is approached, explaining the
motivation for this relatively new issue and the state of the art so far. In
section 1.3 an innovative approach to this problem is proposed, which has
been developed in the present thesis. Eventually in section 1.4 the outline of
the thesis is illustrated.

1.1 Particle Image Velocimetry (PIV)

1.1.1 The working principle

The rapid evolution of both digital image acquisition and computing ca-
pability in the past few decades has determined a dramatic development of
image-based experimental techniques for the characterization of fluid flows.
Among these techniques, Particle Image Velocimetry (PIV) is definitely the
most important, since it is able to provide two or three-component velocity
fields with acceptable accuracy (up to 1 %) at many measurement points
in the flow, simultaneously. In fact, differently from standard flow visualiza-
tions, which provide global but only qualitative information, or laser-Doppler
velocimetry, which gives accurate but local velocity information, PIV is able
to provide at the same time global and quantitative instantaneous informa-
tion about the flow field.

The working principle of PIV is based on the measurement of the dis-
placement of small tracer particles convected by the fluid by comparing two
digital images taken with a short time delay between them. By measuring



Chapter 1. Introduction

the displacement of the particles in pixels (as it will be discussed in section
1.1.2) in the i−th direction (∆si) and given the time delay between the two
successive frames (∆t) and the meters/pixel ratio of the image (C), is it
possible to reconstruct locally the i−th velocity component as follows:

Ui = C
∆si
∆t

(1.1)

The typical PIV experimental set-up is depicted in Figure 1.1, which is
available at http://www.dlr.de/as/en/Portaldata/5/Resources/images/
abteilungen/abt_ev/artikel/PIV_img1_xl.jpg. PIV can be seen as a
non-intrusive measurement technique, since apart the tracer particles and
the laser light sheet no other perturbation is introduced inside the test sec-
tion. The tracer particles must be sufficiently small (≤ 1µm in air) in order
to follow properly the fluid motion without any appreciable modification
to the properties of the flow. In order to obtain robust unbiased measure-
ments over the flow domain, the tracer particles have to be homogeneously
distributed within the observed flow region. The tracer particles are illumi-
nated by means of a thin light sheet, which is pulsed in order to freeze the
particle motion. The use of a laser light source is determined by the fact that
it can produce a high-energy, pulsed, collimated monochromatic light beam
that can be easily shaped into a thin light sheet. The light scattered by the
tracer particles is recorded at two instants in time using a digital camera.
By placing more than a camera with a proper angle with respect to the laser
sheet, is it possible to resolve all the three velocity components (stereoscopic
PIV). Otherwise, by placing only one camera with its recording plane parallel
to the laser sheet, it is possible to resolve only the in-plane components of
the velocity field . In the present work only this second configuration will
be examined in detail. Synchronization among all the system components is
crucial. The laser pulses, camera acquisition and exposure triggers must be
accurately synchronized, especially for high speed flow.

Each pair of PIV frames is then stored in order to be post-processed, as
described in the following section 1.1.2.

1.1.2 Image processing

Once acquired, each gray-level image can be regarded as an array ofM×N
pixels, each one being characterized by a discrete value of the gray level
(corresponding to the local light intensity). The number of gray levels is
typically 256 (8 bit images).

The two images of a pair of consecutive frames are divided into smaller
regions, called interrogation windows. An example of two sub-images, cor-
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1.1. Particle Image Velocimetry (PIV)

Figure 1.1: PIV measurement system

responding to the same interrogation window at different time instants, is
depicted in Figure 1.2. Comparing two consecutive images we can appreciate
that most of the tracer particles seem to move towards the same direction, in
this example North-West. The mean displacement of all the tracer particles
can be computed by a spatial cross-correlation among the two images cor-
responding to the same measurement window. The cross correlation among
the two images previously described is depicted in figure 1.3. As can be
appreciated, the correlation function shows a peak, whose coordinates repre-
sents the average displacement of the tracing particles, which represents an
approximation of the velocity field, once divided by the time interval, see Eq.
1.1.

The signal to noise ratio (SNR) of the correlation, which can be defined
as the ratio between the maximum value reached at the main peak and the
mean value of the background, can be used as a criterion for the acceptance
of the computed velocity: if the SNR is less than a suitable threshold, the
local velocity measurement is refused. The missing measurement can be
replaced at a later stage by a suitable average of the data coming from the
neighbouring interrogation windows.

With the method above, the displacement can be computed up to a pixel
uncertainty. This will lead to a 10 % uncertainty in the velocity computation
considering standard values of ∆t and C, which is generally not acceptable.
As described in [1], page 327, a sub-pixel interpolation can be performed in

19
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(a) Interrogation window at t (b) Interrogation window at t + ∆t

Figure 1.2: Interrogation windows
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Figure 1.3: Image spatial cross-correlation
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1.2. Computing pressure from PIV measurements

order to achieve higher accuracy. With this expedient, accuracies up to 1 %
can be achieved.

The above procedure is then repeated for every interrogation window in
which the measurement domain has been divided, giving the global velocity
field.

Before computing the correlation, several different pre-processings can be
carried out on the two images in order to improve the correlation quality,
such as histogram stretching, equalization, min-max filtering. For further
details, see [1], pages 318-320.

1.2 Computing pressure from PIV measure-

ments

1.2.1 Motivation

The problem of reconstructing the pressure field starting from velocity
measurements is quite recent, since only using Particle Image Velocimetry
the required resolution of the velocity vector field can be achieved. Berton et
al. in [2] computed the airloads on an helicopter blade using Laser Doppler
velocity measurements. However in order to measure an entire velocity field,
the experiment had to be repeated for every different measurement volume,
each one using a different positioning of the laser head, which is very time
consuming. The fast development of PIV rapidly increased the interest in
techniques able to estimate the aerodynamic loads on immersed bodies ex-
ploiting the measured velocity field, since, as described in section 1.1.1, the
PIV measurement technique is able to provide the instantaneous flow field
with a sufficient accuracy.

Generally speaking the possibility of computing the pressure field directly
from the PIV measurements is relevant for several reasons that are:

• the possibility to have information on the pressure field over the whole
domain, highlighting, for instance, strong vortical structures.

• the possibility to have a non intrusive measurement technique for com-
puting the pressure on an immersed body and therefore the airloads by
direct integration.

• the possibility to have information of the pressure value in situations
where a direct measurement of pressure is not possible, such as for
instance the regions far away from the immersed body and the regions
of the body where the pressure taps can not be easily placed, such as
the trailing edge.
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1.2.2 State of the art

In the past years, two different approaches have been proposed to compute
the pressure field from the PIV measurements. The first one is based on
the solution of a Poisson problem for the pressure, while the second one
involves the direct integration of the momentum equation by means of finite
differences. The two methodologies are discussed in the following sections,
highlighting their respective advantages and flaws.

Solution of a Poisson problem for pressure

In 1999 Gurka et al. proposed in [3] a method in which the pressure field
is computed as the solution of a Poisson equation. This equation is obtained
by taking the divergence of the momentum equation:

−∇2p = ρ∇ · (u ·∇)u, (1.2)

and it is supplemented with boundary conditions which are based on heuristic
assumptions about the physics of the problem, but are nevertheless arbitrary.
As an example, a Neumann boundary condition can be derived by evaluating
the momentum equation on the boundary in order to estimate ∇p and then
∂p
∂n

. The aim of the authors was mainly to smooth the velocity computational
error through the smearing properties of the laplacian term. In their work the
method was applied to a steady laminar pipe flow and to a steady turbulent
impinging jet, taking into account the Reynolds stress terms.

The same procedure has been applied by other authors to different prob-
lems. In [4], the method was applied to the flow around a circular cylinder
with and without rotational oscillation and the fluid forces were studied in
the lower Reynolds number range. In [5] Obi et al. investigated the flow
around a pair of bluff bodies set in tandem in a uniform flow.

In any case, all these solutions depend significantly from the type of
boundary conditions enforced.

Integration of the pressure gradient

An alternative technique, proposed by Bauer et al. in [6] consists in the
spatial integration of the pressure gradient obtained from the momentum
equation of the Navier-Stokes equations by means of finite differences:

∇p = −ρ
(
∂u

∂t
+ (u ·∇)u

)
+ µ∇2u. (1.3)

Starting from a point, where the value of pressure can be imposed arbi-
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1.3. Description of the proposed method

trarily, the pressure gradient is integrated in both directions, thus generating
the pressure values in all the other nodes. The main problem with this
method is due to the fact that the pressure error is accumulated at each
integration. In this work the method was applied to the unsteady pressure
field generated by a wall-mounted obstacle.

This method has been extended by Van Oudheusden, Scarano et al. to
the compressible case in [7], exploiting the gas law and the adiabatic flow
condition instead of the continuity equation, since errors in the divergence
computation due to tridimensionality and to out-of-plane velocity gradients
could accumulate.

In [8], Liu and Katz computed the pressure field of a cavity using a La-
grangian approach in order to estimate the material derivative of velocity,
instead of the separate computation of the time derivative and of the advec-
tion term. As shown at a later stage by Violato et al. in [9], this approach
yields more accurate estimates of the pressure gradient when compared with
the Eulerian one.

This method has been applied to several different flow configurations and
geometries. In [10], de Kat and van Oudheusden applied the method to the
turbulent flow past a square cylinder. In [11] Ghaemi et al. analyzed the
unsteady pressure field generated by a turbulent boundary layer, with the use
of a tomographic PIV system and with the application of three-dimensional
momentum equation.

More details about the above mentioned techniques can be found in the
work of Charonko et al. [12], where a detailed comparison of several meth-
ods for calculating the pressure field from 2D time-resolved velocity fields in
incompressible flows is presented and the need of proper filtering to mitigate
the velocity error propagation in the pressure estimation is analyzed.

1.3 Description of the proposed method

As reported in section 1.2, the methods proposed so far present both
positive and negative aspects. On one hand, the method which employs the
solution of the Poisson equation for pressure can smooth the measurements
errors on the velocity through the smearing properties of the laplacian, but
lacks of consistent boundary conditions, which makes the solution extremely
sensitive to the type of boundary condition which is enforced. On the other
hand, the method which integrates directly the pressure gradient from the
momentum equation is definitely consistent, but it is not very accurate due
to the accumulation of the error at every integration.

The innovative method proposed in this work aims at combining both
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the advantages of the two above methods. Indeed, through a generalization
of the Glowinski-Pironneau method for the uncoupling of the Navier-Stokes
equations, the use of pressure integral condition and a decomposition of the
variables, it is indeed possible to obtain a new uncoupled formulation of the
problem, where the boundary condition for pressure can be enforced exactly,
not depending on the type of flow considered. Moreover, since every equation
involved in this formulation ivolves a laplacian term, the method can provide
a smoothing offect on the errors affecting the velocity measurements.

The present methodology is intended to be applied to 2D/3D, unsteady,
incompressible flows either laminar or turbulent. The problem, once recast
in a variational formulation, is solved by means of Finite Elements. A For-
tran90 program which implements this new technique has been produced,
and then, after its validation, employed to analyse the PIV database of a
typical aeronautical problem: the flow around a pitching airfoil, which is
intended to replicate the dynamic stall process.

1.4 Outline of this work

This work is organized as follows. In Chapter 1, the problem of comput-
ing the pressure field from PIV velocity measurements is introduced. A brief
description of the Particle Image Velocimetry technique is reported, explain-
ing the working principle and the major advantages of this technique. Then
the problem of computing pressure from PIV measurements is approached,
motivating the need for such technique and summarizing the state of the art
on this topic.

In Chapter 2 the mathematical formulation of the method is considered.
Once the Navier-Stokes equations and their Reynolds-averaged formulation
have been introduced, two different methods to uncouple the computation of
velocity and pressure are described, both involving pressure integral con-
ditions in order to impose the incompressibility costraint over the whole
domain. Then a procedure to project the experimental velocity field on a
divergence free space is described. Eventually, the equations of the second
uncoupling method (Glowinski-Pironneau) are recast in weak form in order
to be discretized in the following chapter.

In Chapter 3 the discretization of the continuous problem is performed.
First, the computational domain is discretized, employing the PIV measure-
ment points. Then, a finite element (FEM) discretization of the problem is
introduced and it is used to obtain a set of algebraic linear systems. Even-
tually, the implementation in a Fortran90 program is briefly described.

In Chapter 4 the results of the program verification and validation are
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illustrated. Each component of the program is individually validated and its
convergence properties are evaluated. Then, the whole program is validated
on an unsteady exact solution of the Navier-Stokes equation. The robust-
ness of the method is then investigated for both deterministic and stochastic
errors.

In Chapter 5 the test rig and the experimental set-up necessary to ob-
tain the velocity field database, which will be post-processed at a later stage
in order to compute the pressure field, are described. The dynamic stall
experimental set-up, comprising both PIV and unsteady pressure measure-
ments, is introduced. Then, the test matrix and the reference test conditions
(steady/unstedy, light/deep stall, angle of attack, PIV measurement win-
dows) are thoroughly described. A modified set-up, with the Gurney flap
attached on the airfoil trailing edge, is described. Eventually a procedure
to estimate the uncertainty on the pressure coefficient, obtained with the
proposed method, is described.

In Chapter 6, the pressure field around a NACA 23012 airfoil is computed
starting from experimental data. Several steady and unsteady flow conditions
are considered, and the computed pressure distribution on the airfoil surface
is compared with the pressure distribution measured by Kulite sensors. A
few different version of the proposed method are tested and the results are
compared in order to evaluate their respective performance.

In Chapter 7 we draw some conclusions and outline possible future de-
velopments of the proposed method.
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Chapter 2

Mathematical formulation

In this chapter the mathematical formulation of the method is described.
In section 2.1 the Navier-Stokes equations and their Reynolds-averaged form
are introduced. Afterwards in section 2.2 and 2.3, two different methods to
uncouple the computation of velocity and pressure are described, both in-
volving pressure integral conditions in order to impose the incompressibility
costraint over the whole domain. Then a procedure to project the experimen-
tally measured velocity field on a divergence free functional space is described
in section 2.4. Eventually in section 2.5 the equations of the second method
are recast in their weak formulation that will be discretized at a later stage
in chapter 3.

2.1 Equations for incompressible flows

2.1.1 Navier–Stokes and RANS equations

Let us consider a control volume V and its surface S = ∂V . The unsteady
incompressible Navier–Stokes equations which model the flow incompressible
behaviour, together with their boundary condition are:

∂U

∂t
+ (U ·∇)U − ν∇2U +∇P = 0 in V

∇ ·U = 0

U
∣∣
S

= B on S,

(2.1)

where U(x,t) represents the velocity vector field and P (x,t) represents the
pressure field divided by the fluid density. It is useful to note here that, in
the particular application we are envisaging, B = B(x,tn) is the velocity
measured on the boundary of the computational domain and therefore is
known, so that we can enforce full Dirichlet boundary conditions on the
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whole boundary ∂V . Since we are interested in the phase averaged of the
pressure field around the boundary, we introduce the corresponding version
of the Reynolds averaged Navier-Stokes (RANS) equations,


∂u

∂t
+ (u ·∇)u+ 〈(u′ ·∇)u′〉 − ν∇2u+∇p = 0 in V

∇ · u = 0

u
∣∣
S

= b on S,

(2.2)

where u = 〈U〉 and u′ = U − u and similarly for pressure. In addition,
the compatibility condition

∮
S
b · n = 0 is assumed to be satisfied. However

this is not true in our particular application, since the measured velocity field
is affected by the measurement error.

2.1.2 Time discretized RANS equations

Since the velocity field is known only at discrete time intervals, we intro-
duce the time discretization of RANS equations:


un − un−1

∆t
+ (un ·∇)un +

〈
(u

′,n ·∇)u
′,n
〉
− ν∇2un = −∇pn in V

∇ · un = 0

un
∣∣
S

= bn on S.

(2.3)
An implicit Euler scheme has been adopted for simplicity, but other dis-
cretization schemes could be used without changing the substance of the
method.

Let us divide the momentum equation by the cinematic viscosity ν and
denote the unknown fields at the new time level by u = un and p = pn,
where now the letter p indicates the scaled pressure p ← ν−1p. Then, we
have 

(−∇2 + γ)u+∇p = g in V

∇ · u = 0,

u
∣∣
S

= b on S,

(2.4)

where γ = 1
ν∆t

and g = γun−1 − ν−1[(un ·∇)un + 〈(u′n ·∇)u′n〉], which
is an experimentally known quantity.

Since the current velocity field is experimentally known, the time deriva-
tive of the velocity field can also be treated explicitly and moved to the right

28



2.2. First Decoupling Method (Quartapelle–Napolitano)

hand side of the first equation. One obtains:
−∇2u+∇p = g̃ in V

∇ · u = 0,

u
∣∣
S

= b on S,

(2.5)

where g̃ = γ(un−1 − un) − ν−1[(un ·∇)un + 〈(u′n ·∇)u′n〉]. The con-
sequences of this explicit treatment of the time derivative will be discussed
later, in Section 2.3.5. In the following sections the method will be derived
using the implicit scheme 2.4.

2.2 First Decoupling Method (Quartapelle–

Napolitano)

2.2.1 Equations

By taking the divergence of the (time-discretized) momentum equation
(2.4) and using the continuity equation, we obtain the following Poisson
equation for p:

−∇2p = −∇ · g. (2.6)

As shown in [13], the fulfillment of this equation and of the momentum
equation does not assure that the incompressibility condition is satisfied. In
fact, let v be a velocity field, not necessarily solenoidal, solution of the mo-
mentum equation with p solution of ∇2p = −∇ ·g. By taking the divergence
of the momentum equation one obtains (−∇2 + γ)∇ · v+∇2p =∇ · g, that
is using 2.6, (−∇2 + γ)∇ ·v = 0. Thus, ∇ ·v is only metaharmonic, but not
necessarily equal to zero. However, if one imposes the boundary condition
∇ ·v

∣∣
S

= 0, then the metaharmonic character of∇ ·v implies that∇ ·v = 0
everywhere in V . Thus the uncoupled system equivalent to system 2.4 reads:

(−∇2 + γ)u+∇p = g in V

−∇2p = −∇ · g
u
∣∣
S

= b, ∇ · u
∣∣
S

= 0 on S.

(2.7)

As usual, the compatibility condition
∮
S
n̂ · b = 0 is assumed to be satis-

fied. The problem with the system (2.7) is that there are too many boundary
conditions for one variable, the velocity, and not enough for the other, the
pressure. Thus, strictly speaking, problem (2.7) consisting of the two elliptic
equations subject to the indicated boundary conditions has to be considered
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as a coupled system of equations, in the sense that the pressure and velocity
should be computed simultaneously as a consequence of the coupling brought
about by the redundant boundary conditions for u. Moreover, should the
velocity be known, the pressure equation would lack a boundary condition.
For more details about the uncoupling of Navier–Stokes equation, see [14].

