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Abstract

This thesis, carried out in collaboration with Eni S.p.A., aims at un-
derstanding how the porosity of the source rock, where hydrocarbons
are generated, changes as generation and expulsion of hydrocarbons
take place. In particular, the mechanical compaction, due to the ef-
fective stress, and the extra pore space generated by the consumption
of the solid organic matter (i.e. kerogen) have a deep impact on the
porosity of the rocks, as well as on the variations of pressure due to the
breakdown of kerogen into fluid hydrocarbons and to the expulsion of
these products. An original feature of this work is that the equations
are formulated and numerically solved on a fixed domain, obtained
from the physical one as its completely compacted configuration, hav-
ing removed all the degradable part of the rock. The advantage is that
the mesh can be built once and for all at the beginning of the sim-
ulation, as well as the basis functions of the finite element methods.
Simulations are carried out in a two dimensional section of a sedimen-
tary basin with a simplified model of source rock - which consists of
rock with no hydrocarbon potential, pure kerogen, and a void part
initially filled with water - and a simplified chemical kinetic, in which
kerogen generates only oil. The temperature and the overburden due
to the overlying sedimentary layers are given fields and may account
for the burial history of the source rock, while the pressure of the fluids
in place is modeled with the Darcy law.



Sommario

Le simulazioni numeriche nel campo dell’esplorazione petrolifera sono diven-
tate uno strumento di routine che consente di supportare l’analisi geologica
nella localizzazione degli idrocarburi dalla loro generazione nella roccia madre
fino all’accumulo nel giacimento. Gli idrocarburi sono generati dalla de-
composizione termica del kerogene, un solido organico di origine biologica
contenuto nella roccia madre. Requisito fondamentale è che la roccia madre
sia collocata a una certa profondità, cosicché possa raggiungere le elevate
temperature che consentono l’avvio del processo di decomposizione del kero-
gene in composti petroliferi. Per effetto della compattazione dei sedimenti,
causata dal progressivo sovraccarico, una volta generati, gli idrocarburi sono
espulsi dalla roccia madre e ha luogo la migrazione primaria. Per migrazione
secondaria si intende, invece, lo spostamento compiuto dagli idrocarburi
fuori dalla roccia madre attraverso pori più ampi e rocce più permeabili.
Recentemente, gli studi condotti al fine dello sfruttamento dei giacimenti
non convenzionali hanno messo in luce l’importanza di considerare i processi
di ritenzione nella roccia madre, come ad esempio l’adsorbimento all’interno
dei nanopori della roccia. Per adsorbimento si intende il fenomeno chimico-
fisico che consiste nell’accumulo di una o più sostanze fluide sulla superficie
di un solido.

Lo scopo di questa tesi, svolta in collaborazione con Eni S.p.A., è quello
di modellizzare e simulare i processi di generazione e migrazione primaria
degli idrocarburi, ponendo un’attenzione particolare all’evoluzione della
porosità in risposta alla mutua interazione tra i processi chimici e fisici
che coinvolgono la roccia madre. Da una parte, infatti, la porosità risente
dell’aumento del sovraccarico, causato dalla progressiva sedimentazione; dal-
l’altra, la degradazione del materiale organico solido in idrocarburi liquidi o
gassosi tende a generare una ulteriore porosità.

Per effetto del consumo del kerogene e della compattazione dei sedi-
menti, il dominio fisico del problema evolve nel tempo. Al fine di evitare le
complicazioni numeriche che ne conseguono, le equazioni del modello sono
state mappate e risolte su un dominio fisso, ottenuto compattando comple-
tamente il dominio fisico e rimuovendo da esso la porzione degradabile della
roccia. Una volta risolte le equazioni su questo dominio, la soluzione è stata
riportata nel dominio fisico, per una visualizzazione più intuitiva.

Una parte della tesi è stata svolta in stage presso Eni S.p.A ed è stata
dedicata allo studio e alla comparazione di diversi modelli di ritenzione,
integrati all’interno di simulazioni di generazione e migrazione primaria.
Sebbene il modello proposto in questa tesi non tenga conto di processi di
questo tipo, riteniamo che questo studio si rivelerà utile in una futura es-
tensione del modello che implementi cinetiche chimiche più complesse. Una
lunga appendice è, pertanto, dedicata a questa parte del lavoro.



1 Introduction

Numerical simulations have become a routine tool for petroleum exploration
to simulate both the processes of generation and expulsion from source rock
and those of migration and accumulation in reservoirs. Since oil explo-
ration is a very expensive and risky operation, it is important to have a
deep knowledge of the geological background of the areas that will be ex-
plored. The numerical simulation of generation and migration processes can
support geological analysis in tracking hydrocarbons “from source to trap”
and therefore reduce the risk in oil exploration. The main information that
the oil industry expects to understand with the combined investigation of
numerical simulations and geological analysis is where the reservoirs are lo-
cated and what is the amount of oil and gas that they will be able to find
and exploit.

The generation of hydrocarbons never happens in the accumulation reser-
voirs where they are discovered. Indeed, hydrocarbons are generated in a
source rock, i.e. a layer of sediments rich in organic matter, called kerogen.
Because of its progressive burial, the source rock experiences high tempera-
tures and the chemical reactions that cause the breakdown of kerogen into
oil take place. Hydrocarbons are then expelled from the source rock as a
consequence of the sediment compaction and primary migration takes place.
Once expelled from the source rock, the petroleum starts a secondary mi-
gration, driven by buoyancy. The migration of petroleum continues as long
as it does not meet with a layer of low permeability, which forms a trap,
where the hydrocarbons accumulate.

A realistic numerical simulation of generation and primary migration al-
lows, given the thermal history of the basin and the physical characteristics
of the source rock, such as porosity and organic matter content, to estimate
the amount of hydrocarbons generated throughout hundreds of million years.
Moreover, numerical simulations can provide information on the timing of
expulsion. Finally, if a detailed description of chemical reactions and reten-
tion processes is provided, it is possible to forecast the chemical composition
of the products and the fraction of gas versus oil expelled. In this sense,
numerical simulations support and complete the reconstructions made by
geologists.

Recently, the studies about the exploitation of unconventional sources
have stressed the importance of taking into account, in the study and simu-
lation of generation and primary migration, retention processes in the source
rock, such as the solution of hydrocarbons into the organic matter or the
trapping of molecules in nanometric pores (see [16] and [17]). These phenom-
ena depend strongly on the molecular properties of the gas and oil species,
therefore some types of hydrocarbons are more likely to be retained than
others. Since retained hydrocarbons keep reacting and breaking into lighter
compounds, retention processes can significantly alter the final chemical
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composition of the products
This thesis aims at modeling and simulating the porosity evolution in the

source rock, during the processes of generation and primary migration. In
the source rocks a complex interplay of mechanical and chemical processes
affects on the one hand the balance of the vertical stress, and on the other
the kerogen concentration field. Both these effects have strong implications
on porosity and, consequently, on permeability. An increase of permeability
means an increase of the flux inside the source rock. Moreover, a strong
variation of compaction inside the source rock can cause fractures which, in
turn, induce the increase of permeability.

This thesis was carried out in collaboration with Eni S.p.A. An intern-
ship period was dedicated to the study of the effects of different retention
models on the simulations of generation and primary migration of hydrocar-
bons, with deep insight into those retention process referred to as adsorption
in mineral nanopores. Although in the model proposed in the present thesis
these kind of processes are neglected for the sake of simplicity, this inves-
tigation will be very valuable when the model will be improved to include
retention processes and more complex chemical kinetics for the generation
of hydrocarbons. Hence, an appendix is dedicated to the illustration and
comparison of the most common adsorption models in literature.

Compared to other problems related to oil exploration, the literature
about the numerical simulation of the combined dynamic of oil generation
and oil flow is quite limited. One of the main issues of the models of primary
migration is that the porosity of the medium varies not only in space but
also in time due to the conversion of the organic matter into fluid products.
The model for the evolution of porosity in source rocks was first advanced
in [21] and [20] by Wangen, who also proposed the idea of studying the
problem in an artificial fixed domain, which we will follow in this thesis.

The work is structured as follows. In section 2 we give a general introduc-
tion on the processes that give origin to petroleum and to its accumulation
in the reservoirs, following [1].

In section 3 we derive a new porosity law which accounts for the mutual
interaction between mechanical compaction and kerogen dissolution effects.
In particular, from the equation of mass conservation for the solid matrix
we obtain the relationship between the rate of conversion from solid to fluid
and the variation of kerogen concentration. Starting from this relation, we
derive the new porosity law. Then, we present the model in the physical
domain for a simplified source rock, which only consists of rock with no
hydrocarbon potential and pure kerogen. For the sake of simplicity, we
make the assumption that kerogen only generates oil and we use the two-
phase Darcy model. Because of the consumption of kerogen and of the
compaction of the rock due to the vertical pressure, the sediment matrix
is not fixed and the physical domain moves. An original issue is that of
studying and numerically solving the equations in a fixed domain, obtained
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from the physical one as its completely compacted configuration, having
removed all the degradable part of the rock. The advantage of writing the
equations and solving the problem on a domain that, differently than the
physical one, is fixed is that we do not need to deform the mesh according
to the movement of the domain. The mesh can be built once and for all at
the beginning of the simulation, as well as the basis functions of the finite
element methods.

In section 4 we propose a strategy for the numerical solution of the system
of equations. We first analyze each of the equations separately. Then, we
propose an iterative strategy to solve the whole problem. Although a fully
coupled approach is possible in principle, the two-phase Darcy model is
decoupled via a common splitting technique in reservoir simulations, called
IMPES. The equation for the oil phase saturation, which expresses a mass
balance for the hydrocarbons in the source rock, is an advection-diffusion-
reaction equation with degenerate diffusion. Its approximation is based on
an ADR operator splitting, which allows to solve the advection part as
a nonlinear conservation law via Godunov method, and the diffusion part
exploiting the expanded finite element method, advanced by Chen in [3].

In section 5 we report some numerical results obtained by implement-
ing the proposed strategy. The code was implemented with the support of
GetFEM++, a C++ finite element library.

Finally, three appendices are present. Appendix A illustrates the Piola
transformation of vectorial fields, a tool that we use when reformulating the
equations in the fixed domain. Appendix B is a brief summary of the main
properties of the Raviart-Thomas finite elements used to approximate the
Darcy problem as well as the parabolic part of the saturation equation. In
appendix C we illustrate the phenomenon of adsorption and compare some
common adsorption models.
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2 Origin, migration and accumulation of petroleum

The origin of petroleum is never in the reservoir accumulation where it is
discovered by exploration. Instead, prior to accumulation in the reservoir,
petroleum has experienced a long series of processes, which happen if the
following geological conditions are met:

• Occurrence of source rocks which generate petroleum (both oil and
gas) under proper temperature conditions.

• Sediment compaction leading to expulsion of petroleum from the source
rocks (primary migration).

• Occurrence of reservoir rocks of sufficient porosity and permeability
allowing flow of petroleum through the pore system (secondary migra-
tion).

• Structural configurations of sedimentary strata where the reservoir
rocks form traps, which should be sealed above by impermeable sedi-
ment layers.

• Favorable conditions for the preservation of petroleum accumulation
during extended periods of time.

2.1 Deposition of source rock sediments

A petroleum source is characterized by three essential conditions. It must
have a sufficient content of finely dispersed organic matter of biological ori-
gin; this organic matter must be rich in hydrogen; the source rock must
be buried at certain depths and subject to proper temperatures to initiate
the process of petroleum generation by the thermal degradation of kerogen.
The organic carbon concentration is proved to be an approximate measure
of the organic matter content of a rock. The minimum concentration of
organic carbon for a productive source rock depends on the internal storage
capacity of the rocks in terms of their porosity. If too little organic matter
is present, the small quantities of petroleum generated will not exceed the
storage capacity of the rock and no petroleum expulsion will take place.

The formation of sediments rich in organic matter is restricted to certain
conditions of the depositional environment. These sediments are deposited
in aqueous environments which receive a certain contribution of organic mat-
ter, such as residues of dead organisms and algae, along with the sediment
particles. Instead, in a terrestrial environment, organic matter is readily
destroyed by chemical and microbial oxidation shortly after deposition. All
the aqueous depositional environments can also receive a supply of organic
matter derived from higher land plants transported by rivers or glaciers, or
simply wind-blown. In contrast to algal or bacterial biomass which is rich
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in hydrogen, land plant-derived organic matter tends, due to high fractions
of cellulose and lignin-derived materials, to be rich in oxygen. The organic
matter of most source rocks is a mixture of residues derived from marine
organisms as well as from terrestrial vegetation. It is the relative abundance
of each of these organic materials which determines whether the resulting
source rock will generate predominantly oil or gas upon burial.

The solid organic matter in source rocks is called kerogen. A useful
geochemical approach for determining the complex composition of kerogen
consists, as discussed in [19], in considering the relationship between the
atomic hydrogen/carbon ratio H/C and the atomic oxygen/carbon ratio
O/C (see figure 1).

Figure 1: Classification of kerogens into three broad categories in terms of
their atomic H/C and O/C ratios. From the freshly deposited sediments
(diagenesis stage), with increasing burial, kerogen transformation proceeds
during the catagenesis and metagenesis stages. Figure from [1].

Most prolific source rocks for oil have type II-kerogens. Type I-kerogens
are rare, while source rocks of type III-kerogen generate little oil but more
gas.
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2.2 Oil and gas generation

Oil and gas are generated by the thermal degradation of kerogen. With
increasing burial, the temperature in these rocks rises and, above a certain
threshold temperature, the chemically labile portion of the kerogen begins to
transform into petroleum compounds. The main reaction mechanism is the
breaking of carbon-carbon bonds (cracking), which requires that the input
of thermal energy exceeds certain minimum levels (activation energy). The
generation of oil and gas in source rocks is a natural consequence of the in-
crease of subsurface temperature during geologic time. The process of kero-
gen transformation with increasing temperature is called maturation, which
is subdivided into the catagenesis and metagenesis stages. The organic mat-
ter is called immature prior to the onset of hydrocarbon generation, mature
if hydrocarbon generation is in progress, overmature when these reactions
have been terminated. The temperature interval where oil generation is in
progress is referred to as the oil window and it extends over the temperature
interval of about 80 − 150◦C. In the case of good quality source rocks, up
to 50% of the kerogen is labile and converted into petroleum hydrocarbons
while the source rock is in the oil window.

