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An Indirect Optimal Control Approach for Propellantless Orbital

Rendez-Vous

Author: Brunella Carlomagno

The implementation of an indirect method for the optimal trajectory of a
rendez-vous manoeuvre using only the di�erential drag as actuator is pre-
sented. This propellantless technique exploits the exposed surface of the
satellite in along-track direction to control the manoeuvre. The limit is in
the small value of control, taking to the necessity of the trajectory optimiza-
tion, which is obtained trough the implementation of an indirect method.
Despite its great advantage of fast convergence and reduced number of vari-
ables, two important drawbacks have limited its di�usion: the necessity of
the derivation of the optimality conditions and the costate initialization. The
�rst one can be overcome with simpler models, when possible, or numerical
di�erentiation; the second one has a much more complex solution. For this
purpose, a "homotopic"-based approach has been implemented. The strat-
egy has been tested through four models, with increasing complication, and
several cases. The tests have given good results for simpler models, while
for the more complex ones the strategy fails. Several changes have been pro-
posed, without a remarkable improvement.

Keywords Di�erential Drag, Rendez-Vous, Optimal Control, Indirect Meth-
ods
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An Indirect Optimal Control Approach for Propellantless Orbital

Rendez-Vous

Autore: Brunella Carlomagno

La dissertazione presenta l'implementazione di un metodo indiretto per il
controllo ottimo del rendez-vous, utilizzando la resistenza di�erenziale come
attuatore. Questa tecnica sfrutta la super�cie esposta dal satellite nella di-
rezione della velocità per controllare la manovra. Il limite è nel valore del
controllo, molto piccolo, che quindi porta alla necessità di un'ottimizzazione
della traiettoria, ottenuta attraverso l'implementazione del metodo indiretto.
Nonostante i grandi vantaggi legati ad una convergenza molto veloce e a un
ridotto numero di variabili, la di�usione di questi metodi è stata limitata
da due inconvenienti: la necessità di derivare le condizioni di ottimalità e
l'inizializzazione dei costati. Il primo può essere superato usando modelli più
semplici, quando possibile, o la di�erenziazione numerica; il secondo neces-
sita una soluzione più complessa. Per questo, un approccio "omotopico" è
stato implementato. La strategia è stata testata attraverso quattro modelli,
con complicazione crescente, e diversi casi. I test hanno dato buoni risultati
per i modelli più semplici, mentre per i più complessi il metodo non ha fun-
zionato. Nonostante i diversi cambiamenti proposti, nessun miglioramento è
stato ottenuto.
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Chapter 1

Introduction

The objective of this thesis is to provide the numerical implementation of an
indirect method for the optimal control problem of the rendez-vous manoeu-
vre.

The particular problem has been extensively studied over the years, starting
from the "pioneering" [6] work of Leonard [3]. With her Master thesis at the
MIT, she gave birth to a totally new way of thinking the propulsion for the
rendez-vous manoeuvres. As for the cars in our towns, the fuel has a cost, but
in space applications, this cost is normally linked to its weight: when more
fuel is necessary, less instruments can be put on board. Especially nowadays,
several propellantless techniques have been introduced, as the famous solar
sails or the less famous geomagnetic systems. The idea of exploiting the at-
mospheric drag has the originality of changing what normally is considered
an "enemy" into an helping friend. Originally, drag-plates were added to
the satellite to operate the change in the di�erential drag; lately the system
has been reduced to the simple attitude control, exploiting directly the ex-
posed surface of the satellite. Lower values of control have been obtained,
but smaller weight is considered. The �rst practical implementation is the
JC2Sat formation �ying mission. It represents a collaboration between the
Canadian and the Japanes Space Agencies with validation of this new actua-
tor as main objective. Unfortunately, the mission has not yet been launched,
preventing from data analysis. The interest is still growing and the Université
de Liège has in charge to validate it with the QB50 nanosatellites constella-
tion.

The second aspect of this dissertation is the numerical implementation of
the previous idea. The trajectory optimization has a much longer history
than the di�erential drag as actuator, implying much more information and

1



CHAPTER 1. INTRODUCTION

possibilities. The indirect methods are part of these. With the great advan-
tage of the optimal solution and the smaller computational cost with respect
to direct methods, they have been less developed: the cause is in their great
disadvantage, the initialization. The main di�erence between the two typolo-
gies is in the de�nition of the control: the direct methods guess its structure,
modifying it at each iteration; the indirect methods �nd it algebraically,
through the action of the costate variables. These are the hearth of the mat-
ter: they do not have a real physical meaning, preventing from a de�nite
initialization. Several approaches have been implemented to overcome this
issue, the most famous is the hybrid one: mixing direct and indirect methods.
The objective of this thesis is the indirect method implementation, without
the participation of the direct ones. For this purpose, new strategies have
been tried: the most promising is the homotopic approach, or continuation
method. Its basic idea has been exploited, with a small modi�cation.
The methodology followed during this thesis can be summarized in two words:
reading and coding. The acquisition of information through books, articles,
papers, Internet sites has been long and interesting; the numerical implemen-
tation often failing. The idea was to get as much information as possible on
a particular strategy and implement it in a code. Often, this part has been
stopped before getting any results, because of the advent of new issues. This
trying methodology has the great advantage of considering a huge knowledge,
easily spendable in the future. However, this also implies a slowdown of the
work.

The numerical instrument is the Matlab R© program. The reason is in its
huge global di�usion, allowing the consultation of several tutorials and fo-
rums, and its academic di�usion, it represents one of the most used in tra-
jectory optimization, together with Fortran.

Outline of the thesis

This dissertation is organized as follows: Chapter 2 and 3 are dedicated to
the theoretical explication of the di�erential drag as actuator (Chapter 2)
and the optimal control theory (Chapter 3). This last one contains also a
compendium of methods, with a small description of each. The real imple-
mentation starts with Chapter 4, where the analysed models for the problem
are presented. Chapter 5 considers the analytical solution. The hearth of
the thesis is Chapter 6: the strategy is explained and implemented, analysing
the results. Finally, the conclusions and future perspectives are presented in
Chapter 7.

2



Chapter 2

"... Propellantless Orbital

Rendez-Vous"

The rendez-vous consists in a series of manoeuvres done by a space object to
approach another one. They can be two satellites, a spacecraft and a space
station (as for the ATV and ISS), a satellite and a planet, a satellite and a
point, even if in these last two cases, the de�nition is not completely exact.
In this thesis, the case of two satellites is taken into account. By convention,
the active control satellite is called Chaser and the followed one is the Target.

Figure 2.1: Relative motion between target and chaser (from [1])

3



CHAPTER 2. "... PROPELLANTLESS ORBITAL RENDEZ-VOUS"

2.1 Di�erential Drag

The control of orbits in a rendez-vous manoeuvre is normally operated trough
a propulsion system, as mono-propellant with hydrazine, electric systems.
The most important advantage of this type of propulsion is the precision,
while the disadvantages concern two di�erent aspects: the weight and the
contamination. Any propellant system needs several components to operate:
a tank for the propellant, tubes, a transformation system. All these increase
the weight: it is evident that the more weight is used for the satellite oper-
ating systems, the less can be dedicated to the scienti�c instruments. The
second disadvantage is the contamination: some instruments - as telescopes,
solar panels - are very sensitive with respect to pollutant particles, that can
alter the optical properties. The disadvantages of this type of propulsion
become the advantages for a di�erent type: propellanteless technique. The
result is a simpler satellite where the absence of propellant avoids the con-
tamination.
The propellantless technique examined in this thesis is the Di�erential Drag.
Directly from the name, the physical principle is understandable: a di�erence
in drag acting on each satellite creates a change in relative positions. This
technique requires attitude or geometry changes to maximize or minimize
the amount of atmospheric drag a satellite experiences, in order to maintain
or speed up its orbital velocity to change the orbit itself and operate the
rendez-vous manoeuvre.
The aerodynamic force acting on a �ying object is typically decomposed into
two components: lift, acting perpendicularly to the velocity direction, and
drag, acting in this direction. For a satellite in LEO, the �rst is negligible,
the second is the largest nonconservative force, as shown in �gure 2.4. The
drag acceleration is function of several parameters:

adrag = −1

2
ρBCv2

r

vr
vr

(2.1)

where:

• ρ is the atmospheric density;

• BC is the ballistic coe�cient: BC = CDS
m

;

- CD is the drag coe�cient: a dimensionless quantity that represents
the extents to which the satellite is susceptible to atmospheric
drag;

- S is the cross-sectional area in velocity direction;

- m is the mass of the satellite;

4



CHAPTER 2. "... PROPELLANTLESS ORBITAL RENDEZ-VOUS"

• vr is the velocity of the spacecraft relative to the atmosphere;

• vr

vr
indicates the velocity direction.

The di�erential drag is a di�erence in the atmospheric drag experienced by
target and chaser, this means that one or several of these parameters are
di�erent between the two satellites:

• the atmospheric density: actually, this parameter is the most di�cult to
model, since altitude, temperature, solar and geomagnetic activities can
signi�cantly change it. Several models exist, as the Jacchia-Roberts,
Harris-Priester, but it is still a challenging problem. For this reason,
as �rst approximation, it has been considered constant: if the altitude
variations remain in certain limits, this assumption is legitimate.

• the velocity of the spacecraft: it is considered constant, since the tar-
get's orbit is circular.

• the ballistic coe�cient: it is in this parameter that the di�erence is
created, in particular the easiest way is the change in cross-sectional
area. The drag coe�cient is function of several elements, as the shape,
the material, the Mach number, which are quite di�cult to modify on
orbit. The mass is considered constant, since no propellant is used.
The last element is the cross-sectional area: this di�erence can be ac-
complished by attitude or geometrical change, as shown in section 4
and Chapter 4.

The di�erential drag is then expressed as:

aDiffDrag = −1

2
ρ∆BCv2

r

vr
vr

(2.2)

or in scalar form (since the only e�ect is in the velocity direction, which
coincides with the y axis of the LVLH reference frame):

aDiffDrag = −1

2
ρ∆BCv2

r (2.3)

where ∆BC represents the di�erence in ballistic coe�cients between target
and chaser. In particular, if the satellites are similar, the drag coe�cients
can be considered constant:

∆BC = BCChaser−BCTarget =
CDC

SC
mC

−CDT
ST

mT

= CD

(
SC
mC

− ST
mT

)
(2.4)

where mC , mT are respectively the mass of the chaser and the target and
SC , ST are the surfaces.

5



CHAPTER 2. "... PROPELLANTLESS ORBITAL RENDEZ-VOUS"

2.2 Equations

In order to derive the set of equations for the rendez-vous manoeuvre, several
assumptions have to be taken into account:

• orbit dimensions are far higher than the relative distance: δr � r, r0

• the target's orbit is circular : the orbital rate ω is constant

The �rst assumption is quite easy to understand: a rendez-vous manoeu-
vre starts when the distance between the two satellites is relatively small
(<100 km), while the orbit dimensions - as the semi-major axis - are much
bigger. This aspect takes to a linearization procedure and the concern to the
only relative motion dynamics.
The second one is a simpli�cation: the target's orbit is considered known
and circular. In this way, less variables have to be taken into account and
the set of equations is simpli�ed.

The derivation 1 of the equations starts from the classical "two-body
problem" dynamics and, considering the assumptions, a set of linear ordinary
di�erential equations is obtained:

δr̈ = − µ
r3

0

(
δr− 3r0.δr

r2
0

r0

)
(2.5)

Until now, the considered reference frame is still the inertial one; while the
already mentioned relative motion calls for a di�erent one: a switch to a local
frame is then operated. The reference frame commonly used for this type
of dynamics is the Local Vertical Local Horizontal (LVLH) reference frame
(�gure 2.2)

As the �gure 2.2 shows, the center of the reference frame is the center of
the target; the x (̂i) axis points from the center of the Earth to the center
of the target, the y (ĵ) axis points the direction of the motion, with positive
versus as positive velocity direction; and z (k̂) axis is normal to the orbit, to
create a right-handed reference frame.
The coordinate transformation takes to the well-known Hill-Clohessy-Wiltshire
equations: 

ẍ− 2ωẏ − 3ω2x = ux

ÿ + 2ωẋ = uy

z̈ + ω2z = uz

(2.6)

where x, y, z are the positions of the chaser with respect to the target;
ω is the orbital rate of the target and ux, uy, uz are the non-gravitational

1The complete derivation can be found in Appendix A
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Figure 2.2: Local Reference Frame (from [1])

forces per unit mass, acting on the chaser.
Two simpli�cations can still be done:

• only di�erential drag: the x and z components of the non-gravitational
forces are null, ux = uz = 0

• out-of-plane motion cannot be controlled only by di�erential drag: the
z dynamics is separated from the other two, so no changes in inclination
are considered;

The set of equations becomes:{
ẍ− 2ωẏ − 3ω2x = 0

ÿ + 2ωẋ = uy
(2.7)

The unforced system has a simple solution :

x

y

ẋ

ẏ


=



4− 3cos(ωt) 0 sin(ωt)
ω

2
ω

(−cos(ωt) + 1)

6(sin(ωt)− ωt) 1 2
ω

(cos(ωt)− 1) 4sin(ωt)
ω
− 3t

3ωsin(ωt) 0 cos(ωt) 2sin(ωt)

6ω(cos(ωt)− 1) 0 −2sin(ωt) 4cos(ωt)− 3





x0

y0

ẋ0

ẏ0


(2.8)
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The relative motion is then an ellipse, where the center is constant in x-
direction and moves away from the target in the y-direction, because of the
secular terms, as shown in the �gure 2.3.

Figure 2.3: Relative position of the HST after releasing from Space Shuttle
with not null initial velocity (from [1])

2.3 Including J2 perturbation

In real life, satellites experience much more e�ects than the only gravitational
one and the di�erential drag, as considered so far. In particular, the most
important are:

• oblateness of the Earth;

• the solar pressure;

• the third body gravitational e�ect.

The last two e�ects become more important at higher altitude, where the
atmospheric drag is less e�ective (�gure 2.4).

8
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Figure 2.4: Relative importance of di�erent perturbations with respect to
the altitude (from [1])

It is then legitimate to neglect these two e�ects.
The real form of the Earth is more complicate than a sphere, because of the
centrifugal force of the rotation that tends to increase the material at the
Equator, but also the mass distribution on the surface (oceans, mountains)
and in the inside (core, crust). The gravitational potential can be expressed
in terms of the real mass distribution (which considers almost 5 millions
parameters), taking to a very accurate but too expensive representation.
Traditionally, these parameters are divided into two types: zonal harmonics
and sectorial harmonics coe�cients. The �rst ones dependent on the latitude,
the second ones on the longitude. At a �rst approximation, the Earth can
be considered an ellipsoid, in this way only the �rst zonal harmonic is taken
into account. Its value is a thousand time larger than any other coe�cients:
J2,0 = 0.001082
The J2 gravity perturbation has been incorporated in the rendez-vous set of
equations by Scheweighart and Sedwick[2]. The linearized dynamic model is:

ẍ = 2(ωc)ẏ + (5c2 − 2)ω2x+ ux

ÿ = −2(ωc)ẋ+ uy

z̈ = −q2z + 2lqcos(qt+ φ) + uz

(2.9)

where c is the Scheweighart-Sedwick coe�cient that consider the J2 per-
turbation, ω is still the orbital rate of the target (constant) and q, l and φ

9
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are coe�cients de�ned in Scheweighart-Sedwick work [2]

c =

√
1 +

3J2R2
⊕

8r2
T

[1 + 3cos(2iT )] (2.10)

where R⊕ is the Earth's mean radius (R⊕ = 6378 km), rT is the target
position vector in the inertial reference frame (ECI: Earth Centered Inertial),
iT is the inclination of the target orbit.
As for the Hill-Clohessy-Wiltshire equations, the only non gravitational force
is the di�erential drag, which cannot control the out-of-plane motion. The
set of equations is reduced to:{

ẍ = 2ωcẏ + (5c2 − 2)ω2x

ÿ = −2ωcẋ+ uy
(2.11)

2.4 State of the art

This concept of orbit controlling exploiting the di�erential drag has been
analysed for the �rst time by Leonard [3]. In her work, the objective was the
formationkeeping and the model was the simpli�ed Hill-Clohessy-Wiltshire's.
The di�erential drag was created by geometrically changing the satellite, in
particular by adding drag plates, as shown in �gure 2.5.

Figure 2.5: Di�erential Drag as actuator through drag plates (from [4])
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These plates are present on both satellites and the angle of attack of the
drag plate can assume only two values, 0 and 90 degrees. This results in four
cases:

1. On both satellites, the angle is 0: no di�erential drag is created;

2. The drag plate on the target is at 90 degrees and the one on the chaser
at 0: positive di�erential drag is created. It acts as a thruster for the
chaser in the velocity direction;

3. The drag plate on the target is at 0 degrees and the one on the chaser
at 90: negative di�erential drag is created. It acts as a thruster for the
chaser in the direction opposite to the velocity;

4. On both satellites, the angle is 90: no di�erential drag is created. The
di�erence with the �rst case is that this con�guration makes the orbit
decay more rapidly than before, because of the increment of the drag
for both satellites.

Three assumptions are considered:

• The control law is time optimal;

• The change in di�erential drag is instantaneous and it does not a�ect
the attitude of the satellite;

• The control law is of bang-bang type.

Introducing a separation of variables between mean (xm, ym) and oscil-
latory coordinates (α, β, with α = x − xm and β = y − ym), she decoupled
the dynamics into two linear systems: a double integrator and an harmonic
oscillator. The �rst describes the average position of the chaser with respect
to the target; the second the eccentricity of the ellipse.{

ÿm = −3uy

β̈ + ω2β = 4uy
(2.12)

The control law is built in order to solve the double integrator and the
harmonic oscillator simultaneously and dependently: in this way, once the
average position is at the target's, bringing the periodic one to its target
position does not move the �rst away from the designed point. In particular,
it consists in two parts: the main control law and the gamma control scheme.
The �rst drives the average position to the target's without an excessive
increase in the eccentricity: a �rst switch between positive and negative

11
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di�erential drag takes the states to the switching curve, where a second
switch drives them to the origin through the switching curve itself (�gure
2.6(a)).

The gamma control scheme reduces the eccentricity of the chaser with
respect to the target, without driving away the average position. It starts
when the main control law ends. It involves a series of switches between
positive and negative di�erential drag twice per orbit until one of the small
circles is reached, from there a �nal switch drives the states to the origin
(�gure 2.6(b)).