2.2.2 Pressure integral condition for the uncoupled equa-
tions

The following vector identities are collected here for convenience, since
they will be widely used in the following sections:

∇(∇ ·w) =∇×∇×w +∇2w

∇ · (aw) = a∇ ·w +w ·∇a
∇ · (v ×w) = w ·∇× v − v ·∇×w.

(2.8)

To uncouple the Poisson equation for the pressure from the velocity equa-
tion, let us first consider the adjoint problem of the Helmholtz equation for
u. Its Green identity reads, using properties 2.8:

−
∫
V

u · (−∇2 + γ)v +

∫
V

v · (−∇2 + γ)u =

∫
V

(
u · ∇2v − v · ∇2u

)
=

=

∫
V

[
u ·
(
∇(∇ · v)−∇×∇× v

)]
−
∫
V

[
v ·
(
∇(∇ · u)−∇×∇× u

)]
=

=

∫
V

[
∇ · (u∇ · v)−∇ · u∇ · v +∇ ·

(
u× (∇× v)

)
−∇× u ·∇× v

]
+

−
∫
V

[
∇ · (v∇ · u)−∇ · v∇ · u+∇ ·

(
v × (∇× u)

)
−∇× v ·∇× u

]
=

=

∫
V

[
∇ · (u∇ · v) +∇ ·

(
u× (∇× v)

)
−∇ · (v∇ · u)−∇ ·

(
v × (∇× u)

)]
=

=

∮
S

(
n̂ · u∇ · v + n̂× u ·∇× v − n̂ · v∇ · u− n̂× v ·∇× u

)
,

(2.9)
which can be rewritten as:∫
V

(
v·(−∇2+γ)u−u·(−∇2+γ)v

)
=

∮
S

(
n̂×u·∇×v+n̂·u∇·v−n̂×v·∇×u−n̂·v∇·u

)
.

(2.10)
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If v satisfies the following differential problem
(−∇2 + γ)v = 0 in V

n̂ · v
∣∣
S
6= 0

n̂× v
∣∣
S

= 0,

(2.11)

then the integral condition can be expressed as:∫
V

v · (g −∇p) =

∮
S

(
n̂× b ·∇× v + n̂ · b∇ · v

)
, (2.12)

where the boundary condition u = b has been exploited. The important
point about these integral conditions is that they depend only on the source
term g of the momentum equation and on the value b of the velocity pre-
scribed on the boundary. Furthermore, since the “number” of linearly inde-
pendent metaharmonic fields v is “equal” to that of boundary points minus
one, the projection integral conditions (2.12) provide the correct number of
conditions to be combined with the Poisson equation in order to obtain a well
determined problem for the pressure field, p being defined up to an arbitrary
additive constant. It follows that, as shown by [15], problem (2.7) can be
reformulated equivalently in the uncoupled or split form :

−∇2p = −∇ · g in V

−
∫
V
v ·∇p = −

∫
V
v · g +

∮
S

(
n̂× b ·∇× v + n̂ · b∇ · v

)
[where (−∇2 + γ)v = 0 in V, n̂ · v

∣∣
S
6= 0, n̂× v

∣∣
S

= 0]

(−∇2 + γ)u = −∇p+ g in V, u
∣∣
S

= b

(2.13)

2.2.3 Decomposition method in the continuum

Decomposition

To obtain the pressure field satisfying the integral condition 2.12, the
solution p(x) is decomposed into its harmonic and non harmonic components
as follows:

p(x) = p0(x) +

∮
S

p′(x;σ′)λ(σ′)dS(σ′), (2.14)

where λ represents a surface unknown function with zero average on S, being
the pressure field defined up to an additive constant. Thanks to the linearity
of the problem the nonharmonic component will take into account the source
term while the harmonic component will provide the boundary values.
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Equations

The fields p0(x) and p′(x;σ′) are, for every σ′ ∈ S \σ? , the solutions to
the family of problems:

−∇2p0 = −∇ · g in V, p0
∣∣
S

= 0

−∇2p′ = 0 in V, p′(x;σ′)
∣∣
S

= δ(2)(x− σ)− δ(2)(x− σ∗) (2.15)

Integral condition and linear variational problem

The surface unknown λ(σ) is determined by using the decomposition 2.14
in the integral condition 2.12:∫

V

χ(x;σ) ·
[
g −∇

(
p0(x) +

∮
S

p′(x;σ′)λ(σ′)dS(σ′)

)]
=

=

∮
S

(
n̂× b ·∇× χ(x;σ) + n̂ · b∇ · χ(x;σ)

)
.

(2.16)

By reordering the terms, keeping the unknown terms on the left-hand
side and taking the known terms on the right-hand side of the equation, the
following linear problem is obtained:∮

S(σ′)
B(σ,σ′)λ(σ′)dSσ′ = β(σ), (2.17)

where:

B(σ,σ′) = −
∫
V

∇p′(x;σ′) · χ(x;σ)dV

β(σ) =

∫
V

(∇p0 − g) · χ(x;σ) +

∮
S

(
n̂× b ·∇× χ(x;σ) + n̂ · b∇ · χ(x;σ)

)
.

(2.18)
The vector fields χ(x;σ) are the solution of the following metaharmonic
problem for any σ ∈ S \ σ? :

(−∇2 + γ)χ = 0 in V

n̂ · χ
∣∣
S

= δ(2)(x− σ)− δ(2)(x− σ∗)
n̂× χ

∣∣
S

= 0.

(2.19)
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2.2.4 Efficient numerical implementation of the decom-
position

The method described in section 2.2.3 is not numerically efficient, because
it needs to solve over the whole domain of as many 2.19 systems as the number
of Dirichlet boundary nodes and to store them. A more efficient method can
be envisaged. In order to do so, auxiliary vector fields v(x;σ) are introduced
which are only required to satisfy the boundary conditions of problem 2.19:

v = arbitrary in V

n̂ · v
∣∣
S

= δ(2)(x− σ)− δ(2)(x− σ∗)
n̂× V

∣∣
S

= 0.

(2.20)

After solving Poisson equations 2.15 for p0 and p′, one has to solve two
Helmholtz equations for u0 and u′:

−(∇2 + γ)u0 = −∇p0 + g in V, u0
∣∣
S

= b,
−(∇2 + γ)u′ = −∇p′ in V, u′

∣∣
S

= 0.
(2.21)

B and β can be obtained by similar expressions involving v instead of χ.
Let us consider first the expression of B. Taking in account the differential
problems for u′ (equation 2.21) and using the Green identity 2.10 one obtains:

B(σ,σ′) = −
∫
V

∇p′ · χ =

∫
V

(−∇2 + γ)u′ · χ =

=

∫
V

u′ · (−∇2 + γ)χ+

+

∮
S

(
n̂× u′ ·∇× χ+ n̂ · u′∇ · χ− n̂× χ ·∇× u′ − n̂ · χ∇ · u′

)
(2.22)

By using u′ homogeneous boundary conditions and χ differential equation
2.19:

B(σ,σ′) = −
∮
S

n̂ · χ∇ · u′ = −
∮
S

n̂ · v∇ · u′. (2.23)

Applying the divergence theorem and integrating by parts we obtain:

B(σ,σ′) = −
∮
S

n̂ · v∇ · u′ = −
∫
V

∇ · (v∇ · u′) =

= −
∫
V

[∇ · v∇ · u′ + v ·∇(∇ · u′)] =

= −
∫
V

[∇ · v∇ · u′ + v · (∇×∇× u′ +∇2u′)].

(2.24)
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Using vector identities 2.8 and boundary conditions on v:

B(σ,σ′) = −
∫
V

[∇ · v∇ · u′ + v · ∇2u′ +∇ · ((∇× u′)× v) +∇× u′ ·∇× v] =

= −
∫
V

[∇ · v∇ · u′ + v · ∇2u′ +∇× u′ ·∇× v] +

∮
S

n̂ · ((∇× u′)× v) =

= −
∫
V

[∇ · v∇ · u′ + v · ∇2u′ +∇× u′ ·∇× v].

(2.25)
Considering the Helmholtz problem for u′, adding and subtracting γu′, we
finally obtain:

B(σ,σ′) = −
∫
V

[∇ · v∇ · u′ +∇× v ·∇× u′ + v ·∇p′ + γv · u′] (2.26)

A similar calculation can be carried out for β:

β(σ) =

∫
V

(∇p0 − g) · χ+

∮
S

(
n̂× b ·∇× χ+ n̂ · b∇ · χ

)
=

= −
∫
V

χ · (−∇2 + γ)u0 +

∮
S

(
n̂× u0 ·∇× χ+ n̂ · u0∇ · χ

)
=

= −
∫
V

u0 · (−∇2 + γ)χ+

−
∮
S

(
n̂× u0 ·∇× χ+ n̂ · u0∇ · χ− n̂× χ ·∇× u0 − n̂ · χ∇ · u0

)
+

+

∮
S

(
n̂× u0 ·∇× χ+ n̂ · u0∇ · χ

)
.

(2.27)
Using boundary conditions and χ differential equation 2.19:

β(σ) =

∮
S

n̂ · χ∇ · u0 =

∮
S

n̂ · v∇ · u0. (2.28)

Applying the divergence theorem and integrating by parts we obtain:

β(σ) =

∮
S

n̂ · v∇ · u0 =

∫
V

∇ · (v∇ · u0) =

=

∫
V

[∇ · v∇ · u0 + v ·∇(∇ · u0)] =

=

∫
V

[∇ · v∇ · u0 + v · (∇×∇× u0 +∇2u0)].

(2.29)
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Using vector identities 2.8 and boundary conditions on v:

β(σ) =

∫
V

[∇ · v∇ · u0 + v · ∇2u0 +∇ · ((∇× u0)× v) +∇× u0 ·∇× v] =

=

∫
V

[∇ · v∇ · u0 + v · ∇2u0 +∇× u0 ·∇× v] +

∮
S

n̂ · ((∇× u0)× v) =

=

∫
V

[∇ · v∇ · u0 + v · ∇2u0 +∇× u0 ·∇× v].

(2.30)
Considering the Helmholtz problem for u0, adding and subtracting γu0, we
obtain:

β(σ) =

∫
V

[∇ · v∇ · u0 +∇× v ·∇× u0 + v ·∇p0 + γv · u0 − v · g].

(2.31)

The arbitrariness of the field v at all internal point of the domain can be
exploited by setting v = 0, so that the integration domain reduces to a narrow
shell along the boundary, with obvious advantages from the viewpoint of the
computational efficiency. Unfortunately this method leads to an operator
B(σ,σ′) which is full and not symmetric. Obviuosly the operator is singular
because the pressure is determined only up to an arbitrary additive constant.
To sum up, we have obtained the problem:∮

S(σ′)
B(σ,σ′)λ(σ′)dSσ′ = β(σ), (2.32)

where:

B(σ,σ′) = −
∫
V

[∇ · v∇ · u′ +∇× v ·∇× u′ + v ·∇p′ + γv · u′],

β(σ) =

∫
V

[∇ · v∇ · u0 +∇× v ·∇× u0 + v ·∇p0 + γv · u0 − v · g].

(2.33)
Once λ, representing the reconstructed value of the pressure on the boundary,
has been computed, the pressure field p(x) can be determined.

2.3 Second Decoupling Method (Glowinski–

Pironneau)

Glowinski and Pironneau have introduced an alternative uncoupling method
which is presented in this section. For more details, see [16]. As we will see
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later, this method does not require any additional constraint over the choice
of the test function v , in particular it does not require the fullfilment of
n̂× v

∣∣
S

= 0, which is quite constrictive.

2.3.1 Equations

This second uncoupling method, whose derivation will be discussed in
depth in section 2.3.2, reads:

−∇2p = −∇ · g
(−∇2 + γ)u = −∇p+ g, u

∣∣
S

= b

−∇2ϕ =∇ · u, ϕ
∣∣
S

= 0, ∂ϕ
∂n

∣∣
S

= 0.

(2.34)

In the above formulation the Poisson equation −∇2ϕ =∇ ·u for ϕ has been
introduced, supplemented by homogeneous Dirichlet condition ϕ

∣∣
S

= 0 and

homogeneous Neumann condition ∂ϕ
∂n

∣∣
S

= 0. As it will be shown in section
2.3.2, these boundary conditions lead to ϕ = 0 and ∇ · u = 0 everywhere in
the domain.

2.3.2 ϕ Poisson equation and boundary conditions

We will now show the derivation of the ϕ equation and boundary condi-
tions. Taking the divergence of the Helmholtz equation for the velocity and
taking into account the Poisson equations for p and for ϕ we have :

∇ · [(−∇2 + γ)u+∇p] =∇ · g (2.35a)

(−∇2 + γ)∇ · u+∇2p =∇ · g (2.35b)

(−∇2 + γ)∇ · u = 0 (2.35c)

(−∇2 + γ)∇2ϕ = 0 (2.35d)

As we can see, ϕ has to satisfy a fourth-order elliptic equation. Since
the velocity field has to be divergence free, from the Poisson equation for
ϕ, it must be ∇2ϕ = 0 in the domain. One can assure ∇ · u = 0 by
imposing both Dirichlet and Neumann homogeneous boundary conditions
on the whole boundary and forcing ϕ = 0 in the whole domain. In fact it
can be demonstrated, under the assumption γ > 0, that:

(−∇2 + γ)∇2ϕ = 0 in V

ϕ
∣∣
S

= 0 ⇒ ϕ = 0 in V.
∂ϕ
∂n

∣∣
S

= 0

(2.36)
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Let’s first multiply the fourth-order equation by ϕ and then integrate over
the domain:

0 =

∫
V

ϕ(−∇2 + γ)∇2ϕ =

∫
V

γϕ∇2ϕ−
∫
V

ϕ∇4ϕ. (2.37)

By means of integration by parts and homogeneous boundary conditions, one
can write these terms as:∫

V

γϕ∇2ϕ = −
∫
V

γ∇ϕ ·∇ϕ+

∮
S

γϕ
∂ϕ

∂n
=

= −
∫
V

γ∇ϕ ·∇ϕ =

= −
∫
V

γ|∇ϕ|2 ≤ 0

(2.38)

−
∫
V

ϕ∇4ϕ = −
∫
V

ϕ∇2∇2ϕ =

=

∫
V

∇ϕ ·∇(∇ϕ)−
∮
S

ϕ
∂∇2ϕ

∂n
=

=

∫
V

∇ϕ ·∇(∇ϕ) =

= −
∫
V

∇2ϕ∇2ϕ+

∮
S

∇2ϕ
∂ϕ

∂n
=

= −
∫
V

∇2ϕ∇2ϕ

= −
∫
V

|∇2ϕ|2 ≤ 0

(2.39)

Thus:

0 =

∫
V

ϕ(−∇2 + γ)∇2ϕ = −
∫
V

γ|∇ϕ|2 −
∫
V

|∇2ϕ|2 ≤ 0 (2.40)

Homogeneous boundary conditions make the solution to be ϕ = 0 everywhere
in V.

2.3.3 Decomposition method in the continuum

Owing to the lack of an explicit boundary condition for p, system 2.34
defines a set of equations coupled together by the imposition of two boundary
conditions on ϕ. To determine the boundary value of p assuring that the
incompressibility constraint is satisfied, we proceed as follows.
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Decomposition and equations

Let assume that the solution (p,u, ϕ) can be decomposed as:
p(x)
u(x)
ϕ(x)

 =


p0(x)
u0(x)
ϕ0(x)

+


pλ(x)
uλ(x)
ϕλ(x)

 , (2.41)

where p0 satisfies homogeneous boundary conditions on S while pλ fulfills
non homogeneous boundary data. Because of the linearity of the problem,
the original system 2.34 can be split in the following homogeneous and non-
homogeneous problems:

−∇2p0 = −∇ · g, p0|S = 0

(−∇2 + γ)u0 = −∇p0 + g, u0|S = b

−∇2ϕ0 =∇ · u0, ϕ0|S = 0,

(2.42)


−∇2pλ = 0, pλ|S = λ

(−∇2 + γ)uλ = −∇pλ, uλ|S = 0

−∇2ϕλ =∇ · uλ, ϕλ|S = 0.

(2.43)

Here λ denotes an unknown surface function unknown with zero average
to be determined so that the following extra boundary condition on ϕ is
satisfied:

∂ϕ

∂n

∣∣∣
S

= 0. (2.44)

Since p0 satisfies homogeneous Dirichlet boundary conditions, λ corre-
sponds to the value of the pressure field over the boundary up to an additive
constant.

Integral condition and linear variational problem

As already mentioned, the condition:

∂ϕ

∂n

∣∣∣
S

= 0 ⇒ −∂ϕλ
∂n

∣∣∣
S

=
∂ϕ0

∂n

∣∣∣
S

(2.45)

has to be satisfied. This can be re-written in the integral (variational) form:

−
∮
S

µ
∂ϕλ
∂n

=

∮
S

µ
∂ϕ0

∂n
. (2.46)
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2.3. Second Decoupling Method (Glowinski–Pironneau)

for any test function µ of zero average defined on S. Now each of the two
terms can be developed. To do so orthogonality properties, boundary con-
ditions and the µ-counterpart of λ-equations are used together with the fol-
lowing useful properties:

• Green identity

−
∫
V

u·∇2v = −
∫
V

v·∇2u+

∮
S

(n̂×v·∇×u+n̂·v∇·u−n̂×u·∇×v−n̂·u∇·v)

(2.47)

• Orthogonality∫
V

∇ϕλ·∇pµ =

∫
V

∇·(ϕλ∇pµ)−
∫
V

ϕλ∇2pµ =

∮
S

ϕλ∇pµ·n̂−
∫
V

ϕλ∇2pµ = 0

(2.48)
given ∇2pµ = 0 in V and ϕλ = 0 on the boundary. The µ subfix
indicates the µ-counterpart problem of the λ system. Similarly, it can
be shown that: ∫

V

∇ϕ0 ·∇pµ = 0 (2.49)

• Vector identity
∇(∇ · v) =∇×∇× v +∇2v (2.50)

First let us focus on the left-hand side of equation 2.46. Let µ = pµ
∣∣
S
,

as it can be deduced from the µ-counterpart problem of the λ system. By
exploiting the identity 2.45, the divergence theorem and the othogonality
property 2.48, one can write:

−
∮
S

∂ϕλ
∂n

µ = −
∮
S

∂ϕλ
∂n

pµ

= −
∫
V

∇ · (pµ∇ϕλ)

= −
∫
V

pµ∇2ϕλ −
∫
V

∇ϕλ ·∇pµ

= −
∫
V

pµ∇2ϕλ.