For petroleum exploration, it is essential to determine the precise stage
at which hydrocarbon generation reactions have progressed in a particular
source rock. This is done by measuring some maturation parameters. The
most commonly used maturation parameter is vitrinite reflectance. With
increasing maturation, the ability of vitrinite particles to reflect a beam of
white light increases gradually. The oil window for source rocks with type
II-kerogens extends over a maturity interval of about 0.5 − 1.3% vitrinite
reflectance. Above the maturity interval of 1.3− 2.0% vitrinite reflectance,
lower molecular weight hydrocarbons in the form of condensates and wet
gases are generated. At maturity levels in excess of 2.0% vitrinite reflectance,
only dry gas is generated.

The ratio of the generated gas versus generated oil (GOR) depends on
the type of its kerogen and its heating history during burial. Generally the
gas to oil ratio increases with the increasing maturity of a source rock. In
fact, methane is, thermodynamically, the most stable hydrocarbon species
and the oil accumulations that get buried deeper and deeper and exposed
to higher temperatures are ultimately converted into accumulations of dry
gas by cracking processes.

2.3 Migration

The generation of petroleum by thermal degradation of kerogen is based on
chemical processes controlled mainly by temperature. Instead, migration of
petroleum from its place of origin in the source rock to its place of accumu-
lation in the reservoir trap is controlled by the physical and physicochemical
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conditions of the sedimentary strata the oil is moving through. Pressure ex-
ercises a major influence on this process. In the subsurface, we can identify
two types of pressure. The hydrostatic pressure is the weight of the fluid
column corresponding to the interconnected network of water-filled pores
from a given depth up to the sediment surface, or sea surface for submerged
basins. The lithostatic pressure is the sum of the weight of the rock column,
transmitted from the surface to a given depth by grain-to-grain contacts,
plus the weight of the pore fluid column. In a sedimentary basin, any de-
viation from the hydrostatic pressure is called an abnormal pressure. This
can be overpressure, which is caused by the inability of pore fluids to escape
from porous rocks in proportion with the overburden load, or underpressure.

Another set of physical and physicochemical conditions which exercise
major control over the ability of petroleum to move through rocks are poros-
ity and permeability. Porosity is the volume of void spaces as percentage of
a given total volume of rock. For the applications of our interest, all pores
in the subsurface are filled with water, with the exception of those situations
where the pore water has been displaced by petroleum. Permeability char-
acterizes the ability of fluids (water, oil, and gas) to move through porous
rocks. Various relationships between porosity and permeability exist, de-
pending on rock type. Finally, the movement of petroleum through porous
rocks is influenced by capillary forces. This is due to the interfacial ten-
sion between two immiscible phases (oil/water or gas/water). The capillary
pressure of a rock increases with decreasing pore size.

Primary migration

Primary migration of petroleum follows pressure gradients from the center
of mature source rock towards the reservoir. The complex dynamics of
primary migration are described in detail in [15]. One of the main driving
forces for primary migration is sediment compaction due to overburden load.
Compaction is achieved by the reduction of pore spaces with expulsion of
pore water. Since oil is transported as a separate phase, any migrating
oil phase has to overcome capillary pressures in the narrow pores of the
originally water-wet source rocks. The effective flow can only be achieved
once an interconnected network of oil-saturated pores has been established.
It has been estimated that a minimum oil saturation of 20% has to be
reached in the pores prior to initiation of its active flow. An additional
mechanism to provide pressure for the expulsion of petroleum is due to
the volume expansion associated to the conversion of solid labile kerogen
into liquid and gaseous hydrocarbons. The newly generated hydrocarbons,
which have entered these narrow pore spaces, cause the original pore fluid
pressure to increase. If this rising pore fluid pressure reaches about 80% of
the lithostatic pressure, the strength of the rock is exceeded and it fractures.
Microfracture networks open and the expulsion of oil is facilitated.
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The primary migration of natural gas components occurs mostly when
they are dissolved in oil. In fact, at pressures exceeding the critical point in
the phase diagram, oil and gas are present as a single-phase.

Secondary migration

As soon as the petroleum has entered the reservoir rock, quite different
physical conditions prevail. Porosities, permeabilities and pore sizes are sig-
nificantly higher. The main driving force of secondary migration is buoyancy
which is due to the density contrast between petroleum hydrocarbons and
water. A second driving mechanism can be hydrodynamic forces. The re-
sisting force of capillary pressures counteracts these driving forces. Capillary
pressure is the pressure which oil or gas has to overcome in order to displace
the water from the pores of the rock it is trying to penetrate. If a rock has
very narrow pore throats, capillary displacement pressure get so high that
they cannot be exceeded by the buoyancy of the oil or gas and entrapment
occurs.

The migration of petroleum continues as long as it does not encounter
structural configurations where the reservoir strata form traps. For a trap
to hold petroleum in place, it must be sealed by an impermeable cap rock.
Under favorable pressure conditions, gas desorption will occur and a free gas
phase will separate from the oil. Since gas has the highest buoyancy, it will
accumulate at the top of the structure, forming the gas cap.
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3 The model

3.1 The Darcy equation

Sediments and sedimentary rocks are porous media, i.e. solids that ex-
hibit void spaces. These pores are normally connected and a fluid may flow
through the void space. The way in which the pores are connected and their
size determine how permeable a porous medium is for fluid flow, and the
volume of the pore space controls its capacity to store fluid. The pores are a
consequence of the variety of sizes and shapes of the grains the rocks consist
of, but, as we are going to discuss later on, the pore space is also the result
of a complex interplay of mechanical and chemical processes.

The assumptions that are usually made to identify a rock matrix as a
porous medium are the following

• the void space of the solid matrix is interconnected;

• the dimensions of the pore space are large compared to the mean free
path of fluid molecules. Under this assumption we are allowed to
model the fluid in the void space as a continuum;

• the dimensions of the pores are small enough to consider the fluid flow
as controlled by adhesive forces at fluid-solid interfaces and cohesive
forces at fluid-fluid interfaces.

Under these hypotheses, we consider a domain Ω ∈ IRd and define the
functions:

χ(x, t) :=

{
1 if x ∈ void space

0 if x ∈ solid matrix
x ∈ Ω

and

φ(x, t, r) :=
1

|Br(x)|

∫
Br(x)

χ(y, t)dy x ∈ Ω,

where Br(x) denotes the d-dimensional ball of center x and radius r. If there
exists r0 such that |∂φ∂r | << 1 for r in a neighborhood of r0, then we define
porosity the field φ(x, t) = φ(x, t, r0).

Darcy’s law is an expression for the flux U of fluid that is flowing through
a porous medium in response to a pressure gradient and is an approximation
of the momentum conservation law. It postulates the existence of a perme-
ability tensor field K ∈ IRd×d, which is symmetric and positive definite, such
that

U = − 1

µ
K (∇p− ρg) ,

where g is the gravity acceleration g = −gez. Notice that in the vertical
direction we have to subtract the effect of gravity: in fact, a fluid pressure
equal to the weight of the fluid column leads to a zero Darcy flux.
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The two parameters in Darcy’s law are the permeability tensor K, the
fluid viscosity µ, and the fluid density ρ. The permeability is a rock property
characterizing the rocks ability to conduct fluid and is determined by two
main aspects: the size of the pores and how well the pores are connected.

The permeability has been measured for a large range of sediments and
rocks, and it is a property that spans several orders of magnitude, as shown
in figure 2.

Figure 2: The permeability for common sediments and sedimentary rocks.
Notice that even the permeability of one rock type normally spans several
orders of magnitude.

Let us consider a fluid with two immiscible phases, e.g water w and oil
o. For each phase α = w, o we define

χα(x, t) :=

{
1 if x ∈ α phase
0 otherwise

x ∈ Ω,

and

Sα(x, t, r) :=

∫
Br(x) χα(y, t)dy∫
Br(x) χ(y, t)dy

We then define saturation of phase α the function Sα(x, t) := Sα(x, t, r0), if
there exists r0 such that |∂Sα∂r | << 1 for r in a neighborhood of r0. Exper-
iments have shown that, when two immiscible fluids share the pore space,
the Darcy’s law can be applied separately for each phase, with the addi-
tion of a proper coupling condition. This condition is due to the interfacial
tension that occurs at the interface between two immiscible phases. The
corresponding effect in porous media is named capillary pressure, which in-
dicates an additional fluid pressure. The model arisen, detailed in section
3.3, is the two-phase Darcy model, which also requires that the two phases
completely fill the porous medium, that is Sw + So = 0.
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3.2 Mechanical compaction under geochemical transforma-
tion

The objective of this section is to outline a mathematical model for com-
paction in source rocks that accounts for the degradation of kerogen. The
model that we are going to deduce is rather general and accounts for all
processes that involve conversion to liquid of part of the solid matrix.

Let us introduce some basic hypotheses, besides the classical ones for
Darcy-type flows in porous media. The first is that the compaction process is
governed by the same basic mechanisms that give rise (when only mechanical
compaction is present) to the Athy’s law of mechanical compaction. In
particular, this means that the compaction process is relatively “slow”.

The second hypothesis is that the kerogen can be considered as dispersed
in the solid matrix. Indeed we assume that at any point x inside the domain
and at any time t we can define a field C = C(x, t) that represents the ratio
between the volume of kerogen and the initial rock volume, i.e. the solid
volume when no degradation of kerogen has yet occurred.

We also make the usual assumption that the compaction acts only ver-
tically. The extension to more general situations is possible but, because of
its complexity, is beyond the scope of this thesis.

We first recall the basic derivation of Athy’s law for mechanical com-
paction.

3.2.1 Athy’s law for mechanical compaction

Athy’s compaction law associates the porosity φ to the (vertical) effective
stress σe = σT − p, where σT is the overload and p the pore pressure.

Athy’s law reads
φ(x, t) = φ0e

−βσe(x,t), (1)

where φ0 is the reference porosity (the porosity at σe = 0, that corresponds
to uncompacted sediments) and β is a constant, typically fitted by experi-
ments.

Notice that the condition σe > 0 implies that 0 ≤ φ ≤ φ0. Thus, if the
reference porosity is in [0, 1], then φ will be in [0, 1] too.

In case the porous material exhibits hysteresis, a possibility is to assume
that the compaction is linked to the maximum effective stress experienced
by the material. This means replacing (1) with

φ(x, t) = φ0e
−βM(σe)(x,t), (2)

where
M(σe)(x, t) = supτ∈(0,t) σe(y(τ), τ) (3)
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and y(τ) is the solid particle trajectory defined by{
d
dty(τ) = u(y(τ), τ) τ ∈ (0, t)

y(t) = x
(4)

In the following derivation we will neglect hysteresis effects.

3.2.2 Standard derivation of Athy’s law

Athy’s compaction law associates the porosity φ to the effective vertical
stress σe = σ− p, where σ is the overload and p is the pore pressure. Athy’s
law can be formally derived by assuming a poroelastic behavior described
by

Dσe
Dt

= −κ(ξ)∇ · us. (5)

Here D/Dt indicates the material derivative, i.e. the derivative along the
solid particle trajectory (4), and us is the solid velocity. We denote with
ξ the solid volume fraction, that is related to the porosity by the equation
ξ = 1− φ. Finally, κ is a viscosity parameter, which is, in general, function
of the porosity φ. To derive Athy’s law we consider the balance of mass for
the solid fraction, assuming only mechanical compaction. If Vs = Vs(t) is a
solid material volume contained in our domain (i.e. a volume formed by the
same solid particles), for an incompressible material we have

d

dt

∫
Vs(t)

ξ(x, t)dΩ = 0. (6)

Standard application of Reynold’s transport theorem gives, for x ∈ Ω(t)
and t ∈ (0, T ),

Dξ

Dt
(x, t) + ξ(x, t)∇ · us = 0, (7)

by which, recalling that ξ = 1− φ,

−Dφ
Dt

+ (1− φ)∇ · us = 0.

Combining the latter with (5) we obtain

Dσe
Dt

= − κ(φ)

1− φ
Dφ

dt
. (8)

Athy’s law is easily recovered by choosing

κ(φ) = β−1 1− φ
φ

(9)

and integrating in time between 0 and t. Note that 1−φ
φ is the ratio between

solid to pore volume.
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3.2.3 Rock description and coordinates

Before extending the Athy’s law to the case of kerogen degradation, we need
to make some considerations about the domain of interest for our problem.

Because of the consumption of kerogen and of the compaction of the rock
due to the vertical stress, the sediment matrix is not fixed and the domain
Ω(t) in which we formulate the equations is time dependent. In order to
avoid this complication and to write the equations on a fixed domain, fol-
lowing [21] we introduce the domains Ω∗ = Ω∗(t) and Ω̂, whose coordinates
are indicated by (x, η) and (x, ξ) respectively. Notice that, since we assume
that compaction leads only to a vertical movement of the solid matrix, all
the domains have the same coordinate x. Ω∗ is obtained from the actual
domain Ω(t) as its completely compacted configuration, while Ω̂ is obtained
from Ω∗ removing all the degradable part of the rock (i.e. the kerogen).
Thus, Ω̂ represents the volume occupied by non-degradable material and is
fixed in time.

Let z be the vertical coordinate which has the layer bottom as the origin
and ξ be the coordinate that measures the height of the non-kerogen part
of the completely compacted source rock and has the layer bottom as the
origin (see figure 3). Both the axes are oriented upwards.

