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Nomenclature

W �ow conservative variables
Wb �ow conservative variables extrapolated on the surface
α vector of geometry parametrization variables
X mesh volume
F goal function as function of W and X
z goal function as function of α
F goal function as function of X
R residual equations as function of W and X
Λ adjoint vector
nβ dimension of a generic vector β
f analytic �ux
Ω domain
∂Ω contour of Ω
ρ �uid density
u �uid velocity along X
v �uid velocity along Y
w �uid velocity along Z
E �uid internal energy
℘ projection operator
DG,L circle in G with radius L
θi, j local sensor
θ quali�cation criterion
θ[F ] quali�cation criterion computed for the function F
gi,j contra-variant metric tensor
xξiξj covariant metric tensor
Pk control function
θgb quali�cation criterion for gradient based adaptation
C computational space
P parameter space
D physical space
ξξξ coordinates in the computational space
sss coordinates in the parameter space
xxx coordinates in the physical space
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Introduction

This internship took place in AIRBUS OPERATIONS SAS whose location is in Saint Martin
du Touch, Toulouse. The head of Methods and Tools for Aerodynamics department is Pascal
Larrieu and the objectives of this department are framed in the development of methods and
tools for CFD simulations. My team is the team EGAMT2 head by M.J Esteve and constitutes,
with two other teams, the whole department. The various tools that are now in process of being
developed by the team are targeted for shape optimization and improvement of the quality of
meshes for the estimation of an objective function.

Nowadays, an huge number of simulations with an increasing accuracy are required in order
to evaluate the aerodynamic performances. These performances (such as the drag, the lift and
aerodynamic moments) are directly linked with the speci�c fuel consumption, which is one
of the stones leading the competitiveness. It appears clear that these performances need to
be evaluated with an increasing accuracy and at a decreasing cost. That is why, beside the
reference constituted by the wind tunnel tests, the Computational Fluid Dynamics has reached
an important position into the industrial framework.

One of the sources of the CFD simulations inaccuracy is the discretization error which comes
from the fact that we dispose of a �nite number of points and often we are not able to �nd the
best way to distribute them in the domain. Furthermore, a successful answer to the need
reducing the discretization error on estimation of the performance is represented by the goal
mesh adaptation strategies which lead to the adaptation of the mesh in order to improve the
accuracy within the estimation of one performance which is named in this case goal function.

With this study we mean to propose a new goal-oriented mesh adaptation strategy based on
the total derivative of the aerodynamic function w.r.t mesh coordinates. The expensive in the
calculation of this quantity is reduced thanks to the use of an adjoint method. We will present
in a �rst step a theory review of the most important works present in literature and that are
linked with our method. In a second step we will provide with a theoretical formulation of our
step adaptation strategy and in particular to the de�nition of the adaptation sensor and the
quali�cation criterion. Those two last quantities are studied in the fourth step. In a �fth step a
practical mesh adaptation example is performed on a 2D test case and it will be compared with
a test case using a feature based grid adaptation strategy in a sixth step. At the end we will
provide with the extension of our sensor to a 3D test case.
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Chapter 1

Theory review

Nowadays a huge number of CFD simulations is steadily carried out in order to evaluate the
aerodynamic performances and to improve them by shape optimization. A major cause of
the error associated with these simulations is the discretization of the computational domain
from which comes the interest in the research of error reduction methods by mesh adaptation.
However it is not always easy to de�ne a process and an "indicator" to point out where and how
a mesh has to be adapted in order to improve its quality. This can be intuitively implemented
using an approach based on the �ow features. For example to use the static pressure gradient
as an indicator for mesh adaptation. This would lead to a re�nement in the regions of interest
capturing shocks and vortices otherwise dumped. While these methods capture the �ow features
as described, it does not necessarily reduce the error on the desired aerodynamic functions. Then
more useful techniques for mesh adaptation are directly based on the function of interest for
example using error estimations. Moreover these "goal-oriented" methods often use the adjoint
vector of the function of interest which allows to compute gradients of the functions of interest
with respect to a set of shape parameters (for shape optimization) and also with respect to
volume mesh coordinates (for mesh adaptation).

This chapter is organized as follows. The �rst paragraph is a short presentation of the �uid
mechanics equations, the second paragraph is an introduction to the gradient computation in
shape optimization framework, the third paragraph is a review of the state of the art in mesh
adaptation based on adjoint vector and the fourth paragraph is the presentation of the proposed
methodology.

1.1 The equations of �uid mechanics

This paragraph is dedicated to the presentation of the equations that describe compressible,
viscous and turbulent �ows. The equations are written in the conservative form being the most
adapted form within the �nite volume context.

The Euler equations

Inviscid �ow are described by the Euler equations. The set of this �ve equations forms a non-
linear partial di�erential system which can be re-written in the following Cartesian form:

∂w

∂t
+ div(f) = 0, (1.1)

where w is the continuous �ow �eld and f is the Euler �ux density:

f =

 ρŪ

ρŪ
⊗
Ū + p ¯̄I

(ρE + p)Ū

 ,
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where ρ is the density, Ū is the velocity, E is the total energy and p is the static pressure
which has to be expressed as

p = (γ − 1)ρ(E − ||Ū ||
2

2
)

where γ is the speci�c heat ratio.

Navier-Stokes equations

Viscous �ows are described by the Navier-Stokes equations. The conservative form of these
equations is:

∂w

∂t
+ div(f − fV ) = 0, (1.2)

where

fV =

 0
¯̄τ

¯̄τ V̄ − q̄

 ,

where ¯̄τ and q̄ are the viscous shear stress and the heat �ux respectively.

The RANS equations

At a certain Reynolds number it is observed the transition of the �ow from laminar to turbulent.
This transition give rise to chaotic and random processes which take place at di�erent length
and time scales. When there is a big separation between the di�erent scales, the resolution of
all of them become very expensive and the cost increases with the Reynolds number. That is
why an average of the steady Navier-Stokes equations are most often preferred.This approach
consist into the decomposition of the �ow variables into a mean part and a �uctuating one. The
application of the mean properties to the Navier-Stokes equations with this composition leads
to the RANS equations (Reynolds Averaged Navier-Stokes). However the turbulence have to
be modelled. Several turbulence model are present in the literature and the chosen one in this
framework is the one of Spalart-Allmaras [11].

1.2 Gradient computation in the framework of shape opti-

mization

This section is devoted to introduce and to provide a brief review of several methods for the
computation of gradients that are at the basis of the developed methods in the present work.

We denote by α a vector of size nα containing the design parameters of a shape (as illustrated
in Figure 1.1 where blue and red meshes correspond to two di�erent values of parameter α).

The volume mesh coordinates are denoted by X, W is a vector of size nW containing the
CFD solution of the problem (conservative variables at the centre of the cells) associated with
the mathematical model used and Wb is the vector containing the extrapolation of W on the
surface (Figure 1.2):

W = W (ρ, ρu, ρv, ρw, ρE)

Wb = Wb(ρ, ρu, ρv, ρw, ρE)
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Figure 1.1: Airfoil shape and volume mesh plotted for two α values

Figure 1.2: Notations for the mesh X, the �ow �eld W and the �ow �eld on the walls Wb

We denote by R the discretized equations of �uid dynamics (e.g. discrete form of Euler or
RANS equations written in section 1.1) which link the �elds W and the mesh X by the relation:

R(W,X) = 0,

which is a set of nW nonlinear equations.
We consider a scalar function of interest, or goal, which is denoted by F . This function is

basically the lift, the drag or others quantities of interest whose computation depends on the
volume mesh X and the �ow �eld W . So that we can write

F = F (W,X).

This equation can also be written by highlighting the dependence on the parameter α

z(α) = z(W (α), X(α))).

Most often shape optimization methods need to evaluate the derivative of the function z
with respect to parameters α:

dz(α)

dα

The gradient can be evaluated following one of many already existing approaches which
will be presented in the following sections (namely by �nite di�erences, by the Discrete direct
method or by the Discrete adjoint method).
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1.2.1 Finite di�erences

Gradient evaluation by �nite di�erences requires no modi�cation of the solver itself but has the
drawback to require a �ow evaluation for every perturbed state α + δα plus one (for a total of
nα + 1 �ow computations).

dz(α)

dαi
δαi ' [z(α+ δαi)−z(α)] = [f(W (α+ δαi), X(α+ δαi))− f(W (α), X(α))]

In the second order �nite di�erences formula the �ow state variables need to be evaluate for
every perturbed state α+ δα and α− δα (2nα times) according to the formula:

dz(α)

dαi
δαi '

[z(α+ δαi)−z(α− δαi)]
2

=
[z(W (α+ δαi), X(α+ δαi))−z(W (α− δαi), X(α− δαi))]

2

The computational cost is dominated by the number of design parameters (nα+1 �ow com-
putations for the �rst order formula and 2nα �ow computations for the second order formula).

1.2.2 Discrete direct method

A di�erent method can be obtained if we consider the dependency of the function z with respect
to W and X so that the di�erentiation leads to:

dz(α)

dα
=

∂F

∂W

dW

dα
+
∂F

∂X

dX

dα
. (1.3)

We assume that the governing equations can be written in the form R(W (α)), X(α)) = 0,
and that the discrete residual R is continuously di�erentiable with respect to the �ow �eld
and the mesh nodes coordinates. These hypothesis make that we can di�erentiate the �uid
mechanics equations expressed as function of the parameter α as (R(W (α)), X(α)) = 0) with
respect to α leading to:

∂R

∂W

dW

dα
= − ∂R

∂X

dX

dα
. (1.4)

We consider the two last equations, the second one can be regarded as a linear system in
the unknowns dW/dα (one for every parameter). After the calculation of dW/dα it is possible
to substitute it into equation 1.3 in order to compute the gradient. This requires to solve nα
linear systems (of dimension nW ) in order to compute the term dW/dα The computational cost
depends on the size of ∂R/∂W and the number of parameters α. This new procedure allows to
calculate the required gradient with one non-linear solution plus nα linear solutions instead of
the at least nα + 1 non-linear solutions with the �nite di�erence method.

1.2.3 Discrete adjoint method

The equation of residuals (1.4) can be multiplied by an arbitrary vector ΛT of dimension nW .
This leads to:

ΛT
∂R

∂W

dW

dα
+ ΛT

∂R

∂X

dX

dα
= 0,

∀Λ ∈ <nw .

Adding this expression to the gradient formula (1.3):

dz(α)

dα
=

∂F

∂W

dW

dα
+
∂F

∂X

dX

dα
+ ΛT

∂R

∂W

dW

dα
+ ΛT

∂R

∂X

dX

dα
,

∀Λ ∈ <nW .
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Carrying out the term dW/dα we obtain the following relation:

dz(α)

dα
= (

∂F

∂W
+ ΛT

∂R

∂W
)
dW

dα
+
∂F

∂X

dX

dα
+ ΛT (

∂R

∂X

dX

dα
),

∀Λ ∈ <nW .

The vector ΛT (called adjoint vector) is chosen in order to annihilate the �rst term of the
last equation (this fact allows to avoid the computation of the nα linear systems required for
the discrete direct method) This lead to:

∂F

∂W
+ ΛT (

∂R

∂W
) = 0. (1.5)

The gradient is then given by:

dz(α)

dα
=
∂F

∂X

dX

dα
+ ΛT (

∂R

∂X

dX

dα
). (1.6)

The computation of Λ (1.5) does not depend on the number of parameters nα but only on
the number of functions of interest (nF ).

The crucial point we have to point out is the signi�cant di�erence in terms of cost between the
di�erent approaches. Indeed, in typical aerodynamic applications, the number of parameters
is greater than number of functions (nα � nF ) and then the adjoint method is most often
preferred to others.

1.3 State of the art of mesh adaptation using the discrete

adjoint method

Our purpose is to build a functional output grid adaptation strategy based on the adjoint vector.
In literature di�erent strategies have been described with the same purpose. The reference
on adjoint-based grid adaptation for functional output is the method proposed by: David A.
Venditti and David L. Darmofal [15]. We can also cite the work of Richard P. Dwight [8].