(2.51)

Then, using the Poisson equation for ϕλ, integrating by parts, exploiting
homogeneous boundary conditions for uλ and eventually introducing the
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Helmholtz equation for uµ, we have:

−
∮
S

∂ϕλ
∂n

µ = −
∫
V

pµ∇2ϕλ

=

∫
V

pµ∇ · uλ

=

∫
V

[−uλ ·∇pµ +∇ · (pµuλ)]

=

∫
V

uλ · (−∇pµ) +

∮
S

pµuλ · n̂

=

∫
V

uλ · (−∇2 + γ)uµ.

(2.52)

By introducing the vectorial identity 2.50, we have:

−
∮
S

∂ϕλ
∂n

µ =

∫
V

γuλ · uµ +

∫
V

uλ · [∇×∇× uµ −∇(∇ · uµ)]. (2.53)

Thanks to integration by parts, the divergence theorem and homogeneous
boundary conditions these two terms can be re-written as:

−
∫
V

uλ∇(∇ · uµ) = −
∫
V

∇ · (uλ∇ · uµ) +

∫
V

∇ · uλ∇ · uµ

=

∫
V

∇ · uλ∇ · uµ,∫
V

uλ · (∇×∇× uµ) =

∫
V

∇ · [(∇× uµ)× uλ] +

∫
V

∇× uµ ·∇× uλ

=

∫
V

∇× uµ ·∇× uλ,

(2.54)
so that:

−
∮
S

∂ϕλ
∂n

µ =

∫
V

(γuλ · uµ +∇× uµ ·∇× uλ +∇ · uλ∇ · uµ). (2.55)

This result reveals the symmetry property of the operator associated with
this variational problem. Let us now focus on the right-hand side of the
equation 2.46. Similarly to what has been done for the left-hand side, we
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2.3. Second Decoupling Method (Glowinski–Pironneau)

have:

−
∮
S

∂ϕ0

∂n
µ = −

∮
S

∂ϕ0

∂n
pµ

= −
∫
V

∇ · (pµ∇ϕ0)

= −
∫
V

pµ∇2ϕ0 −
∫
V

∇ϕ0 ·∇pµ

= −
∫
V

pµ∇2ϕ0.

(2.56)

Then, using the Poisson equation for ϕ0 , integrating by parts, exploiting
Dirichlet boundary conditions (u0|S = b) and eventually introducing the
Helmholtz equation for uµ, we have:

−
∮
S

∂ϕ0

∂n
µ = −

∫
V

pµ∇2ϕ0

=

∫
V

pµ∇ · u0

=

∫
V

[−u0 ·∇pµ +∇ · (pµu0)]

=

∫
V

u0 · (−∇pµ) +

∮
S

pµu
0 · n̂

=

∫
V

u0 · (−∇2 + γ)uµ +

∮
S

pµb · n̂.

(2.57)

Exploiting the Green identity 2.47 and the homogeneous boundary conditions
for uµ we have:

−
∮
S

∂ϕ0

∂n
µ =

∫
V

u0 · (−∇2 + γ)uµ +

∮
S

pµb · n̂ =

=

∫
V

uµ · (−∇2 + γ)u0+

+

∮
S

(n̂× uµ ·∇× u0 + n̂ · uµ∇ · u0 − n̂× u0 ·∇× uµ − n̂ · u0∇ · uµ)+

+

∮
S

pµb · n̂ =

=

∫
V

uµ · (−∇2 + γ)u0 −
∮
S

(n̂× u0 ·∇× uµ + n̂ · u0∇ · uµ) +

∮
S

pµb · n̂.

(2.58)
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Given the Helmholtz equation for u0 and the boundary conditions u0
∣∣
S

= b,

pµ
∣∣
S

= µ:

−
∮
S

∂ϕ0

∂n
µ =

∫
V

uµ · (−∇p0 + g)−
∮
S

(n̂× b ·∇× uµ + n̂ · b∇ · uµ) +

∮
S

pµb · n̂ =

=

∫
V

uµ · (−∇p0 + g)−
∮
S

[n̂× b ·∇× uµ + n̂ · b(∇ · uµ − µ)] =

=

∫
V

ϕµ(−∇2p0) +

∫
V

uµ · g −
∮
S

[n̂× b ·∇× uµ + n̂ · b(∇ · uµ − µ)].

(2.59)

Given the Poisson equation for p0:

−
∮
S

∂ϕ0

∂n
µ =

∫
V

(−∇ ·g)ϕµ+

∫
V

g ·uµ−
∮
S

[n̂×b ·∇×uµ+n̂ ·b(∇ ·uµ−µ)].

(2.60)
Finally by collecting together the new derived expressions for the left- and
right-hand sides of 2.45:∫

V

(γuλ · uµ +∇× uµ ·∇× uλ +∇ · uλ∇ · uµ) =

=

∫
V

[(∇ · g)ϕµ − g · uµ] +

∮
S

[n̂× b ·∇× uµ + n̂ · b(∇ · uµ − µ)]. (2.61)

The above formulation is not convenient for computational purposes since
it would require to determine and store uµ and ϕµ for every linearly indepen-
dent function µ.

2.3.4 Efficient numerical implementation of the decom-
position

Decomposition and equations

A more convenient decomposition of the solution can be expressed as:
p(x)
u(x)
ϕ(x)

 =


p0(x)
u0(x)
ϕ0(x)

+

∮
S


p′(x;σ′)
u′(x;σ′)
ϕ′(x;σ′)

λ(σ′)dS(σ′), (2.62)

where the functions with superscript 0 are the solution to the same equa-
tions previously introduced (2.42), and the functions with superscript ’ are
solutions to the following equations for any σ′ ∈ S \ σ∗ (σ∗ being a fixed
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point arbitrarily chosen on S):
−∇2p′ = 0, p′|S = δ2(x− σ′)− δ2(x− σ∗)
(−∇2 + γ)u′ = −∇p′, u′|S = 0

−∇2ϕ′ =∇ · u′, ϕ′|S = 0.

(2.63)

Moreover the auxiliary scalar funcions w(x;σ) defined over the domain
are introduced:

w(x;σ) arbitrary in V, w(x;σ)
∣∣
S

= δ(2)(x− σ)− δ(2)(x− σ∗). (2.64)

These functions are taken different from zero only in a narrow shell along
the boundary, so that the volume integrals above can be evaluated much
more efficiently than the corresponding expressions containing uµ. Moreover
these test functions must not satisfy any additional requirement, unlike those
derived from the first uncoupling method (see equation 2.20).

Integral condition and linear variational problem

Let us write the boundary condition ∂ϕ
∂n

∣∣
S

= 0 in its weak formulation:

−
∮
S(x)

w(x;σ)

∮
S(σ′)

∂ϕ′

∂n
(x;σ′)λ(σ′)dSσ′dSx =

∮
S

w(x;σ)
∂ϕ0

∂n
(x)dSx,

(2.65)
which defines a variational problem for the boundary unknown λ(σ′). First
let us focus on the right-hand side of the above equation. By applying the
divergence theorem and using the Poisson equation for ϕ0, we have:

β(σ) =

∮
S

w(x;σ)
∂ϕ0

∂n
(x)dSx =

=

∫
V

∇ · [w(x;σ)∇ϕ0(x)]dVx =

=

∫
V

[w(x;σ)∇2ϕ0(x) +∇w(x;σ) ·∇ϕ0(x)]dVx =

=

∫
V

[−w(x;σ)∇ · u0(x) +∇w(x;σ) ·∇ϕ0(x)]dVx.

(2.66)
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At the same time, expanding the the left-hand side we have:

−
∮
S(x)

w(x;σ)

∮
S(σ′)

∂ϕ′

∂n
(x;σ′)λ(σ′)dSσ′dSx =

= −
∮
S(σ′)

(∮
S(x)

∂ϕ′

∂n
(x;σ′)w(x;σ)dSx

)
λ(σ′)dSσ′ =

=

∮
S(σ′)

(∫
V (x)

(
w(x;σ)∇ · u′(x)−∇w(x;σ) ·∇ϕ′(x)

)
dVx

)
λ(σ′)dSσ′ =

=

∮
S(σ′)

B(σ,σ′)λ(σ′)dSσ′ .

(2.67)

Eventually the linear variational problem for λ(σ′) can be wrtiten as:∮
S(σ′)

B(σ,σ′)λ(σ′)dSσ′ = β(σ), (2.68)

with:

B(σ,σ′) =

∫
V

[w∇ · u′ −∇w ·∇ϕ′]dV

β(σ) =

∫
V

[−w∇ · u0 +∇w ·∇ϕ0]dV.

(2.69)

2.3.5 Discrete formulation

As described in the previous section 2.3.4, the final linear variational
problem is function of σ and σ′, namely the spatial coordinates where the
Dirac delta associated with the definition of w and the boundary conditions
for p′ is placed, respectively. In a discretized FEM framework, the Dirac
delta functions can be consistently replaced by the space basis functions,
which are equal to one in the considered node and zero elsewhere. In this
way the test functions w are replaced by the chosen FEM basis functions.
Moreover we can write the linear problem 2.3.4 as many times as the number
of the Dirichlet boundary nodes, each time changing the boundary conditions
for p′ by replacing the ’discretized’ Dirac delta function in a different node
of the boundary. By doing so we obtain an algebraic linear system whose
solution λ represents the expected value of the pressure field on the boundary,
since p0|S = 0.

In this section the discrete formulation of the above method is illustrated.
Further details about the actual discretization of the linear problem are given
in section 3.3.3.
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Decomposition

In the discrete setting, the solution can be expressed as follows:
p(x)
u(x)
ϕ(x)

 =


p0(x)
u0(x)
ϕ0(x)

+

ND∑
k=1


pk(x)
uk(x)
ϕk(x)

λk, (2.70)

It can be pointed out that the expansion coefficient λk corresponds to the
pressure value on the boundary node k of the pressure field solution, while
pk(x), uk(x) and ϕk(x) represent suitable basis functions.

Equations

By virtue of its linearity, the original problem 2.34 can be split in one non
homogeneous problem and as many homogeneous problems as the number
of Dirichlet boundary nodes, ND, each one being associated with a different
boundary value for pk:

−∇2p0 = −∇ · g, p0|S = 0

(−∇2 + γ)u0 = −∇p0 + g, u0|S = b

−∇2ϕ0 =∇ · u0, ϕ0|S = 0,

(2.71)


−∇2pk = 0, pk|S = µk

(−∇2 + γ)uk = −∇pk, uk|S = 0 k = 1 : ND

−∇2ϕk =∇ · uk, ϕk|S = 0,

(2.72)

where µk is a function which is set to one on the k-th boundary node and
zero elsewhere (equivalent to the wk basis function).

Equations for the explicit treatment of the time derivative

As introduced in section 2.1.2, an explicit treatment of the time derivative
can be adopted. The corresponding equations are:

−∇2p0 = −∇ · g̃, p0|S = 0

−∇2u0 = −∇p0 + g̃, u0|S = b

−∇2ϕ0 =∇ · u0, ϕ0|S = 0,

(2.73)


−∇2pk = 0, pk|S = µk

−∇2uk = −∇pk, uk|S = 0 k = 1 : ND

−∇2ϕk =∇ · uk, ϕk|S = 0.

(2.74)
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As it can be seen from the previous equations, in this formulation in addi-
tion to the pressure also the velocity must satisfy a Poisson equation, instead
of a Helmholtz equation. This can increase the accuracy of the method es-
pecially when both ∆t and ν are small, hence when the coefficient γ is large.
In such situation, an implicit treatment of the time derivative would cause
the laplacian term of the Helmholtz equation to be multiplied by a small
coefficient leading to a singular perturbation problem. As a consequence of
that, when measurement errors are introduced through the velocity bound-
ary data, they could be greatly amplified resulting in severe oscillations of
the reconstructed pressure field. For this reason this second method, with an
explicit treatment of the time derivative, seems more suitable to process time
resolved velocity fields where the measurement error has not been filtered out
by averaging.

Integral condition and linear variational problem

From the condition ∂ϕ
∂n

∣∣
S

= 0 , with ϕ(x) = ϕ0(x) +
∑ND

k=1 ϕ
k(x)λk, we

can re-write the variational condition
∮
S
w ∂ϕ
∂n

= 0 :

∮
S

w
∂ϕ0

∂n
+

ND∑
k=1

∮
S

w
∂ϕk

∂n
λk = 0 (2.75)

Introducing the divergence theorem and the Poisson equation for ϕ0, we have:∮
S

w
∂ϕ0

∂n
=

∫
V

∇ · (w∇ϕ0) =

=

∫
V

(w∇2ϕ0 +∇w ·∇ϕ0) =

=

∫
V

(−w∇ · u0 +∇w ·∇ϕ0)

(2.76)

and similarly for
∮
S
w ∂ϕk

∂n
. It follows that:

ND∑
k=1

∫
V

(w∇ · uk −∇w ·∇ϕk)λk = −
∫
V

(w∇ · u0 −∇w ·∇ϕ0) (2.77)

This linear problem is the “discrete” counterpart of equations 2.68 and
2.69. The numerical discretization by introducing the finite element test
functions and the derivation of the associated algebraic linear problem are
reported in section 3.3.3.

Once all the λk have been computed, the reconstructed pressure and
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velocity field are given by:

p(x) = p0(x) +

ND∑
k=1

pk(x)λk, (2.78)

u(x) = u0(x) +

ND∑
k=1

uk(x)λk (2.79)

2.4 Projection on a divergence-free space

Since the described method computes the pressure field by enforcing the
incompressibility constraint all over the domain, any possible velocity mea-
surement affected by an error which is not divergence free could result in a
potentially inaccurate computation of the pressure field. Before the method
is applied, a projection of the measured velocity field on a divergence free
space could be performed to improve the accuracy of the method. In this
subsection the mathematical formulation of a projector on the divergence
free function space is derived. Let introduce ũ, namely a measured velocity
field which is affected by measurement errors, hence it is not divergence free.
Our aim is to find a solenoidal velocity field u that is close to ũ in some
sense. In this work we quantify the distance between u and ũ using the L2

norm of u− ũ, and we find u in order to minimize such distance. To do so,
the following functional is introduced, where the incompressibility constraint
is enforced by means of a Lagrange multiplier λ,

J =
1

2

∫
V

‖u− ũ‖2−
∫
V

λ∇ ·u =
1

2

∫
V

(u− ũ) · (u− ũ)−
∫
V

λ∇ ·u. (2.80)

By imposing a null functional variation (δJ = 0), the functional can be
minimized:

δJ =
1

2

∫
V

δu · (u− ũ) + (u− ũ) · δu−
∫
V

δλ∇ · u−
∫
V

λ∇ · δu

=

∫
V

δu · (u− ũ)−
∫
V

δλ∇ · u−
∫
V

λ∇ · δu = 0.

(2.81)

Now, by replacing the variations δu and δλ with the corresponding test
functions v ∈ [H1(V )]2 and q ∈ L2(V ), respectively, and moving the known
integrals on the right-hand side, we obtain:∫

V

v · u−
∫
V

q∇ · u−
∫
V

λ∇ · v =

∫
V

v · ũ, (2.82)
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The weak formulation of the problem states:
Find u ∈ [H1(V )]2 and λ ∈ L2(V ) such that∫

V

v · u−
∫
V

q∇ · u−
∫
V

λ∇ · v =

∫
V

v · ũ, (2.83)

∀v ∈ [H1(V )]2 and q ∈ L2(V ).
No boundary conditions are required. The numerical implementation of

the projector will be analyzed in section 3.3.4.

2.5 Weak formulation

Before being discretized, equations 2.71 and 2.72 must be recasted in their
variational (weak) formulation.

2.5.1 p0 equation

Let us first consider the Poisson equation for p0. Its strong formulation
reads:

Find p0(x) : Rnd → R such that:{
−∇2p0 = −∇ · g on V

p0 = 0 on ∂V .
(2.84)

To obtain the weak formulation of the problem, we multiply the Poisson
equation for a scalar test function v, whose appropriate functional space will
be discussed later, and then we integrate over the domain V :

−
∫
V

v∇2p0 = −
∫
V

v∇ · g.

By integrating by parts and applying the divergence theorem, the left-
hand side of the equation can be rewritten as:

−
∫
V

v∇2p0 =

∫
V

∇v · ∇p0 −
∫
V

∇ · (v∇p0) =

∫
V

∇v · ∇p0 −
∫
S

v
∂p0

∂n
.

By choosing v such that it is zero on the whole Dirichlet boundary, we
have: ∫

V

∇v · ∇p0 = −
∫
V

v∇ · g.
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2.5. Weak formulation

Therefore, in order to have a well posed problem, the weak formulation
of the problem reads:

Find p0 ∈ H1
0 : { p0 ∈ H1(V ) | p0 = 0 on S } such that :

∫
V

∇v · ∇p0 = −
∫
V

v∇ · g ∀v ∈ H1
0 :
{
v ∈ H1(V )

∣∣ v = 0 on S
}
.

As we can see, the pressure, which in the uncoupled formulation must satisfy
a Poisson equation, is required to have an higher degree of regularity than in
the standard coupled version (L2).

2.5.2 u0 equation

Since the non linear term (u · ∇)u is known and can be treated as a
standard forcing term inside g, the Helmholtz equations for the nd velocity
components are indipendent, where nd is the number of spatial dimensions,
so that the Helmholtz vectorial problem for u0 can be reduced to nd scalar
Helmholtz problems, each one for each different velocity component. In this
section the weak formulation for the generic component u0

l , l = 1 : nd, will
be derived. Let us start from the strong formulation of the problem:

Find u0
l (x) : Rnd → R such that:−∇2u0

l + γu0
l = −∂p

0

∂xl
+ gl on V

u0
l = bl on ∂V .