Ω̂ Ω∗(t) Ω(t)

x x x

ξ η z

ϕ̂ ϕ∗

ϕ = ϕ∗ ◦ ϕ̂

Figure 3: The three coordinates systems. On the right, the physical domain
Ω(t). Domain Ω∗(t) is obtained from Ω(t) as its completely compacted con-
figuration, and domain Ω̂ is obtained from Ω∗(t) by removing all kerogen.

As explained in [21], the map ϕ : Ω̂→ Ω(t), ϕ(x, ξ) = (x, z(ξ, t)) is

ϕ(x, ξ) =

(
x, −

∫ ξ∗

ξ

1− C0 + C(ξ′)

(1− C0)(1− φ(ξ′))
dξ′

)
where ξ∗ is the height of the basin along the ξ-axis and is computed from
the porosity at the initial configuration.

In fact, in a small sediment volume measured to be dz high the amount
of solid sediment is given by

dη = (1− φ) dz,
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where φ is the porosity. dη measures the height of the sediment volume as
completely compacted rock. If C represents the kerogen volume fraction of
the initial solid part of the rock volume, the height of the volume measured
as compacted rock without any kerogen is

dξ = (1− C0) dη0,

where C0 is the initial kerogen fraction and dη0 is the initial amount of solid
sediment dη0 = (1− φ0) dz0. Thus, we have that

dη = dξ + C dη0 =

(
1 +

C

1− C0

)
dξ,

and

dz =
dη

1− φ =
1− C0 + C

(1− C0)(1− φ)
dξ (10)

The relationship between z and ξ is then

z(ξ) = −
∫ ξ∗

ξ

1− C0 + C(ξ′)

(1− C0)(1− φ(ξ′))
dξ′,

where ξ∗ is the height of the basin along the ξ-axis.
Let us consider

J := ∇ϕ =

[
1 0
0 ∂z/∂ξ

]
Thus,

J := det(J) =
∂z

∂ξ
.

Let us observe that, due to the choice of the reference configuration Ω̂, the
time derivative of the map from the reference to the actual configuration
coincides with the velocity of the solid matrix: ∂ϕ

∂t = us. This property will
be very important for our purpose of obtaining a more general porosity law.

Proposition 1. The partial differential equation

∂g

∂t
+∇ · (gu) = Q in Ω(t)× (0, T ]

with g = g(x, z, t) can be formulated in the fixed reference system Ω̂× (0, T ]
as

∂(ĝĴ)

∂t
+ ∇̂ · (ĝ(û− ûs)) = Q̂ Ĵ in Ω̂× (0, T ] (11)

where we have set, for a generic function f , f̂ = f ◦ϕ, for a generic velocity
vector v̂ = Ĵ Ĵ−1v ◦ϕ, and we have defined the operator

∇̂ =

(
∂/∂x
∂/∂ξ

)
= J∇ = J

(
∂/∂x
∂/∂z

)
.
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Proof. Since ∂ϕ
∂t = us, one has

∂g

∂t
+∇ · (gu) = ∂g

∂t +∇ · (gus) +∇ · (g(u− us))

= Dg
Dt + g ∇ · us +∇ · (g(u− us))

Integrating the equation

Dg

Dt
+ g ∇ · us +∇ · (g(u− us)) = Q

on a volume V (t) ∈ Ω(t) that moves with the solid matrix, and applying the
transport theorem, we obtain

d

dt

∫
V (t)

gdV +

∫
V (t)
∇ · (g(u− us))dV =

∫
V (t)

QdV

Changing coordinates in the integral, we get

d

dt

∫
V̂
ĝĴdV̂ +

∫
V̂
∇̂ · (ĝ(û− ûs))dV̂ =

∫
V̂
Q̂ĴdV̂ (12)

where we have set, for a generic function f , f̂ = f ◦ϕ, for a generic velocity
vector v̂ = Ĵ Ĵ−1v ◦ϕ, and

∇̂ =

(
∂/∂x
∂/∂ξ

)
= J∇ = J

(
∂/∂x
∂/∂z

)
.

Since V̂ is fixed, in (12) the d/dt operator can be taken under the inte-
gration sign. Then, due to the arbitrariness of V̂ ,

∂(ĝĴ)

∂t
+ ∇̂ · (ĝ(û− ûs)) = Q̂ Ĵ in Ω̂× (0, T ]. (13)

3.2.4 Extension to the case of kerogen degradation

Athy’s compaction law is, in its classical formulation, expressed as (1) and its
classic derivation has been illustrated in a previous paragraph. In presence
of solid-fluid conversions, if q is the volumetric rate of conversion of solid
matter into fluid, the balance of mass (6) for the solid fraction in a material
volume Vs(t) becomes

d

dt

∫
Vs(t)

(1− φ(y(t), t))dΩ = −
∫
Vs(t)

qdΩ.

Thus, by Reynold’s theorem,

−Dφ
Dt

+ (1− φ)∇ · us = −q in Ω(t)× (0, T ],
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and, using the same poroelastic law that we used in the classical derivation
(equation (5)), it follows that

Dσe
Dt

= −K(φ)

1− φ

(
Dφ

Dt
− q
)
.

Using again (9), we obtain

Dσe
Dt

= −β
−1

φ

(
Dφ

Dt
− q
)
. (14)

In equation (14), the volumetric rate of conversion of solid into fluid q is
function of the porosity and of the kerogen concentration C. Once we have
found how to express q = q(φ,C) we can integrate the differential equation
(analytically or numerically) to obtain φ = φ(σe, C). We intend to derive
this relation.

For the sake of simplicity, we consider a two-dimensional domain with
coordinate system (x, z), yet the derivation can be readily extended to the
3D case. In particular we consider a two-dimensional section of a source
rock within a sedimentary basin. The rock is assumed to consist of three
basic parts: pure rock with no hydrocarbon potential, pure kerogen where
all kerogen may be broken down to oil, and a void part initially filled with
water. The pure rock and the kerogen make up the solid sediment matrix.
We point out that, due to the consumption of kerogen and to the mechanical
compaction, the solid matrix evolves in time. In the two-dimensional do-
main Ω(t) that follows the vertical movement of the solid matrix, the mass
conservation for the latter is

∂

∂t
((1− φ)ρs) +

∂

∂z
((1− φ)ρsusz) = Qs in Ω(t)× (0, T ]. (15)

where Qs is a sink term that represents the breakdown of kerogen into oil.
The solid matrix density ρs that appears in (15) is the mean over the

densities of the two solid components weighted with respect to the fraction
of the whole rock they make up, i.e 1−C0 for pure rock and C for pure kero-
gen. Thus, ρs is related to the volume fraction of kerogen by the following
equation:

ρs =
(1− C0)ρr + Cρk

1− C0 + C
(16)

where ρr and ρk are the densities of the rock with no hydrocarbon poten-
tial and of kerogen, respectively, and C0 is the initial volume fraction of
kerogen. In this model q = −Qs

ρk
, hence we are interested in the relation

Qs = Qs(φ,C).
From paragraph 3.2.3 it follows that equation (15) can be formulated in

Ω̂× (0, T ] as

∂

∂t

(
(1− φ̂)ρ̂sĴ

)
= Q̂s Ĵ in Ω̂× (0, T ]. (17)
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From equation (17) we can derive the relation Qs = Qs(φ,C) that we
are looking for. In fact, since

Ĵ =
1− C0 + Ĉ(x, ξ, t)

(1− C0)(1− φ̂(x, ξ, t))
, (18)

equation (17) can be rewritten as

∂

∂t

(
ρ̂s

1− C0 + Ĉ(x, ξ, t)

(1− C0)

)
= Q̂s Ĵ in Ω̂× (0, T ].

Using equation (16), we obtain

∂

∂t

(
ρr +

Ĉ(x, ξ, t)

1− C0
ρk

)
= Q̂s Ĵ in Ω̂× (0, T ].

Thus, since both ρr and ρk are constant, we obtain

1

1− C0
ρk
∂Ĉ

∂t
= Q̂s Ĵ in Ω̂× (0, T ].

Rearranging and substituting Ĵ , we have

Q̂s = ρk
(1− φ̂)

1− Ĉ0 + Ĉ

∂Ĉ

∂t
in Ω̂× (0, T ]. (19)

which, brought back to the current domain provides the relation

Qs = ρk
(1− φ)

1− C0 + C

DC

Dt
in Ω(t)× (0, T ]. (20)

Notice that DC
Dt < 0 due to the breakdown of kerogen, thus Qs is a sink

term for equation (15).
The volumetric rate of conversion of solid into fluid q in equation (14) is

then given by

q = −Qs
ρk

= − 1− φ
1− C0 + C

DC

Dt
.

The breakdown of kerogen is modeled as a first-order reaction of Arrhenius-
type. The kerogen concentration C, defined as a volume fraction of the
initial solid part of the rock sample, evolves as:

DC

Dt
= −k C in Ω(t)× (0, T ], (21)

where the reaction rate k is given by

k = Ae−E/RT .
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Here A is the Arrhenius factor, E is the activation energy, R is the gas
constant, and T is the absolute temperature. Equation (21) is supplemented
by the initial condition C(x, t) = C0(x), where C0 represents the initial
kerogen volume fraction in the rock. Now, the differential equation (14) can
be written as

Dσe
Dt

= −β
−1

φ

(
Dφ

Dt
− 1− φ

1− C0 + C
k C

)
, (22)

which can be integrated explicitly, providing

φ(x, t) =

(
(1 + C(x, t)− C0)

(
φ0 +

∫ t

0

kC(y(τ), τ)eβσe(y(τ),τ)

(1 + C(y(τ), τ)− C0)2
dτ

))
e−βσe(x,t).

(23)

Again, here y(t) is the solid particle trajectory defined by (4). A crucial
property for φ is that φ ∈ [0, 1]. In the following proposition we will prove
that this important condition is guaranteed only under some restrictive hy-
potheses.

Proposition 2. Let

• φ0(x, z) ∈ [0, 1] ∀(x, z) ∈ Ω(0),

• C0(x, z) ∈ [0, 1] ∀(x, z) ∈ Ω(0),

• Dσe
Dt (x, z, t) ≥ 0 in Ω(t)× [0, T ] and σe(x, z, t) ≥ 0 in Ω(t)× [0, T ].

Let us set, g(x, z, t) := 1− (C0(x, z)− C(x, z, t)). If

φ(x, z, t) = g(x, z, t)

(
φ0(x, z) +

∫ t

0

kC(y(τ), τ)eβσe(y(τ),τ)

(g(y(τ), τ))2
dτ

)
e−βσe(x,z,t),

where y(t) is the solid particle trajectory defined in (4), then φ(x, z, t) ∈ [0, 1]
∀(x, z, t) ∈ Ω(t)× [0, T ].

Proof. Let us prove that φ(x, z, t) ≤ 1 ∀(x, z, t) ∈ Ω(t) × [0, T ]. Since
σe(x, z, t) ≥ 0,

φ(x, z, t) ≤ g(x, z, t)

(
φ0(x, z) + e−βσe(x,z,t)

∫ t

0

kC(y(τ), τ)eβσe(y(τ),τ)

(g(y(τ), τ))2
dτ

)
,

If Dσe
Dt (x, z, t) ≥ 0, then eβσe(y(τ),τ) ≤ eβσe(x,t) ∀τ ∈ [0, t], where we recall

that y(t) = x. Thus,

φ(x, z, t) ≤ g(x, z, t)

(
φ0(x, z) +

∫ t

0

kC(y(τ), τ)

(g(y(τ), τ))2
dτ

)
=: φ̃(x, z, t).
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φ̃(x, z, t) is the porosity that we have if σe(x, z, τ) = 0 ∀τ ∈ [0, t], that is
the porosity of the non compacted configuration. Computing the integral,
recalling that kC = −DC

Dt , we obtain

φ̃(x, z, t) = φ0(x, z) + (1− φ0(x, z))(C0(x, z)− C(x, z, t))

Since 1−φ0 ≥ 0, φ̃ is non-increasing in C. Then, the maximum value in time
of the porosity corresponds to the minimum concentration, i.e. C(x, z, t) =
0. Once we have fixed one point (x, z) ∈ Ω(t), the maximum porosity in
that point is

max
t∈[0,T ]

φ(x, z, t) = φ0(x, z) + C0(x, z)(1− φ0(x, z)) ≤ 1 ∀(x, z) ∈ Ω(t),

because C0(x, z) ≤ 1.
Finally, to prove that φ(x, z, t) ≥ 0 ∀(x, z, t) ∈ Ω(t) × [0, T ], we notice

that C(x, z, t) ≥ 0 implies that g ≥ 1 − C0(x, z) ≥ 0. Thus, all the factors
in the definition of φ are non-negative.

3.2.5 Some considerations

In [21] a relation similar to (23) was found by Wangen with some heuristic
arguments. However, the non-linear mutual interaction between mechanical
compaction and dissolution process was neglected, leading to the following
relation:

φ = (φ0 + (1− φ0)(C0 − C)) e−β σe . (24)

However, this simpler relation may be recovered by setting σe = 0 in the
expression under the integral in (23). Therefore, our relation may be seen
as an extension and generalization of that of Wangen.

To better understand the relation between (23) and (24) let us introduce,
for the sake of notation, the quantity

g = 1− (C0 − C). (25)

It represents the ratio between the volume of solid at a given time and the
initial one. Equation (24) can now be written as

φ = (1− g(1− φ0))e−βσe (26)

while (23) may be rewritten as

φ = g

(
φ0 −

∫ t

0

eβσe

g2

dC

dτ
dτ

)
e−βσe (27)

First of all, we state the following
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Proposition 3. If σe is taken identically zero inside the integral in Equation
(27), then the former relation is equivalent to (26).

Proof. It is sufficient to note that under the hypothesis the integral reduces
to
∫ t

0 g
−2 dC

dτ dτ = [−g−1]t0 = 1 − g(t). Replacing the integral in (27) with
this expression leads to the desired result.