(a) Control trajectory in xm − ym plane (from 5)

(b) Control trajectory in α− β/2 plane (from 5)

Figure 2.6: Analytical solution (from [3])

Bevilacqua and Romano [4] improved the model including the J2 gravi-
tational perturbation, using the Scheweighart-Sedwick set of equations.
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A slightly di�erent decomposition takes anyway to a linear system: a double
integrator and an harmonic oscillator:

z1

z2

z3

z4

 =


0 1 − A

A2−B 0

− AB
A2−B 0 0 − B

A2−B
0 0 A2

2(A2−B)3/2
0

A2B
2(A2−B)3/2

0 0 A3

2(A2−B)3/2



x
y
ẋ
ẏ

 (2.13)

with A = 2ωc and B = (5c2 − 2)ω2.
The �nal set of equations is :
ż1

ż2

ż3

ż4

 =


0 1 0 0
0 0 0 0

0 0 0
√
A2 −B

0 0 −(A2 −B) 0



z1

z2

z3

z4

+


0

− B
A2−B
0
A3

2(A2−B)2

uy (2.14)

The use of this type of equations takes to a closed form solution for constant
di�erential drag:
z1 = z10 + z20t− Bt2

2(A2−B)
uy

z2 = z20 − Bt
(A2−B)

uy

z3 = cos(
√
A2 −Bt)z30 + sin(

√
A2−Bt)√
A2−B z40 + A3[1−cos(

√
A2−Bt)]

2(A2−B)5/2
uy

z4 = −
√
A2 −Bsin(

√
A2 −Bt)z30 + cos(

√
A2 −Bt)z40 + A3sin(

√
A2−Bt)

2(A2−B)2
uy

(2.15)
Assuming the same geometrical and inertial properties for target and

chaser, they elaborated a two-phases control law, where states are driven to
zero separately:

• Stabilization phase: states z1 and z2 are taken to the origin by a series
of switches: once the switching curve is reached, the states follows the
same curve to zero. At the end of this phase, the chaser is orbiting
about the target with a stable closed relative orbit and the di�erential
drag is set to zero (�gures 2.7(a), 2.7(b)).

• Rendez-vous phase: this second phases counts a waiting phase, when
the di�erential drag is null, and three switches to drive the semi-major
axis of the relative orbit to zero (�gures 2.7(c), 2.7(d)).

The most important improvement is the analytical character of the so-
lution, which eliminates the numerical optimization. On the contrary, the
control law is of bang-bang type, which is more di�cult to deal with in real-
life satellites. Especially in this case, being the control the di�erential drag,
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(a) Stabilization trajectory in z1-z2
plane (from 4)

(b) Stabilization trajectory in z3-z4
plane (from 4)

(c) Rendez-Vous trajectory in z1-z2
plane (from 4)

(d) Rendez-Vous trajectory in z3-z4
plane (from 4)

Figure 2.7: Two phase trajectory (from [4])

it is function of the position of the chaser with respect to the target, which
makes it impossible an instantaneous variation of surface, preferring a con-
tinuous control law.
Further improvements come from Lambert, Kumar, Hamel and Hg [6], who
implement this technique in a high precision propagator, using mean orbital
elements for a better estimation of mean states.
Finally, at Université de Liège, Dell'Elce and Kerschen [7, 8] have imple-
mented this technique on a nanosatellites constellation, the QB50, in order
to validate it.
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Chapter 3

"An Indirect Optimal Control

Approach..."

3.1 A brief history of the theory

The optimal control theory has a long history, with a great improvement com-
ing from the trajectory optimization in aerospace applications in the 1950s
thanks to the advent of new technologies: computers. The �rst problems
concerned the optimization of the rocket thrust pro�le for space launches.
In 1638, Galileo posed two shape problems: the catenary and the brachis-
tochrone. The �rst consists in the research of the shape of a heavy chain
constrained at its ends; the second concerns the shortest time path for a
particle sliding without friction between two �xed points in a vertical plane
(�gure 3.1). Similarly, in 1662 Fermat postulated the principle that light
always traverses a path through a sequence of optical media in minimum
time.

Figure 3.1: The brachistochrone problem
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The name "brachistochrone" was given by Bernoulli, from ancient Greek:
βράχιστoζ, brachistos, "shortest" and χρóνoζ, chronos, "time". In 1696,
the scientist challenged his contemporaries to solve this problem and the
next year he published the results of the �ve who responded, his brother
Jakob, Liebnitz, l'Hopital, Tschirnhaus and Newton, with its own solution.
Since the interest grew, Euler, a student of Bernoulli, published another book
in 1744, collecting all the ideas of the epoch. He formulated the problem as:
�nding the curve x(t) over the interval a ≤ t ≤ b with given values x(a), x(b),
which minimizes

J =

∫ a

b

L(x(t), ẋ, t)dt (3.1)

with ẋ = dx
dt

�nding an optimality condition:

d

dx
Lẋ(t, x(t), ẋ(t)) = Lx(t, x(t), ẋ(t)) (3.2)

Up to now, the solutions were only geometric, Lagrange introduced an ana-
lytical approach based on perturbations or "variations" of the optimal curve.
Euler used this approach to reformulate its necessary conditions: the Euler-
Lagrange equations. He renamed this approach as: the "calculus of varia-
tions".

3.2 De�nitions

The objective of an optimal control problem is to determine a sequence of
control variables to minimize a cost function, respecting some constraints.
So the constitutive elements of the problem are:

• A mathematical model: a set of equations describing the system.

• A cost function, that expresses with a real number a global judgement
on the behaviour of the system when stimulated by control variables.

• The constraints on states and control variables.

System dynamics The mathematical model is a set of di�erential equa-
tions, characterizing the dynamics of the system. It can be seen as a dynam-
ical constraint and expressed as:

dx

dt
= ẋ(t) = f(t,x(t),u(t)) (3.3)

where x(t) ε Rn are the states of the system and n is their number; u(t) ε Rm

are the control variables in number m. The function f is a vector of length
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n and it can be expressed in matrix form, with the classical state-space
representation:

ẋ(t) = A(t)x(t) + B(t)u(t) (3.4)

where x(t) and u(t) are the state and the control vectors; A(t) and B(t) are
the state and the control matrix.

Cost Function The cost function in Bolza form is expressed as:

J = Φ(x(tf ), tf ) +

∫ tf

t0

l(t, x(t), u(t))dt (3.5)

where Φ(x(tf ), tf ) : Rn × R → R is the terminal cost and l(t, x(t), u(t)) :
Rn × Rm × R → R is the integrated cost. In the special case of Φ = 0,
the cost function is in Lagrange form, if l = 0 the form is of Meyer's. By
introducing an additional variable, z(t), the Bolza problem can be reduced
to the Meyer one:

y(t) =

[
x(t)
z(t)

]
, ẏ(t) =

[
f(t, x(t), u(t))
l(t, x(t), u(t))

]
= f(t, x(t), u(t)) (3.6)

J = Φ(tf , x(tf )) + (z(tf )− z(t0)) (3.7)

The cost function determines the kind of problem to deal with, the most used
expressions are:

1. Minimum time control problem: drive a state from x0 to xf in minimum
time;

J =

∫ tf

t0

dt = tf − t0 = t? (3.8)

2. Minimum fuel control problem: drive a state from an initial position
to a �nal one minimizing the consumption of fuel;

J =

∫ tf

t0

|u(t)|dt (3.9)

3. Minimum energy control problem: drive a state from x0 to xf mini-
mizing the dissipated energy;

J =

∫ tf

t0

u(t)2dt (3.10)

4. Minimum error on the �nal point:

J = x(tf )
TSfx(tf ) (3.11)
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Constraints A general form of constraints is:

φ(t0, x(t0), tf , x(tf )) = 0 (3.12)

where φ(t0, x(t0), tf , x(tf )) : Rn × R × Rn × R → Rq are the boundary
conditions and q is their number. The most used expression counts two
groups:

• Initial condition:
x(t0) = x0 (3.13)

• Boundary Conditions:
Ψ(tf ,x(tf )) = 0 (3.14)

The most simple expression for Ψ is when the �nal states must reach a given
value:

Ψ = x(tf )− xf = 0 (3.15)

Up to now, the only constraints are imposed at the ends of the time interval,
but the real complication is when the solution must satisfy constraints along
the path, on the state or on the control variables. Often, the states have only
bounds to respect

xl ≤ x(t) ≤ xu (3.16)

while control variables can also have equality and inequality path constraints:

• Bounds:
ul ≤ u(t) ≤ uu (3.17)

• Equality constraints:
g(x(t),u(t), t) = 0 (3.18)

• Inequality constraints (as a generalization of Equality constraints):

g(x(t),u(t), t) ≤ 0 (3.19)

The presence of these elements can really complicate the search for the solu-
tion and each solving method has implemented di�erent approaches to deal
with it.
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General Expression The optimal control problem is then posed as:
minimize

J = Φ(x(tf ), tf ) +

∫ tf

t0

l(t,x(t),u(t))dt (3.20)

subjected to
dx

dt
= f(t,x(t),u(t)) (3.21)

x(t0) = x0 (3.22)

Ψ(tf ,x(tf )) = 0 (3.23)

xl ≤ x(t) ≤ xu (3.24)

ul ≤ u(t) ≤ uu (3.25)

g(x(t),u(t), t) ≤ 0 (3.26)

Solution approaches The solution of an optimal control problem can be
very tough and several methods have been studied during the years. There
are three basic solving approaches:

I. Hamilton-Jacobi-Bellman (HJB) partial di�erential equations (PDE)
and Dynamic Programming;

II. Direct methods based on a �nite dimensional parametrization of the
control;

III. Calculus of Variations, Euler-Lagrange di�erential equations and the
Maximum Principle (indirect methods).

3.3 Hamilton-Jacobi-Bellman PDE and Dynamic

Programming

The basic idea of Dynamic Programming is to compute the optimal cost
function J?(x, t) recursively backwards, starting from a known value at its
end and applying the Principle of Optimality1.

A classical example is the Shortest Path Problem [11] in �gure 3.3. Here
the J is the total travel time and each point of the grid constitutes a possible
state.

1Any subarc of an optimal trajectory is also optimal: the subarc on [t + ∆t, tf ] is the
optimal solution for the initial condition x(t+ ∆t) (�gure 3.2)
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Figure 3.2: The Principle of Optimality (from [12])

Figure 3.3: The Shortest Path Problem
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In order to reach B from A in the minimum time (travel times are shown
on each segment), �rst the grid has to be applied, then the backward ap-
proach is followed on that grid, exploiting the principle of Optimality.
From B, there are two ways: one with 10 and the other with 11. To apply
the optimality principle, the same intermediate state has to be considered:
point C. For the upper possibility, the travel time is 16, for the lower one is
18: the segment BD is chosen. At this point, the new "�nal condition" is
point D: applying the same procedure (6+9 vs 8+5), the segment DF is cho-
sen. This segment allows a consideration: the importance of using the same
intermediate point, because in this case, it could be immediate the choice of
6 with respect to 8, but this would drive to a non optimum solution, as it
can be easily calculated. The path to follow is then the orange one on the
�gure 3.3.
The previous example represents a discrete system, a continuous time solu-
tion takes to the famous Hamilton −Jacobi −Bellman equation.
The �rst step is the time interval grid [t,∆t] and [t+ ∆t, tf ], with ∆t → 0,
in order to have a continuous time solution.
The optimal cost function can be expressed as:

J?(x(t), t) = min
u(τ)∈U,t≤τ≤tf

{
Φ(x(tf ), tf ) +

∫ tf

t

l(x(τ),u(τ), τ)dτ

}
= min

u(τ)∈U,t≤τ≤t+∆t

{
Φ(x(tf ), tf ) +

∫ t+∆t

t

l(x(τ),u(τ), τ)dτ

}
{

+

∫ tf

t+∆t

l(x(τ),u(τ), τ)dτ

}
(3.27)

The principle of Optimality allows to write the optimal cost-to-go function
of the state at the time instant t+ ∆t :

J?(x(t+∆t), t+∆t) = min
u(τ)∈U,t≤τ≤t+∆t

{
Φ(x(tf ), tf ) +

∫ tf

t+∆t

l(x(τ),u(τ), τ)dτ

}
(3.28)

The cost function can then be re-written as:

J?(x(t), t) = min
u(τ)∈U,t≤τ≤tf

{∫ t+∆t

t

l(x(τ),u(τ), τ)dτ + J?(x(t+ ∆t), t+ ∆t)

}
(3.29)

The cost-to-go cost function is expressed in Taylor series:

J?(x(t+ ∆t), t+ ∆t) ≈ J?(x(t), t) +

[
∂J?

∂t
(x(t), t)

]
∆t[

∂J?

∂x
(x(t), t)

]
(x(t+ ∆t)− x(t)) (3.30)
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For small ∆t :

J?(x(t+∆t), t+∆t) ≈ J?(x(t), t)+J?t (x(t), t)∆t+J?x(x(t), t)f(x(t),u(t), t)∆t
(3.31)

Substituting in the cost function:

J?(x(t), t) = min
u(τ)∈U

{l(x(t),u(t), t)∆t+ J?(x(t), t)

+ J?t (x(t), t)∆t+ J?x(x(t), t)f(x(t),u(t), t)∆t} (3.32)

Extracting the terms independent of u(t) :

0 = J?t (x(t), t) + min
u(τ)∈U

{l(x(t),u(t), t) + J?x(x(t), t)f(x(t),u(t), t)} (3.33)

This expression represents a partial di�erential equation in J?(x(t), t), solv-
able with the Dynamic Programming: backwards in time, with as initial value
J?(x(tf ), tf ) = Φ(x(tf ), tf ) The Hamilton −Jacobi −Bellman equation
is typically expressed as :

−J?t (x(t), t) = min
u(τ)∈U

{l(x(t),u(t), t) + J?x(x(t), t)f(x(t),u(t), t)} (3.34)

The method is greatly advantageous because this equation is both a nec-
essary and su�cient condition, it is able to reach the global optimum of the
function, even with a non convex problem. For the linear quadratic regula-
tor, the HJB equation can be solved analytically or numerically by solving
an algebraic or dynamic Ricatti equation. For quite general nonlinear prob-
lems, the solution is found by numerically approximating the value function,
solving a �rst-order PDE: Lions (1992) found the famous viscosity solution.
Besides this powerful advantage, its use is quite limited because of the huge
amount of storage space that is needed even for a quite small number of
variables: "If we want only one optimal path from a known initial point, it is
wasteful and tedious to �nd a whole �eld of extremals" (from [11]). As Bell-
man himself said, the method su�ers from the ”curse of dimensionality”:
so normally the solution is restricted to low dimension ( n ≤ 3 ) problems.
Several remedies have been implemented over the years, as a neural network
approximation (neuro − dynamic programming of Bertsekas and Tsitsiklis
(1996)), but it is still restricted to small dimension problems.

3.4 Direct Methods

The basic idea of direct methods is to �rst discretize the continuous control
problem into a discrete one using a transcription technique, and then solve
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Figure 3.4: The control parametrization(from [13])

the resulting NLP (Non Linear Programming) problem through a parameter
optimization method, based on Newton approaches. The presence of path
constraints is treated in two possible ways: an active set strategy or an
interior-point technique. In the �rst, the solution is sought moving in the
feasible domain, searching for an active constraint. When found, it is followed
until a new constraint becomes active, hoping in deactivating the �rst. The
path to obtain the solution is at the limits of the feasible region (�gure 3.5).

Figure 3.5: The active set strategy(from [14])
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On the contrary, the interior-point method looks for the solution inside
the feasible domain, by introducing a barrier in the objective function, that
keeps the solution searching path away from the constraints. The solution
is then obtained by iterating on the barrier value, optimizing an equality
constrained problem and using its solution as initial guess for the successive
optimization problem. The search is concluded when the barrier value is
su�ciently small (�gure 3.6).

Figure 3.6: The interior point method(from [14])

The direct methods are the most studied, especially in the last 30 years
and many complex applications have been solved with them. Two great
advantages make these methods quite attractive: the possibility of using NLP
solvers and a much easier way to deal with path and inequality constraints
with respect to Dynamic Programming and Indirect Methods. On the other
hand, the solution is only suboptimal and, since Newton methods are used,
Jacobian and Hessian calculation can be di�cult.
Three main strategies exist:

• Direct sequential approach;

• Direct simultaneous approach;

• Multiple Shooting Method.
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3.4.1 Direct sequential approach or Direct Single Shoot-

ing Method

This method consists in the transcription of the optimal control problem
through the discretization of the only control variables2, considered as op-
timization parameters. The dynamic equations are solved "exactly", so the
states are kept as dependent variables. The procedure counts four phases:

I subdivide the time interval into ns control stages, called collocation
points : t0 < t1 < ... < tns = tf ;

II approximate the control in each time interval [tk, tk+1] with di�erent
type of parametrization (linear, quadratic, BSpline, Lagrange polyno-
mials: �gure 3.4 ): ũ(t) = Uk(t, qk);

III integrate numerically the ODE with a classic IVP (Initial Value Prob-
lem) solver, as Euler (the implicit backward or the explicit forward),
Runge − Kutta (from the explicit RK4 to the most used non-sti�-
problem solver ode45 to the sti�-problem-solver ode15s, both inMatlab R©),
Multistep (the Predictor-Corrector formula, as ode113, also inMatlab R©),
to compute the states as function of �nitely many control parameters
q : x̃(t,q) ;

IV the NLP is then obtained :

J̃(q) = min
q

Φ(x̃(tf ,q), tf ) +

∫ tf

t0

l(t, x̃(t,q), ũ(t,q))dt (3.35)

subjected to

� discretized path constraints (i = 0 : ns):

g(x̃(tf ,q)) ≤ 0 (3.36)

� terminal constraints:

Ψ(x̃(ti,q), ũ(ti,q), t) = 0 (3.37)

and solved by a classical NLP solver.

A standard solver is the SQP, Sequential Quadratic Programming:

min
q
F (q) s.t. H(q) ≤ 0 (3.38)

2The method is often called Control V ector Parametrization (CVP)
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1. guess for q0, k = 0;

2. evaluate F (q0) and H(q0) by the ODE solution;

3. compute the solution ∆qk with the Quadratic Programming (by a New-
ton method):

min
∆q
∇F (qk)

T∆q +
1

2
∆qTAk∆q s.t. ∇H(qk)T∆q ≤ 0 (3.39)

4. compute qk+1 = qk + αk∆q
k, with αk the step length, obtained by line

search

The direct single shooting method has the advantage of using very few de-
grees of freedom even for large ODE system, the active set changes are easily
treated and the only guesses are on the control parameters qk. However, it
has serious di�culty in treating unstable problems and the states can depend
very non-linearly on qk, without the possibility of using information on x in
initialization. Another important source of inaccuracy is the Jacobian and
Hessian calculation in the Newton method , commonly obtained via �nite
di�erence approximations, that can be very expensive. But the very numer-
ical e�ort is determined by the complexity of the parametrization of control
variables: a compromise is sough between accuracy (more complex control
parametrization with non uniform mesh) and computational cost (simpler
parametrization). However, it is very di�cult to know a priori the right con-
trol parametrization.
Several packages have been developed over the years that implement this
method, as gOPT, DYOS, POST 3, GTS 4. In space applications, these
methods have been extensively used for launch and orbit transfer problems,
because of the small number of NLP variables. For example, a two-burn
orbit transfer problem can be expressed by eight variables (time of ignition
and velocity increment for each burn) and four or �ve constraints.