(2.85)

Similarly to what has been done for the Poisson equation for p0, the
Helmholtz equation is multiplied by a scalar test function v, whose appro-
priate functional space will be discussed later, and then integrated over the
domain V . The part containing the Laplace operator can be integrated by
parts, and applying the divergence thoerem eventually one obtains:∫

V

∇v · ∇u0
l + γ

∫
V

vu0
l = −

∫
V

v

(
−∂p

0

∂xl
+ gl

)
,

since v is null on the boundary. In this case non-homogeneous Dirichlet
boundary conditions have to be considered. To do so, a lifting procedure
of the boundary values must be carried out in order to find a solution in
the same vector space of the test function (H1

0). Let us introduce a lifting
function Rb:

Rb ∈ H1(V ), Rb|S = bl.
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Chapter 2. Mathematical formulation

From the above definition, it follows that u0
l can be decomposes as u0

l =
ū0
l + Rb, with ū0

l ∈ H1
0 (V ), since both u0

l and Rb are equal to bl on the
boundary. Then the weak formulation reads:

Find ū0
l ∈ H1

0 : { ū0
l ∈ H1(V ) | ū0

l = 0 on S } such that :∫
V

∇v·∇u0
l +γ

∫
V

vu0
l = −

∫
V

v

(
−∂p

0

∂xl
+ gl

)
−
∫
V

∇v·∇Rb−γ
∫
V

vRb

∀v ∈ H1
0 :
{
v ∈ H1(V )

∣∣ v = 0 on S
}
. (2.86)

In the present work the boundary value lifting is performed only formally.
As it will be pointed out in section 3.3.2, the discretization of the problem
will be carried out without considering non homogeneous Dirichlet boundary
conditions, which will be enforced using an algebraic trick at a later stage.

2.5.3 Weak problems summary

All the other weak formulations (for ϕ0, pk, uk and ϕk) can be carried
out similarly to those derived for p0 and u0. Their associated form with
homogeneous boundary data can be summarized as follows:


Find p0 ∈ V

∫
V
∇v ·∇p0 = −

∫
V
v∇ · g ∀v ∈ H1

0

Find u0
l ∈ V

∫
V

(∇v ·∇u0
l + γvu0

l ) =
∫
V
v
(
−∂p0

∂xl
+ gl

)
∀v ∈ H1

0, l = 1 : nD

Find ϕ0 ∈ V
∫
V
∇v ·∇ϕ0 =

∫
V
v∇ · u0 ∀v ∈ H1

0

(2.87)


Find pk ∈ V

∫
V
∇v ·∇pk = 0 ∀v ∈ H1

0

Find ukl ∈ V
∫
V

(∇v ·∇ukl + γvukl ) =
∫
V
v
(
−∂pk

∂xl

)
∀v ∈ H1

0, l = 1 : nD

Find ϕk ∈ V
∫
V
∇v ·∇ϕk =

∫
V
v∇ · uk ∀v ∈ H1

0,

(2.88)
where V is a suitable vector space with V ⊂ H1.
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Numerical Discretization

In this chapter the numerical discretization of the continuous problem
is described. First, in section 3.1, the computational domain is discretized,
employing the PIV measure points. Then in section 3.2 a finite element
(FEM) discretization of the problem is introduced and it is used in section
3.3 in order to obtain a set of algebraic linear systems. Eventually in section
3.4 a brief description of the corresponding Fortran90 program is provided.

3.1 Mesh Generation

3.1.1 Grid data structure

The grid data structure is composed of:

• nodes data collecting:

– the number of the domain and boundary nodes;

– an array containing the coordinates of the nodes;

– a vector containing the global numbering of the boundary nodes;

– a vector containing the boundary numbering of the boundary
nodes;

– a vector containing the numbering of the boundary side to which
the boundary nodes belong;

• grid data collecting:

– the number of the domain and boundary elements;

– a vector containing the numbering of the domain elements;
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– an array containing the global numbering of the nodes belonging
to a given domain element;

– an array containing the neighboring elements;

– a vector containing the numbering of the boundary elements;

– two vectors containing the boundary elements type and the label
of the boundary portion they belong to;

– an array containing the boundary numbering of the boundary
nodes belonging to a given boundary element;

– an array containing the neighboring boundary elements;

3.1.2 Domain clipping

The PIV image postprocessing produces one file for each image couple
containing the coordinates corresponding to the nodes of a rectangular struc-
tured grid. If there is a body or part of it in the image, PIV cannot correlate
inside this part of the domain. The measures in this region are spurious and
the corresponding nodes have to be left out from the grid.

(a) Non-shaped grid (b) Shaped grid (bold)

Figure 3.1: Comparison between rectangular and shaped-domain (example)

3.1.3 Example

With reference to the small grid in Figure 3.2, an example of the grid
data structure and of the procedure by which is constructed is illustrated in
the following.
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3.1. Mesh Generation

(a) Domain nodes and elements number-
ing

(b) Boundary nodes and elements num-
bering

Figure 3.2: Domain and boundary nodes and elements in the example

Umesh2d output

The dimensions of the UMesh2d data structures relative to the previous
example are listed in Table 3.1.

Number of domain nodes npD 12
Number of domain elements neD 11
Number of boundary nodes npB 11
Number of boundary elements neB 11

Table 3.1: Summary of data structures dimensions

UMesh2d output consists of two files: nodes data file and grid data file.
Each one of the two Umesh2d output files contains a domain section and a
boundary section.

nodes.* Umesh2d file

The domain section in the nodes.* file contains the numbering and the
coordinates of all the nodes (see Table 3.2).

The boundary section in the nodes.* file contains the boundary nodes
both indicating their global and boundary numbering together with the side
they belong to (see Table 3.3).
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rrr 1.0 1.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
0.0 0.0 0.5 0.5 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5

Table 3.2: nodes.* file: domain section

jDjB(1 : 11) 1 3 3 6 6 5 5 9 9 10 10
jDjB(12 : 22) 11 11 12 12 8 8 4 4 2 2 1
jB(1 : 11) 1 2 3 4 5 6 7 8 9 10 11
jB(12 : 22) 12 13 14 15 16 17 18 19 20 21 22
side(1 : 11) 1 1 1 1 1 1 1 1 1 1 1
side(12 : 22) 1 1 1 1 1 1 1 1 1 1 1

Table 3.3: nodes.* file: boundary section

grid.* Umesh2d file

The domain section in the grid.* file contains the domain elements num-
bering, their type (triangles are two dimensional elements), global numbering
of the nodes belonging to the elements and their neighboring elements (see
Table 3.4).

The boundary section in the grid.* file contains boundary elements num-
bering, their type (line segments are one dimensional elements), the indices
of the side they belong to, the boundary numbering of the nodes belonging to
the boundary elements and their neighboring boundary elements (see Table
3.5).

m 1 2 3 4 5 6 7 8 9 10 11
type 2 2 2 2 2 2 2 2 2 2 2
jm 1 3 5 6 7 4 7 8 10 11 12

2 4 6 7 8 3 6 3 7 10 11
3 7 9 10 11 2 3 4 6 7 8

mam 6 8 9 10 11 1 0 2 3 4 5
0 7 0 9 10 0 2 0 4 5 0
0 6 0 7 8 2 4 5 0 0 0

Table 3.4: grid.* file: domain section
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3.1. Mesh Generation

mb 1 2 3 4 5 6 7 8 9 10 11
typeB 1 1 1 1 1 1 1 1 1 1 1
sideB 1 1 1 1 1 1 1 1 1 1 1
jBmB 1 3 5 7 9 11 13 15 17 19 21

2 4 6 8 10 12 14 16 18 20 22
mBamB 2 3 4 5 6 7 8 9 10 11 0

0 1 2 3 4 5 6 7 8 9 10

Table 3.5: grid.* file: boundary section

3.1.4 Grid data construction

Domain

The method to evaluate the pressure field from PIV velocity measure-
ments is tested here on a classical aeronautical problem: the flow around
a wing section. Both flow at the leading edge and at the trailing edge will
be investigated. One of the goals of this method is the indirect measure of
the loads acting on the wing, for which it is very important to calculate the
pressure field as close as possible to the wall. A portion of the wing section
is captured in the image and therefore the grid has to be shaped around it.

First of all, all the nodes of the PIV rectangular domain are listed. A flag
array collects the information about the position of each node with respect
to the boundary. The zero entries indicate the nodes lying outside the flow
region. The number of grid nodes is equal to the number of non-zero entry
of the array. Then grid nodes are selected from the original PIV nodes and
are sorted with increasing order from bottom to top and from left to right.

Due to the structured type of the mesh, domain elements are generated
quite easily. The square Cartesian grid of PIV experimental data is divided
into square isosceles triangular elements (the grid is not a Delaunay triangu-
lation), then the connectivity array and the array of neighbouring elements
are built. Depending on how triangular elements are built (i.e. depending
on which diagonal of the square element is considered) some domain ele-
ments next to the boundary can be lost. For some domains (e.g. leading
edge or trailing edge of an airfoil), a uniform choice through the domain can
give globally as many elements as possible (Figure 3.3), but this cannot be
considered as a rule.

Boundary

After building domain data structure, the boundary data structure can
be built too. For two dimensional problems both the number of boundary
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(a) From bottom left to top right diagonal

(b) From top left to bottom right diagonal

Figure 3.3: Results of different choices of the diagonal orientation
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elements and the number of boundary nodes are equal to the number of zero
elements in the array collecting the domain neighbouring elements.

The array containing the global numbering of the boundary nodes is then
built. This array follows from by the choice of two contiguous boundary
nodes. Once the first two boundary nodes are set, the starting point, the
boundary orientation and the whole boundary nodes numbering are defined.

Eventually, the side indices, the boundary numbering of boundary ele-
ments and the boundary connectivity array are stored.

3.1.5 Grid smoothing over the airfoil boundary

The finite element method is quite sensitive to the presence of convex
corners in the boundary, which can lead to local oscillations of the solution.
Such kind of corners are located only on the airfoil portion of the boundary,
where it is of crucial importance to have good results in order to accurately
estimate airloads on the body. In order to improve the results and reduce
the oscillations, the nodes on this part of the boundary can be moved on a
more regular curve, approximating the airfoil profile. For example one can
get the airfoil surface from the PIV image or build a curve from the available
data.

If PIV pictures of good quality are available and the airfoil contour can be
easily identified, the actual position of the profile is known: there is no need
to build the boundary approximating the original sharp-cornered domain.

If PIV pictures are not available and there is no way to know the actual
position of the airfoil surface, a smooth approximation of the profile boundary
is needed. For example, one can choose a set of nodes, ”the most inner”nodes,
and approximate the airfoil profile by means of linear interpolation or cubic
spline. Both methods could be of poor quality: in general linear interpolation
is not smooth enough for the leading edge, while some oscillations could occur
with cubic spline interpolation. These three different procedures are resumed
in Figure 3.7.

Other ”holistic” approximation can get better results (see figure 3.4). For
example, once set the fixed nodes (those ones belonging to the airfoil portion
of the domain which won’t be moved), one can calculate an approximation
of the local slope of the smooth boundary curve in these nodes, and then
build the curve. Once the regular curve has been built, every node is moved
to the closest point belonging to the regular curve. As a consequence of this
procedure, the boundary elements change their shape.

A method to build a smooth approximation of the jagged boundary could
consist in the procedure summarized in figure 3.5. The slope of the desired
boundary curve is approximated in each one of the fixed nodes; then lines
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Smoothing grid border corresponding to the airfoil
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with these slopes, passing through the relative nodes, are drawn and inter-
sections between consecutive lines are found. Taking two consecutive lines,
the segments lying between the fixed nodes and the intersection are divided
by a set of equispaced points; these points are connected as shown in figure
3.5.Then the smooth curve is obtained by taking the envelope of these lines.

Figure 3.5: Smooth curve creation

After modifying the grid, velocity measures on the new nodes have to be
approximated, for example through extrapolation of the available measures
(3.6):

f(Ii) =
BiIi

Bi−1Bi

f(Bi−1) +
Bi−1Ii

Bi−1Bi

f(Bi) (3.1)

f(Ni) = f(Ii) +
NiIi

PiBi

(f(Pi)− f(Ii)) (3.2)

In general the extrapolation does not produce a divergence free velocity
field, so oscillations are not guarantee to disappear. When the airfoil bound-
ary is extracted from the PIV images, the velocity on the boundary nodes
can be computed by imposing the no-slip condition or by extrapolation from
internal points. Results will be presented in the following chapters.
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Figure 3.6: Linear extrapolation

3.1.6 FEM grids for the unsteady problem

When the method is applied to turbulent flows, several PIV measures have
to be collected and the velocity field should be (phase) averaged to calculate
first and second order statistics, i.e. Reynolds stresses. If n velocity fields
are available, a threshold m ≤ n is set: if m or more measures are valid, the
node will be included in the numerical grid.

If a moving body is present in the PIV window, grids at different instants
could be different, even thuogh the time interval between consecutive PIV
measures is small ( ≈ 10−2 s ). The actual grid is composed of the nodes
belonging to both grids.
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(a) Original sharp-cornered grid

(b) Grid without using PIV image informations

(c) Grid calculated from PIV image

Figure 3.7: FEM grid
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3.2 Finite Element Method

Let Th be a regular triangulation of the domain V , as discussed in section
3.1, where h is the typical radius of the elements. We can now find an ap-
proximate solution to the weak problems ( 2.87, 2.88) in a finite-dimensional
space. We choose Xr

h, namely the space of piecewise polynomial functions
built over Th, which is defined as :

Xr
h =

{
uh ∈ C0(V̄ )

∣∣ uh|K ∈ Pr ∀ K ∈ Th
}
,

where Pr is the space of polynomial functions of degree r and K are the
elements of grid Th. For this problem we will choose a linear piecewise ap-
proximation for p and ϕ and a quadratic piecewise approximation for u,
namely we select the vector spaces X1

h and X2
h respectively. The choice of

two different vector spaces is necessary to satisfy the LBB condition, which
must be satisfied even if the pressure and velocity equations are uncoupled
( For further details see [17] ). Introducing the basis φj, 1 ≤ j ≤ N for the
vector space X1

h and the basis ψj, 1 ≤ j ≤ M for the vector space X2
h, we

can now express the approximate solutions by means of these bases:
ph(x) =

∑N
j=1 φj(x)pj, ph(x) ∈ X1

h

ulh(x) =
∑M

j=1 ψj(x)ulj , ulh(x) ∈ X2
h, l = 1 : nD

ϕh(x) =
∑N

j=1 φj(x)ϕj, ϕh(x) ∈ X1
h,

(3.3)

where N and M are the number of P1 and P2 nodes respectively and nD is
the number of spatial dimensions. By substituting these expressions in the
previously developed weak formulation, one obtains a set of algebraic sparse
linear systems whose solution represents the nodal values of the unknowns.
This procedure will be widely discussed in the following section 3.3.

3.3 Discretized equations

3.3.1 Discretized g problem

Before discretizing the problems 2.87 and 2.88, we have to compute g
from the experimentally known velocity fields un and un−1. Let us recall the
definition of l g:

g = γun−1 − 1

ν
(un ·∇)un − 1

ν
〈(u′,n ·∇)u

′,n〉 . (3.4)
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One can not compute directly g since the advection term (un ·∇)un and
the Reynolds stress term 〈(u′,n ·∇)u

′,n〉 are to be evaluated yet. Let us first
concentrate on the first part, neglecting the Reynolds stresses term for the
moment being. g can be rewritten as follows:

g = γun−1 − 1

ν
(un ·∇)un. (3.5)

One can now recast the problem in a variational formulation, by multiplying
the previous expression for a vector test function v and integrating over the
domain V: ∫

V

v · g = γ

∫
V

v · un−1 − 1

ν

∫
V

v · (un ·∇)un. (3.6)

Let now express each component of the approximate solution gh by means
of the P2 space basis:

glh(x) =
M∑
j=1

ψj(x)glj , glh(x) ∈ X2
h, l = 1 : nD (3.7)

We can now substitute the expression 3.7, together with the analogous ex-
pressions for unlh and un−1

lh
, in the variational formulation 3.6. Since the weak

formulation must hold for every v , it is sufficient to verify it for every com-
ponent of the space basis. So we can substitute v with the generic g basis
element ψi. As an example, the x component of g reads, in a 2D case:

M∑
j=1

∫
V

ψiψjgxj = γ
M∑
j=1

∫
V

ψiψju
n−1
xj
− 1

ν

M∑
j=1

∫
V

ψiψj

(
un−1
xj

∂ψj
∂x

+ un−1
yj

∂ψj
∂y

)
,

i = 1 : M.
(3.8)

Equation 3.8 represents the i-th row of the linear system Mg = f , where :

Mij =

∫
V

ψiψj

fi = γ
M∑
j=1

∫
V

ψiψju
n−1
xj
− 1

ν

M∑
j=1

∫
V

ψiψj

(
un−1
xj

∂ψj
∂x

+ un−1
yj

∂ψj
∂y

)
,

Therefore, the weak problem reduces to the solution of a linear algebraic
problem, with the mass matrix M , the right-hand side f and the unknown
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g, namely a vector containing the approximate solution evaluated in each
P2 node. No boundary condition enforcement is needed. We are assuming
here that the velocity fields are known on every P2 node. Unfortunately they
are experimentally known only over the PIV measurement grid whose nodes
are coincident with those of the P1 grid. Therefore a linear interpolation of
the functions over the quadratic nodes is needed in order to cope with this
problem.

However we still need to take into account the Reynolds stress term in
order to complete the description of g. As stated in section 2.1.1, un and
un−1 represent a phase average of the experimentally measured velocity fields
for the actual and the previous time instant. As a consequence, for each
experimentally measured velocity field with the same phase, one can compute
the fluctuating vector field u′ as the difference between the instantaneous
velocity field and its phase-average. Then the quantity (u

′,n ·∇)u
′,n can be

evaluated solving a mass problem similar to the one previously introduced.
Eventually all the terms (u

′,n ·∇)u
′,n can be averaged in order to obtain

〈(u′,n ·∇)u
′,n〉.