This proposition sheds a light on the differences between the two formu-
lations. Expression (24) was indicated in [21] without a clear explanation.
It can now be interpreted as an approximation of (27) (and thus (23)) where
the non linear interaction between mechanical and “chemical” compaction
is neglected, in particular the fact that degradation occurs on a layer that
has already compacted (and continuing to compact) has been ignored.

Of course expression (23) depends on the choice we have made to de-
scribe the kerogen degradation process, and in particular the definition of C
and (21). The most basic equation is indeed (14), whose solution however
requires to have an expression for q.

A question that may be asked is whether one can assume that during
the compaction process the porosity is still a non-increasing function of σe
even when degradation of the solid matrix is present, and, in that case, how
this constraint can be enforced in a physically and numerically sound way.
For a purely mechanical compaction, this hypothesis is supported by the
fact that the compaction is slow and once the grains have deformed to fill
the voids after an increase of the effective stress, they do not recreate the
void if unloaded.

Even if a more precise analysis would be necessary, one may conjecture
that the monotonicity is still reasonable if the degradation is as “slow” as
the mechanical compaction processes. The grains will tend to fill the “holes”
opened up by the degradation. It is questionable, however, if this is still true
when the degradation is relatively fast.

The fact that we have obtained (by a rigorous derivation) an explicit
law for the porosity allows us to adapt existing codes that use relations of
the type φ = φ(σe) to account for the new porosity change associated to
degradation.

3.3 The governing equations in the moving domain

As we have anticipated, we consider a two-dimensional section of a sedi-
mentary basin containing a source rock layer. The source rock is assumed
to consist of three basic parts: pure rock with no hydrocarbon potential,
pure kerogen (all kerogen may be broken down to oil), and a void part ini-
tially filled with water. The pure rock and the kerogen make up the solid
sediment matrix. We point out that, due to the consumption of kerogen
and to the mechanical compaction, the solid matrix evolves in time. In the
two-dimensional domain Ω(t) that follows the movement of the solid matrix,
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the mass conservation of the fluid species, water and oil, can be expressed
as:

∂

∂t
(φρwSw) + ∇ · (φρwSwuw) = Qw in Ω(t)× (0, T ], (28)

∂

∂t
(φρoSo) + ∇ · (φρoSouo) = Qo in Ω(t)× (0, T ]. (29)

where φ = φ(x, z, t) is the porosity of the rock, ρw = ρw(x, z, t) and ρo =
ρo(x, z, t) are the densities of water and oil, which may depend on temper-
ature and pressure. Sw = Sw(x, z, t) and So = So(x, z, t) = 1 − Sw(x, z, t)
are the saturations of water and oil, respectively, and uw = uw(x, z, t) and
uo = uo(x, z, t) their velocities. Finally, Qo is a source term that accounts
for the generation of oil through the breakdown of kerogen. To a first ap-
proximation, one can assume that the consumption of kerogen in rock only
generates oil, i.e. Qw = 0.

The velocities uo and uw are given, with respect to us, by the Darcy law
as

φSw(uw − us) = −kr,wK

µw
(∇pw − ρwg) in Ω(t)× (0, T ], (30)

φSo(uo − us) = −kr,oK
µo

(∇po − ρog) in Ω(t)× (0, T ], (31)

with g = −gez. Here kr,w and kr,o are the relative permeabilities of the two
phases and are given functions of the saturations. The relative permeabilities
can be modeled by several expressions found in the specialized literature. In
our model, we will employ the Brooks-Corey relative permeability curves,
namely

kr,w(Sw) = S3
w, (32)

kr,o(So) = S2
o (1− (1− So)2). (33)

Note that if the relative permeability of one phase vanishes, then that phase
cannot flow. In (30) and (31), µw and µo denote the viscosities of the two
phases, which may depend on temperature. K is the permeability tensor
and depends on the porosity φ, according to the following relation:

K(φ) = K(φ)

[
kxx kxz
kzx kzz

]
(34)

where, following [4],

K(φ) =


k0φ

3 if φ ≥ 0.1

100 k0φ
5

(1− φ)2
if φ < 0.1

.
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In the two-phase Darcy model the pressures of the fluids fulfill

po − pw = pc.

The capillary pressure pc is a given function of either Sw or So. Following
Brooks-Corey, we choose

pc(Sw) = pD S−1/m
w ,

where pD is the entry pressure, which depends on the porous medium
characteristics, and m depends on the pore size distribution and is large
for single-grained materials, small for highly nonuniform materials.

In order to close the formulation of the problem, we need some more
information: how the breakdown of kerogen makes up the source term for
equation (29) (i.e. equation Qo = Qo(φ,C)), and how the porosity φ of
the rock depends on the overload and on the kerogen volume fraction (i.e.
φ = φ(σe, C)). Both the equations were derived in paragraph 3.2.4. In fact,
Qo(φ,C) = −Qs(φ,C) and from equation (20) follows:

Qo(φ,C) = −ρk
(1− φ)

1− C0 + C

DC

Dt
in Ω(t)× (0, T ],

where we recall that (equation (21))

DC

Dt
= −k C in Ω(t)× (0, T ],

which leads to

Qo(φ,C) = ρk
(1− φ)

1− C0 + C
k C in Ω(t)× (0, T ], (35)

The porosity is given by equation (23), that we report in the following
equation

φ =

(
(1 + C − C0)

(
φ0 +

∫ t

0

kC(y(τ), τ)eβσe(y(τ),τ)

(1 + C(y(τ), τ)− C0)2
dτ

))
e−βσe .

In this equation, σe = σe(x, z, t) represents the vertical effective stress,
which is the bulk pressure σT minus the fluid pressure pf

σe = σT − pf .

The fluid pressure is defined as a mean over the oil pressure po and the water
pressure pw weighted with respect to the the saturations, i.e.

pf = Sopo + Swpw,
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and the bulk pressure at depth z can be computed as the pressure due to
the weight of sediments and the pore fluids, i.e.

σT (x, z, t) =

∫ ztop

z
[(1− φ)ρs + φρf ] g dz′ + σtop(t),

where σtop is the overburden and may be variable in time. Finally, ρf is
given by

ρf = Soρo + Swρw.

3.4 The governing equations in the fixed domain

As we have anticipated, it is convenient to solve numerically the problem in
the fixed domain Ω̂ introduced in section (3.2.3).

From equation (13), we derive the formulations of the mass conservation
of the fluids in Ω̂. In this reference system the Darcy equations (30) and
(31) become

φ̂Ŝw(ûw − ûs) = −Ĵ k̂r,wĴ−1K(φ̂)

µw

(
Ĵ−T ∇̂p̂w − ρwĝ

)
in Ω̂× (0, T ]

φ̂Ŝo(ûo − ûs) = −Ĵ k̂r,oĴ
−1K(φ̂)

µo

(
Ĵ−T ∇̂p̂o − ρoĝ

)
in Ω̂× (0, T ]

because (see appendix A)

uw − us = Ĵ−1Ĵ(ûw − ûs)

uo − us = Ĵ−1Ĵ(ûo − ûs)
(36)

and
∇pw = Ĵ−T ∇̂p̂w
∇po = Ĵ−T ∇̂p̂o.

In the equations above, ĝ = −geξ. Thus, the system we want to solve

consists of the following equations in Ω̂ × (0, T ], where we have set Ûw =
φ̂Ŝw(ûw − ûs) and Ûo = φ̂Ŝo(ûo − ûs)

∂(ρwφ̂ŜwĴ)

∂t
+ ∇̂ · (ρwÛw) = 0 (37)

∂(ρoφ̂ŜoĴ)

∂t
+ ∇̂ · (ρoÛo) = Q̂oĴ (38)

Ûw = −Ĵ k̂r,wK̃

µw

(
∇̂p̂w − ρwĴT ĝ

)
Ûo = −Ĵ k̂r,oK̃

µo

(
∇̂p̂o − ρoĴT ĝ

)
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where we have set K̃ := Ĵ−1K(φ̂)Ĵ−T .
Recalling equations (18) and (35), we can write the right hand side of

(38) as

Q̂oĴ = k
Ĉ

1− Ĉ0

ρk,

and
∂Ĉ

∂t
= −k Ĉ.

Again, we have
Ŝw + Ŝo = 1,

p̂o − p̂w = pc(Ŝw),

where, for a generic function f , f̂ := f ◦ϕ.
Finally, in the reference system, the equation for the bulk pressure be-

comes

σ̂T (x, ξ, t) =

∫ ξtop

ξ
[(1− φ̂)ρ̂s + φ̂ρ̂f ]Ĵ g dξ′ + σtop(t).

with

ρ̂s =
(1− Ĉ0)ρr + Ĉρk

1− Ĉ0 + Ĉ
, (39)

ρ̂f = Ŝoρo + Ŝwρw. (40)

Initial and boundary conditions will be specified in next section.
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4 The numerical solution

The aim of this section is to derive a numerical formulation for the equa-
tions in the fixed domain illustrated in section 3.4 and to advance a proper
splitting strategy. From now on, we will omit the hats for the sake of conve-
nience, yet referring to the equations in the fixed domain Ω̂. Let us introduce
a triangulation Th of the domain Ω̂. We assume, for the sake of simplicity,
such that Ω̂h :=

⋃
K∈Th K = Ω̂.

4.1 The global pressure formulation

Let us denote with Uα, pα, and Sα the flux relative to the sediment particles,
the pressure and the saturation of each phase with α = w, o, respectively.
The equations of the two-phase Darcy flow in the fixed domain are

∂

∂t
(ραφSαJ) +∇ · (ραUα) = QαJ Ω̂× (0, T ], (41)

Uα = −J kr,α
µα

K̃(∇pα − ραJTg) Ω̂× (0, T ], (42)

Sw + So = 1 Ω̂× (0, T ], (43)

po − pw = pc(Sw) Ω̂× (0, T ]. (44)

They can be written in and solved in an alternative, yet equivalent, formu-
lation, the Global Pressure Formulation.

To obtain the Global Pressure Formulation, we introduce two artificial
variables: the global pressure p and the total velocity U := Uo + Uw. The
equation for U can be obtained by adding together the two equations (41),
which can be rewritten as

∇ ·Uα =
QαJ

ρα
− ∂

∂t
(φSαJ)−

(
φSαJ

1

ρα

∂ρα
∂t

+
∇ρα
ρα
·Uα

)
.

If we can neglect the variations of the densities (in both space and time)
and we assume that ∂ρα/∂t and ∇ρα are small with respect to ρα, we have

∇ ·U =
QoJ

ρo
− ∂

∂t
(φJ) (45)

Now, adding the equations (42) together, we obtain

U = −JλoK̃(∇po − ρoJTg)− JλwK̃(∇pw − ρoJTg)

where λα(Sα) :=
kr,α(Sα)
µα

are the phase mobilities. We denote λ(So) :=
λw(1−So) + λo(So) as the total mobility. Exploiting equation (44) we have
∇pw = ∇po −∇pc, which, once inserted in the previous equation, provides

U = −JλK̃

(
∇po −

λw
λ
∇pc −

λwρw + λoρo
λ

JTg

)
. (46)
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The global pressure p is then defined as a scalar function such that

∇p = ∇po −
λw
λ
∇pc = ∇po −∇π,

where

π(So) =

∫ So

1

λw(1− S̃)

λ(S̃)
p′c(S̃)dS̃.

We also introduce the vector modified gravity G, defined as

G :=
λwρw + λoρo

λ
JTg.

With this notation, equation (46) can be written as

U = −JλK̃ (∇p−G) . (47)

The partial differential equation for one of the two saturation, e.g. for So,
can be obtained by observing that equation (46) implies

∇po = − 1

Jλ
K̃−1U +

λw
λ
∇pc + G.

By inserting this expression for ∇po in equation (42) with α = o, we obtain

Uo =
λo
λ

U− J λwλo
λ

K̃
(
∇pc + (ρw − ρo)JTg

)
which can be coupled with equation (41) with α = o to provide an equation
for the oil saturation.

The Global Pressure Formulation consists of the following equations:

Global Pressure Formulation∇ ·U =
QoJ

ρo
− ∂

∂t
(φJ)

U = −JλK̃ (∇p−G)

(48)


∂

∂t
(ρoφSoJ) +∇ · (ρoUo) = QoJ

Uo =
λo
λ

U− J λwλo
λ

K̃
(
∇pc + (ρw − ρo)JTg

) (49)

Notice that equations (48) are coupled with equations (49) through the
function λ, which depend on the saturations. Once we have solved for U,
So and p, we can recover po and pw as

po = p+ π(So),

pw = p+ π(So)− pc(1− So).
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When φ, Qo, and J are given functions, a common way of solving the system
of the Global Pressure Formulation is to operate a splitting, that decouples
(48) from (49). In this way, known Sno , we can solve for Un+1 and pn+1, as
follows. Given the quantities at time step tn, compute

Pressure Equation∇ ·U
n+1 =

QoJ

ρo
− ∂

∂t
(φJ)

Un+1 = −Jλ(Sno )K̃
(
∇pn+1 −G(Sno )

)
then, using Un+1 we can solve for Sn+1

o the following nonlinear system:

Saturation Equation
∂

∂t
(ρoφS

n+1
o J) +∇ · (ρoUn+1

o ) = QoJ

λo(S
n+1
o )

λ(Sn+1
o )

Un+1 − J λw(Sn+1
o )λo(S

n+1
o )

λ(Sn+1
o )

K̃
(
∇pc + (ρw − ρo)JTg

)
= Un+1

o

.

This splitting strategy is known in literature as IMPES (i.e. IMplicit
Pressure Explicit Saturation). In our case, since φ, Qo, and J are unknown
functions too, we will need a more complex splitting strategy, which still
separates the pressure equation and the saturation one.

4.2 The pressure equation

In this paragraph we analyze the pressure equation and propose a solution
strategy based on a finite element mixed method. Mixed methods have the
advantage of approximating the velocity field as a variable of the problem,
while in a classic formulation the velocity has to be computed by numerical
differentiation of pressure. A direct computation of the velocity field is very
convenient for the subsequent solution of the saturation equation. Moreover,
since in a mixed formulation the continuity equation is not integrated by
parts, we can also expect it to be satisfied with higher accuracy with respect
to classic methods.