3.4.2 Direct simultaneous approach or Direct Colloca-

tion Method

In this method, the transcription is obtained through the discretization of
both state and control variables (full discretization). The procedure can
be summarized as :

3The program to simulate trajectories of launch vehicles, by Martin Marietta
4Generalized Trajectory Simulation, developed by The Aerospace Corporation
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I discretize the time interval into a �ne grid, made by ns collocation
points, as for the Direct Shooting;

II approximate control (with parameters qk) and state (with parameters
sk) variables on collocation intervals [tk, tk+1], with a speci�c repre-
sentation, as the Lagrange polynomials, the Monomial Basis or more
complex, as for pseudospectal methods. For example, the Lagrange
polynomials of degree N representation for the states is expressed as:

x̃(t) = X(t, sk) (3.40)

Xj(t, s
k
j ) =

N∑
i=0

skijLi(t) =
N∑
i=0

skijφ
(N)
i

(
t− tk−1

tk − tk−1

)
(3.41)

with φ
(N)
i (τq) = δi,q, q = 0 : N

III the system dynamics

ẋ(t)− f(x(t), u(t), t) = 0 (3.42)

are replaced by �nite equality constraints with k = 1 : ns

ck(qk, sk, sk+1) :=
sk+1 − sk

tk+1 − tk
− f

(
sk + sk+1

2
, qk
)

= 0 (3.43)

IV the integral is also approximated:∫ tk+1

tk

l(x(t),u(t))dt ≈ Lk(qk, sk, sk+1) := L

(
sk + sk+1

2
, qk
)

(tk+1 − tk)

(3.44)

V a large scale, but sparse NLP is obtained :

min
s,q

Φ(sns) +
ns−1∑
k=0

Lk(qk, sk, sk+1) (3.45)

subjected to

� �xed initial conditions :

s0 − x0 = 0 (3.46)

� discretized ODE model, with k = 0 : ns − 1

ck(qk, sk, sk+1) = 0 (3.47)
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� discretized path constraints, with k = 0 : ns

g(sk, qk) ≤ 0 (3.48)

� boundary conditions
Ψ(sns) = 0 (3.49)

One of the most important advantage of this method is the possibility
of using NLP solver, as SQP, for sparse problems, that is much cheaper to
solve. In this way, even very large problems are easily treated in sparse NLP.
With respect to the Direct Shooting Method, it can use the information on x
for initialization, since discretization is operated on both, states and control,
variables, which allows also to naturally handle path and inequality con-
straints. With this method, also unstable systems �nd a solution. However,
an important issue exists: a change in the problem creates a great change
in the resolution, because a new grid has to be obtained, which can greatly
modify the number of NLP variables. A second disadvantage is the require-
ment of a good initial guess for solution pro�le in the NLP.
The number of packages using this type of method is quite important: OTIS,
SOCS, MISER, GESOP, NTG, IPOPT (Biegler, Wätcher), OCPRSQP (Betts,
Bock, Schulz), DIRCOL (von Stryk), SOCS (Betts, Hu�mann).

Pseudospectral Methods

A special look has to be granted to these methods, because of the extreme
development in the last years. The pseudospectral methods are a particu-
lar type of direct collocation methods, where collocation nodes are obtained
via di�erent types of quadrature. The most common are three: Chebyshev
pseudospectral method (CPM), Legendre pseudospectral method (LPM) and
Gauss pseudospectral method (GPM). The �rst uses Chebyshev polynomi-
als on Chebyshev-Gauss-Lobatto collocation points, the second implements
Lagrange polynomials for state and control approximation and Legendre-
Gauss-Lobatto collocation points and the last uses a Gaussian quadrature
on Gauss collocation points. This method, in particular, has been exten-
sively studied and several versions exist, depending on the set of collocation
nodes [15]: Legendre − Gauss (LG), Legendre − Gauss − Radau (LGR)
and Legendre − Gauss − Lobatto (LGL). A complete description of these
methods is beyond the scope of this dissertation, anyway some properties
are presented.

All the three methods consider the domain [-1, 1], but each one includes
di�erent points: the LG doesn't include any of the endpoints, the LGR
includes one of the endpoints (the initial or the �nal one, creating a non-
unique asymmetric points distribution) and LGL includes both endpoints
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Figure 3.7: Di�erences between LG, LGR and LGL collocation points(from
[15])

(�gure 3.7). As example, the collocation at LGR points is presented.
As shown on �gure 3.7, the LGR method includes only one endpoint: for
this derivation, the �nal endpoint is considered. Each component of the
state is approximated through a Lagrange polynomial expansion (equation
3.40, 3.41). The state di�erentiation is then expressed as:

ẋNj (tk) =
N∑
i=0

skijL̇i(tk) =
N∑
i=0

Dkis
k
ij (3.50)

where D is the Radau Pseudospectral Di�erentiation Matrix of size N ×
(N + 1), non-square, because N + 1 points for the state approximation and
N LGR collocation points. Denoting by F(XLGR,ULGR) the N ×ns matrix
containing the discretized dynamics, the Radau pseudospectral approxima-
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tion to the continuous time optimal control problem is expressed as [16]:

minimize J = Φ(XN+1, tN+1) +
tf − t0

2

N∑
i=1

wil(Xi,Ui, ti, t0, tf ) (3.51)

subjected to DXLGR − tf − t0
2

f(X,U, t, t0, tf ) = 0 (3.52)

Ψ(XN+1, tN+1) = 0 (3.53)

tf − t0
2

C(X,U, t, t0, tf ) ≤ 0 (3.54)

where the fraction
tf−t0

2
is used to deal with time domain of the form [−1, 1]

and the NLP variables are (X1, . . . ,XN+1), (U1, . . . ,UN), t0 and tf .
In LG and LGR methods, the degree of the polynomials of the state approx-
imation is the same as the number of collocation points, while the LGL has
a one degree lower approximation with respect to the nodes number. In ref-
erence 15, the three methods are compared and two examples are presented:
the results show a better behaviour for Gauss and Radau with respect to
Lobatto, especially in the costate estimation.
The great interest in these methods has developed several packages, one of
the most famous is GPOPS, in Matlab R© environment, that has been used
to compare with indirect methods (section 6.5).

3.4.3 Direct Multiple Shooting Method

The Direct Multiple Shooting Method can be considered an hybrid method,
since it includes characteristics of both sequential and simultaneous methods.
In particular, the transcription into a NLP problem starts similarly to the
single shooting method: a grid is created on time interval and control is
parametrized. Then, the state trajectories are discretized by the same grid
points: the initial values of state trajectories on each subinterval are also
parametrized (�gure 3.8).

The continuous dynamic equations are transformed into discretized equal-
ity constraints where the terminal value of the state at each subinterval is
equal to the initial value of the state in the next subinterval.
The procedure can be summarized as:

I divide the time horizon into equal subintervals : t0 < t1 < · · · < tN ;

II approximate control with a speci�c parametrization (linear, quadratic,
BSpline) ũ(t) = Ui(t,qi)

III parametrize the initial conditions on the states on each subinterval
x̃(ti) = Xi(ti, si);
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Figure 3.8: The Multiple Shooting Method(from [10])

IV solve IVPs at each subinterval to obtain states values at the end of each
subinterval;

V de�ne matching conditions to maintain continuity of states between
subintervals;

VI de�ne the NLP and solve it, through a Newton-based method.

The NLP in Direct Multiple Shooting Method is then expressed as :

min
s,q

Φ(sN) +
N−1∑
k=0

Li(qi, si, si+1) (3.55)

subjected to

- initial value:
s0 − x0 = 0 (3.56)

- continuity constraints i = 0 : N − 1:

si+1 − x̃i(ti+1, s
i, qi) = 0 (3.57)

- discretized path constraints i = 0 : N :

g̃(si, qi) ≤ 0 (3.58)
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- terminal constraints
Ψ(sN) = 0 (3.59)

Since an hybrid method, it shares advantages of both sequential and
simultaneous methods. Since the states are parametrized in the initial con-
ditions of each subproblem, an a priori knowledge on x can be used for the
initialization (as collocation methods) and they can handle quite well path
and inequality constraints. As collocation's, the optimization of unstable
or even chaotic systems can be treated. Because each DAE partition can
be treated independently, so IVP solution and derivatives computations are
decoupled on each subinterval, this method is well suited for parallel compu-
tation. Its size can be placed between the previous two methods: it considers
much more optimal parameters than sequential, but less than simultaneous.
This takes to a less sparse structure, that can increase the computational
cost, since the sparse NLP solvers are no longer a possibility. Despite the
increased size, this method represents an improvement with respect to the
Single Shooting, because the sensitivity to errors in the unknown initial con-
ditions is reduced, since the integration is performed over signi�cantly smaller
time intervals.
Several packages have been developed over the years, the most known are
MUSCOD and HQP .

3.5 Indirect Methods: Calculus of Variations,

Euler-Lagrange di�erential equations and

the Maximum Principle

In an optimal control problem, the Calculus of Variations allows to derive
the necessary conditions for a local minimum [18].
As already mentioned, the goal is to minimize a functional, the cost function
J . The same procedure of the minimization of a function can be implemented:
�nd the gradient, set it to zero to obtain the stationary points and then
analyse the higher order derivatives to determine if minimum or maximum
points. A functional J(x(t)) has a local minimum at x?(t) if

J(x(t)) ≥ J(x?(t)) (3.60)

The minimization is obtained by vanishing the variation of the cost function
on the path x?(t) for all admissible variations δx:

δJ(x?, δx) = 0 (3.61)
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The Calculus of Variations is applied on the augmented cost function or
Lagrangian, de�ned by adding the Lagrange Multipliers, static and dynamic,
to terminal and dynamic constraints:

Ja = Φ(x(tf ), tf )− νTΨ(x(t0), t0,x(tf ), tf )

+

∫ tf

t0

[
l(x(t),u(t), t)− λT (t) (ẋ− f(x(t),u(t), t))

]
dt (3.62)

where ν ∈ Rq are the Lagrangian Multipliers associated to the terminal con-
straints and λ(t) ∈ Rn are the Lagrangian Multipliers associated to dynamic
constraints, called costate or adjoint variables. The Lagrangian is derived
with respect to all the free variables:

δJa =
∂Φ

∂x(tf )
δxf +

∂Φ

∂tf
δtf − δνTΨ− νT ∂Ψ

∂x(t0)
δx0 − νT

∂Ψ

∂t0
δt0

− νT ∂Ψ

∂x(tf )
δxf − νT

∂Ψ

∂tf
δtf + (l− λT (ẋ− f))|t=tf δtf − (l− λT (ẋ− f))|t=t0δt0

+

∫ tf

t0

[
∂l

∂x
δx +

∂l

∂u
δu− δλT (ẋ− f) + λT

∂f

∂x
δx + λT

∂f

∂u
δu− λT δẋ

]
dt

(3.63)

Since �nal and initial time are free, δx(tf (t0)) is di�erent from δxf(0)

(�gure 3.9). This comes from the de�nition of the variable itself: δx(tf ) is
the di�erence between two admissible trajectories, the optimal one x?, and
the candidate one x, for tf �xed; while δxf is the di�erence of the same
variables, but when the �nal time is not �xed, so the candidate trajectory
adds a part due to δtf .

Integrating by parts, the variation of the Lagrangian is re-written as :

δJa =

(
∂Φ

∂x(tf )
− νT ∂Ψ

∂x(tf )
− λT (tf )

)
δxf +

(
−νT ∂Ψ

∂x(t0)
+ λT (t0)

)
δx0

− δνTΨ +

(
−νT ∂Ψ

∂t0
− l(t0)− λT (t0)f(t0)

)
δt0(

∂Φ

∂tf
− νT ∂Ψ

∂tf
+ l(tf ) + λT (tf )f(tf )

)
δtf∫ tf

t0

[
−δλT (ẋ− f) +

(
∂l

∂x
+ λT

∂f

∂x
+ λ̇

)
δx +

(
∂l

∂u
+ λT

∂f

∂u

)
δu

]
dt

(3.64)

The Hamiltonian is de�ned to simplify the expression of the optimality
conditions:

H(x(t),u(t), λ(t), t) = l(x(t),u(t), t) + λT f(x(t),u(t), t) (3.65)
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Figure 3.9: Di�erences between δx(tf ) and δxf (from [12])

Because of the arbitrariness of the variations, the optimality �rst-order
necessary conditions are obtained:

I Euler-Lagrange equations :

• ∀δλ :

ẋ =
∂H

∂λ
(3.66)

• ∀δx :

λ̇ = −∂H
∂x

(3.67)

• ∀δu
∂H

∂u
= 0 (3.68)

II the Transversality Conditions :

• ∀δt0 :

−H(t0)− νT ∂Ψ

∂t0
= 0 (3.69)
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• ∀δtf :

H(tf )− νT
∂Ψ

∂tf
+
∂Φ

∂tf
= 0 (3.70)

• ∀δx0 :

λT (t0) = νT
∂Ψ

∂x(t0)
(3.71)

• ∀δxf :

λT (tf ) =
∂Φ

∂x(tf )
− νT ∂Ψ

∂x(tf )
(3.72)

III The Boundary Conditions : ∀δν :

Ψ(x(t0), t0,x(tf ), tf ) = 0 (3.73)

This set of equations is composed of 2n di�erential equations (for state
x(t) and costate λ(t) variables, eq. 3.66, 3.67 ), m algebraic equations (for
control u(t), eq. 3.68), 2n initial conditions (eq. 3.71, 3.73) and 2n terminal
conditions (eq. 3.72, 3.73) and 2 boundary conditions for the time variables
(eq. 3.69, 3.70). It is then clear that this set of equations forms a Two-Point
Boundary Value Problem (TPBVP).
Up to now, no path restrictions have been introduced on control and state
variables. The activation or deactivation of a state or a control constraint
generally leads to a jump in the adjoint variables. These constraints prevent
to obtain the control (eq. 3.68). In these cases, the Pontryagin Maximum
Principle (PMP) allows to derive more general necessary conditions for
optimality. The advent of this principle in '50s can be considered the birth
of the mathematical theory of optimal control.
A path constraint for the control of the form

g(u(t), t) ≤ 0 (3.74)

de�nes the region of the feasible control, u(t) ∈ U. Perturbing the control

u = u? + δu (3.75)

the change in the cost function is expressed as:

∆J(u?, δu) = δJ(u?, δu) + higher order terms (3.76)

Since, by de�nition, the cost function evaluated at the optimal control is at
its minimum, it is valid that:

J(u)− J(u?) = ∆J(u?,u) ≥ 0 (3.77)
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and so, for su�ciently small perturbation δu, the cost function has a local
minimum if :

δJ(u?, δu) ≥ 0 (3.78)

Considering the de�nition of the Hamiltonian and of the Lagrangian, at the
optimal solution, the only term left is:

Ja =

∫ tf

t0

∂H

∂u
(x?(t),u?(t), λ?(t), t)δudt

=

∫ tf

t0

H(x?(t),u?(t) + δu(t), λ?(t), t)−H(x?(t),u?(t), λ?(t), t)dt (3.79)

Since the variation of the cost function has been found to be non-negative,
it is valid that :

H(x?(t),u?(t) + δu(t), λ?(t), t) ≥ H(x?(t),u?(t), λ?(t), t) (3.80)

The Pontryagin Maximum Principle sets that the optimal control is the ad-
missible function that minimizes the Hamiltonian:

u?(t) = argmin
u∈U

[H(x?(t),u?(t), λ?(t), t)] (3.81)

In the original paper of Pontryagin, the Hamiltonian has a di�erent sign: for
this reason, he found a Maximum principle, while this derivation takes to a
Minimum principle.
Thanks to this expression for the control, an analysis can be done on the
structure of it. Considering the cost functions previous in the chapter and
hypothesizing that the system dynamics does not depend more than linearly
on the control, two minimum problems with constraints bounds (|u(t)| ≤ 1)
are analysed in particular: minimum fuel/time and minimum energy.
The �rst is characterized by a bang-bang control structure: the control law
allows the control variables to assume only extreme values. Considering the
simple example of the control problem of a material point moving in linear
motion: {

ẋ1(t) = x2(t)

ẋ2(t) = u(t)
(3.82)

with �xed initial and �nal conditions. The costate equations are:{
λ̇1(t) = 0

λ̇2(t) = λ1(t)
(3.83)

In the case of minimum time problem, the control law is expressed as:

u(t) = −sign(λ2(t)) (3.84)
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In the case of minimum fuel:

u(t) = −sign(1 + λ2(t)) (3.85)

The trajectories are shown in �gure 3.10.

Figure 3.10: Trajectories for bang-bang control law

Analysing the transversality condition for not speci�ed �nal time and the
costate equations, it is then possible to obtain the number of switching times.
Since λ2 is a linear function of t and, in the case of minimum time, its value
at the �nal time is not null (since H(tf ) = 1 + λ2(tf )u(tf ) = 0), only one
commutation of the control value can be possible, that can be obtained by
integrating the dynamic equations with speci�c value of the control.
The case of minimum energy gives a continuous control law:

u(t) =

{
−λ2(t) |λ2(t)| ≤ 1

−sign(λ2(t)) |λ2(t)| ≥ 1
(3.86)

It is evident that a bang-bang control law can produce a bigger di�culty, due
to its discontinuous nature.
An important characteristic of the Hamiltonian arises for autonomous sys-

37



CHAPTER 3. "AN INDIRECT OPTIMAL CONTROL APPROACH..."

tems 5, by applying the time derivative :

Ḣ(x(t),u(t), λ(t)) = Hxẋ +Hλλ̇+Huu̇

= (−λ̇)T ẋ + ẋT λ̇+ 0u̇

= 0

(3.87)

It is then obtained that the Hamiltonian is constant for autonomous systems.
The numerical methods are called Indirect, because the solution for the
optimal problem is obtained indirectly through the costate variables.

Costate variables These variables, called also adjoint variables, are
the real source of issues for these methods. First of all, they do not have a
real physical meaning with respect to the states. In order to obtain one, we
consider the variation in the cost function J in control u(t) for fixed times
t0 and tf and no terminal constraints (Ψ is empty):

δJa =

[(
∂Φ

∂x
− λT

)
δx

]
t=tf

+[λT δx]t=t0 +

∫ tf

t0

[(
∂H

∂x
+ ẋT

)
δx +

∂H

∂u
δu

]
dt

(3.88)
Considering the costate equation (eq. 3.67) and the boundary conditions (eq.
3.72), the cost function variation becomes:

δJa = λT (t0)δx(t0) +

∫ tf

t0

∂H

∂u
δudt (3.89)

λT (t0) is the gradient of cost function J with respect to variations in initial
conditions, keeping constant the control u(t). The costate variables are also
called influence functions on J of variations in x(t) with arbitrary t0. The
functions ∂H

∂u
represent the variation of the cost function due to a unit im-

pulse of control δu, keeping x(t0) constant: they are called impulse response
functions [11].