1.3.1 The method of Venditti and Darmofal

Venditti and Darmofal proposed to use an adjoint formulation to relate the local residual error
in the �ow solution to the global error in the chosen output thus obtaining a mesh adaptation
strategy.

This method needs two mesh levels. A coarse mesh on which CFD calculations are a�ordable,
and a �ne mesh used to generate a correction of the error of discretization (it should be noted
that CFD calculations on the �ne mesh are supposed to be extremely expensive). This correction
is made up because it is possible to evaluate a part of the error. The part of the error which
is evaluable is called computable error while the non computable part is called remaining error.
The computable error can be directly used to correct the functional estimation. Finally, the
adaptation method is based on an estimation of the remaining error. Within the following
passages we try to exhibit the formulation of this remaining error which is used to adapt the
mesh. The �ow solution on a very �ne grid is denoted byWh(where we suppose that the solution
is very close to the exact one) and δWh the error perturbation vector of the solution on the �ne
grid, the expression for the perturbed direct �ow solution W̃h is:

W̃h = Wh + δWh. (1.7)

The functional calculated over the �ne grid is denoted by Fh and is evaluated on the Wh

and W̃h. This lead to the following relation:

δFh = Fh(W̃h)− Fh(Wh). (1.8)

14



As well as for the already de�ned residuals calculated over the �ne grid:

δRh = Rh(W̃h)−Rh(Wh) = Rh(W̃h), (1.9)

where Rh(Wh) is zero by construction. Writing down the equations of the small variations of
Fh and R yields:

δFh ≈
∂Fh
∂Wh

δWh, (1.10)

Rh(W̃h) = δRh(W̃h) ≈ ∂Rh
∂Wh

δWh. (1.11)

Multiplying the last equation by a vector ΛTh leads to:

ΛThRh(W̃h) ≈ ΛTh
∂Rh
∂Wh

δWh. (1.12)

Summing member to member the equations (1.10) and (1.12):

δFh +Rh(W̃h) ≈ ∂Fh
∂Wh

δWh + ΛTh
∂Rh
∂Wh

δWh. (1.13)

Which can be factorised by δWh :

δFh + ΛThR(W̃h) ≈ (
∂Fh
∂Wh

+ ΛTh
∂R

∂Wh
)δWh. (1.14)

The vector ΛT is chosen such that term on the right hand side of the equation vanishes:

∂Fh
∂Wh

+ ΛTh
∂R

∂Wh
= 0. (1.15)

With this choice of Λ, equation (1.14) leads to:

δFh − ΛThR(W̃h) ≈ 0. (1.16)

We can notice that this relation correspond to (1.5) on the �ne mesh. After its computation it
is possible to correct the generated error in the functional Fh(W̃h) by a perturbation of the �ow
solution W̃h using the term:

δFh ≈ −ΛThR(W̃h),

which is an exact expression for linear functional and residuals. The computation of the adjoint
vector on the �ne grid is too expensive. Therefore an estimation of Λh is considered and it
is expressed as we did for the residuals and the functional as the sum of the adjoint vector
calculated on the �ne grid and a perturbation δΛh

Λ̃h ≡ Λh + δΛh. (1.17)

The perturbation on the functional of interest can be rewritten taking into account this last
relation:

δFh ≈ ΛThRh(W̃h) = Λ̃ThRh(W̃h)− δΛThRh(W̃h). (1.18)

We are able now to highlight the computable correction term which is:

Λ̃ThRh(W̃h),

and the remaining error which is:
−δΛThRh(W̃h).
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The expression of the remaining error will be:

δFh − Λ̃ThRh(W̃h) ≈ −δΛThRh(W̃h). (1.19)

The strategy used by the authors consists in a �rst step to correct the functional with

the term Λ̃ThRh(W̃h) and in a second step to use an adaptive process to further enhance the
functional estimation accuracy by reducing the remaining error which is expressed in the right-
side of equation (1.19). The �elds Λh andWh represent the values of Λ andW calculated on the
�ne mesh, as the �elds ΛH and WH represent the values of Λ and W calculated on the coarse
mesh. The computation of Λh and Wh is considered too expensive and approximation Λ̃h and
W̃h are computed by interpolation of the variables ΛH and WH over the �ne grid.

The advantage of this method is that they build this correction which can be used in any
context (scheme) but the bigger drawback is that a second very �ne mesh is required with all
the complication brought about data storage and interpolation problems.

1.3.2 The method of Dwight

The method proposed by Dwight [2] is a very di�erent adjoint-based method which considers the
sensitivity of the functional of interest to the level of dissipation introduced by the numerical
�ux (arti�cial viscosity scheme with two parameters k(2) k(4) which control the dissipation).
The study was e�ectuated on the numerical �ux of the Jameson et.al. scheme ([3]). A study on
several mesh sizes shows that more than 90% of the discretization error is due to the dissipation
terms which are setted by the parameters k(2) and k(4). The expression of the discretization
error due to dissipation is:

η = k(2) dF

dk(2)
+ k(4) dF

dk(4)
. (1.20)

The derivatives that appear in this relation can only be computed using the adjoint method
which leads to:

dF

dK2
= λT

∂R

∂K2

and
dF

dK4
= λT

∂R

∂K4

Thus the error measure can be rewritten:

η = Λ(k2 ∂R

∂k2
+ k4 ∂R

∂k4
), (1.21)

where it appears clearly the role of the adjoint vector. The method consist in de�ning the
dissipation parameters for each cell:

ηi = Λ(k2
i

∂R

∂k2
i

+ k4
i

∂R

∂k4
i

). (1.22)

Intuitively it is possible to re�ne locally the mesh in order to minimize the dissipation error
Moreover F − k(2)dF/dk(2) − k(4)dF/dk(4) is considered as a corrected output value.

The positive aspect of this method with respect to the method implemented by Venditti and
Dermofal is that this method does not require a second mesh, but the most important drawback
is that it is restricted to the Jameson et. al. scheme.

1.4 The proposed approach

1.4.1 The total derivative of aerodynamic w.r.t mesh nodes coordi-
nates

It has been shown in the paragraph (1.2.3) that the expression of dF/dα can be evaluated using
an adjoint approach with the following relation:
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dz(α)

dα
=
∂F

∂X

dX

dα
+ ΛT (

∂R

∂X

dX

dα
). (1.23)

Factorising this last equation with respect to dX/dα we obtain:

dz(α)

dα
= (

∂F

∂X
+ ΛT

∂R

∂X
)
dX

dα
. (1.24)

This allows to identify the expression of the total derivative of F w.r.t to mesh nodes coor-
dinates:

dz(α)

dα
= (

dF

dX
)
dX

dα
. (1.25)

It can also be proved that the term into brackets of the expression (1.24) is the term (dF/dX)
which compares in the expression (1.25). We notice that the totally derivative of our functional
compares naturally in the formulation of the adjoint method, and its expression is given by:

dF

dX
=
∂F

∂X
+ ΛT

∂R

∂X
. (1.26)

This derivative is the starting point of our work.

1.4.2 Meanings of dF/dX

The derivative dF/dX is a link between the functional F and the volume mesh X so it gives us
essential information for the mesh adaptation. As it indicates the sensitivity of the functional
output with respect to the volume mesh (Figure 1.3), this variable is calculated for every point
of the grid and it de�nes the in�uence of these points position on the goal estimation.

Figure 1.3: Example (dCdp)/(dX)

The equation (1.26) is composed by two terms:

dF

dX
=

∂F

∂X︸︷︷︸
geometrical derivative

+ ΛT
∂R

∂X︸ ︷︷ ︸
aerodynamic derivative

. (1.27)
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The �rst term in the right hand side of the equation is the goal sensitivity with respect to
the mesh coordinates of the nodes that belong to the support of F . The second term contains
the goal sensitivity w.r.t the mesh nodes through the sensitivity of the �ow �eld W w.r.t the
nodes locations.

In the following example we provide additional explanations of these two terms. We con-
sider the wave drag (caused by the shock) derivative w.r.t the volume mesh coordinates. It is
calculated on the contour underlined on the Figure (1.4).

Figure 1.4: Mesh around the RAE2822 airfoil (left); Contour of integration (right)

As expected the high values of the �rst term ∂F/∂X are placed on the integration contour,
because a displacement of the mesh coordinates X generates an important variation of F even
if it is purely geometric (Figure 1.5).

Figure 1.5: Geometrical derivative (x-component)

As the second term ΛT (∂R/∂X) keep into account the aerodynamic it is expected that the
calculation of the goal function is in�uenced by the entire �eld. In fact, we exhibit the behaviour
of this second term and we notice that it has high values on the trailing edge and on the leading
edge. This is shown in Figure 1.6 and it is expected as the aerodynamic couples the entire
domain, and in particular it is in�uenced by the trailing edge and the leading edge. The sum
of this two terms is the functional derivative with respect to mesh coordinates (Figure 1.7). In
[5] Nielsen was the �rst to use this quantity. His purpose was to avoid a prohibitive storage of
information related to the singles terms in (1.26).

1.4.3 Mesh adaptation criteria built up from dF/dX

The term dF/dX represents a vector which is de�ned on every node of the mesh. Moreover
there are nodes of the mesh which need to be treated di�erently. We consider the nodes on the
walls contour. On these nodes, the components of dF/dX normal to the walls correspond to a
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Figure 1.6: Aerodynamic derivative (x-component)

Figure 1.7: Complete derivative (x-component)

change of the shape. Than we introduce a projection (which we will call as ℘) of dF/dX which
does not mean to change the shape of the airfoil and is de�ned by:

℘(dF/dX) = dF/dX In the volume
℘(dF/dX) = dF/dX − (dF/dX · ~n)~n Along the walls contour
℘(dF/dX) = 0 At the corner of the walls

This projection is introduced in order to maintain only the components of dF/dX (Figure
1.8) that are actually usable for mesh adaptation. A Taylor series at the �rst order gives:

F(X + dX) ' F(X) +
dF

dX
dX

By applying the projection we also get:

F(X + dX)− F(X) ' ℘(
dF

dX
)dX

A majoration of the right hand side of this expression can be computed. This is obtained by
considering that the admissible mesh displacement dX is such that each node is to stay in a
circle of radius half the distance to its closest neighbour. Our criterion is now able to take
into account the already existing distance between those nodes so that we will displace them in
agreement with the "room" at disposition.

In addition to this local criterion we introduced a global one, which allows to de�ne the
global quality of the mesh. All the explanations and developments will be given in the following
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Figure 1.8: dF/dX projection

chapter. We notice that the �rst use of dF/dX for mesh adaptation have been done by Peter
et. al. in [7] for 2D and 3D Euler �ow computations.

1.5 Conclusions

This chapter gave a review about the di�erent strategies which can be found in literature which
use the adjoint methods to reduce the error associate with a computation of a functional F. After
that we introduced the basic idea of our method which is close to the Venditti and Dermofal [15]
one but is quite di�erent in respect to the method implemented by Dwight [2]. The important
advantage of our method is that it does not depend on the scheme used as for Dwight method,
and it does not require two levels of mesh as for the method implemented by Venditti and
Dermofal. The adjoint is calculated because it serves to compute the sensitivity dF/dX. Our
purpose is to use this sensitivity as indicator for our mesh adaptation strategy as we explain in
the following chapter.

Furthermore our method uses the variable Λ which is also often used in shape optimization
framework. This fact lead undoubtedly to computation time saving because Λ would be already
given and it would not require further computations.
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Chapter 2

The proposed goal-oriented mesh

adaptation methodology based on

dF/dX

This chapter is devoted to the theoretical presentation of the sensor built up from dF/dX and
the mesh adaptation strategy used for practical applications. First of all the local sensor (which
will be used to induce the adaptation of the mesh) and the global one (which is used as indicator
of the global mesh quality) are presented. In a second step the mesh adaptation strategy based
on an elliptic PDE is presented.