We consider the system
∇ ·U =

QoJ

ρo
− ∂

∂t
(φJ) in Ω̂× (0, T ]

1

λJ
K̃−1U = − (∇p−G) in Ω̂× (0, T ]

(50)

completed with the following set of boundary conditions:{
p = pD on ΓD

U · n = h on ΓN
. (51)
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The Dirichlet boundary ΓD and the Neumann boundary ΓN are such that
ΓD ∩ΓN = ∅ and ΓD ∪ΓN = ∂Ω̂. n is the normal to ΓN pointing outwards.

Let us derive the weak formulation of this problem. Let us work formally
first and test the equations against two sufficiently smooth test functions ϕ
and τ . We will specify the functional setting later on.

We have ∫
Ω̂
∇ ·U ϕ dΩ̂ =

∫
Ω̂

(
QoJ

ρo
− ∂

∂t
(φJ)

)
ϕ dΩ̂

∫
Ω̂

1

λJ
K̃−1U · τ dΩ̂ = −

∫
Ω̂

(∇p−G) · τ dΩ̂

Integrating by parts the right hand side of the second equation, we obtain∫
Ω̂

1

λJ
K̃−1U · τ dΩ̂ =

∫
Ω̂
p ∇ · τ dΩ̂−

∫
Γ
p τ · n dγ +

∫
Ω̂

G · τ dΩ̂

If we assume that τ · n = 0 on ΓN , we obtain the following equations:∫
Ω̂
∇ ·U ϕ dΩ̂ =

∫
Ω̂

(
QoJ

ρo
− ∂

∂t
(φJ)

)
ϕ dΩ̂

∫
Ω̂

1

λJ
K̃−1U · τ dΩ̂−

∫
Ω̂
p ∇ · τ dΩ̂ = −

∫
ΓD

pD τ · n dγ +

∫
Ω̂

G · τ dΩ̂

If we approximate the term ∂
∂t(φJ) as

∂

∂t
(φJ) ≈ ∆(φJ)

∆t
,

where we indicate with ∆(φJ) a proper variation of φJ over the time in-
terval ∆t (such as ∆(φJ) = φn+1Jn+1 − φnJn), the following functional
setting guarantees that all the previous integrals make sense. Concerning
the coefficients and the boundary conditions, we require that:

Assumptions on coefficients and boundary data

• φ, J, ρw, ρo, µw, µo ∈ L∞(Ω̂× (0, T ]);

• K̃ ∈ (L∞(Ω̂× (0, T ]))d×d.
If det(K̃) 6= 0, this condition implies K̃−1 ∈ (L∞(Ω̂× (0, T ]))d×d;

• Qo ∈ L2(Ω̂× (0, T ]);

• kro(So), krw(Sw) ∈ L∞(0, 1);

• pD, h ∈ L2(0, T ;H1/2(ΓD));
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Let us introduce the space

H(div; Ω̂) := {τ ∈ (L2(Ω̂))d : ∇ · τ ∈ L2(Ω̂)}. (52)

After the time discretization, a proper weak formulation for the pressure
problem reads:

find Un+1 ∈ H(div; Ω̂) and pn+1 ∈ L2(Ω̂) such that Un+1 · n = h, and∫
Ω̂
∇ ·Un+1 ϕ dΩ̂ =

∫
Ω̂

(
QoJ

ρo
− ∆(φJ)

∆t

)
ϕ dΩ̂, (53)

∫
Ω̂

1

λJ
K̃−1Un+1 ·τ dΩ̂−

∫
Ω̂
pn+1 ∇·τ dΩ̂ = −

∫
ΓD

pD τ ·n dγ+

∫
Ω̂

G ·τ dΩ̂,

(54)
∀ϕ ∈ L2(Ω̂) and ∀τ ∈ H(div; Ω̂) ∩ {τ : τ · n = 0}.

Notice that, while the Dirichlet boundary condition is included in the
equations, the Neumann boundary condition needs to be embedded in the
functional space setting.

Under proper regularity assumptions on the domain, the coefficients and
the initial data, the well posedness of this problem can be proved (see [9]):

Proposition 4. Let Ω̂ be an open bounded measurable subset of IRd, with
d = 2 or d = 3, with Lipschitz boundary ∂Ω, and let ΓN 6= ∅. Then prob-
lem (50)-(51) is well posed if, in addition to the previous assumptions on
coefficients and boundary conditions, the following assumptions hold:

• There exist φ1 and φ2 ∈ IR+ such that φ1 < φ2 < 1 and φ1 < φ(x, t) <
φ2 a.e. in Ω̂× (0, T ).

• K̃ is a symmetric positive definite tensor ∀(x, t) ∈ Ω̂× (0, T ] and there
exists K0 ∈ IR+ such that ||K̃||L∞(Ω̂) ≥ K0.

• There exist ρo,0 and ρw,0 ∈ IR+ such that ρα ≥ ρα,0 a.e. in Ω̂× (0, T ),
α = w, o.

• There exist µo,0 and µw,0 ∈ IR+ such that µα ≥ µα,0 a.e. in Ω̂× (0, T ),
α = w, o.

The finite dimensional spaces chosen for the numerical approximation are
the lowest order Raviart Thomas elements Zh = RT0(Ω̂, Th) ⊂ H(div, Ω̂) for
velocity, and the space of the piece-wise constant function Vh = IP0(Ω̂, Th) ⊂
L2(Ω̂) for pressure.

The Neumann boundary condition U · n = h on ΓN , which is not in-
cluded in the equations yet, will be imposed with Nitsche’s penalization
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technique (see [13]). Thus, we will add to the left hand side of equation (54)
the term ∫

ΓN

γU (U · n)(τ · n) dγ,

and to its right hand side the term∫
ΓN

γUh(τ · n) dγ.

The full discretization of the system is then given by

find Un+1
h ∈ Zh and pn+1

h ∈ Vh such that∫
Ω̂

1

λhJh
K̃−1
h Un+1

h ·τ h dΩ̂−
∫

Ω̂
pn+1
h ∇·τ h dΩ̂+

∫
ΓN

γU (Un+1
h ·n)(τ h ·n) dγ

= −
∫

ΓD

pD τ h · n dγ +

∫
Ω̂

Gh · τ h dΩ̂ +

∫
ΓN

γUh(τ h · n) dγ,∫
Ω̂
∇ ·Un+1

h ϕh dΩ̂ =

∫
Ω̂

(
Qo hJh
ρo h

− ∆(φJ)

∆t

)
ϕh dΩ̂,

∀τ h ∈ Zh and ∀ϕh ∈ Vh.

Proceeding with the usual technique, we write Un+1
h and pn+1

h using a
proper base of the finite dimensional spaces Zh and Vh

Un+1
h =

∑
j

Un+1
j τ hj pn+1

h =
∑
j

pn+1
j ϕhj

and require that the first equation holds for each τ hi of the base of Zh and
the second one holds for each ϕhi of the base of Vh, i.e.∑

j

Un+1
j

(∫
Ω̂

1

λhJh
K̃−1
h τ hj · τ hi dΩ̂

)
+
∑
j

pn+1
j

(
−
∫

Ω̂
ϕhj ∇ · τ hi dΩ̂

)

+
∑
j

Un+1
j

(∫
ΓN

γU (τ hj · n)(τ hi · n) dγ

)
=

∫
ΓN

γUh(τ hi·n) dγ−
∫

ΓD

pD τ hi·n dγ+

∫
Ω̂

Gh·τ hi dΩ̂

∑
j

Un+1
j

(∫
Ω̂
∇ · τ hj ϕhi dΩ̂

)
=

∫
Ω̂

(
QohJh
ρoh

− ∆(φJ)h
∆t

)
ϕhi dΩ̂,

which can be written in the following algebraic form[
A B
−BT 0

] [
Un+1

pn+1

]
=

[
E
F

]
,
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with

Aij =

∫
Ω̂

1

λhJh
K̃−1
h τ hj · τ hi dΩ̂ +

∫
ΓN

γU (τ hj · n)(τ hi · n) dγ,

Bij = −
∫

Ω̂
ϕhj ∇ · τ hi dΩ̂,

Ei =

∫
ΓN

γUh(τ hi · n) dγ −
∫

ΓD

pD τ hi · n dγ +

∫
Ω̂

Gh · τ hi dΩ̂,

Fi =

∫
Ω̂

(
QohJh
ρoh

− ∆(φJ)h
∆t

)
ϕhi dΩ̂.

We introduce the linear operator P that associates the solutions Uh and
ph to the functions Ch, φh, Soh, and ∆(φJ)h

(Un+1
h , pn+1

h ) = P (Ch, φh, Soh,∆(φJ)h) .

It is interesting to point out that, if we assume that porosity is an un-
known function, the Darcy problem (48) is actually a parabolic problem. In
fact, the first equation of system (48) can be written as

∂(φJ)

∂p

∂p

∂t
+∇ ·U =

QoJ

ρo
− ∂(φJ)

∂T

∂T

∂t
− ∂(φJ)

∂σ

∂σ

∂t
. (55)

where, if we use Athy’s law for porosity,

∂(φJ)

∂t
= β

1− C0 + C

(1− C0)(1− φ)2
(φ0 + (1− φ0)(C0 − C)) e−βσe .

This term is a positive term, which would improve the stability of the numer-
ical solution. Hence, a valid alternative to the numerical solution proposed
consists of dealing with equation (55) instead of equation (48), which we
discretize in time as follows:

∂(φJ)

∂p

pn+1 − pn
∆t

+∇ ·Un+1 =
QoJ

ρo
− ∂(φJ)

∂T

∂T

∂t
− ∂(φJ)

∂σ

∂σ

∂t
.

4.3 The equation for the bulk pressure

We now consider equation

σT (x, ξ, t) =

∫ ξtop

ξ
[(1− φ)ρs + φρf ]Jg dξ′ + σtop(t)

for the bulk pressure σT . It is convenient to bring this equation back to
its differential formulation. For this purpose, we derive this equation with
respect to ξ and obtain the following differential problem:

∂σT
∂ξ

= −((1− φ)ρs + φρf )Jg with σT (x, ξtop, t) = σtop(t).
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We point out that the right hand side of the equation depends on the kerogen
concentration C, on the saturation So, and on the porosity φ, since ρs =
ρs(C), ρf = ρf (So), and J = J(C,C0, φ). Thus, although there is no time
derivative, the problem is indeed time dependent.

Multiplying the partial differential equation by a test function v, we have∫
Ω̂

∂σT
∂ξ

v dΩ̂ =

∫
Ω̂
fv dΩ̂,

where in our case f = −[(1− φ)ρs + φρf ]Jg. For the assumptions made in
paragraph 4.2, the right hand side of the stress differential equation is in
L∞(Ω̂× (0, T ]).

The numerical solution of this problem required a stabilization. We
propose the strongly consistent SUPG stabilization, which consists of the
addition of the term ∑

K∈Th

δhK

∫
K

(
∂σT
∂ξ
− f

)
∂v

∂ξ
dK

to the integral formulation, where hK is the dimension of the K-th element
of the triangulation Th and δ is a suitable parameter.

Hence, the stabilized weak formulation of the problem is:

find σn+1
T ∈ H1(Ω̂) such that σn+1

T (x, ξtop) = σtop(t
n+1) and∫

Ω̂

∂σn+1
T

∂ξ
v dΩ̂+

∑
K∈Th

δhK

∫
K

∂σn+1
T

∂ξ

∂v

∂ξ
dK =

∫
Ω̂
fv dΩ̂+

∑
K∈Th

δhK

∫
K
f
∂v

∂ξ
dK

∀v ∈ H1(Ω̂).

The discrete formulation is obtained by choosing the discrete space Sh :=
IP1(Ω̂, Th) ⊂ H1(Ω̂), and, following the usual procedure, one can write

σn+1
Th =

∑
j

σn+1
j ϕhj ,

impose that the equation holds for each ϕhi of the base of Sh, and obtain
the algebraic system:

Aσn+1 = F

where

Aij =

∫
Ω̂

∂ϕhj
∂ξ

ϕhi dΩ̂ +
∑
K∈Th

δhK

∫
K

∂ϕhj
∂ξ

∂ϕhi
∂ξ

dK (56)

Fi =

∫
Ω̂
fϕhi dΩ̂ +

∑
K∈Th

δhK

∫
K
f
∂ϕhi
∂ξ

dK (57)
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and σn+1 is the vector of the coefficients of σn+1
Th with respect to the base

chosen.
The Dirichlet boundary condition at ξtop is imposed directly on the as-

sembled matrix and right hand side vector, by eliminating from A and F
the degrees of freedom corresponding to the Dirichlet nodes.

Let us define the linear operator Σ that associates to Ch, φh, and Soh the
numerical solution σTh to the stress problem whose coefficients are evaluated
in Ch, φh, and Soh:

σTh = Σ(Ch, φh, Soh)

The discretization explained in this paragraph will also be used to solve
numerically equation (15). In this case, we will take

f = Qs −
∆((1− φ)ρs)

∆t

and the Dirichlet boundary conditions will be homogeneous and at ξ = 0.

4.4 The porosity equation

Let us consider the numerical computation of porosity. We recall that, in
our model, the porosity is given by the following equation:

φ(x, z, t) =

(
(1 + C(x, z, t)− C0)

(
φ0 +

∫ t

0

kC(y(τ), τ)eβσe(y(τ),τ)

(1 + C(y(τ), τ)− C0)2
dτ

))
e−βσe(x,z,t).

Let us indicate for the sake of notational convenience

s(t) :=
kC(y(t), t)eβσe(y(t),t)

(1 + C(y(t), t)− C0)2
.

and let

In+1 :=

∫ tn+1

0
s(τ)dτ.

The integral In+1 can be approximated, applying the trapezoid method
to each interval (tk, tk+1), i.e.