The great advantage of these methods is the fact that the obtained so-
lution is the optimal one, while the direct methods develop a suboptimal
solution, due to the control parametrization. The second reason for an in-
creasing interest is the accuracy: since the procedure of these methods is
"optimize, then discretize", a better solution is obtained with respect to
direct methods, characterized by an opposite idea. A third aspect is linked
to the implemented Newton approach: a very fast numerical convergence in
the neighbourhood of the optimal solution. A last advantage can be found

5In an autonomous systems, the integrand cost l(x(t),u(t)) and the dynamic system
f(x(t),u(t)) do not depend explicitly on time.
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in the number of variables, very small even for large scale systems with re-
spect to direct strategies, that makes these methods very attractive. Three
are the most important disadvantages: the �rst is linked to the derivation of
Euler-Lagrange equations, the second concerns the initial conditions and the
third the constraints.
The derivation of the optimality conditions can be very di�cult when the
optimal control problem is highly non-linear. This makes also mandatory to
re-derive the complete set of equations in case of a change in the original
optimal control problem formulation. It is then not very convenient. Linked
to this, the resulting ODE are strongly nonlinear and unstable.
The second aspect is the extreme sensitiveness to initial conditions: as
Bryson and Ho explained in [11], "The main di�culty with these methods
is getting started". Since the methods are based on Newton strategies, the
region of convergence is quite small, obliging to use other methods to obtain
a good estimate for these variables. Several methods are possible: use a
simpler problem, more likely to converge, as initial conditions; implement a
direct or another method, creating an hybrid method (section 3.6.2). The
great issue is for adjoint variables: it is very di�cult to �nd a �rst estimate of
the conditions at one end producing a solution reasonably close to speci�ed
conditions at the other end. Since they have no real physical meaning, they
are very di�cult to initialize. This great di�culty depends on the extreme
sensitiveness of extremal solutions with respect to small changes in unspeci-
�ed boundary conditions. The reason is in the nature of the Euler-Lagrange
equations: they are in�uence functions equations. The costate functions
are "adjoint di�erential equations to the linear perturbation system equa-
tions"[11]. If the fundamental solution x(t) decrease in magnitude as time
increases, the solution of the adjoint equations λ(t) increases in magnitude:
they tend to become extremely di�erent in magnitude as integration goes on.
This di�erence becomes important in computer calculation and increases the
loss of accuracy. Small errors in initial estimate can create big errors in in�u-
ence functions at �nal time. This is more remarkable for highly dissipative
systems, as the one with friction or drag.
The last disadvantage is linked to the presence of constraints: it is necessary
to know a priori the solution structure (active and non-active constraints, sin-
gular arcs, switching times), if not it is very di�cult to solve the problem,
because of discontinuous integrated functions and singular Jacobian matrix.
There exists several strategies:

I Gradient methods;

II Indirect Single Shooting Method;

III Indirect Multiple Shooting Method;
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IV Homotopic Approach.

3.5.1 Gradient Methods or Backward-Sweep Method

The basic idea is to integrate each set of equations in the stable direction. In
particular, integrate the state equations forward in time, while the adjoint
equations are integrated backward from tf to t0. A simple procedure can be
presented:

1. Make an initial guess for the control u(t) over the interval and store
the initial guess for it;

2. Using initial conditions x(t0) = x0 and stored value of control, solve
forward in time the dynamic equations;

3. Using the transversality conditions on adjoint variables and stored value
of control and state trajectories, solve backward in time the costate
equations;

4. Update the new control with its equation by entering the new state
and costate trajectories;

5. Check the convergence: if variations with respect to last iteration is
small, the output is the solution, if not, return to step 2.

To increase the convergence, a complex combination of previous and actual
control can be implemented to update the control: for example, the mean
between the two values.
An important issue is the �nal conditions of the costate variables: when the
�nal states are not de�ned and the integrand cost is not directly dependent on
the �nal states, the terminal conditions for adjoint variables are very simple,
making the method much simpler to implement. When these conditions are
not met, di�erent adjustments have to be created, usually exploiting shooting
method.

3.5.2 Indirect Single Shooting Method

The idea of this method is to exploit the Newton methods to iteratively mod-
ify the initial estimates for the adjoint variables, the Lagrangian Multipliers
and the terminal time, that constitute the optimization parameters, to meet
the transversality conditions (eq. 3.70, 3.71. 3.72), that represents the func-
tion to vanish with the Newton method. The main di�erence between the
indirect and the direct single shooting method is the de�nition of the control
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function u(t): the direct approach parametrizes it, while the indirect de�nes
it by maximum principle.
A simple procedure is:

1. Initialization: choose initial estimates for costate variables λ0
0, La-

grangian multipliers ν0, terminal time t0f , impose the iteration to 0:
k=0;

2. Calculate the defect F(λ0
0, ν

0, t0f ), integrating the Euler-Lagrange equa-
tions:

F(λ0
0, ν

0, t0f ) =

 λ− Φx + νk,TΨx

Ψ
l + λT f + Φt + νk,TΨt


t=tkf

→ 0 (3.90)

if ‖ F ‖< ε, STOP;

3. Calculate the defect gradients ∇λ0F, ∇νF and ∇tf F;

4. Calculate the search direction via solution of the linear system:∇λ0F
∇νF
∇tf F

T dkλ
dkν
dktf

 = −F(λ0
0, ν

0, t0f ) (3.91)

5. Update the estimates:

λk+1
0 = λk0 + dkλ (3.92)

νk+1 = νk + dkν (3.93)

tk+1
f = tkf + dktf (3.94)

6. Increment k: k=k+1 and return to step 2.

An improvement can be obtained using a Damped Newton Method, in step
5:

xk+1 = xk + λkdk (3.95)

The great advantages of this method are its simplicity in numerical imple-
mentation and the very small number of variables.
The main issues are four: the defect gradient, the initial conditions, con-
straints and small changes at the beginning of the trajectory.
Since a Newton method is implemented (step 3), the defect gradients with
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respect to the optimization parameters have to be computed. A �rst strategy
is the numerical di�erentiation:

Jij =
∂fi
∂xj

(x1, . . . , xn) ≈ fi(x1, . . . , xj + h, . . . , xn)− fi(x1, . . . , xn)

h
(3.96)

A good choice for h is a balance between the round-o� error and the compu-
tational ε:

h =
√
macheps(1 + |x|) (3.97)

A second strategy is the Broyden update scheme for the Jacobian. This
strategy is based on a "secant method" :

f ′(xk) ≈ f(xk)− f(xk−1)

xk − xk−1
(3.98)

Jk(x
k − xk−1) = f(xk)− f(xk−1) (3.99)

The idea is then to obtain the current Jacobian by a modi�cation of the
previous one:

Jk+1 = Jk +
f(xk−1)(∆xk)T

‖ ∆xk ‖2
2

(3.100)

with ∆xk = xk − xk−1. The second issue concerns the initial conditions
for the optimization parameters, due to the small convergence radius. The
third issue is linked to constraints: in order to deal with them, the switching
structure has to be known a priori. These problems are treated as a sequence
of constrained and unconstrained arcs.
A last di�culty is in the fact that a small change early in the trajectory
can propagate into very nonlinear variations at the end of the trajectory.
Software as ADIFOR and OCCAL implement this method.

3.5.3 The Indirect Multiple Shooting Method

The idea is quite simple: subdivide the time interval and apply the single
shooting method on each subinterval. The procedure can be summarized as:

1. Subdivide the time interval into m-1 �xed subintervals: t0 = t1 < · · · <
tm = tf

2. Guess the initial values for costate variables and for each subinterval,
also the state variables: Z0

j , set k=0;

3. Compute the solution of the IVP with these initial guess, de�ne with
zj the terminal values of this solution at each subinterval;
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4. Compute the jumps: the �nal conditions obtained by the integration
in one subinterval have to coincide with the guessed initial conditions
of the next subinterval:

• for internal subintervals, matching conditions have to be satis�ed:

Fj(Z1, . . . , Zm−1) = zj − Zj+1 (3.101)

• for the terminal subinterval, the transversality conditions must
hold:

Fm−1(Z1, . . . , Zm−1) =

 λ− Φx + νk,TΨx

Ψ
l + λT f + Φt + νk,TΨt


t=tkf

(3.102)

F =


z1 − Z2

. . .
zm−2 − Zm−1

λ− Φx + νk,TΨx

Ψ
l + λT f + Φt + νk,TΨt

 (3.103)

5. Numerical approximation of the Jacobian Matrix J of F(Z) via numer-
ical di�erentiation or Broyden update of the previous matrix;

6. Compute the Newton correction ∆Z :

J∆Z = −F(Z) (3.104)

7. Determine an appropriate relaxation factor λ ∈ [0, 1] and compute the
new initial guesses:

Znew = Z + λ∆Z (3.105)

8. If convergence (‖ F ‖< ε) is not met, return to step 3, set k=k+1.

The main advantage is the reason of its birth: since in single shooting meth-
ods, a small change at the beginning of the time interval creates an important
variation at the terminal end, subdividing the horizon domain in subinter-
vals, it should reduce this inconvenience. As for direct multiple shooting,
parallel processor can be exploited.
The main disadvantages are the same as single shooting, but another impor-
tant one is peculiar to this method: the number of variables can be very high.
But as for direct methods, matrices present a strongly sparse character, that
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has to be exploited. The presence of constraints can be less problematic if
the time intervals coincides with the singular arcs and the switching times.
Still, the switching structure of constrained and unconstrained arcs has to
be known a priori. The state and costate variables at the switching times
represent new optimization parameters and the ful�lment of the constraints
constitutes the defect function.
In Germany in 1989, a software implementing this method has been devel-
oped: BNDSCO, by Oberle and Grimm [20].

3.5.4 Homotopic Approach

The principle of a homotopic approach, known also as continuation method,
is to solve a di�cult problem, by solving a sequence of simpler ones and using
the solution of one problem as initial guess for slightly modi�ed one [36, 37,
38, 39]: for example, solve the orbit transfer with a two-body dynamics as
initial guess for a more accurate dynamic problem. The connection is oper-
ated through an application, H, called homotopy, with the right properties
linking the two problems. If r is the simpler problem and f is the original
one, H is constructed so that:

H(−, 0) = r (3.106)

H(−, 1) = f (3.107)

A classic implementation for this method is to initialize a minimum fuel
problem, presenting normally a bang-bang control structure, with a mini-
mum energy problem, characterized by a continuous control structure. The
homotopy connection needs a homotopic criterion to link the problems, be-
tween the various possibility, two are presented:

• convex criterion : ∫ tf

t0

p ‖ u(t) ‖ +(1− p) ‖ u(t) ‖2 dt (3.108)

• power criterion: ∫ tf

t0

‖ u(t) ‖2−p dt (3.109)

with p = 0, the fuel problem and p = 1 the energy problem.
To solve the homotopy problem, the homotopic parameter has to be modi�ed
from 0 to 1. Three possibilities exist:

I the simplest way is to manually increase the parameter p in N steps;
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II differential homotopy: dynamically follow the homotopy path with a
predictor-corrector scheme;

III simplicial homotopy: subdivide the search space into subintervals by
piecewise linear approximations.

The main advantage of this method is the fact that the control structure
does not have to be known a priori, but it is calculated automatically.
The great disadvantage is linked to the case-dependent nature of the ap-
proach: a strong experience is requested to understand which simpler prob-
lem and how to link it to the original one. The computational e�ort is
evidently a consequence of these choices.
Often this approach is used as initial condition for a shooting method, espe-
cially for the costate variables and the Lagrangian Multipliers.

3.6 Other Methods

Besides these methods, other exist, as the Genetic Algorithms and the Hybrid
ones.

3.6.1 Genetic Algorithms

The Genetic Algorithms (GA) are one class of the heuristic optimization
methods [17]. This technique is a global one, with respect to gradient meth-
ods, that are local. The main idea of an heuristic method is that the search
is performed in a stochastic way, di�erently from the deterministic way of
the other methods.
A Genetic Algorithm is an evolutionary algorithm approach: it emulates the
evolutionary process of genetics on a computer. Firstly, an initial population
of possible solutions is chosen. Each solution is characterized by a particular
gene, whose quality is re�ected in a fitness, typically the objective function
to be minimized in the optimization problem. Genes are then recombined,
mutated, to generate new populations. The genes with the highest �tness
survive: it is a selection mechanism based on the concept of "survival-of-the-
�ttest".
Several approaches exist, the most famous are two: Simulated Annealing
and Particle Swarm Optimization (PSO). In the �rst, the �tness coin-
cides to the internal energy of the system. With a probabilistic approach, it
decides to stay on the current state or move to the neighbouring one consid-
ering the �tness value and a global temperature parameter.
The PSO is a particular type of GA: it is a population-based stochastic
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Figure 3.11: The Optimal Control Solution Approaches

method, based on the idea of swarms of animals. The candidate solutions,
the particles, follow the particles with the lowest cost, recording the best
solutions for the particles and for the neighbours. The PSO moves in the
direction of the particles and neighbours best solution.
Despite several improvements, these methods keep a higher computational
cost with respect to gradient methods.
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3.6.2 Hybrid Methods

These methods are the most general, in the sense that they are typically com-
posed of two di�erent methods, to compensate the disadvantages of one with
the advantages of the other. The most common is to use a direct method
to initialize an indirect one: in this way, the fast convergence of the indirect
is obtained, without the initialization issue, compensated by the direct one.
Often, a pseudospectral method is used to determine the costate variables,
that are the most di�cult to initialize, through the discretized Lagrangian
Multipliers [21]. Recently, also the PSO is used to initialize the indirect
methods.
The idea is generally to exploit the great convergence properties of the in-
direct methods, eliminating the initialization issue with a simpler initialized
method.
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Models

The Hill-Clohessy-Wiltshire equations are de�ned on the Hill's reference
frame, that is a Cartesian frame. However, the equations are often inter-
preted as curvilinear [6]: x as radial variation (x = ∆r) and y as the curved
along-track position (y = r∆θ). Even though these equations are rigorous
only for circular orbits, small distances and Hill's reference frame, Schaub
[22] has demonstrated that they are valid also for curvilinear coordinates.
As already implemented by Leonard [3], the Hill-Clohessy-Wiltshire equa-
tions are transformed through a state transformation into two decoupled
linear systems composed by a double integrator and an harmonic oscillator:{

xo = x− xm
yo = y − ym

(4.1)

where x, y are the global states, xm, ym are the mean position of the chaser
with respect to the target and xo, yo are the oscillatory components (ex-
pressed as "eccentricity" in Leonard's work). The transformation is simply
[6]: {

xm = 4x+ 2
ω
ẏ

ym = y − 2
ω
ẋ

(4.2)

The introduction of the J2 gravity perturbation by Schweighart and Sedwick
takes to a new state transformation [6]:{

xm = 4c2

2−c2x+ 2c
(2−c2)ω

ẏ

ym = y − 2c
(2−c2)ω

ẋ
(4.3)

where c is the Schweighart-Sedwick coe�cient, already de�ned in Chapter 2,
and ω is the target constant orbital rate. It is evident from the de�nition
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of the Schweighart-Sedwick coe�cient that its value is 1 when J2 is not
considered (J2 = 0):

c =

√
1 +

3J2R2
⊕

8r2
T

[1 + 3cos(2iT )] (4.4)

and the �rst state transformation is recovered from the second when c = 1.
Applying this state transformation to the Schweighart-Sedwick set of equa-
tions, the new system is:

ẋm = 2c
(2−c2)ω

uy

ẏm = (2−5c2)ω
2c

xm

ẋo = (2−c2)ω
2c

yo − 2c
(2−c2)ω

uy

ẏo = −2ωcxo

(4.5)

The decoupled nature of the system is evident.

Optimal Control Problem Formulation

As explained in the previous chapter, the optimal control problem needs the
formulation of a cost function:

J = Φ(x(tf ), tf ) +

∫ tf

t0

l(t, x(t), u(t))dt (4.6)

Three cost functions are considered: minimum time, minimum energy and a
combination of the two:

1. Minimum time problem (with t0 = 0):

J =

∫ tf

t0

1 dt = tf − t0 = tf (4.7)

2. Minimum energy problem:

J =

∫ tf

t0

1

2
u2(t)dt (4.8)

3. Combination of minimum time and minimum energy:

J = wf tf +

∫ tf

t0

1

2
u2(t)dt (4.9)
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For the last problem, a weight coe�cient is necessary for the �nal time to
obtain the same order of magnitude with respect to the control part of the
cost function.
The system dynamics are de�ned by the Schweighart-Sedwick set of equa-
tions.
The last component of the optimal control problem formulation are the con-
straints:

1. Initial Conditions :
x(t0) = x0 (4.10)

2. Boundary Conditions :

Ψ(x(tf ), tf ) = 0 → x(tf ) = 0 (4.11)

3. Control bounds :
|u(t)| ≤ uMax (4.12)

In this case, no path constraints or state constraints are considered.
The �rst condition is simply a �xed initial position with a �xed initial time:
this implies that the transversality conditions deriving from the variations
on these variables have no sense. The equations 3.69 and 3.71 are not con-
sidered.
The second condition is the rendez-vous condition: state variables to zero
imply that target and chaser have the same position. As before, the transver-
sality condition related to the variation of the terminal states (eq. 3.72) is
not considered.
Finally, the control bounds. These are evidently linked to the nature of the
control: the di�erential drag. In Chapter 2, it has been analysed how this
can be implemented. In particular, two possibilities exist: geometrical or
attitude changes. Leonard [3] and Bevilacqua-Romano [4,5] have considered
the �rst, by adding drag plates; Dell'Elce-Kerschen [7,8] the second: varying
the attitude, the exposed surface is modi�ed (�gure 4.1). This last idea can
be more attractive for small size satellites, as CubeSats, because it does not
add weight for the extra-system, keeping free space for scienti�c instruments.
However, it has a disadvantage: the maximum value of the control can be
very small, due to the limits on the surface values. An optimal trajectory
becomes even more important.

A last aspect is the way these bounds are expressed:

|u(t)| ≤ uMax (4.13)
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Figure 4.1: System attitude (from [8])

This equation implies that the control law is symmetric with respect to 0,
because of the presence of the norm operator. In fact, for the minimum time
problem, it is valid that:{

u(t) = uMax if u(x(t), λ(t), t) > 0

u(t) = −uMax if u(x(t), λ(t), t) < 0
(4.14)

where u(x(t), λ(t), t) represents the control law. This considerably simpli�es
the notation and the numerical implementation.
In the next sections of the chapter, the di�erent models would be pre-
sented. As it is evident, the "original" system -classical Schweighart-Sedwick
equations- has not been considered: the reason is in the extreme di�culty
for the convergence. This is due to the necessary of coupled integration of
mean and oscillatory components together, whose separate movements are
characterized by di�erent order of magnitude and expressions.

4.1 First Model: Mean with Di�erential Drag

In this �rst case, the simplest model is considered: the only mean component
of the movement. Since the uncoupled nature of the dynamic system, this
does not in�uence the global trajectory, in the sense that it can be seen
as a �rst phase of a two-phase optimization 1. Actually, a second phase is
not implemented, the reason is simple: this �rst model is used to try the
numerical method in order to implement the best version of it.