3.3.2 Discretized equations for the p, u, ϕ problems

Algebraic linear systems

Let us now discretize all the other weak formulations. Similarly to what
has been done for the g equations, one can substitute expansions 3.3 into
the weak formulations 2.87 and 2.88, getting rid of the boundary condition
enforcement for the moment being. Since the weak formulations must hold
for every test function of the associated functional space, it is sufficient to
verify them for every element of their respective space basis. By substituting
the test functions with their generic basis element φi or ψi , we have:



N∑
j=1

∫
V

∇φi ·∇φjp0
j = −

M∑
j=1

∫
V

φi

nD∑
l=1

∂ψj
∂xl

glj i = 1 : N

M∑
j=1

∫
V

(∇ψi ·∇ψj + γψiψj)u
0
lj

= −
N∑
j=1

∫
V

ψi
∂φj
∂xl

p0
j +

M∑
j=1

∫
V

ψiψjglj
i = 1 : M,

l = 1 : nD
M∑
j=1

∫
V

∇φi ·∇φjϕ0
j =

M∑
j=1

∫
V

φi

nD∑
l=1

∂ψj
∂xl

u0
lj

i = 1 : N

(3.9)
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N∑
j=1

∫
V

∇φi ·∇φjpkj = 0 i = 1 : N

M∑
j=1

∫
V

(∇ψi ·∇ψj + γψiψj)u
k
lj

= −
N∑
j=1

∫
V

ψi
∂φj
∂xl

pkj
i = 1 : M,

l = 1 : nD
M∑
j=1

∫
V

∇φi ·∇φjϕkj =
M∑
j=1

∫
V

φi

nD∑
l=1

∂ψj
∂xl

uklj i = 1 : N

(3.10)

Every equation above represents the i-th row of an algebraic linear system.
Let us define the mass and the stiffness matrices concerning P1 and P2 nodes
as follows :

K
(1)
ij =

∫
V

∇φi ·∇φj, K
(2)
ij =

∫
V

∇ψi ·∇ψj (3.11)

M
(2)
ij =

∫
V

ψiψj (3.12)

The algebraic linear problems can be written as follows:
K(1)p0 = fp

0

(K(2) + γM (2))u0
l = fu

0
l , l = 1 : nD

K(1)ϕ0 = fϕ
0

(3.13)


K(1)pk = fp

k

(K(2) + γM (2))ukl = fu
k
l , l = 1 : nD

K(1)ϕk = fϕ
k
,

(3.14)

The solution of each linear system is a vector containing the approximate
solution evaluated in each grid node.

All the system matrices are symmetric definite-positive (since γ > 0).
Moreover the matrices are sparse, due to the compact support of the finite
element basis functions and a sparse direct solver (e.g. MUMPS) is used in
order to reduce the computational effort. It can be highlighted the fact that
the stiffness matrices corresponding to the Poisson equations for po, ϕ0, pk

and ϕk are the same, so we can generate and factorize the K matrix once for
all. The same property applies to the matrices associated with the Helmohltz
problem.
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Boundary conditions enforcement

As previously pointed out, the solving matrices and right-hand side terms
have been generated neglecting the Dirichlet boundary conditions. In order
to enforce boundary conditions, we can act directly on the derived algebraic
system. Let us consider the boundary value assignment on boundary node
i. The modification simply consists in setting every coefficient of the i-th
row to zero, apart for the diagonal one which is set to one, and then modify
the corresponding element of the right hand-side by setting there the value
prescribed by the boundary condition.

3.3.3 Discretized integral condition

Algebraic linear system

In section 2.3.5 the variational problem relative to the integral condition
has been formulated:

ND∑
k=1

∫
V

(w∇ · uk −∇w ·∇ϕk)λk = −
∫
V

(w∇ · u0 −∇w ·∇ϕ0) (3.15)

Writing equation 3.15 for every element of the basis wi corresponding to each
Dirichlet boundary node, we have:

ND∑
k=1

∫
V

(wi∇ · uk −∇wi ·∇ϕk)λk = −
∫
V

(wi∇ · u0 −∇wi ·∇ϕ0),

i = 1 : 1 : ND. (3.16)

Equation 3.16 represents the i-th row of the linear sistem Bλ = β, where:

Bik =

∫
V

(wi∇ · uk −∇wi ·∇ϕk), (3.17)

bi = −
∫
V

(wi∇ · u0 −∇wi ·∇ϕ0). (3.18)

To sum up, in order to compute the influence Matrix B one has to solve
ND 2.72 problems, each one with a different boundary condition for pk. Each
problem will give uk and ϕk, which are necessary to compute the k-th column
of the influence matrix. The right-hand side β can be computed similarly by
solving the problem 2.71.
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Influence matrix properties

The derived influence matrix B has the following properties:

• The influence matrix is singular. Because of full Dirichlet boundary
conditions imposed on the velocity field, the pressure is determined up
to an additive arbitrary constant. This singularity can be eliminated
both by imposing a prescribed mean value or the value of pressure in
a node.

• The influence matrix has full pattern.

• The influence matrix is symmetric positive-semidefinite. Therefore once
desingularized the linear system can be solved iteratively by means of
the conjugate gradient method. This property can be demonstrated as
follows. By using the orthogonality property 2.48, one obtains:

Bik =

∫
V

(wi∇ · uk −∇wi ·∇ϕk)

=

∫
V

(wi∇ · uk + (−∇wi +∇pi) ·∇ϕk)
(3.19)

Let us now focus on the term −
∫
V

(∇wi −∇pi) ·∇ϕk). Using twice
the divergence theorem and integration by parts, introducing the ho-
mogeneous boundary conditions for uk and considering pi|S = wi|S and
the Poisson equation for ϕk, we have:

−
∫
V

(∇wi −∇pi) ·∇ϕk) = −
∮
S

(wi − pi)∇ϕk · n̂+

∫
V

(wi − pi)∇2ϕk

=

∫
V

(wi − pi)∇2ϕk = −
∫
V

(wi − pi)∇ · uk

= −
∮
S

(wi − pi)uk · n̂+

∫
V

(∇wi −∇pi) · uk

=

∫
V

(∇wi −∇pi) · uk

Using again the divergence theorem and introducing the Helmholtz
equation for uk with the associated boundary conditions:
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Bik =

∫
V

(wi∇ · uk + (∇wi −∇pi) · uk)

=

∫
V

∇ · (wiuk)−
∫
V

∇pi · uk

=

∮
S

wiuk · n̂−
∫
V

∇pi · uk

= −
∫
V

∇pi · uk =

∫
V

(−∇2 + γ)ui · uk =

=

∫
V

(∇ui :∇uk + γui · uk)−
∮
S

uk · (∇uin̂)

=

∫
V

(∇ui :∇uk + γui · uk)

= Bki

Solution of the algebraic linear system

As highlighted in the previous subsection, the solution of the algebraic
linear system presents some criticalities. First of all, the fact that the in-
fluence matrix is full, so one can take no advantage by using sparse linear
solvers such as MUMPS, makes the computational cost of the operation very
expansive. Moreover, since the influence matrix B is singular due to the fact
that the pressure field is determined up to an arbitrary additive constant, we
have to desingularize the matrix before its factorization.

A first method useful to eliminate the singularity is to artificially impose
the pressure value on one node or, alternatively, to impose the mean value of
the pressure. To do so, it is sufficient to replace the row corresponding to the
node where we want to impose the pressure value with a row of zeros, but for
the diagonal term which is set to one. The corresponding term of the right-
hand is set equal to the pressure value to be imposed. Alternatively, to impose
a zero mean value of the pressure on the boundary, one can replace any row of
the matrix B with a row of ones, and then put the corresponding term of the
right-hand side to zero. This method is definitely of simple implementation,
however it can be seen that the modified matrix B, especially for low ∆t and
ν, is extremely ill-conditioned, comporting a bad solution computation.

In order to avoid this problem, a spectral decomposition can be per-
formed. Since B is symmetric positive-semidefinite, all its eigenvalues are
real and non negative. Moreover the right eigenvector matrix X is orthog-
onal, hence X−1 = XT . Therefore the matrix B can be decomposed as
follows:

B = XΛXT , (3.20)
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where Λ is a diagonal matrix containing the eigenvalues of the matrix B.
Since the matrix B is singular only once, one of the eigenvalues is equal
to zero. Moreover the corresponding eigenvector is of the form α1, where
α corresponds to the pressure arbitrary additive constant. Let us rename
the solution of the linear problem x = λ in order not to confuse it with
the eigenvalue vector. By introducing expression 3.20 in Bx = β and pre-
multiplying by XT , one obtains:

Bx = β, XΛXTx = β, ΛXTx = XTβ (3.21)

Let us rename x̃ = XTx and β̃ = XTβ. One obtains the following linear
system:

Λx̃ = β̃ (3.22)

Since the matrix Λ is diagonal, every equation of this linear system can be
solved separately. However we must take into account that the first eigen-
value, if we order the eigenvalues in ascending order, will be zero (Λ11 = 0)
since the matrix is positive semi-definite. Hence the solution of system 3.22
reads:

x̃1 = 0, x̃i =
β̃i
Λii

, i = 2 : ND (3.23)

Eventually the solution of the influence matrix linear system can be retrieved
by :

x = Xx̃ (3.24)

The spectral decomposition is generally more onerous from the computational
point of view than a normal factorization, but the relatively coarse mesh of
the PIV measurements and the fact that the system has as many equations
as the boundary nodes ( not all the grid nodes), make it affordable.

3.3.4 Discretized equations for the projector

The projection problem presented in section 2.4 can be simply discretized
by substituting expansions 3.3 in equation 2.83 and then replacing the test
functions by a generic element of their respective basis, namely φi for λ and
ψi for u.

As an example, the equations for the discretized x component of the
projection problem reads:

M∑
j=1

∫
V

ψiψjuxj −
N∑
j=1

∫
V

φj
∂ψi
∂x

λj =
M∑
j=1

∫
V

ψiψjũxj , i = 1, . . . ,M. (3.25)
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while the discretized divergence term reads:

−
M∑
j=1

∫
V

φi
∂ψj
∂x

uxj −
M∑
j=1

∫
V

φi
∂ψj
∂y

uyj = 0, i = 1, . . . , N. (3.26)

As we can see, the problem for the two velocity components is coupled by
the Lagrange multipliers. By recalling the definition of the P2 mass matrix
and introducing the following matrices associated with the gradient operator

Gx =

∫
V

φj
∂ψi
∂x

, Gy =

∫
V

φj
∂ψi
∂y

, (3.27)

the linear problem derived from the discretized equations 2.83 reads:M (2) 0 −Gx

0 M (2) −Gy

−GT
x −GT

y 0

ux
uy
λ

 =

M (2)ũx
M (2)ũy

0

 . (3.28)

The present linear system does not require to impose any boundary con-
dition. However, it is singular once due to the fact that λ is determined up
to an arbitrary additive constant, similarly to what happens to the pressure
field in the incompressible Navier–Stokes equations.

In order to be solved, the right hand side of this problem must belong to
the matrix range. To do so, the following projector can be used: (I − xx∗),
where I is the identity matrix and x is the right eigenvector corresponding
to the null eigenvalue, hence a basis for the kernel of the matrix, and has the
following form

x =
[
0 . . . 0, 0 . . . 0, 1 . . . 1

]T
, (3.29)

with x∗ being the transpose of the corresponding left eigenvector, which
is simply equal to xT since the problem is self-adjoint. By applying the
projector to the right-hand side, we can notice that it returns the same input
vector, since the only nonzero entries of xxT multiply the part of the right-
hand side corresponding to the Lagrange multipliers, which is zero. That
means that the right hand side is already in the operator range, and by
using a solver which can handle this kind of singularities, such as MUMPS
for instance, one of the infinitely many exact solutions is returned. All the
possible solutions share the same velocity field, the λ fields differing for an
additive constant.
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3.4 F90 Program description

In this section a brief description of the Fortran90 Finite Element program
which has been developed is reported.

PIV database processing The PIV output is processed. The velocity
fields corresponding to the same phase are averaged, and the Reynolds
stress term 〈(u′,n ·∇)u

′,n〉 is computed.

Wind tunnel data processing The program reads the wind tunnel data
of the considered experiment. These data include the asymptotic value
of pressure, temperature, density and dynamic pressure, plus the Reynolds
number computed for a unit chord. From these data the kinematic vis-
cosity can be computed.

Mesh and ’belt’ Generation Starting from the PIV output, the shaped
mesh is generated, as shown in section 3.1. Moreover the computational
domain for the influence problem, which , thanks to w basis function
choice, is a thin strip composed by all the elements with at least one
node belonging to the boundary, is extracted from the complete mesh.

0 problems solution The problems:
−∇2p0 = −∇ · g, p0|S = 0

(−∇2 + γ)u0 = −∇p0 + g, u0|S = b

−∇2ϕ0 =∇ · u0, ϕ0|S = 0,

(3.30)

are solved by means of the Finite Element Method as described in
section 3.3.2. The solution is stored in order to compute the right-
hand side of the influence problem.

k problems solution The following problems, as many as the number of
the Dirichlet nodes, are solved:

−∇2pk = 0, pk|S = µk

(−∇2 + γ)uk = −∇pk, uk|S = 0 k = 1 : ND

−∇2ϕk =∇ · uk, ϕk|S = 0.

(3.31)

Each problem has a different Dirichlet boundary condition for pk. The
solution is stored in order to compute the left-hand side of the influence
problem and to reconstruct the pressure and velocity fields at a later
stage.
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Influence problem solution The influence matrix and the corresponding
right-hand side are computed:

Bik =

∫
V

(wi∇ · uk −∇wi ·∇ϕk), (3.32)

bi = −
∫
V

(wi∇ · u0 −∇wi ·∇ϕ0). (3.33)

The problem is then solved by means of its spectral decomposition,
obtaining the vector λ, which represents at the same time the value of
the pressure field on the boundary and the vector of the coefficients of
the pressure expansion.

Solution reconstruction Finally the pressure field is reconstructed:

p(x) = p0(x) +

ND∑
k=1

pk(x)λk, (3.34)

u(x) = u0(x) +

ND∑
k=1

uk(x)λk (3.35)

Note that p does exactly not corresponds to the physical pressure field, since
the equations have been scaled by the kinematic viscosity and density. The
physical pressure values are obtained by multiplying the computed pressure
field by ν and ρ:

p = ρνp̃ (3.36)
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Program Validation

The aim of this chapter is to show the results of the program verification
and validation process. In section 4.1 the single parts of the program are
individually validated and their convergence properties are shown.Then in
section 4.2 the whole program is validated on an unsteady test-case. Finally
in 4.3 the robustness of the method is investigated for both deterministic and
stochastic errors.

4.1 Convergence check for the solver compo-

nents

In this section the single parts of the program are individually tested. In
the first part, the Poisson solver for pressure and ϕ, the Helmholtz solver
for velocity and the mass solver for g are applied to meshes with different
values of h in order to test the convergence of the method. Afterwards, the
right-hand side generation for the different equations is tested too.

4.1.1 Poisson P1 scalar solver validation

Test case definition

The Poisson P1 scalar solver is tested on the following test case over the
rectangular domain Ω ⊂ R2 : [0,A] × [0,B], (A = 3, B = 2). The fully
Dirichelet problem reads:

Find u(x) : R2 → R such that{
−∇2u = f(x) on Ω

u = b(s) on ∂Ω.
(4.1)
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We consider the following choices for the forcing term, f , and for the pre-
scribed solution on the Dirichlet boundary, b:

f = 4π2

(
1

A2
+

1

B2

)
cos
(

2π
x

A

)
cos
(

2π
y

B

)
,

b = cos
(

2π
x

A

)
cos
(

2π
y

B

)
.

The exact solution for this choice of f and b is :

uex = cos
(

2π
x

A

)
cos
(

2π
y

B

)
.

Convergence analysis

For the convergence analysis, we consider the normalized infinity norm of
the error, defined as:

Err =
‖u− uex‖∞
‖uex‖∞

=
max
x∈Ω
|u− uex|

max
x∈Ω
|uex|

, (4.2)

where uex is the exact solution. The L∞ norm has been used throughout in
this work since it is more apt to evaluate the performance of the proposed
technique from the viewpoint of the experimentalist. The results are shown
in Table (4.1) :

h Err[−] Err%

0.5 0.4571 45.71
0.25 0.1400 14.00
0.125 3.6721 E-002 3.67
0.0625 9.2890 E-003 0.928
0.03125 2.3290 E-003 0.232
0.015625 5.8269 E-004 0.0582

Table 4.1: Convergence analysis for the Poisson scalar solver

The same results are represented in logarithmic scale in Figure 4.1. As
it can be appreciated from the figure, this method provides a quadratic con-
vergence if the error is calculated in L∞ norm.
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Figure 4.1: Convergence analysis for the Poisson scalar solver

4.1.2 Helmholtz P2 vector solver validation

Test case definition

Similarly to the Poisson solver, the Helmholtz P2 vector solver is tested
on the rectangular domain Ω ⊂ R2 : [0,A] × [0,B] (A = 3, B = 2) for the
following Dirichlet problem:

Find u(x) : R2 → R2 such that{
−∇2u+ γu = f(x) on Ω

u = b(s) on ∂Ω.
(4.3)

We consider the following choice for the forcing term f and for the prescribed
solution on the Dirichlet boundary b:

fx = fy =

(
4π2

(
1

A2
+

1

B2

)
+ γ

)
cos
(

2π
x

A

)
cos
(

2π
y

B

)
,

bx = by = cos
(

2π
x

A

)
cos
(

2π
y

B

)
.

The exact solution for this choice of f and g is :
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uex,x = uex,y = cos
(

2π
x

A

)
cos
(

2π
y

B

)
.

Convergence analysis

For the convergence analysis we consider the normalized infinity norm of
the error also in this case, defined as:

Err =

√√√√ 2∑
i=1

‖ui − uex,i‖2
∞√√√√ 2∑

i=1

‖uex,i‖2
∞

, (4.4)

where uex,i is the exact solution for the i − th component of vector u. The
results are shown in Table (4.2) for γ = 1:

h Err[−] Err%

0.5 2.7325 E-002 2.732
0.25 2.1659 E-003 0.217
0.125 1.4319 E-004 0.0143
0.0625 9.0745 E-006 0.001 91
0.03125 5.6911 E-007 0.000 569
0.015625 3.5600 E-008 0.000 035 6

Table 4.2: Convergence analysis for the Helmholtz vector solver

The same results are represented in the logarithmic-scale plot of Figure
(4.2). As it can be appreciated from the figure, this method provides 4th
order convergence with this measure of the error.

4.1.3 Mass P2 g solver validation

Test case definition

As discussed in section 3.3.1, we now analyse the mass solver for g , which
solves equation 4.5 given the present and the past step velocity field by means
of P2 finite elements:

g = γun−1 − 1

ν
(un ·∇)un − 1

ν
〈(u′,n ·∇)u

′,n〉 . (4.5)
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Figure 4.2: Convergence analysis for the Helmholtz vectorial solver

For the moment being, the Reynolds stress term is neglected, as it would
only turn into a standard forcing term. The following choices of un, un−1

are considered for the test case:

un =
(

cos
(

2π
x

A

)
cos
(

2π
y

B

))
î +
(

sin
(

2π
x

A

)
sin
(

2π
y

B

))
ĵ,

un−1 = un + 0.1.

The exact solution for this choice of un−1 and un is :

gx,ex = γun−1
x +

2π

νA
unx

(
sin
(

2π
x

A

)
cos
(

2π
y

B

))
+

2π

νB
uny

(
cos
(

2π
x

A

)
sin
(

2π
y

B

))
,

gy,ex = γun−1
y − 2π

νA
unx

(
cos
(

2π
x

A

)
sin
(

2π
y

B

))
− 2π

νB
uny

(
sin
(

2π
x

A

)
cos
(

2π
y

B

))
.