In+1
h =

n∑
k=0

tk+1 − tk
2

(s(tk+1) + s(tk))

Thus, one can approximate the porosity at the instant tn+1 with

φn+1
h = (1 + Ch − C0)

(
φ0 + In+1

h

)
e−βσeh .

We define the linear operator Φ that associates to Ch and σeh the nu-
merical computation of porosity φh, evaluated with Ch and σeh:

φh = Φ(Ch, σeh).
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4.5 The saturation equation

The saturation equation is a nonlinear advection-diffusion-reaction equation,
whose numerical solution is complicated by the degeneracy of the diffusion
term at So = 0 and So = 1. As pointed out in [29], the solution of this
problem has very low regularity. Indeed, it has been shown that

So ∈ L∞(0, T ;L1(Ω̂)),

∂So
∂t
∈ L2(0, T ;H−1(Ω̂)).

Since the saturation satisfies So(x, t) ∈ [0, 1] ∀(x, t) ∈ Ω̂× (0, T ], we have

So ∈ L∞(0, T ;L∞(Ω̂)).

The saturation equation will be approximated with an operator splitting
approach. Since the equation is likely to be advection dominated, it is
convenient to solve the advection part with a method tailored to hyperbolic
problems, separately from the diffusion part. Let us indicate the advection,
the diffusion and the reaction part of the equation explicitly. The saturation
equation in Ω̂× (0, T ] is:

∂

∂t
(ρoφSoJ) = −∇ · (ρoUo) +QoJ

Uo =
λo
λ

U− J λoλw
λ

K̃(∇pc + (ρw − ρo)JTg)

with homogeneous Dirichlet boundary conditions on ΓD, and homogeneous
Neumann boundary conditions on ΓN , and a proper initial condition So(x, 0) =
S0(x). ΓD and ΓN are such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω̂.

Substituting the second equation into the first one, we have

∂

∂t
(ρoφSoJ) = −∇·

(
ρoλo
λ

U− Jρo
λoλw
λ

K̃(ρw − ρo)JTg

)
+∇·

(
ρoJ

λoλw
λ

K̃∇pc
)

+QoJ.

Let

F(So) =
ρoλo(So)

λ(So)
U− Jρo

λo(So)λw(So)

λ(So)
K̃(ρw − ρo)JTg

and

D(So) = ρoJ
λo(So)λw(So)

λ(So)
p′c(So)K̃.

Since ∇pc(So) = p′c(So)∇So, the saturation equation is

∂

∂t
(ρoφSoJ) = −∇ · F(So) +∇ · (D(So)∇So) +QoJ.

34



We propose the following splitting strategy.

Advection:

φ∗J∗S
n+1/2
o − φnJnSno

∆t
ρo = −∇ · F(Sno ),

Diffusion-Reaction:

φ∗J∗Sn+1
o − φ∗J∗Sn+1/2

o

∆t
ρo = ∇ ·

(
D(Sn+1/2

o )∇Sn+1
o

)
+QoJ.

Figure 4: The function t(i, j) associated to the i-th element of the mesh, its
j-th neighbor. In 2D, j = 1, 2, 3.

We solve the advection step, by approximating the flux with a Godunov
method. On the i-th element, we have

∇ · F(Sno ) ≈ 1

Ai

3∑
j=0

Fij(Sno i, Sno t(i,j))

where t(i, j) is the function that associates to element i its j-th neighbor
(see figure 4), and Fij is defined by

Fij(S1, S2) =


min

S1≤So≤S2

∫
j
F(zi, So) · nj if S1 < S2

max
S2≤So≤S1

∫
j
F(zi, So) · nj if S2 < S1

Using the Godunov method to solve the advection step, we have to verify
that the mesh and the timestep are such that the CFL condition holds. More
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precisely, we denote as ψ the conserved variable (in our case ψ = φ∗J∗So)
and with hKi the radius of element Ki ∈ Th. We define the CFL number
on element Ki as

CFLi = max
j∈t(i,j)

max
x∈Ki

|F′(ψ(x)) · nj |∆t
hKi

and we have to make sure that CFL := maxiCFLi < 1. Notice that the
derivative in the previous equation is a derivative with respect to the scalar
variable ψ.

Under this condition, we compute S
n+1/2
o , which we approximate with a

piece-wise constant, in each element of the mesh as

S
n+1/2
oi =

φnJn

φ∗J∗
Snoi −

∆t

Aiρoφ∗J∗

3∑
j=0

Fij(Sno i, Sno t(i,j))

Concerning the solution of the diffusion-reaction step, we use a mixed
finite element method. This will allow us to approximate So with a piece-
wise constant function, and to avoid an interpolation of saturation between
this step and the previous one.

Hence, we introduce an auxiliary variable σn+1 = −D(S
n+1/2
o )∇Sn+1

o ,
and the equation becomes

φ∗J∗Sn+1
o − φ∗J∗Sn+1/2

o

∆t
ρo = −∇ · σn+1 +QoJ.

The degeneracy of the the diffusion coefficient forbids to use mixed methods
in their standard formulation. This criticality is avoided if we use the fol-
lowing expanded mixed finite element formulation proposed by Chen, in [3].
This formulation adds another auxiliary variable σ̃n+1 = ∇Sn+1

o and ap-
proximates the solution of an equivalent system:

∇ · σn+1 +
1

∆t
ρoφ
∗J∗Sn+1

o =
1

∆t
ρoφ
∗J∗Sn+1/2

o +QoJ

σ̃n+1 −∇Sn+1
o = 0

σn+1 + D(Sn+1/2
o )σ̃n+1 = 0.

Multiplying these equations by the three test functions ϕ, τ and ν re-
spectively, integrating over Ω̂, integrating by parts the second equation and
applying the boundary condition, we have∫

Ω̂
∇ · σn+1ϕ dΩ̂ +

∫
Ω̂

1

∆t
ρoφ
∗J∗Sn+1

o ϕ dΩ̂ =∫
Ω̂

(
1

∆t
ρoφ
∗J∗Sn+1/2

o +QoJ

)
ϕ dΩ̂∫

Ω̂
σ̃n+1 · τ dΩ̂ +

∫
Ω̂
Sn+1
o ∇ · τ dΩ̂ +

∫
ΓN

Sn+1
o τ · n dγ = 0∫

Ω̂
σn+1 · ν dΩ̂ +

∫
Ω̂

D(Sn+1/2
o )σ̃n+1 · ν dΩ̂ = 0.
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Under the assumptions on the regularity of the coefficients made in para-
graph 4.2 and if the capillary pressure pc(So) is such that pc ∈ W 1,∞(0, 1),
we can set the weak problem as follows:

find Sn+1
o ∈ L2(Ω̂), σn+1 ∈ H(div; Ω̂), σ̃n+1 ∈

(
L2(Ω̂)

)d
such that

the previous integral equations hold ∀ϕ ∈ L2(Ω̂),∀ τ ∈ H(div; Ω̂) and

∀ ν ∈
(
L2(Ω̂)

)d
.

Using the finite dimensional spaces IP0(Ω̂, Th) ⊂ L2(Ω̂), RT0(Ω̂, Th) ⊂
H(div; Ω̂), and RT0(Ω̂, Th) ⊂

(
L2(Ω̂)

)d
, choosing the base {ϕi}i of IP0(Ω̂, Th)

and {τ i}i of RT0(Ω̂, Th), we can write the discrete problem in the algebraic
form  BT 0 M

0 A B + C

A Ã 0

 σσ̃
S

 =

 E
0
0

 ,
where

Aij =

∫
Ω̂
τ i · τ j Ãij =

∫
Ω̂

D(Sn+1/2
o )τ j · τ i

Bij =

∫
Ω̂
∇ · τ i ϕj Cij =

∫
ΓN

τ i · n ϕj

Mij =

∫
Ω̂

1

∆t
ρoφ
∗J∗ϕiϕj Ei =

∫
Ω̂

(
1

∆t
ρoφ
∗J∗Sn+1/2

o +QoJ

)
ϕi

and S,σ, and σ̃ are the coefficients of Sn+1
oh ,σn+1

h , and σ̃n+1
h with respect

to the chosen basis. Some rows of matrix Ã can vanish when the diffusion
term degenerates, yet the system is still invertible.

Let us define the linear operator S that associates to Ch, φh,Uh, φ
∗
h, and

C∗h the numerical solution Soh to the saturation equation corresponding to
Ch, φh,Uh, φ

∗
h, and C∗h:

Soh = S(Ch, φh,Uh, φ
∗
h, C

∗
h).

4.6 The concentration equation

The equation for the concentration

∂C

∂t
= −k C

is solved numerically with an Implicit Euler scheme. We recall that k is time
dependent, since it is a function of the temperature T , which here is a given
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function that may depend on time. Thus, we have

Cn+1 − Cn
∆t

= −k(Tn+1) Cn+1.

The full discretization of the problem is

Cn+1
h =

1

1 + ∆t k(Tn+1)
Cnh ,

where Cn+1
h , Cnh ∈ IP0(Ω̂, Th).

We introduce the linear operator C that associates to Ch, the solution
Cn+1
h of the discrete problem.

4.7 The splitting strategy

In this paragraph we describe the splitting strategy that we use in or-
der to solve the whole problem. The initial conditions that we need are
C0, φ0, φ−1, p0, S0

o ,U
0, and σ0

e . Notice that we need two initial conditions
for porosity.

Known, Cn, φn, φn−1, pn, Sno ,U
n, and σne , we solve the concentration

equation, which is independent of the other variables. Thus,

Cn+1 = C(Cn).

We then solve the saturation equation and set

Sn+1
o = S(Cn+1, φn,Un, φ∗, Cn+1),

where we choose φ∗ = 2φn − φn−1. Once obtained Sn+1
o , we can compute

pn+1
o , pn+1

w and pn+1
f from pn, and ρn+1

f and ρs as

pn+1
o = pn − πw(1− Sn+1

o )

pn+1
w = pn+1

o − pc(1− Sn+1
o )

pn+1
f = Sn+1

o pn+1
o + (1− Sn+1

o )pn+1
w

ρn+1
f = Sn+1

o ρn+1
o + (1− Sn+1

o )ρn+1
w

ρn+1
s =

(1− C0)ρr + Cn+1ρk
1− C0 + Cn+1

.

Then, we solve the stress equation by setting

σn+1
T = Σ(Cn+1, φn, Sn+1

o ).

We can compute the effective stress as σn+1
e = σn+1

T − pn+1
f , and the

porosity as
φn+1 = Φ(Cn+1, σn+1

e ).

Finally we compute the total velocity Un+1 and global pressure pn+1:(
Un+1, pn+1

)
= P(Cn+1, φn+1, Sn+1

o ,∆(φJ)),

where we choose ∆(φJ) = φn+1J(Cn+1, C0, φn+1)− φnJ(Cn, C0, φn).
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Kerogen Concentration
∂C
∂t = −kC

Saturation
∂
∂t(ρoφSoJ) = −∇ · F(So)

+∇ · (D(So)∇So) +QoJ

Cn+1

Sn+1
o

pn+1
f

ρn+1
f

ρn+1
s

∂σT
∂z = − [(1− φ)ρs + φρf ] g

Pressure and Velocity

σn+1
Tσn+1

e = σn+1
T − pn+1

f
φn+1

Bulk Pressure

∇ ·U = QoJ
ρo

− ∂
∂t(φJ)

U = −JλK̃(∇p−G)

Effective Stress

Fixed Point Iterations

Un+1

pn+1

C0 φ0φ−1

p0U0 S0
o

Initial Data

σ0
e

Figure 5: The splitting strategy that is used to solve the equations. Some
fixed point iteration are necessary (see section 5.3).
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5 Results

The following tests were carried out in a 100 m squared domain Ω̂ initially
at the depth of 2000 m, with a 30 × 30 regular triangular mesh built with
the tools provided by GetFEM++. When necessary (i.e. in the test of
Darcy and compaction and in the full test) the penalization and stabilization
parameters were set equal to γU = 5 106 and δ = 5 104, respectively. In the
test cases where compaction is taken into account, a sedimentation velocity
of 50 m per million years was set. The temperature, necessary to trigger the
chemical reaction of kerogen degradation, is a given field that corresponds
to a surface temperature of 20 ◦C and a geothermal gradient of 3.5 ◦C per
100 m. Finally, if we assume that the velocity of the oil phase outside the
source rock is much higher than that inside the domain, therefore we can
impose that only water is present at the boundaries (i.e. So = 0 on ∂Ω̂).

5.1 Test of Darcy problem and compaction

In this test we consider a rock only filled with water and with no kerogen
(C(x, t) = C0 = 0). Thus no oil can be generated (So(x, t) = S0

o = 0).
The initial conditions for pressure consists of an hydrostatic pressure and
the initial conditions for the effective stress and porosity are obtained with
some fixed point iterations, starting from a uniform porosity equal to the
porosity of the initial non compacted configuration φ0 = 0.5, computing the
overload corresponding to that porosity, and computing the effective stress
as the overload less the initial pore pressure. In this test we consider a
progressive sedimentation of the layers above the domain during the 50 My
of simulation. This fact causes a progressive burial of the domain, which
causes the boundary conditions for both overload and pressure to change.

With the notation of section 4, at each time iteration, known φn, pn, and
σne , we solve the stress equation and set

σn+1
T = Σ(C0, φn, S0

o).

We can compute the effective stress as σn+1
e = σn+1

T − pnf , and the porosity
as

φn+1 = Φ(C0, σn+1
e ).

Finally we compute the total velocity Un+1 and global pressure pn+1:(
Un+1, pn+1

)
= P(C0, φn+1, S0

o ,∆(φJ)),

where we choose ∆(φJ) = φn+1J(C0, C0, φn+1)− φnJ(C0, C0, φn).
Instability problems were observed with small time steps, i.e. ∆t .