1In the same way as Leonard [3] and Bevilacqua-Romano [4,5]

51



CHAPTER 4. MODELS

As already explained, the optimal control problem has a dynamic system:{
ẋm = 2c

(2−c2)ω
u

ẏm = (2−5c2)ω
2c

xm
(4.15)

initial conditions, terminal conditions, control bounds:

x(0) = x0

{
xm(0) = xm0

ym(0) = ym0

x(tf ) = 0

{
xm(tf ) = 0

ym(tf ) = 0

|u(t)| ≤ uMax

(4.16)

and a cost function, which is di�erent for each type of problem. The Calcu-
lus of Variations together with the Pontryagin Maximum Principle is applied.
The Hamiltonian changes with di�erent cost functions, but the costate equa-
tions are the same, since the cost functions are not related to state variables:{

λ̇1 = − (2−5c2)ω
2c

λ2

λ̇2 = 0
(4.17)

Finally, the transversality conditions. Since initial time, initial conditions
and terminal conditions are �xed, the only transversality condition is the
one on the �nal time:

H(tf )− νT
∂Ψ

∂tf
+
∂Φ

∂tf
=0

H(tf ) +
∂Φ

∂tf
=0

l(u(tf ), tf ) + λ1(tf )
2c

(2− c2)ω
u(tf ) + λ2

(2− 5c2)ω

2c
xm(tf ) +

∂Φ

∂tf
=0

(4.18)

Actually, the transversality conditions related to the terminal conditions
should be considered, because the �nal time is not �xed. Since the states are
�xed at the �nal time ( ∂Ψ

∂xf
= 1) and the three terminal costs do not depend

on state variable, but only on �nal time, the expression for these conditions
is quite simple:

λ(tf ) = −νT (4.19)

The Lagrangian Multipliers ν are also unknown variables, but constant in
time. Since they do not really add information, the costate variables are just
kept free at �nal time.
The di�erent cost functions determine di�erent control law and di�erent
transversality conditions.
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4.1.1 Minimum Time Problem

The cost function is the one on equation 4.7.
The Hamiltonian is de�ned as:

H = 1 + λ1(t)
2c

(2− c2)ω
u(t) + λ2(t)

(2− 5c2)ω

2c
xm(t) (4.20)

The transversality condition is :

H(tf )− νT
∂Ψ

∂tf
+
∂Φ

∂tf
=0

H(tf ) =0

1 + λ1(tf )
2c

(2− c2)ω
u(tf ) + λ2(tf )

(2− 5c2)ω

2c
xm(tf ) =0

(4.21)

The control law is :

Hu = 0 → λ1(t)
2c

(2− c2)ω
→ u(t) = −sign

(
λ1

2c

(2− c2)ω

)
uMax

(4.22)
As typically for minimum time problem, the control law is of bang-bang type:
the control can assume only extreme values.

4.1.2 Minimum Energy Problem

The cost function is the one on equation 4.8.
The Hamiltonian is de�ned as:

H =
1

2
u2(t) + λ1(t)

2c

(2− c2)ω
u(t) + λ2(t)

(2− 5c2)ω

2c
xm(t) (4.23)

The transversality condition is :

H(tf )− νT
∂Ψ

∂tf
+
∂Φ

∂tf
=0

H(tf ) =0

1

2
u2(tf ) + λ1(tf )

2c

(2− c2)ω
u(tf ) + λ2(tf )

(2− 5c2)ω

2c
xm(tf ) =0

(4.24)

The control law is :

Hu = 0 → u(t) + λ1(t)
2c

(2− c2)ω
= 0 →

u(t) =

−λ1(t) 2c
(2−c2)ω

∣∣∣λ1(t) 2c
(2−c2)ω

∣∣∣ ≤ uMax

−sign
(
λ1(t) 2c

(2−c2)ω

)
uMax

∣∣∣λ1(t) 2c
(2−c2)ω

∣∣∣ ≥ uMax

(4.25)

For the minimum energy problem, the control law is of continuous type.
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4.1.3 Minimum Time and Energy Problem

In this case, the cost function is a combination of the two, as the one on
equation 4.9.
The Hamiltonian is de�ned as:

H =
1

2
u2(t) + λ1(t)

2c

(2− c2)ω
u(t) + λ2(t)

(2− 5c2)ω

2c
xm(t) (4.26)

The transversality condition is :

H(tf )− νT
∂Ψ

∂tf
+
∂Φ

∂tf
=0

H(tf ) +
∂Φ

∂tf
=0

1

2
u2(tf ) + λ1(tf )

2c

(2− c2)ω
u(tf ) + λ2(tf )

(2− 5c2)ω

2c
xm(tf ) + wf =0

(4.27)

The control law is the same as the previous problem:

Hu = 0 → u(t) + λ1(t)
2c

(2− c2)ω
= 0 →

u(t) =

−λ1(t) 2c
(2−c2)ω

∣∣∣λ1(t) 2c
(2−c2)ω

∣∣∣ ≤ uMax

−sign
(
λ1(t) 2c

(2−c2)ω

)
uMax

∣∣∣λ1(t) 2c
(2−c2)ω

∣∣∣ ≥ uMax

(4.28)

4.2 Second Model: Mean-Oscillatory with Dif-

ferential Drag

This second model considers both the dynamics, the double integrator and
the harmonic oscillator: it should represent the global trajectory. The control
is still the di�erential drag, so the dynamic equations are the ones already
presented (equation 4.5). The Hamiltonian is expressed as:

H = l(u(t)) + λ1(t)
2c

(2− c2)ω
u(t) + λ2(t)

(2− 5c2)ω

2c
xm(t)

+ λ3(t)
(2− c2)ω

2c
yo(t)− λ3u(t)

2c

(2− c2)ω
− λ4(t)2ωcxo(t) (4.29)
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The costate equations are :
λ̇1 = − (2−5c2)ω

2c
λ2

λ̇2 = 0

λ̇3 = 2ωcλ4

λ̇4 = − (2−c2)ω
2c

λ3

(4.30)

The expression of the transversality condition is the same as before:

l(u(tf ), tf ) + λ1(tf )
2c

(2− c2)ω
u(tf ) + λ2(tf )

(2− 5c2)ω

2c
xm(tf )

+λ3(tf )
(2− c2)ω

2c
yo(tf )−λ3(tf )

2c

(2− c2)ω
u(tf )−λ4(tf )2ωcxo(tf )+

∂Φ

∂tf
= 0

(4.31)

4.2.1 Minimum Time Problem

The Hamiltonian is :

H = 1 + λ1(t)
2c

(2− c2)ω
u(t) + λ2(t)

(2− 5c2)ω

2c
xm(t)

+ λ3(t)
(2− c2)ω

2c
yo(t)− λ3(t)

2c

(2− c2)ω
u(t)− λ4(t)2ωcxo(t) (4.32)

The transversality condition :

1 + λ1(tf )
2c

(2− c2)ω
u(tf ) + λ2(tf )

(2− 5c2)ω

2c
xm(tf )

+ λ3(tf )
(2− c2)ω

2c
yo(tf )− λ3(tf )

2c

(2− c2)ω
u(tf )− λ4(tf )2ωcxo(tf ) = 0

(4.33)

The control law:

Hu = 0 → (−λ1(t) + λ3(t))
2c

(2− c2)ω
→

u(t) = −sign
(

(λ1(t)− λ3(t))
2c

(2− c2)ω

)
uMax (4.34)

Evidently, the control law is still a bang-bang one.
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4.2.2 Minimum Energy Problem

The Hamiltonian is :

H =
1

2
u2(t) + λ1(t)

2c

(2− c2)ω
u(t) + λ2(t)

(2− 5c2)ω

2c
xm(t)

+ λ3(t)
(2− c2)ω

2c
yo(t)− λ3(t)

2c

(2− c2)ω
u(t)− λ4(t)2ωcxo(t) (4.35)

The transversality condition :

1

2
u2(tf ) + λ1(tf )

2c

(2− c2)ω
u(tf ) + λ2(tf )

(2− 5c2)ω

2c
xm(tf )

+ λ3(tf )
(2− c2)ω

2c
yo(tf )− λ3(tf )

2c

(2− c2)ω
u(tf )− λ4(tf )2ωcxo(tf ) = 0

(4.36)

The control law:

Hu = 0 → u(t) + (λ1(t)− λ3(t))
2c

(2− c2)ω
= 0

→ u(t) =

(−λ1(t) + λ3(t)) 2c
(2−c2)ω

∣∣∣(λ1(t)− λ3(t)) 2c
(2−c2)ω

∣∣∣ ≤ uMax

−sign
(

(λ1(t)− λ3(t)) 2c
(2−c2)ω

)
uMax

∣∣∣(λ1(t)− λ3(t)) 2c
(2−c2)ω

∣∣∣ ≥ uMax

(4.37)

As before, it is continuous.

4.2.3 Minimum Time and Energy Problem

The Hamiltonian and the control law are the same as in the minimum energy
case. The transversality condition is slightly di�erent:

1

2
u2(tf ) + λ1(tf )

2c

(2− c2)ω
u(tf ) + λ2(tf )

(2− 5c2)ω

2c
xm(tf )

+λ3(tf )
(2− c2)ω

2c
yo(tf )−λ3(tf )

2c

(2− c2)ω
u(tf )−λ4(tf )2ωcxo(tf ) +wf = 0

(4.38)

4.3 Third Model : Mean-Oscillatory with At-

titude Angle

This third model is the same as the previous one, but in this case the control
is no more the di�erential drag, but the angle of the chaser with respect to
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the target in the velocity direction: u = δ in �gure 4.1. In this way, the real
physics of the system is approached, since it is a mechanical system that,
by changing the angle, modi�es the di�erential drag, creating the control on
the satellite. The expression for the di�erential drag with respect to the new
control variable is:

aDiffDrag =
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1|cos(u)|+ A2|sin(u)|)
]
(4.39)

where |Fdd,T | is the drag acting on the target and BCT is the ballistic coe�-
cient of the target.

|Fdd,T | =
1

2
ρBCTv

2
r (4.40)

In this case, the control bounds could even not be imposed, because of the
norm operator. This would imply the possibility for the chaser to make a
complete tour, which is not a good strategy. A second reason is a pure
convenient one: the control law is obtained by deriving the Hamiltonian with
respect to the control variable. The derivation of the norm operator creates
a numerical slowdown: to avoid it, the control is imposed to be between
0 deg and 90 deg. In this way, the norm operator can be eliminated and the
derivation is simpler. But even with this trick, the control law is implicit,
which creates a quite important numerical slowdown.
The system dynamics for this model are very similar to the previous one,
except for the di�erential drag:

ẋm = 2c
(2−c2)ω

|Fdd,T |
[
1− CD,C

BCTmC
(A1cos(u) + A2sin(u))

]
ẏm = (2−5c2)ω

2c
xm

ẋo = (2−c2)ω
2c

yo − 2c
(2−c2)ω

|Fdd,T |
[
1− CD,C

BCTmC
(A1cos(u) + A2sin(u))

]
ẏo = −2ωcxo

(4.41)
The Hamiltonian is :

H = l(u(t))+λ1(t)
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(t)) + A2sin(u(t)))

]
+ λ2(t)

(2− 5c2)ω

2c
xm(t) + λ3(t)

(2− c2)ω

2c
yo(t)−

λ3(t)
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(t)) + A2sin(u(t)))

]
−λ4(t)2ωcxo(t)

(4.42)

Keeping in mind that the cost function does not depend on the state vari-
ables, but only on �nal time and control, the costate equations are the same

57



CHAPTER 4. MODELS

as the previous case: the change in control de�nition a�ects only the control
law.
The transversality condition has the same expression as before, except for
the control de�nition:

l(u(tf ), tf )+λ1(tf )
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(tf )) + A2sin(u(tf )))

]
+ λ2(tf )

(2− 5c2)ω

2c
xm(tf ) + λ3(tf )

(2− c2)ω

2c
yo(tf )

− λ3(tf )
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(tf )) + A2sin(u(tf )))

]
− λ4(tf )2ωcxo(tf ) +

∂Φ

∂tf
= 0 (4.43)

4.3.1 Minimum Time Problem

Keeping in mind the cost function expression for this type of problem, the
Hamiltonian is simply de�ned as:

H = 1 + λ1(t)
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(t)) + A2sin(u(t)))

]
+ λ2(t)

(2− 5c2)ω

2c
xm(t) + λ3(t)

(2− c2)ω

2c
yo(t)−

λ3(t)
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(t)) + A2sin(u(t)))

]
−λ4(t)2ωcxo(t)

(4.44)

taking to a control law of bang-bang type:

Hu = 0 → (−λ1(t)+λ3(t))
2c

(2− c2)ω
|Fdd,T |

CD,C
BCTmC

(−A1sin(u(t))−A2cos(u(t))) = 0

(−λ1(t) + λ3(t)
2c

(2− c2)ω
|Fdd,T |

CD,C
BCTmC

cos(u(t))(−A1tan(u(t))− A2) = 0

→ u(t) =

{
0 (λ1(t)− λ3(t)) ≤ 0

atan
(
A2

A1

)
(λ1(t)− λ3(t)) ≥ 0

(4.45)

The transversality condition is simply the vanishing of the Hamiltonian.
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4.3.2 Minimum Energy Problem

The transversality condition is :

1

2
u2(tf )+λ1(tf )

2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(tf )) + A2sin(u(tf )))

]
+ λ2(tf )

(2− 5c2)ω

2c
xm(tf ) + λ3(tf )

(2− c2)ω

2c
yo(tf )

− λ3(tf )
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(tf )) + A2sin(u(tf )))

]
− λ4(tf )2ωcxo(tf ) = 0 (4.46)

The presence in the cost function of the control variable makes the expression
of the control law implicit:

Hu = 0 →

u(t)+(−λ1(t)+λ3(t))
2c

(2− c2)ω
|Fdd,T |

CD,C
BCTmC

(−A1sin(u(t))−A2cos(u(t))) = 0

(4.47)

4.3.3 Minimum Time and Energy Problem

The control law is the same as in the energy case, while the transversality
condition is slightly modi�ed by the weight coe�cient of the �nal time:

1

2
u2(tf )+λ1(tf )

2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(tf )) + A2sin(u(tf )))

]
+ λ2(tf )

(2− 5c2)ω

2c
xm(tf ) + λ3(tf )

(2− c2)ω

2c
yo(tf )

− λ3(tf )
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cos(u(tf )) + A2sin(u(tf )))

]
− λ4(tf )2ωcxo(tf ) + wf = 0 (4.48)

4.4 Fourth Model : Mean-Oscillatory with An-

gular Acceleration of Reaction Wheels

This fourth model is the most complex: the mechanical system interactions
are considered [8]. In particular, the control is the angular acceleration of
the reaction wheels in the inertial reference frame. This takes to a system
composed of seven states:
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• 4 classical states, mean and oscillatory components: xm, ym, xo, yo;

• angular variation of the satellite: δ;

• angular velocity of the satellite : δ̇;

• angular velocity of the reaction wheels : ωw

By applying a simple equilibrium at the satellite level, the dynamics for the
angular velocity of the satellite is derived:

Isatδ̈ = Mext − Tint = Mext − Iwu (4.49)

→ δ̈ =
Mext − Iwu

Isat
(4.50)

where Mext is the external torque applied on the satellite, Tint is the internal
torque due to the reaction wheels, Isat and Iw are the rotational inertia of
the satellite and of the reaction wheels.
With the same reasoning, the dynamics for the angular velocity of the reac-
tion wheels is obtained :

ω̇w =

(
Iw
Isat

+ 1

)
u− Mext

Isat
(4.51)

The �nal set of equations is:

ẋm = 2c
(2−c2)ω

|Fdd,T |
[
1− CD,C

BCTmC
(A1cosδ + A2sinδ)

]
ẏm = (2−5c2)ω

2c
xm

ẋo = (2−c2)ω
2c

yo − 2c
(2−c2)ω

|Fdd,T |
[
1− CD,C

BCTmC
(A1cosδ + A2sinδ)

]
ẏo = −2ωcxo

δ̇ = δ̇

δ̈ = Mext−Iwu
Isat

ω̇w =
(
Iw
Isat

+ 1
)
u− Mext

Isat

(4.52)
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Remembering the expression of the Hamiltonian:

H = l(u(t))+λ1(t)
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cosδ(t) + A2sinδ(t))

]
+ λ2(t)

(2− 5c2)ω

2c
xm + λ3(t)

(2− c2)ω

2c
yo(t)−

λ3(t)
2c

(2− c2)ω
|Fdd,T |

[
1− CD,C

BCTmC

(A1cosδ(t) + A2sinδ(t))

]
−λ4(t)2ωcxo(t)

+ λ5(t)δ̇(t) + λ6(t)
Mext − Iwu(t)

Isat
+ λ7(t)

(
Iw
Isat

+ 1

)
u(t)− λ7(t)

Mext

Isat
(4.53)

The adjoint equations are:

λ̇1 = − (2−5c2)ω
2c

λ2

λ̇2 = 0

λ̇3 = 2ωcλ4

λ̇4 = − (2−c2)ω
2c

λ3

λ̇5 = − 2c
(2−c2)ω

|Fdd,T | (λ1 − λ3) (−A1sinδ + A2cosδ)

λ̇6 = −λ5

λ̇7 = 0

(4.54)

4.4.1 Minimum Time Problem

With the Hamiltonian independent on the control variable, the control law
is the classic bang-bang:

Hu = 0 →
(
−λ6(t)

Iw
Isat

+ λ7(t)

(
Iw
Isat

+ 1

))
→

u(t) = −sign
(
λ6(t)

Iw
Isat
− λ7(t)

(
Iw
Isat

+ 1

))
uMax (4.55)

The transversality condition is simply the vanishing of the Hamiltonian.
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4.4.2 Minimum Energy Problem

The Hamiltonian depends on the control variable, the control law is a con-
tinuous one:

Hu = 0 → u(t)− λ6(t)
Iw
Isat

+ λ7(t)

(
Iw
Isat

+ 1

)
= 0 →

u(t) =

λ6(t) Iw
Isat
− λ7(t)

(
Iw
Isat

+ 1
)

|u(t)| ≤ uMax

−sign
(
−λ6(t) Iw

Isat
+ λ7(t)

(
Iw
Isat

+ 1
))

uMax |u(t)| ≥ uMax

(4.56)

The transversality condition remains the simple vanishing of the Hamilto-
nian.

4.4.3 Minimum Time and Energy Problem

Since the Hamiltonian has no variations, the control law is the same as the
previous problem. The transversality condition is the same as before, but
adding the weight coe�cient of the �nal time.
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Analytical solution

The decoupled nature of the equations are a valid help in case an analytic
solution wants to be found. The simplest problem to solve analytically is the
Minimum Time Problem, because of its bang-bang control law.