2.1 De�nition of an adaptation sensor and a quali�cation

criterion

The previous chapter introduced the total derivative of the function of interest w.r.t mesh
coordinates (1.26). As this derivative indicates the sensitivity of the goal function F w.r.t the
volume mesh X, we can intuitively state that it tends towards zero when the mesh is ideally
adapted for the calculation of F. This condition can be achieved only in the case of in�nity
grid re�nement, so it is clear that we have to use the sensitivity dF/dX in a di�erent way. We
explain within this section the considerations which bring us to the theoretical de�nition of the
adaptation sensor and the quali�cation criterion.

The �rst consideration which has to be taken into account is about stability. We take
a volume mesh denoted by X and a second mesh volume which is a perturbed state of the
�rst one, which is denoted by X + dX. The �ow state variables computation (W ) allows the
computation by integration of a goal function F. This goal function can be the lift coe�cient,
the drag coe�cient or others quantities of interest for the both initial mesh and perturbed mesh:

X � F(X)
X + dX � F(X + dX)

The mesh X is considered to be at a stable position if F(X + dX) - F(X) is small. This
fact means that for a perturbation of the mesh nodes position, the functional calculated does
not change signi�cantly. In fact, a condition which is necessary for a good mesh quality is that
its perturbation does not play an important role in the calculation of the solution, because it
would not have physical reasons as the boundary conditions would not change.

It is necessary to consider that on the solid contours the in�uence of the perturbation dX
along the normal direction of the solid contours has physical reasons to change the evaluation of
the functional F(X + dX) as it represents a change of the solid shape. This consideration leads
to the introduction of the projection operator ℘ in paragraph 2.1.1, and the correct formulation
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of the stability condition has to delete the components of dF/dX that change the shape. We
state as consequence that for a volume mesh denoted by X and a second volume mesh which is
a perturbed state of the �rst one, which is denoted by X + dX. The mesh X is considered a
stable position if ℘(F(X + dX)) - ℘(F(X)) is small.

The attempt towards the stability condition is made by trying to pull dF/dX towards zero,
but in a discretized context where a redistribution of point it is necessary to improve the accuracy
of the goal function estimation without increasing the number of nodes and the calculation time,
it is preferable to redistribute the points trying to reach a situation in which the sensitivity
dF/dX is the same along the mesh.

Moreover, in a structured mesh context, where the regularity is one of the crucial points, it
is preferable to weight the sensitivity by a characteristic length ri,j . Thanks to ri,j it is possible
to take into account that on the zones where the mesh is already �ne, an important sensitivity
of dF/dX would induce a strong irregularity, so a smaller mesh points movement is allowed.

In the following we mean to explain the practical aspect which stands with the previous
considerations, especially on the projection operator and the characteristic length which lead to
the de�nition of the sensor and the quali�cation criteria.

Roughly speaking, the multiplication by a characteristic length assures that the sensor will
be able to take into account the importance of the mesh displacement on the calculation of F
weighted by the local size of the mesh. If we achieve a reduction of this criterion we also achieve
the best distribution of points to calculate F.

2.1.1 Projection of dF/dX

As we explained in section 1.4.3, close to the wall a displacement of the grid would lead to a
deformation of the wall geometry. A projection operator has therefore been devised to avoid
any deformation of the body shape and it will be denoted by ℘(dF/dX)dX (Figure 1.8) in what
follows. This operator should preserve the displacement of the internal points while avoiding
any movement of the boundary points that would deform the body shape, additional details will
be given in the following. The projection is represented in Figure 2.1 where the e�ect of the
projection on the displacement of a point lying on a solid surface is illustrated. It is clear that
the points on the skin can move only along the solid surface. The projection is de�ned through
the operator on which the goal sensitivity acts as:

℘(
dF

dX
)dX. (2.1)

Figure 2.1: dF/dX projection

Since a given grid does not, in general, allow a complete resolution of the physic of the
problem which is necessary for an accurate computation of a given output, ℘(dF/dX)dX will
be highly discontinuous especially at the �rst step of adaptation as shown in Figure 2.3.

In order to partially supply at this fact it is possible to introduce a spatial-mean which will
be furthermore studied in section 2.1.2.
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De�nition of the global and the local criteria of mesh quality

We denote by ri,j half the distance between the grid point Xi,j and the closest one. This leads
to the formal de�nition of our quali�cation criterion θ as follows:

θ(i, j) = ‖℘(
dF

dX
)i,j‖ ri,j , (2.2)

An example of the θ(i, j) �eld is reported in Figure 2.2

Figure 2.2: θ[Clp] around the RAE2822 airfoil

A global quality criterion is de�ned as:

θ =
1

NiNj

∑
i;j

θ(i, j). (2.3)

The local criterion, equation (2.2) gives information about the local quality of the grid and it
has high values on the nodes whose relocation would cause a large variation of the output. The
global criterion, equation (2.3) is built as the average of the local criterion on the whole domain
and it is useful to evaluate the quality of the entire mesh. High values of θ mean that the point
relocation has a high impact on the function and therefore the mesh should be adapted.

Additional explanation about the development of this sensor will be given in the following
section.

2.1.2 Spatial mean

In this paragraph we will discuss about the tool we used to smooth the �eld ℘(dF/dX). This
point is very important because it allows to obtain a more uniform �eld which is more useful
to capture the regions where a grid modi�cation would have an important impact on the com-
putation of F . Otherwise it would not be possible to distinguish them clearly as ℘(dF/dX) is
highly irregular (Figure 2.4, left). Furthermore a smoothing is necessary because there might be
nodes close to each others with vectors pointing in opposite directions as illustrated in Figure
2.3. This fact would cause a local compensation e�ect in and the nodes would be moved without
any advantage. The smoothing is obtained by a �ltering of the ℘(dF/dX) function.

The �lter is in fact a weighted average. The �ltered value on a grid point is computed
by weighted average of the values on the points lying in its neighbourhood. It is possible to
consider neighbourhoods of di�erent radius so that the �ltered value of ℘(dF/dX) over a node
is obtained taking into account a variable number of nodes around him. The neighbourhood
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Figure 2.3: (Left) large regular ℘(dF/dX) with a large node displacement possibility; (Center)
large regular ℘(dF/dX) without large possible displacement of the nodes; (Right) large irregular
℘(dF/dX) with large possible displacement of nodes

Figure 2.4: Example of discontinuities of d(Cdp)/dX (Left); Regularization of d(Cdp)/dX ob-
tained by �ltering (Right)

radius (L) is de�ned in percentage of characteristic length such as the cord of the airfoil. The
smoothing e�ects obtained by this operation are shown on Figure 2.4 (Right).

The choice of L has to be made as a compromise among di�erent requirements such as the
degree of regularity required, the complexity of the problem geometry, the computational cost,
and so on. A direct comparison of computations made with study with di�erent radius has been
performed in order to highlight issues and to evaluate the impact of the radius on the computed
quali�cation criteria.

In the following example θ1 = θ1[Clp] and θ2 = θ2[Cdp] are the two goal functions chosen.
The calculation is performed on the RAE2822 airfoil, the Reynolds number is Re=6.5 106, the
Mach number isM∞ = 0.725, the angle of attack is α = 2.466 and a Spalart-Allmaras turbulence
model has been employed. The calculation was performed on a structured grid (Figure 2.5) using
an upwind-scheme (Roe scheme).
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Figure 2.5: Mesh around the RAE2822 airfoil

The �ow solution is plotted for the Mach number variable in Figure 2.6. The θ1 and θ2 built
for di�erent values of the radii L are plotted in the Figure 2.7 and 2.8 respectively.

Figure 2.6: Mach around the RAE2822 airfoil

It can be observed that the criterion θ calculated for Clp and Cdp detects the zones which
have to be adapted in order to reduce the in�uence of the mesh on the calculation of these two
objective functions. The criterion is plotted in Figure 2.7 for Clp and in Figure 2.8 for Cdp
for increasing radii. When L = 0 and the �lter is not applied the �gure shows that the zones
detected are the shock wave, the trailing edge and the leading edge as others methods for mesh
adaptation would detect. As usual in mesh adaptation literature a comparison with the feature
based adaptation method is performed. This comparative highlights that our method detects
zones of the domain which would not be detected from a feature-based method. An important
example consists in the detection of the upstream zone. That region is detected because the
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Figure 2.7: Quality criteria for Clp, θ1: without average, L = 0,L = 0.2,L = 0.4,L = 0.8

Figure 2.8: Quality criteria for Cdp, θ2: without average, L = 0,L = 0.2,L = 0.4,L = 0.8

proposed method because this criterion is able to predict that the error associated with the �ow
computation are transported along the �ow �eld by advection, so that the errors introduced
along the inlet boundary are transported up to the airfoil generating an inaccurate estimate of
the goal F .

Furthermore the importance of a good accuracy on the upstream is underlined by looking
at the �gures generated for increasing values of L. The criterion is plotted for L = 0.2, L = 0.4
and L = 0.8. It is clear that the re�nement of the mesh in the upstream region becomes more
important with respect to the region around the shock. Evidences of this fact will be given in
the Section 4.4 where the numerical solution is compared with experimental results.

It can be observed that θ decreases while the radius increases. Furthermore, the criterion
predicts a better global mesh quality when the average is taken. This fact is due to the chosen
�ltering operator which has the e�ect of smoothing the zones containing high values of dF/dX.
This is a positive aspect because as it allows to deal with a regular �eld which is a crucial point
in the adaptation process, in particular for structured meshes. The un�ltered �eld θ contains all
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the information linked to the sensitivity of the function of interest with respect to the volume
mesh. Of this information we choose to retain just the smooth part in order to adapt the mesh.

2.2 Local mesh generation and adaptation

The tools presented in this chapter are general. In fact they can be employed for any type of
grid. A crucial point in the adaptation process is the smoothness and regularity of the mesh.
Elliptic equations are often used for mesh generation [12] because of their high regularity.

2.2.1 Elliptic equations for mesh generation

We will refer to three di�erent vector spaces with their respective coordinate systems: the �rst
one is the computational space with coordinates ξξξ. The second one is the parameter space with
coordinates sss. The third one is the physical domain with coordinates xxx. The coordinates in
the physical space can be considered as a function of the coordinates ξξξ. This lead towards the
de�nition of the following form of PDEs:

3∑
i,j=1

gijxξiξj +

3∑
k=1

gkkPkxξk = 0. (2.4)

Where x is the position vector (in the Cartesian reference), x = (x1, x2, x3), ξi = (ξ1, ξ2, ξ3) are
the curvilinear coordinates and gij(i, j = 1, 3) is the contra-variant metric tensor and �nally Pk
are the control functions. There is a unique link between the generated mesh and the control
functions. For example once we generate the grid it is possible to associate to it the vector of
control functions (P initialk ) and vice versa (it is possible to show that we can always calculate
it, even if the starting mesh does not come from a PDEs system resolution). In fact it is also
possible to associate a modi�cation of the control functions of a mesh, keeping the regularity of
the initial mesh, and to adapt it.

A good method to adapt a mesh is to suitably modify the control functions and then re-
compute the mesh coordinates corresponding to the new control functions. The success of this
method relies on the way this modi�cation is preformed. In this work, we used the information
related to the local criterion θi,j . The variation of control function can be expressed in general
as follows:

Pk = P initialk + εP adaptk . (2.5)

Where P adaptk are the modi�ed control functions that will be presented in 2.2.2, P initialk are the
initial control functions used to generate the initial mesh, and ε is a parameter which controls
the magnitude of the modi�cation to the original mesh. More details about these quantities will
be given shortly. For the moment we underline the regularity of the generated grid which makes
these equations interesting to us. Elliptic equations present in general a high regularity which
leads to the fact that a small perturbation of the control functions induces a perturbation on
all the nodes of the mesh. In Figure 4.1 the value of the function has been perturbed in a single
grid node and it can be observed how the modi�cation a�ects all the �eld.