1010s, so in this case, some fixed point iteration were necessary. These insta-
bilities were observed to worsen with small permeability coefficients k0. The
stop condition used is based on the variations of the Jacobian J(C,C0, φ),
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which accounts for the movement of the physical domain. Thus, set Jn+1
k

the vector of the DOFs of the finite element function J(C0, C0, φn+1
k ) we

check for each fixed point iteration k < Kmax if

||Jn+1
k − Jn+1

k−1 ||2
||Jn+1

k ||2
< tol,

We take a time step ∆t = 1013 and 150 time iterations.
In figure 6 we can clearly observe the progressive compaction of the

physical domain. This compaction can also be observed in figure 7, as φ
increases significantly from the beginning to the end of the simulation in
the whole domain. We can also observe the behavior of porosity which,
coherently with the behavior of the effective stress (see figure 8), is much
lower at the top of the domain than at the bottom.

Figure 6: The deformation of the physical domain. The three snapshots were
taken at t = 0, t = 27 My and t = 50My.

Figure 7: The evolution of porosity φ. The two snapshots were taken at
t = 0 and t = 50 My, i.e. at the beginning and at the end of the simulation.
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Figure 8: The evolution of the effective stress σe. The two snapshots were
taken at t = 0 and t = 50 My, i.e. at the beginning and at the end of the
simulation.

5.2 Test of the saturation problem

In this second test case, we consider a rock with no kerogen (C(x, t) =
C0 = 0), initially filled with water, except for a bubble of oil. Porosity is
assumed to be constant (φ(x, t) = φ0 = 0.3) and no sedimentation effects
are considered. Finally, we set U = 0, i.e. the velocity of the water phase
has equal module but is opposite to that of the oil phase. Under these
assumptions, we solve the saturation equation, in order to simulate the
movement of the oil bubble.

Known Sno , we solve the saturation equation and set

Sn+1
o = S(Sno , C

0, φ0,U0, φ0, C0).

The time step used is ∆t = 1012s and 1500 time iteration were performed.
Thus 50 My are simulated.

In figure 9, we can notice that the oil bubble, being oil lighter than water,
moves upward and goes out of the domain, leaving a contrail of intermediate
saturation between oil (So = 0) and water (So = 1).
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Figure 9: The oil saturation at t = 0, t = 4 My, t = 7 My, t = 14 My,
t = 23 My.

5.3 Test of the full problem

This last test is a test of the full problem. Initially the rock is filled with
water and the oil saturation is S0

o = 0. The initial condition for pressure is
the hydrostatic pressure and the initial conditions for stress and porosity are
computed with some fixed point iterations, starting from a uniform porosity
equal to the porosity of the non-compacted configuration, φ0 = 0.5. We
consider an initial brick of kerogen and an initial depth of 2000 m. Finally,
U0 = 0 and φ−1 = φ0. Notice that we need two initial conditions for
porosity.

This test is conducted neglecting the effects of capillary pressure. Hence
only the advection and reaction part of the saturation equation is considered.

We apply the splitting strategy described in section 4.7 (see figure 5).
As in the first test, in this case too some fixed point iterations of the

stress-porosity-Darcy problem were necessary for the sake of stability. In
fact, is this case the CFL condition forces a smaller time step than that in
the first test case. 50 My were simulated with 1500 time iteration of 1012s
each.

The following figures represent the physical domain. The progressive
compaction due to the increasing vertical stress is clear. We can also observe
in the sketches correspondent to 50 My that the region of source rock with
positive initial kerogen concentration compacts more than the neighboring
regions. In figure 10, we zoom the upper region of the mesh at the last
iteration.
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Figure 10: A zoom of the upper region of the mesh at t = 50 My. Notice that
the region of source rock with positive initial kerogen concentration compacts
more than the neighboring regions

During the simulation, the burial of the domain caused by sedimentation
makes the temperature increase until - after about 15 My - kerogen break-
down starts. In figure 11 we can observe the consumption of kerogen, which
totally vanishes before half simulation.

Figure 11: Kerogen concentration at t = 0, t = 17 My, t = 27 My, t =
40 My, and t = 50 My.

In figure 12 we can clearly see how the breakdown of kerogen causes an
extra porosity, which will then be subject to compaction until, in the end,
no trace of the initial kerogen is visible.

In figure 13, we compare the porosity obtained considering hydrocarbons
generation (right hand side plot) and the porosity obtained with no kero-
gen consumption (left hand side plot) at the final instant of the simulation
(i.e. 50 My). We can observe that in the region where kerogen was lo-
cated the porosity, after 50 million years, is higher than in the surroundings.
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Figure 12: Porosity at t = 0, t = 17 My, t = 27 My, t = 40 My, and
t = 50 My.

Also, in the region with no kerogen, the porosity obtained with and without
generation is the same.

Figure 13: Plot of porosity versus z at t = 50 My, taken on a vertical
line that halves the domain. The left side result is obtained with no kerogen
degradation; the right hand side one is obtained with kerogen degradation.

At the same time, as kerogen is consumed, oil saturation increases, until
enough oil is present to be able to move in the source rock. In figure 15 an
overpressure (i.e. the pressure in pores less hydrostatic pressure) is shown
which does not allow the oil phase to reach the top of the source rock and
forces it to move down (see figure 14).
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Figure 14: The oil saturation at t = 0, t = 17 My, t = 27 My, t = 40 My,
and t = 50 My.

Figure 15: Overpressure at t = 0, t = 17 My, t = 27 My, t = 40 My, and
t = 50 My.
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Comparison between two different pressure boundary condi-
tions at the bottom

In order to understand if the overpressure observed in the previous test case
(see figure 15) is physical or distorted by the pressure Dirichlet boundary
condition at the bottom, we implemented a different boundary condition for
a comparison. In particular we consider the case of hydrostatic pressure at
the bottom and the case of a hydrostatic gradient imposed at the bottom,
i.e. a Neumann condition for pressure requiring ∂p

∂z = −ρwg on Γbot.
In both the simulations, we consider an initial condition for kerogen

consisting of a circle with C0 = 0.05 in the lower part of the domain and
we solve the full problem with the splitting strategy described in section
4.7 again. The only difference between the two simulations is the boundary
condition for the global pressure at the bottom of the domain.

In figures 16 and 18 we show the evolution of the oil saturation in case of
Dirichlet or Neumann boundary condition, respectively. No oil is present at
the beginning of the simulation, because the breakdown of kerogen has not
started yet. In figures 17 and 19 the evolution of the overpressure is shown.
In case of Dirichlet boundary conditions for pressure it is clear that the
overpressure (figure 17) does not allow the oil generated to move upwards,
while in case of Neumann boundary conditions for pressure, the overpressure
causes the oil to move upwards.

Figure 16: Saturation at t = 0, t = 30 My, t = 50 My. With Dirichlet
boundary conditions for pressure, the oil moves downwards.

It is worth observing that the boundary condition for pressure at the
bottom has a dramatic influence on oil migration. However, we point out
that the correct boundary condition can be imposed only after a proper
preliminary study of the geological properties of the source rock considered
and of its surroundings and of the overlying and underlying layers.
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Figure 17: Overpressure at t = 0, t = 30 My, t = 50 My, with Dirichlet
boundary conditions for pressure.

Figure 18: Saturation at t = 0, t = 30 My, t = 50 My. With Neumann
boundary conditions for pressure, the oil moves upwards.

Figure 19: Overpressure at t = 0, t = 30 My, t = 50 My, with Neumann
boundary conditions for pressure.
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6 Conclusions and further developments

In this work, we have described and implemented a model for porosity evo-
lution in source rock. The main purpose of this thesis was to gain insight
into the complex interplay of mechanical and chemical processes and, as
a first approximation, many simplifying assumptions were made. We have
considered a chemical kinetics that involves only one type of kerogen and
generates only oil, and we have neglected the effects of adsorption. The
model proposed can be improved by considering different types of kerogen
and products and by introducing the equations that govern the chemical
reactions. Retention processes can also be included in the model. In this
way, detailed simulations of generation and retention, coupled with a multi-
phase and multi-component fluid flow, can be realized. Such an analysis
allows to understand the composition of the hydrocarbons in the reservoirs,
as well as the amount of the hydrocarbons retained in the source rock. This
information has certainly deep economic implications.

Even though the model was simplified by the assumptions made, some
numerical difficulties arose. In fact, instability problems were observed when
solving the system for pressure and for the total velocity, when the time
step was small and permeability reached low values. A simple fixed point
strategy was enough in case of sufficiently high permeabilities (k0 ≈ 10−6

Darcy), but too many fixed point iterations were necessary in case of lower
permeabilities. In particular, we have observed in both the test cases of
the Darcy problem and of the full problem, that the number of fixed point
iterations necessary increased during the simulation. This happened because
the progressive compaction due to the burial of the source rock caused the
porosity and, consequently, the permeability to decrease. We are convinced
that these instabilities can be strongly reduced by modifying, in the splitting
strategy, the treatment of the porosity time derivative in the right hand side
of equation (50), as suggested in the end of section 4.2.

The simulations conducted show that the overpressure in the domain is
strongly influenced by the choice of the boundary conditions for pressure.
In one case, by imposing at the bottom the hydrostatic pressure, the over-
pressure causes the newly generated oil to move downwards. In the other
case, by imposing at the bottom the gradient of the hydrostatic pressure,
oil moves upwards. Hence, a special attention should be payed to impose
boundary conditions coherent with the geological setting considered. More-
over, since high pore fluid pressure can cause the rock to fracture, it would
be interesting to expand the model by considering the possibility of rock
fractures.

Although the model presented is general and was derived in d dimensions,
where d = 2 or d = 3, the implementation of the numerical solver was in two
dimensions. The most challenging further work is certainly the extension of
the implementation to the three-dimensional case.
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A Piola transformation of vectorial fields

In this appendix we explain how the equations (36) were obtained and what
is the relationship between ∇̂ · û and ∇·u. In figure 20 we represent the two
coordinate systems that we are working with. We denote with the hats the
variables referred to the fixed domain and without the hats those referred
to the physical one. Let ϕt : Ω̂ → Ω(t) be the map from the fixed domain
to the physical one at the instant t ∈ (0, T ]. ϕt : x̂ 7→ ϕt(x̂) = x.

Ω̂ Ω(t)

x x

ξ z

ϕt(x̂)

x̂ x

Figure 20: The fixed domain and the physical one.

Let Ŝ ∈ ∂Ω̂ and St = ϕt(Ŝ). Let n̂ and n be the normal vectors, pointing
outwards, to the boundaries Ŝ and St respectively. We consider a vectorial
field v on Ω(t). The Piola transformation of v in Ω̂ is the vectorial field v̂
on Ω̂ such that ∫

St

v · n dΓ =

∫
Ŝ

v̂ · n̂ dΓ̂.

With the notation of section 3.2.3, we define J := ∇ϕt and J = det J.

Proposition 5. The Piola transformation of v is the vectorial field

v̂(x̂, t) = J J−1v(ϕt(x̂), t).

Proof. It can be proved that for each triple of vectors a,b, c

(Ja ∧ Jb) · Jc = J (a ∧ b) · c.

It follows that
JT (Ja ∧ Jb) · c = J (a ∧ b) · c.
⇒ JT (Ja ∧ Jb) = J (a ∧ b)

and, since J is invertible,

(Ja ∧ Jb) = J J−T (a ∧ b) .
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If x̂ : U → Ŝ, x̂ : (u1, u2) 7→ x̂(u1, u2) ∈ Ŝ is a parametrization of Ŝ, ϕt ◦ x̂
is a parametrization of St. We can write

dΓ =

∣∣∣∣ ∂x

∂u1
∧ ∂x

∂u2

∣∣∣∣du1 du2, dΓ̂ =

∣∣∣∣ ∂x̂

∂u1
∧ ∂x̂

∂u2

∣∣∣∣du1 du2

and

n =
∂x
∂u1
∧ ∂x
∂u2∣∣ ∂x

∂u1
∧ ∂x
∂u2

∣∣ , n̂ =
∂x̂
∂u1
∧ ∂x̂
∂u2∣∣ ∂x̂

∂u1
∧ ∂x̂
∂u2

∣∣ .
Then, we have∫

St

v · n dΓ =

∫
U

v ◦ϕt ◦ x̂(u1, u2) · n(u1, u2)

∣∣∣∣ ∂x

∂u1
∧ ∂x

∂u2

∣∣∣∣du1 du2

=

∫
U

v ◦ϕt ◦ x̂(u1, u2) ·
(
∂x

∂u1
∧ ∂x

∂u2

)
du1 du2

=

∫
U

v ◦ϕt ◦ x̂(u1, u2) ·
(

J
∂x̂

∂u1
∧ J

∂x̂

∂u2

)
du1 du2

=

∫
U

v ◦ϕt ◦ x̂(u1, u2) · J−T
(
∂x̂

∂u1
∧ ∂x̂

∂u2

)
J du1 du2

=

∫
U

v ◦ϕt ◦ x̂(u1, u2) · J−T n̂(u1, u2)

∣∣∣∣ ∂x̂

∂u1
∧ ∂x̂

∂u2

∣∣∣∣ J du1 du2

=

∫
Ŝ
J J−1v ◦ϕt · n̂ dΓ̂

Since Ŝ is arbitrary, it follows that v̂ = J J−1v ◦ ϕt, which proves the
thesis.

Corollary 1. From the previous proposition it follows that

∇̂ · v̂ = J ∇ · v.

Proof. If we take St = ∂Ω(t) and Ŝ = Ω̂, we have∫
Ω(t)
∇ · v dΩ =

∫
∂Ω(t)

v · n dΓ =

∫
∂Ω̂

v̂ · n̂ dΓ̂ =

∫
Ω̂
∇̂ · v̂ dΩ̂.

By changing coordinates the first integral, since Ω̂ is arbitrary, we obtain
that J ∇ · v = ∇̂ · v̂.
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B The Raviart-Thomas elements

The Raviart-Thomas finite element space RT0(Ω, Th) is a finite element
approximation of the space H(div; Ω) defined by (52).