5.1 Minimum Time Problem

Considering the formulation of the optimal control problem proposed in the
previous chapter, the analytical procedure is a mix of the �rst two models: a
�rst manoeuvre takes the mean coordinates to the desired positions, then a
second manoeuvre deals with the oscillatory ones. It is the same reasoning of
Leonard [3] and Bevilacqua and Romano [4,5]. To simplify the development,
some constants are de�ned:

C1 =
(2− 5c2)ω

2ω
(5.1)

C2 =
(2− c2)ω

2ω
(5.2)

C3 = 2cω (5.3)

Considering that the Scheweighart-Sedwick coe�cient has a positive value,
slightly bigger than 1, C1 is a negative constant, while C2 and C3 are positive.
The �rst manoeuvre takes into account only the mean coordinates: the sys-
tem is the one on the previous chapter (4.15, 4.16, 4.17, 4.21, 4.22). From
the transversality condition (4.21) and the �xed �nal condition on the states:

0 =1 + λ1(tf )
u(tf )

C2

+ λ2(tf )C1xm(tf )

0 =1 + λ1(tf )
u(tf )

C2

(5.4)
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an expression for the �nal costate variable can be found:

λ1(tf ) = − C2

u(tf )
(5.5)

Since the control can assume only extreme values and never 0 or∞, the �nal
costate is surely not null: λ1(tf ) 6= 0.
The dynamics of the adjoint variables is easily obtained from 4.17:{

λ̇1 = −C1λ1

λ̇2 = 0
→

{
λ1(t) = λ10 − C1λ20t

λ2(t) = λ20

(5.6)

Since λ1 is linear in time, it can cross the time axis only once: the control
will have just one commutation.

u = uMax

The state dynamics is:{
˙xm(t) = u(t)

C2

˙ym(t) = C1xm(t)
→

{
xm(t) = xm0 + uMax

C2
t

ym(t) = C1

C2
uMax

t2

2
+ C1xm0t+ ym0

(5.7)

from the �rst equation, the time variable is expressed as:

t =
C2(xm − xm0)

uMax

(5.8)

and the dependence between the two variables is obtained:

ym(t) = ym0 −
C1C2

2uMax

x2
m0 +

C1C2

2uMax

x2
m (5.9)

The resulting trajectory is a decreasing parabola, because of the sign of the
two constants (C1 < 0, C2 > 0 → C1C2 < 0)(�gure 5.1)

u = −uMax

The change in sign takes to a change in the direction of the parabola:{
˙xm(t) = u(t)

C2

˙ym(t) = C1xm(t)
→

{
xm(t) = xm0 − uMax

C2
t

ym(t) = −C1

C2
uMax

t2

2
+ C1xm0t+ ym0

(5.10)

The time variable expression is opposite with respect to the previous one:

t =
C2(xm0 − xm)

uMax

(5.11)
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and the parabola is obtained (�gure 5.1)

ym(t) = ym0 +
C1C2

2uMax

x2
m0 −

C1C2

2uMax

x2
m (5.12)

Figure 5.1: Control law for the �rst manoeuvre

The second manoeuvre considers only the oscillatory coordinates. The sys-
tem dynamics is expressed by:{

ẋo(t) = C2yo(t)− u(t)
C2

˙ym(t) = −C3xo(t)
(5.13)

The Hamiltonian is:

H = 1 + λ3(t)C2yo(t)− λ3(t)
u(t)

C2

− λ4(t)C3xo(t) (5.14)

The control law is still a bang-bang one:

u(t) = sign

(
λ3(t)

C2

)
uMax (5.15)
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The constate dynamics is slightly more di�cult than before:{
λ̇3(t) = C3λ4(t)

λ̇4(t) = −C2λ3(t)
(5.16)

Taking λ3 from the second equation, a second order di�erential equation is
obtained for the second costate:

λ̈4(t) + C2C3λ4(t) = 0 (5.17)

Since both constants are positive:

C2C3 = α2 (5.18)

The solution for this costate is:

λ4(t) = A cos(αt) +B sin(αt) (5.19)

Considering the initial conditions, the �nal expression for the two costates
is: {

λ3(t) = λ40α
C2

sin(αt) + λ30 cos(αt)

λ4(t) = −λ30C2

α
sin(αt) + λ40 cos(αt)

(5.20)

As for the previous manoeuvre, the control can assume only extreme values:

u = uMax

Evidently, as for the costate variables, also the states form a second order
di�erential equation, but, in this case, it is non homogeneous one:

ÿo(t) + C2C3yo −
C3

C2

uMax = 0 (5.21)

The solution for the homogeneous associated equation:{
yo(t) = yo0 cos(αt)− C3xo0

α
sin(αt)

xo(t) = xo0 cos(αt) + αyo0
C3

sin(αt)
(5.22)

The particular integral has the simple expression:

ȳo(t) = D (5.23)

where D is a constant: D = uMax

C2
2
. The �nal expression for the states is:{

yo(t) = yo0 cos(αt)− C3xo0
α

sin(αt) + uMax

C2
2

xo(t) = xo0 cos(αt) + αyo0
C3

sin(αt)
(5.24)

The resulting trajectory is circular (�gure 5.2)
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u = −uMax

As for the previous case, the solution is still of circular type, with an opposite-
sign centre: {

yo(t) = yo0 cos(αt)− C3xo0
α

sin(αt)− uMax

C2
2

xo(t) = xo0 cos(αt) + αyo0
C3

sin(αt)
(5.25)

Figure 5.2: Control law for the second manoeuvre

The solution strategy is quite simple: follow the curves up to the origin,
as already implemented by Leonard [3] and Bevilacqua and Romano [4,5].
It is then evident that the values of the initial conditions of the costates are
not necessary.

5.2 Minimum Time and Energy Problem

Contrarily to the Minimum Time Problem, this composite problem needs the
de�nition of the initial costates or, as normally implemented, the switching
structure of the control law.
The manoeuvre strategy is still a separated one. Starting from the �rst couple
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of coordinates, the control law is de�ned as in 4.28. The costate dynamics
takes to the same equations for the �rst two costate variables. Evidently, as
for the Minimum Time Problem, the λ1 has a linear behaviour with respect
to time: the control can cross the time axis only once. In particular, λ1(t)
can be used to obtain the value of �nal time:

λ1(tf ) = λ10 − λ20C1tf → tf =
λ10 − λ1(tf )

λ20C1

(5.26)

The transversality condition takes to the de�nition of the �nal costate:

λ1(tf ) = −C2wf
u(tf )

− C2

2
u(tf ) (5.27)

At this point, the extreme conditions on the control can be applied:

|−λ1|
C2

< uMax

The 5.27 together with the control law under exam takes to the de�nition
of a limit for the �nal costate: after it, the control is at its maximum (or
minimum).

λ1(tf ) = −
√

2wfC2 (5.28)

The weighting factor on the terminal cost determines the slope of the control
trajectory.
The control expression is:

u(t) = −λ1(t)

C2

= −λ10

C2

+
λ20C1

C2

t (5.29)

The state solution are simply:{
xm(t) = xm0 − λ10

C2
2
t+ λ20C1

C2
2

t2

2

ym(t) = ym0 + xm0C1t− C1λ10
C2

2

t2

2
+

λ20C2
1

C3
2

t3

6

(5.30)

|−λ1|
C2

= uMax

The �nal costate is expressed as:

λ1(tf ) = −wfC2

uMax

− C2uMax

2
(5.31)

The state equations take the simple forms:{
xm(t) = ±uMax

C2
t+ xm0

ym(t) = ±uMaxC1

C2

t2

2
+ xm0C1t+ ym0

(5.32)
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Figure 5.3: Control law for the �rst manoeuvre

The �gure 5.3 shows the control law for this �rst manoeuvre. The two
switching times can be used to obtain the initial costates:{

t1 → u = uMax → −λ1
C2

= uMax

t2 → u = −uMax → −λ1
C2

= −uMax

→

{
λ10 = uMaxC2

t1+t2
t1−t2

λ20 = 2uMaxC2

C1(t1−t2)

(5.33)

The second manoeuvre has the same structure of the �rst, with the same
costate expressions of the Minimum Time Problem. The control depends on
a costate that has a sinusoidal behaviour: the same behaviour is expected
(�gure 5.4)

Considering that this manoeuvre is successive with respect to the mean-
trajectory one, the initial control value is known (u0 = utf ), that allows to
evaluate the initial costate λ30:

λ3(t = t0) = λ30 = u0C2 (5.34)

The other costate can be obtained from the vanishing of the control:

u = 0 → λ3

C2

= 0 → αλ40

C2

sin(αt̄) + λ30 cos(αt̄) = 0 →

λ40 = − λ30C2

αtg(αt̄)
(5.35)
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Figure 5.4: Control law for the �rst manoeuvre

This small demonstration shows that, in case of Minimum Time and En-
ergy Problem, so when a continuous control law is expected, the switching
structure is necessary to de�ne the initial costates.
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Chapter 6

Numerical Implementation

The simulation tests have been operated on two satellites of the QB50 con-
stellation of nanosatellites [7,8]. This project has been proposed by the Von
Karman Institute For Fluid Dynamics to study temporal and spatial varia-
tions of constituents of lower atmosphere and the re-entry process. In par-
ticular, the chaser is the satellite QARMAN, a triple-unit CubeSat, with on
board a payload realized by the Université de Liège to validate the propellant-
less technique, as the di�erential drag one. The most important parameters
for the simulation are shown on the tables 6.1, 6.2 , 6.3.

Altitude 350 km
Eccentricity 0
Inclination 98 deg

Table 6.1: Orbit de�nition

Target Chaser
Mass [kg] 2 4
Dimensions - 0.1 x 0.1 x 0.3 m3

Exposed surface 0.015 m2 -
Drag Coe�cient 2.8 2.8

Table 6.2: Characteristics of the satellites

These tables are useful to introduce an aspect: the symmetry of the
control. As already explained in the previous chapters, the control is the
Di�erential Drag, or something linked to it, as the angle δ of the chaser
with respect to the target in the along-track direction - Third Model- or
the angular acceleration of the reaction wheels in inertial reference frame -
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Chaser Inertia 3.33 10−2 kg m2

Reaction Wheels Maximum Torque 0.08 10−3 N m
Reaction Wheels Dynamic Operating Range [-5500, 5500] rpm

Reaction Wheels Inertia 5.2 10−6 kg m2

Table 6.3: Characteristics of the chaser

Fourth Model-. Analysing the di�erential drag formula:

aDiffDrag = −1

2
ρCD

(
SC
mC

− ST
mT

)
v2
r (6.1)

considering that the mass of the chaser is twice the one of the target:

aDiffDrag = −1

2
ρ
CD
mT

(
SC
2
− ST

)
v2
r (6.2)

and the values for the exposed surfaces, with chaser maximum surface -
A2 in �gure 4.1- is 0.1m x 0.3m = 0.03m2 and minimum one - A1 - is
0.1m x 0.1m = 0.01m2; and target exposed surface of 0.01m2, we �nd that
positive and negative di�erential drag have the same value, but opposite sign:

• Positive Di�erential Drag :

aDiffDrag =
1

2
ρ
CD
mT

(
ST −

SC,min
2

)
v2
r =

1

2
ρ
CD
mT

v2
r

(
0.01− 0.01

2

)
= Cost ∗ (0.005)

(6.3)

• Negative Di�erential Drag :

aDiffDrag =
1

2
ρ
CD
mT

(
ST −

SC,max
2

)
v2
r =

1

2
ρ
CD
mT

v2
r

(
0.01− 0.03

2

)
= Cost ∗ (−0.005)

(6.4)

The physical meaning of the di�erential drag, a thrust acting in opposite
direction of velocity vector, explains this particularity: a positive di�erential
drag is obtained via a minimum surface, because the ballistic coe�cient of
the chaser is lower than the one of the target, creating a positive thrust; while
the maximum surface implies maximum drag for the chaser, so a negative
di�erential drag, decelerating the chaser with respect to the target.

72



CHAPTER 6. NUMERICAL IMPLEMENTATION

This symmetric nature of the di�erential drag is quite helpful in implemen-
tation, because the control bounds can simply be expressed as:

|u(t)| ≤ uMax (6.5)

applied as: {
u(u > uMax) = uMax

u(u < −uMax) = −uMax

(6.6)

This implies, in terms of angle δ:

δ =

{
0 deg u = −uMax

90 deg u = uMax

(6.7)

Actually, this is not completely true: the �gure 6.1.

Figure 6.1: Chaser Exposed Surface Evolution

It is evident that the real maximum exposed surface for the chaser is
0.0316m2 obtained for an angle of 71.57 deg. This destroys the symmetry of
the control, since the minimum surface is always the same. A comparison for
the two control bounds is presented on the next sections, especially on the
minimum time for the manoeuvre.
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6.1 Choosing a Method

In Chapter 3, a compendium of optimal control solving methods have been
proposed, but, as the title says, this thesis is focused on the Indirect Methods.
In this way, the choice is limited to four strategies: each one is going to be
studied for coding.

6.1.1 Gradient Methods or Backward-Sweep Method

As explained, the best implementation for this method is when the �nal states
are not �xed and the terminal cost of the cost function does not depend on
the terminal states. In this case, in fact, the terminal costates are simply
null.
In the analysed problem, in any of its forms, the terminal states - the four
positions - are always �xed, because of the de�nition of rendez-vous problem.
For the last model, the last three costates are null at �nal time, since no
constraints are imposed to angle δ, angular velocity of the satellite δ̇ and
angular velocity of the reaction wheels ωw. This could help, but still it is
necessary a strategy to overcome the states issue. No valid strategy has been
found during the year, so this method has been rejected.

6.1.2 Indirect Single Shooting Method

This method is the simplest in terms of hypothesis: the "only" problem is
the initialization of the costates. No constraints are imposed elsewhere and
no particular implementation seems to be used. Actually, this is not true.
The big issue of this strategy is the Newton method inside it, especially in
the Jacobian calculation. As already said, there exist two ways: numerical
di�erentiation (ND) and Broyden update (BU), even with a Damped-Newton
method. Both need several coe�cients, as the h for the ND and the �rst
iteration for BU, but often these strongly depend on the problem under
analysis. In fact, it has to be remarked the meaning of this Jacobian: it
represents the variation of the terminal values and constraints (through the
transversality conditions) with respect to a variation on the initial conditions;
often, with other variables that have a part on it too. The idea of using the
ND as initial iteration for BU can be valid, but it needs several adjustments.
First of all, the ND needs a h, that depends on the macheps, that can be
�xed to a very small value, and on |x|, the norm of the variable. In this
case, the variables are the initial conditions of what is unknown: costates,
Lagrangian Multiplier ant �nal time. The ν can be forgotten for the problem
under analysis, as already explained in Chapter 4, the remaining ones have
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to be found. Once these values are obtained, the system dynamics has to be
integrated in order to evaluate the defect function at �nal time: F0 is ready.
Normally, it is not null. At this point, for each variable, the h is calculated
and the Jacobian is formed: J0. This is the �rst iteration obtained via
numerical di�erentiation, that is going to be used as initial condition for
the second iteration, that implements a Broyden update. Actually, several
opinions exist in this case: for some authors the best way is to keep the
NU for all the code, for others Broyden is better. In this dissertation, the
second idea is followed. The code is written in Matlab R© environment and is
composed of four functions: a main, with all the data, a SSM.m implements
the Single Shooting Method, a propagation.m with the system dynamics and
a defect.m establishes the satisfaction of the constraints. Evidently, the loop
to iterate the initial conditions needs to be stopped: the stopping criterion
is simply a maximum number of iterations and an error evaluation based on
the norm of the defect. In particular, if the maximum number of iteration
can be kept quite big, the tolerance for the norm error on the constraints
should not be lowered too much. Since the most part of this error comes
from the positions instead of the transversality condition for the �nal time,
a percentage on the initial distance can be considered, or simply �x it to a
value: 1.
This method seems work quite well for very simple test cases, but needs some
adjustments for the more complicate ones, as the ones under analysis. For
this reason, a trick has been used: �nding the zero of the defect function
can be seen also as �nding the minimum of the norm of function. In this
way, a well-known Matlab function can be exploited: fminsearch. This
code counts three parts: a main with the data and the loop, a dxfct.m with
the system dynamics and a defect.m with the integration and the defect
calculations. It presents a better behaviour with respect to the previous one.
However, the real big issue is still not be discussed: the costate initialization.
The discussion would be faced in the next section.

6.1.3 Indirect Multiple Shooting Method

This method is very similar to the previous one, having a better convergence,
since the time interval of the shooting is smaller. It has also more variables.
These should be guessed in the radius of convergence of the problem: this
could be even more di�cult than �nd only the initial ones. In addition,
since the fminsearch (minimum of the function, not the zero) code is used,
the matching conditions are not perfect, creating a segmented trajectory
while implementing and a complete wrong one at the last. The reason is
simple: the initial conditions for each segment can be right, but when the
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integration is done on the entire time horizon with the initial conditions of
the only �rst segment, the slightly di�erences in the matching conditions
become important, because of the unstable nature of the dynamics, and the
total trajectory is completely wrong. For this reason, this method has been
abandoned.

6.1.4 Homotopic Approach

This method seems the most promising: with a simpler problem and a pa-
rameter going from 0 to 1, the original problem is obtained. Actually, in this
simplicity, the di�culty is hidden: which simpler problem? As already ex-
plained, normally, this simpler problem is the minimum energy one to solve
the minimum fuel one. In the case under analysis, the original problem is
already the minimum energy one and with the classic BVP solver ofMatlab,
bvp4c, the solution for it has not been found. Several authors have success-
fully used this method, but for this problem, we can not. The most part of
these scientists explains that a big experience is necessary to deal with this
method, because many choices have to be made (simpler problem, homotopy
function, parameter evolution). For this reason, after several tries, it has
been rejected. However, as shown in the next section, its basic idea is kept.

6.2 Initialization

As already explained, these indirect methods are strongly dependent on
costate variables and strongly unstable. The simplest way to initialize them is
to guess them and try. Evidently, there are very few possibility to obtain the
right ones, because of the very small radius of convergence of Newton-based
methods. The best way to initialize this problem is to �rst understand why
it is so unstable to wrong initial conditions. As already said, the Newton-
method factor is very important for the convergence region, but it is not
the only cause. A great source of instability is due to the bounds or the
constraints on control and state variables. Fortunately, in this thesis the
only control bounds are imposed. These create a discontinuity in the control
trajectory, a�ecting the state one too.
The idea is to use a slightly modi�ed homotopic principle. In particular, a
�rst problem is solved: the minimum energy one without control bounds, the
unconstrained problem. In this way, the control has a continuous trajectory,
giving a very good �nal states. The second step is to use this information
as initial guess for still a minimum energy problem, considering, this time,
the control bounds. This �rst part has already been proposed by Bevilac-
qua and Romano [5], for the optimal low-thrust close proximity manoeuvres.
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Actually, the homotopic principle counts, besides the link between two prob-
lems, a homotopic parameter. In this case, this parameter is applied to the
control bounds, but, di�erently from the homotopic approach, it varies from
a certain value bigger than 1 to 1: it means that the control bounds are
progressively imposed. In particular, the control bounds are at �rst imposed
with a quite big value, keeping the control strategy inside these bounds and
the �nal states at a good position. They are progressively lowered, and the
resulting optimized initial conditions for each problem become the initial
guesses for the next problem.

uMax = p uMax p = 3, ..., 1 (6.8)

A second factor linked to the homotopic parameter is how it is lowered: in
the classic homotopic approach, three strategies exist (manually, di�erential,
simplicial), in this case, the �rst one is chosen. Evidently, it is not the best
option, but the simplest in numerical implementation.