2.2.2 Computation of P initial
k

The adaptation process developed in this project requires an initial mesh. For every given
mesh, the computation of P initialk coe�cients is possible according to the 3x3 system in (2.4)
in unknowns Pk. This system has one real solution, and its solution is inexpensive but it must
be carried out for every mesh node. Once P initialk has been computed it is possible to adapt by

adding a perturbation to the initial control functions by P adaptk which takes into account the
local information about the need of re�nement. The correspondent mesh coordinates X of the
adapted grid are now the non-linear unknowns of the equation 2.4, as will be made clearer in
the next section.
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2.2.3 Computation of P adapt
k and mesh adaptation

Let us focus now on the calculation of P adaptk . This could be done for instance according to
the method proposed by Soni et. al. ([10]) which is based on the state variables in order

to capture �ow features as shocks. Instead, the computation of P adaptk for our purposes is
performed exploiting the information provided by the local θi,j sensor. With this section we

mean to explain how the local θi,j sensor can be used to compute P adaptk .
We start by considering si : X → [0, 1](i = 1, 2) �elds. Each �eld si is associated to a

geometric direction and it assumes large values in areas where the mesh needs to be re�ned.
The de�nition of si depends on the criteria selected by the author. For Soni et al.[10] the
�eld si was the component of the gradient of the Mach number in the direction i. We instead
compute the �eld si from the component of ℘(dF/dX)r in the i direction. So, the component of
℘(dF/dX)r in every i direction is �ltered and it is divided by the maximum value of ℘(dF/dX)r.
These operations of �ltering and division lead to the de�nition of a �eld for every topological
direction whose values stay between -1 and 1. We de�ne this �eld as si.

The �eld si is then used to compute a �eld s which compresses in one �eld the information
connected to the di�erent directions (present in each �eld si). Soni et al. built up s in [10] as
follows:

s = 1 + s1 ⊕ s2 ⊕ s3. (2.6)

where the symbol ⊕ represents the Boolean sum (a1 ⊕ a2 = a1 + a2 − a1a2) and it is useful in
this context because it has the propriety to exhibit high values if one of its arguments has a
high value.

The �eld s is computed starting from si �elds and it is shown in (Figure 2.9). We highlight
that the di�erence with respect to the method proposed by Soni. et. al. is that si in the present
case is directly linked to the adaptation sensor.

Figure 2.9: The �eld s is plotted for NACA0012, Re=∞ and Mach< 0.7 during the adaptation
based on the Cd

Finally the control functions P adaptk are de�ned as the derivative of this scalar �eld s respect
to each topological direction:

P adaptk =
sξk
s
. (2.7)

The �eld s is built in order to achieve values between 1 and 2 and so that the topological
derivatives stay between 0 and 1. It follows that the variable P adaptk is always well de�ned. In our
framework the si de�ned above corresponds to the norm of ℘(dF/dX) times the characteristic
length in the ith geometrical direction.

It has to be noticed that in practice, the highest values of P adaptk are signi�cantly above the
average. This is due to two main aspects. In fact, for coarse grid the regularity of the solution
is not guaranteed while it is as the mesh size increases and the cell length tends towards zero
(a demonstration is given in the [7] for Euler �ows).Consequently it is necessary to smooth the
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Figure 2.10: (Left) derivative P adapt along i topological direction; (Right) derivative P adapt

along the j topological direction

sensor in order to avoid those strong discontinuities and the necessity to introduce a cut-o� in
order to partially supply at the high dispersion of the function around its average (details will be

presented in the paragraph 4.2.6). The �gure 2.10 shows P adapti P adaptj which are respectively
the criteria along the topological i and j directions built for a simple Euler-compressible case.

After these operations it will be possible to adapt the mesh according to the directions
identi�ed as 'important' by the sensor (Figure 2.11).

Figure 2.11: (Left) initial mesh; (Right) adapted mesh towards the directions calculated (red
vectors)

2.2.4 Computation and role of ε

In agreement with equation (2.5), the proposed method employs the functions P adaptk in order
compute the modi�ed control function Pk used to generate the mesh according to equation (2.4).

The contribution of P adaptk to Pk is tuned by the scalar parameter ε. Di�erent tests have
been performed to calibrate this parameter. It is trivial to observe that:

• if this quantity tends towards zero, mesh will not be modi�ed.

• if this quantity increases, a big modi�cation is obtained.

Therefore ε controls the impact of the sensor at every adaptation step. The choice of this
parameter is crucial. In fact, it has to be computed as a compromise between convergence
speed (the smaller values of this parameter the larger number of iterations are required) and
the con�dence on the sensor θ Furthermore, important values of ε have to be avoid also because
important modi�cations are linked with the possibility to create folding near critical mesh points.

2.3 Conclusions

In this chapter we gave some details about the proposed adaptation strategy.
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In the �rst section we explained how we built the adaptation sensor and the quali�cation
criterion starting from dF/dX. It was explain in this section that the adaptation criterion is
able to take into account when there are regions of the mesh which are already very re�ned with
respect to others. It has also been explained how the average operator allows to improve the
performance of our sensor.

The second section meant to explain how the adaptation sensor is used to compute the
adapted the mesh. With this purpose it was explained that the adaptation sensor is used to
build the control functions P adapti which, as well as the adaptation sensor has high values in
the regions which have to be re�ned. P initiali are instead the control functions associated to the

initial mesh. Then, P initiali and P adapti are used to compute the new control function in accord
to the equation (2.5). After the computation of the new control functions we showed how to
compute the adapted mesh in accord with elliptic equations.
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Chapter 3

Hierarchy of �ve C-type grids

around the RAE2822 airfoil

The goal-oriented mesh adaptation based on dF/dX was already applied to the solution of
Euler equations in [7]. In this paper the authors showed important properties of the present
goal-oriented method which are now extended to the RANS equations in this work. Before
showing a complete adaptation loop, which will be presented in chapter 4, it is interesting to
analyse the behaviour of θ on a hierarchy of �ve grids. First, we will discuss the θ-sensor
proprieties (paragraph 3.1), afterwards we will focus on the properties of the adaptation process
(paragraph 3.2).

3.1 Behaviour of the mesh sensor and mesh quality crite-

rion

With this paragraph we give a practical example. The de�nition of the sensor has been done in
section 2.1. There the formulation of the local θi,j criterion and of the global θ criterion. The
local criterion θi,j is a sensor which is formulated to detect the mesh zones whose sensitivity on
the calculation of the goal F is important and the global criterion θ is useful to evaluate the
quality of the entire mesh and his attitude for computing the goal function.

3.1.1 The mesh quality criterion and the introduction of the average
operation

It is interesting to study the behaviour of the sensor on a hierarchy of grids in which we know
a priori what is the level of quali�cation. We know a priori that among the �ve meshes with the
same topology the quality of the grid increase with the level because for each level the number
of nodes in each topological direction is multiplied by two. It is known that the error associated
with the computation of the solution decreases with the decreasing of the dimensions of the
cells. This lead to the fact that if the geometry is not modi�ed the error associated with the
estimation of the function F chosen will decrease as we move towards grid more re�ned.

As it can be observed in table 3.1, when the grid quality increases, θ decreases by about
one order of magnitude so the correlation between the sensor θ and the quality of the grid is
veri�ed. The functions chosen in this example are the drag coe�cient F = Cd whose sensor is
θ1 and the lift coe�cient F = Clp whose sensor is θ2.

It can be observed from the table 3.1 that the criterion implemented has a good correlation
with the accuracy of the computation of F . The reduction of θ is due to the reduction of the
both terms dF/dX and ri,j . This last variable is reduced on every point of a factor two along
the hierarchy while θ decreases of about one order of magnitude. This is enough to con�rm
that globally the sensitivity of F to the mesh displacement dX is smaller for the �ne grids.
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Table 3.1: Validation of the θ criterion on a mesh hierarchy (The symbol * means that the
computation is retained to be too expensive)

Level number of nodes Cd Clp θ1 ∗ 10−7 θ2 ∗ 10−7 θ̄1 ∗ 10−7 θ̄2 ∗ 10−7

1 34 848 142.61 0.71837 41.265 61.380 28.659 40.369
2 135 200 123.93 0.73950 5.0184 7.7841 3.3888 5.2250
3 532 512 118.77 0.74988 0.8271 1.0175 0.5411 0.6693
4 2 113 568 118.33 0.75445 0.1861 0.1553 0.1344 0.0957
5 8 421 408 118.29 0.75583 0.0465 0.0203 * *

That show the e�ciency of this global sensor to detect if a mesh is more reliable or not for the
calculation of an objective function.

It has to be said that all the nonlinear e�ects are not taken into account. The criterion
is in fact based on a �rst order Taylor expansion of the functional F , so the lost of a perfect
correlation is due to the fact that the functional F is a non linear function of dX. Furthermore,
as we took a �rst order approximation, there are second order e�ects which we are not able to
take into account.

About the local sensor, it has to be veri�ed that the local criterion is able to detect the
relative sensitivity of the mesh zones in every grids and that this sensitivity. We also expect
that it assumes important values in the same zones for all the grids of a given hierarchy. Once
again, the lost of a perfect correlation between the accuracy of F and θ is attributable to the
non linearity of the functional F .

We mean now to investigate the behaviour of the local criteria into the details.

The mesh adaptation sensor and the introduction of the average oper-
ator

In section 2.1 we introduced both global and local criterion. Furthermore the criterion detects
a better estimation of the second goal function with the increasing number of points and their
values along the mesh are less important and the estimation of the functions actually reach his
limiting values.

We will plot now the θi,j-criterion �eld within the hierarchy of meshes we have used for the
validation. The mesh hierarchy is shown on Figure 3.1, and the θ criterion is shown in the
Figures 3.2 and 3.3 respectively for F1 = Cd and F2 = Clp.

The colour-map used is based on the global criterion for the two functions along the iteration.
It follows that it is possible to visualize the zones with an important sensitivity with respect to
the global quality of every single case in order to point out for every grids which are the relative
important zones detected.

It can be checked that for every function the zones detected are the same (for all the meshes).
This fact is veri�ed because the topology is the same so even if by adding points we achieve a
better global quality, the geometry has to be adapted "in the same manner" in order to achieve
a better performances on the estimation of the goal without increasing the number of points, so
the calculation time. The natural consequence of this fact is the attempt to adapt the mesh. An
important remark is that, roughly speaking, the redistribution of the points accordingly with
this sensor will not pretend to get better the prediction of the global �ow solution but it will
certainly allow the best use of CPU and memory in order to compute the goal F .

With the knowledge of the behaviour within a mesh re�nement we can now spend a few
words to explain why those zones are detected. So we focus for instance on the third hierarchy
mesh level. As it can be noticed in Figure 3.4 the main zones detected for the both function Cl
and Cd are: The upstream, the shock, the trailing edge,the boundary layer and a zone over the
shock. Naturally the magnitude of the local θi,j is di�erent for the two functions but it has the
same magnitude order.
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Figure 3.1: Mesh hierarchy
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Figure 3.2: Criterion θ1 plotted on the mesh hierarchy
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Figure 3.3: Criterion θ2 plotted on the mesh hierarchy
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The mesh is a structured multi-block mesh and is not uniform (see Figure 3.1). The com-
putation of our sensor on this mesh allows the visualization of the following main zones:

Upstream

Figure 3.4: Criterion θ1 near �eld region

The upstream is detected as the transport of numerical errors by advection would a�ect
all the �ow �eld. The upstream zone should be more re�ned in order to solve all the rest
downstream. It is known that a criterion based on the features of the �ow would not consider
this fact as we will show in the section dedicate to the feature based adaptation.