Convergence analysis

For the convergence analysis we consider the normalized L∞ norm of the
error, as defined in Equation 4.4. The results are shown in Table (4.3),
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computed for ν = 1.5 · 10−5 and dt = 0.001.

h Err[−] Err%

0.5 3.5116 E-004 0.0351
0.25 1.0471 E-004 0.0105
0.125 3.0701 E-005 0.003 07
0.0625 8.1286 E-006 0.000 813
0.03125 2.0656 E-006 0.000 207
0.015625 5.1918 E-007 0.000 051 9

Table 4.3: Convergence analysis for the mass g solver

The same results are represented in the logarithmic-scale plot of Figure
(4.3). As it can be appreciated from the figure, this method provides a second
order convergence with this measure of the error.
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Figure 4.3: Convergence analysis for the mass g solver
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4.1.4 RHS validation

Validation procedure

It is now shown a procedure whose purpose is to verify whether the RHS
of the Helmohltz problem for velocity and the RHS of the Poisson problem
for pressure (equations 2.71 ) are correctly generated. As an example, let us
take the RHS of the pressure Poisson equation, that is −∇ · g, and rename
it y, so that:

y = −∇ · g. (4.6)

We now have to recast the problem in variational form and expand the un-
known as a linear combination of the space basis functions, as shown in
Section 3.2:

∫
Ω

vy = −
∫

Ω

v∇ · g (4.7)

n∑
j=1

(∫
Ω

φiφj

)
yj = −

∫
Ω

φi∇ · g. (4.8)

Similarly to the mass g solver, equation 4.8 can be seen as the i− th row
of an algebraic linear system whose coefficient matrix is the P1 mass matrix.
Once the linear system has been solved, we can estimate the error between y
(computed) and −∇·g (assumed to be known analitically for the test case):

Err =
‖y +∇ · g‖∞
‖∇ · g‖∞

. (4.9)

The very same procedure can be extended to every component of the
right-hand side of the Helmholtz equation, either −∇p or g.

Test Case

The same functions and parameters employed in subsection 4.1.3 have
been used to test the convergence in the computation of −∇·g and −∇p+g,
with the following choice for p:

p = cos
(

2π
x

A

)
cos
(

2π
y

B

)
.

Convergence analysis

The results for −∇·g and −∇p+g are shown in Table (4.4a) and Table
(4.4b), respectively. The same results are represented in the logarithmic plot
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h Err[−] Err%

0.5 0.39264 39.3
0.25 7.8853 E-002 7.88
0.125 1.9091 E-002 1.91
0.0625 4.7310 E-003 0.473
0.03125 1.1801 E-003 0.118
0.015625 2.9486 E-004 0.0295

(a) −∇ · g convergence analysis

h Err[−] Err%

0.5 3.5116 E-004 0.0351
0.25 1.0471 E-004 0.0105
0.125 3.0701 E-005 0.00307
0.0625 8.1286 E-006 0.000813
0.03125 2.0656 E-006 0.000207
0.015625 5.1918 E-007 0.0000519

(b) −∇p+ g convergence analysis

Table 4.4: Convergence analysis for −∇ · g and −∇p+ g

of Figure (4.4) and Figure (4.5). As it can be appreciated, this method
provides a second order convergence for both −∇ · g and −∇p+ g.

4.2 Convergence check for the complete solver

4.2.1 Test case definition

The whole method has been tested on the test-case described in this sec-
tion in order to investigate its accuracy and convergence properties. The
following divergence free velocity vector field and pressure field are consid-
ered:
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Figure 4.4: Convergence analysis for −∇ · g
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Figure 4.5: Convergence analysis for −∇p+ g
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u(x,t) = ũ(x)g(t),

ũx(x) = − cosx sin y,

ũy(x) = sinx cos y,

g(t) = 1− exp (−4t),

p(x,t) = −1

4
[cos (2x) + cos(2y)]g2(t),

(4.10)

which is the exact solution (u,p) to the following unsteady, coupled problem:

Find u, p such that:
∂u

∂t
+ (u ·∇)u− ν∇2u+∇p = f(x,t) in V⊂ R2 : [−1,1]2

∇ · u = 0

u
∣∣
S

= b on S,

u(t = 0) = 0,

(4.11)

where
f(x,t) = ũ(x)[g′(t) + 2νg(t)]. (4.12)

The exact pressure and velocity fields for t = 1 s are represented in figure
4.6.

4.2.2 Convergence analysis

For the convergence analysis we consider the normalized L∞ norm (max-
imum norm) of the error between the exact and the reconstructed solution,
as defined in Equation 4.2 for p and equation 4.4 for u. The results for
∆t = 10−3, ν = 10−5 are resumed in Table 4.5a and Table 4.5b. The same
results are depicted in the logarithmic plots of Figure 4.7 and 4.8. As it can
be appreciated from the figure, this method provides a second order conver-
gence for both the reconstructed pressure and velocity in this error norm.

In table 4.6 the convergence results for pressure are presented in the case
of an explicit treatment of the time derivative term. The same results are
compared to those obtained with an implicit treatment of the time derivative
term in the logarithmic-scale plot of Figure 4.7. As it could be expected, the
second order convergence is guaranteed, but the error is higher for the explicit
solver with respect to the implicit one.
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Figure 4.6: Plot of the exact solution for the test case reported in eq. 4.11
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Figure 4.7: Convergence analysis for the reconstructed pressure
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Figure 4.8: Convergence analysis for the reconstructed velocity
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4.2. Convergence check for the complete solver

h Err[−] Err%

0.5 5.718 E-002 5.72
0.25 1.754 E-002 1.73
0.125 4.113 E-003 0.411
0.0625 9.714 E-004 0.0971
0.03125 2.359 E-004 0.0236
0.015625 5.830 E-005 0.005 83

(a) Reconstructed pressure convergence analysis

h Err[−] Err%

0.5 1.6056 E-005 0.00161
0.25 6.1180 E-006 0.000612
0.125 1.9451 E-006 0.000195
0.0625 5.1478 E-007 0.0000515
0.03125 1.3014 E-007 0.0000130
0.015625 3.2591 E-008 0.00000326

(b) Reconstructed velocity convergence analysis

Table 4.5: Convergence analysis fot the reconstructed pressure and velocity

h Err[−] Err%

0.5 0.1372 13.72
0.25 3.0970 E-002 3.10
0.125 6.7891 E-003 0.678
0.0625 1.6383 E-003 0.164
0.03125 4.2114 E-004 0.0421
0.015625 1.3511 E-004 0.0135

Table 4.6: Pressure convergence analysis, explicit treatment of the time derivative
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4.3 Error Analysis

4.3.1 Stochastic errors

Methodology

In order to test the robustness of the method in presence of velocity
measurement errors, a Monte Carlo simulation on the Test case described in
section 4.2 has been carried out with the following methodology:

1. Both the current and the previous step velocity fields are perturbed
with a stochastic error. The error has a Gaussian distribution, hence
we assume an ideally calibrated instrument, with null expected value
and standard deviation σpert = 0.01

2
√

3
' 3 · 10−3, and it has been gen-

erated using the Box-Muller method, for further details see [18]. The
perturbation is uncorrelated between the two velocity components and
in the spatial domain. The same perturbation has been applied to the
two time steps, since an uncorrelated velocity perturbation in time,
especially for small ∆t, would be amplified too much.

2. The proposed method is applied to the perturbed velocity field, with
the following choice of the program parameters: ν = 10−5, ∆t = 10−3,
h = 0.05.

3. The procedure is repeated an adequate amount of times, each time with
a different stochastic perturbation, which must satisfy the statistical
properties just introduced. The computed pressure errors are stored
for each realization of the Monte Carlo simulation.

4. The produced database is then post-processed in order to compute
statistical properties of the pressure error.

For a deeper insight of the Monte Carlo method, see [19].

Preliminary analysis

A preliminary analysis with a reduced amount of simulations is conducted
in order to check the robustness of the method with the following configura-
tions:

• Explicit/implicit treatment of the time derivative

• With/without the projection on a divergence free space, as described
in section 2.4.
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4.3. Error Analysis

Twenty simulations with different stochastic perturbations have been per-
formed for each configuration. The average pressure error, computed in L∞

norm and normalized by the L∞ norm of the exact solution, is shown in
Table 4.7.

- With projection Without projection

Implicit 1.33 E-002 2.81
Explicit 1.25 E-002 1.33 E-002

Table 4.7: Preliminary stochastic analysis: L∞ norm of the pressure error

Let us first concentrate on the treatment of the time derivative, without
the projection. As we can see, the implicit method presents an unacceptable
error in the pressure computation. This is caused, as observed in section
2.3.5, by the fact that for small ∆t and ν, hence great γ, the laplacian term
of the Helmholtz equation for u is everywhere negligible with respect to the
reaction term but for a thin layer near the boundary, leading to a singular
perturbation problem. This fact generates oscillations in the velocity fields
when discretized by the Bubnov–Galerkin method. If the boundary value
of velocity is affected by an error, this would turn in its great amplification
when the pressure is computed. The same problem is not present in the
explicit method since the velocity has to satisfy a Poisson equation.

By means of the projection on a divergence free space, which can be
thought as a sort of filtering of the perturbation, the pressure error gets
back to acceptable values. In the case of the explicit treatment of the time
derivative, the projection step does not improve significantly the accuracy.

Detailed analysis

A more accurate Monte Carlo analysis has been carried out, based on a
set of 1000 realizations. The flow and program parameters are the same as
for the preliminary analysis. An explicit treatment of the time derivative has
been adopted since it guarantees a better robustness to velocity measurement
errors. No projection has been applied since no major improvements have
been observed with this procedure, while the factorization and solution of
the relative coupled system would be onerous from the point of view of the
computational time with such an amount of simulations.

At the end of each simulation, the local normalized pressure error, defined
as follows

Err =
p− pex
‖pex‖∞

(4.13)
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is stored for every grid node. At the end of the whole Monte Carlo Simulation,
the average and the standard deviation σ of Err is computed for each grid
node. As we can appreciate from Figure 4.9 and 4.10, which represents the
global standard deviation of the pressure error and of the perturbation versus
the number of simulations considered, 1000 simulations seem to be sufficient
to reach convergence up to the third decimal. The results are presented in
Figure 4.11.

Let us first analyse the space distribution of the mean value of the error.
As it can be appreciated from figure 4.11a the mean value of the pressure
error is globally quite small, and follows the profile of the discretization error.
This means that locally the mean value of the error due to the perturbation
is approximately zero, which was expected since the perturbation has zero
mean value too. In normal applications, where obviously the exact solution is
not available, an a posteriori estimator could be used to compute an approx-
imation of the numerical error. This would be very helpful in the estimation
of the total error.

A more interesting piece of information can be deduced from the plot
of the standard deviation of the error, Figure 4.11b. Here the light blue
plane represents the standard deviation of the perturbation. As we can see,
the standard deviation of the perturbation is amplified homogeneously on
the inner nodes, with a ratio σ/σpert ' 1.6. The same phenomenon can be
appreciated among the nodes belonging to the boundary, but here the ratio
σ/σpert grows to approximately 2. This analysis shows that the most sensible
parts for the amplification of the error deviation is the border of the domain,
which is generally where we are more interested in knowing the pressure value
(e.g. to compute the loads).

The spurious null value that can be observed on the boundary of the
domain in Figure 4.11b can be explained by the fact that since pressure
is defined up to an additive constant, one has to impose the value of the
computed pressure on one node equal to the exact solution computed in the
same position in order to compute the proper error, then in that point the
error is always equal to zero, and then its variance is equal to zero too.

The very same Monte Carlo analysis has been repeated with different
values of the perturbation standard deviation. The results are resumed in
Table 4.8:

As it can be appreciated, the ratios between the error standard deviation
and σpert are almost independent from the standard deviation of the pertur-
bation, which is a typical behaviour of linear problems. This means that
the non-linear advection term does not play a significant role in the error
propagation.
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Figure 4.9: Convergence of the Monte Carlo analysis, standard deviation of the Pres-
sure error
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(b) Standard deviation of the local pressure error

Figure 4.11: Expected value and standard deviation of the pressure error
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4.3. Error Analysis

σpert σcenter/σpert σborder/σpert

0.01 1.54 1.98
0.03 1.6 2.02
0.001 1.54 1.98

Table 4.8: Stochastic analysis for different values of the standard deviation of the
perturbation

4.3.2 Deterministic errors

The same test case has been also used to evaluate the error produced by
deterministic perturbations as a function of their wavelength. The perturba-
tion applied to both the current and the previous step velocity fields and to
both velocity components, is the following:

Pert = C cos

(
2π

x

λx

)
cos

(
2π

y

λy

)
, (4.14)

with C set to 0.01. The two parameters λx and λy, which represent the
perturbation wavelength in the x and y direction, respectively, are varied
from 0.2, that is 4 times the grid dimension (h = 0.05), to 2, which represents
the side length of the square domain (A = 2). For each simulation with
different λx and λy, the normalized infinity norm of the pressure error is
stored. Results are reported in Figure 4.12.

The results should be analyzed taking into account the following consid-
erations. The error is the sum of two different contributions:

• The developed method is more sensitive to perturbations with large
wavelength, since perturbations with small wavelength, are filtered and
smoothed by the laplacian terms of the method.

• The numerical Finite Element discretization of the method is more sen-
sitive to perturbations with small wavelength, since the approximation
of the perturbation is less accurate as the wavelength is reduced, and
oscillations can arise when its wavelength becomes small. This partic-
ular effect can be appreciated in Figure 4.12b.

The two opposite effects seem to compensate for λx, λy > 0.8, resulting
in a region where the pressure error is almost constant.
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Figure 4.12: Deterministic error analysis
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Chapter 5

Test rig and experimental
set-up

In this chapter the test rig and the experimental set-up necessary to obtain
the velocity field database, which will be post-processed at a later stage in
order to compute the pressure field, are described. In section 5.1 the test
rig is presented, while in the experimental set-up to investigate the dynamic
stall is described, including the apparatus for PIV and unsteady pressure
measurements. Then, in section 5.3, the test matrix comprehensive of the
reference test conditions is thoroughly described. In section 5.4, the modified
set-up, with the Gurney flap attached on the airfoil trailing edge, is described.
In this configuration our method is essential, since the presence of the moving
Gurney flap and the low trailing edge thickness prevent pressure taps from
being employed. Eventually, in section 5.5, a procedure to estimate the
uncertainty of the pressure coefficient, obtained with the proposed method,
is described.

5.1 Test rig for the oscillating airfoil

The wind Tunnel

The experimental campaign has been carried out at Politecnico di Mi-
lano, taking advantage of the low-speed closed-return wind tunnel of DAST
(Department of Aerospace Science and Technology). This wind tunnel has a
rectangular test section (heigth 1.5 m, width 1 m) and can achieve a maxi-
mum wind speed of 55 m/s, with a turbuence level lower than 0.1%



Chapter 5. Test rig and experimental set-up

Figure 5.1: The blade section model mounted in the wind tunnel

The blade section model

The blade section model that was employed for the experimental cam-
paign (Figure5.1) had been already employed in an experimental investiga-
tion about the dynamic stall process (for further details see [20]). The chosen
airfoil is the NACA 23012 and the blade section model has a 0.3 m chord
length and a 3.1 aspect ratio. The model is composed by three aluminium
machined external sections (3 cm thick) connected to an internal metallic
frame also made of aluminium. The internal frame is composed by four air-
foil ribs connected to a steel tubular shaft, with its axis located at 25% of
the chord. The model presents an interchangeable midspan section, which
allows to use different central sections specifically designed for PIV surveys
or unsteady pressure measurements. End plates were used during the tests
to minimize interference with the boundary layer on the wall of the wind
tunnel.

The supporting frame and the pitching mechanism control

The blade section model is mounted horizontally in the wind tunnel test
section and is hinged about the quarter-chord axis on a tubular steel shaft
positioned on self-aligning bearings. The model is installed on a heavy metal-
lic supporting structure composed by steel beams and aluminium profiles to
which the model is connected through the tubular shaft, ad depicted in Figure
5.2 and 5.3.

The oscillating airfoil motion is driven by a brushless servomotor through
a gearbox drive.The sinusoidal pitching motion of the airfoil and the param-
eters of the pitching cycle, such as the mean pitch angle, the pitching ampli-
tude and frequency are controlled by an interface software implemented in
Labview. The motor voltage signal is produced by a proportional and deriva-
tive feedback controller during a period T that covers a number of oscillating
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5.1. Test rig for the oscillating airfoil

cycles selected by the user. The user can select the mean angular position,
the peak angular velocity and the amplitude of the oscillation. In order to
compute the input parameters, two encoders are mounted directly on the
outer shaft: the first one is a 2048 imp/rev absolute digital encoder, used for
the feedback control, whereas the second one is a 4096 imp/rev incremental
analog encoder, used to determine the current model position.

Figure 5.2: The supporting frame and the pitching motor

Figure 5.3: Schematic of the test rig
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Chapter 5. Test rig and experimental set-up

5.2 Experimental set-up for the oscillating air-

foil

Unsteady pressure measurement set-up

As previously explained, the midspan section of the model can be changed
depending on the kind of measurements that have to be carried out. The
midspand section designed for unsteady pressure measurements is equipped
with 21 Kulite XCS-093 pressure transducers, with a slight increase in con-
centration near the leading edge. The pressure tap positions are shown in
Table 5.4a and in figure 5.4b. The pressure tap numbering starts from the
leading edge and follows a closed loop from the upper to the lower surface.

# x/c # x/c # x/c

1 0 8 0.4533 15 0.4593
2 0.01 9 0.618 16 0.3737
3 0.0443 10 0.7598 17 0.2848
4 0.0964 11 0.9 18 0.1847
5 0.1642 12 0.9 19 0.1182
6 0.28 13 0.7672 20 0.0598
7 0.3580 14 0.6282 21 0.0205

(a)
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Figure 5.4: Pressure tap location on the NACA 23012 model midspan section

The signal cables pass through the internal frame of the model and come
out from the external tubular shaft opposite to the motor, as depicted in
Figure 5.5; this solution is interesting to reduce the stress on the cables dur-
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5.2. Experimental set-up for the oscillating airfoil

ing the oscillation cycles. The pressure signals have been acquired using a
National Instruments compact data acquisition system cDAQ-9172 equipped
with six NI 9237, 24 bit sampling bridge modules. The transducer signals
have been acquired with a 50 kHz simultaneous sampling rate on 21 channels
for a time period corresponding to 30 complete pitching cycles. The high
sampling rate is needed to capture the fine details of the dynamic stall phe-
nomenon characterised by severe unsteadiness, especially for the tests with
high reduced frequency (k = 0.1). The model angular position has been mea-
sured by the incremental encoder simultaneously to the pressure transducer
signals.The simultaneous acquisition of the encoder signals has been used to
evaluate of the phase averages.