We consider a triangulation Th of a simply-connected bounded domain
Ω ⊂ IRd, with d = 2 or d = 3. For D ⊂ Ω, we refer to Nh, Eh, and Fh as
the sets of vertices, edges, and faces in D. We denote by Pk(D) and P̃k(D),
k ∈ IN0, the sets of polynomials of degree ≤ k and the set of homogeneous
polynomials of degree k on D.

For K ∈ Th and k ∈ IN0, we set

Rk(∂K) := {ϕ ∈ L2(∂K) : {ϕ|e ∈ Pk(e), e ∈ Eh(K)} if d = 2,

Rk(∂K) := {ϕ ∈ L2(∂K) : {ϕ|f ∈ Pk(f), f ∈ Fh(K)} if d = 3.

Let k be a d-symplex. The Raviart-Thomas element RTk(K), k ∈ IN0 is
defined by

RTk(K) = Pk(K)d + xPk(K).

Proposition 6. If q ∈ RTk(K), then

∇ · q ∈ Pk(K),

n · q|∂K ∈ Rk(∂K).

Moreover,

dim RTk(K) =

 (k + 1)(k + 3) if d = 2

1

2
(k + 1)(k + 2)(k + 4) if d = 2

In case d = 2, the degrees of freedom on each element K for the cases
k = 0 and k = 1 are those shown in figure 21.

Figure 21: Degrees of freedom of RTk(K) with k = 0 and k = 1, d = 2.

If k = 0 and d = 2, that is the case of our application, the basis functions
of the Raviart-Thomas finite elements are

τKi =
x− xi
2|K| ∀x ∈ K
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We can now define the Raviart-Thomas finite element space RT0(Ω, Th)
as

RTk(Ω, Th) := {q ∈ L2(Ω)d : q|K ∈ RTk(K),K ∈ Th}
RTk(Ω, Th) is a finite dimensional subspace of H(div; Ω).
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C Adsorption Isotherms

Recent years studies have classified the retention processes into three differ-
ent types: the absorption of petroleum compounds in kerogen, the adsorp-
tion on vitrinite surface and the adsorption in mineral nanopores. The main
idea of absorption in kerogen is that kerogen is a macromolecule that be-
haves like a polymer and is thus able to dissolve other species in its molecular
structure. Instead, adsorption is a surface phenomenon that occurs when a
gas or liquid solute accumulates on the surface of a solid forming a molecular
film.

The software used in this appendix for the simulation of generation and
primary migration is Pmod+, owned by Eni S.p.A. . The approach used
in Pmod+ to describe the retention processes consists of three stacked fil-
ters, one for each different type of retention, characterized by a maximum
retention threshold for each hydrocarbon species. If the amount generated
by chemical reactions is below a retention threshold it is fully retained by
the filter, otherwise a fraction is retained and the remaining part is expelled
from the source rock. It should be pointed out that the retention thresholds
depend strongly on the molecular properties of the hydrocarbons, therefore
the filters have different effects on the various species: those that are more
likely to be retained keep undergoing cracking reactions and transform into
lighter hydrocarbons, resulting in a change in the chemical composition of
petroleum and gas. The thresholds are defined by experimental laws and
depend, in general, they depend on time and on the concentration of the
species.

In this appendix, we simulate the generation and expulsion of hydro-
carbons in a source rock with particular focus on adsorption in mineral
nanopores. Adsorption is usually described through isotherms that repre-
sent the amount of adsorbed fluid on the adsorbent as a function of its
concentration (or partial pressure, in case more than one fluid is considered)
at a constant temperature. The most common adsorption models proposed
in literature are Langmuir, Freundlich, and Romero-Sarmiento isotherms.
The first model can be derived with rigorous chemical and statistical argu-
ments. The second model is an empirical equation and is the only model
originally implemented in Pmod+. Finally, the third model is a generaliza-
tion of Langmuir isotherm. After implementing in Pmod+ the Langmuir
and the R-S isotherms, with the possibility of selecting the desired model
with the new flag ADSHALE, the results obtained with different adsorption
models are compared.

Langmuir Isotherm

The equation of Langmuir isotherm can be derived straightforward from the
following assumptions:
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• There is a dynamic equilibrium between the adsorbed molecules and
the free ones.

• The solute molecules can be adsorbed in a fixed number of sites, which
are equal in size and shape. Each site can hold a maximum of one
molecule.

• The adsorption involves the attachment of only one layer of molecules
to the surface.

• There is no interaction between the molecules of the adsorbate.

Let A and S be the adsorbate and the adsorbant respectively. More pre-
cisely A denotes the unadsorbed molecules and B the vacant sites of the
surface. The chemical reaction that represents the monolayer adsorption
can be written as follows:

A+ S � AS

where AS represents a solute molecule bound to a surface site on S, that is
an adsorbed molecule.
The equilibrium constant for this reaction is

KL =
[AS]

[A][S]

where [A] denotes the concentration of the adsorbate and [S] and [AS] are a
sort of concentration expressed in terms of mol/cm2. Let θ be the fraction
of the occupied sites and 1 − θ the fraction of the vacant ones. We expect
[AS] to be proportional to θ and [S] to 1− θ so that

[AS]

[S]
=

θ

1− θ

Denoting with c the concentration of the adsorbate, one has

KL =
θ

c(1− θ)

that is

θ =
KLc

1 +KLc

In terms of adsorbate moles, we can express θ as z
zmax

, where z is the amount
adsorbed and zmax is the maximum amount that can be stored due to ad-
sorption. Thus,

z = zmax
KLc

1 +KLc
(58)

55



that is the equation of Langmuir Isotherm. KL [−] and zmax [kg/kgrock] are
empirically determined and do not depend on temperature. In case more
than one species are involved, we should replace in (58) the concentration
c with the relative concentrations ri. zmax and KL may be significantly
different for different species.

Freundlich Isotherm

The equation of Freundlich isotherm is:

z = KF c1/n n > 1 (59)

where KF [kg/kgrock] and n [−] are experimental constants. Freundlich
isotherm is an empirical adsorption model, that can be seen in certain con-
ditions as an approximation of the previous model. In (58), if KLc << 1
then z ' zmaxKLc, while, if KLc >> 1 then z ' zmax. In the first case,
(59) well approximate (58) if n = 1, while in the latter case it should be
n → ∞. Despite this affinity, Langmuir and Freundlich models are deeply
different. Contrary to the Langmuir model, where the isotherm reaches an
asymptote when the system is completely saturate, in this model there is
not a maximum adsorption capacity. For this reason, Freundlich isotherm
is preferable when we want to model multilayer adsorption.

Romero-Sarmiento Isotherm

In [6], Zhang et al. proved that methane adsorption in organic rich shales
is greatly affected by TOC content. In particular, CH4 adsorption capacity
was shown to increase with increasing TOC concentration in kerogen. A
variation of Langmuir classic model that represents the correlation of the
adsorbed volume with the TOC in place is proposed by Romero-Sarmiento in
[5]. This model also accounts for a possible dependence on the temperature
of the adsorbed amount. In fact, Romero-Sarmiento isotherm is a variation
of Langmuir isotherm:

z = ymax TOCsm
KL(T ) P

1 +KL(T ) P
(60)

where
KL(T ) = C e

A
T

+B.

T [K] is the absolute temperature, P [Pa] is the pressure. A [K], B [−] and
C [1/Pa] are three parameters derived experimentally from the adsorption
isotherms. ymax [kg/kgC ] is the carbon maximum adsorption capacity and is
related to the number of adsorption sites for a given mass of carbon. Finally,
TOCsm [kgC/kgrock] is the amount of TOC still present in rock in the form
of solid matter, and can be obtained as

TOCsm = TOCker + TOCres
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where TOCker = TOC0(1− TR) is the TOC in the immature kerogen and
TOCres is the residual solid TOC resulting from the solid products of the
kerogen transformation.

Implemented Models

The isotherms mentioned above are implemented in terms of the relative
concentrations of the various species i = 1, ...,M . Depending on the value
of the new variable ADSHALE in the .pri input file, Pmod+ will use a
different adsorption model.

Model 0

For ADSHALE = 0, Pmod+ will use the original model, a variant of Fre-
undlich isotherm proposed by Ritter and discussed in [18]. For the i-th
species, the adsorbed amount is:

zi = Wiri
fi(r)

fi(r) =

(∑
j δjrj − δi

)SI
UD

Note that Wi [kgi/kgrock] and fi [−] are different for each species, while SI
and UD have fixed values: SI = 0.8 and UD = 3.0. δj are the Hildebrand
solubility parameters as described in [18].

Model 1

For ADSHALE = 1 a Langmuir isotherm is used. Because the experimental
isotherms are often described as

Vi = VL,i
Pi

PL,i + Pi

where VL,i [scfi/tonrock] and PL,i [Pa], these parameters will be required
in the .pri input file. VL,i will be then converted in scmi/kgrock and the
adsorbed amount zi = Vi ρi [kgi/kgrock] is given by:

zi = ρi VL,i
P ri

PL,i + P ri
= ρi VL,i

ri
PL,i
P + ri

.

Note that scm are m3 at standard conditions (i.e. T = 15.6 ◦C and P =
1 atm). For this reason, ρi [kgi/m

3] must be the density of the i-th species
at standard conditions and not the effective density in the rock.
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Model 2

For ADSHALE = 2 a Freundlich isotherm is implemented. The input values
are VF,i [scfi/tonrock] and nF,i [−]. Similarly to the previous case VL,i is
converted into scmi/kgrock and zi is

zi = ρi VF,i ri
1/nF,i

Since no experimental calibration has been done for this model, numerical
results for this case will not be analysed.

Model 3

For ADSHALE = 3, Romero Sarmiento isotherm is used, exactly as de-
scribed in (60). Thus,

zi = ymax,i TOCsm
KL(T ) P

1 +KL(T ) P

In [5] the values of the parameters proposed are the following: A = 2628 K,
B = −9.754, C = 10−6 1/Pa, while ymax,i = 0.0215 kgi/kgC for methane
adsorption.

Results

In this section, the numerical results obtained for four different adsorp-
tion isotherms are compared: the originally implemented Ritter model, two
Langmuir models with two different choices of the parameters and Romero
Sarmiento (RS). Langmuir 1 is obtained with VL,i = 76.25 scfi/tonrock and
PL,i = 21.31MPa and Langmuir 2 with VL,i = 55.37 scfi/tonrock and
PL,i = 22.50MPa. These couples of values are taken from the CoreLab
data available for the adsorption of methane in the Barnett Shale in Shif-
flett well and for depths comparable to that of the geological model used for
these simulations. Since no data regarding the adsorption isotherms of the
other fluid species were available, the same parameters were used for each
component. A sketch of the two Langmuirs is presented in figure 22.

A set-up that well highlights the differences between the adsorption
isotherms discussed was used. The only kind of retention in rock consid-
ered was adsorption in shale (i.e. only the third filter of those implemented
in Pmod+ was activated) and an open system with full expulsion of all the
free species was studied (i.e. the flag ISYS was set to 5). Observe that, if all
the free species in rock are expelled, the remaining in rock amount coincides
with the adsorbed amount. The chemical kinetic consisted of the simplified
scheme:

KER1 → OLIO, CHX, KER2

OLIO → CHX, CH4, KER2.
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Figure 22: Isotherms: red = Langmuir 1, pale blue = Langmuir 2.

As expected, the remaining gas in the source rock is deeply influenced by
the choice of the adsorption model, as shown in figure 23. Concerning the
two Langmuirs, the higher one (i.e. in our case Langmuir 1) causes a higher
retention for both CH4 and CHX. With RS model for CH4 adsorption, one
can observe that remaining in rock CH4 is much lower than the quantity
predicted by the other models. This is due to the fact that the adsorption
amount in this model is inversely proportional to the absolute temperature
and that the secondary cracking from whom methane is generated occurs
at high temperatures. Thus, most of the methane is expelled immediately
after generation.

Because the remaining methane is significantly lower when RS adsorption
model is used, the total gas remaining in rock (i.e. the adsorbed quantity,
since full expulsion means there is no free gas in rock) with model RS is
much lower compared to the other cases, as one can see in figure 24.

In figure 23, one can observe that the remaining amount of CH4 reaches
a constant value once all the CH4 is generated. On the other hand, the
remaining amount of CHX seems to reach a constant value after primary
cracking is completed, and starts growing again when secondary cracking
begins. In fact, CHX is both a primary and a secondary product in this
chemical kinetic. RS isotherm is the only one that does not show this be-
haviour. The reason for this is explained below.

As expected, the oil generation (figure 25) does not depend on the ad-
sorption model. In fact, in this kinetic oil is only a first generation product.
Concerning the oil remaining, the curves relative to the two Langmuir mod-
els overlap, while RS prediction is far lower than the others. This means that,
in the latter case, the amount of the products obtained with the secondary
cracking will be lower. This explains why in the RS case the remaining CHX
presents only one flat region, once most of the CHX is generated.

Pure Langmuir gas expulsion is quite similar for the two choices of the
parameters for both CH4 and CHX expulsion, as shown in figure 26.
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Figure 23: Remaining gas [kgi/kgrock].

Notice that the variables referred to CH4 are more sensible to the choice
of the adsorption model than those referred to CHX. This is due to the
extremely simplified kinetic scheme used, where CHX can be generated by
both the first and the second kerogen cracking, while CH4 is only a second
generation product. Of course, the more oil is retained and the more CH4
is generated and expelled. This is clearly shown in figures 27 and 26.

In figures 28 and 29 are represented the generated, retained, and expelled
amounts of CH4 and CHX for each adsorption model.
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Figure 24: Remaining gas [kgi/kgrock].
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Figure 25: Oil generation and oil remaining [kgi/kgrock].
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Figure 26: Expelled gas [kgi/kgrock].
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Figure 27: Generated gas [kgi/kgrock].
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Figure 28: CH4 generation, expulsion, retention [kgi/kgrock].
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Figure 29: CHX generation, expulsion, retention [kgi/kgrock].
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