Shock

The shock is detected (Figure 3.5) as it contains strong gradients and a coarse grid in this zone
would provoke an increasing of the dissipation so a rough resolution in term of estimation of
both θ1 and θ2. The criterion suggests (qualitatively in accordance with the feature based) a
better re�nement of this zone.

Figure 3.5: Criterion θ1 around the shock

Zone over the shock

The detection zone over the shock which is shown in Figure 3.6 is due to the fact that in this
zone the gradients are still important for the computation of the functions but the mesh given
is coarse in this zone by construction. The criterion exhibit that the discontinuity in this zone
should be avoided so a re�nement in this zone is necessary in order to attenuate the numerical
error dues to the rough resolution of the gradients.
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Figure 3.6: Zone over shock, θ1 criterion plotted

Boundary layer

The boundary layer is a question a little bit more delicate. The boundary layer is turbulent and
the method su�ers of a lost in precision of the gradients calculated in this zone. This lost in
precision is due to the fact that for the resolution of the adjoint equation, and in particular for
the derivation of the term ∂R/∂W the thin layer and �xed turbulent viscosity hypothesis are
taken into account (recent works at Onera are trying to provide the method with a complete
linearisation of ∂R/∂W but for instance no work is concluded). The hypothesis play a marginal
role on our adaptation process but they would be very important within the attempt to adapt
very re�ned meshes.

Trailing edge

The trailing edge is an important zone within this context because the function θ exhibits high
values. This is common to all adaptation process as well as the feature based. Numerical aspects
and relative importance of the both θ1 and θ2 have been considered and treated in the chapter
4.

3.2 In�uence of the number of points on the adaptation

With this paragraph we mean to study the e�ect of the adaptation method on an hierarchy of
grids. The method just implemented was designed with the goal of generality. In fact it has
to be proved that this method works with every grid and in particular that it is robust. We
obtained a prove of this propriety thanks to an adaptation on three mesh re�nement levels. This
fact serves to show that in all the cases our method is reliable and robust so that it will tend to
adapt the mesh with respect to the goal function for every given mesh.

Cd adaptation

Table 3.2: 1st level Cd adaptation

Iteration Cd ∗ 10−4 Clp θ̄1 ∗ 10−7 θ̄2 ∗ 10−7

0 142.61 0.71837 28.659 40.369
1 133.90 0.73475 22.552 35.428
2 133.75 0.73478 22.480 36.799
3 133.49 0.73288 21.861 35.713
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Table 3.3: 2nd level Cd adaptation

Iteration Cd ∗ 10−4 Clp θ̄1 ∗ 10−7 θ̄2 ∗ 10−7

0 123.93 0.73950 3.388 5.225
1 120.02 0.74438 2.431 4.287
2 119.45 0.74189 2.418 4.275
3 119.41 0.74194 2.437 4.203

Table 3.4: 3th level Cd adaptation

Iteration Cd ∗ 10−4 Clp θ̄1 ∗ 10−7 θ̄2 ∗ 10−7

0 118.77 0.74988 0.541 0.669
1 118.19 0.75133 0.521 0.570
2 118.07 0.75100 0.528 0.570

Clp adaptation

Table 3.5: 1st level Clp adaptation

Iteration Cd ∗ 10−4 Clp θ̄1 ∗ 10−7 θ̄2 ∗ 10−7

0 142.61 0.71837 28.659 40.369
1 136.84 0.73421 25.344 34.827
2 135.69 0.74230 24.140 31.687

Table 3.6: 2nd level Clp adaptation

Iteration Cd ∗ 10−4 Clp θ̄1 ∗ 10−7 θ̄2 ∗ 10−7

0 123.93 0.73950 3.388 5.225
1 120.81 0.74559 2.760 4.006
2 120.52 0.74613 2.689 3.748
3 120.31 0.74660 2.700 3.671

Table 3.7: 3th level Clp adaptation

Iteration Cd ∗ 10−4 Clp θ̄1 ∗ 10−7 θ̄2 ∗ 10−7

0 118.77 0.74988 0.541 0.669
1 118.32 0.75028 0.510 0.600
2 118.30 0.75068 0.511 0.574
3 118.19 0.75061 0.510 0.563
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3.3 Conclusions

With this chapter we have been able to give numerical evidences about the local sensor and
the global quali�cation criteria. Furthermore we showed in the �rst paragraph that the global
quali�cation criteria is able to detect when a mesh is more or less adapted for the calculation of
the chosen functional as decreasing values of θ are calculated for grids of increasing performances.
With this paragraph we also exhibited that the local criterion θi,j detects the same zones of the
grids which have to be adapted. As the grids have the same topology and di�erent number
of points, this last results con�rm that an improvement of the accuracy can be achieved by a
redistribution of the points in accordance with the zones detected by the local sensor. With
the second paragraph it can be noticed that an improvement of the accuracy is obtained by
the redistribution of the points thanks to the local sensor on di�erent grids. Furthermore, the
adaptations for the di�erent grid points number showed that this method is robust as it allows
an improvement of the solution accuracy even when a mesh is coarse (�rst mesh level). The
synthetic conclusion of this chapter is that our strategy is reliable and it can be actually used
to adapt a given mesh for the computation of a goal function F as we show in the following
chapter.
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Chapter 4

Application for RANS �ows around

the RAE2822 airfoil

The goal of this chapter is the presentation of an application of our proposed goal-oriented mesh
adaptation methodology described into the chapter 2. The chapter will be organised as follows:

• Mesh adaptation process and software

• Presentation of the steps involved in the adaptation process

• 2D goal function grid adaptation examples

• Feature based method adaptation and comparison with θ method adaptation

In the previous chapter we described the principles of this method and we deal now with all the
computational aspects and considerations necessary to apply our method. In the �rst section
we will provide the reader with a brief description of the software used. In the second section we
will go into the details of every step adaptation in order to underline the di�erent considerations,
and parameters used within the computation. Finally we will give numerical evidences about
the mesh adaptation process. Before to start it has to be noticed that the present method has
be designed with the only requirement of structured grids, so other choices as the scheme, the
turbulent model used with the speci�cation annexes are necessary for the comprehension of this
particular example and its analysis.

4.1 Mesh adaptation process and software

With this section we mean to illustrate the software used in our framework.
The proposed goal-oriented mesh adaptation illustrated in the chapter 2 has been imple-

mented as independent from the framework and it has been showed that it is clearly preferable
in respect to the feature based methods in terms of accuracy presented in chapter 4.4. Further-
more the application of a method based on the discrete adjoint in a shape optimization context
which also is based on the adjoint gives others additional advantages.

The software involved in our adaptation loop are:

• The CFD solver we used to calculate the direct solution W and the adjoint vector Λ is
elsA, which is a �nite volume code developed by ONERA [1].

• The computation of the mesh sensor has been performed with an in-house code which uses
the method developed and presented in chapter 2 in order to compute the quality criteria
both local and global (θi,j and θ) and generate the weight functions (P finalk ) which will
induce the re-meshing
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• The last step of our mesh adaptation loop consists in the generation of the new grid
(Xn+1). This operation is implemented in the code Lama 3D using the methods previously
proposed in paragraph 2.2.3.

4.2 Presentation of the steps involved in the adaptation

process

4.2.1 CFD solver

In our application the numerical scheme used by elsA for the evaluation of the primal solution
is based on Roe �ux [9]. The Roe method is a �nite volume scheme based on solving a localized
Riemann problem to calculate the �ux at a given face of the domain. The basic premise of this
problem is that changes in a �ow can be transmitted only through entropy waves and acoustic
waves, and only at some given speeds, which represent the eigenvalues of the governing non-
linear equation system. In one-dimension, there are three wave speeds, corresponding to the
entropy wave at the speed the �uid is travelling, and acoustic waves representing the speed of
sound relative to the �uid speed in the upstream and downstream directions (note that these
waves may not actually be in the upstream and downstream directions respectively, but this is
the sense in which they are de�ned). Since the solution of the equation set changes only across
one of these waves, the solution of the Euler equations at any point in space and time can be
represented by a summation of the state to the extreme left or right of the space, plus (or minus)
one or more of the state changes across these waves. Since the Euler and the RANS equations
are non-linear, the corresponding Riemann problem is non-linear as well. This could be too
expensive to calculate in some cases, and Roe found out that a properly selected approximate
problem does the job just as well in most cases and saves on calculation complexity [14].

The schema used is a second order in space scheme. This characteristic is obtained thanks
to the application of a MUSCL (monotone upstream-centred schemes for conservation laws)
scheme for the reconstruction of the states (details about this method can be found in [14]).
The �ux limiter used is the one of van Albada [13].

In our context additional details about the scheme are not essentials. The main issue related
to our process is related to the consistency of the �ow solution within the anisotropy of the mesh
in fact the second order convergence according to MUSCL scheme is guaranteed for regular grids
only. Beside the attempt on generating smoothed and regular grids, the adaptation process is
made to generate a change of geometry which would lead in some cases at the lost of a perfect
isotropy. The main consequence of this fact is that beside the corrections to take into account the
anisotropy implemented by the developers of this software [1], as far as we go from this condition
the mesh solver will converge slower to the solution so that additional errors attributed to this
anisotropy will occur in the mesh adaptation process. Another numerical issue that arise within
the next steps is the di�culty in the inversion of the matrix ∂R∂W when it is weakly conditioned.
It is known that a discretization of the convective �uxes with a decentred formula (i.e upwind)
assure a better conditioning of this matrix with clear advantages for the computation of his
inverse [6]

4.2.2 Post processing

The solution in terms of state variables W given by the CFD solver are then elaborated by the
post processing by an Airbus in-house tool named Zapp. This elaboration mainly consist on the
computation of the goal function and the partial derivatives needed for the computation of the
adjoint vector in equation (1.2.2).
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4.2.3 Adjoint vector

The adjoint vector has been introduced in paragraph 1.2.3. The formulation of the adjoint
problem as illustrates in paragraph 1.2.3 is the following: Compute ΛT t.c

∂F

∂W
+ ΛT (

∂R

∂W
) = 0. (4.1)

The last equation can be transposed obtaining

∂F

∂W

T

+ (
∂R

∂W
)TΛ = 0. (4.2)

If we add and subtract an approximation of the second member of equation 4.2 we have:

∂F

∂W

T

+ (
∂R

∂W
)TΛ + (

∂R

∂W
)T
APP

Λ− (
∂R

∂W
)T
APP

Λ = 0, (4.3)

where APP stands for approximation. We notice that until now no approximations have
been performed. Rearranging this expression leads to:

(
∂R

∂W
)T
APP

(Λn+1 − Λn) = −(
∂F

∂W

T

+ (
∂R

∂W
)TΛn), (4.4)

which is a classical Newton iterative system which converge to the exact solution in fact if
Λn+1 tends towards Λn the term on the left of the equal tends to 0 and on the right we recognise
the exact adjoint equation.

It is clear that now the term (∂R/∂W )T
APP

has to be inverted in order to calculate the
solution, instead of (∂R/∂W )T . This term has to be chosen by providing a good conditioning
and an easy inversion. We do not enter into the details of the computation but it has to be
noticed that this term is the same that was used for the direct �ow solution. The consequence
is that his inversion can use the same bene�t as the inversion that was calculated in the direct
more.

Arti�cial dissipation

The matrix ∂R/∂WT is badly conditioned. It follows that in order to compute the adjoint an
additional term of dissipation has to be introduced into this equation as:

(
∂R

∂W
)T
APP

(Λn+1 − Λn) = −(
∂F

∂W

T

+ (
∂R

∂W
)TΛn) +AD, (4.5)

where AD is the Additional Dissipation term which has to be chosen as a compromise between
the accuracy of the solution and the robustness required. Our choices are however piloted from
the experience.