Figure 5.5: Wing section model with pressure transducers cables

PIV velocity measurement set-up

The PIV set-up consists of the following equipment :

• A Pixelfly PCO double shutter CCD camera with a 12 bit, 1360×1024
pixel array with a 55 mm Nikon lens, used to acquire the image pairs.
The CCD camera has been mounted on a dual axis traversing system
guided by two stepper motors that allowed to move the measurement
window along two orthogonal directions.
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• A Dantec Dynamics Nd:Yag double pulsed laser with 200 mJ output
energy and a wavelength of 532 nm.The laser sheet passed through an
opening in the wind tunnel roof aligned with the flow and positioned at
the midspan of the test section width. Both the camera and the laser
are connected to the heavy structure of the rig in order to avoid the
transfer of wind tunnel vibrations, especially at high speed.

• A particle generator (PIVpart30 by PIVTEC) with Laskin atomizer
nozzles, which injects small oil droplets (diameter 1− 2 µm) just after
the fan section of the wind tunnel.

• A synchronizing system, whose main purpose is to control the synchro-
nizarion of the two laser pulses with the exposure of the image pairs
by the camera. The timing is controlled by an interface software coded
in MATLAB, which sends the trigger signal to both camera and laser
through a 6 channel Quantum Composer 9618 pulse generator. The in-
puts of the control interface are the angular position of the airfoil where
one wants the image pairs to be taken, the camera exposure time and
the time delay between the two laser pulses.

Before the PIV measurements are carried out, a calibration of the mea-
suring window is needed in order to determine the image magnification factor
(m/pixel). An equispaced grid located at the midspan section has been used
for this purpose. The image post-processing has been carried out by means
of the PIVviev 2C/3C software, which implements a multi-grid algorithm,
starting from 96 × 96 pixel interrogation windows up to 32 × 32, with an
overlap factor of 50 %. For further details, see [21].

5.3 Oscillating airfoil database

In the experimental campaign several different configurations have been
considered. All the experiments have been carried out with the following
flow parameters:

• Wind speed: approximately 30 m/s

• Reynolds number: approximately 6 · 105

• Mach number: approximately 0.09
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5.3. Oscillating airfoil database

5.3.1 Steady survey

At first, a steady survey has been conducted by clamping the model shaft,
at two different angles of attack:

• 9◦ : fully attached flow

• 18◦ : fully separated flow

For every flow condition, two different PIV measurement windows (152 mm
× 86 mm) have been considered: the first one the upper surface of the leading
edge (fin1) and the second one on the upper surface of the trailing edge (fin2).
The two measurement windows are represented in Figure 5.6:
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Figure 5.6: PIV measurement windows

For each configuration and measurement window, 10000 velocity fields
have been sampled, that have been post-processed in order to compute the
average field and the Reynolds stress tensor.

5.3.2 Unsteady survey

To test the proposed method on a challenging unsteady flow, a moving,
pitching airfoil in dynamic stall conditions has been considered. The pre-
scribed time history of the angle of attack for the oscillating airfoil is the
following :

α(t) = α0 + A sin(Ωt). (5.1)

All the experiments are carried out with a reduced frequency k = 0.1,
which, considering U∞ = 30 m/s and c = 0.3 m, corresponds to an oscil-
lation frequency of approximately 3.2 Hz (Ω = 20 rad/s). Three pitching
conditions are considered:
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• α0 = 5◦, A = 5◦ (light stall); α = 10◦ upstroke. Fully attached flow.

• α0 = 5◦, A = 10◦ (deep stall); α = 19◦ upstroke. Flow still attached on
the leading edge, it starts to separate on the trailing edge.

• α0 = 5◦, A = 10◦ (deep stall); α = 10◦ downstroke. Flow starts to re-
attach on the leading edge, completely separated on the trailing edge.

For every configuration 1000 image pairs are obtained and then postpro-
cessed. The considered measurement windows are the same as for the steady
test case.

Since we are interested in an unsteady computation of the pressure field,
we have to acquire, for every configuration, a set of velocity fields at different
timesteps before and after the considered instant, depending on which time
integration scheme has been adopted. For example, considering the implicit
Euler scheme described in section 2.1.2, one must acquire also:

• For the light stall, α = 10◦ upstroke case: the velocity field correspond-
ing to α = 9.5◦

• For the deep stall, α = 19◦ upstroke case: the velocity field correspond-
ing to α = 18.5◦

• For the deep stall, α = 10◦ downstroke case: the velocity field corre-
sponding to α = 10.5◦

5.4 Experimental set-up and database for the

oscillating airfoil with Gurney flap

5.4.1 The Gurney flap

PIV measurements have also been carried out on a more challenging test
case. In this second application a Gurney flap, which is a deployable L-shaped
tab, has been attached to the trailing edge of the just described blade section
model. The interest in this particular configuration lies in the possibility of an
active control of the Gurney flap in order to alleviate the detrimental effects
of the dynamic stall as well as in improving the retreating blade performance.
As shown in [22], great performance enhancements can be obtained with the
use of an active Gurney flap deployed on the retreating side of the helicopter
rotor disk and retracted on the advancing side. The problem is challenging
since direct pressure measurements on the Gurney Flap cannot be obtained
due to the low thickness of the trailing edge and to the fact that generally
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Gurney flap

the Gurney flap is very thin and deployable. A non intrusive method for
measuring pressure, like the one proposed in this thesis, is therefore crucial.

5.4.2 Experimental set-up and database

The L-shaped tab was manufactured using two carbon fiber skins. The
tab is 0.5 mm thick and spans the entire blade section model with a 25 mm
chord. Two main configurations are possible : deployed Gurney flap (Figure
5.7a) and retracted Gurney flap (Figure 5.7b). When deployed the tab is
laid on the airfoil upper surface so that the end tab behaves as a Gurney
flap in correspondence of the trailing edge. In this configuration the end
of the tab protrudes 4 mm from the trailing edge corresponding to 1.3% of
the airfoil chord. When retracted, the L-shaped tab forms an angle of 9.1◦.
with the airfoil upper surface since the tab tip touches the trailing edge. An
intermediate configuration where the L-tab is deployed half-way could be
investigated.

(a) Deployed Gurney flap

(b) Retracted Gurney flap

Figure 5.7: Gurney flap configurations

The set-up of the experiment is the same as for the previous case (Sec-
tion 5.1), but for a IMPERX camera with a 1952 × 1112 pixel resolution,
which has been substituted for the PCO Pixelfly camera. The 100 × 52 mm
measurement window, centered on the trailing edge of the airfoil is shown in
Figure 5.8.

Among all the possibilities, the following dynamic stall configurations
have been selected:
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• α0 = 5◦, A = 5◦ (ligth stall); α = 10◦ upstroke, extracted Gurney flap

• steady, α = 18◦, extracted/retracted Gurney flap
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Figure 5.8: PIV measurement window for the Gurney flap experiment

5.5 Estimate of the error on the pressure co-

efficient

In this section a procedure aimed at estimating the error on the pressure
coefficient, which will be later used for comparison with the experimental
data, is described. Let us recall the definition of the pressure coefficient:

cP =
P − P∞

1
2
ρU2
∞

. (5.2)

As already stated in the previous sections, the pressure computed with the
proposed method is defined up to an additive constant due to the full Dirichlet
boundary condition employed for the velocity field. In particular, using the
spectral decomposition method for the influence problem described in section
3.3.3, the method provides a pressure field with null average on the boundary.
The arbitrary on the additive constant will be computed by using a least
square algorithm which minimizes the error with respect to the experimental
pressure data. For these reasons, for the moment being we will neglect how
the cP depends on P∞, which will turn out only as an offset of the computed
value of the cP . The uncertainty of the cP is provided by the following error
propagation rule :

σcP =

√(
∂cP
∂P

σP

)2

+

(
∂cP
∂ρ

σρ

)2

+

(
∂cP
∂U∞

σU∞

)2

, (5.3)
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where σP , σρ and σU∞ are the uncertainties on the pressure, density and
asymptotic velocity data. The sensitivity derivatives are the following:

∂cP
∂P

=
2

ρU2
∞
,

∂cP
∂ρ

= − 2P

ρ2U2
∞
,

∂cP
∂U∞

= − 4P

ρU3
∞

(5.4)

While the uncertainty of the asymptotic velocity is available from the instru-
mentation datasheet and the uncertainty on density can be computed by its
error propagation law, the uncertainty of pressure is not available, since the
pressure value is an output of the program. As shown in section 4.3.1, the
ratio between the adimensional standard deviation of the pressure error and
the adimensional standard deviation of the velocity perturbation is almost
constant on the boundary (approximately equal to 2) and not dependent on
the amplitude of the perturbation. Hence we can use this relation as an
approximation of the pressure uncertainty:

σP = 2
‖p‖∞
‖u‖∞

σu. (5.5)

Again, the uncertainty on the velocity data is not known. It can nonethe-
less be approximated considering the PIV fundamental equation 1.1. If the
expected displacement by means of a sub-pixel interpolation error is 0.1 pixel,
we then have:

σu = 0.1
C

∆t
, (5.6)

where ∆t is the time delay between two successive frames and C is the
meters/pixel ratio of the image.

An additional contribution to the error comes from the numerical error
due to the FEM approximation of the partial differential equations. This
error could be estimated by a-posteriori error estimate technique (see for
example [23], [24] ), but this aspect was beyond the scope of the present
work.
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Chapter 6

Results

6.1 Comparison with reference experimental

results

6.1.1 Jagged grid

In this section, we present the results obtained by using the method in-
troduced in §2 and 3 to reconstruct the pressure field around the NACA
23012 airfoil from PIV measurements of the related velocity field. Herein
the method is applied without any modification of the jagged grid inherited
from the PIV data postprocessing, i.e. the grid which is obtained by simply
dropping the points which lie outside of the flow field. As described in §5,
in the experimental setup the velocity field is sampled at the middle span of
the employed wing section model with the light plane perpendicular to the
wing axis. Two-dimensional velocity fields are collected within the two spa-
tial windows fin1 and fin2, located close to the leading edge and the trailing
edge, respectively, see Fig. 5.6. Both the flow past the airfoil at fixed angle of
attack (steady test case) and the one developing around the oscillating airfoil
at the reduced frequency k = 0.1 (unsteady test case) are considered. More
precisely, the reported results are referred to the following test cases:

1. steady test case with α = 9◦;

2. steady test case with α = 18◦;

3. unsteady test case with α0 = 10◦, A = 10◦ and α = 19◦ upstroke;

4. unsteady test case with α0 = 10◦, A = 10◦ and α = 10◦ downstroke;

5. unsteady test case with α0 = 5◦, A = 10◦ and α = 10◦ upstroke.



Chapter 6. Results

Dealing with the Reynolds averaged Navier-Stokes equations, both the
mean field and the Reynolds stress tensor components have been computed
by phase–averaging over 1000 samples of the velocity field for each selected
phase. This high number of samples allows to smooth out the high frequency
errors and therefore to reduce the error associated with the time derivative
term in the Navier–Stokes equations, which otherwise could be quite severe.
In order to compare the obtained numerical results with the available mea-
sures gathered from Kulite transducers on the airfoil surface, the arbitrary
reference level of the computed pressure field has been fixed usign a least
squares regression with respect to the experimental data. Then, for each test
case, the resulting distribution of the pressure coefficient cP is compared with
the experimental data, as reported in Fig. 6.1–6.5. The reconstructed pres-
sure fields at the leading and trailing edges are illustrated in Fig. 6.6–6.10
and 6.11–6.15, respectively. In addition, the modulus of the velocity field at
the leading edge is also depicted in Fig. 6.16–6.20.

The pressure and cP uncertainties due to the measurement errors can be
estimated as described in section 5.5. A 0.5% accuracy for the free stream
velocity and a 1% accuracy for density are assumed. The results for the test
cases considered are represented in Table 6.1:

Case σP (Pa) σcP (−)

Case 1 29.72 0.0588
Case 2 22.34 0.0431
Case 3 51.60 0.1065
Case 4 26.14 0.0511
Case 5 28.18 0.0555

(a) First measurement window
(Leading edge)

Case σP (Pa) σcP (−)

Case 1 9.56 0.0183
Case 2 22.47 0.0433
Case 3 6.48 0.0124
Case 4 8.70 0.0165
Case 5 5.87 0.0113

(b) Second measurement window
(Trailing edge)

Table 6.1: Estimated error for pressure and cP

The just reported cP uncertainties are represented also on the comparison
plots in Figure 6.1–6.5.
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Figure 6.1: Steady test case with α = 9◦ (n. 1): cP distribution.
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Figure 6.2: Steady test case with α = 18◦ (n. 2): cP distribution.
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Figure 6.3: Unsteady test case with α0 = 10◦, A = 10◦ and α = 19◦ upstroke (n. 3):
cP distribution.
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Figure 6.4: Unsteady test case with α0 = 10◦, A = 10◦ and α = 10◦ downstroke (n.
4): cP distribution.
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Figure 6.5: Unsteady test case with α0 = 5◦, A = 10◦ and α = 10◦ upstroke (n. 5):
cP distribution.
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Figure 6.6: Steady test case with α = 9◦ (n. 1): pressure field at the leading edge.
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Figure 6.7: Steady test case with α = 18◦ (n. 2): pressure field at the leading edge.
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Figure 6.8: Unsteady test case with α0 = 10◦, A = 10◦ and α = 19◦ upstroke (n. 3):
pressure field at the leading edge.
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Figure 6.9: Unsteady test case with α0 = 10◦, A = 10◦ and α = 10◦ downstroke (n.
4): pressure field at the leading edge.
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Figure 6.10: Unsteady test case with α0 = 5◦, A = 10◦ and α = 10◦ upstroke (n. 5):
pressure field at the leading edge.
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Figure 6.11: Steady test case with α = 9◦ (n. 1): pressure field at the trailing edge.
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Figure 6.12: Steady test case with α = 18◦ (n. 2): pressure field at the trailing edge.
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Figure 6.13: Unsteady test case with α0 = 10◦, A = 10◦ and α = 19◦ upstroke (n.
3): pressure field at the trailing edge.
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Figure 6.14: Unsteady test case with α0 = 10◦, A = 10◦ and α = 10◦ downstroke (n.
4): pressure field at the trailing edge.
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Figure 6.15: Unsteady test case with α0 = 5◦, A = 10◦ and α = 10◦ upstroke (n. 5):
pressure field at the trailing edge.
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Figure 6.16: Steady test case with α = 9◦ (n. 1): modulus of the velocity field at the
leading edge.
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Figure 6.17: Steady test case with α = 9◦ (n. 2): modulus of the velocity field at the
leading edge.
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Figure 6.18: Unsteady test case with α0 = 10◦, A = 10◦ and α = 19◦ upstroke (n.
3): modulus of the velocity field at the leading edge.
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Figure 6.19: Unsteady test case with α0 = 10◦, A = 10◦ and α = 10◦ downstroke (n.
4): modulus of the velocity field at the leading edge.
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Figure 6.20: Unsteady test case with α0 = 5◦, A = 10◦ and α = 10◦ upstroke (n. 5):
modulus of the velocity field at the leading edge.
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Figure 6.21: Steady test case with α = 9◦ (n. 1): divergence of the velocity field.

With reference to Fig. 6.1–6.5, fairly good agreement is obtained between
experimental data and numerical results in most of the test cases, thus pro-
viding an assessment of the effectiveness of our technique. Nevertheless, in
some cases, such as for instance the one reported in Fig. 6.3, the computed
pressure value is considerably different from the corresponding measurement.
These discrepancies can be ascribed to four main sources of error, namely:

1. the reduced reliability of the PIV measures close to the airfoil surface
especially in presence of light scattering. Light scattering was an issue
especially on the leading edge of the airfoil, and this is certainly a reason
for the poor agreement between the present results and the reference
ones near the velocity peak at the leading edge ;

2. the violation of the incompressibility constraint for the considered two-
dimensional velocity field;

3. the inadequate spatial resolution of strong velocity and pressure gradi-
ents close to the wall at the leading edge;

4. the distance between the points where the pressure is computed and
the real position of the airfoil surface.

The first source of errors leads to unphysical velocity measurements close
to the wall. Correspondigly, also the computed pressure field results affected
by the same unphysical behaviour. This is well illustrated in Fig. 6.16 for
the test case 1, where an unphysical local minimum can be observed in the
region of maximum velocity near to the leading edge. This local minimum
is reflected in a local pressure maximum in the same region of the flow field,
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as visible in Fig. 6.6, and in the surface pressure distribution, Fig. 6.1.
The error on the velocity field measurement could have a severe impact on
the computed pressure field, and could justify why the peak of the pressure
coefficient near the nose of the airfoil is not captured correctly. The same
arguments apply also for test case 5, as shown in Fig. 6.20, 6.5 and 6.10.

For what concerns the second source of errors, the effects due to the
violation of the incompressibility constraint are mainly localized close to the
trailing edge where spurious oscillations of the cP are observed, Fig. 6.1.
This is confirmed by inspecting the divergence of the inherent velocity field
which is illustrated in Fig. 6.21: strong deviations from zero are only present
close to the wall. Furthermore it has been checked that this behaviour is not
induced by the corners of the jagged boundary since it has been observed
also in presence when the boundary is smooth.

The third source of errors is related to the fact that strong velocity and
pressure gradients which are present close to the wall at the leading edge,
cannot be adequately resolved on the given Cartesian grid with uniform mesh
size. This can produce detrimental effects on the numerical results, since we
must recall that the final error is the sum of the numerical error and of the
propagation of the error on the velocity measurement. In particular, as will
be shown in the following (see Fig. 6.22, 6.26), the distance between the
jagged and the true airfoil boundary can be of the order of the mesh size.
It could be useful in this respect, to exploit an a-posteriori error estimator,
such as those usually employed for the adaptive mesh refinement of the grid
in finite element calculations [23, 24], to quantify the numerical error. This
could be useful to have an indication of the PIV resolution required to obtain
a result of predefined accuracy.