6.3 Minimum Time Problem

When the �nal time is a variable, a further problem arises in the propagation,
because a �xed value is necessary for the classical IVP solver, as Runge-
Kutta. To overcome this issue, a trick is used: the �nal time becomes a
variable, whose dynamics is set to 0:

xnew =

[
x
tf

]
→ ẋnew =

[
f(x(t),u(t), t)

0

]
= f̄ (6.9)

The new time interval is simply τ ∈ [0, 1], with t = τ tf taking to a new
dynamic system:

dx

dτ
=
dx

dt

dt

dτ
= f̄tf (6.10)

It is then su�cient to pre-multiply the system dynamics for the new variable.

6.4 Tests Procedure

The idea is to evaluate the accuracy of the method, considering three aspects:
the initialization procedure, the variations in initial guess for costates and
the variations of initial conditions in terms of state variables.
As explained in the previous chapter, the simplest problem to solve is the
unconstrained Minimum Energy one, keeping the �nal time �xed. For this
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purpose, the analytic �nal time is considered. Then, following the homo-
topic procedure, the initialization is tested: the resulting optimized initial
conditions are used as initial conditions for the less simple problems, as the
constrained minimum energy, the constrained minimum time and energy and
the constrained minimum time. The second aspect to analyse implies a vari-
ation in guessed initial conditions for the costate variables: in this case, the
idea is to evaluate how the method interacts with very bad initial conditions
and the numerical cost. In particular, six cases have been considered:

λ1 λ2 λ3 λ4

case 1 0 0 0 0
case 2 1e-7 1e-7 1e-7 1e-7
case 3 1e-3 1e-3 1e-3 1e-3
case 4 1 1e-7 1e-3 1e-7
case 5 1 1 1 1
case 6 5 5 5 5
case 7 10 10 10 10

Table 6.4: Costates cases

x [m] y [m] ẋ [m/s] ẏ [m/s] xm [m] ym [m] xo [m] yo [m]

case 1 0 -50 0 0 0 -50 0 0

case 2 0 -500 0 0 0 -500 0 0

case 3 0 -5000 0 0 0 -5000 0 0

case 4 0 -50000 0 0 0 -50000 0 0

case 5 5 -50 0 0 19.9725 -50 -14.9725 0

case 6 -10 -10 0 0 -39.9451 -10 29.9451 0

case 7 20 0 0 0 79.8901 0 -598901 0

case 8 20 -50000 0 0 79.8901 -50000 -59.8901 0

case 9 3 10 -0.001 0.001 13.73 11.7464 -10.73 -1.7464

Table 6.5: States cases

When the number of costate is bigger, as for the fourth model, the re-
maining adjoint variables are kept to 0.
Finally, the variations in state initial conditions: this is useful to evaluate the
robustness of the method. In this case, 9 cases have been analysed (tables
6.5, 6.6).
Almost all the test cases have null initial velocity. For the last case, these
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Analytical time [s]

case 1 4560

case 2 14520

case 3 47940

case 4 151260

case 5 10560

case 6 17400

case 7 35460

case 8 168120

case 9 5220

Table 6.6: States cases: Analytical times

velocities are added. Despite the small values, these create a complication,
that ends in a bigger computational time. For this reason, the most part of
the test cases have been left without initial velocity.

6.4.1 First Model: Mean with Di�erential Drag

Figure 6.2: The resulting trajectory without the initialization procedure for
case 1

The �rst aspect to analyse with this model is the validation of the ini-
tialization procedure. Starting with the closest test case (case 1), a Single
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Figure 6.3: Mean trajectory for case 1

Figure 6.4: Mean trajectory for case 1: zooms

Shooting Method without initialization procedure does not work, taking to
a very bad trajectory (�gure 6.2, the error is 17.488). The strategy is then
applied: the results are quite good (�gures 6.3, 6.4), especially for smaller
distances, as the table 6.8 shows. The trajectories for the various problems
are ,evidently, slightly di�erent. In particular, the absence of constraints
(the blue curve in �gure 6.3) allows a more "continuous" trajectory, while
the control bounds make the trajectory more "pointed".
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Figure 6.5: The control trajectory for case 1

The analytical solution is a time optimal one, for this reason it presents the
same "pointed" behaviour of the red curve. The black one is the coupled
problem (minimum time and energy) trajectory: since the initial guess for
the �nal time is the analytical one, which is a time optimal solution, the
only adding aspect with respect to the minimum energy problem is to allow
a further iteration, improving the �nal positions.
The control trajectories follow the predicted ones (�gure 6.5): the minimum
energy problem has a continuous linear behaviour, the minimum time one a
step behaviour. Evidently, the coupled one has both the behaviours: a "dis-
continuous linear" trajectory, with a higher slope. Again, the curves overlie:
being the red one a minimum time problem solution, it has a step, exactly as
the analytical solution; the minimum energy problems share a certain slope,
lower than the previous problem, but bigger than the unconstrained one.

The �gures on the state (6.3) and control (6.5) trajectory have a particular
behaviour: it looks like a symmetric one. Actually, this is the result of the
initial conditions on the state variable: this case has a not null initial condi-
tion only on the ym. The same for the cases 2,3,4. The case 7 has also only
one initial condition, but on xm. As the �gures 6.6 and 6.7 show, this case
has not a symmetric behaviour. The di�erence between these two solution
shapes is in the di�erent initial conditions, linked to the system dynamics.
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Figure 6.6: The resulting trajectory with the initialization procedure for case
7

Figure 6.7: The control trajectory for case 7

As illustrated in Chapter 5, the analytical solution (a time optimal solution)
implies a series of switches between curves to arrive on the switching curve,
that takes directly to the origin (�gure 5.1). Evidently, because of the shape
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of these curves (ym depends quadratically on xm: they form a parabola) and
the obliged movement (they can move only on these parabolas), having a
zero xm creates a perfect "pointed" parabola, while a problem with initial
xm not null obliges the satellite to follow the �rst curve slightly more than
the switching curve, vanishing the symmetry. The �gure 6.8 illustrates the
minimum time trajectory for case 2 1 and case 7: the switching curve can be
guessed when the two curves overlie and the di�erence in the path is evident.

Figure 6.8: The di�erence between case 2 and case 7

The last variables to analyse are the costates. The �gures 6.9 illustrate the
evolution of these parameters for case 8: λ1 has a linear behaviour, while λ2

is continuous, as expected from the analytical solution.

The blue curve (the unconstrained problem) has a quite di�erent slope for
the �rst costate and a di�erent value for the second. This depends on the
optimized initial conditions that the method �nds. In fact, the constrained
solutions have almost the same initial conditions, while for the unconstrained
one they are di�erent (table 6.7). The �rst problem allows a �rst optimiza-
tion, that is successively improved by the constrained problems. As for the
trajectories, these problems show similar behaviours 2.

The next aspect to analyse is the error. The table 6.8 has some red
values: the errors are bigger than the tolerance (1). Firstly, the error of

1This case has been chosen over case 1 only for graphic purpose, since case 1 has too
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Figure 6.9: The costate evolution for case 8

unconstrained
min energy

constrained min
energy

constrained min
energy and time

constrained min
time

λ1 λ2 λ1 λ2 λ1 λ2 λ1 λ2

case 1
2.7588e-
9

-7.057e-
10

1.7746e-
8

-4.4702e-
9

1.7471e-
8

-4.3832e-
9

1.7529e.8
-4.4142e-
9

case 2
2.7209e-
9

-2.1858e-
10

1.6658e-
8

-1.3217e-
9

1.6694e-
8

-1.3256e-
9

1.6725e-
8

-1.3342e-
9

case 3
2.4979e-
9

-6.0777e-
11

4.0083e-
9

-9.7492e-
11

4.0122e-
9

-9.7592e-
11

3.9789e-
9

-1.0022e-
10

case 4
2.5076e-
9

-1.9337e-
11

4.0885e-
9

-3.1487e-
11

4.0908e-
9

-3.1505e-
11

4.0623e-
9

-3.2233e-
11

case 5
2.9957e-
9

-2.6237e-
10

2.3912e-
8

-1.9451e-
9

2.3992e-
8

-1.9514e-
9

2.4082e-
8

-1.9620e-
9

case 6
-2.9736e-
9

1.4888e-
10

-5.3164e-
8

2.4889e-
9

-5.3310e-
8

2.4959e-
9

-5.3468e-
8

2.5051e-
9

case 7
2.9546e-
9

-7.2894e-
11

1.6681e-
8

-3.8506e-
10

1.6694e-
8

-3.8590e-
10

1.6723e-
8

-3.8861e-
10

case 8
2.6599e-
9

-1.7372e-
11

4.6421e-
9

-2.9614e-
11

4.6423e-
9

-2.9615e-
11

4.6553e-
9

-3.0581e-
11

case 9
2.9551e-
9

-4.6758e-
10

1.2822e-
7

-1.9124e-
8

1.2889e-
7

-1.9190e-
8

1.2974e-
7

-1.9310e-
8

Table 6.7: The optimized costates for variations in state initial conditions

small values with respect to case 7.
2The green curve on the �gures almost coincide with the black one, as for the trajec-

tories.
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unconstrained
min energy

constrained min
energy

constrained min
energy and time

constrained min
time

case 1 1.3222e-4 0.4214 9.9584e-5 0.1032
case 2 3.1957e-4 0.8664 9.8742e-5 0.3950
case 3 1.7895e-4 0.0475 9.9188e-5 3.4084
case 4 1.1295e-4 0.8568 9.7370e-5 41.2523
case 5 1.1671e-4 0.6012 9.9373e-5 0.0209
case 6 1.1632e-4 0.8764 0.0356 0.0356
case 7 1.8546e-4 1.7074 9.8822e-5 0.1085
case 8 1.2793e-4 6.3356e-5 9.7257e-5 31.0266
case 9 1.0674e-4 0.4492 9.8707e-5 0.0624

Table 6.8: Error for variations in state initial conditions

the constrained minimum energy problem for case 7 has been analysed. The
cause is the optimization parameter, whose evolution creates some issues. As
explained in the previous chapter, the chosen strategy is the simplest one:
manually lower this parameter. It is clear that it is not the best option, taking
to a very long simulation, because the step size for the control bounds has to
be reduced when the initial conditions on the states are bigger: already from
the second test cases, the step sized is reduced to 0.005 (table 6.9). However,
this strategy has been kept, because of a lack of information about the other
two methods. The reason for the bigger error for the constrained minimum

initial value step size
case 1 1.7 0.01
case 2 1.7 0.005
case 3 1.7 0.005
case 4 1.7 0.005
case 5 1.7 0.005
case 6 1.7 / 1.01 0.002 / 0.001
case 7 1.7 / 1.008 0.002 / 0.00001
case 8 2.3 0.001
case 9 1.7 0.001

Table 6.9: Step size for the constrained min energy problem for variations in
state initial conditions

energy problem for case 7 is then in table 6.9: a more reduced step size could
help, but the computational cost was already quite big (2575.3 sec ≈ 42 min,
with respect to the lower 27 min for case 8 and 7 for case 9).
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A �rst cause for this necessity of lowering the step size can be found in
the initial distance: the more the satellite is far away, the longer is the
rendez-vous time, the bigger are the instabilities, due to the integration.
As explained, these equations are particularly unstable: when the initial
distance is too big, these instabilities sum themselves, taking to a less good
�nal position. A second, probably more important, cause is another one: the
initial costates. Even for this simple model, the variation in guessed initial
adjoints variables creates a variation in �nal positions, as it will be illustrated
in the next section.
The second group of red numbers is in the minimum time problem column:
up to the minimum time and energy problem, the �nal positions are good;
when its optimized initial conditions are imposed as guessed initial conditions
for the minimum time problem, the error increases (table 6.8). The reason
could be found in the bang-bang control law, that adds instabilities. These
propagate with unstable equations, taking to a bad trajectory (�gures 6.10).

Figure 6.10: Mean trajectory for case 4

A second, reduced, initialization procedure has been tried: the resulting
optimized initial costate variables from the unconstrained minimum energy
problem are implemented in the constrained minimum time problem as initial
guesses. The results are very similar to the global procedure, with a general
bigger error. In some cases (1, 2, 4, 5), the errors are the same; while
only in one case, the last one, the error is slightly lower. Actually, this last
case represents the closest position of the chaser with respect to the target:
probably, the evolution of the costates from the "homotopic" approach is not
the optimal one.

This introduces the second aspect to analyse: the costates variations.
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Error
case 1 0.1032
case 2 0.3950
case 3 12.9686
case 4 41.2523
case 5 0.0209
case 6 0.7045
case 7 0.4157
case 8 49.1382
case 9 0.0496

Table 6.10: Error for the reduced initialization procedure

Figure 6.11: Mean trajectory for case 1

As already said, six cases have been studied. In order to reduce the cal-
culation time, the reduced initialization procedure have been implemented.
Actually, the �rst eight cases show only very small di�erences in �nal error,
of the order of magnitude of 10−15 − 10−16, that can be easily caused by nu-
merical calculations, than real di�erences, especially because the trajectories
coincide (�gure 6.11).

The only case showing a slightly bigger di�erence is case 9, still with val-
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Figure 6.12: Variation of the initial conditions on the costate variables

ues of order of magnitude of 10−8. This can explain the di�erent behaviour
with respect to other cases when the reduced initialization procedure is imple-
mented: the �rst guess [0 0] is the best one (�gure 6.12(a), with a di�erence
with respect to the other two good conditions of the order of magnitude of
10−16).
Actually, the most important di�erence in changing the initial costates is in
the computational cost: the �gure 6.12(b) shows for the case 8, the di�erent
computational times. This case has the biggest di�erence, still keeping it
under 5 seconds, while the other cases have di�erences lower than 1 second.
The simple results can be explained by the simplicity of the system: the
mean coordinates have a quite simple dynamics, with quite simple control
bounds and initial and �nal conditions. Moreover, the presence of only two
variables adds further simpli�cations to the problem. The next Model will
introduce complications.

The �nal aspect to study with respect to this �rst Model is the symmetry

of the control. As explained previously in this chapter, since the di�erential
drag is linked to the exposed surface of the chaser, a slightly bigger exposed
surface (0.0316m2 for an angle δ = 71.57) exists, vanishing the symmetry.
The di�erence between these two control bounds is actually more pronounced
for the constrained minimum energy problem and the minimum time one (�g-
ures 6.13, 6.14). Evidently, the imposition of di�erent control level has an
impact on those problems that insert more issues (discontinuities, bounds).
The �gure 6.14(b) shows something expected: the �nal optimal time for the
non-symmetric control bounds is lower than the symmetric case. Since the
orbits are the same, so same energy, less time is su�cient when the control
is bigger.

88



CHAPTER 6. NUMERICAL IMPLEMENTATION

Figure 6.13: Mean trajectory for case 1

Figure 6.14: Error and Control for case 1
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6.4.2 Second Model: Mean-Oscillatory with Di�eren-

tial Drag

This second model introduces the oscillatory coordinates, increasing the num-
ber of variables and the complexity of the calculations. In fact, this second
group of variables has, as the name says, an oscillatory behaviour, that is
more di�cult to deal with.

Factor
case 1 1.4
case 2 1.08
case 3 1.08
case 4 1.25
case 5 1.3
case 6 1.2
case 7 1.3
case 8 1.2
case 9 1

Table 6.11: Factor for the time interval de�nition

Figure 6.15: Di�erence in global trajectory with the analytical solution for
case 8
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Figure 6.16: Di�erences between First and Second Model for case 8

The �rst complication is the time interval. The analytical solution is a two-
phase manoeuvre, while this model takes to a global solution: this di�erence
is quite important, because the control law is deeply di�erent. Because of
this, the time interval has been chosen di�erently than the previous case:
it has been obtained by pre-multiplying the �rst-model optimal time by a
factor (table 6.11). The choice of the factor depends on the �nal error. Dif-
ferently from before, this �nal error is not the minimum time problem one,
but the previous minimum energy and time one. The reason is that, for the
�rst problem, it seems that none of the factors was good. For this reason,
also the reduced initialization procedure is implemented with the minimum
energy and time problem.
As explained, the control law is a global one, not divided into two manoeu-
vres. This implies a di�erent trajectory with respect to the analytical solution
(�gure 6.15) and also a di�erent mean trajectory with respect to the previous
Model (�gure 6.16(a)).

The �gure 6.16(b) illustrates an important element: the completely di�er-
ent control law for the two Models. As shown in Chapter 5, the analytical
solution for the control law of the oscillatory coordinates has a sinusoidal
shape, that can be easily seen in this �gure. The case 9 has no change in
time interval with respect to the First Model, but the consequences are the
same (�gures 6.17, 6.18). It can be remarked that, for case 9, even with
the same initial time interval, the minimum time and energy problem gives
di�erent optimized �nal time (�gure 6.18(b)). Evidently, being the Models
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Figure 6.17: Di�erences between First and Second Model for case 9: trajec-
tories

Figure 6.18: Di�erences between First and Second Model for case 9: control

so di�erent, it was expected. The �gures 6.15 and 6.17(a) show what has
been already announced: the minimum time solution is completely wrong.
It is an unexpected complication: the probable cause is in the bang-bang
control law of the minimum time problem. If the linear control law of the
First Model can be represented in a step shape, the same thing can not be
said for the Second Model, whose control law is more complicated, being a
combination of a linear one and a sinusoidal one.

As for the previous Model, the next element to analyse is the costate evo-
lution. As illustrate in the previous chapters, the �rst two adjoint variables
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Figure 6.19: Costate evolution for case 6

keep the same shape with respect to the First Model, while the last two show
a sinusoidal behaviour (�gures 6.19).
From these �gures, it seems that a colour is missing: the red curve is not
present. Actually, this is not true (�gures 6.20(b), 6.21): for the case 6, the
minimum time problem converges to a very small trajectory, because the
optimized �nal time is 37.0698 sec, with respect to the 21216 sec of the min-
imum time and energy problem.