4.2.4 Mesh Sensor

With this section we mean to give details about the tool Mesh Sensor. This program is basically
made in order to calculate the control functions Pk used for the remeshing (as explained in the
following section) and the mesh quality indicator starting from the information which lie on the
quantity dF/dX. It has to be noticed that the input dF/dX is a very irregular �eld while the
�eld of control functions has to be as regular as possible in order to avoid to have an irregular.
That is why the information treated for the generation of the control functions are divided into
the following steps:

• Projection of dF/dX
This projection means to eliminate the component of dF/dX which is normal at the skin
of the solid. This component would a�ect the geometry and in the present context this
has absolutely to be avoided. The operation which allows to achieve this projection as it
has been introduced in 2.1 is denoted as ℘(dF/dX).
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• Spatial mean of ℘(dF/dX)
In this second step the operation of averaging is performed averaging the ℘( dFdX ). In fact
following the details already given in 2.1.2 and the study of radius L in�uence it is possible
to chose a value for this radius and the operation of average will be implemented giving
as output an average �eld. All the consideration we have underlined in the section 2.1.2
are valid and serve to orientate the choice. In general the introduction of an operation of
average allows to have more coherent �eld because every point is a�ected by a quantity
proportional with the sensitivity but inversely proportional at the distance from the current
node. The compensation e�ects are taken into account. On the example we will give of
mesh adaptation, we chose a radius of about L = 20 which correspond a 0.02 of the length
cord. Furthermore this operation is tested to be useful for many reasons even if the choice
of a radius L should be made by knowledge of the resources available. The computation
time of this step will certainly increase with the number of node Xj whose distance form
the node Xi is smaller than L|Xj−Xi|. For this reason a study on the radius in�uence has
been made whose results can be found. After this operation it is necessary to introduce
another average step. We remark that the �rst one was necessary in order to avoid the
consideration of the possibility of normal displacement so that even during the average
operation this "information" would not spread to the other nodes near the skin, and in the
second step it is necessary because the information of dF/dX is spread from the neighbour
to the skin nodes and it allows to de�nitely eliminate the skin-normal components.

• Computation of θ
The next step is the calculation of the θ criterion. After the computation of the half
of the distance between every single node and the nearest one (ri,j), it is performed the
multiplication between |dF/dX|i,j and ri,j for the X, Y , Z directions de�ning respectively
θ̄x, θ̄y, θ̄y This operation allows to de�ne the θi,j criterion, which gives information about
the local quality of the mesh, as the square root of the di�erent components in every
node (i,j). The associate global criterion, as it has been de�ned in the previous chapter
is

∑
i,j

1
Ni,Nj

θi,j . This number allows to de�ne the global quality of the current mesh for

the calculation of the required output F and it can be compared with other grids.

• Computation of θ1
x, θ

1
y

The local criterion allows to detect the zones with an high in�uence on the goal. It is
important to consider that the �eld just created presents strong discontinuities. In order
to perform a successful mesh adaptation based on dF/dX we retain that it is necessary
reduce the leakage of the �elds θ1

x and θ1
y. In fact those �elds present peaks with a

magnitude that can achieve 1000 times the average and an adaptation induced directly
from this �eld would not be e�cient as it would �nally detect the relative importance
of some points on the grid. In order to reduce that dispersion we retain to introduce a
cut-o� on these �elds. The reduction of the dispersion allows to detect simultaneously
a more consistent number of points so that in every iteration step the global quality is
better reached. This cut-o� is built with two values, the cut-o� max and the cut-o�
min (we also performed a study concerning the in�uence of the di�erent values chosen on
the mesh adaptation process). Furthermore all the values of θ bigger than cut-o� max
are turned to cut-o� max so as the values of θ smaller than cut-o� min are turned to
cut-o� min. This process will allow to de�ne relative important weight function on more
zones simultaneously (otherwise neglected because of the high relative importance of θ
with respect to the other zones. The function a�ected by the cut-o� is de�ned θ1 (cut-o�
e�ects according to the signal theory) and it is originally but on the di�erent topology
directions.

• Construction of s
As it has been de�ned in the section 2.2.3, the �eld s is given thanks to the boolean
operator as:

s = 1 + s1 ⊕ s2 ⊕ s3
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where the di�erent components si are de�ned as:

si =
θ̄i

max(θ̄i, θ̄j)
. (4.6)

It appears clear now that the cut-o� introduced above has an important role, in fact
max(θ̄i, θ̄j , θ̄k) can be one thousand times the average in a few points so that after the
computation of this ratio all the others terms would be considered negligible.

The variable s as well as sx, sy and sz present now a reduced dispersion with all the bene�t
of the case in order to induce the adaptation.

• Second cut-o� applied to the �eld s
The purpose of this operation has to be regarded once more in the sense of the following
steps. The importance of the construction of regular control function require the intro-
duction of this cut-o� in order to reduce the highest values associated with this �eld.

• Smoothing
The weight functions are now considered to have acceptable values to induce the remeshing.
The only remaining issue is the absence of regularity. A big amount of tests has been
performed in order to understand the best way to smooth the �elds of weight function
to get them ready for a remeshing. The proposed method is a good compromise between
the analysis of the �eld on the practical example that we will show in the following. It
is shown that a successful method to induce a good quality weight �eld is made up from:
One step isotropic smoothing, one mesh of anisotropic smoothing plus another step of
isotropic smoothing. It is important to understand that this method allows to reach a
good compromise between the orientation of the sensor (which is save by the anisotropic
smoothing) and the homogeneity of the �eld obtained in particular thanks to the isotropic
iterations.

4.2.5 Grid generation and adaptation (Lama 3D)

As it has already been announced the elliptic equations system used for the grid generation and
adaptation is used in order to guarantee the regularity of the grid. One can state in other words
that according with the Laplace solution, a perturbation of the function in a point of the domain
has a propagation along the entire domain. In our framework the function is the volume mesh
position of every node of the grid and the perturbation is the variation of this function (Figure
4.1) with respect to the initial grid coordinates (Figure 4.1 in blue). In e�ect the perturbation
of a single node position generates a di�erent mesh where every single node has been displaces
(Figure 4.1 in red).

Figure 4.1: E�ect of single node displacement in direction i (Left); and in direction j (Right)
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This behaviour allows to generate a regular grid despite the discontinuities that beside the
smoothing iterations introduced are present within the control functions P . From the practical
point of view the equation (2.4) needs to be re-written in order to be computed, because we
dispose naturally of the contra-variant metric tensor, so we avoid their direct calculation as they
depend on the covariant metric tensor through the Jacobian. The general formulation of the
problem, as it has been presented in the paragraph 2.2.1 is:

3∑
i,j=1

gijxξiξj +

3∑
k=1

gkkPkxξk = 0. (4.7)

Where the expressions of the contra-variant metric tensor components are related to the co-
variant metric tensor components through the Jacobian (J2 = det(ai,j)). Multiplying the last
equation by J2 we obtain:

3∑
i,j=1

Gijxξiξj +

3∑
k=1

GkkPkxξk = 0. (4.8)

where Gij = J2gij and in particular:

G1,1 = (xξ, xξ) G
1,2 = (xξ, xη) G2,2 = (xη, xη)

The discretization of the PDEs equations given in a 2D case (the extension to 3D is straight-
forward). We approximate the second order derivatives xξiξi as:

xξξ = xi−1,j − 2xi,j + xi+1,j

= xi−1,j + xi+1,j − 2xi,j

= xi−1,j + xi+1,j − 2xi,j

so that
x̃ = xi−1,j + xi+1,j

and the same kind of expression can be achieved for every set of xξiξi coordinates.

G11(xξξ + Pxξ) +G22(xηη +Qxη ) + 2G12xξη ≈ 0. (4.9)

Now, substituting in the PDEs equations the approximate expression for xξiξi that we just
wrote above we obtain:

G11(xξξ − 2xi,j + Pxξ) +G22(xηη − 2xi,j +Qxη ) + 2G12xξη ≈ 0 (4.10)

The approximated value is obtained solving (4.10) when it is equal to zero thanks to an approx-
imation of x Rearranging the last equation we have:

xij =
1

2
(
(G11(x̃ξξ + Pxξ) +G22(x̃ηη +Qxη))

G11 +G22
+

2G12nξη
G11 +G22

). (4.11)

and de�ning:

x̂ij =
1

2
x̃ij

xi,j =
G11(x̂ξξ + 1

2Pxξ) +G22(x̂ηη + 1
2Qxη)

G11 +G22
+

G12xξη
G11 +G22

. (4.12)

with control parameter P and Q to be chosen (P , Q and R in the 3D case). The equation
written in this form can lead to an iterative method to approximate the mesh volume X within
the iterations:
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xn+1
i,j = A(xni,j). (4.13)

A =
G11(x̂ξξ + 1

2Pxξ) +G22(x̂ηη + 1
2Qxη)

G11 +G22
+

G12xξη
G11 +G22

We de�ne P initialk the control functions computed at the initial step thanks to the PDEs
elliptic equations. We notice that at the initial step (for a given grid to be adapted )the unknown
is Pk functions which are computable for every grid. It is in fact veri�ed that for a generic mesh
X well de�ned a set of Pk functions exists and it is unique. In fact, during the iterations, the
mesh is adapted modifying these control functions, and a mesh X is determinate for every set
of control function Pk given. The computation of Pk becomes of primary importance for a mesh
adaptation method. The basic idea is that the function Pk contain the information given by
our sensor in order to adapt the grid coherently. Exhaustive explanations will be given in the
following paragraph. For the following iteration steps the unknowns of the elliptic equations
will be the points xi generated thanks to a set of Pk functions.

4.2.6 Pk e�ects

Here we will present the induced choice for the control parameter which are de�ned for a given
mesh and have to be chose in order to modify it. One can intuitively think that a good method
in order to compute the functions Pk at every step of the method is to consider the initial
value of Pk corresponding at a given mesh to be adapted and add at this function within each
adaptation step a function which is able to take into account the information given by the sensor
dF/dX. If we de�ne:

Pnk control function
P initk control function on direction k at step 0

P̃nk control function on direction k at step n computed by the sensor dF/dX
Pnk control function on direction k at step n used for the mesh generation dF/dX
s relaxation term coe�cient

we are able to compute the control functions for every n adaptation iteration step as:

P 1
k = (1− s)P initk + sP̃ 1

k . (4.14)

Pnk = (1− s)Pn−1
k + sP̃nk . (4.15)

Where s is the relaxation coe�cient which has to be chosen as a compromise between the
convergence velocity (obtained ideally s=1) and the required robustness. The Pk in the step n
has also a role within the computation of Pk at the step n + 1 in order to induce a 'changing'
of the grid weighted by the changing at the precedent step in order to avoid the oscillations.

Another important issue of initial grids is that they can be generated in a way that doesn't
keep into account the physic of the problem. In general these grids show very high re�nements
in zones with a relative low in�uence on the functional of interest and the physic of the problem.
This fact lead in general to slow convergences of these grids and in some cases to a determina-
tion of such an anisotropy of the grid in the attend reach the adaptation which will cause an
augmentation of the error especially when schemes which do not use a correction for anisotropy.

Furthermore, in order to treat general initial grids it is possible to de�ne a "cut-o�" which
allow to distinguish zones with important values of the function Pk (with an important in�uence
on the computation of F ) and other zones which are given "too much re�ned" and present low
values of Pk functions. In practice we chose to turn to 0 the values of Pk as they are under the
cut-o� value. In this way we allow our method to use those zones which are too much re�ned
(having a very low values on the criteria) to be de-re�ned in order to follow the re�nement
induced by high values of the criteria in di�erent zones.
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Figure 4.2: E�ect of distortion of the grid due to an attempt of adaptation in the trailing edge
where the last point cannot be displaced i (Left); j (Right)

4.2.7 Post processing FFd72

The solution in terms of state variables W given by the CFD solver are then elaborated in order
to calculate the variables presented in this paragraph. This quantities are the more generic goal
function which is used to estimate in CFD. These quantities are calculated following di�erent
approaches in order to highlight the quality of the numerical solution.

The di�erent approaches are the near-�eld computation and the far-�eld computation. In
an ideal case these two approaches should lead to the same results but in practice there is a
di�erence dictated by the numerical errors.