Finally, the fourth source of error is related to the fact that the reference
pressure has been measured on the airfoil wall, while the present values are
obtained on the grid points nearest to the airfoil surface but not lying on it.
This error is significant especially in the region near the airfoil nose, where the
pressure gradient normal to the wall is maximum owing to the small radius
of curvature of the streamlines. This source of error can be attenuated by
the techniques proposed in Section 6.1.2.

6.1.2 Smoothed grid

In this section we try to improve the results obtained for the pressure
distribution at the airfoil leading edge by modifying the FEM mesh employed
for the pressure computation. This is done by replacing the jagged grid with
a smooth one which follows the airfoil boundary. For such purpose two
different approaches are proposed:
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Interpolation approach : the grid nodes close to the real airfoil surface
are smoothly interpolated to define a new boundary curve while the
remaining grid nodes are moved on that curve, Fig. 6.24;

Extrapolation approach : the airfoil shape is reconstructed directly from
the PIV images over the whole rectangular Cartesian mesh and the
boundary nodes of the jagged grid lying near to the body surface are
then moved onto the airfoil boundary, Fig. 6.26.

A further strategy, which has not been tested here for lack of time, con-
sists in extending the computational mesh up to the real airfoil surface by
connecting the jagged boundary to the discretized airfoil boundary where the
no-slip condition is imposed. In all these approaches, high-aspect ratio tri-
angular elements can be produced close to the modified boundary. However
standard smoothing techniques as well as topological mesh changes can be
used to improve the mesh quality with additional interpolation of the original
data when new grid nodes are introduced.

As an example, the interpolation and extrapolation approaches have been
applied to the test case 4 and the obtained results are shown in Fig. 6.25
and 6.27, respectively. With respect to the pressure distribution computed
on the jagged grid, Fig. 6.23, the results obtained using the two modified
meshes provide a far better estimation of the negative pressure peak on the
airfoil nose. In particular, the extrapolation approach seems to provide the
best results.
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Figure 6.22: Original jagged grid for test case 4
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Figure 6.23: Results for test case 4 computed on the original jagged grid: cP distri-
bution.
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Figure 6.24: New grid generated for test case 4 using the interpolation approach.
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Figure 6.25: Results for the test case 4 computed on the modified grid using the
interpolation approach: cP distribution.

Mon Aug 26 21:53:51 2013

0.00254 0.1 0.1524

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

 Solution 

 x 

 y
 

 

Figure 6.26: New grid generated for test case 4 using the extrapolation approach.
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Figure 6.27: Results for the test case 4 computed on the modified grid using the
extrapolation approach: cP distribution.
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6.2 Results for the Gurney flap modified set-

up

In this section we present the results obtained by employing the method
on a NACA 23012 airfoil equipped with a Gurney flap on the trailing edge.
Direct pressure measurements are not feasible, because of the difficulty of
placing pressure taps near the trailing edge and on the Gurney flap. Both
non-averaged and averaged results are presented: in the former case one can
identify vortices shed in the wake as minima in the pressure field, in the latter
case the wake can be recognized as a region of relative maximum pressure.

The Gurney-on case corresponds to the extracted Gurney flap, while the
Gurney-off case corresponds to the retracted configuration.

This section is just intented to contain few examples of how the method
can be applied also to this peculiar configuration. For a deeper discussion of
the Gurney flap effects, see [25].

As we can appreciate from Figure 6.31, when deployed, the L-shaped tab
behaves as a Gurney flap producing a downward deflection of the wake, with
reference to the clean configuration, with a consequent increase in lift.

With reference to the steady, 18◦ incidence case of Figure 6.33– 6.36, it is
quite difficult to point out the difference among the extracted and retracted
configuration, since the flow is completely separated on the upper surface
of the airfoil for both cases. However, locally, the Gurney-off configuration
seems to be more intrusive, since the pressure differences are higher.

A deeper analysis on the Gurney flap operating consequences should be
performed in order to achieve more significant results. In particular, the com-
plete flow field around the airfoil should be reconstructed to have indications
about the global effects of the Gurney flap, but this is beyond the scope of
the present work.
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Figure 6.28: Unsteady test case with α0 = 5◦, A = 10◦ and α = 9◦, Gurney on:
modulus of the velocity field.
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Figure 6.29: Unsteady test case with α0 = 5◦, A = 10◦ and α = 9◦, Gurney on:
pressure field.
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Figure 6.30: Unsteady test case with α0 = 5◦, A = 10◦ and α = 9◦, Gurney on:
modulus of the velocity field (average quantities).
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Figure 6.31: Unsteady test case with α0 = 5◦, A = 10◦ and α = 9◦, Gurney on:
pressure field (average quantities).

125



Chapter 6. Results

Sun Sep  8 16:43:41 2013

−0.08 −0.07 −0.06 −0.05 −0.04

0.05251

0.06

0.07

0.07774

 Solution 

 x 

 y
 

 

Figure 6.32: Unsteady test case with α0 = 5◦, A = 10◦ and α = 9◦, Gurney on:
velocity field in the wake.
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Figure 6.33: Steady test case with α = 18◦, Gurney on: modulus of the velocity field
(average quantities).

126



6.2. Results for the Gurney flap modified set-up

Sun Sep  8 16:25:27 2013

−0.08 −0.06 −0.04 −0.02 0 0.01

0.03

0.04

0.05

0.06

0.07

0.08

 Solution 

 x 

 y
 

 

−186

−132

−78.4

−24.8

28.8

82.4

136

190

243

297

350

Figure 6.34: Steady test case with α = 18◦, Gurney on: pressure field (average
quantities).
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Chapter 7

Conclusions

In this work an innovative procedure to compute the pressure field from
PIV velocity measurements has been developed which does not require the
imposition of any, possibly unphysical, boundary condition on the pressure
such as for other techniques already available in the literature. Based on the
uncoupled method of Glowinski–Pironneau for the solution of the Navier–
Stokes equations, a set of linear PDE problems for the unknown pressure field
has been derived and its numerical solution by means of the finite element
method implemented.

First the proposed method is tested against an exact solution of the
Navier–Stokes equations over a square domain, showing second order accu-
racy with respect to the grid size h, with the pressure error being computed
in the L∞ norm. This norm has been chosen because it gives valuable infor-
mation to appraise the properties of the method from the viewpoint of the
experimentalist. Performed Monte Carlo simulations, with imposed stochas-
tic perturbations of the velocity field, show that the regions which are most
sensitive to error on the velocity data are the boundary and the corners of the
square domain, with an approximate ratio between the standard deviation of
the error and the standard deviation of the perturbation of almost 2. More-
over this ratio results to be quite insensitive to a change in the perturbation
amplitude. In addition to the former statistical analysis, an error analysis
with deterministic velocity perturbations at different wavelengths has been
also performed. Such analysis indicates that counterbalancing effects, de-
pending on the discretization and the method properties, contribute to the
pressure error so that no well defined trends with respect to the imposed
perturbation wavelength are observed.

The method has then been applied to the PIV measurements of a typical
aeronautical problem: the oscillating airfoil. The comparison between the
computed pressure distribution and the available pressure measurements on
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the airfoil surface shows pretty encouraging results. The reconstructed pres-
sure field presents the expected structures of the examined cases (e.g sepa-
rated flow, reattaching flow, etc.). Nevertheless some discrepancies are still
present between the numerical and the experimental pressure values. This
discrepancy can be ascribed to four main different sources of error, namely:

• the reflection of the laser sheet in proximity of the airfoil nose, which
causes a bad correlation in the PIV image post-processing and then
spurious values of the computed velocity;

• the high pressure gradient in the region close to the airfoil nose. Since
the pressure is not evaluated on the airfoil surface, but on the first
measurement point, this will result into a significant difference;

• the violation of the incompressibility constraint for the two dimensional
velocity field, especially in presence of flow separations, for which the
three-dimensional character of the flow can not be neglected;

• the FEM sensitivity to mesh quality, especially with respect to sharp
cornern on the boundary.

However the second and fourth effects can be both substantially reduced
by both smoothing and reshaping the grid, placing the inner nodes on the
profile, and interpolating there the velocity values, as shown in section 3.1.5.

Future developments

Further improvements of the proposed method can be developed by tak-
ing into account the actual deviation from the incompressibility constraint of
the sampled two–dimensional velocity field, which is expected to play an im-
portant role when deep flow separation occurs. In principle, such a correction
can be achieved by modifying the mathematical formulation of the governing
Navier-Stokes equations introducing a source term in the continuity equation.

On the contrary, for mildly separated flow and more generally when the
deviation from the exact incompressibility condition is rather small, such
as for a nearly two-dimensional flow field, a correction to the initial veloc-
ity datum can be obtained by means of a projection onto a divergence-free
functional space.

Another possible improvement, whose consequences have to be investi-
gated, consists in adding supplementary nodes on the airfoil, where the no-
slip condition can be imposed.

Finally the developed software could be extended to 3D flows using to-
mographic, stereo PIV.
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Appendix A

Estratto in lingua italiana

In questa appendice presentiamo un breve estratto in lingua italiana del
contenuto della tesi.

A.1 Introduzione

La tecnica della Particle Image Velocimetry (PIV) è probabilmente al
giorno d’oggi una delle tecniche di misura più utilizzate in campo fluidod-
inamico, in quando consente una misura non intrusiva e quantitativa, con
sufficiente accuratezza, dell’intero campo di velocità all’interno di una fines-
tra di misura. Avendo a disposizione il campo di velocità in un dominio, si
può quindi pensare di calcolarne il corrispondente campo di pressione. Ciò
permetterebbe di ottenere in modo non intrusivo il campo di pressione, ma
soprattutto darebbe la possibilità di avere misure di pressione dove non è
possibile, o pratico, posizionare dei trasduttori di pressione (ad esempio al
bordo di uscita di un profilo alare).

In letteratura, fino a questo momento sono prevalsi due approcci. Il
primo è quello di risolvere un’equazione di Poisson per la pressione, ottenuta
applicando l’operatore di divergenza all’equazione della quantità di moto delle
equazioni di Navier-Stokes, affidandosi alle proprietà di regolarizzazione del
laplaciano per evitare di amplificare le incertezze di misura del campo di
velocità (si veda ad esempio [3]). Tuttavia i risultati dipendono dal tipo di
condizioni al contorno per la pressione usate, non sempre definite in maniera
consistente. Un secondo approccio (si veda [6]) è invece quello di integrare
il gradiente di pressione dell’equazione della quantità di moto attraverso le
differenze finite. Questo secondo metodo è del tutto consistente, ma tende
ad accumulare l’errore di misura ad ogni passo di integrazione.

La tecnica da noi proposta ha come obbiettivo quello di combinare gli
aspetti positivi dei due metodi, ovvero la consistenza dell’imposizione al con-
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torno per la pressione ed una maggiore refrattarietà all’errore di misura della
velocità grazie all’operatore Laplaciano.

A.2 Formulazione matematica

Il metodo si basa sul disaccoppiamento delle equazioni di Navier–Stokes
con il metodo di Glowinski–Pironneau, ovvero con l’introduzione del vincolo
di incomprimibilità tramite l’utilizzo della funzione ϕ (per approfondimenti
di veda [16]) :

−∇2p = −∇ · g
(−∇2 + γ)u = −∇p+ g, u

∣∣
S

= b

−∇2ϕ =∇ · u, ϕ
∣∣
S

= 0, ∂ϕ
∂n

∣∣
S

= 0.

(A.1)

Come si può notare l’equazione di ϕ deve soddisfare condizioni al contorno
sovrabbondanti, di cui la prima può essere imposta direttamente, mentre
la seconda sarà trattata in un momento successivo. L’equazione della pres-
sione è invece priva di condizioni al contorno, il sistema è quindi accoppiato
attraverso le condizioni al contorno. È possibile introdurre la seguente de-
composizione delle variabili:

p(x)
u(x)
ϕ(x)

 =


p0(x)
u0(x)
ϕ0(x)

+

ND∑
k=1


pk(x)
uk(x)
ϕk(x)

λk, (A.2)

che porta alle seguenti equazioni:
−∇2p0 = −∇ · g, p0|S = 0

(−∇2 + γ)u0 = −∇p0 + g, u0|S = b

−∇2ϕ0 =∇ · u0, ϕ0|S = 0,

(A.3)


−∇2pk = 0, pk|S = µk

(−∇2 + γ)uk = −∇pk, uk|S = 0 k = 1 : ND

−∇2ϕk =∇ · uk, ϕk|S = 0,

(A.4)

dove ND è il numero di gradi di libertà sul contorno e µk è un’opportuna
funzione di base per lo spazio delle funzioni traccia, la cui controparte nel
caso discretizzato, è la funzione di base degli elementi finiti. Bisogna quindi
risolvere un sistema di equazioni non omogeneo e tanti sistemi di equazioni
k quanti sono i gradi di libertà sul contorno. Per poter ricostruire la pres-
sione è però necessario trovare i λk, coefficienti dell’espansione succitate, che
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rappresentano anche i valori della pressione sul bordo essendo p0 nulla sul
bordo. Per far ciò possiamo imporre in modo debole la seconda condizione
al contorno su ϕ come accennato prima:∮

S

w
∂ϕ0

∂n
+

ND∑
k=1

∮
S

w
∂ϕk

∂n
λk = 0. (A.5)

Con qualche manipolazione matematica si ottiene il sistema di equazioni:

ND∑
k=1

∫
V

(w∇ · uk −∇w ·∇ϕk)λk = −
∫
V

(w∇ · u0 −∇w ·∇ϕ0), (A.6)

che, una volta discretizzato, produrrà un sistema lineare la cui soluzione è
un vettore contenente i valori della pressione sul bordo.

A.3 Discretizzazione numerica

Il passo successivo è l’introduzione di una discretizzazione ad elementi
finiti del problema. Innanzitutto è necessario costruire una griglia a partire
dai dati di misura della PIV. Si è optato per una triangolazione del dominio,
con i nodi posti nel centro delle finestre di interrogazione della PIV, il che pro-
duce una griglia di triangoli isosceli e rettangoli. Nel caso di domini con corpi
immersi, è necessario togliere dalla mesh tutti i nodi in cui la correlazione
della PIV non è potuta avvenire. Per arginare problemi dovuti ad angoli
pronunciati degli elementi sul contorno, può essere introdotta una regolariz-
zazione della griglia con successiva re-interpolazione dei dati di velocità sul
bordo.

Una volta definita la griglia, si introduce una discretizzazione ad elementi
finiti del problema, utilizzando elementi P2 per la velocità e P1 per la pressione
e ϕ.

È stato quindi prodotto un programma Fortran90 che implementa il
metodo appena descritto.

A.4 Validazione

Si è quindi passati alla validazione del programma e del metodo prodotto.
Dopo la validazione delle singole componenti, l’intero solutore è stato provato
su una soluzione esatta delle equazioni di Navier–Stokes per vedere se era in
grado di ricostruire opportunamente il campo di pressione, con due diversi
trattamenti della derivata temporale. Le curve di convergenza sono riportate
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in Figura A.1. Come si può notare il metodo garantisce una convergenza
del second’ordine al variare della dimensione della mesh, con l’errore della
pressione misurato nella norma del massimo.

Successivamente si è provata la robustezza del metodo ad errori di misura
della velocità. Per far ciò è stata effettuata una simulazione Monte Carlo
perturbando il campo di velocità con un errore a distribuzione gaussiana a
media nulla e con deviazione standard assegnata. Alla fine l’errore della pres-
sione calcolato localmente è stato mediato e ne è stata calcolata la deviazione
standard. Per quanto riguarda il valore atteso dell’errore, si è riscontrato che
questo converge sull’errore di discretizzazione numerica. Per quanto riguarda
la varianza dell’errore, i risultati sono rappresentati in Figura A.2. Come si
può notare, il metodo risulta più sensibile agli errori di velocitÃ sul bordo,
con un rapporto tra la varianza dell’errore e quello della perturbazione di circa
2. Inoltre, ripetendo la simulazione per diversi valori della perturbazione, si
è visto come questo rapporto sia insensibile alla variazione delle deviazione
standard della perturbazione. Per questi motivi quest’ultimo risultato può
essere usato per stimare l’incertezza sulla pressione nota l’incertezza sulla
velocità.

A.5 La campagna sperimentale

La campagna sperimentale per la produzione del database PIV sullo stallo
dinamico si è svolta presso la galleria del vento dipartimentale. L’allestimento
sperimentale consisteva in un modello di profilo NACA 23012 mosso in an-
golo di incidenza da un motore elettrico, a sua volta controllato da un sistema
di controllo PID. La galleria è stata opportunamente allestita per misure
PIV, mentre il modello è stato dotato di trasduttori per l’acquisizione in-
stazionaria delle misure di pressione, utili poi per il confronto con i valori
ottenuti dal metodo. Le prove sono state svolte ad un Reynolds di circa
600000 ed una frequenza ridotta di circa 0.1. Le immagini ottenute dalla
PIV sono state analizzate e i campi di moto ottenuti sono stati mediati in
fase, in modo da filtrare parte del rumore di misura. Sono state effettuate
misure sia stazionarie che instazionarie, a diversi angoli di incidenza e con
finestre di misura centrate sul bordo d’attacco e di uscita del profilo.

Per i dettagli specifici sulla strumentazione utilizzata si rimanda al cor-
rispondente capitolo della tesi.
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A.6 Risultati

Infine la base di dati PIV è stata analizzata dal programma sviluppato.
Tra i vari casi possibili, in questo estratto si presenta il caso instazionario
del profilo ad angolo di incidenza di α = 10◦ in discesa, con riferimento
alla finestra di misura sul bordo di attacco. Nelle Figure A.3 e A.4 sono
rappresentati rispettivamente il campo di pressione ottenuto e il confronto
tra i coefficienti di pressione calcolati e quelli ottenuti per via sperimentale.
Come si può notare, l’accordo sul bordo di attacco è buono. Risultati ancora
migliori sono stati ottenuti con una regolarizzazione della griglia. In altre
configurazioni qui non presentate i risultati ottenuti non sono stati altrettanto
buoni, per motivi dovuti più alla qualità delle misure PIV più che non al
metodo sviluppato. Tra questi sicuramente il fatto che in alcune immagini
era presente il riflesso del laser sul profilo, che inficia la correlazione delle
misure PIV, producendo risultati di velocità non attendibili. Inoltre il fatto
che i dati della PIV non sono noti sul profilo, ma a una distanza da esso che è
funzione della posizione della finestra di interrogazione più vicina, comporta
scostamenti rispetto al dato misurato specialmente in zone con forte gradiente
di pressione normale ( ad esempio il naso del profilo).
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Figure A.3: Caso instazionario, α = 10◦ in discesa : campo di pressione al bordo di
attacco.
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