As for the previous Model, the next element to consider is the error, to
evaluate the precision of the method (table 6.12).
Evidently, the column of the minimum time problem is completely red. The
red value on the second column can be explained with the "homotopic" op-
timization parameter evolution, that could be not the best one (table 6.13).
For this Model, this evolution has been kept as simple as possible: because
of the complexity of the system dynamics, the computational cost increases
a lot with respect to the First Model.
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Figure 6.20: Global trajectory for case 6

Figure 6.21: Costate evolution for case 6: λ4(t), zoom at initial position

The reduced initialization procedure is implemented with the minimum time
and energy problem: the results are very similar to the global procedure,
except for cases 6 and 7(table 6.14). The cause, as in the previous model,
can be found in the costate initial conditions: the case 6 has not in [0 0 0 0]
its best initial adjoint variables (�gure 6.23(a)).
Di�erently from the First Model, the costate initial condition variation mod-
i�es not only the computational cost (�gure 6.23(b), but also the trajectory
(6.22). The reason is in the already mentioned extreme sensitivity of the

94



CHAPTER 6. NUMERICAL IMPLEMENTATION

unconstrained
min energy

constrained min
energy

constrained min
energy and time

constrained min
time

case 1 1.2859e-4 9.9701e-5 9.9942e-5 22.0132
case 2 1.5918e-4 0.1592 0.059 63.7670
case 3 8.8813e-5 0.1076 0.0354 196.8469
case 4 2.2056e-4 1.1322e-4 0.0057 653.6407
case 5 2.1554e-44 0.0602 0.0196 17.0568
case 6 1.0699e-4 1.3218 0.9987 50.8030
case 7 1.5744e-4 1.3941 0.5468 99.7579
case 8 3.7481e-4 0.9046 0.5203 675.9286
case 9 1.3423e-4 12.4547 0.0421 26.8215

Table 6.12: Error for variations in state initial conditions

initial value step size increment in
computational
cost [s]

case 1 1.5 0.001 1102
case 2 1.5 0.001 1953
case 3 1.5 0.001 6586
case 4 1.5 0.01 1371
case 5 1.4 0.001 1638
case 6 1.5 0.001 4463
case 7 1.5 0.001 6135
case 8 1.5 0.001 16067
case 9 2.8 0.005 1476

Table 6.13: Step size for the constrained min energy problem for variations
in state initial conditions

method with respect to the initial conditions, augmented by the complexity
of the system dynamics.

Finally, the symmetry of the control law. The �gure 6.24(a) shows a smaller
error with respect to the previous Model. Actually, this behaviour is not
common to all the cases: the case 6, for example, has a bigger error (�gure
6.24(b)).

95



CHAPTER 6. NUMERICAL IMPLEMENTATION

Error
case 1 0.1244
case 2 0.0988
case 3 0.2514
case 4 6.411e-4
case 5 0.0466
case 6 2.5089
case 7 4.6655
case 8 0.2455
case 9 0.0162

Table 6.14: Error for the reduced initialization procedure

Figure 6.22: Costate evolution for case 6: minimum time and energy problem,
global trajectory

6.4.3 Third Model : Mean-Oscillatory with Attitude

Angle

This Model, together with the Fourth one, has given much more problems.
Only one case has been analysed, the simplest case (case 1), but still no
good solution has been found. Several strategies have been used, modifying
the possible parameters: homotopic optimization parameter, time interval,
initial costate from the Second Model.
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Figure 6.23: Costate evolution for case 6: minimum time and energy problem,
error and computational time

Figure 6.24: Di�erences in symmetric and non-symmetric control for case 1
and 6

The �gures 6.25, 6.26(a), 6.26(b) show a comparison in the trajectories
(global, mean and oscillatory) between this Model, the previous one and
the analytical solution. Actually, the curves are only the ones related to the
�rst two types of problem (unconstrained minimum energy and constrained
minimum energy), because the problem related to the minimization of the
time gives wrong solution: the minimum time problem has an optimized �nal
time of the order of 10−13! The cause can be found in the combination of
bang-bang solution and the implicit control law, typical of this Model.
The minimization of the energy seems work well: the constrained one is very
similar to the solution of the Second Model. As for the previous Model, the
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Figure 6.25: Global trajectory

Figure 6.26: Mean and oscillatory trajectories

di�erence with the analytical solution is in the two-phase manoeuvre that
characterizes this solution, while the method looks for a global manoeuvre,
combining the two movements.

As announced, the control bounds are, in this case, angle values: 0 deg and
90 deg, because of the norm operator that creates some issues in the implicit
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Figure 6.27: Control and Di�erential Drag

solution of the control.

When the optimized initial conditions of the minimum time and energy prob-
lem of the Second Model are used on the minimum time of the Third Model,
an acceptable solution is found, with an error of 4.3839. Actually, this takes
to the next issue: the costates. The �gure 6.28 shows the costate evolution
for the energy minimization problems: if the shapes are the right ones, very
similar to the Second Model, the values are completely di�erent. In the pre-
vious two models, the adjoint variables keep very small values, below 10−7;
this Model has values 14 orders of magnitude bigger. This could be the cause
for the failure of the time minimization problems. Even when the initial con-
ditions of the previous Model are used for the unconstrained problem, the
results are not so di�erent than these. This represents the realization of the
most important issue for the Indirect Methods: the initialization.

6.4.4 Fourth Model : Mean-Oscillatory with Angular

Acceleration of Reaction Wheels

This �nal Model is the most complex in terms of system dynamics and num-
ber of variables. Because of this, only the simple case 1 has been studied:
after three days of simulation, the case 8 has not yet given a solution.

As the �gures 6.29(a), 6.29(b) show, the solution is not found also with the
initial conditions of the Second Model. Actually, these conditions are only
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Figure 6.28: The costates evolution for case 1

four, for the four state variables, while this Model counts seven variables
(the four states, the angle δ, the angular velocity of the satellite δ̇ and the
angular velocity of the reaction wheels ωw). These last ones are simply set to
zero, because no information can be obtained from the previous Model. The
"homotopic" strategy has failed for this Model. The causes can be di�erent:
a wrong numerical implementation and an extreme sensibility of the Model
with respect to the initial conditions, even in the unconstrained problem, are
the most probable.
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Figure 6.29: Global trajectories

6.5 Comparison with a direct method

The direct methods are the most used in trajectory optimization, because of
the generality and the limited sensitivity to initial conditions. A comparison
with indirect methods can be interesting. For this purpose, the presudospec-
tral methods are used, in particular the program GPOPS [19]. The reason is
quite simple: the program already exists and a version for the Fourth Model
has been provided [8]. The program is very adaptable and di�erent tutorials
exist [19, 43].

Figure 6.30: Trajectories for case 8

As the �gures 6.30(a), 6.30(b) show, the trajectories are very similar to the

101



CHAPTER 6. NUMERICAL IMPLEMENTATION

analytical one. This represents a good and a bad point for these methods:
when a good initial trajectory is used, the results are impressive; but when
this solution is not provided, more work has to be done. Fortunately, the
presence of the analytical solution has simpli�ed the numerical implemen-
tation. During the tests for the di�erent cases, a second important aspect
arises: the scaling. A small change in the scaling factors can really modify the
entire trajectory. Each test case needs a peculiar scaling factor, increasing
the global computational time, because several tries are necessary. Finally,
the costates. As a pseudospectral method, the adjoint variables can be used
to check the control of the direct method [21]. Not in all tests cases, these
variables follow the right behaviour (�gure 6.31), without any consequences
on the trajectory 3.

Figure 6.31: The λ2 evolution for case 4

As already well known, the second costate should be constant. Actually,
a real cause for this has not been found: the most probable is in a wrong
implementation of the Model, despite the right trajectory.

3This depends on the fact that the costates, in the direct methods, are computed a
posteriori, from the discretized Lagrangian Multipliers.
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Conclusions and Future

Developments

The main objective of the thesis was to exploit an indirect method to evalu-
ate the optimal trajectory for a rendez-vous manoeuvre, using the di�erential
drag as actuator.
The implemented indirect method is the simplest one: the Single Shooting
Method. The idea is to search for the zero of a defect function, composed
by �nal and transversality conditions, modifying the initial conditions. The
choice has fallen on this, because its simplicity implies also smaller compu-
tational cost, when it converges. Evidently, when the convergence is not
reached, the other methods are more suitable. However, even in these cases,
the same method has been kept. Practically, this method has been imple-
mented in a code, taking to good results for simpler problems. The more
complex ones require some adjustments (Numerical Di�erentiation or Broy-
den update for the Jacobian, de�nition of several parameters). For this
reason, the already implemented fminsearch code in Matlab R© has been
used: the approach changes from searching the zero of a function (classical
SSM) to searching the minimum value of its norm (fminsearch). The al-
ready de�nite code has considerably reduced the computational work.
The second step is the "homotopic" type approach: link a simple problem to
a more complex one, exploiting its solutions. In particular, the �rst problem
is the unconstrained minimum energy, normally presenting a quite simple
solution. Its optimized initial conditions on the costate variables are then
used as initial guesses for the more complicated constrained problems, the
minimum energy, minimum time and a combination of the two. The control
bounds are progressively added through an optimization parameter, similar
to the homotopic one. The main di�erence with the classical continuation
approach is in this parameter: the homotopic one links the two problems,
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varying from 0 to 1; this one changes from a certain value, bigger control
bounds, more similar to the unconstrained problem, to 1, the right control
bounds.
The need for this approach comes from the initialization issue, typical of
these methods. The causes are in two directions: on one side, these methods
use a Newton-based approach, characterized by a global solution, but with a
very small radius of convergence. The second aspect is linked to the intrinsic
problems of these methods: the instabilities. The dynamic equations are un-
stable, because of the presence of the costate variables; and the imposition
of state and/or control constraints adds complications, invoking the knowl-
edge of the switching structure of the control problem. Fortunately, in this
thesis, the only maximum and minimum control bounds are imposed. The
presence of these has requested the implementation of the "homotopic" ap-
proach: even simple constraints prevent from a solution in indirect methods.
The four problems (the unconstrained one and the three constrained ones)
have been tested with four di�erent dynamic models and several test cases.
Very good results have been obtained for the simplest Model -the First Model-
and a more complex one- the Second Model-. Despite its simplicity, this last
model has a good representation of the reality. In order to increase its re-
alistic basis, two other Models have been derived. The di�erence is in the
control variable: the Second Model considers directly the di�erential drag,
the Third Model reduces it to the along-track direction angle of the satel-
lite,and the last model includes a mechanical representation of the chaser,
de�ning the angular acceleration of the reaction wheels in an inertial refer-
ence frame as its actuator. The increase in complication of the Model has
taken to often quite poor solutions. The causes are several: from a possible
wrong implementation, to the necessity of good initial conditions also for the
unconstrained minimum energy problem.

Future perspectives exist in the improvement of the realistic aspect of the
model. Firstly, a more realistic atmosphere: in this thesis, density has been
considered constant. A temperature model is envisaged, together with the
inclusion of the change in density due to light and dark side of the earth. The
classical two-body problem dynamics has been considered with the only J2

gravity perturbation. The other disturbances can be analysed: solar pressure
and third body gravitational e�ect.
The presented control law approach focuses on the in-plane motion, because
the di�erential drag has no e�ect on the out-of-plane one. The control of this
part has to be considered, with a di�erent actuator or a new implementation
of the di�erential drag.
Finally, a complete comparison with a propellant technique, as chemical
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thrusters, to underline the limits of both. The di�erential drag has a limited
value, depending on the exposed surface of the satellite: very long distance
initial conditions take to very long trajectory. The intrinsic disturbance na-
ture of this force has to be considered: the satellite needs more often to be
reboosted. This should be realized with propellant techniques: a comparison
in fuel savings between a complete propellant system and an "hybrid" one is
necessary.
The second aspect for future developments is in the numerical implemen-
tation. The indirect methods have great possibilities: the convergence is
straightforward when the right initial conditions are used and the solution is
an optimal one, with respect to the suboptimal of the direct methods. How-
ever, the necessity of deriving the optimality conditions, that can be very
tough, and the initialization issue have limited their developments. Lately,
a new interest is born on these methods, taking to possible future improve-
ments. Two possible ways exist: implement a completely new strategy, based
on indirect methods, or exploit the "hybrid" approach. This last one has al-
ready a certain number of followers, because it represents the possibility of
summing the advantages of the two methods, eliminating the disadvantages.
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Appendix A

The derivation of Hill-Clohessy-Wiltshire equations: from [1].
The starting point is the dynamics of the classical "two-body problem":

r̈ = −µ r

r3
(A.1)

The position of one satellite, the chaser, can be expressed in function of the
target's one (�gure 2.1):

r = r0 + δr (A.2)

The hypothesis of small distances with respect to the orbit dimensions are
exploited:

δr

r0

� 1 (A.3)

The system dynamics can then be derived as:

r̈ = −µ r

r3
→ r̈0 + δr̈ = −µr0 + δr

r3
(A.4)

The r3 is obtained as:

r2 = (r0 + δr)(r0 + δr) = r2
0 + 2δr.r0 + δr2 (A.5)

The higher order terms can be eliminated:

r2 = r2
0

(
1 +

2δr.r0

r2
0

+
δr2

r2
0

)
= r2

0

(
1 +

2δr.r0

r2
0

)
(A.6)

The result is then obtained:

r−3 = r−2 3
2 → r−3 =

[
r−2

0

(
1 +

2δrr0

r2
0

)−1
] 3

2

(A.7)

r−3 = r−3
0

(
1 +

2δr.r0

r2
0

)−3
2

(A.8)
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Through the implement of the binomial theorem:

r−3 = r−3
0

(
1− 3δr.r0

r2
0

)
(A.9)

The dynamics become:

δr̈ = −r̈0 − µ
r0 + δr

r3
0

(
1− 3δr.r0

r20

)−1

= −r̈0 − µ
(

1− 3δr.r0

r2
0

)
r0 + δr

r3
0

= −r̈0 − µ
r0

r3
0

+ µ
3δr.r0

r5
0

r0 − µ
δr

r3
0

+ µ
3δr.r0

r5
0

δr

(A.10)

The �rst two terms represent the classical two-body problem for the target
and the last term can be neglected because of the higher terms presented.
The �nal form is:

δr̈ = − µ
r3

0

(
δr− 3δr.r0

r2
0

r0

)
(A.11)

This represents a set of linear ordinary di�erential equation, still in the in-
ertial frame.
A switch to the local reference frame allows to consider only the relative
motion. The reference system is the one presented in Chapter 2, �gure 2.2.

r̈ = r̈0 +
dΩ

dt
× δr + Ω× (Ω× δr) + 2Ω× δvrel + δarel

= r̈0 + δr̈
(A.12)

The angular velocity Ω is considered constant:

δr̈ = Ω.(Ω.δr)− Ω2δr + 2Ω× δvrel + δarel (A.13)

The following de�nitions are then used:

δr = x̂i + ŷj + zk̂ (A.14)

δvrel = ẋ̂i + ẏ̂j + żk̂ (A.15)

δarel = ẍ̂i + ÿ̂j + z̈k̂ (A.16)

Ω = ωk̂ (A.17)

The resulting expression is:

δr̈ = (−ω2x− 2ωẏ + ẍ)̂i + (−ω2y + 2ωẋ+ ÿ)̂j + z̈k̂ (A.18)
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The inertial form of the Linear ODE (equation A. 11) are put in the local
reference frame:

δr̈ = −ω2

(
x̂i + ŷj + zk̂− 3r0.δx

r2
0

r0̂i

)
(A.19)

The �nal expression of the Hill-Clohessy-Wiltshire equations in the local
reference frame is then obtained:

I The force free case: 
ẍ− 2ωẏ − 3ω2x = 0

ÿ + 2ωẋ = 0

z̈ + ω2z = 0

(A.20)

II The forced case, with only the di�erential drag 1:
ẍ− 2ωẏ − 3ω2x = 0

ÿ + 2ωẋ = u

z̈ + ω2z = 0

(A.21)

Having the di�erential drag no e�ect on the out-of-plane motion and being
the z dynamics separated from the other two, the system is reduced to the
only �rst two equations.
The J2 gravity perturbation can be introduced [2], taking to a new set of
equations: {

ẍ = 2ωcẏ + (5c2 − 2)ω2x

ÿ = −2ωcẋ+ uy
(A.22)

The next step is to derive the mean-oscillatory form of the equations. Through
a state transformation, {

x = xm + xo

y = ym + yo
(A.23)

the system is decomposed into a double integrator and an harmonic oscillator
(x, y are the global coordinates, xm, ym the mean ones, xo, yo the oscillatory
ones). The real transformation is operated through:{

xm = 4x+ 2
ω
ẏ

ym = y − 2
ω
ẋ

(A.24)

1In this thesis, no other forces are considered.
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that is slightly changed with the introduction of the J2 gravitational pertur-
bation e�ect by Scheweighart-Sedwick [2]:{

xm = 4c2

2−c2x+ 2c
(2−c2)ω

ẏ

ym = y − 2c
(2−c2)ω

ẋ
(A.25)

where c is the Scheweighart-Sedwick coe�cient, already de�ned.
The system dynamics can then be derived (considering A.22 and A.24):

ẋm =
4c2

2− c2
ẋ+

2c

(2− c2)ω
ÿ

=
4c2

2− c2
ẋ+

2c

(2− c2)ω
(−2ωcẋ+ uy)

=

(
4c2

2− c2
− 2c

(2− c2)ω
2ωc

)
ẋ+

2c

(2− c2)ω
uy

=

(
4c2 − 4c2

2− c2

)
ẋ+ +

2c

(2− c2)ω
uy

=
2c

(2− c2)ω
uy

(A.26)

ẏm = ẏ − 2c

(2− c2)ω
ẍ

= ẏ − 2c

(2− c2)ω

(
2ωcẏ + (5c2 − 2)ω2x

)
= ẏ − 2c

(2− c2)ω
2ωcẏ − 2c

(2− c2)ω
(5c2 − 2)ω2x

=

(
1− 2c

(2− c2)ω
2ωc

)
ẏ +

2− 5c2

(2− c2)ω
2ωcx

=
2− c2 − 4c2

2− c2
ẏ +

2− 5c2

(2− c2)ω
2ωcx

=
2− 5c2

2− c2
ẏ +

2− 5c2

(2− c2)ω
2ωcx

=
2c

(2− c2)ω

2− 5c2

2− c2

(2− c2)ω

2c
ẏ +

2− 5c2

(2− c2)ω
2ωc

4c2

2− c2

2− c2

4c2
x

=
(2− 5c2)ω

2c

2c

(2− c2)ω
ẏ +

(2− 5c2)ω

2c

4c2

2− c2
x

=
(2− 5c2)ω

2c

(
2c

(2− c2)ω
ẏ +

4c2

2− c2
x

)
=

(2− 5c2)ω

2c
xm

(A.27)
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ẋo = ẋ− ẋm

=
(2− c2)ω

2c
(y − ym)− 2c

(2− c2)ω
uy

=
(2− c2)ω

2c
yo −

2c

(2− c2)ω
uy

(A.28)

ẏo = ẏ − ẏm =

(
xm −

4c2

2− c2
x

)
(2− c2)ω

2c
− (2− 5c2)ω

2c
xm

=
(2− c2)ω

2c
xm −

4c2

2− c2

(2− c2)ω

2c
x− (2− 5c2)ω

2c
xm

=
2ω − c2ω − 2ω + 5c2ω

2c
xm − 2ωcx

=
4c2ω

2c
xm − 2ωcx

= 2ωc(xm − x)

= −2ωcxo

(A.29)
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