Near-�eld analysis

If we take the sum of the forces on the skin perpendicular to the in�nite velocity direction we
obtain the lift and his associated dimensionless quantity (Cl) if we divide it by (f1/2ρV 2

∞S)
The lift coe�cient (Cl) can be decomposed in two di�erent contributions. The contribution

of the pressure (Clp) and the contribution due to the friction forces (Clf ) as:

Cl = Clp + Clf

At the same manner we can de�ne the drag coe�cient (Cd) by taking the sum of the forces
on the skin in the direction of the in�nity velocity.

This quantity is also decomposed into the contribution of pressure and the one due to the
friction forces as:

Cd = Cdp + Cdf

Clp =

∫ ∫
SS

(p− p∞)nzdS
1
2ρV

2
∞Sref

. (4.16)

Clf = −
∫ ∫

SS
(~τz~n)dS

1
2ρV

2
∞Sref

. (4.17)

Cdp =

∫ ∫
SS

(p− p∞)nxdS
1
2ρV

2
∞Sref

. (4.18)

Cdf = −
∫ ∫

SS
(~τx~n)dS

1
2ρV

2
∞Sref

. (4.19)
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Far-�eld analysis

If we now move far from the surface of the skin we can perform another type of analysis.
Theoretically the results taken with this second method should be coincident with the ones
calculated with the near �eld analysis approach but in computational �uid dynamics more or
less important di�erences are present ??. The di�erences found in practice are caused by the
numerical error. This analysis allow to predict the drag due to di�erent factors as the shock,
the induced drag, and the viscous drag considering separately the integration along the di�erent
surfaces associated with these di�erent features.

Cd = Cdwave + Cdv + Cdi. (4.20)

The component associated to the shock is obtained as integration along a surface SW which
surrounds the shock as:

Cdwave = −
∫ ∫

SW
~fi~ndS

1
2ρV

2
∞Sref

. (4.21)

The component associated to the viscosity is calculated as the sum of the following compo-
nents:

Cdv = Cdvp + Cdf

where

Cdvp = −
∫ ∫

SV
~fi~ndS +Dp

1
2ρV

2
∞Sref

. (4.22)

and

Cdf = −
∫ ∫

SS
~τx~ndS

1
2ρV

2
∞Sref

. (4.23)

while the component due to the 3D �nite span-wise e�ects is:

Cdi = −
∫ ∫

SI
~fi~ndS

1
2ρV

2
∞Sref

. (4.24)

It is also de�ned the Oswald factor otherwise called aerodynamic e�ciency factor:

OF =
C2
L

πARCDi
. (4.25)

where

AR =
b2

Sref
. (4.26)

so that we can de�ne the physical irreversible drag as

Cdirr = Cdv + Cdw

and the spurious component of the drag as

Cdsp = CdOSW − Cdirr

with

CdOSW =

∫ ∫
SI

~fvw~ndS
1
2ρV

2
∞Sref

. (4.27)
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and

Cdirr =

∫ ∫
SV +SW

~fvw~ndS
1
2ρV

2
∞Sref

. (4.28)

Cdrev =

∫ ∫
SI

~fvw~ndS
1
2ρV

2
∞Sref

−
∫ ∫

Sv+SW
~fvw~ndS

1
2ρV

2
∞Sref

. (4.29)

Cdirr = Cdv + Cdw. (4.30)

In two dimensional case the de�nitions assume an aspect partially di�erent, in particular:

Cdsp,irr =

∫ ∫
SI

~fvw~ndS −
∫ ∫

Sv+SW
~fvw~ndS

1
2ρV

2
∞Sref

. (4.31)

Cdsp,rev =

∫ ∫
SI
~fi~ndS

1
2ρV

2
∞Sref

. (4.32)

The quantities ~fvw and fi are calculated as from the dynalpy-like vector observing that it is
possible to chose a decomposition as:

~f = −ρ(u− u∞)~q − (p− p∞)~i+ ~τx. (4.33)

as
~f = ~fi + ~fvw

~fi = −ρ(u− u∞~q −∆ū)~q − (p− p∞)~i

~fvw = −p∆ū~q + ~τx

and

∆~u = u∞

√
1 + 2

∆H

u∞2

− 2

(γ − 1)M2
∞

[(e
∆S
r )

γ−1
γ − 1]− u∞. (4.34)

and ∆H ∆s are respectively the variations of enthalpy and entropy relative to their freestream
values ad ~q is the velocity vector (Van der Vooren formulation).

We observe that for our case the goal functions are de�ned as integration on the skin surfaces
so that we attempt to adapt for the near �elds quantity. The reduction of the spurious component
of the drag is in our case a criterion su�cient but it is not necessary to achieve a good prediction
of the drag by near �eld integration

4.3 2D goal function grid adaptation examples

Numerical evidences about an adaptation is given in this section. The values we retained to
exhibit are the force coe�cients Cd and Clp with the relatives θ criteria (θ[Clp] and θ[Cd]).
The criterion we used to stop the iterations is based on the quality criteria. When it does not
change signi�cantly we stop the process. Another criterion used is the changing on the function
estimated. We adopted the both criteria because as every step is computationally expensive,
we can not a�ord to compute the convergence especially because the iteration start to give rise
to an oscillating behaviour, and we retain to stop the iteration before as during the oscillation
the quality of the solution will not change signi�cantly.
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4.3.1 Test case presentation

The 2D pro�le used for the adaptation example is the RAE2822. This is a trans-sonic pro-
�le which is often used in literature in order to compare results. This adaptation example is
performed on a multi-blocks grid of about 135 200 nodes. The domains in two dimensions are
usually very big compared to the solid shape of the body, and for this case the domain length is
considered to be sixty times the cord length. The detail about the �ow and adjoint computation
are given in section 4.2, θ̄1 = θ̄1[Cd] and θ̄2 = θ̄2[Clp] are the two goals chosen. The calculation
is performed on a airfoil RAE2822, the Reynolds number is Re=6.5 106, the Mach number is
M∞ = 0.725, the angle of attack is α = 2.466 using the Spalart-Allmaras model. The �ow
solution in terms of Mach is exposed in Figure 4.3

Figure 4.3: Mach around the RAE2822 airfoil

4.3.2 Mesh adaptation results

The adaptation for θ̄1 = θ̄1[Cd] is:

Table 4.1: Cd adaptation example θ̄1

Iteration Cd Clp θ̄1 θ̄2 CdSp,rev CdSp,irr
0 123.93 0.73950 3.3875 5.2251 3.32 2.95
1 120.01 0.74423 2.7638 4.1711 3.42 2.71
2 119.97 0.73999 2.7542 4.1759 3.43 2.78
3 119.46 0.74152 2.8010 4.1881 3.49 2.93

and the adaptation for θ̄2 = θ̄2[Clp]

Table 4.2: Clp adaptation example θ̄2

Iteration Cd Clp θ̄1 θ̄2 CdSp,rev CdSp,irr
0 123.93 0.73950 3.3875 5.2251 3.32 2.95
1 120.87 0.74724 2.8044 3.9498 3.44 2.44
2 120.25 0.74708 2.6995 3.6656 3.49 2.34
3 119.92 0.74756 2.7211 3.6982 3.54 2.37

It is clear that the method exposed allows to adapt the mesh for the calculation of the
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interest function of interest. The �gures 4.4 and 4.5 shows the adapted mesh for the calculation
of Clp and Cd respectively.

Figure 4.4: Initial mesh (Left); Adapted mesh for Clp (right)

Figure 4.5: Initial mesh (Left); Adapted mesh for Cd (right)

4.4 Feature based grid adaptation

In this section we mean to summarize brie�y the main characteristics and to give an example of
a feature based grid adaptation. This study is made in parallel with the example given for the
objective function grid adaptation illustrated in the section 4.3 in order to get a comparative
between our formulation and a classic feature based adaptation one. This comparison will be
made by regarding especially the accuracy of the two methods and their consistency.

4.4.1 Feature based adaptation theory

Feature based grid adaptation is a technique used to adapt, to re�ne or to coarse a mesh
following the features present on the �ow. Furthermore, by looking a �ow computation on a
coarse structured grid and uniform, for example on an airfoil at Mach ≈ 1 it can be observed
that the shock expected is not well computed or completely dumped while we intuitively expect
it to be present. This is due to the fact that within the �ow �eld regions characterized by abrupt
variables discontinuities are present. This aimed the improvement of the so called feature based
adaptation methods which consist in a local re�nement of the grid where shocks, vortices, trailing
edges and so on.

One possible choice to detect these feature could be to moving nodes accordingly to a sensor
based on the gradient of �ows variables as pressure, velocity and density. This sensor would
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allow to detect the zones of the �ow �eld characterized by the formation of big discontinuities
and in a following step to re�ne them in order to avoid to dump the computation of the �ow
variables inside these zones of the current grid. These methods are named gradient based grid
adaptation methods.

Among the di�erent possible choices of gradient �ow variables as sensor, it can be chosen
the pressure gradient, the total pressure gradient, the density gradient and so on. We have
chosen the Mach gradient because it allows to capture the discontinuity that in�uence directly
our adaptation.

The criterion θgb used for this adaptation is given by the equations 4.35

θgb = ||∇M ||dX. (4.35)

Where ∇M is computed for all the nodes (see equation 4.36) and it has been multiplied by
a scalar quantity dX (which is de�ned as dX used in the θ criterion in section 1.4.3) allows to
take into account the possibility of every node displacement.

We take into account a volume Ω on which we integrate the Mach gradient:∫
Ω

∇MdΩ =

∫
∂Ω

M−→n dΓ. (4.36)

And we execute this operation on every cells where Mi is the Mach on the center of every
cells and Mi,j is the value interpolated on the cell contours with normal −→n i,j and surface Ωi.

Ωi∇Mi =
∑
j

Mi,j
−→n i,j . (4.37)

High values of θgb will underline nodes where the Mach gradient multiplied by the half
distance of the closest nodes is high so that the mesh will be moved in order to avoid it.

Additional details about the implementation of this method will be given in the following
section.

4.4.2 Feature based adaptation example

We performed an adaptation on the same initial grid as for the θ-sensor method. The model
used, the scheme (upwind) and their parameters are the same as for the θ-method. The step
adaptation also uses the same method (elliptic grid generation) where the weight function this
time are those which have been introduced in the section 4.4.1 so that the only di�erence consists
in the de�nition of the "sensor" used for the remeshing. The remeshing step is performed by
displacing the mesh nodes accordingly to θgb The gradient used in this section is the Mach
gradient. We compute his module on every mesh point (Figure 4.6):

||∇M ||
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Figure 4.6: (Top Left) initial Mach gradient module; (Top Right) second iteration Mach gradient
module; (Bottom Left) third iteration Mach gradient module; (Bottom right) fourth iteration
Mach gradient module

It can be observed that the method allows a better de�nition of the shock and the vortex
on the trailing edge which are partially dumped on the �rst �ow evaluation. As we already
explained the criterion built form ∇M multiplies this quantity by dX. We expect that the
zones underlined will tend to be extended (with respect to ∇M) at zones where the nodes are
more spaced, while they will tend to be reduced where the nodes are already very close. The
criterion built is plotted in Figure 4.7 with con�rmation of this fact. Indeed we notice that a
bigger upstream of nodes is involved in the de�nition of the current criterion when is weighted
by dX.

55



Figure 4.7: (Top Left) θgb on the initial mesh; (Top Right) θgb on the second iteration mesh;
(Bottom Left) θgb on the third mesh; (Bottom right) θgb on the fourth iteration mesh

This criterion induce the nodes displacement in order to adapt the mesh within the iteration
as it is exposed in Figure 4.8.
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Figure 4.8: (Top Left) initial mesh; (Top Right) second mesh; (Bottom Left) third iteration
mesh; (Bottom right) fourth iteration mesh

The mesh displacement is clearly made in towards the shock the vortices and the leading edge
with the result of a better resolution of the �ow features characterized by important gradients.

This is not directly linked with a good estimation of the functional variables as can be Clp
or Cdp. The results will be exposed in the following table in order to be compared with the
results given through the θ method. We notice that the term W represent the global criterion
quality with respect to θgb and it is calculated in order to be compared with θ̄.

Table 4.3: Gradient Based Adaptation Results

Iteration Cd Clp W

0 123.69 0.73993 2.24255
1 120.268 0.743502 2.13495
2 118.856 0.741779 2.30950
3 117.953 0.738592 2.38660

4.4.3 Feature based (θgb) Vs Output based (θ)

The most important evidence rising from the comparison between the methods is that there is
not a monotone improvement of the estimation function on the feature based grid adaptation.
This fact is natural as the adaptation induced by the presence of the features as strong gradients
is made to lead to a better resolution of those features. We take the classical example of the
shock. We imagine that we start with a uniform grid in which a CFD computation has been
performed. The evaluation of the gradients (of pressure for instance) would lead to a re�nement
around the shock wave. This would imply a re�nement of other zones with respect to the initial
grid as the upstream zone for which the errors increase. The increase of the errors on the
computation of the upstream zone would be carried away by advection to the down �ow, until
the shock. Beside a better resolution of the shock the result rising from the incertitude of the
results upstream would certainly lead to a better convergence of the shock feature but in a false
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position. Now, the feature based adaptation would certainly induce to a better de�nition of the
shock but in many case this will have as consequences a worst estimation of other quantities as
his position that are more important for the correct estimation of the functional of interest F .

Certainly our method, being goal-oriented based would not occur into this error, but as much
as the discretized equations which stands behind R = 0 are exact (without approximations) our
method would adapt the mesh establishing the relative importance of the di�erent features (for
example establishing the relative wight between gradients resolution and upstream resolution)
in order to achieve a good calculation of the objective function F .

4.5 Conclusions

We have been able to show that the method just built leads towards an improvement of the
accuracy on the computation of the function of interest F using the sensor θi,j The study has
been performed on a 2D test case using RANS equations and the particular points redistribution
is naturally in accordance with this particular test case and model used. The adaptation loop
improved the estimation of both Cd and Clp. We highlight that there are still present some
limits whose resolution would generate an additional improvement of the accuracy. These limits
are both geometricals and physicals:
-The geometric limit consists in the way the singularities on the body are treated (as the trailing
edge of this pro�le). For those points no actual displacement is allowed, so that they constitute
a node redistribution limit.
-A physical limit consist in the way the partial derivative ∂R/∂W is computed. In fact it has
been neglected the sensitivity of the turbulence with respect to the mesh displacement (because
of hypothesis: νT= const) , and the e�ects generated by the inter-components of the Laplacian
of the velocity (as a thin boundary layer hp has been done). This fact makes up a lost in the
accuracy of dF/dX.
Furthermore we noticed that the grid generation and adaptation by Laplacian equation generates
the most smoothed possible grid. This is important to ensure the regularity but it can reduce
sometimes the e�ects of the adaptation. In spite of these limits, the numerical results and the
comparison with a gradient-based method show that the local sensor allows a grid adaptation
improving the accuracy of the function chosen and the global sensor is well correlated to the
e�ective quality of the grid for the computation of the function chosen. A comparison with a
feature based adaptation strategy showed the bene�ts of our method in terms of accuracy.
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Chapter 5

3D grid local and global criteria

5.1 Introduction

With this chapter we mean to extend our research work to a 3D industrial case. For our test
we used in particular the wing-fuselage con�guration XRF1. This chapter is necessary as in
development phase the extension itself is not straightforward because there are many issues
which are not taken into account within a 2D case and the physic of the problem is more
complicated so we devoted this chapter in order to ensure the validation of the theoretical
method exposed in chapter 2. The present study will be divided into di�erent steps as we did
for the two-dimensional case as we did for in the chapter 4.

- The �rst step will consist into an introduction of the test case with his related direct �ow
computation in the paragraph 5.2

- The second step will be devoted to the study of the quali�cation criteria for the both goal
chosen Clp and Cd in the paragraph 5.3

5.2 Direct and adjoint computation

This study is performed on the wing-fuselage XRF1. For the sake of clarity we call as 'Direct'
computation the traditional �ow-solution and with adjoint computation, the computation of
the vector Λ. The parameters used for the direct computation of the �ow variables are the
followings: The Mach considered is M = 0.83 and the Reynolds number is Re = 49.92 ∗ 106.
Furthermore, the domain has been discretized with a mesh of about 21 millions point and it is
shown on Figure 5.1. We take as is often done in 3D cases the half part of the geometry as it is
shown in the following picture. The goals are CLp and Cd.

Figure 5.1: Mesh on the symmetry plane

We start with the observation that the number of points is su�cient for a good prediction of
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the entire �ow features of this conditions. The conservative variables computed by the �ow solver
are combined in order to show up the behaviour variables in Figure 5.2. These variables are
important for the following considerations as a validation needs at least a good comprehension
of the physic.

Figure 5.2: pressure distribution, total pressure distribution, Mach distribution on Oz,y

It can be noticed that the behaviour of the criterion is to highlight the zone where the
gradients are more important and that for every function of interest chosen. It is also noticed that
the upstream is detected as a sensible zone on the evaluation of the function for all the functions
while the wake seems to be neglected. The importance of the upstream is expected as the sensor
is able to 'understand' that the error on the upstream are transported by advection towards
the con�guration XRF1. We have to remember that the criterion is built up by multiplication
of dF/dX and a characteristic length. This fact explains why the wake seems to be neglected,
in fact we have an high re�nement on the zone corresponding to the wake which lead to a less
important detection. This also explain why the zone upstream has a smaller importance. A
complete presentation of these facts can be found in the following section.

5.3 Behaviour of the criterion θ

In order to understand the behaviour of the sensor θ it is necessary to look at it with respect to
the mesh. On the mesh, are present zones with an high re�nement. In these zones the criterion
θ has not important values because of the very small length ri,j

We will focus on the calculation of the objective functions: Clp , Cd and for this last one we
will also study his decomposition into Cdp and Cdf , so that we de�ne for this particular test
case: θ1 = θ1(Clp) θ2 = θ2(Cdp) θ3 = θ3(Cdf ) θ4 = θ4(Cd) = θ2 + θ3

We remark that in the case we want to analyse the behaviour of θ̄ it is not true that
θ̄4 = θ̄2 + θ̄3, because the operator average that we de�ned is not linear.
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Figure 5.3: Cp (Left); θ1 (Right)
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Figure 5.4: Cp (Left); θ4 (Right)
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5.4 Conclusions

After the mathematical construction of the di�erent steps involved in the adaptation process,
a study of the di�erent steps has been performed. The strategy used to adapt the grids for the
calculation of the function has been proved in the previous chapters (for a test case 2D) to be
e�cient and beside the approximations made, the local sensors has allowed the individuation
of the zones with an high sensitivity with respect to the functions chosen. The grid adaptation
induced has allowed the improvement on the function estimation accuracy and the global sensor
built has been shown to indicate when a mesh is more or less adapted for the calculation of the
functional chosen. With this chapter an extension to an industrial case 3D of the sensor allowed
its the validation for an industrial case in which the computational cost is more important, the
physic is more complex and the geometry (i.e multi blocks and non coincident grids) is more
sophisticated.
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Conclusions

The goal of this study was to build a strategy in order to answer to the need of accuracy on the
evaluation of aerodynamic performances (i.e lift and drag) which are closely connected with the
fuel consumption. Furthermore it was required to build a strategy which allows this improvement
without to increase the computational cost of the CFD solution, leading to a redistribution of
points rather than an addition. The construction of such a method has been performed starting
by theoretical considerations on the stability of a mesh which are described at the beginning of
the second chapter. In the following of the chapter we described step by step the theoretical
aspects leading to the de�nition of a sensor θi,j used to induce the adaptation, and another
sensor or criterion θ used to qualify the mesh. The study and the coherence of these sensors
w.r.t our purposes is presented within the chapter three. In this chapter it was concluded that
the sensor and the criterion are able to be used for our scopes. Then a mesh adaptation process
was exhibited within the fourth chapter in order to achieve an improvement of the accuracy.
Here we chose Cd and Clp as goal functions and we compared the estimation of these variables
for adapted meshes with respect to limiting values obtained from a calculation of Cd and Clp on
a very �ne mesh and we proved the increasing of the goals estimation accuracy. In chapter fourth
we also performed a comparison between our method and the gradient based one, showing the
bene�ts of our strategy. Then an extension in a 3D industrial case of the is performed showing
his reliability in complex cases. This extension has been showed up in chapter �ve where we
also retained to point out from a practical point of view that the sensor is enough mature to be
used for an industrial application (i.e A320neo A380 and A350).

Beside we manage with some limits, the present work showed that the total derivative of
an aerodynamic function with respect to the volume mesh can be successfully used to build
a strategy to adapt the mesh. Furthermore the strategy built from dF/dX presents other
additional aspect of improvement. The νT = const and the thin boundary layer hypothesis made
within the linearization of the term ∂R/∂W cause a deterioration of the accuracy of dF/dX.
The limit constituted by these hypothesis can be removed in the future in order to enhance an
improvement of θi,j . The geometric limit constituted by the �xed points can be eliminated in
order to obtain a points redistribution totally coherent with the zones individuated by θi,j .
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Appendix A

Construction of a mesh generation

elliptic system of PDEs

The generation of a structured mesh is following. We de�ne a computational space C as a unit
square with coordinates ξξξ, a parameter space as unite square P with coordinates sss and the
physical domain D with physic coordinates xxx.

The mesh used for CFD is here de�ned as a map which associates every element of the
computational space to the elements of the physical domain. Furthermore we de�ne it as:

xxx: C → D,

such that every single node on the physical space is the map of a node in the computational
domain. The construction of the map C → D can be written as the combination of the maps
C → P and P → D.

In practice C → P and D → P are �rst computed. In fact this last one is imposed as
harmonic function:

∆sss =

3∑
k=1

∂2sss

∂x2
k

= 0. (A.1)

After the setting of the map D → P , and after the observation that the solution of these
equations depend on the boundary conditions, the only variable is the choice of the map C →
P .

We de�ne now certain quantities which will be useful in the following:

gigigi = ∂xxx
∂ξi

covariant base vectors

gigigi = ∂ξ
∂xixixi

contravariant base vectors

Aij = gij = (gi, gjgi, gjgi, gj) covariant metric tensor
Bij = gij = (gi, gjgi, gjgi, gj) cotravariant metric tensor

Where the covariant and contra-variant metric tensor are linked by:

B = A−1

Observing that the vector sss can be expressed in respect to both the variables xxx and ξξξ as:

sss(xxx) = sss(ξξξ(xxx))

his Laplacian assumes the form:

∆sss =

3∑
i,j=1

gijsssξiξj +

3∑
k=1

∆ξksssξk . (A.2)
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Now we impose the condition of regularity (∆sss = 0) and we observe that the last equation
can be expressed as:

∆ξξξ =

3∑
i,j=1

gijPij . (A.3)

If we recall the equation in variable sss and we substitute the variable xxx we can write it down
as:

∆xxx =

3∑
i,j=1

gijxxxξiξj +

3∑
k=1

∆ξkxxxξk . (A.4)

Now we observe that ∆xxx = 0 and we substitute the expression in ∆ξξξ to obtain:

3∑
i,j=1

gijxξiξj +

3∑
k=1

3∑
i,j=1

gijP
k

ijxξk = 0. (A.5)

with control functions:

Pk =

3∑
i,j=1

gij

gkk
P
k

ij . (A.6)

In order to conclude we observe that this expression is written in the form which can be used
to solve the problem because it directly linked with the discretization being the covariant and
contra-variant variables expressible as �nite di�erences as we wrote down in the article.
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